[{"awards": "1918338 VanTongeren, Jill", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Thu, 03 Apr 2025 00:00:00 GMT", "description": "Voluminous outpourings of iron-rich molten rock (magma), which can initiate from deep within the earth, occur regularly throughout geologic time. Understanding volcanic eruptions requires knowledge of the magmatic plumbing systems and magma chambers that feed eruptions. While many magma chambers are typically emplaced in the shallow subsurface of the earth, only rarely are the entirety of the solidified remnants of these chambers later exposed at the surface of the earth for study. One such magma chamber, the Dufek Intrusion, exists in Antarctica. The Dufek Intrusion is part of the Ferrar magmatic event, which was triggered by the separation or rifting of South America, Africa and Antarctic continents approximately 182 million years ago. The research objectives focus on analyzing existing samples to understand the thermal and chemical evolution of the magma in the Dufek Intrusion magma chamber and deciphering whether the exposed sections are part of the same magma chamber or represent two separate magma chambers. Results from this study may result in the research community questioning the assumption that small intrusions crystallized faster than larger layered intrusions such as the Dufek Intrusion. This project supports multiple early career researchers and provides laboratory training for undergraduate students. Preliminary high-precision U-Pb ages from zircon throughout the Dufek Intrusion show that rocks thought to represent the lowermost section of stratigraphy (the Dufek Massif) are younger than the rocks thought to represent the uppermost section (the Forrestal Range). This study tests whether the zircon ages represent a cooling profile of a single large layered intrusion, or whether the Dufek Massif and Forrestal Range are two separate smaller intrusions. Crystallization temperatures of the cumulus phases (plagioclase and clinopyroxene) and the zircons, as well as cooling rates from the cumulus phases will be obtained to test the cooling profile hypothesis. The research team will construct thermal models of emplacement and cooling to compare with the laboratory analyses. In order to test the two intrusions hypothesis, the team will analyze zircon Hf isotopic compositions and whole rock Sr, Nd, Pb isotopes from samples of the two intrusions to determine whether they are similar and therefore genetically related. Results will provide important constraints on the duration of magmatism associated with continental breakup and present a coherent picture of the construction of (possibly) one of the largest magmatic intrusions exposed on earth today. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "AGE DETERMINATIONS; Ferrar Magmatic Province", "locations": "Ferrar Magmatic Province", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "VanTongeren, Jill", "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "The Dufek Intrusion Ages: Crystallization or Cooling?", "uid": "p0010505", "west": null}, {"awards": "2333917 Dong, Xiaoli", "bounds_geometry": "POLYGON((161 -77.5,161.1 -77.5,161.2 -77.5,161.3 -77.5,161.4 -77.5,161.5 -77.5,161.6 -77.5,161.7 -77.5,161.8 -77.5,161.9 -77.5,162 -77.5,162 -77.51,162 -77.52,162 -77.53,162 -77.53999999999999,162 -77.55,162 -77.56,162 -77.57,162 -77.58,162 -77.58999999999999,162 -77.6,161.9 -77.6,161.8 -77.6,161.7 -77.6,161.6 -77.6,161.5 -77.6,161.4 -77.6,161.3 -77.6,161.2 -77.6,161.1 -77.6,161 -77.6,161 -77.58999999999999,161 -77.58,161 -77.57,161 -77.56,161 -77.55,161 -77.53999999999999,161 -77.53,161 -77.52,161 -77.51,161 -77.5))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 27 Feb 2025 00:00:00 GMT", "description": "Ecosystems worldwide are threatened by anthropogenic changes in climate. Lakes are widely regarded as sentinels of climate change and, among these, polar lakes are the most sensitive. Beneath meters of permanent ice and liquid water, many Antarctic lakes contain complex microbial communities that are already being transformed by climate change. The structurally complex spatial patterns that these microbes create provide the opportunity to pursue research questions about spatial ecology that cannot be addressed elsewhere. This project focuses on research that will advance understanding of the spatial structure of benthic communities in Antarctic lakes, their relationships with environmental conditions, and predictions for likely changes in the future. This project will also advance methods in integrating the morphology and spatial patterning of modern microbial communities in relationship to their biophysical and biochemical environments. The quantitative framework being developed has potential to refine understanding of controls on microbial community patterning and thus interpretation of both the effects of climate change and ancient fossil microbial communities in the geologic record. Such understanding will address key questions about Earth\u2019s evolutionary and environmental history and future. Lake Vanda in the McMurdo Dry Valleys, Antarctic, has modern microbial pinnacles covering its lake floor. Using existing datasets on spatial structure of benthic communities from 37 sites on the floor of Lake Vanda, the project team will apply recent theories from Spatial Ecology to investigate the mechanisms that give rise to spatial patterns of pinnacles formed by benthic microbes. The work addresses two questions: (1) What are the morphological and spatial patterns of pinnacles and how do they vary over developmental stages, along environment gradients, and from 2013 to 2023? And (2) what mechanisms give rise to the geometry of individual pinnacles and their spatial distribution? Lake Vanda provides an exceptional opportunity to address these questions. It features well characterized gradients in sedimentation, nutrients, irradiance, transport mechanism, and colonization history. Benthic communities at different locations in the lake manifest distinct spatial patterns, as they experience distinct conditions. Lake level has increased \u003e10 m in the past few decades, creating additional opportunities for a \u201cnatural experiment\u201d on pattern development by comparing relatively newly flooded substrates (pinnacles of 1 to 15 years old) with deeper, well-developed mats (\u003e 70 years old). Since microbial communities respond to environmental change rapidly, analyses can characterize changes in patterns in pinnacle spatial data collected 9 years apart (Dec 2013 and Jan 2023), providing the opportunity to directly assess responses of spatially self-organized ecosystems to environmental change. As such, Lake Vanda is a natural laboratory that allows research (1) to effectively sort out mechanisms of pattern formation affecting benthic microbial communities residing there; and (2) to test the theory of spatial self-organization: mechanisms of pattern formation and responses to perturbations, applicable to ecosystems worldwide. Research questions will be addressed by integrating existing datasets, spatial pattern analyses, Bayesian statistical models, and process-based numerical models. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 162.0, "geometry": "POINT(161.5 -77.55)", "instruments": null, "is_usap_dc": true, "keywords": "Lake Vanda; ECOLOGICAL DYNAMICS", "locations": "Lake Vanda", "north": -77.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Dong, Xiaoli; Sumner, Dawn", "platforms": null, "repositories": null, "science_programs": null, "south": -77.6, "title": "Effects of Environmental Change on Microbial Self-organized Patterns in Antarctic Lakes", "uid": "p0010499", "west": 161.0}, {"awards": "1744651 Wilcock, William", "bounds_geometry": "POLYGON((-62 -62,-61.5 -62,-61 -62,-60.5 -62,-60 -62,-59.5 -62,-59 -62,-58.5 -62,-58 -62,-57.5 -62,-57 -62,-57 -62.2,-57 -62.4,-57 -62.6,-57 -62.8,-57 -63,-57 -63.2,-57 -63.4,-57 -63.6,-57 -63.8,-57 -64,-57.5 -64,-58 -64,-58.5 -64,-59 -64,-59.5 -64,-60 -64,-60.5 -64,-61 -64,-61.5 -64,-62 -64,-62 -63.8,-62 -63.6,-62 -63.4,-62 -63.2,-62 -63,-62 -62.8,-62 -62.6,-62 -62.4,-62 -62.2,-62 -62))", "dataset_titles": "3D P-wave velocity models of Orca Volcano, Bransfield Basin, Antarctica from the\r\nBRAVOSEIS experiment; Bransfield OBSIC OBS network 2019-20 (network code ZX, 2019); BRAVOSEIS Onshore Seismic Array (Network code 5M)", "datasets": [{"dataset_uid": "200440", "doi": "", "keywords": null, "people": null, "repository": "NSF SAGE Facility DMC", "science_program": null, "title": "Bransfield OBSIC OBS network 2019-20 (network code ZX, 2019)", "url": " https://ds.iris.edu/mda/18-017/"}, {"dataset_uid": "200441", "doi": "10.14470/0Z7563857972", "keywords": null, "people": null, "repository": "GEOFON", "science_program": null, "title": "BRAVOSEIS Onshore Seismic Array (Network code 5M)", "url": "https://doi.org/10.14470/0Z7563857972"}, {"dataset_uid": "200442", "doi": "in progress", "keywords": null, "people": null, "repository": "Marine Geoscience Data System", "science_program": null, "title": "3D P-wave velocity models of Orca Volcano, Bransfield Basin, Antarctica from the\r\nBRAVOSEIS experiment", "url": ""}], "date_created": "Fri, 14 Feb 2025 00:00:00 GMT", "description": "One of the fundamental processes in plate tectonics is the rifting or separating of continental crust creating new seafloors which can widen and ultimately form new ocean basins, the latter is a process known as seafloor spreading. The Bransfield Strait, separating the West Antarctic Peninsula from the South Shetland Islands, formed and is presently widening as a result of the separation of continental crust. What is unique is that the system appears to be approaching the transition to seafloor spreading making this an ideal site to study the transitional process. Previous seafloor mapping and field surveys provide the regional structure of the basin; however, there exists a paucity of regional seismic studies documenting the tectonic and volcanic activity in the basin as a result of the rifting. This would be the first local-scale study of the seismicity and structure of the volcanoes in the center of the basin where crustal separation is most active. The new seismic data will enable scientists to compare current patterns of crustal separation and volcanism at the Bransfield Strait to other well-studied seafloor spreading centers. This collaborative international project, led by the Spanish and involving scientists from the U.S., Germany and other European countries, will monitor seismicity for one year on land and on the seafloor. An active seismic study conducted by the Spanish will image fault and volcanic structures that can be related to the distribution of earthquakes. Back-arc basins are found in subduction settings and form in two stages, an initial interval of continental rifting that transitions to a later stage of seafloor spreading. Studying the transitional process is important for understanding the dynamics and evolution of subduction zones, and in locations where back-arc rifting breaks continental crust, it is relevant to understanding the formation of passive continental margins. The Central Bransfield Basin is unusual in that the South Shetland Islands have lacked recent arc volcanism and it appears subduction is ceasing, but this system has broad significant because it appears to be nearing the transition from rifting to seafloor spreading. This award will support the U.S. component of an international initiative led by the Spanish Polar Committee to conduct a study of the seismicity and volcanic structure of the Central Bransfield Basin. The objective is to characterize the distribution of active extension across the basin and determine whether the volcanic structure and deformation of the rift are consistent with a back-arc basin that is transitioning from rifting to seafloor spreading. The U.S. component of the experiment will contribute a network of six hydroacoustic moorings to monitor regional seismicity and 15 short-period seismometers to study the distribution of tectonic and volcanic seismicity on Orca volcano, one of the most active volcanoes in the basin. An active seismic study across closely spaced multichannel seismic lines across the rift will provide the data necessary to link earthquakes with fault structures enabling a tomography study of Orca volcano and provide insight into how the volcano\u0027s structure relates to rifting. This research will constrain the distribution of active rifting across the Central Bransfield Basin and determine whether the patterns of faulting and the structure of volcanic portion of the rift are consistent with a diffuse zone of rifting or a single spreading center that is transitioning to the production of oceanic crust. The Bransfield Basin is an ideal site for a comparative study of seismic and hydroacoustic earthquake locations that will improve the understanding of the generation and propagation of T-wave signals and contribute to efforts to compare the result of T-wave studies with data from traditional solid-earth seismic studies. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -57.0, "geometry": "POINT(-59.5 -63)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e AIRGUN ARRAYS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e PASSIVE ACOUSTIC RECORDER", "is_usap_dc": true, "keywords": "Back Arc Basin; SHIPS; TECTONICS; PLATE TECTONICS; South Shetland Islands; Bransfield Strait; MARINE GEOPHYSICS; Antarctic Peninsula", "locations": "Bransfield Strait; South Shetland Islands; Antarctic Peninsula", "north": -62.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "NOT APPLICABLE", "persons": "William, Wilcock; Dax, Soule; Robert, Dziak", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "NSF SAGE Facility DMC", "repositories": "GEOFON; Marine Geoscience Data System; NSF SAGE Facility DMC", "science_programs": null, "south": -64.0, "title": "Collaborative Research: The Tectonic and Magmatic Structure and Dynamics of Back-arc Rifting in Bransfield Strait: An International Seismic Experiment", "uid": "p0010498", "west": -62.0}, {"awards": "2437938 Goodge, John", "bounds_geometry": "POLYGON((155 -82,156 -82,157 -82,158 -82,159 -82,160 -82,161 -82,162 -82,163 -82,164 -82,165 -82,165 -82.3,165 -82.6,165 -82.9,165 -83.2,165 -83.5,165 -83.8,165 -84.1,165 -84.4,165 -84.7,165 -85,164 -85,163 -85,162 -85,161 -85,160 -85,159 -85,158 -85,157 -85,156 -85,155 -85,155 -84.7,155 -84.4,155 -84.1,155 -83.8,155 -83.5,155 -83.2,155 -82.9,155 -82.6,155 -82.3,155 -82))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 16 Jan 2025 00:00:00 GMT", "description": "Non-Technical Abstract This project will examine ancient Antarctic rocks to understand the continent\u2019s early history, including how Antarctica was once connected to other continents. By studying rock samples from the Nimrod Complex, the project will gather data on the age and makeup of these rocks, showing how Antarctica\u0027s crust formed and changed over time. This work will not only expand scientific knowledge about Earth\u0027s history but also provide valuable training for college students at multiple universities, helping to grow a diverse community of researchers who can tackle big questions in Earth science. Technical Abstract This project seeks to unravel the origin, evolution, and geological significance of the Nimrod Complex in Antarctica\u2019s East Antarctic craton through detailed age and isotopic analysis of its igneous and metamorphic rocks. Using U-Pb zircon geochronology along with O-isotope, Hf-isotope, and trace element analyses, we will construct a comprehensive petrochronological profile of these Mesoarchean to Paleoproterozoic rocks to reveal their magmatic sources, metamorphic history, and role in the broader tectonic framework. The project aims to trace sediment sources and tectonic influences across sedimentary units spanning the Paleoproterozoic to lower Paleozoic eras, adding crucial data to supercontinent reconstructions (Columbia, Rodinia, and Gondwana) and Antarctic tectonic models. Broader impacts include collaborations between universities to develop a diverse STEM workforce, inter-laboratory partnerships, and a robust isotopic dataset that will contribute to models of Antarctic crustal evolution and its implications for ice sheet stability. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 165.0, "geometry": "POINT(160 -83.5)", "instruments": null, "is_usap_dc": true, "keywords": "ISOTOPES; Miller Range; Geologists Range; Zircon; Transantarctic Mountains; FIELD INVESTIGATION", "locations": "Transantarctic Mountains; Miller Range; Geologists Range", "north": -82.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "ARCHAEAN \u003e MESOARCHEAN; ARCHAEAN \u003e NEOARCHEAN; PROTEROZOIC \u003e MESOPROTEROZOIC; PROTEROZOIC \u003e PALEOPROTEROZOIC; PROTEROZOIC \u003e NEOPROTEROZOIC", "persons": "Goodge, John; Kylander-Clark, Andrew; Bell, Elizabeth; Pecha, Mark", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": -85.0, "title": "The Nimrod Complex, an Ancient Window into East Antarctic Crustal Evolution", "uid": "p0010495", "west": 155.0}, {"awards": "1853291 Girton, James; 1558448 Girton, James", "bounds_geometry": "POLYGON((-70 -58,-69 -58,-68 -58,-67 -58,-66 -58,-65 -58,-64 -58,-63 -58,-62 -58,-61 -58,-60 -58,-60 -58.8,-60 -59.6,-60 -60.4,-60 -61.2,-60 -62,-60 -62.8,-60 -63.6,-60 -64.4,-60 -65.2,-60 -66,-61 -66,-62 -66,-63 -66,-64 -66,-65 -66,-66 -66,-67 -66,-68 -66,-69 -66,-70 -66,-70 -65.2,-70 -64.4,-70 -63.6,-70 -62.8,-70 -62,-70 -61.2,-70 -60.4,-70 -59.6,-70 -58.8,-70 -58))", "dataset_titles": "APL-UW Southern Ocean Wave Glider Data from 2019/20 Mission; Data from 2016 WG launch cruise LMG1612; Data from 2017 WG recovery cruise LMG1703; Data from 2019 WG launch cruise LMG1909; Data from 2020 WG recovery cruise LMG2002; Expedition Data; Expedition data of LMG1612; Expedition Data of LMG1909; LMG2002 Expedtition Data; Wave Glider Data from 2016/17 Mission", "datasets": [{"dataset_uid": "200431", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of LMG1909", "url": "https://www.rvdata.us/search/cruise/LMG1909"}, {"dataset_uid": "200448", "doi": "", "keywords": null, "people": null, "repository": "University of Washington", "science_program": null, "title": "Wave Glider Data from 2016/17 Mission", "url": "http://faculty.washington.edu/jmt3rd/Waveglider/"}, {"dataset_uid": "200222", "doi": "10.7284/908802", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "LMG2002 Expedtition Data", "url": "https://www.rvdata.us/search/cruise/LMG2002"}, {"dataset_uid": "601902", "doi": "10.15784/601902", "keywords": "Antarctica; Cryosphere; Drake Passage; LMG1909; LMG2002; R/v Laurence M. Gould; Temperature; Wave Glider; Wind Speed", "people": "Girton, James", "repository": "USAP-DC", "science_program": null, "title": "APL-UW Southern Ocean Wave Glider Data from 2019/20 Mission", "url": "https://www.usap-dc.org/view/dataset/601902"}, {"dataset_uid": "001365", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1703"}, {"dataset_uid": "200444", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Data from 2016 WG launch cruise LMG1612", "url": "https://www.rvdata.us/search/cruise/LMG1612"}, {"dataset_uid": "200429", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1612", "url": "https://www.rvdata.us/search/cruise/LMG1612"}, {"dataset_uid": "200445", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Data from 2019 WG launch cruise LMG1909", "url": "https://www.rvdata.us/search/cruise/LMG1909"}, {"dataset_uid": "200446", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Data from 2017 WG recovery cruise LMG1703", "url": "https://www.rvdata.us/search/cruise/LMG1703"}, {"dataset_uid": "200447", "doi": "10.7284/908802", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Data from 2020 WG recovery cruise LMG2002", "url": "https://www.rvdata.us/search/cruise/LMG2002"}], "date_created": "Wed, 15 Jan 2025 00:00:00 GMT", "description": "Surface and upper-ocean processes in the Antarctic Circumpolar Current (ACC) play an important role in ocean heat transport, air-sea gas fluxes (such as pCO2) and in sea-ice formation. The net of these in turn modulate global climate, sea level rise and global circulation. This project continues the field development of a surface autonomous vehicle (https://www.liquid-robotics.com/wave-glider/overview/ ) to better measure and study these processes in the remote Southern Ocean, where continuous data is otherwise very difficult to obtain. Mobile autonomous surface vehicles, powered by sunlight and wave action provide a very cost effective manner of solving the problem of obtaining unattended observational coverage in the remote Southern Ocean. The project will support ongoing education and outreach efforts by the PIs including school presentations, visits to science centers and the development of educational materials. The WaveGlider has an established track record of navigating successful spatial surveys and positioned time series measurements in otherwise inhospitable waters and sea-states. The study includes the addition of some new measurement capabilities such as an (upper mixed) layer profiling CTD winch, a high frequency acoustic Doppler turbulence system, and a biogeochemical chlorophyll fluorescence sensor. This augmented instrumentation package will be used for a set of Austral summer season experiments observing ocean-shelf exchange along with frontal air-sea interactions in the vicinity of the West Antarctic Peninsula. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -60.0, "geometry": "POINT(-65 -62)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e CURRENT METERS; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e SONIC ANEMOMETER; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERA; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS", "is_usap_dc": true, "keywords": "SEA SURFACE TEMPERATURE; WAVE GLIDER; TURBULENCE; SURFACE PRESSURE; OCEAN MIXED LAYER; LMG1703; Palmer Station; SALINITY/DENSITY; SURFACE WINDS; OCEAN CURRENTS; HEAT FLUX; SURFACE AIR TEMPERATURE; HUMIDITY; Drake Passage; R/V NBP; R/V LMG; Antarctic Peninsula; WIND STRESS", "locations": "Drake Passage; Antarctic Peninsula; Palmer Station", "north": -58.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Girton, James; Thomson, Jim", "platforms": "WATER-BASED PLATFORMS \u003e UNCREWED VEHICLES \u003e SURFACE \u003e WAVE GLIDER; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; University of Washington; USAP-DC", "science_programs": null, "south": -66.0, "title": "Wave Glider Observations of Surface Fluxes and Mixed-layer Processes in the Southern Ocean", "uid": "p0010493", "west": -70.0}, {"awards": "2142914 Baker, Bill; 2142913 Tresguerres, Martin; 2142912 Murray, Alison", "bounds_geometry": "POLYGON((-180 -60,-168 -60,-156 -60,-144 -60,-132 -60,-120 -60,-108 -60,-96 -60,-84 -60,-72 -60,-60 -60,-60 -62,-60 -64,-60 -66,-60 -68,-60 -70,-60 -72,-60 -74,-60 -76,-60 -78,-60 -80,-72 -80,-84 -80,-96 -80,-108 -80,-120 -80,-132 -80,-144 -80,-156 -80,-168 -80,180 -80,178 -80,176 -80,174 -80,172 -80,170 -80,168 -80,166 -80,164 -80,162 -80,160 -80,160 -78,160 -76,160 -74,160 -72,160 -70,160 -68,160 -66,160 -64,160 -62,160 -60,162 -60,164 -60,166 -60,168 -60,170 -60,172 -60,174 -60,176 -60,178 -60,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 17 Oct 2024 00:00:00 GMT", "description": "Non-technical description Marine invertebrates often have mutually beneficial partnerships with microorganisms that biosynthesize compounds with nutritive or defensive functions and are integral for survival. Additionally, these \u201cnatural products\u201d often have bioactive properties with human health applications fighting infection or different types of cancer. This project focuses on the ascidian (\u201csea squirt\u201d) Synoicum adareanum, found in the Anvers Island region of the Antarctic Peninsula, and was recently discovered to contain high levels of a natural product, palmerolide A (palA) in its tissues. The microorganism that produces palA is a new bacterial species, Candidatus Synoicihabitans palmerolidicus, found in a persistent partnership with the sea squirt. There is still much to be learned about the fundamental properties of this sea squirt-microbe-palA system including the geographical range of the animal-microbe partnership, its chemical and microbiome complexity and diversity, and the biological effect of palA in the sea squirt. To address these questions, this multidisciplinary research team will investigate the sea squirt-microbiome partnership in the Antarctic Peninsula and McMurdo Sound regions of the Ross Sea using a state-of-the-art strategy that will advance our understanding of the structural and functional features of the sea squirt and microbiome in detail, and reveal the roles that the palA natural product plays in the host ecology in its native Antarctic seafloor habitat. The project will broaden diversity and provide new opportunities for early career students and postdoctoral researchers to participate in field and laboratory-based research that builds an integrative understanding of Antarctic marine biology, ecology, physiology and chemistry. In addition, advancing the understanding of palA and its biological properties may be of future benefit to biomedicine and human health. Technical description Marine invertebrates and their associated microbiomes can produce bioactive natural products; in fact, \u003e600 such compounds have been identified in species from polar waters. Although such compounds are typically hypothesized to serve ecological roles in host survival through deterring predation, fouling, and microbial infection, in most cases neither the producing organism nor the genome-encoded biosynthetic enzymes are known. This project will study an emerging biosynthetic system from a polar ascidian-microbe association that produces palA, a natural product with bioactivity against the proton-pumping enzyme V-type H+-ATPase (VHA). The objectives include: (i) Determining the microbiome composition, metabolome complexity, palA levels, and mitochondrial DNA sequence of S. adareanum morphotypes at sites in the Antarctic Peninsula and in McMurdo Sound, (ii) Characterizing the Synoicum microbiome using a multi-omics strategy, and (iii) Assessing the potential for co-occurrence of Ca. S. palmerolidicus-palA-VHA in host tissues, and (iv) exploring the role of palA in modulating VHA activity in vivo and its effects on ascidian-microbe ecophysiology. Through a coupled study of palA-producing and non-producing S. adareanum specimens, structural and functional features of the ascidian microbiome metagenome will be characterized to better understand the relationship between predicted secondary metabolite pathways and whether they are expressed in situ using a paired metatranscriptome sequencing and secondary metabolite detection strategy. Combined with tissue co-localization results, functional ecophysiological assays aim to determine the roles that the natural product plays in the host ecology in its native Antarctic seafloor habitat. The contributions of the project will inform this intimate host-microbial association in which the ascidian host bioaccumulates VHA-inhibiting palA, yet its geo-spatial distribution, cellular localization, ecological and physiological role(s) are not known. In addition to elucidating the ecophysiological roles of palA in their native ascidian-microbe association, the results will contribute to the success of translational science, which aligns with NSF\u2019s interests in promoting basic research that leads to advances in Biotechnology and Bioeconomy. The project will also broaden diversity and provide new opportunities for early career students and postdoctoral researchers to participate in field and laboratory-based research that builds an integrative understanding of Antarctic marine biology, ecology, physiology and chemistry. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 160.0, "geometry": "POINT(-130 -70)", "instruments": null, "is_usap_dc": true, "keywords": "ECOSYSTEM FUNCTIONS; BACTERIA/ARCHAEA; BENTHIC; R/V NBP; Antarctic Peninsula; ANIMALS/INVERTEBRATES", "locations": "Antarctic Peninsula", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Baker, Bill; Murray, Alison; Tresguerres, Martin", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repositories": null, "science_programs": null, "south": -80.0, "title": "Collaborative Research: ANT LIA: Diving into the Ecology of an Antarctic Ascidian-Microbiome-Palmerolide Association using a Multi-omic and Functional Approach", "uid": "p0010485", "west": -60.0}, {"awards": "2038149 Warner, Jacob", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 09 Oct 2024 00:00:00 GMT", "description": "Antarctic marine invertebrates exhibit extraordinarily slow rates of development. This phenomenon has arisen repeatedly in independent Antarctic lineages, including sea urchins, sea stars, brachiopods, and ribbon worms. Despite these observations, little is known about the molecular mechanisms responsible for slow developmental rates in Antarctic marine invertebrates. This proposal is developing the Antarctic sea urchin, Sterechinus neumayeri, as a model invertebrate organism to evaluate cold water organismal adaptation and development. Urchins collected from McMurdo Sound are being studied in carefully controlled laboratory experiments. This work is specifically identifying the gene regulatory network components responsible for regulating developmental timing in S. neumayeri and, more generally, which gene regulatory network elements evolved during adaption to the extreme environment of the Southern Ocean. The lab-based work is focusing in two specific areas: 1) Identify unique gene regulatory network components of S. neumayeri that evolved during its developmental adaptation to the Southern Ocean, and 2) Analyze spatial expression and functions of key genes in the early S. neumayeri gene regulatory networks controlling specification and patterning of territories along the early anterior-posterior axis. A comparative analysis of better studied urchins from warmer regions will be used to inform this work. This effort is relevant to several fields of biology ranging from polar biology, developmental biology, evolution, and genomics while explicitly tying genotype to phenotype. Broader impacts: The proposal included three early career investigators who are new to Antarctic research programs working alongside a well-established Antarctic investigator. The team has developed an ambitious program for science and technology training in computer coding and biology targeted for underrepresented students. They also have developed web-based bioinformatics training blog, \u201c2-bitbio\u201d, which aims to decrease the \u2018barrier to entry\u2019 into the field of bioinformatics. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; ECHINODERMS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Warner, Jacob", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: LIA: Genomic Mechanisms Controlling the Slow Development of the Antarctic Urchin Sterechinus Neumayeri", "uid": "p0010480", "west": -180.0}, {"awards": "2428537 Siegelman, Lia", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 06 Aug 2024 00:00:00 GMT", "description": "The polar oceans act as a central thermostat that helps set the Earth\u2019s temperature and governs our climate. Rapid changes are currently ongoing in the polar regions in response to interactions between the air, ocean, and sea-ice. Despite their importance, air-sea interactions at high latitudes remain poorly understood, in great part due to the observational challenges inherent to this extreme and remote environment. The overarching objective of this project is to develop and test a new generation of autonomous ocean platforms specifically designed to withstand the harsh polar environment, to enable improved understanding and quantification of fine-scale air-sea fluxes in these key regions of the globe. Doing so will enable the research community to advance observational capabilities of under-sampled high-latitude oceans while being respectful of the environment and local communities. Compared to research vessels, our wave-propelled platforms (\u201dWave Gliders\u201d) produce a very low acoustic footprint, minimizing behavioral impact to marine mammals such as whales and seals, who are highly affected by underwater noise pollution generated by classical research vessels. Researchers will develop and test advanced capabilities added to existing, off-the-shelf platforms to operate in the extreme conditions of the high latitude oceans in order to understand how the ocean transfers heat and momentum to the atmosphere at fine scales. To accomplish this goal, instrumented Wave Gliders will first be upgraded with state-of-the-art technology for propulsion, energy generation and storage, anti-icing, and a scientific payload capable of operating for long durations in polar oceans. This new technology will be implemented and tested in the Air-Sea Interaction Laboratory and the recently completed SOARS facility at the Scripps Institution of Oceanography, UC San Diego. This facility is capable of developing a polar wave glider, as it can incorporate sea ice and freezing sea spray similar to real world conditions. The validation of the instrumented autonomous vehicles will be conducted during multiple short deployments, initially off La Jolla, CA with a final deployment in the Southern Ocean in polar conditions. Students from local robotics programs will participate in both the development and testing of the polar wave glider. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "OCEAN CURRENTS; Southern Ocean; SURFACE WINDS", "locations": "Southern Ocean", "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Siegelman, Lia; Lenain, Luc", "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "EAGER: Developing High Latitudes Capabilities for Wave Gliders", "uid": "p0010475", "west": null}, {"awards": "2031121 Junge, Karen", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 30 Jul 2024 00:00:00 GMT", "description": "The ozone hole that develops over the Antarctic continent every spring is one of the features attributed to human activity, in particular production of the CFC (chlorofluorocarbons in refrigerants) released to the atmosphere. In spite of the CFC ban from the Montreal Protocol established in the year 1987, the recovery has been slower than predicted. Bromocarbons, known to produce the stratospheric ozone depletion, have recently been estimated to contribute to the pool of bromines in the lower atmosphere. What is the origin of the bromocarbons in Antarctic sea ice? Is this an additional source of chemicals creating the ozone hole? This project will test if bromocarbons in sea ice are produced and degraded by microalgae and bacteria found in sea ice, in snow and the interface between the two. The project will collect a suite of chemical and biological measurements of sea ice and snow to determine bromocarbon concentrations, microbial activity associated with them, and intra-cellular genes and proteins involved in bromocarbon metabolism. This project benefits NSF\u2019s goals of expanding fundamental knowledge of Antarctic systems, biota, and processes, and improving the understanding of interactions among the Antarctic systems, cryosphere and organisms. The work will be carried out at McMurdo Station in late austral spring, including sampling of snow and ice that will be concentrated in the laboratory, and 24-hour experiments to measure algal and bacterial activity. Genes controlling synthesis of enzymes involved in bromocarbon metabolism are of interest in biotechnology and bioremediation, including products that repair damaged skin from UltraViolet Radiation. The project will train undergraduate students on chemical and biological techniques. The Principal Investigators will be involved in the Pacific Science Center in Seattle with ~10,000 visitors per weekend where they will develop a project-specific exhibit. The microbial processes in snow and ice associated with bromocarbon synthesis and degradation have not been studied in Antarctica during winter and spring. This study will inform about microbial activity in relation to the release of bromocarbons compounds from the snow and ice surfaces, compounds known to degrade stratospheric ozone. The estimation of chemical bromocarbons will be combined with metagenomics and metaproteomics approaches for understanding the potential role of microbes in snow and sea ice. The environmental, chemical and biological data will be synthesized with multivariate analysis and significant differences between sites and experimental treatments with ANOVA. A collaborator from the University of Goteborg in Sweden will collaborate on bromocarbon analyses. The study will also address \u201csaline snow\u201d a new environment not previously studied for microbial life. In addition, this is the first study of meta-proteomics in snow and ice. The Principal Investigators expect their results will help inform ozone hole recovery in the 21st century. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "McMurdo Sound; COASTAL; BACTERIA/ARCHAEA; SEA ICE; SNOW/ICE", "locations": "McMurdo Sound", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Junge, Karen; Nunn, Brook L", "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "Sea-ice Snow Microbial Communities\u2019 Impact on Antarctic Bromocarbon Budgets and Processes", "uid": "p0010472", "west": null}, {"awards": "1903681 Brook, Edward J.", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Final N2O isotopic data including isotopomer ratios for the last deglaciation and Heinrich Stadia 4/Dansgaard Oeschger Event 8; Preliminary nitrous oxide site preference isotopic data for last deglaciation from Taylor Glacier", "datasets": [{"dataset_uid": "601803", "doi": "10.15784/601803", "keywords": "Antarctica; Cryosphere; Ice Core; Nitrous Oxide; Taylor Glacier", "people": "Menking, Andy; Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "Final N2O isotopic data including isotopomer ratios for the last deglaciation and Heinrich Stadia 4/Dansgaard Oeschger Event 8", "url": "https://www.usap-dc.org/view/dataset/601803"}, {"dataset_uid": "601592", "doi": "10.15784/601592", "keywords": "Antarctica; Nitrous Oxide; Taylor Glacier", "people": "Menking, Andy; Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "Preliminary nitrous oxide site preference isotopic data for last deglaciation from Taylor Glacier", "url": "https://www.usap-dc.org/view/dataset/601592"}], "date_created": "Wed, 19 Jun 2024 00:00:00 GMT", "description": "The objective of this project is to understand why the nitrous oxide (N2O) content of the atmosphere was lower during the last ice age (about 20,000-100,000 years ago) than in the subsequent warm period (10,000 years ago to present) and why it fluctuated during climate changes within the ice age. Nitrous oxide is a greenhouse gas that contributes to modern global warming. It is thought that modern warming will in turn cause increases in natural sources of nitrous oxide from bacteria in soils and the ocean, creating a \"positive feedback.\" However, the amount these sources will increase is uncertain because the different ways that nitrous oxide are produced, and how sensitive they are to warmer climate, are not well known. This project will measure a unique property of the nitrous oxide molecule in very large ancient air samples from a glacier in Antarctica. This method can distinguish between different microbial processes that produce nitrous oxide but it has not been applied yet to the time periods in question. The data will provide information about how natural climate changes affect nitrous oxide production. This, in turn, will be useful for predicting future changes and for understanding why the Earth\u0027s climate shifts from ice ages to warm periods and back again. Ice-core records of greenhouse gas isotopic composition are useful for determining past changes in natural source and sink strengths and for understanding how natural emissions are linked to climate change. This project will develop two records of the intramolecular site preference of Nitrogen-15 in N2O. One record spans the last deglaciation (10,000-21,000 years ago) when atmospheric N2O concentration rose by 30 percent, and the other record spans millennial-scale climate changes during the last ice age when N2O varied by smaller amounts (Heinrich Stadial 4 and Dansgaard Oeschger 8, 35,000-41,000 years ago). The records will be used to understand what changes in the nitrogen cycle caused atmospheric N2O concentration to vary and what mechanisms link the N2O emissions to climate change. Ideally, studying the two different time periods will isolate the millennial climate responses entangled with the full deglacial sequence, creating a clearer picture of how N2O biogeochemistry responds to climate change. This work will also allow exploration of an isotopic tracer for in situ production of N2O that contaminates the atmospheric signal in particularly dusty ice. The project will use a unique, well-dated suite of ice samples from Taylor Glacier, Antarctica and continuous flow isotope ratio mass spectrometry on a custom gas extraction line operated in the Oregon State University laboratory. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Taylor Glacier; Nitrous Oxide; TRACE GASES/TRACE SPECIES; Ice Core; Stable Isotopes; NITROUS OXIDE", "locations": "Taylor Glacier", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY", "persons": "Brook, Edward", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Deciphering Changes in Atmospheric Nitrous Oxide Concentration During the Last Ice Age Using the Intramolecular Site-Preference of Nitrogen Isotopes", "uid": "p0010465", "west": -180.0}, {"awards": "2207011 Granger, Julie", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 04 Mar 2024 00:00:00 GMT", "description": "Phytoplankton are microscopic single-celled plants that grow at the sun-lit surface of the ocean. In the Southern Ocean around Antarctica, phytoplankton live in sub-optimal conditions because the amount of iron in seawater is insufficient for growth. Moreover, the chemical composition of Southern Ocean phytoplankton is distinct from that in other ocean regions, with a higher proportion of phosphorus relative to other elements, a characteristic that ultimately influences the distribution of nutrients ocean-wide. The researchers hypothesize that the high phosphorus composition of phytoplankton in the Southern Ocean is caused by their low iron content. Specifically, they postulate that a phosphorus-rich molecule, phytic acid, is synthesized by phytoplankton in order to assist in the storage of iron in designated cellular compartments, such as vacuoles. Recent observations show that some phytoplankton can absorb phytic acid, suggesting that it may be produced by certain species. Phytic acid is pervasive in soils, wherein it aids absorption of iron via plant roots and could similarly help phytoplankton in the Southern Ocean acquire iron via the cell membranes. This project benefits the National Science Foundation\u0027s goals of improving understanding of interactions between the Southern Ocean and the global ocean, of expanding fundamental knowledge of Antarctic biota and associated processes by focusing on phytoplankton species unique to the Antarctic. As part of this project, the Department of Marine Sciences from the College of Liberal Arts and Sciences at the University of Connecticut will sponsor the recruitment, relocation and mentorship of a graduate student under-represented in the sciences. This project aims to determine whether the unusual elemental composition of phytoplankton at the Southern Ocean is a result of anemia. The work will query whether inositol hexakisphosphate (phytic acid) aids Antarctic phytoplankton acquire and store iron, resulting in an elevated fraction of cellular phosphorus relative to other elements. The researchers, including a graduate student, will conduct laboratory culture experiments with phytoplankton strains isolated from the Southern Ocean. They will grow cells in iron- deficient versus iron-replete media to see if their phosphorus content is higher in iron-deficient conditions. They will test whether cells grown with sufficient phosphorus acquire more iron, allowing them to grow better in iron-deficient conditions than cells deriving from phosphorus-poor conditions. They will also query whether cells grown in iron-deficient conditions achieve faster growth rates in the presence of phytic acid. Results will inform the design of CRISPR mutants with which to investigate phosphorus and iron co-metabolism in Antarctic marine phytoplankton. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Dinoflagellates; Iron; United States Of America; Iron Acquisition; Siderophore; TRACE ELEMENTS; Iron Limitation", "locations": "United States Of America", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Granger, Julie; Lin, Senjie", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "Siderophore utilization by dinoflagellates as a strategy for iron acquisition", "uid": "p0010455", "west": -180.0}, {"awards": "1443522 Wannamaker, Philip", "bounds_geometry": "POLYGON((166 -77.15,166.34 -77.15,166.68 -77.15,167.02 -77.15,167.36 -77.15,167.7 -77.15,168.04 -77.15,168.38 -77.15,168.72 -77.15,169.06 -77.15,169.4 -77.15,169.4 -77.22500000000001,169.4 -77.30000000000001,169.4 -77.375,169.4 -77.45,169.4 -77.525,169.4 -77.60000000000001,169.4 -77.67500000000001,169.4 -77.75,169.4 -77.825,169.4 -77.9,169.06 -77.9,168.72 -77.9,168.38 -77.9,168.04 -77.9,167.7 -77.9,167.36 -77.9,167.02 -77.9,166.68 -77.9,166.34 -77.9,166 -77.9,166 -77.825,166 -77.75,166 -77.67500000000001,166 -77.60000000000001,166 -77.525,166 -77.45,166 -77.375,166 -77.30000000000001,166 -77.22500000000001,166 -77.15))", "dataset_titles": "Erebus volcano/Ross Island Magnetotelluric (MT) data", "datasets": [{"dataset_uid": "601493", "doi": "10.15784/601493", "keywords": "Antarctica; Mantle Melting; Mount Erebus", "people": "Wannamaker, Philip; Hill, Graham", "repository": "USAP-DC", "science_program": null, "title": "Erebus volcano/Ross Island Magnetotelluric (MT) data", "url": "https://www.usap-dc.org/view/dataset/601493"}], "date_created": "Mon, 05 Feb 2024 00:00:00 GMT", "description": "General Description: This project is intended to reveal the magma source regions, staging areas, and eruptive pathways within the active volcano Mount Erebus. This volcano is an end-member type known as phonolitic, which refers to the lava composition, and is almost purely carbon-dioxide-bearing and occurs in continental rift settings. It is in contrast to the better known water-bearing volcanoes which occur at plate boundary settings (such as Mount St Helens or Mount Fuji). Phonolitic volcanic eruptions elsewhere such as Tamboro or Vesuvius have caused more than 50,000 eruption related fatalities. Phonolites are also associated with rare earth element deposits, giving them economic interest. To illuminate the inner workings of Mount Erebus, we will cover the volcano with a dense network of geophysical probes based on magnetotelluric (MT) measurements. MT makes use of naturally occurring electromagnetic (EM) waves generated mainly by the sun as sources to provide images of the electrical conductivity structure of the Earth\u0027s interior. Conductivity is sensitive to the presence of fluids and melts in the Earth and so is well suited to understanding volcanic processes. The project is a cooperative effort between scientists from the United States, New Zealand, Japan and Canada. It implements new technology developed by the lead investigator and associates that allows such measurements to be taken on snow-covered terrains. This has applicability for frozen environments generally, such as resource exploration in the Arctic. The project supports a new post-doctoral researcher, and leverages imaging and measurement methods developed through support by other agencies and interfaced with commercial platforms. Technical Description: The investigators propose to test magmatic evolution models for Mount Erebus volcano, Antarctica, using the magnetotelluric (MT) method. The phonolite lava flow compositions on Mount Erebus are uncommon, but provide a window into the range of upper mantle source compositions and melt differentiation paths. Explosive phonolite eruptions have been known worldwide for devastating eruptions such as Tambora and Vesuvius, and commonly host rare earth element deposits. In the MT method, temporal variations in the Earth\u0027s natural electromagnetic (EM) field are used as source fields to probe the electrical resistivity structure in the depth range of 1 to 100 kilometers. This effort will consist of approximately 100 MT sites, with some concentration in the summit area. Field acquisition will take place over two field seasons. The main goals are to 1) confirm the existence and the geometry of the uppermost magma chamber thought to reside at 5-10 kilometer depths; 2) attempt to identify, in the deeper resistivity structure, the magma staging area near the crust-mantle boundary; 3) image the steep, crustal-scale, near-vertical conduit carrying magma from the mantle; 4) infer the physical and chemical state from geophysical properties of a CO2-dominated mafic shield volcano; and 5) constrain the relationships between structural and magmatic/ hydrothermal activity related to the Terror Rift. Tomographic imaging of the interior resistivity will be performed using a new inversion platform developed at Utah, based on the deformable edge finite element method, that is the best available for accommodating the steep topography of the study area. The project is an international cooperation between University of Utah, GNS Science Wellington New Zealand (G. Hill, Co-I), and Tokyo Institute of Technology Japan (Y. Ogawa, Co-I), plus participation by University of Alberta (M. Unsworth) and Missouri State University (K. Mickus). Instrument deployments will be made exclusively by helicopter. The project implements new technology that allows MT measurements to be taken on snow-covered terrains. The project supports a new post-doctoral researcher, and leverages imaging and measurement methods developed through support by other agencies and interfaced with commercial platforms.", "east": 169.4, "geometry": "POINT(167.7 -77.525)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS", "is_usap_dc": true, "keywords": "MAGNETIC FIELD; FIELD SURVEYS; Ross Island; Magnetotelluric; Mount Erebus", "locations": "Ross Island; Mount Erebus", "north": -77.15, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Wannamaker, Philip", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Magma Sources, Residence and Pathways of Mount Erebus Phonolitic Volcano, Antarctica, from Magnetotelluric Resistivity Structure", "uid": "p0010444", "west": 166.0}, {"awards": "2333940 Zhong, Shijie", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 08 Jan 2024 00:00:00 GMT", "description": "Satellite observations of Earth\u2019s surface gravity and elevation changes indicate rapid melting of ice sheets in recent decades in northern Antarctica Peninsula and Amundsen Sea Embayment of West Antarctica. This rapid melting may lead to significant global sea level rise which is a major societal concern. Measurements from the Global Positioning System (GPS) show rapid land uplift in these regions as the ice sheets melt. When an ice sheet melts, the melt water flows to oceans, causing global sea level to rise. However, the sea level change at a given geographic location is also influenced by two other factors associated with the ice melting process: 1) the vertical motion of the land and 2) gravitational attraction. The vertical motion of the land is caused by the change of pressure force on the surface of the solid Earth. For example, the removal of ice mass reduces the pressure force on the land, leading to uplift of the land below the ice sheet, while the addition of water in oceans increases the pressure force on the seafloor, causing it to subside. The sea level always follows the equipotential surface of the gravity which changes as the mass on the Earth\u2019s surface (e.g., the ice and water) or/and in its interiors (e.g., at the crust-mantle boundary) is redistributed. Additionally, the vertical motion of the land below an ice sheet has important effects on the evolution and stability of the ice sheet and may determine whether the ice sheet will rapidly collapse or gradually stabilize. The main goal of this project is to build an accurate and efficient computer model to study the displacement and deformation of the Antarctic crust and mantle in response to recent ice melting. The project will significantly improve existing and publicly available computer code, CitcomSVE. The horizontal and vertical components of the Earth\u2019s surface displacement depends on mantle viscosity and elastic properties of the Earth. Although seismic imaging studies demonstrate that the Antarctica mantle is heterogeneous, most studies on the ice-melting induced deformation in Antarctica have assumed that mantle viscosity and elastic properties only vary with the depth due to computational limitations. In this project, the new computational method in CitcomSVE avoids such assumptions and makes it possible to include realistic 3-D mantle viscosity and elastic properties in computing the Antarctica crustal and mantle displacement. This project will interpret the GPS measurements of the surface displacements in northern Antarctica Peninsula and Amundsen Sea Embayment of West Antarctica and use the observations to place constraints on mantle viscosity and deformation mechanisms. The project will also seek to predict the future land displacement Antarctica, which will lead to a better understand of Antarctica ice sheets. Finally, the project has direct implications for the study of global sea level change and the dynamics of the Greenland ice sheet. Technical Description Glacial isostatic adjustment (GIA) is important for understanding not only fundamental science questions including mantle viscosity, mantle convection and lithospheric deformation but also societally important questions of global sea-level change, polar ice melting, climate change, and groundwater hydrology. Studies of rock deformation in laboratory experiments, post-seismic deformation, and mantle dynamics indicate that mantle viscosity is temperature- and stress-dependent. Although the effects of stress-dependent (i.e., non-Newtonian) viscosity and transient creep rheology on GIA process have been studied, observational evidence remains elusive. There has been significant ice mass loss in recent decades in northern Antarctica Peninsula (NAP) and Amundsen Sea Embayment (ASE) of West Antarctica. The ice mass loss has caused rapid bedrock uplift as measured by GPS techniques which require surprisingly small upper mantle viscosity of ~1018 Pas. The rapid uplifts may have important feedback effects on ongoing ice melting because of their influence on grounding line migration, and the inferred small viscosity may have implications for mantle rheology and deformation on decadal time scales. The main objective of the project is to test hypotheses that the GPS observations in NAP and ASE regions are controlled by 3-D non-Newtonian or/and transient creep viscosity by developing new GIA modeling capability based on finite element package CitcomSVE. The project will carry out the following three tasks: Task 1 is to build GIA models for the NAP and ASE regions to examine the effects of 3-D temperature-dependent mantle viscosity on the surface displacements and to test hypothesis that the 3-D mantle viscosity improves the fit to the GPS observations. Task 2 is to test the hypothesis that non-Newtonian or/and transient creep rheology controls GIA process on decadal time scales by computing GIA models and comparing model predictions with GPS observations for the NAP and ASE regions. Task 3 is to implement transient creep (i.e., Burgers model) rheology into finite element package CitcomSVE for modeling the GIA process on global and regional scales and to make the package publicly available to the scientific community. The project will develop the first numerical GIA model with Burgers transient rheology and use the models to examine the effects of 3-D temperature-dependent viscosity, non-Newtonian viscosity and transient rheology on GIA-induced surface displacements in Antarctica. The project will model the unique GPS observations of unusually large displacement rates in the NAP and ASE regions to place constraints on mantle rheology and to distinguish between 3-D temperature-dependent, non-Newtonian and transient mantle viscosity. The project will expand the capability of the publicly available software package CitcomSVE for modeling viscoelastic deformation and tidal deformation on global and regional scales. The project will advance our understanding in lithospheric deformation and mantle rheology on decadal time scales, which helps predict grounding line migration and understand ice sheet stability in West Antarctica. The project will strengthen the open science practice by improving the publicly available code CitcomSVE at github. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "WAIS; CRUSTAL MOTION; COMPUTERS; GLACIER MASS BALANCE/ICE SHEET MASS BALANCE", "locations": "WAIS", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Zhong, Shijie", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Investigating Effects of Transient and Non-Newtonian Mantle Viscosity on Glacial Isostatic Adjustment Process and their Implications for GPS Observations in Antarctica", "uid": "p0010441", "west": -180.0}, {"awards": "2012958 Meyer, Colin", "bounds_geometry": null, "dataset_titles": "Frozen fringe friction ; Ring shear bed deformation measurements ", "datasets": [{"dataset_uid": "601757", "doi": "10.15784/601757", "keywords": "Antarctica", "people": "Zoet, Lucas", "repository": "USAP-DC", "science_program": null, "title": "Ring shear bed deformation measurements ", "url": "https://www.usap-dc.org/view/dataset/601757"}, {"dataset_uid": "601756", "doi": "10.15784/601756", "keywords": "Antarctica", "people": "Zoet, Lucas", "repository": "USAP-DC", "science_program": null, "title": "Frozen fringe friction ", "url": "https://www.usap-dc.org/view/dataset/601756"}], "date_created": "Wed, 13 Sep 2023 00:00:00 GMT", "description": "The fastest-changing regions of the Antarctic and Greenland Ice Sheets that contribute most to sea-level rise are underlain by soft sediments that facilitate glacier motion. Glacier ice can infiltrate several meters into these sediments, depending on the temperature and water pressure at the base of the glacier. To understand how ice infiltration into subglacial sediments affects glacier slip, the team will conduct laboratory experiments under relevant temperature and pressure conditions and compare the results to state-of-the-art mathematical models. Through an undergraduate research exchange between University of Wisconsin-Madison, Dartmouth College, and the College of Menominee Nation, Native American students will work on laboratory experiments in one summer and mathematical theory in the following summer. Ice-sediment interactions are a central component of ice-sheet and landform-development models. Limited process understanding poses a key uncertainty for ice-sheet models that are used to forecast sea-level rise. This uncertainty underscores the importance of developing experimentally validated, theoretically robust descriptions of processes at the ice-sediment interface. To achieve this, the team aims to build on long-established theoretical, experimental, and field investigations that have elucidated the central role of premelting and surface-energy effects in controlling the dynamics of frost heave in soils. Project members will theoretically describe and experimentally test the role of premelting at the basal ice-sediment interface. The experiments are designed to provide quantitative insight into the impact of ice infiltration into sediments on glacier sliding, erosion, and subglacial landform evolution. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "BASAL SHEAR STRESS; GLACIER MOTION/ICE SHEET MOTION; GLACIERS/ICE SHEETS", "locations": null, "north": null, "nsf_funding_programs": "Arctic Natural Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Meyer, Colin; Rempel, Alan; Zoet, Lucas", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Freeze-on of Subglacial Sediments in Experiments and Theory", "uid": "p0010434", "west": null}, {"awards": "2317263 Cross, Andrew", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 14 Aug 2023 00:00:00 GMT", "description": "The seaward motion of ice sheets and glaciers is primarily controlled by basal sliding at the base of the ice sheet and internal viscous flow within the ice mass. The latter of these \u2014 viscous flow \u2014 is dependent on various factors, including temperature, stress, grain size, and the alignment of ice crystals during flow to produce a \"crystal orientation fabric\" (COF). Historically, ice flow has been modeled using an equation, termed \u201cGlen\u2019s law\u201d, that describes ice-flow rate as a function of temperature and stress. Glen\u2019s law was constrained under relatively high-stress conditions and is often attributed to the motion of crystal defects within ice grains. More recently, however, grain boundary sliding (GBS) has been invoked as the rate-controlling process under low-stress, \u201csuperplastic\u201d conditions. The grain boundary sliding hypothesis is contentious because GBS is not thought to produce a COF, whereas geophysical measurements and polar ice cores demonstrate strong COFs in polar ice masses. However, very few COF measurements have been conducted on ice samples subjected to superplastic flow conditions in the laboratory. This project would measure the evolution of ice COF across the transition from superplastic to Glen-type creep. Results will be used to interrogate the role of superplastic GBS creep within polar ice masses, and thereby provide constraints on polar ice discharge models. Polycrystalline ice samples with grain sizes ranging from 5 \u00b5m to 1000 \u00b5m will be fabricated and deformed in a laboratory, using a 1-atm cryogenic axial-torsion apparatus. Experiments will be conducted at temperatures of -30\u00b0C to -10\u00b0C, and at a constant uniaxial strain rate. Under these conditions, 5% to 99.99% of strain should be accommodated by superplastic, GBS-limited creep, depending on the sample grain size. The deformed samples will then be imaged using cryogenic electron backscatter diffraction (cryo-EBSD) and high-angular-resolution electron backscatter diffraction (HR-EBSD) to quantify COF, grain size, grain shape, and crystal defect (dislocation) densities, among other microstructural properties. These measurements will be used to decipher the rate-controlling mechanisms operating within different thermomechanical regimes, and resolve a long-standing debate over whether superplastic creep can produce a COF in ice. In addition to the polycrystal experiments, ice bicrystals will be fabricated and deformed to investigate the micromechanical behavior of individual grain boundaries under superplastic conditions. Ultimately, these results will be used to provide a microstructural toolbox for identifying superplastic creep using geophysical (e.g., seismic, radar) and glaciological (e.g., ice core) observations. This project will support one graduate student, one or more undergraduate summer students, and an early-career researcher. In addition, this project will support a workshop aimed at bringing together experimentalists, glaciologists, and ice modelers to facilitate cross-disciplinary knowledge sharing and collaborative problem solving. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "United States Of America; Rheology; ROCKS/MINERALS/CRYSTALS; GLACIERS/ICE SHEETS", "locations": "United States Of America", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Cross, Andrew", "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "Microstructural Evolution during Superplastic Ice Creep", "uid": "p0010430", "west": null}, {"awards": "2142491 Young, Jodi", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 26 Jul 2023 00:00:00 GMT", "description": "Sea ice in Antarctic coastal waters shape ecosystems, both in the surface waters and at the bottom of the ocean, environments that depend on algae living in sea ice for their productivity. With high variability in sea ice formation and melt between years and as a response to climate change, it is of importance to obtain better understanding of the interaction of sea ice with algae, as well as provide better data for global climate models. This project will accomplish those goals by measuring phytoplankton growth and cellular properties in sea ice with experiments performed using an ice tank. Laboratory experiments will be based on previous observations in the Antarctic Peninsula coastal waters, providing realistic conditions to emulate. The scientific importance of the proposed work aligns with the National Science Foundation goals to understand the biological and chemical properties of sea ice bio-geo-chemistry and its feedbacks with seasonal sea ice dynamics and climate. The finding from this project will be of interest to a broad scientific community, including oceanographers, biologists, chemists, and ecosystem and ocean modelers. To address the scarcity of data on sea ice microbes that limits our ability to predict future Antarctic climate with accuracy, the principal investigator will develop an Antarctic Science Minor in order to train future scientists with an environmental perspective and prepare the future US workforce with a strong scientific background on Earth and Biological Sciences. There is a paucity of data to understand the processes underlying observed patters in sea ice quality and their interaction with the sea-ice microbial community. This project will provide a mechanistic understanding of primary production and physiology of sympagic algae over the seasonal cycle of formation and melt of Antarctic sea ice. Although sea ice is central to the Antarctic coastal ecosystems, little is known of how they affect, and are in turn affected, by sea-ice algae. This project concentrates on first-year sea ice, forming and melting each year, creating unique and very dynamic habitats. The study will be structured by 4 main objectives: 1) how different algal species adapt to the seasonal changes in sea ice conditions, 2) how different methods to measure primary production (carbon dioxide drawdown, oxygen production and variable fluorescence) relate in sea ice and differ from sea water measurements, 3) how sympagic algae influence the physical structure of sea ice, 4) how sympagic algae contribute to organic matter cycling during ice melt. Due to expected changes in sea ice due to climate change, this study is uniquely positioned to provide needed data on short-term and seasonal processes. Results from this study will be useful to refine models of algal production in Antarctic and Arctic ecosystems, data not available to date as sea ice and its biogeochemistry are often poorly represented in earth system models. This project will also provide education for graduate and undergraduate students as well as material to develop class curriculum for middle-school students. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "MARINE ECOSYSTEMS", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Young, Jodi", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "CAREER: Experimentally Testing the Role of Sympagic Algae in Sea-ice Environments using a Laboratory Scale Ice-tank.", "uid": "p0010425", "west": -180.0}, {"awards": "2001646 Chereskin, Teresa; 1542902 Chereskin, Teresa", "bounds_geometry": "POLYGON((-68 -54,-66.7 -54,-65.4 -54,-64.1 -54,-62.8 -54,-61.5 -54,-60.2 -54,-58.9 -54,-57.6 -54,-56.3 -54,-55 -54,-55 -55,-55 -56,-55 -57,-55 -58,-55 -59,-55 -60,-55 -61,-55 -62,-55 -63,-55 -64,-56.3 -64,-57.6 -64,-58.9 -64,-60.2 -64,-61.5 -64,-62.8 -64,-64.1 -64,-65.4 -64,-66.7 -64,-68 -64,-68 -63,-68 -62,-68 -61,-68 -60,-68 -59,-68 -58,-68 -57,-68 -56,-68 -55,-68 -54))", "dataset_titles": "Joint Archive for shipboard ADCP data; World Ocean Database", "datasets": [{"dataset_uid": "200355", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "World Ocean Database", "url": "https://www.nodc.noaa.gov/OC5/SELECT/dbsearch/dbsearch.html"}, {"dataset_uid": "200354", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Joint Archive for shipboard ADCP data", "url": "https://uhslc.soest.hawaii.edu/sadcp/"}], "date_created": "Fri, 03 Mar 2023 00:00:00 GMT", "description": "Part 1: On frequent crossings of the Drake Passage on the US Antarctic vessel ARSV Laurence M. Gould, a range of underway measurements are taken. These data represent one of the few repeat year around shipboard measurements in the Southern Ocean. With close to two decades of data now available, the primary science objectives of this proposal are to continue to analyze the Drake Passage time series. Part 2: Some of the analyses are (1) describe and relate the seasonal and long-term ocean energy distribution to wind, buoyancy and topographic forcing and sinks, and (2) describe and relate seasonal and long-term changes in the ACC fronts, water masses and upwelling to biogeochemical and climate variability. High-resolution, near-repeat Expendable Bathythermograph (XBT) and Acoustic Doppler Current Profiler (ADCP) transect sampling in Drake Passage is thus used to study modes of variability in ocean temperature, salinity, currents and backscatter in the Antarctic Circumpolar Current (ACC) on seasonal to interannual time frames, and on space scales from current cores to eddies. This project is a continuation of the longstanding support for collecting the ADCP and other underway data on USAP vessels, such as the ASRV Laurence M Gould This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -55.0, "geometry": "POINT(-61.5 -59)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": true, "keywords": "R/V LMG; Drake Passage; WATER TEMPERATURE; Antarctic Circumpolar Current; Heat Flux", "locations": "Drake Passage", "north": -54.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Chereskin, Teresa; Sprintall, Janet", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "NCEI", "repositories": "NCEI", "science_programs": null, "south": -64.0, "title": "High Resolution Underway Air-Sea Observations in Drake Passage for Climate Science", "uid": "p0010409", "west": -68.0}, {"awards": "1542723 Alexander, Becky", "bounds_geometry": "POINT(-112.05 -79.28)", "dataset_titles": "WAIS Divide ice core nitrate isotopes", "datasets": [{"dataset_uid": "601456", "doi": "10.15784/601456", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Chemistry; Ice Core Records; Nitrate; Nitrate Isotopes; WAIS Divide Ice Core; West Antarctic Ice Sheet", "people": "Alexander, Becky", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide ice core nitrate isotopes", "url": "https://www.usap-dc.org/view/dataset/601456"}], "date_created": "Mon, 13 Feb 2023 00:00:00 GMT", "description": "The Earth\u0027s atmosphere is a highly oxidizing medium. The abundance of oxidants such as ozone in the atmosphere strongly influences the concentrations of pollutants and greenhouse gases, with implications for human health and welfare. Because oxidants are not preserved in geological archives, knowledge of how oxidants have varied in the past under changing climate conditions is extremely limited. This award will measure a proxy for oxidant concentrations in a West Antarctic ice core over several major climate transitions over the past 50,000 years. These measurements will complement similar measurements from a Greenland ice core, which showed significant changes in atmospheric oxidants over major climate transitions covering this same time period. The addition of measurements from Antarctica will allow researchers to examine if the oxidant changes suggested by the Greenland ice core record are regional or global in scale. Knowledge of how oxidants vary naturally with climate will better inform predictions of the composition of the future atmosphere under a warming climate. This award will support measurements of the isotopic composition of nitrate in a West Antarctic ice core as a proxy for oxidant concentrations in the past atmosphere. The nitrogen isotopes of nitrate provide information on the degree of preservation of nitrate in the ice core record, and thus aid in the interpretation of the observed variability in the observed nitrate concentrations and oxygen isotopes in ice core records. By providing information about the spatial scale of oxidant changes over abrupt climate change events during the last glacial period, this project may also improve our understanding of mechanisms driving these abrupt events. Insight from this project will prove valuable for forecasting the response of stratospheric circulation to climate change, which has large implications for climate feedbacks and tropospheric composition. In addition, the information gleaned from this project on the mechanisms and feedbacks during abrupt climate change events will help determine the likelihood of such rapid events occurring in the future, which would have dramatic impacts on humankind. This award will provide training for one graduate and one undergraduate student, and will support the development of a hands-on activity related to rapid climate change to be used at the annual Polar Science Weekend at the Pacific Science Center in Seattle, WA.", "east": -112.05, "geometry": "POINT(-112.05 -79.28)", "instruments": null, "is_usap_dc": true, "keywords": "Nitrate Isotopes; ICE CORE RECORDS; WAIS Divide; LABORATORY", "locations": "WAIS Divide", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Alexander, Becky", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.28, "title": "Measuring an Ice-core Proxy for Relative Oxidant Abundances over Glacial-interglacial and Rapid Climate changes in a West Antarctic Ice Core", "uid": "p0010403", "west": -112.05}, {"awards": "1916982 Teyssier, Christian; 1917176 Siddoway, Christine; 1917009 Thomson, Stuart", "bounds_geometry": "POLYGON((-160.16 -67.15,-154.572 -67.15,-148.984 -67.15,-143.39600000000002 -67.15,-137.808 -67.15,-132.22 -67.15,-126.632 -67.15,-121.04400000000001 -67.15,-115.456 -67.15,-109.868 -67.15,-104.28 -67.15,-104.28 -68.165,-104.28 -69.18,-104.28 -70.19500000000001,-104.28 -71.21000000000001,-104.28 -72.225,-104.28 -73.24,-104.28 -74.255,-104.28 -75.27,-104.28 -76.285,-104.28 -77.3,-109.868 -77.3,-115.456 -77.3,-121.044 -77.3,-126.632 -77.3,-132.22 -77.3,-137.808 -77.3,-143.396 -77.3,-148.98399999999998 -77.3,-154.572 -77.3,-160.16 -77.3,-160.16 -76.285,-160.16 -75.27,-160.16 -74.255,-160.16 -73.24,-160.16 -72.225,-160.16 -71.21000000000001,-160.16 -70.19500000000001,-160.16 -69.18,-160.16 -68.165,-160.16 -67.15))", "dataset_titles": "Apatite fission track thermochronology data for detrital minerals, offshore clasts, and bedrock; U-Pb detrital zircon geochronological data, obtained by LA-ICP-MS", "datasets": [{"dataset_uid": "200333", "doi": "", "keywords": null, "people": null, "repository": "in progress", "science_program": null, "title": "Apatite fission track thermochronology data for detrital minerals, offshore clasts, and bedrock", "url": ""}, {"dataset_uid": "200332", "doi": "", "keywords": null, "people": null, "repository": "in progress", "science_program": null, "title": "U-Pb detrital zircon geochronological data, obtained by LA-ICP-MS", "url": ""}], "date_created": "Wed, 19 Oct 2022 00:00:00 GMT", "description": "Sediment records off the coast of Marie Byrd Land (MBL), Antarctica suggest frequent and dramatic changes in the size of the West Antarctic Ice Sheet (WAIS) over short (tens of thousands of years) and long (millions of years) time frames in the past. WAIS currently overrides much of MBL and covers the rugged and scoured bedrock landscape. The ice sheet carved narrow linear troughs that reach depths of two to three thousand meters below sea level as outlet glaciers flowed from the interior of the continent to the oceans. As a result, large volumes of fragmented continental bedrock were carried out to the seabed. The glaciers cut downward into a region of crystalline rocks (i.e. granite) whose temperature change as a function of rock depth happens to be significant. This strong geothermal gradient in the bedrock is favorable for determining when the bedrock experienced rapid exhumation or \"uncovering\". Analyzing the chemistry of minerals (zircon and apatite) within the eroded rocks will provide information about the rate and timing of the glacier removal of bedrock from the Antarctic continent. The research addresses the following questions: When did the land become high enough for a large ice sheet to form? What was the regional pre-glacial topography? Under what climate conditions, and at what point in the growth of an ice sheet, did glaciers begin to cut sharply into bedrock to form the narrow troughs that flow seaward? The research will lead to greater understanding of past Antarctic ice sheet fluctuations and identify precise timing of glacial incision. These results will refine ice sheet history and aid the international societal response to contemporary ice sheet change and its global consequences. The project will contribute to the training of two graduate and two undergraduate students in STEM. The objective is to clarify the onset of WAIS glacier incision and assess the evolution of Cenozoic paleo-topography. Low-temperature (T) thermochronology and Pecube 3-D thermo-kinematic modeling will be applied to date and characterize episodes of glacial erosional incision. Single-grain double- and triple-dating of zircon and apatite will reveal the detailed crustal thermal evolution of the region enabling the research team to determine the comparative topographic influences on glaciation versus bedrock uplift induced by Eocene to present tectonism/magmatism. High-T mineral thermochronometers across Marie Byrd Land (MBL) record rapid extension-related cooling at ~100 Ma from temperatures of \u003e800 degrees C to \u0026#8804; 300 degrees C. This signature forms a reference horizon, or paleogeotherm, through which the Cenozoic landscape history using low-T thermochronometers can be explored. MBL\u0027s elevated geothermal gradient, sustained during the Cenozoic, created favorable conditions for sensitive apatite and zircon low-T thermochronometers to record bedrock cooling related to glacial incision. Students will be trained to use state-of-the-art analytical facilities in Arizona and Minnesota, expanding the geo- and thermochronologic history of MBL from bedrock samples and offshore sedimentary deposits. The temperature and time data they acquire will provide constraints on paleotopography, isostasy, and the thermal evolution of MBL that will be modeled in 3D using Pecube model simulations. Within hot crust, less incision is required to expose bedrock containing the distinct thermochronometric profile; a prediction that will be tested with inverse Pecube 3-D models of the thermal field through which bedrock and detrital samples cooled. Using results from Pecube, the ICI-Hot team will examine time-varying topography formed in response to changes in erosion rates, topographic relief, geothermal gradient and/or flexural isostatic rigidity. These effects are manifestations of dynamic processes in the WAIS, including ice sheet loading, ice volume fluctuations, relative motion upon crustal faults, and magmatism-related elevation increase across the MBL dome. The project makes use of pre-existing sample collections housed at the US Polar Rock Repository, IODP\u0027s Gulf Coast Core Repository, and the Antarctic Marine Geology Research Facility. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -104.28, "geometry": "POINT(-132.22 -72.225)", "instruments": null, "is_usap_dc": true, "keywords": "Marie Byrd Land; GLACIERS/ICE SHEETS; Zircon; Subglacial Topography; FIELD SURVEYS; TECTONICS; Ice Sheet; Thermochronology; Apatite; ROCKS/MINERALS/CRYSTALS; Erosion; United States Of America; LABORATORY", "locations": "United States Of America; Marie Byrd Land", "north": -67.15, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC", "persons": "Siddoway, Christine; Thomson, Stuart; Teyssier, Christian", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "in progress", "repositories": "in progress", "science_programs": null, "south": -77.3, "title": "Collaborative Research: Ice sheet erosional interaction with hot geotherm in West Antarctica", "uid": "p0010386", "west": -160.16}, {"awards": "2037963 Smith, Heidi", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 11 Oct 2022 00:00:00 GMT", "description": "Glacial ice cores serve as a museum back in time, providing detailed records of past climatic conditions. In addition to chronological records such as temperature, chemistry and gas composition, ice provides a unique environment for preserving microbes and other biological materials through time. These microbes provide invaluable insight into the physiological capabilities necessary for survival in the Earth\u2019s cryosphere and other icy planetary bodies, yet little is known about them. This award supports fundamental research into the activity of microbes in ice, and directly supports major research priorities regarding Antarctic biota identified in the 2015 National Academies of Sciences, Engineering, and Medicine report, A Strategic Vision for NSF Investments in Antarctic and Southern Ocean Research. The broader impacts of this work are that it will be relevant to researchers across paleoclimate and biological fields. It will support two early career researchers, a graduate and an undergraduate student who will conduct laboratory analyses, participate in outreach activities, publish papers in scientific journals and present at conferences. This work will use previously collected ice cores to investigate englacial microbial activity from the Holocene back to the Last Glacial Maximum from the blue ice area of Taylor Glacier, Antarctica. The proposal identified making significant contributions to 1) investing how Antarctic organisms evolve and adapt to changing environment, 2) understanding how microbes alter the preservation of paleorecord-relevant gas and trace element information in ice cores, and 3) identifying microbial life in cores and their activity in relation to dust depositional events. Two recently developed complementary techniques (bio-orthogonal noncanonical amino acid tagging and deuterium isotope probing) in combination with Raman Confocal Microspectroscopy will be used to assess and quantify microbial activity in ice. During phase one of the project, these methods will be optimized using deaccessioned ice cores available at the National Science Foundation\u2019s Ice Core Facility. In phase two, ice cores in a time series from the Taylor Glacier will be analyzed for geochemistry and microbial activity. Research results will provide a comprehensive view of englacial microbial communities, including their metabolic diversity and activity, and the effect of geochemical parameters on microbial assemblages from different climate periods. Given the dearth of information available on englacial microbial communities, the results of this research will be of particular significance. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Microbial Activity; LABORATORY; Paleoclimate; CAMP; Taylor Glacier; Microbiology; Alaska; ICE CORE RECORDS", "locations": "CAMP; Alaska; Taylor Glacier", "north": null, "nsf_funding_programs": "Antarctic Integrated System Science", "paleo_time": null, "persons": "Smith, Heidi; Foreman, Christine; Dieser, Markus", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "Life in Ice: Probing Microbial Englacial Activity through Time", "uid": "p0010385", "west": null}, {"awards": "2218402 Fegyveresi, John", "bounds_geometry": "POLYGON((-115 -85.5,-113.5 -85.5,-112 -85.5,-110.5 -85.5,-109 -85.5,-107.5 -85.5,-106 -85.5,-104.5 -85.5,-103 -85.5,-101.5 -85.5,-100 -85.5,-100 -85.65,-100 -85.8,-100 -85.95,-100 -86.1,-100 -86.25,-100 -86.4,-100 -86.55,-100 -86.7,-100 -86.85,-100 -87,-101.5 -87,-103 -87,-104.5 -87,-106 -87,-107.5 -87,-109 -87,-110.5 -87,-112 -87,-113.5 -87,-115 -87,-115 -86.85,-115 -86.7,-115 -86.55,-115 -86.4,-115 -86.25,-115 -86.1,-115 -85.95,-115 -85.8,-115 -85.65,-115 -85.5))", "dataset_titles": "Multi-Site Brittle Ice Data and Measurements", "datasets": [{"dataset_uid": "601786", "doi": "10.15784/601786", "keywords": "Antarctica; Brittle Ice; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Glaciology; Ice Core; Ice Core Records; Ice Core Records; Physical Properties; Simple Dome; Siple Dome; South Pole; SPICEcore; Subgrain Boundaries; WAIS Divide", "people": "Fegyveresi, John; Barnett, Samantha", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Multi-Site Brittle Ice Data and Measurements", "url": "https://www.usap-dc.org/view/dataset/601786"}], "date_created": "Mon, 19 Sep 2022 00:00:00 GMT", "description": "Ice cores are a vital source of information about past climate. Research that utilizes ice cores benefits from an undamaged ice-core record. There is often a zone within ice sheets where the ice is brittle upon extraction in a core. Brittle-ice behavior occurs when the rapid decompression of the core as it is being extracted from the ice-sheet results in extensive fracturing. Ice from this zone can compromise the undamaged record. This project seeks to improve our understanding of the mechanisms involved in brittle-ice behavior and onset, with the goal of helping to guide field-site operations, core handling preparation, and planned laboratory measurement techniques for future ice-coring projects, including the upcoming work at Hercules Dome. This project requires no field work, as it will use existing observations and existing ice cores to gain an understanding of brittle ice. This is a high-risk and timely proposal that is early-concept and exploratory in nature, making it appropriate for the EAGER solicitation. The project will support an early-career researcher and provide training for a master\u2019s student who is a woman. And, finally, the project will develop educational and outreach materials for graduate and undergraduate courses and elementary schools. This project will examine and catalog brittle ice from several existing ice-core samples to specifically assess various ice physical properties affecting brittleness potential, including bubble size and number-density, ice fabric, grain statistics, fracture characteristics, and the location and properties of grain and subgrain boundaries. End members of this sample assessment have been identified and include Siple Dome, which exhibited major brittle behavior and damage, and South Pole ice core, which exhibited very-minor brittle behavior and almost no damage. Output datasets will include calibrated relationships for bubble number-density, mean grain and bubble sizes, subgrain prevalence and orientation, and a usable indicator for estimating brittle-ice onset and magnitude. There is an immediate applicability of results from this effort for the Hercules Dome drilling project. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -100.0, "geometry": "POINT(-107.5 -86.25)", "instruments": null, "is_usap_dc": true, "keywords": "Hercules Dome Ice Core; West Antarctica; Grain Statistics; LABORATORY; Ice Core; ICE SHEETS; Physical Properties; Brittle Ice; C-Axis Fabric; Bubble; ICE CORE RECORDS", "locations": "West Antarctica", "north": -85.5, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Fegyveresi, John", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Hercules Dome Ice Core", "south": -87.0, "title": "EAGER: Constraining the Expected Brittle-ice Behavior for the Hercules Dome Ice-core Site.", "uid": "p0010378", "west": -115.0}, {"awards": "1744562 Loose, Brice", "bounds_geometry": "POLYGON((-180 -71,-179.9 -71,-179.8 -71,-179.7 -71,-179.6 -71,-179.5 -71,-179.4 -71,-179.3 -71,-179.2 -71,-179.1 -71,-179 -71,-179 -71.7,-179 -72.4,-179 -73.1,-179 -73.8,-179 -74.5,-179 -75.2,-179 -75.9,-179 -76.6,-179 -77.3,-179 -78,-179.1 -78,-179.2 -78,-179.3 -78,-179.4 -78,-179.5 -78,-179.6 -78,-179.7 -78,-179.8 -78,-179.9 -78,180 -78,177.5 -78,175 -78,172.5 -78,170 -78,167.5 -78,165 -78,162.5 -78,160 -78,157.5 -78,155 -78,155 -77.3,155 -76.6,155 -75.9,155 -75.2,155 -74.5,155 -73.8,155 -73.1,155 -72.4,155 -71.7,155 -71,157.5 -71,160 -71,162.5 -71,165 -71,167.5 -71,170 -71,172.5 -71,175 -71,177.5 -71,-180 -71))", "dataset_titles": "Expedition Data of NBP1704; NBP1704 Expedition Data; PIPERS Noble Gases", "datasets": [{"dataset_uid": "001363", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1704 Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1704"}, {"dataset_uid": "601609", "doi": "10.15784/601609", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Mass Spectrometer; NBP1704; Noble Gas; Oceans; Ross Sea; R/v Nathaniel B. Palmer", "people": "Loose, Brice", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Noble Gases", "url": "https://www.usap-dc.org/view/dataset/601609"}, {"dataset_uid": "200329", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "Expedition Data of NBP1704", "url": "https://www.marine-geo.org/tools/entry/NBP1704"}], "date_created": "Wed, 14 Sep 2022 00:00:00 GMT", "description": "Near the Antarctic coast, polynyas are open-water regions where extreme heat loss in winter causes seawater to become cold, salty, and dense enough to sink into the deep sea. The formation of this dense water has regional and global importance because it influences the ocean current system. Polynya processes are also tied to the amount of sea ice formed, ocean heat lost to atmosphere, and atmospheric CO2 absorbed by the Southern Ocean. Unfortunately, the ocean-atmosphere interactions that influence the deep ocean water properties are difficult to observe directly during the Antarctic winter. This project will combine field measurements and laboratory experiments to investigate whether differences in the concentration of noble gasses (helium, neon, argon, xenon, and krypton) dissolved in ocean waters can be linked to environmental conditions at the time of their formation. If so, noble gas concentrations could provide insight into the mechanisms controlling shelf and bottom-water properties, and be used to reconstruct past climate conditions. Project results will contribute to the Southern Ocean Observing System (SOOS) theme of The Future and Consequences of Carbon Uptake in the Southern Ocean. The project will also train undergraduate and graduate students in environmental monitoring, and earth and ocean sciences methods. Understanding the causal links between Antarctic coastal processes and changes in the deep ocean system requires study of winter polynya processes. The winter period of intense ocean heat loss and sea ice production impacts two important Antarctic water masses: High-Salinity Shelf Water (HSSW), and Antarctic Bottom Water (AABW), which then influence the strength of the ocean solubility pump and meridional overturning circulation. To better characterize how sea ice cover, ocean-atmosphere exchange, brine rejection, and glacial melt influence the physical properties of AABW and HSSW, this project will analyze samples and data collected from two Ross Sea polynyas during the 2017 PIPERS winter cruise. Gas concentrations will be measured in seawater samples collected by a CTD rosette, from an underwater mass-spectrometer, and from a benchtop Membrane Inlet Mass Spectrometer. Noble gas concentrations will reveal the ocean-atmosphere (dis)equilibrium that exists at the time that surface water is transformed into HSSW and AABW, and provide a fingerprint of past conditions. In addition, nitrogen (N2), oxygen (O2), argon, and CO2 concentration will be used to determine the net metabolic balance, and to evaluate the efficacy of N2 as an alternative to O2 as glacial meltwater tracer. Laboratory experiments will determine the gas partitioning ratios during sea ice formation. Findings will be synthesized with PIPERS and related projects, and so provide an integrated view of the role of the wintertime Antarctic coastal system on deep water composition. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -179.0, "geometry": "POINT(168 -74.5)", "instruments": null, "is_usap_dc": true, "keywords": "Helium Isotopes; R/V NBP; DISSOLVED GASES; POLYNYAS; Ross Sea", "locations": "Ross Sea", "north": -71.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science", "paleo_time": null, "persons": "Loose, Brice", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "MGDS; R2R; USAP-DC", "science_programs": null, "south": -78.0, "title": "Measuring Dissolved Gases to Reveal the Processes that Drive the Solubility Pump and Determine Gas Concentration in Antarctic Bottom Water", "uid": "p0010376", "west": 155.0}, {"awards": "1842542 Morgan, Daniel", "bounds_geometry": "POLYGON((160 -77,160.4 -77,160.8 -77,161.2 -77,161.6 -77,162 -77,162.4 -77,162.8 -77,163.2 -77,163.6 -77,164 -77,164 -77.1,164 -77.2,164 -77.3,164 -77.4,164 -77.5,164 -77.6,164 -77.7,164 -77.8,164 -77.9,164 -78,163.6 -78,163.2 -78,162.8 -78,162.4 -78,162 -78,161.6 -78,161.2 -78,160.8 -78,160.4 -78,160 -78,160 -77.9,160 -77.8,160 -77.7,160 -77.6,160 -77.5,160 -77.4,160 -77.3,160 -77.2,160 -77.1,160 -77))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 09 Aug 2022 00:00:00 GMT", "description": "The goal of this study is to identify and distinguish different source areas of glacial sediment in the McMurdo Dry Valleys, Antarctica to determine past glacial flow direction. Understanding ice flow is critical for determining how the Antarctic Ice Sheets have behaved in the past. Such insight is fundamental for allowing scientists to predict how the Antarctic Ice Sheets will evolve and, in turn, forecast how much and how fast sea level may rise. The project study site, the McMurdo Dry Valleys, contain a tremendous record of glacial deposits on land that extends back at least 14 million years. Chemistry of the rocks within the glacial deposits hold clues to the sources of ice that deposited the material. The chemical analyses of the glacial deposits will allow mapping of the former extent of glaciations providing a better understand of ice flow history. The mapping of the largest ice sheet expansion of the past 14 million years in the McMurdo Dry Valleys is of broad interest to the global climate change community. Undergraduate students comprise the majority of the field teams and will be responsible for sample preparation and analysis in the laboratory. This project utilizes new geochemical techniques to test hypotheses about the source, extent, and flow patterns of the glacier ice that deposited glacial tills in the McMurdo Dry Valleys, Antarctica (MDV). The MDV contain an unparalleled terrestrial archive of glacial deposits, which record multiple sources of ice that deposited them. These include the northeast flowing ice that overrode the Transantarctic Mountains, the eastward expansion of the East Antarctic Ice Sheet, the westward extension of the Ross Ice Shelf representing an expansion of the West Antarctic Ice Sheet, and the growth of local alpine glaciers. The glacial tills and drifts in the Antarctic are typically isolated in patches or disjointed outcrop patterns making it difficult to correlate tills and determine their source. This project will undertake a systematic study of the tills in the McMurdo Dry Valleys to determine their provenance with a variety of geochemical techniques including major and minor element analyses with X-ray fluorescence, heavy mineral composition, soil salt concentration, and determining the uranium-lead (U-Pb) ages of zircon sands contained in these tills. The primary tool will be the age distribution of the population of detrital zircon in a glacial drift because it reflects the source of the tills and provides a unique geochemical \"fingerprint\" used to distinguish source areas while correlating units across different sites. A deliverable from this project will be a community available library of zircon fingerprints for mapped glacial tills from archived samples at the Polar Rock Repository and the systematic collection of samples in the MDV. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 164.0, "geometry": "POINT(162 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIATION; Dry Valleys", "locations": "Dry Valleys", "north": -77.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Morgan, Daniel", "platforms": null, "repositories": null, "science_programs": null, "south": -78.0, "title": "Unlocking the Glacial History of the McMurdo Dry Valleys, Antarctica by Fingerprinting Glacial Tills with Detrital Zircon U-Pb Age Populations", "uid": "p0010368", "west": 160.0}, {"awards": "1745023 Hennon, Tyler; 1745009 Kohut, Josh; 1745011 Klinck, John; 1745081 Bernard, Kim; 1744884 Oliver, Matthew; 1745018 Fraser, William", "bounds_geometry": "POLYGON((-75 -60,-73 -60,-71 -60,-69 -60,-67 -60,-65 -60,-63 -60,-61 -60,-59 -60,-57 -60,-55 -60,-55 -61,-55 -62,-55 -63,-55 -64,-55 -65,-55 -66,-55 -67,-55 -68,-55 -69,-55 -70,-57 -70,-59 -70,-61 -70,-63 -70,-65 -70,-67 -70,-69 -70,-71 -70,-73 -70,-75 -70,-75 -69,-75 -68,-75 -67,-75 -66,-75 -65,-75 -64,-75 -63,-75 -62,-75 -61,-75 -60))", "dataset_titles": "Antarctic ACROBAT data; CTD Data from IFCB Sampling; Finite Time Lyapunov Exponent Results, Calculated from High Frequency Radar Observed Surface Currents; High Frequency Radar, Palmer Deep; IFCB Image Data; Relative Particle Density; SWARM AMLR moorings - acoustic data; SWARM Glider Data near Palmer Deep; WAP model float data; Winds from Joubin and Wauwerman Islands", "datasets": [{"dataset_uid": "200396", "doi": "10.26008/1912/bco-dmo.867442.2", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "WAP model float data", "url": "https://www.bco-dmo.org/dataset/867442"}, {"dataset_uid": "200390", "doi": "10.26008/1912/bco-dmo.865030.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "CTD Data from IFCB Sampling", "url": "https://www.bco-dmo.org/dataset/865030"}, {"dataset_uid": "200398", "doi": "", "keywords": null, "people": null, "repository": "IOOS Glider DAAC", "science_program": null, "title": "SWARM Glider Data near Palmer Deep", "url": "https://gliders.ioos.us/erddap/search/index.html?page=1\u0026itemsPerPage=1000\u0026searchFor=swarm"}, {"dataset_uid": "200392", "doi": "10.26008/1912/bco-dmo.917884.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "High Frequency Radar, Palmer Deep", "url": "https://www.bco-dmo.org/dataset/917884"}, {"dataset_uid": "200397", "doi": "10.26008/1912/bco-dmo.865098.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Winds from Joubin and Wauwerman Islands", "url": "https://www.bco-dmo.org/dataset/865098"}, {"dataset_uid": "200394", "doi": "10.26008/1912/bco-dmo.917926.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Relative Particle Density", "url": "https://www.bco-dmo.org/dataset/917926"}, {"dataset_uid": "200393", "doi": "10.26008/1912/bco-dmo.865002.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "IFCB Image Data", "url": "https://www.bco-dmo.org/dataset/865002"}, {"dataset_uid": "200389", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Antarctic ACROBAT data", "url": "https://www.bco-dmo.org/dataset/916046"}, {"dataset_uid": "200391", "doi": "10.26008/1912/bco-dmo.917914.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Finite Time Lyapunov Exponent Results, Calculated from High Frequency Radar Observed Surface Currents", "url": "https://www.bco-dmo.org/dataset/917914"}, {"dataset_uid": "200395", "doi": "10.26008/1912/bco-dmo.872729.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "SWARM AMLR moorings - acoustic data", "url": "https://www.bco-dmo.org/dataset/872729"}], "date_created": "Tue, 05 Jul 2022 00:00:00 GMT", "description": "Undersea canyons play disproportionately important roles as oceanic biological hotspots and are critical for our understanding of many coastal ecosystems. Canyon-associated biological hotspots have persisted for thousands of years Along the Western Antarctic Peninsula, despite significant climate variability. Observations of currents over Palmer Deep canyon, a representative hotspot along the Western Antarctic Peninsula, indicate that surface phytoplankton blooms enter and exit the local hotspot on scales of ~1-2 days. This time of residence is in conflict with the prevailing idea that canyon associated hotspots are primarily maintained by phytoplankton that are locally grown in association with these features by the upwelling of deep waters rich with nutrients that fuel the phytoplankton growth. Instead, the implication is that horizontal ocean circulation is likely more important to maintaining these biological hotspots than local upwelling through its physical concentrating effects. This project seeks to better resolve the factors that create and maintain focused areas of biological activity at canyons along the Western Antarctic Peninsula and create local foraging areas for marine mammals and birds. The project focus is in the analysis of the ocean transport and concentration mechanisms that sustain these biological hotspots, connecting oceanography to phytoplankton and krill, up through the food web to one of the resident predators, penguins. In addition, the research will engage with teachers from school districts serving underrepresented and underserved students by integrating the instructors and their students completely with the science team. Students will conduct their own research with the same data over the same time as researchers on the project. Revealing the fundamental mechanisms that sustain these known hotspots will significantly advance our understanding of the observed connection between submarine canyons and persistent penguin population hotspots over ecological time, and provide a new model for how Antarctic hotspots function. To understand the physical mechanisms that support persistent hotspots along the Western Antarctic Peninsula (WAP), this project will integrate a modeling and field program that will target the processes responsible for transporting and concentrating phytoplankton and krill biomass to known penguin foraging locations. Within the Palmer Deep canyon, a representative hotspot, the team will deploy a High Frequency Radar (HFR) coastal surface current mapping network, uniquely equipped to identify the eddies and frontal regions that concentrate phytoplankton and krill. The field program, centered on surface features identified by the HFR, will include (i) a coordinated fleet of gliders to survey hydrography, chlorophyll fluorescence, optical backscatter, and active acoustics at the scale of the targeted convergent features; (ii) precise penguin tracking with GPS-linked satellite telemetry and time-depth recorders (TDRs); (iii) and weekly small boat surveys that adaptively target and track convergent features to measure phytoplankton, krill, and hydrography. A high resolution physical model will generalize our field measurements to other known hotspots along the WAP through simulation and determine which physical mechanisms lead to the maintenance of these hotspots. The project will also engage educators, students, and members of the general public in Antarctic research and data analysis with an education program that will advance teaching and learning as well as broadening participation of under-represented groups. This engagement includes professional development workshops, live connections to the public and classrooms, student research symposia, and program evaluation. Together the integrated research and engagement will advance our understanding of the role regional transport pathways and local depth dependent concentrating physical mechanisms play in sustaining these biological hotspots. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -55.0, "geometry": "POINT(-65 -65)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CONDUCTIVITY SENSORS \u003e CONDUCTIVITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e RADIATION SENSORS", "is_usap_dc": true, "keywords": "MOORED; WATER TEMPERATURE; CONDUCTIVITY; FLUORESCENCE; UNCREWED VEHICLES; Palmer Station; PHOTOSYNTHETICALLY ACTIVE RADIATION; PELAGIC; OCEAN MIXED LAYER; SURFACE; SALINITY; WATER PRESSURE; LIVING ORGANISM; MODELS; ACOUSTIC SCATTERING", "locations": "Palmer Station", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Instrumentation and Support; Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science", "paleo_time": "NOT APPLICABLE", "persons": "Bernard, Kim; Oliver, Matthew; Kohut, Josh; Fraser, William; Klinck, John M.; Statcewich, Hank", "platforms": "LIVING ORGANISM-BASED PLATFORMS \u003e LIVING ORGANISM; OTHER \u003e MODELS; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED; WATER-BASED PLATFORMS \u003e UNCREWED VEHICLES; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE", "repo": "BCO-DMO", "repositories": "BCO-DMO; IOOS Glider DAAC", "science_programs": null, "south": -70.0, "title": "Collaborative Research: Physical Mechanisms Driving Food Web Focusing in Antarctic Biological Hotspots", "uid": "p0010346", "west": -75.0}, {"awards": "2139497 Balco, Gregory", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 21 Jun 2022 00:00:00 GMT", "description": "This project will conduct basic research into geological dating techniques that are useful for determining the age of glacial deposits in polar regions, Antarctica in particular. These techniques are necessary for determining how large the polar ice sheets were in the geologic past, including during past periods of warm climate that likely resemble present and near-future conditions. Thus, they represent an important technical capability needed for estimating the response of polar ice sheets to climate warming. Because changes in the size of polar ice sheets are the largest potential contribution to future global sea-level change, this capability is also relevant to understanding likely sea-level impacts of future climate change. The research in this project comprises several observational and experimental approaches to improving the speed, efficiency, cost, and accuracy of these techniques, as well as a scientific outreach program aimed at making the resulting capabilities more broadly available to other researchers. The project supports a postdoctoral scholar and contributes to human resources development in polar and climate science. The project focuses on several areas of cosmogenic-nuclide geochemistry, which is a geochemical dating method that relies on the production and decay of cosmic-ray-produced radionuclides in surface rocks. Measurements of these nuclides can be used to quantify the duration of surface exposure and ice cover at locations in Antarctica that are covered and uncovered by changes in the size of the Antarctic ice sheets, thus providing a means of reconstructing past ice-sheet change. The first proposed set of experiments are aimed at implementing a \u0027virtual mineral separation\u0027 approach to cosmogenic noble gas analysis that may allow measurement of nuclide concentrations in certain minerals without physically separating the minerals from the host rock. If feasible, this would realize significant speed and cost improvements for this type of analysis. A second set of experiments will focus on means of identifying and quantifying non-cosmogenic background inventories of some relevant nuclides, which is intended to improve the measurement sensitivity and precision for cosmic-ray-produced inventories of these nuclides. A third focus area aims to improve capabilities to measure multiple cosmic-ray-produced nuclides in the same sample, which has the potential to improve the accuracy of dating methods based on these nuclides and to expand the situations in which these methods can be applied. If successful, these experiments are likely to improve a number of applications of cosmogenic-nuclide geochemistry relevant to Antarctic research, including subglacial bedrock exposure dating, dating of multimillion-year-old glacial deposits, and surface-process studies useful in understanding landform evolution and ecosystem dynamics. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "California; LABORATORY; AMD; GEOCHEMISTRY; Amd/Us; USAP-DC; USA/NSF", "locations": "California", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Balco, Gregory", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -90.0, "title": "Targeted Basic Research to Enable Antarctic Science Applications of Cosmogenic-Nuclide Geochemistry", "uid": "p0010343", "west": -180.0}, {"awards": "1744771 Balco, Gregory", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "5 million year transient Antarctic ice sheet model run with \"desensitized\" marine ice margin instabilities; 5 million year transient Antarctic ice sheet model run with \"sensitized\" marine ice margin instabilities", "datasets": [{"dataset_uid": "601601", "doi": "10.15784/601601", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Modeling; Marine Ice Margin Instability; Model Output", "people": "Halberstadt, Anna Ruth; Buchband, Hannah; Balco, Gregory", "repository": "USAP-DC", "science_program": null, "title": "5 million year transient Antarctic ice sheet model run with \"desensitized\" marine ice margin instabilities", "url": "https://www.usap-dc.org/view/dataset/601601"}, {"dataset_uid": "601602", "doi": "10.15784/601602", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Modeling; Marine Ice Margin Instability; Model Output", "people": "Balco, Gregory; Buchband, Hannah; Halberstadt, Anna Ruth", "repository": "USAP-DC", "science_program": null, "title": "5 million year transient Antarctic ice sheet model run with \"sensitized\" marine ice margin instabilities", "url": "https://www.usap-dc.org/view/dataset/601602"}], "date_created": "Tue, 21 Jun 2022 00:00:00 GMT", "description": "The purpose of this project is to use geological data that record past changes in the Antarctic ice sheets to test computer models for ice sheet change. The geologic data mainly consist of dated glacial deposits that are preserved above the level of the present ice sheet, and range in age from thousands to millions of years old. These provide information about the size, thickness, and rate of change of the ice sheets during past times when the ice sheets were larger than present. In addition, some of these data are from below the present ice surface and therefore also provide some information about past warm periods when ice sheets were most likely smaller than present. The primary purpose of the computer model is to predict future ice sheet changes, but because significant changes in the size of ice sheets are slow and likely occur over hundreds of years or longer, the only way to determine whether these models are accurate is to test their ability to reproduce past ice sheet changes. The primary purpose of this project is to carry out such a test. The research team will compile relevant geologic data, in some cases generate new data by dating additional deposits, and develop methods and software to compare data to model simulations. In addition, this project will (i) contribute to building and sustaining U.S. science capacity through postdoctoral training in geochronology, ice sheet modeling, and data science, and (ii) improve public access to geologic data and model simulations relevant to ice sheet change through online database and website development. Technical aspects of this project are primarily focused on the field of cosmogenic-nuclide exposure-dating, which is a method that relies on the production of rare stable and radio-nuclides by cosmic-ray interactions with rocks and minerals exposed at the Earth\u0027s surface. Because the advance and retreat of ice sheets results in alternating cosmic-ray exposure and shielding of underlying bedrock and surficial deposits, this technique is commonly used to date and reconstruct past ice sheet changes. First, this project will contribute to compiling and systematizing a large amount of cosmogenic-nuclide exposure age data collected in Antarctica during the past three decades. Second, it will generate additional geochemical data needed to improve the extent and usefulness of measurements of stable cosmogenic nuclides, cosmogenic neon-21 in particular, that are useful for constraining ice-sheet behavior on million-year timescales. Third, it will develop a computational framework for comparison of the geologic data set with existing numerical model simulations of Antarctic ice sheet change during the past several million years, with particular emphasis on model simulations of past warm periods, for example the middle Pliocene ca. 3-3.3 million years ago, during which the Antarctic ice sheets are hypothesized to have been substantially smaller than present. Fourth, guided by the results of this comparison, it will generate new model simulations aimed at improving agreement between model simulations and geologic data, as well as diagnosing which processes or parameterizations in the models are or are not well constrained by the data. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "BERYLLIUM-10 ANALYSIS; AMD; ICE SHEETS; GLACIATION; Amd/Us; LABORATORY; USA/NSF; Antarctica; ALUMINUM-26 ANALYSIS; USAP-DC", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Balco, Gregory", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Synoptic Evaluation of Long-Term Antarctic Ice Sheet Model Simulations using a Continent-Wide Database of Cosmogenic-Nuclide Measurements", "uid": "p0010342", "west": -180.0}, {"awards": "1643669 Petrenko, Vasilii; 1643664 Severinghaus, Jeffrey; 1643716 Buizert, Christo", "bounds_geometry": "POLYGON((112 -66,112.2 -66,112.4 -66,112.6 -66,112.8 -66,113 -66,113.2 -66,113.4 -66,113.6 -66,113.8 -66,114 -66,114 -66.1,114 -66.2,114 -66.3,114 -66.4,114 -66.5,114 -66.6,114 -66.7,114 -66.8,114 -66.9,114 -67,113.8 -67,113.6 -67,113.4 -67,113.2 -67,113 -67,112.8 -67,112.6 -67,112.4 -67,112.2 -67,112 -67,112 -66.9,112 -66.8,112 -66.7,112 -66.6,112 -66.5,112 -66.4,112 -66.3,112 -66.2,112 -66.1,112 -66))", "dataset_titles": "Concentration and isotopic composition of atmospheric N2O over the last century; Law Dome DE08-OH firn air 15N, O2/N2, Ar/N2, 18O of O2; Law Dome DE08-OH site noble gases in ice: testing the 86Krexcess proxy; Law Dome firn air and ice core 14CO concentration", "datasets": [{"dataset_uid": "601597", "doi": "10.15784/601597", "keywords": "Antarctica; Ice Core; Law Dome; Noble Gas", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Law Dome DE08-OH site noble gases in ice: testing the 86Krexcess proxy", "url": "https://www.usap-dc.org/view/dataset/601597"}, {"dataset_uid": "601598", "doi": "10.15784/601598", "keywords": "Antarctica; Firn; Firn Density; Gravitational Settling; Inert Gases; Law Dome", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Law Dome DE08-OH firn air 15N, O2/N2, Ar/N2, 18O of O2", "url": "https://www.usap-dc.org/view/dataset/601598"}, {"dataset_uid": "601693", "doi": "10.15784/601693", "keywords": "Antarctic; Antarctica; Anthropogenic Emission; Atmosphere; Greenhouse Gas; Greenland; Ice Core Data; Nitrification And Denitrification Processes; Nitrous Oxide; Site-Specific 15N Isotopomer; Styx Glacier", "people": "Yoshida, Naohiro ; Etheridge, David; Ghosh, Sambit; Toyoda, Sakae ; Buizert, Christo ; Ahn, Jinho ; Joong Kim, Seong; Langenfelds, Ray L ", "repository": "USAP-DC", "science_program": null, "title": "Concentration and isotopic composition of atmospheric N2O over the last century", "url": "https://www.usap-dc.org/view/dataset/601693"}, {"dataset_uid": "601846", "doi": "10.15784/601846", "keywords": "Antarctica; Carbon-14; Cryosphere; Firn Air; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Law Dome; Snow/ice; Snow/Ice", "people": "Petrenko, Vasilii", "repository": "USAP-DC", "science_program": null, "title": "Law Dome firn air and ice core 14CO concentration", "url": "https://www.usap-dc.org/view/dataset/601846"}], "date_created": "Fri, 17 Jun 2022 00:00:00 GMT", "description": "Hydroxyl radicals are responsible for removal of most atmospheric trace gases, including pollutants and important greenhouse gases. They have been called the \"detergent of the atmosphere\". Changes in hydroxyl radical concentration in response to large changes in reactive trace gas emissions, which may happen in the future, are uncertain. This project aims to provide the first estimates of the variability of atmospheric hydroxyl radicals since about 1880 AD when anthropogenic emissions of reactive trace gases were minimal. This will improve understanding of their stability in response to large changes in emissions. The project will also investigate whether ice cores record past changes in Southern Hemisphere westerly winds. These winds are a key component of the global climate system, and have an important influence on ocean circulation and possibly on atmospheric carbon dioxide concentrations. The project team will include three early career scientists, a postdoctoral researcher, and graduate and undergraduate students, working in collaboration with senior scientists and Australian collaborators. Firn air and shallow ice to a depth of about 233 m will be sampled at the Law Dome high-accumulation coastal site in East Antarctica. Trapped air will be extracted from the ice cores on site immediately after drilling. Carbon-14 of carbon monoxide (14CO) will be analyzed in firn and ice-core air samples. Corrections will be made for the in situ cosmogenic 14CO component in the ice, allowing for the atmospheric 14CO history to be reconstructed. This 14CO history will be interpreted with the aid of a chemistry-transport model to place the first observational constraints on the variability of Southern Hemisphere hydroxyl radical concentration after about 1880 AD. An additional component of the project will analyze Krypton-86 in the firn-air and ice-core samples. These measurements will explore whether ice-core Krypton-86 acts as a proxy for barometric pressure variability, and whether this proxy can be used in Antarctic ice cores to infer past movement of the Southern Hemisphere westerly winds. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 114.0, "geometry": "POINT(113 -66.5)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; TRACE GASES/TRACE SPECIES; Law Dome; Amd/Us; USAP-DC; LABORATORY; ICE CORE AIR BUBBLES; USA/NSF", "locations": "Law Dome", "north": -66.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Petrenko, Vasilii; Murray, Lee T; Buizert, Christo; Petrenko, Vasilii; Murray, Lee T", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.0, "title": "Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability", "uid": "p0010341", "west": 112.0}, {"awards": "2201129 Fischer, Karen", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Crustal thicknesses in Antarctica from Sp receiver functions; Lithospheric thicknesses in Antarctica from Sp receiver functions", "datasets": [{"dataset_uid": "601899", "doi": "10.15784/601899", "keywords": "Antarctica; Cryosphere; LAB; Lithosphere; Lithospheric Thickness", "people": "Fischer, Karen; Brown, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Lithospheric thicknesses in Antarctica from Sp receiver functions", "url": "https://www.usap-dc.org/view/dataset/601899"}, {"dataset_uid": "601898", "doi": "10.15784/601898", "keywords": "Antarctica; Crust; Cryosphere; Moho", "people": "Fischer, Karen; Brown, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Crustal thicknesses in Antarctica from Sp receiver functions", "url": "https://www.usap-dc.org/view/dataset/601898"}], "date_created": "Tue, 14 Jun 2022 00:00:00 GMT", "description": "The western portion of the Antarctic continent is very active in terms of plate tectonic processes that can produce significant variations in the Earths mantle temperature as well as partial melting of the mantle. In addition to these internal processes, the ice sheet in western Antarctica is melting due to Earths warming climate and adding water to the ocean. These changes in ice mass cause adjustments in rocks within the Earth\u0027s crust, allowing the surface to rebound in some locations and fall in others, altering the geographical pattern of sea-level change. However, the solid Earth response depends strongly on the strength of the rocks at a wide range of timescales which is not well-known and varies with temperature and other rock properties. This project has three primary goals. (1) It will assess how processes such as rifting, mantle upwelling and lithospheric instability have altered the lithosphere and underlying asthenosphere of western Antarctica, contributing to a planet-wide understanding of these processes. (2) It will use new measurements of mantle and crust properties to estimate the rate at which heat from the solid Earth flows into the base of the ice, which is important for modeling the rates at which the ice melts and flows. (3) It will places bounds on mantle viscosity, which is key for modeling the interaction of the solid Earth with changing ice and water masses and their implications for sea-level rise. To accomplish these goals, new resolution of crust and mantle structure will be obtained by analyzing seismic waves from distant earthquakes that have been recorded at numerous seismic stations in Antarctica. These analyses will include new combinations of seismic wave data that provide complementary information about mantle temperature, heat flow and viscosity. This project will provide educational and career opportunities to a Brown University graduate student, undergraduates from groups underrepresented in science who will come to Brown University for a summer research program, and other undergraduates. The project will bring together faculty and students for a seminar at Brown that explores the connections between the solid Earth and ice processes in Antarctica. Project research will be incorporated in outreach to local public elementary schools and high schools. This research addresses key questions about mantle processes and properties in western Antarctica. What are the relative impacts of rifting, mantle plumes, and lithospheric delamination in the evolution of the lithosphere and asthenosphere? Where is topography isostatically compensated, and where are dynamic processes such as plate flexure or tractions from 3-D mantle flow required? What are the bounds on heat flow and mantle viscosity, which represent important inputs to models of ice sheet evolution and its feedback from the solid Earth? To address these questions, this project will measure mantle and crust properties using seismic tools that have not yet been applied in Antarctica: regional-scale measurement of mantle attenuation from surface waves; Sp body wave phases to image mantle velocity gradients such as the lithosphere-asthenosphere boundary; and surface wave amplification and ellipticity. The resulting models of seismic attenuation and velocity will be jointly interpreted to shed new light on temperature, bulk composition, volatile content, and partial melt, using a range of laboratory-derived constitutive laws, while considering data from mantle xenoliths. To test the relative roles of rifting, mantle plumes, and delamination, and to assess isostatic support for Antarctic topography, the predictions of these processes will be compared to the new models of crust and mantle properties. To improve bounds on western Antarctic heat flow, seismic attenuation and velocity will be used in empirical comparisons and in direct modeling of vertical temperature gradients. To better measure mantle viscosity at the timescales of glacial isostatic adjustment, frequency-dependent viscosity will be estimated from the inferred mantle conditions. This project will contribute to the education and career development of the following: a Brown University Ph.D. student, Brown undergraduates, and undergraduates from outside the university will be involved through the Department of Earth, Environmental and Planetary Sciences (DEEPS) Leadership Alliance NSF Research Experience for Undergraduates (REU) Site which focuses on geoscience summer research experiences for underrepresented students. The project will be the basis for a seminar at Brown that explores the connections between the solid Earth and cryosphere in Antarctica and will contribute to outreach in local public elementary and high schools. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": true, "keywords": "USAP-DC; West Antarctica; USA/NSF; SEISMIC SURFACE WAVES; AMD; PLATE TECTONICS; Amd/Us; GLACIERS/ICE SHEETS; FIELD INVESTIGATION", "locations": "West Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Fischer, Karen; Dalton, Colleen", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Probing the Western Antarctic Lithosphere and Asthenosphere with New Approaches to Imaging Seismic Wave Attenuation and Velocity", "uid": "p0010339", "west": -180.0}, {"awards": "1745082 Beilman, David; 1745068 Booth, Robert", "bounds_geometry": "POLYGON((-64.4 -62.4,-63.910000000000004 -62.4,-63.42 -62.4,-62.93000000000001 -62.4,-62.440000000000005 -62.4,-61.95 -62.4,-61.46 -62.4,-60.97 -62.4,-60.480000000000004 -62.4,-59.99 -62.4,-59.5 -62.4,-59.5 -62.7,-59.5 -63,-59.5 -63.3,-59.5 -63.6,-59.5 -63.900000000000006,-59.5 -64.2,-59.5 -64.5,-59.5 -64.80000000000001,-59.5 -65.10000000000001,-59.5 -65.4,-59.99 -65.4,-60.480000000000004 -65.4,-60.97 -65.4,-61.46 -65.4,-61.95 -65.4,-62.440000000000005 -65.4,-62.93000000000001 -65.4,-63.42 -65.4,-63.910000000000004 -65.4,-64.4 -65.4,-64.4 -65.10000000000001,-64.4 -64.80000000000001,-64.4 -64.5,-64.4 -64.2,-64.4 -63.900000000000006,-64.4 -63.6,-64.4 -63.3,-64.4 -63,-64.4 -62.7,-64.4 -62.4))", "dataset_titles": "LMG2002 Expedtition Data", "datasets": [{"dataset_uid": "200222", "doi": "10.7284/908802", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "LMG2002 Expedtition Data", "url": "https://www.rvdata.us/search/cruise/LMG2002"}], "date_created": "Fri, 10 Jun 2022 00:00:00 GMT", "description": "Warming on the western Antarctic Peninsula in the later 20th century has caused widespread changes in the cryosphere (ice and snow) and terrestrial ecosystems. These recent changes along with longer-term climate and ecosystem histories will be deciphered using peat deposits. Peat accumulation can be used to assess the rate of glacial retreat and provide insight into ecological processes on newly deglaciated landscapes in the Antarctic Peninsula. This project builds on data suggesting recent ecosystem transformations that are linked to past climate of the western Antarctic Peninsula and provide a timeline to assess the extent and rate of recent glacial change. The study will produce a climate record for the coastal low-elevation terrestrial region, which will refine the major climate shifts of up to 6 degrees C in the recent past (last 12,000 years). A novel terrestrial record of the recent glacial history will provide insight into observed changes in climate and sea-ice dynamics in the western Antarctic Peninsula and allow for comparison with off-shore climate records captured in sediments. Observations and discoveries from this project will be disseminated to local schools and science centers. The project provides training and career development for a postdoctoral scientist as well as graduate and undergraduate students. The research presents a new systematic survey to reconstruct ecosystem and climate change for the coastal low-elevation areas on the western Antarctic Peninsula (AP) using proxy records preserved in late Holocene peat deposits. Moss and peat samples will be collected and analyzed to generate a comprehensive data set of late-Holocene climate change and ecosystem dynamics. The goal is to document and understand the transformations of landscape and terrestrial ecosystems on the western AP during the late Holocene. The testable hypothesis is that coastal regions have experienced greater climate variability than evidenced in ice-core records and that past warmth has facilitated dramatic ecosystem and cryosphere response. A primary product of the project is a robust reconstruction of late Holocene climate changes for coastal low-elevation terrestrial areas using multiple lines of evidence from peat-based biological and geochemical proxies, which will be used to compare with climate records derived from marine sediments and ice cores from the AP region. These data will be used to test several ideas related to novel peat-forming ecosystems (such as Antarctic hairgrass bogs) in past warmer climates and climate controls over ecosystem establishment and migration to help assess the nature of the Little Ice Age cooling and cryosphere response. The chronology of peat cores will be established by radiocarbon dating of macrofossils and Bayesian modeling. The high-resolution time series of ecosystem and climate changes will help put the observed recent changes into a long-term context to bridge climate dynamics over different time scales. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -59.5, "geometry": "POINT(-61.95 -63.900000000000006)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS", "is_usap_dc": true, "keywords": "ECOSYSTEM FUNCTIONS; ISOTOPES; USAP-DC; PALEOCLIMATE RECONSTRUCTIONS; SEDIMENTS; Amd/Us; FIELD INVESTIGATION; Antarctic Peninsula; AMD; TERRESTRIAL ECOSYSTEMS; USA/NSF; RADIOCARBON", "locations": "Antarctic Peninsula", "north": -62.4, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Beilman, David; Booth, Robert", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.4, "title": "Collaborative Research: Reconstructing Late Holocene Ecosystem and Climate Shifts from Peat Records in the Western Antarctic Peninsula", "uid": "p0010337", "west": -64.4}, {"awards": "1947558 Leckie, Robert; 1947657 Dodd, Justin; 1947646 Shevenell, Amelia", "bounds_geometry": "POLYGON((-180 -72.5,-177.6 -72.5,-175.2 -72.5,-172.8 -72.5,-170.4 -72.5,-168 -72.5,-165.6 -72.5,-163.2 -72.5,-160.8 -72.5,-158.4 -72.5,-156 -72.5,-156 -73.15,-156 -73.8,-156 -74.45,-156 -75.1,-156 -75.75,-156 -76.4,-156 -77.05,-156 -77.7,-156 -78.35,-156 -79,-158.4 -79,-160.8 -79,-163.2 -79,-165.6 -79,-168 -79,-170.4 -79,-172.8 -79,-175.2 -79,-177.6 -79,180 -79,178.4 -79,176.8 -79,175.2 -79,173.6 -79,172 -79,170.4 -79,168.8 -79,167.2 -79,165.6 -79,164 -79,164 -78.35,164 -77.7,164 -77.05,164 -76.4,164 -75.75,164 -75.1,164 -74.45,164 -73.8,164 -73.15,164 -72.5,165.6 -72.5,167.2 -72.5,168.8 -72.5,170.4 -72.5,172 -72.5,173.6 -72.5,175.2 -72.5,176.8 -72.5,178.4 -72.5,-180 -72.5))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 08 Jun 2022 00:00:00 GMT", "description": "Nontechnical abstract Presently, Antarctica\u2019s glaciers are melting as Earth\u2019s atmosphere and the Southern Ocean warm. Not much is known about how Antarctica\u2019s ice sheets might respond to ongoing and future warming, but such knowledge is important because Antarctica\u2019s ice sheets might raise global sea levels significantly with continued melting. Over time, mud accumulates on the sea floor around Antarctica that is composed of the skeletons and debris of microscopic marine organisms and sediment from the adjacent continent. As this mud is deposited, it creates a record of past environmental and ecological changes, including ocean depth, glacier advance and retreat, ocean temperature, ocean circulation, marine ecosystems, ocean chemistry, and continental weathering. Scientists interested in understanding how Antarctica\u2019s glaciers and ice sheets might respond to ongoing warming can use a variety of physical, biological, and chemical analyses of these mud archives to determine how long ago the mud was deposited and how the ice sheets, oceans, and marine ecosystems responded during intervals in the past when Earth\u2019s climate was warmer. In this project, researchers from the University of South Florida, University of Massachusetts, and Northern Illinois University will reconstruct the depth, ocean temperature, weathering and nutrient input, and marine ecosystems in the central Ross Sea from ~17 to 13 million years ago, when the warm Miocene Climate Optimum transitioned to a cooler interval with more extensive ice sheets. Record will be generated from new sediments recovered during the International Ocean Discovery Program (IODP) Expedition 374 and legacy sequences recovered in the 1970\u2019s during the Deep Sea Drilling Program. Results will be integrated into ice sheet and climate models to improve the accuracy of predictions. The research provides experience for three graduate students and seven undergraduate students via a multi-institutional REU program focused on increasing diversity in Antarctic Earth Sciences. Technical Abstract Deep-sea sediments reveal that the Miocene Climatic Optimum (MCO) was the warmest climate interval of the last ~20 Ma, was associated with global carbon cycle changes and ice growth, and immediately preceded the Middle Miocene Climate Transition (MMCT; ~14 Ma), one of three major intervals of Antarctic ice expansion and global cooling. Ice-proximal studies are required to assess: where and when ice grew, ice sheet extent, continental shelf geometry, high-latitude heat and moisture supply, oceanic and/or atmospheric temperature influence on ice dynamics, regional sea ice extent, meltwater input, and regions of bottom water formation. Existing studies indicate that ice expanded beyond the Transantarctic Mountains and onto the prograding Ross Sea continental shelf multiple times between ~17 and 13.5 Ma. However, these records are either too ice-proximal/terrestrial to adequately assess ocean-ice interactions or under-studied. To address this data gap, this work will: 1) generate micropaleontologic and geochemical records of oceanic and atmospheric temperature, water depth, ocean circulation, and paleoproductivity from existing Ross Sea marine sedimentary sequences, and 2) use these proxy records to test the hypothesis that dynamic glacial expansion in the Ross Sea sector during the MCO was driven by heat and moisture transport to the high latitudes during an interval of enhanced climate sensitivity. Downcore geochemical and micropaleontologic studies will focus on an expanded (120 m/my) early to middle Miocene (~17-16 Ma) diatom-bearing/rich mudstone/diatomite unit from IODP Site U1521, drilled on the Ross Sea continental shelf. A hiatus (~16-14.6 Ma) suggests ice expansion during the MCO, followed by diamictite to mudstone unit indicative of slight retreat (14.6 -14 Ma) immediately preceding the MMCT. Data from Site U1521 will be integrated with foraminiferal geochemical and micropaleontologic data from DSDP Leg 28 (1972/73) and RISP J-9 (1978-79) to develop a MCO to late Miocene regional view of ocean-ice sheet interactions using legacy core material previously processed for foraminifera. This integrated record will: 1) document the timing and extent of glacial advances and retreats across the prograding Ross Sea shelf during the middle and late Miocene, 2) provide orbital-scale paleotemperature reconstructions (TEX86, Mg/Ca, \u03b418O, MBT/CBT) to establish atmosphere-ocean-ice interactions during an extreme high-latitude warm interval, and 3) provide orbital-scale nutrient/paleoproductivity, ocean circulation, and paleoenvironmental data required to assess climate feedbacks associated with Miocene Antarctic ice sheet and global climate system development. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -156.0, "geometry": "POINT(-176 -75.75)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; LABORATORY; AMD; PALEOCLIMATE RECONSTRUCTIONS; Ross Sea; USAP-DC; USA/NSF", "locations": "Ross Sea", "north": -72.5, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Shevenell, Amelia", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -79.0, "title": "Collaborative Proposal: Miocene Climate Extremes: A Ross Sea Perspective from IODP Expedition 374 and DSDP Leg 28 Marine Sediments", "uid": "p0010335", "west": 164.0}, {"awards": "2019719 Brook, Edward", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "2019-2020 Allan Hills Field Report; 2022-23 Allan Hills Intermediate Ice Core Site Selection Field Report; 2023-2024 Allan Hills End-of-Season Science Report; Airborne Radar Data: 2022-23 (CXA1) flight based HDF5/matlab format data; Airborne Radar Data: 2022-23 (CXA1) transect based (science organized) unfocused data; Airborne Radar Data: 2023-24 (CXA2) flight based data HDF5/matlab format; Airborne Radar Data: 2023-24 (CXA2) transect based (science organized) unfocused data; ALHIC2201 and ALHIC2302 3D ECM and Layer Orientations; Allan Hills 2022-23 Shallow Ice Core Field Report; Allan Hills CMC3 ice core d18Oatm, d15N, dO2/N2, dAr/N2, d40/36Ar, d40/38Ar 2021 \u0026 2022; Allan Hills I-188 Field Season Report 2022-2023; Allan Hills ice water stable isotope record for dD, d18O; Basal Ice Unit Thickness Mapped by the NSF COLDEX MARFA Ice Penetrating Radar; CO2 and CH4 from Allan Hills ice cores ALHIC1901, 1902, and 1903; COLDEX VHF MARFA Open Polar Radar radargrams; Concentration and flux of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area; Heavy noble gases (Ar/Xe/Kr) from ALHIC1901, 1902, and 1903; I-165-M GPR Field Report 2019-2020; MOT data (Xe/Kr) from Allan Hills ice cores ALHIC1901, 1902, and 1903; NSF COLDEX 2022-23 Level 2 Basal Specularity Content Profiles; NSF COLDEX 2022-23 Riegl Laser Altimeter Level 2 Geolocated Surface Elevation Triplets; NSF COLDEX 2023-24 Level 2 Basal Specularity Content Profiles; NSF COLDEX 2023-24 Riegl Laser Altimeter Level 2 Geolocated Surface Elevation Triplets; NSF COLDEX Ice Penetrating Radar Derived Grids of the Southern Flank of Dome C; NSF COLDEX/Open Polar Radar Example Delay Doppler Classification of Englacial Reflectors; NSF COLDEX Raw MARFA Ice Penetrating Radar data; Oxygen and hydrogen isotope compositions and associated d-excess of ice from ALHIC1903 drilled at the Allan Hills Blue Ice Area; Rare earth elemental concentrations of leached ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area; Replicate O-17-excess by continuous flow laser spectroscopy for an ice core section at Summit, Greenland; Rising Seas: Representations of Antarctica, Climate Change, and Sea Level Rise in U.S. Newspaper Coverage; Snapshot record of CO2 and CH4 from the Allan Hills, Antarctica, ranging from 400,000 to 3 million years old; Social network analysis to understand participant engagement in transdisciplinary team science: a large U.S. science and technology center case study; Strontium and neodymium isotope compositions of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "datasets": [{"dataset_uid": "601863", "doi": null, "keywords": "Allan Hills; Antarctica; Cryosphere; Isotope Data", "people": "Kurbatov, Andrei V.; Mayewski, Paul A.; Brook, Edward; Introne, Douglas; Higgins, John; Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills ice water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601863"}, {"dataset_uid": "601896", "doi": "10.15784/601896", "keywords": "Allan Hills; Antarctica; Ch4; CO2; Cryosphere; Glaciology; Glaciology; Ice Core Data; Ice Core Records", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "CO2 and CH4 from Allan Hills ice cores ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601896"}, {"dataset_uid": "601897", "doi": "10.15784/601897", "keywords": "Allan Hills; Antarctica; Cryosphere; Glaciology; Ice Core Data; MOT; Ocean Temperature; Paleoclimate; Xe/Kr", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "MOT data (Xe/Kr) from Allan Hills ice cores ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601897"}, {"dataset_uid": "601878", "doi": "10.15784/601878", "keywords": "Allan Hills; Antarctica; Blue Ice; Carbon Dioxide; Cryosphere; Methane", "people": "Shackleton, Sarah; Marks Peterson, Julia; Brook, Edward; Kalk, Michael; Severinghaus, Jeffrey P.; Hishamunda, Valens", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Snapshot record of CO2 and CH4 from the Allan Hills, Antarctica, ranging from 400,000 to 3 million years old", "url": "https://www.usap-dc.org/view/dataset/601878"}, {"dataset_uid": "601863", "doi": null, "keywords": "Allan Hills; Antarctica; Cryosphere; Isotope Data", "people": "Higgins, John; Severinghaus, Jeffrey P.; Introne, Douglas; Mayewski, Paul A.; Brook, Edward; Kurbatov, Andrei V.", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Allan Hills ice water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601863"}, {"dataset_uid": "601912", "doi": "10.15784/601912", "keywords": "Antarctica; Coldex; Cryosphere; East Antarctica; East Antarctic Plateau; Glaciology; Radar Echo Sounder", "people": "Singh, Shivangini; Vega Gonzalez, Alejandra; Young, Duncan A.; Yan, Shuai; Blankenship, Donald D.; Kerr, Megan", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Basal Ice Unit Thickness Mapped by the NSF COLDEX MARFA Ice Penetrating Radar", "url": "https://www.usap-dc.org/view/dataset/601912"}, {"dataset_uid": "601697", "doi": "10.15784/601697", "keywords": "Allan Hills; Antarctica; Apres; Ice Core; Ice Penetrating Radar; Temperature Profiles", "people": "Brook, Edward J.; Conway, Howard", "repository": "USAP-DC", "science_program": "COLDEX", "title": "2022-23 Allan Hills Intermediate Ice Core Site Selection Field Report", "url": "https://www.usap-dc.org/view/dataset/601697"}, {"dataset_uid": "601854", "doi": "10.15784/601854", "keywords": "Allan Hills; Antarctica; Cryosphere", "people": "Shackleton, Sarah; Kirkpatrick, Liam; Carter, Austin; Fudge, T. J.; Marks Peterson, Julia", "repository": "USAP-DC", "science_program": "COLDEX", "title": "ALHIC2201 and ALHIC2302 3D ECM and Layer Orientations", "url": "https://www.usap-dc.org/view/dataset/601854"}, {"dataset_uid": "200419", "doi": "", "keywords": null, "people": null, "repository": "University Digital Conservancy", "science_program": null, "title": "Rising Seas: Representations of Antarctica, Climate Change, and Sea Level Rise in U.S. Newspaper Coverage", "url": "https://hdl.handle.net/11299/265195"}, {"dataset_uid": "200420", "doi": "10.18738/T8/J38CO5", "keywords": null, "people": null, "repository": "OPR", "science_program": null, "title": "Airborne Radar Data: 2022-23 (CXA1) flight based HDF5/matlab format data", "url": "https://data.cresis.ku.edu/data/rds/2022_Antarctica_BaslerMKB/"}, {"dataset_uid": "200421", "doi": "10.18738/T8/J38CO5", "keywords": null, "people": null, "repository": "OPR", "science_program": null, "title": "Airborne Radar Data: 2023-24 (CXA2) flight based data HDF5/matlab format", "url": "https://data.cresis.ku.edu/data/rds/2023_Antarctica_BaslerMKB/"}, {"dataset_uid": "601826", "doi": "10.15784/601826", "keywords": "Allan Hills; Antarctica; Cryosphere", "people": "Manos, John-Morgan; Epifanio, Jenna; Conway, Howard; Shaya, Margot; Horlings, Annika", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Allan Hills I-188 Field Season Report 2022-2023", "url": "https://www.usap-dc.org/view/dataset/601826"}, {"dataset_uid": "601824", "doi": "10.15784/601824", "keywords": "Allan Hills; Antarctica; Coldex; Cryosphere", "people": "Epifanio, Jenna; Marks Peterson, Julia; Higgins, John; Brook, Edward J.; Shackleton, Sarah; Carter, Austin; Manos, John-Morgan; Hudak, Abigail; Banerjee, Asmita; Morton, Elizabeth; Jayred, Michael; Goverman, Ashley; Mayo, Emalia", "repository": "USAP-DC", "science_program": "COLDEX", "title": "2023-2024 Allan Hills End-of-Season Science Report", "url": "https://www.usap-dc.org/view/dataset/601824"}, {"dataset_uid": "601819", "doi": "10.15784/601819", "keywords": "Allan Hills; Antarctica; Cryosphere", "people": "Nesbitt, Ian; Carter, Austin; Higgins, John; Shackleton, Sarah; Morgan, Jacob; Epifanio, Jenna; Kuhl, Tanner; Morton, Elizabeth; Zajicek, Anna", "repository": "USAP-DC", "science_program": "COLDEX", "title": "2019-2020 Allan Hills Field Report", "url": "https://www.usap-dc.org/view/dataset/601819"}, {"dataset_uid": "200432", "doi": "10.18738/T8/XPMLCC", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "Airborne Radar Data: 2022-23 (CXA1) transect based (science organized) unfocused data", "url": "https://dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T8/XPMLCC"}, {"dataset_uid": "200433", "doi": "10.18738/T8/FV6VNT", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "Airborne Radar Data: 2023-24 (CXA2) transect based (science organized) unfocused data", "url": "https://dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T8/FV6VNT"}, {"dataset_uid": "200434", "doi": "10.18738/T8/99IEOG", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX 2022-23 Riegl Laser Altimeter Level 2 Geolocated Surface Elevation Triplets", "url": "https://doi.org/10.18738/T8/99IEOG"}, {"dataset_uid": "200435", "doi": "10.18738/T8/PNBFOL", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX 2023-24 Riegl Laser Altimeter Level 2 Geolocated Surface Elevation Triplets", "url": "https://doi.org/10.18738/T8/PNBFOL"}, {"dataset_uid": "601768", "doi": "10.15784/601768", "keywords": "Antarctica; Coldex; East Antarctic Plateau; Glaciology; Radar Echo Sounder", "people": "Ng, Gregory; Kempf, Scott D.; Chan, Kristian; Kerr, Megan; Greenbaum, Jamin; Blankenship, Donald D.; Young, Duncan A.; Buhl, Dillon", "repository": "USAP-DC", "science_program": "COLDEX", "title": "NSF COLDEX Raw MARFA Ice Penetrating Radar data", "url": "https://www.usap-dc.org/view/dataset/601768"}, {"dataset_uid": "200452", "doi": "https://hdl.handle.net/11299/270020", "keywords": null, "people": null, "repository": "UMN University Digital Conservancy", "science_program": null, "title": "Social network analysis to understand participant engagement in transdisciplinary team science: a large U.S. science and technology center case study", "url": "https://hdl.handle.net/11299/270020"}, {"dataset_uid": "200470", "doi": "doi:10.15784/601822", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "Oxygen and hydrogen isotope compositions and associated d-excess of ice from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "url": "https://www.usap-dc.org/view/dataset/601822"}, {"dataset_uid": "200469", "doi": "https://doi.org/10.15784/601821", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "Rare earth elemental concentrations of leached ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "url": "https://www.usap-dc.org/view/dataset/601821"}, {"dataset_uid": "601620", "doi": "10.15784/601620", "keywords": "18O; Allan Hills; Allan Hills Blue Ice; Antarctica; Blue Ice; Delta 15N; Delta 18O; Dole Effect; Firn Thickness; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Chronology; Ice Core Records", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills CMC3 ice core d18Oatm, d15N, dO2/N2, dAr/N2, d40/36Ar, d40/38Ar 2021 \u0026 2022", "url": "https://www.usap-dc.org/view/dataset/601620"}, {"dataset_uid": "601696", "doi": "10.15784/601696", "keywords": "Allan Hills; Antarctica; Ice Core", "people": "Brook, Edward J.; Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills 2022-23 Shallow Ice Core Field Report", "url": "https://www.usap-dc.org/view/dataset/601696"}, {"dataset_uid": "601669", "doi": "10.15784/601669", "keywords": "Allan Hills; Antarctica; GPR; Ice Core; Report", "people": "Nesbitt, Ian; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "I-165-M GPR Field Report 2019-2020", "url": "https://www.usap-dc.org/view/dataset/601669"}, {"dataset_uid": "200468", "doi": "https://doi.org/10.15784/601820", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "Strontium and neodymium isotope compositions of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "url": "https://www.usap-dc.org/view/dataset/601820"}, {"dataset_uid": "601895", "doi": "10.15784/601895", "keywords": "Allan Hills; Antarctica; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Noble Gas", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Heavy noble gases (Ar/Xe/Kr) from ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601895"}, {"dataset_uid": "200461", "doi": "10.18738/T8/6T5JS6", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX 2022-23 Level 2 Basal Specularity Content Profiles", "url": "https://doi.org/10.18738/T8/6T5JS6"}, {"dataset_uid": "200467", "doi": "doi:10.15784/601825", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "Concentration and flux of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "url": "https://www.usap-dc.org/view/dataset/601825"}, {"dataset_uid": "601659", "doi": "10.15784/601659", "keywords": "Antarctica; Continuous Flow; Glaciology; Greenland; Ice Core Data; Laser Spectroscopy; Oxygen Isotope; Triple Oxygen Isotopes", "people": "Davidge, Lindsey", "repository": "USAP-DC", "science_program": "Hercules Dome Ice Core", "title": "Replicate O-17-excess by continuous flow laser spectroscopy for an ice core section at Summit, Greenland", "url": "https://www.usap-dc.org/view/dataset/601659"}, {"dataset_uid": "200465", "doi": "10.18738/T8/DM10IG", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "COLDEX VHF MARFA Open Polar Radar radargrams", "url": "https://doi.org/10.18738/T8/DM10IG"}, {"dataset_uid": "200464", "doi": "10.18738/T8/DM10IG", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX/Open Polar Radar Example Delay Doppler Classification of Englacial Reflectors", "url": "https://doi.org/10.18738/T8/DM10IG"}, {"dataset_uid": "200463", "doi": "10.18738/T8/M77ANK", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX Ice Penetrating Radar Derived Grids of the Southern Flank of Dome C", "url": "https://doi.org/10.18738/T8/M77ANK"}, {"dataset_uid": "200462", "doi": "10.18738/T8/KHUT1U", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX 2023-24 Level 2 Basal Specularity Content Profiles", "url": "https://doi.org/10.18738/T8/KHUT1U"}], "date_created": "Sat, 21 May 2022 00:00:00 GMT", "description": "Cores drilled through the Antarctic ice sheet provide a remarkable window on the evolution of Earth\u2019s climate and unique samples of the ancient atmosphere. The clear link between greenhouse gases and climate revealed by ice cores underpins much of the scientific understanding of climate change. Unfortunately, the existing data do not extend far enough back in time to reveal key features of climates warmer than today. COLDEX, the Center for Oldest Ice Exploration, will solve this problem by exploring Antarctica for sites to collect the oldest possible record of past climate recorded in the ice sheet. COLDEX will provide critical information for understanding how Earth\u2019s near-future climate may evolve and why climate varies over geologic time. New technologies will be developed for exploration and analysis that will have a long legacy for future research. An archive of old ice will stimulate new research for the next generations of polar scientists. COLDEX programs will galvanize that next generation of polar researchers, bring new results to other scientific disciplines and the public, and help to create a more inclusive and diverse scientific community. Knowledge of Earth\u2019s climate history is grounded in the geologic record. This knowledge is gained by measuring chemical, biological and physical properties of geologic materials that reflect elements of climate. Ice cores retrieved from polar ice sheets play a central role in this science and provide the best evidence for a strong link between atmospheric carbon dioxide and climate on geologic timescales. The goal of COLDEX is to extend the ice-core record of past climate to at least 1.5 million years by drilling and analyzing a continuous ice core in East Antarctica, and to much older times using discontinuous ice sections at the base and margin of the ice sheet. COLDEX will develop and deploy novel radar and melt-probe tools to rapidly explore the ice, use ice-sheet models to constrain where old ice is preserved, conduct ice coring, develop new analytical systems, and produce novel paleoclimate records from locations across East Antarctica. The search for Earth\u2019s oldest ice also provides a compelling narrative for disseminating information about past and future climate change and polar science to students, teachers, the media, policy makers and the public. COLDEX will engage and incorporate these groups through targeted professional development workshops, undergraduate research experiences, a comprehensive communication program, annual scientific meetings, scholarships, and broad collaboration nationally and internationally. COLDEX will provide a focal point for efforts to increase diversity in polar science by providing field, laboratory, mentoring and networking experiences for students and early career scientists from groups underrepresented in STEM, and by continuous engagement of the entire COLDEX community in developing a more inclusive scientific culture. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; AMD; Antarctica; Amd/Us; Coldex; USAP-DC; FIELD SURVEYS; ICE DEPTH/THICKNESS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Polar Special Initiatives; Antarctic Glaciology", "paleo_time": null, "persons": "Brook, Edward J.; Neff, Peter", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "OPR; Texas Data Repository; UMN University Digital Conservancy; University Digital Conservancy; USAP-DC", "science_programs": "COLDEX", "south": -90.0, "title": "Center for Oldest Ice Exploration", "uid": "p0010321", "west": -180.0}, {"awards": "2146791 Lai, Chung Kei Chris", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 06 May 2022 00:00:00 GMT", "description": "Melt from the Greenland and Antarctic ice sheets is increasingly contributing to sea-level rise. This ice sheet mass loss is primarily driven by the thinning, retreat, and acceleration of glaciers in contact with the ocean. Observations from the field and satellites indicate that glaciers are sensitive to changes at the ice-ocean interface and that the increase in submarine melting is likely to be driven by the discharge of meltwater from underneath the glacier known as subglacial meltwater plumes. The melting of glacier ice also directly adds a large volume of freshwater into the ocean, potentially causing significant changes in the circulation of ocean waters that regulate global heat transport, making ice-ocean interactions an important potential factor in climate change and variability. The ability to predict, and hence adequately respond to, climate change and sea-level rise therefore depends on our knowledge of the small-scale processes occurring in the vicinity of subglacial meltwater plumes at the ice-ocean interface. Currently, understanding of the underlying physics is incomplete; for example, different models of glacier-ocean interaction could yield melting rates that vary over a factor of five for the same heat supply from the ocean. It is then very difficult to assess the reliability of predictive models. This project will use comprehensive laboratory experiments to study how the melt rates of glaciers in the vicinity of plumes are affected by the ice roughness, ice geometry, ocean turbulence, and ocean density stratification at the ice-ocean interface. These experiments will then be used to develop new and improved predictive models of ice-sheet melting by the ocean. This project builds bridges between modern experimental fluid mechanics and glaciology with the goal of leading to advances in both fields. As a part of this work, two graduate students will receive interdisciplinary training and each year two undergraduate students will be trained in experimental fluid mechanics to assist in this work and develop their own research projects. This project consists of a comprehensive experimental program designed for studying the melt rates of glacier ice under the combined influences of (1) turbulence occurring near and at the ice-ocean interface, (2) density stratification in the ambient water column, (3) irregularities in the bottom topology of an ice shelf, and (4) differing spatial distributions of multiple meltwater plumes. The objective of the experiments is to obtain high-resolution data of the velocity, density, and temperature near/at the ice-ocean interface, which will then be used to improve understanding of melt processes down to scales of millimeters, and to devise new, more robust numerical models of glacier evolution and sea-level rise. Specially, laser-based, optical techniques in experimental fluid mechanics (particle image velocity and laser-induced fluorescence) will be used to gather the data, and the experiments will be conducted using refractive-index matching techniques to eliminate changes in refractive indices that could otherwise bias the measurements. The experiments will be run inside a climate-controlled cold room to mimic field conditions (ocean temperature from 0-10 degrees C). The project will use 3D-printing to create different casting molds for making ice blocks with different types of roughness. The goal is to investigate how ice melt rate changes as a function of the properties of the plume, the ambient ocean water, and the geometric properties of the ice interface. Based on the experimental findings, this project will develop and test a new integral-plume-model coupled to a regional circulation model (MITgcm) that can be used to predict the effects of glacial melt on ocean circulation and sea-level rise. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Glacier-Ocean Boundary Layer; Alaska; USAP-DC; USA/NSF; ABLATION ZONES/ACCUMULATION ZONES; GLACIERS; AMD; Amd/Us; Antarctica; LABORATORY", "locations": "Antarctica; Alaska", "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Lai, Chung; Robel, Alexander", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "Revising Models of the Glacier-Ocean Boundary Layer with Novel Laboratory Experiments ", "uid": "p0010317", "west": null}, {"awards": "2053726 Hofmann, Gretchen", "bounds_geometry": "POLYGON((163 -77,163.4 -77,163.8 -77,164.2 -77,164.6 -77,165 -77,165.4 -77,165.8 -77,166.2 -77,166.6 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.6 -78,166.2 -78,165.8 -78,165.4 -78,165 -78,164.6 -78,164.2 -78,163.8 -78,163.4 -78,163 -78,163 -77.9,163 -77.8,163 -77.7,163 -77.6,163 -77.5,163 -77.4,163 -77.3,163 -77.2,163 -77.1,163 -77))", "dataset_titles": "Analyses combining ATAC-seq, RRBS, and RNA-seq data for purple urchins", "datasets": [{"dataset_uid": "200288", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Analyses combining ATAC-seq, RRBS, and RNA-seq data for purple urchins", "url": "https://github.com/snbogan/Sp_RRBS_ATAC"}], "date_created": "Thu, 14 Apr 2022 00:00:00 GMT", "description": "Part 1: Non-technical description: With support from the Office of Polar Programs, this project will evaluate how an important part of the food web in the coastal ocean of Antarctica will respond to climate change. The focal study organism in the plankton is a shelled mollusk, the Antarctic pteropod, Limacina helicina antarctica, an Southern Ocean organism that this known to respond to climate driven changes in ocean acidification and ocean warming. Ocean acidification, the lowering of ocean pH via the absorption of atmospheric carbon dioxide in the surface of the ocean, is a change in the ocean that is expected to cross deleterious thresholds of pH within decades. This study will improve understanding of how pteropods will respond, which will provide insight into predicting the resilience of the Antarctic marine ecosystem during future changes, one of the planet\u2019s last marine wildernesses. The project will use tools of molecular biology to examine specifically how gene expression is modulated in the pteropods, and further, how the changes and regulation of genes act to resist the stress of low pH and high temperature. In addition, this project supports the training of Ph.D. graduate students and advances the goal of inclusive excellence in STEM and in marine sciences, in particular. The students involved in this project are from groups traditionally under-represented in marine science including first-generation college students. Overall, the project contributes to the development of the U.S. work force and contributes to diversity and inclusive excellence in the geosciences. Part 2: Technical description: The overarching goal of this project is to investigate the molecular response of the Antarctic thecosome pteropod, Limacina helicina antarctica to ocean acidification (OA) and ocean warming. The project will investigate changes in the epigenome of juvenile L. h. antarctica, by assessing the dynamics of DNA methylation in response to three scenarios of environmental conditions that were simulated in laboratory mesocosm CO2 experiments: (1) present-day pCO2 conditions for summer and winter, (2) future ocean acidification expected within 10-15 years, and (3) a multiple stressor experiment to investigate synergistic interaction of OA and high temperature stress. Recent lab-based mesocosm experiment research showed significant changes in the dynamics of global DNA methylation in the pteropod genome, along with variation in gene expression in response to abiotic changes. Thus, it is clear that juvenile L. h. antarctica are capable of mounting a substantial epigenetic response to ocean acidification. However, it is not known how DNA methylation, as an epigenetic process, is modulating changes in the transcriptome. In order to address this gap in the epigenetic knowledge regarding pteropods, the project will use next-generation sequencing approaches (e.g., RNA sequencing and reduced representation bisulfite sequencing) to integrate changes in methylation status with changes in gene expression in juvenile pteropods. Overall, this investigation is an important step in exploring environmental transcriptomics and phenotypic plasticity of an ecologically important member of Southern Ocean macrozoooplankton in response to anthropogenic climate change. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 167.0, "geometry": "POINT(165 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; McMurdo Sound; Amd/Us; FIELD INVESTIGATION; USA/NSF; AMD; MARINE ECOSYSTEMS; ANIMALS/INVERTEBRATES", "locations": "McMurdo Sound", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Hofmann, Gretchen", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "GitHub", "repositories": "GitHub", "science_programs": null, "south": -78.0, "title": "The Role of the Epigenetic Mechanism, DNA Methylation, in the Tolerance and Resistance of Antarctic Pteropods to Ocean Acidification and Warming", "uid": "p0010313", "west": 163.0}, {"awards": "2038145 Bernard, Kim", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Winter Female Krill Oocyte Size", "datasets": [{"dataset_uid": "601919", "doi": "10.15784/601919", "keywords": "Antarctica; Biota; Cryosphere; Krill; Oceans; Southern Ocean", "people": "Bernard, Kim", "repository": "USAP-DC", "science_program": null, "title": "Winter Female Krill Oocyte Size", "url": "https://www.usap-dc.org/view/dataset/601919"}], "date_created": "Fri, 01 Apr 2022 00:00:00 GMT", "description": "Warming at the northern Antarctic Peninsula is causing fundamental changes in the marine ecosystem. Antarctic krill are small shrimp-like animals that are most abundant in that area. They are also an essential part of the marine food web of the waters surrounding Antarctica. Meanwhile, a rapidly growing international fishery has developed for krill. Understanding changes in krill populations is therefore critical both to the management of the fishery and the ability of scientists to predict changes in the Antarctic marine ecosystem. This project will have two broader societal impacts. First, the project will support the training of students for careers in oceanography. The students will be recruited from underrepresented groups in an effort to increase diversity, equity and inclusion in STEM. Second, results from this project will develop improved population models, which are essential for the effective management of the Antarctic krill fishery. In collaboration with US delegates on the Commission for the Conservation of Antarctic Marine Living Resources, the researchers will produce a report outlining the key findings from the study. Effective population modeling relies on empirical and theoretical understanding of how environment drives krill reproduction. There are two critical egg development stages in Antarctic krill that impact population growth. They are early egg development, and advanced egg development/spawning. The timing and duration of early egg development determines the number of eggs produced and the number of seasonal spawning events a female can undergo. The research team will use samples of Antarctic krill collected over the last 30 years in late winter/early spring, summer and early fall. The reproductive development stages of individual females in these samples will be assessed. These data will be modeled against climatological and oceanographic data to test three hypotheses. First, they will test if colder winter conditions correspond to early preparation for spawning. Second, they will test if favorable winter-summer conditions increase early spawning. Finally, they will test if favorable winter-summer conditions lengthen the spawning season. The study will advance current understanding of the environmental conditions that promote population increases in Antarctic krill and will fill an important gap in current knowledge of the reproductive development and output of Antarctic krill. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "FISHERIES; AMD; USAP-DC; Antarctic Peninsula; Amd/Us; USA/NSF; PELAGIC; LABORATORY", "locations": "Antarctic Peninsula", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Bernard, Kim", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Drivers of Antarctic Krill Reproductive Output", "uid": "p0010312", "west": -180.0}, {"awards": "1643534 Cassar, Nicolas", "bounds_geometry": "POLYGON((-83 -62,-80.3 -62,-77.6 -62,-74.9 -62,-72.2 -62,-69.5 -62,-66.8 -62,-64.1 -62,-61.4 -62,-58.7 -62,-56 -62,-56 -63.1,-56 -64.2,-56 -65.3,-56 -66.4,-56 -67.5,-56 -68.6,-56 -69.7,-56 -70.8,-56 -71.9,-56 -73,-58.7 -73,-61.4 -73,-64.1 -73,-66.8 -73,-69.5 -73,-72.2 -73,-74.9 -73,-77.6 -73,-80.3 -73,-83 -73,-83 -71.9,-83 -70.8,-83 -69.7,-83 -68.6,-83 -67.5,-83 -66.4,-83 -65.3,-83 -64.2,-83 -63.1,-83 -62))", "dataset_titles": "Palmer LTER 18S rRNA gene metabarcodin; rDNA amplicon sequencing of WAP microbial community", "datasets": [{"dataset_uid": "200285", "doi": "", "keywords": null, "people": null, "repository": "NCBI", "science_program": null, "title": "Palmer LTER 18S rRNA gene metabarcodin", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA508517"}, {"dataset_uid": "200286", "doi": "", "keywords": null, "people": null, "repository": "NCBI", "science_program": null, "title": "rDNA amplicon sequencing of WAP microbial community", "url": "https://www.ncbi.nlm.nih.gov/sra/SRR6162326/"}], "date_created": "Thu, 03 Mar 2022 00:00:00 GMT", "description": "This project seeks to make detailed measurements of the oxygen content of the surface ocean along the Western Antarctic Peninsula. Detailed maps of changes in net oxygen content will be combined with measurements of the surface water chemistry and phytoplankton distributions. The project will determine the extent to which on-shore or offshore phytoplankton blooms along the peninsula are likely to lead to different amounts of carbon being exported to the deeper ocean. The project team members will participate in the development of new learning tools at the Museum of Life and Science. They will also teach secondary school students about aquatic biogeochemistry and climate, drawing directly from the active science supported by this grant. The project will analyze oxygen in relation to argon that will allow determination of the physical and biological contributions to surface ocean oxygen dynamics. These assessments will be combined with spatial and temporal distributions of nutrients (iron and macronutrients) and irradiances. This will allow the investigators to unravel the complex interplay between ice dynamics, iron and physical mixing dynamics as they relate to Net Community Production (NCP) in the region. NCP measurements will be normalized to Particulate Organic Carbon (POC) and be used to help identify area of \"High Biomass and Low NCP\" and those with \"Low Biomass and High NCP\" as a function of microbial plankton community composition. The team will use machine learning methods- including decision tree assemblages and genetic programming- to identify plankton groups key to facilitating biological carbon fluxes. Decomposing the oxygen signal along the West Antarctic Peninsula will also help elucidate biotic and abiotic drivers of the O2 saturation to further contextualize the growing inventory of oxygen measurements (e.g. by Argo floats) throughout the global oceans.", "east": -56.0, "geometry": "POINT(-69.5 -67.5)", "instruments": null, "is_usap_dc": true, "keywords": "West Antarctica; USAP-DC; BIOGEOCHEMICAL CYCLES; AMD; USA/NSF; LABORATORY; Amd/Us", "locations": "West Antarctica", "north": -62.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Cassar, Nicolas", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "NCBI", "repositories": "NCBI", "science_programs": null, "south": -73.0, "title": "Biological and Physical Drivers of Oxygen Saturation and Net Community Production Variability along the Western Antarctic Peninsula", "uid": "p0010303", "west": -83.0}, {"awards": "0944150 Hall, Brenda", "bounds_geometry": "POLYGON((163.6 -77.5,163.7 -77.5,163.8 -77.5,163.9 -77.5,164 -77.5,164.1 -77.5,164.2 -77.5,164.3 -77.5,164.4 -77.5,164.5 -77.5,164.6 -77.5,164.6 -77.57,164.6 -77.64,164.6 -77.71,164.6 -77.78,164.6 -77.85,164.6 -77.92,164.6 -77.99,164.6 -78.06,164.6 -78.13,164.6 -78.2,164.5 -78.2,164.4 -78.2,164.3 -78.2,164.2 -78.2,164.1 -78.2,164 -78.2,163.9 -78.2,163.8 -78.2,163.7 -78.2,163.6 -78.2,163.6 -78.13,163.6 -78.06,163.6 -77.99,163.6 -77.92,163.6 -77.85,163.6 -77.78,163.6 -77.71,163.6 -77.64,163.6 -77.57,163.6 -77.5))", "dataset_titles": "Marshall Valley Radiocarbon Data; Marshall Valley U-Series Data; Royal Society Range Headland Moraine Belt Radiocarbon Data; Salmon Valley Radiocarbon Data", "datasets": [{"dataset_uid": "601529", "doi": "10.15784/601529", "keywords": "Algae; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marshall Valley; Radiocarbon; Ross Sea Drift; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Marshall Valley Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601529"}, {"dataset_uid": "601556", "doi": "10.15784/601556", "keywords": "Antarctica; Last Glacial Maximum; McMurdo Sound; Radiocarbon Dates; Ross Sea Drift; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Salmon Valley Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601556"}, {"dataset_uid": "601528", "doi": "10.15784/601528", "keywords": "234U/230Th Dating; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Last Glacial Maximum; Marshall Drift; Marshall Valley; MIS 6; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Marshall Valley U-Series Data", "url": "https://www.usap-dc.org/view/dataset/601528"}, {"dataset_uid": "601555", "doi": "10.15784/601555", "keywords": "Antarctica; Last Glacial Maximum; McMurdo Sound; Radiocarbon Dates; Ross Sea Drift; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Royal Society Range Headland Moraine Belt Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601555"}], "date_created": "Thu, 03 Mar 2022 00:00:00 GMT", "description": "This award supports a project to investigate the sensitivity of the Antarctic ice sheet (AIS) to global climate change over the last two Glacial/Interglacial cycles. The intellectual merit of the project is that despite its importance to Earth\u0027s climate system, we currently lack a full understanding of AIS sensitivity to global climate change. This project will reconstruct and precisely date the history of marine-based ice in the Ross Sea sector over the last two glacial/interglacial cycles, which will enable a better understanding of the potential driving mechanisms (i.e., sea-level rise, ice dynamics, ocean temperature variations) for ice fluctuations. This will also help to place present ice?]sheet behavior in a long-term context. During the last glacial maximum (LGM), the AIS is known to have filled the Ross Embayment and although much has been done both in the marine and terrestrial settings to constrain its extent, the chronology of the ice sheet, particularly the timing and duration of the maximum and the pattern of initial recession, remains uncertain. In addition, virtually nothing is known of the penultimate glaciation, other than it is presumed to have been generally similar to the LGM. These shortcomings greatly limit our ability to understand AIS evolution and the driving mechanisms behind ice sheet fluctuations. This project will develop a detailed record of ice extent and chronology in the western Ross Embayment for not only the LGM, but also for the penultimate glaciation (Stage 6), from well-dated glacial geologic data in the Royal Society Range. Chronology will come primarily from high-precision Accelerator Mass Spectrometry (AMS) Carbon-14 (14C) and multi-collector Inductively Coupled Plasma (ICP)-Mass Spectrometry (MS) 234Uranium/230Thorium dating of lake algae and carbonates known to be widespread in the proposed field area. ", "east": 164.6, "geometry": "POINT(164.1 -77.85)", "instruments": null, "is_usap_dc": true, "keywords": "LABORATORY; Amd/Us; AMD; USA/NSF; GLACIAL LANDFORMS; USAP-DC; Royal Society Range; GLACIER ELEVATION/ICE SHEET ELEVATION", "locations": "Royal Society Range", "north": -77.5, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Hall, Brenda; Denton, George", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.2, "title": "Sensitivity of the Antarctic Ice Sheet to Climate Change over the Last Two Glacial/Interglacial Cycles", "uid": "p0010302", "west": 163.6}, {"awards": "1643248 Hall, Brenda", "bounds_geometry": "POLYGON((163.3 -77.8,163.43 -77.8,163.56 -77.8,163.69 -77.8,163.82 -77.8,163.95 -77.8,164.08 -77.8,164.21 -77.8,164.34 -77.8,164.47 -77.8,164.6 -77.8,164.6 -77.85,164.6 -77.9,164.6 -77.95,164.6 -78,164.6 -78.05,164.6 -78.1,164.6 -78.15,164.6 -78.2,164.6 -78.25,164.6 -78.3,164.47 -78.3,164.34 -78.3,164.21 -78.3,164.08 -78.3,163.95 -78.3,163.82 -78.3,163.69 -78.3,163.56 -78.3,163.43 -78.3,163.3 -78.3,163.3 -78.25,163.3 -78.2,163.3 -78.15,163.3 -78.1,163.3 -78.05,163.3 -78,163.3 -77.95,163.3 -77.9,163.3 -77.85,163.3 -77.8))", "dataset_titles": "Marshall Valley Radiocarbon Data; Marshall Valley U-Series Data; Pyramid Trough Radiocarbon Data; Walcott Glacier area radiocarbon data; Walcott Glacier Exposure Data", "datasets": [{"dataset_uid": "601615", "doi": "10.15784/601615", "keywords": "Algae; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Howchin Glacier; Radiocarbon; Radiocarbon Dates; Ross Sea Drift; Royal Society Range; Walcott Glacier", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Walcott Glacier area radiocarbon data", "url": "https://www.usap-dc.org/view/dataset/601615"}, {"dataset_uid": "601528", "doi": "10.15784/601528", "keywords": "234U/230Th Dating; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Last Glacial Maximum; Marshall Drift; Marshall Valley; MIS 6; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Marshall Valley U-Series Data", "url": "https://www.usap-dc.org/view/dataset/601528"}, {"dataset_uid": "601529", "doi": "10.15784/601529", "keywords": "Algae; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marshall Valley; Radiocarbon; Ross Sea Drift; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Marshall Valley Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601529"}, {"dataset_uid": "601616", "doi": "10.15784/601616", "keywords": "Antarctica; Beryllium-10; Exposure Age; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; McMurdo Sound; Royal Society Range; Walcott Glacier", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Walcott Glacier Exposure Data", "url": "https://www.usap-dc.org/view/dataset/601616"}, {"dataset_uid": "601614", "doi": "10.15784/601614", "keywords": "Algae; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Pyramid Trough; Radiocarbon; Radiocarbon Dates; Ross Sea Drift; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Pyramid Trough Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601614"}], "date_created": "Thu, 03 Mar 2022 00:00:00 GMT", "description": "Hall/1643248 This award supports a project to reconstruct the behavior of a portion of the East Antarctic Ice Sheet (the Ross Ice Sheet), using glacial geologic mapping and radiocarbon dating of algal deposits contained in glacial moraines, at the end of the last glacial period. The results will be compared with other dating methods that will be used on alpine glaciers that terminated in the mountains of the Royal Society Range in East Antarctica during the last glacial maximum and whose landforms intersect with those of the Ross Ice Sheet. Results from this comparison will contribute to a better understanding of the Antarctic ice sheet during the most recent global warming that ended the last ice age. This period is of interest since it will help inform our understanding of Antarctic ice sheet behavior in a future climate warming. Such data also will help inform models that attempt to simulate not only the behavior of the ice sheet during the end of the last ice age, but also its future response to elevated atmospheric carbon dioxide. The work will contribute to the education and training of both graduate and undergraduate students and results from the work will be incorporated in classes at the University of Maine. Results derived from the research will be disseminated to the public through lectures and visits to K-12 classrooms and data from this project will be downloadable from a University of Maine web site, as well as from public data repositories. The Antarctic Ice Sheet exerts a key control on global sea levels, both past and future, and strongly influences Southern Hemisphere and even global climate and ocean circulation. And yet a complete understanding of the evolution of the ice sheet over the last glacial cycle and of the mechanisms that caused it to advance and retreat is still lacking. Of particular interest is the response of the Antarctic Ice Sheet to the global warming that ended the last ice age, because it yields important clues about likely future ice-sheet behavior under a warming climate. In this project, scientists will reconstruct the thinning history of the Antarctic Ice Sheet in the Ross Sea sector during the last glacial/interglacial transition on the headlands of the southern Royal Society Range. They will use a combination of glacial geomorphological mapping and radiocarbon dating of algal deposits enclosed within recessional moraines. Finally, this record will be compared with a beryllium- and radiocarbon-dated chronology that will be produced of adjacent independent alpine glaciers that terminated on land during the last glacial maximum and whose deposits show cross-cutting relationships with those of the ice sheet. Results from this comparison will bear on the behavior of the Antarctic Ice Sheet during the termination of the last ice age. This work will support six students, including at least three undergraduates, and involves field work in the Antarctic.", "east": 164.6, "geometry": "POINT(163.95 -78.05)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIER ELEVATION/ICE SHEET ELEVATION; Royal Society Range; USA/NSF; USAP-DC; Amd/Us; AMD; LABORATORY; GLACIAL LANDFORMS", "locations": "Royal Society Range", "north": -77.8, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Hall, Brenda; Denton, George", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.3, "title": "Response of the Antarctic Ice Sheet to the last great global warming", "uid": "p0010301", "west": 163.3}, {"awards": "1946326 Doran, Peter", "bounds_geometry": "POLYGON((161 -77.4,161.3 -77.4,161.6 -77.4,161.9 -77.4,162.2 -77.4,162.5 -77.4,162.8 -77.4,163.1 -77.4,163.4 -77.4,163.7 -77.4,164 -77.4,164 -77.46,164 -77.52,164 -77.58,164 -77.64,164 -77.7,164 -77.76,164 -77.82,164 -77.88,164 -77.94,164 -78,163.7 -78,163.4 -78,163.1 -78,162.8 -78,162.5 -78,162.2 -78,161.9 -78,161.6 -78,161.3 -78,161 -78,161 -77.94,161 -77.88,161 -77.82,161 -77.76,161 -77.7,161 -77.64,161 -77.58,161 -77.52,161 -77.46,161 -77.4))", "dataset_titles": "EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers: Infrared Stimulated Luminescence data; EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers: in situ 14C data", "datasets": [{"dataset_uid": "601520", "doi": "10.15784/601520", "keywords": "Antarctica; Sample/collection Description; Sample/Collection Description; Sample Location; Taylor Valley", "people": "Doran, Peter; Stone, Michael", "repository": "USAP-DC", "science_program": "LTER", "title": "EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers: Infrared Stimulated Luminescence data", "url": "https://www.usap-dc.org/view/dataset/601520"}, {"dataset_uid": "601521", "doi": "10.15784/601521", "keywords": "Antarctica; Carbon-14; Sample/collection Description; Sample/Collection Description; Sample Location; Taylor Valley", "people": "Doran, Peter; Stone, Michael", "repository": "USAP-DC", "science_program": null, "title": "EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers: in situ 14C data", "url": "https://www.usap-dc.org/view/dataset/601521"}], "date_created": "Mon, 31 Jan 2022 00:00:00 GMT", "description": "Correlating ecosystem responses to past climate forcing is highly dependent on the use of reliable techniques for establishing the age of events (dating techniques). In Antarctic dry regions (land areas without glaciers), carbon-14 dating has been used to assess the ages of organic deposits left behind by ancient lakes. However, the reliability of the ages is debatable because of possible contamination with \"old carbon\" from the surrounding landscape. The proposed research will attempt to establish two alternate dating techniques, in situ carbon-14 cosmogenic radionuclide exposure dating and optically stimulated luminescence (OSL), as reliable alternate dating methods for lake history in Antarctic dry areas that are not contaminated by the old carbon. The end goal will be to increase scientific understanding of lake level fluctuation in the lakes of Taylor Valley, Antarctica so that inference about past climate, glacier, and ecosystem response can be inferred. The results of this study will provide a coarse-scale absolute chronology for lake level history in Taylor Valley, demonstrate that exposure dating and OSL are effective means to understand the physical dynamics of ancient water bodies, and increase the current understanding of polar lacustrine and ice sheet responses to past and present climatic changes. These chronologies will allow polar lake level fluctuations to be correlated with past changes in global and regional climate, providing information critical for understanding and modeling the physical responses of these environments to modern change. This research supports a PhD student; the student will highlight this work with grade school classes in the United States. This research aims to establish in situ carbon-14 exposure dating and OSL as reliable alternate (to carbon-14 of organic lake deposits) geochronometers that can be used to settle the long-disputed lacustrine history and chronology of Taylor Valley, Antarctica and elsewhere. Improved lake level history will have significant impacts for the McMurdo Dry Valleys Long Term Ecological Research (MCM LTER) site as the legacy of fluctuating lake levels of the past affects the distribution of organic matter and nutrients, and impacts biological connectivity valley-wide. This work will provide insight into the carbon reservoir of large glacial lakes in the late Holocene and have implications for previously reported radiocarbon chronologies. OSL samples will be analyzed in the Desert Research Institute Luminescence Laboratory in Reno, NV. For the in situ carbon-14 work, rock samples extracted from boulders and bedrock surfaces will be prepared at Tulane University. The prepared in situ carbon-14 samples will be analyzed at the National Ocean Sciences Accelerator Mass Spectrometry laboratory in Woods Hole, MA. The two datasets will be combined to produce a reliable, coarse scale chronology for late Quaternary lake level fluctuations in Taylor Valley. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 164.0, "geometry": "POINT(162.5 -77.7)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; Amd/Us; Taylor Valley; AGE DETERMINATIONS; USA/NSF; AMD; USAP-DC", "locations": "Taylor Valley", "north": -77.4, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Earth Sciences", "paleo_time": null, "persons": "Doran, Peter", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LTER", "south": -78.0, "title": "EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers", "uid": "p0010294", "west": 161.0}, {"awards": "1443557 Isbell, John", "bounds_geometry": "POLYGON((-180 -85,-177.1 -85,-174.2 -85,-171.3 -85,-168.4 -85,-165.5 -85,-162.6 -85,-159.7 -85,-156.8 -85,-153.9 -85,-151 -85,-151 -85.2,-151 -85.4,-151 -85.6,-151 -85.8,-151 -86,-151 -86.2,-151 -86.4,-151 -86.6,-151 -86.8,-151 -87,-153.9 -87,-156.8 -87,-159.7 -87,-162.6 -87,-165.5 -87,-168.4 -87,-171.3 -87,-174.2 -87,-177.1 -87,180 -87,179 -87,178 -87,177 -87,176 -87,175 -87,174 -87,173 -87,172 -87,171 -87,170 -87,170 -86.8,170 -86.6,170 -86.4,170 -86.2,170 -86,170 -85.8,170 -85.6,170 -85.4,170 -85.2,170 -85,171 -85,172 -85,173 -85,174 -85,175 -85,176 -85,177 -85,178 -85,179 -85,-180 -85))", "dataset_titles": "A LITHOFACIES ANALYSIS OF A SOUTH POLAR GLACIATION IN THE EARLY PERMIAN: PAGODA FORMATION, SHACKLETON GLACIER REGION, ANTARCTICA; A new stratigraphic framework built on U-Pb single-zircon TIMS agesand implications for the timing ofthe penultimate icehouse (Paran\u00e1 Basin, Brazil); Constraining late Paleozoic ice extent in the Paganzo Basin of western Argentina utilizing U-Pb detrital zircon geochronology for the lower Paganzo Group strata; Coupled stratigraphic and U-Pb zircon age constraints on the late Paleozoic icehouse-to-greenhouse turnover in south-central Gondwana; Isotopes to ice: Constraining provenance of glacial deposits and ice centers in west-central Gondwana; Late Permian soil-forming paleoenvironments on Gondwana: A review; Provenance of late Paleozoic glacial/post-glacial deposits in the eastern Chaco-Paran\u00e1 Basin, Uruguay and southernmost Paran\u00e1 Basin, Brazil; Supplemental material: Nitrogen-fixing symbiosis inferred from stable isotope analysis of fossil tree rings from the Oligocene of Ethiopia; When does large woody debris influence ancient rivers? Dendrochronology\r\napplications in the Permian and Triassic, Antarctica", "datasets": [{"dataset_uid": "200266", "doi": "10.2110/jsr.2021.004", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "A LITHOFACIES ANALYSIS OF A SOUTH POLAR GLACIATION IN THE EARLY PERMIAN: PAGODA FORMATION, SHACKLETON GLACIER REGION, ANTARCTICA", "url": "https://www.sepm.org/publications"}, {"dataset_uid": "200274", "doi": "10.1130/G39213.1", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Supplemental material: Nitrogen-fixing symbiosis inferred from stable isotope analysis of fossil tree rings from the Oligocene of Ethiopia", "url": "https://pubs.geoscienceworld.org/gsa/geology/article-standard/45/8/687/207623/Nitrogen-fixing-symbiosis-inferred-from-stable"}, {"dataset_uid": "200273", "doi": "10.1016/j.palaeo.2018.04.020", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Isotopes to ice: Constraining provenance of glacial deposits and ice centers in west-central Gondwana", "url": "https://www.sciencedirect.com/science/article/abs/pii/S0031018217309008?via%3Dihub"}, {"dataset_uid": "200272", "doi": "10.1016/j.jsames.2020.102899", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Constraining late Paleozoic ice extent in the Paganzo Basin of western Argentina utilizing U-Pb detrital zircon geochronology for the lower Paganzo Group strata", "url": "https://www.sciencedirect.com/science/article/pii/S0895981120304429?via%3Dihub#mmc1"}, {"dataset_uid": "200271", "doi": "10.1016/j.palaeo.2019.109544", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "When does large woody debris influence ancient rivers? Dendrochronology\r\napplications in the Permian and Triassic, Antarctica", "url": "https://www.sciencedirect.com/science/article/abs/pii/S0031018219304006?via%3Dihub"}, {"dataset_uid": "200270", "doi": "10.1016/j.jsames.2020.102989", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Provenance of late Paleozoic glacial/post-glacial deposits in the eastern Chaco-Paran\u00e1 Basin, Uruguay and southernmost Paran\u00e1 Basin, Brazil", "url": "https://www.sciencedirect.com/science/article/pii/S0895981120305320#mmc1"}, {"dataset_uid": "200269", "doi": "10.1130/G46740.1", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Coupled stratigraphic and U-Pb zircon age constraints on the late Paleozoic icehouse-to-greenhouse turnover in south-central Gondwana", "url": "https://gsapubs.figshare.com/articles/journal_contribution/Supplemental_material_Coupled_stratigraphic_and_U-Pb_zircon_age_constraints_on_the_late_Paleozoic_icehouse-to-greenhouse_turnover_in_south-central_Gondwana/12542069"}, {"dataset_uid": "200268", "doi": "10.1130/B31775.1.", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "A new stratigraphic framework built on U-Pb single-zircon TIMS agesand implications for the timing ofthe penultimate icehouse (Paran\u00e1 Basin, Brazil)", "url": "https://gsapubs.figshare.com/articles/journal_contribution/Supplemental_material_A_new_stratigraphic_framework_built_on_U-Pb_single-zircon_TIMS_ages_and_implications_for_the_timing_of_the_penultimate_icehouse_Paran_Basin_Brazil_/12535916"}, {"dataset_uid": "200267", "doi": "10.1016/j.palaeo.2021.110762", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Late Permian soil-forming paleoenvironments on Gondwana: A review", "url": "https://www.sciencedirect.com/science/article/abs/pii/S0031018221005472?via%3Dihub"}], "date_created": "Fri, 31 Dec 2021 00:00:00 GMT", "description": "The focus of this collaborative project is to collect fossil plants, wood, and sedimentary and chemical information from rocks in the Shackleton Glacier (SHK) area of Antarctica. This information will be used to reconstruct plant life and environments during the Permian and Triassic (~295-205 million years ago) in Antarctica. This time interval is important to study as Antarctica experienced a large glaciation in the Permian followed by deglaciation and recovery of plant and animal life, only to be subjected to the largest extinction in Earth history at the end of the Permian. After the extinction events, the climate in Antarctica continued to warm extensively and there were forests growing close to the paleo-South Pole. These ancient environments provide a natural laboratory in which to study the effects of climate change on plant life. The results of this project will advance the field in the areas of changing sedimentary patterns during global cooling and warming, as well as plant evolution during times following glaciation and during global warmth. This project will study the extent of the Gondwana glaciation in the SHK area, the invasion and subsequent flourishing of life following glacial retreat, and the eventual recovery of plant life after Late Permian extinction events. Only in Antarctica does a complete polar-to-near-polar succession occur across this climatic and biologic transition. The SHK area is an important one as it is one of the few regions in the world where the Permian-Triassic boundary (PTB) is exposed within terrestrial rocks. The field and lab work for this project is organized around three hypotheses that address fundamental issues in Earth history, including changes in the extent and diversity of flora during the Permian build up to the Late Paleozoic Ice Age, the possible diachronous nature of the PTB, and that poor fossil preservation during the Early Triassic has given a false impression that Antarctica was devoid of plants during this time. The hypotheses will be tested by integrating various types of paleobotanical approaches with detailed sedimentology, stratigraphy, and geochemistry. Compression floras and petrified wood will be collected (constrained by stratigraphy) both quantitatively and qualitatively in order to obtain biodiversity and abundance data, and as a data source for paleoecological analysis. Standard sedimentologic and stratigraphic analyses will be performed, as well as paleosol analyses, including mineralogic and major- and trace-element geochemistry. Collections will also be made for U-Pb zircon geochronology to better constrain geologic and biotic events through time. Results of the project will be incorporated into educational and outreach activities that are designed to include women and under-represented groups in the excitement of Antarctic earth sciences and paleontology, including workshops in Kansas and Wisconsin, as well as links to science classes during fieldwork.", "east": 170.0, "geometry": "POINT(-170.5 -86)", "instruments": null, "is_usap_dc": true, "keywords": "Shackleton Glacier; SEDIMENTARY ROCKS; GLACIATION", "locations": "Shackleton Glacier", "north": -85.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Isbell, John", "platforms": null, "repo": "Publication", "repositories": "Publication", "science_programs": null, "south": -87.0, "title": "Collaborative Research: Permian and Triassic Icehouse to Greenhouse Paleoenvironments and Paleobotany in the Shackleton Glacier Area, Antarctica", "uid": "p0010287", "west": -151.0}, {"awards": "2039419 Swanger, Kate", "bounds_geometry": "POLYGON((161 -77.3,161.2 -77.3,161.4 -77.3,161.6 -77.3,161.8 -77.3,162 -77.3,162.2 -77.3,162.4 -77.3,162.6 -77.3,162.8 -77.3,163 -77.3,163 -77.35,163 -77.4,163 -77.45,163 -77.5,163 -77.55,163 -77.6,163 -77.65,163 -77.7,163 -77.75,163 -77.8,162.8 -77.8,162.6 -77.8,162.4 -77.8,162.2 -77.8,162 -77.8,161.8 -77.8,161.6 -77.8,161.4 -77.8,161.2 -77.8,161 -77.8,161 -77.75,161 -77.7,161 -77.65,161 -77.6,161 -77.55,161 -77.5,161 -77.45,161 -77.4,161 -77.35,161 -77.3))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 16 Dec 2021 00:00:00 GMT", "description": "The McMurdo Dry Valleys are the largest ice-free region in Antarctica and home to a seasonally active hydrologic system, with streams and saline lakes. Streams are fed by summer meltwater from local glaciers and snowbanks. Therefore, streamflow is tied to summer climate conditions such as air temperatures, ground temperatures, winds, and incoming solar radiation. Based on 50 years of monitoring, summer stream activity has been observed to change, and it likely varied during the geologic past in response to regional climate change and fluctuating glaciers. Thus, deposits from these streams can address questions about past climate, meltwater, and lake level changes in this region. How did meltwater streamflow respond to past climate change? How did streamflow vary during periods of glacial advance and retreat? At what times did large lakes fill many of the valleys and what was their extent? The researchers plan to acquire a record of stream activity for the Dry Valleys that will span the three largest valleys and a time period of about 100,000 years. This record will come from a series of active and ancient alluvial fans that were deposited by streams as they flowed from valley sidewalls onto valley floors. The study will provide a long-term context with which to assess recent observed changes to stream activity and lake levels. The research will be led by two female mid-career investigators and contribute significantly to student research opportunities and education. The research will contribute to graduate and undergraduate education by including students in both field and laboratory research, as well as incorporating data and results into the classroom. The research will be disseminated to K-12 and non-scientific communities through outreach that includes professional development training for K-12 teachers in eastern Massachusetts, development of hands-on activities, visits to K-12 classrooms, and STEM education and literacy activities in North Carolina. The PIs propose to constrain rates of fluvial deposition and periods of increased fluvial activity in the McMurdo Dry Valleys during the Holocene and late Pleistocene. During 50 years of hydrologic monitoring in the Dry Valleys, scientists have observed that streams exhibit significant response to summer conditions. Previous studies of glacial and lacustrine deposits indicate regional glacier advance in the Dry Valleys during recent interglacial periods and high lake levels during and after the Last Glacial Maximum (LGM), with potentially significant low and high stands during the Holocene. However, the geologic record of meltwater activity is poorly constrained. The PIs seek to develop the first spatially-extensive record of stream deposition in the Dry Valleys by analyzing and dating alluvial fans. Given that alluvial fans are deposited by summer meltwater streams in a relatively stable tectonic setting, this record will serve as a proxy of regional summer climate conditions. Meltwater streams are an important component of the regional hydrologic system, connecting glaciers to lakes and affecting ecosystems and soils. A record of fluvial deposition is key to understanding the relationship between past climate change and regional hydrology. The proposed research will include remote- and field-based mapping of alluvial fans, stream channels, and meltwater sources as well as modeling potential incoming solar radiation to the fans and moisture sources during the austral summer. In the field, the PIs will document stratigraphy, collect near-surface sediments from 25 fans across four valleys (Taylor, Pearse, Wright, and Victoria), and collect 2- to 3-m vertical cores of ice-cemented sediments from three alluvial fan complexes. The PIs will then conduct depositional dating of fluvial sands via optically stimulated luminescence, and analyze mineralogy and bulk major element chemistry with X-ray powder diffraction and X-ray fluorescence. From these analyses, the PIs propose to (1) determine the timing of local- to regional-scale periods of high fluvial deposition, (2) calculate depositional rates, and (3) constrain depositional environments and sediment provenance. Given that many of the alluvial fans occur below the hypothesized maximum extents of glacially-dammed lakes in Wright and Victoria valleys, detailed stratigraphy, sediment provenance, and OSL dating of these fans could shed light on ongoing debates regarding the timing and extent of LGM and post-LGM lakes. The work will support a postdoctoral researcher, a PhD student, and many undergraduate and master\u2019s students in cross-disciplinary research that spans stratigraphy, geochemistry, paleoclimatology and physics. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 163.0, "geometry": "POINT(162 -77.55)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; Amd/Us; SEDIMENTS; USA/NSF; AMD; Dry Valleys; USAP-DC", "locations": "Dry Valleys", "north": -77.3, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Swanger, Kate", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -77.8, "title": "Collaborative Research: Holocene and Late Pleistocene Stream Deposition in the McMurdo Dry Valleys, Antarctica as a Proxy for Glacial Meltwater and Paleoclimate", "uid": "p0010285", "west": 161.0}, {"awards": "1744785 Barrett, John", "bounds_geometry": "POLYGON((-180 -77.62,-145.683 -77.62,-111.366 -77.62,-77.049 -77.62,-42.732 -77.62,-8.415 -77.62,25.902 -77.62,60.219 -77.62,94.536 -77.62,128.853 -77.62,163.17 -77.62,163.17 -77.618,163.17 -77.616,163.17 -77.614,163.17 -77.612,163.17 -77.61,163.17 -77.608,163.17 -77.606,163.17 -77.604,163.17 -77.602,163.17 -77.6,128.853 -77.6,94.536 -77.6,60.219 -77.6,25.902 -77.6,-8.415 -77.6,-42.732 -77.6,-77.049 -77.6,-111.366 -77.6,-145.683 -77.6,180 -77.6,178.319 -77.6,176.638 -77.6,174.957 -77.6,173.276 -77.6,171.595 -77.6,169.914 -77.6,168.233 -77.6,166.552 -77.6,164.871 -77.6,163.19 -77.6,163.19 -77.602,163.19 -77.604,163.19 -77.606,163.19 -77.608,163.19 -77.61,163.19 -77.612,163.19 -77.614,163.19 -77.616,163.19 -77.618,163.19 -77.62,164.871 -77.62,166.552 -77.62,168.233 -77.62,169.914 -77.62,171.595 -77.62,173.276 -77.62,174.957 -77.62,176.638 -77.62,178.319 -77.62,-180 -77.62))", "dataset_titles": "McMurdo Dry Valleys LTER: Microbial mat biomass and Normalized Difference Vegetation Index (NDVI) values from Lake Fryxell Basin, Antarctica", "datasets": [{"dataset_uid": "200260", "doi": "doi:10.6073/pasta/9acbbde9abc1e013f8c9fd9c383327f4", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "McMurdo Dry Valleys LTER: Microbial mat biomass and Normalized Difference Vegetation Index (NDVI) values from Lake Fryxell Basin, Antarctica", "url": "https://doi.org/10.6073/pasta/9acbbde9abc1e013f8c9fd9c383327f4"}], "date_created": "Tue, 30 Nov 2021 00:00:00 GMT", "description": "Microbial mats are found throughout the McMurdo Dry Valleys where summer snowmelt provides liquid water that allows these mats to flourish. Researchers have long studied the environmental conditions microbial mats need to grow. Despite these efforts, it has been difficult to develop a broad picture of these unique ecosystems. Recent advances in satellite technology now provide researchers an exciting new tool to study these special Antarctic ecosystems from space using the unique spectral signatures associated with microbial mats. This new technology not only offers the promise that microbial mats can be mapped and studied from space, this research will also help protect these delicate environments from potentially harmful human impacts that can occur when studying them from the ground. This project will use satellite imagery and spectroscopic techniques to identify and map microbial mat communities and relate their properties and distributions to both field and lab-based measurements. This research provides an exciting new tool to help document and understand the distribution of a major component of the Antarctic ecosystem in the McMurdo Dry Valleys. The goal of this project is to establish quantitative relationships between spectral signatures derived from orbit and the physiological status and biogeochemical properties of microbial mat communities in Taylor Valley, Antarctica, as measured by field and laboratory analyses on collected samples. The goal wioll be met by (1) refining atmospheric correction techniques using in situ radiometric rectification to derive accurate surface spectra; (2) collecting multispectral orbital images concurrent with in situ sampling and spectral measurements in the field to ensure temporal comparability; (3) measuring sediment, water, and microbial mat samples for organic and inorganic carbon content, essential biogeochemical nutrients, and chlorophyll-a to determine relevant mat characteristics; and (4) quantitatively associating these laboratory-derived characteristics with field-derived and orbital spectral signatures and parameters. The result of this work will be a more robust quantitative link between the distribution of microbial mat communities and their biogeochemical properties to landscape-scale spectral signatures. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 163.19, "geometry": "POINT(-16.82 -77.61)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; ECOSYSTEM FUNCTIONS; FIELD SURVEYS; USAP-DC; USA/NSF; Taylor Valley; Amd/Us", "locations": "Taylor Valley", "north": -77.6, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Barrett, John; Salvatore, Mark", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "EDI", "repositories": "EDI", "science_programs": null, "south": -77.62, "title": "Collaborative Research: Remote characterization of microbial mats in Taylor Valley, Antarctica through in situ sampling and spectral validation", "uid": "p0010281", "west": 163.17}, {"awards": "1644128 Welten, Kees; 1644094 Caffee, Marc", "bounds_geometry": "POINT(-112.12 -79.48)", "dataset_titles": "WAIS Divide Core 10Be data, 2850-3240 m", "datasets": [{"dataset_uid": "601692", "doi": "10.15784/601692", "keywords": "10Be; Antarctica; Beryllium; Cosmogenic Radionuclides; Ice Core Data; WAIS Divide", "people": "Caffee, Marc; Woodruff, Thomas; Welten, Kees", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Core 10Be data, 2850-3240 m", "url": "https://www.usap-dc.org/view/dataset/601692"}], "date_created": "Mon, 15 Nov 2021 00:00:00 GMT", "description": "Welten/1644128 This award supports a project to use existing samples from the West Antarctic Ice Sheet (WAIS) Divide ice core to align its timescale with that of the Greenland ice cores using common chronological markers. The upper 2850 m of the WAIS Divide core, which was drilled to a depth of 3405 m, has been dated with high precision. The timescale of the remaining (bottom) 550 m of the core has larger uncertainties, limiting our understanding of the timing of abrupt climate events in Antarctica relative to those in Greenland during the last ice age. The intellectual merit of this project is to further constrain the relative timing of these abrupt climate events in Greenland and Antarctica to obtain crucial insight into the underlying mechanism. The main objective of this project is to improve the current timescale of the WAIS Divide core from 31,000 to 65,000 years ago by synchronizing this core with the Greenland ice cores using common signals in Beryllium-10, a radioactive isotope of Be that is produced in the atmosphere by cosmic rays and is deposited onto the snow within 1-2 years of its production. The 10Be flux is largely independent of climate signals since its production varies with solar activity and the geomagnetic field. This project will further strengthen collaborations between the PI\u0027s in Berkeley and Purdue with ice core researchers in the US and Europe, involve undergraduate students in many aspects of its research, and continue outreach to under-represented students. The direct ice-to-ice synchronization of the WAIS Divide ice core with the Greenland Ice Core Chronology (GICC05) using cosmogenic 10Be is expected to reduce the uncertainty in the relative timing of more than 20 abrupt climate events in Greenland and Antarctica to a few decades. To achieve this goal the investigators will obtain a continuous high-resolution record of 10Be in the WAIS Divide core from 2850 to 3390 m depth, and compare the obtained 10Be record with existing 10Be records of the Greenland ice cores, including GISP2 and NGRIP. The scientists will separate 10Be from ~1000 ice samples of the WAIS Divide core and measure the 10Be concentration in each sample using accelerator mass spectrometry (AMS). Broader impacts of the 10Be measurements are that they will also provide information on the Laschamp event, a ~2000 year long period of low geomagnetic field strength around 41,000 years ago, and improve the calibration of the 14C dating method for organic samples older than 30,000 years. The broader impacts of the project include (1) the involvement and training of undergraduate students in ice core research and accelerator mass spectrometry measurements, (2) the incorporation of ice core and climate research into ongoing outreach programs at Purdue University and Berkeley SSL, (3) better understanding of abrupt climate changes in the past will improve our ability to predict future climate change, (4) evaluating the possible threat of a future geomagnetic excursion in the next few hundred years. This award does not require support in Antarctica.", "east": -112.12, "geometry": "POINT(-112.12 -79.48)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; LABORATORY; Amd/Us; WAIS Divide; AMD; USAP-DC; DEPTH AT SPECIFIC AGES", "locations": "WAIS Divide", "north": -79.48, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Welten, Kees; Caffee, Marc", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.48, "title": "Synchronizing the WAIS Divide and Greenland Ice Cores from 30-65 ka BP using high-resolution 10Be measurements", "uid": "p0010280", "west": -112.12}, {"awards": "2139002 Huth, Alexander", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Simulations of ice-shelf rifting on Larsen C Ice Shelf", "datasets": [{"dataset_uid": "601718", "doi": "10.15784/601718", "keywords": "Antarctica; Glaciology; Iceberg; Ice Shelf Dynamics; Larsen C Ice Shelf; Model Data; Modeling", "people": "Huth, Alexander", "repository": "USAP-DC", "science_program": null, "title": "Simulations of ice-shelf rifting on Larsen C Ice Shelf", "url": "https://www.usap-dc.org/view/dataset/601718"}], "date_created": "Fri, 05 Nov 2021 00:00:00 GMT", "description": "Icebergs influence climate by controlling how freshwater from ice sheets is distributed into the ocean, where roughly half of ice sheet mass loss is attributed to iceberg calving in the current climate. The freshwater deposited by icebergs as they drift and melt can affect ocean circulation, sea-ice formation, and biological primary productivity. Furthermore, calving of icebergs from ice shelves, the floating extensions of ice sheets, can influence ice sheet evolution and sea-level rise by reducing the resistive stresses provided by ice shelves on the seaward flow of upstream grounded ice. The majority of mass calved from ice shelves occurs in the form of tabular icebergs, which are typically hundreds of meters thick and on the order of tens to hundreds of kilometers in length and width. Tabular calving occurs when full-thickness ice shelf fractures known as rifts propagate to the edges of the ice shelf. These calving events are infrequent, often with decades between events on an individual ice shelf. Changes in tabular calving behavior, i.e., the size and frequency of calving events, can strongly influence climate and ice sheet evolution. However, tabular calving behavior, and how it responds to changes in climate, is neither well understood nor accurately represented in climate models. In this project, a tabular calving parameterization for climate models will be developed. The parameterization will be derived according to data generated from a series of realistic and idealized century-scale tabular calving simulations, which will be performed with a novel ice flow and damage framework that can be applied at the scale of individual ice sheet-ice shelf systems: the CD-MPM-SSA (Continuum Damage Material Point Method for Shelfy-Stream Approximation). During these simulations, the geometry of the ice shelf, mechanical/rheological properties of the ice, and climate forcings such as ocean temperature will be varied to determine the rifting and calving response. The calving parameterization derived from these experiments will be implemented in a Geophysical Fluid Dynamics Laboratory (GFDL) climate model, where it will be coupled with a bonded-particle iceberg model. Then, experiments will be run to study the feedback between changes in iceberg calving behavior and climate. Success of this project will improve our understanding and representation of the ice mass budget, ice sheet evolution, and ocean freshwater fluxes, and will improve projections of climate change and sea-level rise. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; ICEBERGS; AMD; Antarctic Ice Sheet; USA/NSF; GLACIERS/ICE SHEETS; Amd/Us; MODELS", "locations": "Antarctic Ice Sheet", "north": -60.0, "nsf_funding_programs": "Post Doc/Travel", "paleo_time": null, "persons": "Huth, Alex", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "OPP-PRF Calving, Icebergs, and Climate", "uid": "p0010276", "west": -180.0}, {"awards": "2139051 Guitard, Michelle", "bounds_geometry": "POLYGON((-45 -57,-44.3 -57,-43.6 -57,-42.9 -57,-42.2 -57,-41.5 -57,-40.8 -57,-40.1 -57,-39.4 -57,-38.7 -57,-38 -57,-38 -57.5,-38 -58,-38 -58.5,-38 -59,-38 -59.5,-38 -60,-38 -60.5,-38 -61,-38 -61.5,-38 -62,-38.7 -62,-39.4 -62,-40.1 -62,-40.8 -62,-41.5 -62,-42.2 -62,-42.9 -62,-43.6 -62,-44.3 -62,-45 -62,-45 -61.5,-45 -61,-45 -60.5,-45 -60,-45 -59.5,-45 -59,-45 -58.5,-45 -58,-45 -57.5,-45 -57))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 05 Nov 2021 00:00:00 GMT", "description": "Antarctic Ice Sheet stability remains a large uncertainty in predicting future sea level. Presently, the greatest ice mass loss is observed in locations where relatively warm water comes into contact with glaciers and ice shelves, melting them from below. This has led researchers to hypothesize that the interactions that occur between the ocean and the ice are important for determining ice sheet stability and that increased warm water presence will accelerate Antarctic ice mass loss and lead to greater sea level rise in the coming century. To better predict future ice sheet behavior, it is critical to understand past ice-ocean interactions around Antarctica, especially during warm periods and at times when Earth\u2019s climate was undergoing major changes. Past Antarctic ice mass and environmental conditions like ocean temperature can be reconstructed using sediments, which capture an environmental record as they accumulate on the ocean floor. By looking at sediment composition and by analyzing geochemical signatures within the sediment, it is possible to piece together a record of climate change on hundred- to million-year timescales. This project will reconstruct upper ocean temperatures and Antarctic ice retreat/advance cycles from 2.6 to 0.7 million years ago, which encompasses the Mid-Pleistocene Transition, a time in Earth\u2019s history that marks the shift from 41-thousand year glacial cycles to 100-thousand year glacial cycles. A record will be generated from existing sediment cores collected from the Scotia Sea during International Ocean Discovery Program Expedition 382. The Mid-Pleistocene Transition (MPT; ~1.25\u20130.7 Ma) marks the shift from glacial-interglacial cycles paced by obliquity (~41 kyr cycles) to those paced by eccentricity (~100-kyr cycles). This transition occurred despite little variation in Earth\u2019s orbital parameters, suggesting a role for internal climate feedbacks. The MPT was accompanied by decreasing atmospheric pCO2, increasing deep ocean carbon storage, and changes in deep water formation and distribution, all of which are linked to Antarctic margin atmosphere-ice-ocean interactions. However, Pleistocene records that document such interactions are rarely preserved on the shelf due to repeated Antarctic Ice Sheet (AIS) advance; instead, they are preserved in deep Southern Ocean basins. This project takes advantage of the excellent preservation and recovery of continuous Pleistocene sediment sequences collected from the Scotia Sea during International Ocean Discovery Program Expedition 382 to test the following hypotheses: 1) Southern Ocean upper ocean temperatures vary on orbital timescales during the early to middle Pleistocene (2.6\u20130.7 Ma), and 2) Southern Ocean temperatures co-vary with AIS advance/retreat cycles. Paleotemperatures will be reconstructed using the TetraEther indeX of 86 carbons (TEX86), a proxy that utilizes marine archaeal biomarkers. The Scotia Sea TEX86-based paleotemperature record will be compared to records of AIS variability, including ice rafted debris. Expedition 382 records will be compared to orbitally paced climatic time series and the benthic oxygen isotope record of global ice volume and bottom water temperature to determine if a correlation exists between upper ocean temperature, AIS retreat/advance, and orbital climate forcing. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -38.0, "geometry": "POINT(-41.5 -59.5)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; SEA SURFACE TEMPERATURE; USAP-DC; USA/NSF; LABORATORY; AMD; Scotia Sea", "locations": "Scotia Sea", "north": -57.0, "nsf_funding_programs": "Post Doc/Travel", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Michelle, Guitard", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -62.0, "title": "Investigating the influence of ocean temperature on Antarctic Ice Sheet evolution during the early to middle Pleistocene ", "uid": "p0010275", "west": -45.0}, {"awards": "1744949 Campbell, Seth; 1744927 Mitrovica, Jerry; 1745015 Zimmerer, Matthew", "bounds_geometry": "POLYGON((-145 -74,-141.6 -74,-138.2 -74,-134.8 -74,-131.4 -74,-128 -74,-124.6 -74,-121.2 -74,-117.8 -74,-114.4 -74,-111 -74,-111 -74.6,-111 -75.2,-111 -75.8,-111 -76.4,-111 -77,-111 -77.6,-111 -78.2,-111 -78.8,-111 -79.4,-111 -80,-114.4 -80,-117.8 -80,-121.2 -80,-124.6 -80,-128 -80,-131.4 -80,-134.8 -80,-138.2 -80,-141.6 -80,-145 -80,-145 -79.4,-145 -78.8,-145 -78.2,-145 -77.6,-145 -77,-145 -76.4,-145 -75.8,-145 -75.2,-145 -74.6,-145 -74))", "dataset_titles": "Mt. Waesche ground-penetrating radar data 2018-2019", "datasets": [{"dataset_uid": "601490", "doi": "10.15784/601490", "keywords": "Antarctica; GPR; Mt. Waesche", "people": "Braddock, Scott", "repository": "USAP-DC", "science_program": null, "title": "Mt. Waesche ground-penetrating radar data 2018-2019", "url": "https://www.usap-dc.org/view/dataset/601490"}], "date_created": "Fri, 22 Oct 2021 00:00:00 GMT", "description": "This study will collect a novel dataset to determine how the West Antarctic Ice Sheet (WAIS) responded to a warmer climate during the last interglacial period (~125,000 years ago) by reconstructing the glacial history at the Mt. Waesche volcano. Reconstructing WAIS geometry when the ice sheet was smaller than present is difficult and data are lacking because the evidence lies beneath the present ice sheet. This study will drill through the ice sheet and recover bedrock that can be analyzed for its surface exposure history to help determine when the surface became overridden by the ice sheet. This study will provide constraints on the past maximum and minimum spatial extent of WAIS during the last glacial-interglacial cycle. Understanding the geometry of a reduced WAIS during intervals when the planet was warmer than present may provide a possible analogue for future environmental conditions given predicted temperature trends. A reduction of WAIS results in rising sea levels which threatens coastal communities across the globe. The data will help improve numerical ice sheet models to better predict WAIS response to current and future climate trends. The project supports a teacher educational workshop and the training of graduate and undergraduate students. The goal of this project is to obtain rock samples from beneath the WAIS through shallow (\u003c80 m) drilling at Mt. Waesche, a volcano in Marie Byrd Land, near an ice dome of WAIS (2000 m elevation). The lithologies of lava flows exposed on the flank of the volcano are well-suited for cosmogenic 3He and 36Cl as well as 40Ar/39Ar measurements which will establish eruption and exposure age. Existing 40Ar/39Ar data indicate basaltic lava flows on the volcano flank as young as 350 ka. Thus, measured cosmogenic nuclides measured in rock cores from beneath the ice surface will be indicative of relatively recent exposure during periods of reduced ice elevation, most likely, during the last interglacial. The first field season is focused on identifying appropriate locations for drilling and a ground penetrating radar (GPR) survey of the subglacial topography \u003c100m under the blue ice area. Mapping and dating the adjacent exposed lava flows will allow tracing of lava flows of known age and composition below the ice margin that will be targeted for drilling the following year. The second field season activities include drilling 8 boreholes (two transects) through blue ice with the Winkie drill near the ice margin to 80 m depth to obtain rock cores from the sub-ice lava flows. 3He exposure ages will constrain the duration and minimum extent of past surface lowering of the WAIS in Marie Byrd Land. Deeper GPR imaging (up to 700 m) will hope to reveal additional evidence of lava/ice interactions that would independently place constraints on lower ice levels during past eruptions. Results from this study will be compared with the modeled ice elevation histories at Mt. Waesche to validate ice sheet modeling efforts. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -111.0, "geometry": "POINT(-128 -77)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; Mt. Waesche; USA/NSF; SNOW/ICE; GLACIER THICKNESS/ICE SHEET THICKNESS; PALEOCLIMATE RECONSTRUCTIONS; LABORATORY; LAVA COMPOSITION/TEXTURE; Amd/Us; AMD; USAP-DC", "locations": "Mt. Waesche", "north": -74.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Braddock, Scott; Campbell, Seth; Ackert, Robert; Zimmerer, Matthew; Mitrovica, Jerry", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.0, "title": "Collaborative Research: Constraining West Antarctic Ice Sheet elevation during the last interglacial", "uid": "p0010272", "west": -145.0}, {"awards": "1326541 Oliver, Matthew; 1324313 Winsor, Peter; 1327248 Kohut, Josh; 1331681 Bernard, Kim; 1326167 Fraser, William", "bounds_geometry": "POLYGON((-65 -62,-64.5 -62,-64 -62,-63.5 -62,-63 -62,-62.5 -62,-62 -62,-61.5 -62,-61 -62,-60.5 -62,-60 -62,-60 -62.3,-60 -62.6,-60 -62.9,-60 -63.2,-60 -63.5,-60 -63.8,-60 -64.1,-60 -64.4,-60 -64.7,-60 -65,-60.5 -65,-61 -65,-61.5 -65,-62 -65,-62.5 -65,-63 -65,-63.5 -65,-64 -65,-64.5 -65,-65 -65,-65 -64.7,-65 -64.4,-65 -64.1,-65 -63.8,-65 -63.5,-65 -63.2,-65 -62.9,-65 -62.6,-65 -62.3,-65 -62))", "dataset_titles": "Expedition Data; Expedition data of LMG1509", "datasets": [{"dataset_uid": "001378", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1509"}, {"dataset_uid": "002730", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1509", "url": "https://www.rvdata.us/search/cruise/LMG1509"}], "date_created": "Mon, 27 Sep 2021 00:00:00 GMT", "description": "The application of innovative ocean observing and animal telemetry technology over Palmer Deep (Western Antarctic Peninsula; WAP) is leading to new understanding, and also to many new questions related to polar ecosystem processes and their control by bio-physical interactions in the polar environment. This multi-platform field study will investigate the impact of coastal physical processes (e.g. tides, currents, upwelling events, sea-ice) on Ad\u00e9lie penguin foraging ecology in the vicinity of Palmer Deep, off Anvers Island, WAP. Guided by real-time surface convergence and divergences based on remotely sensed surface current maps derived from a coastal network of High Frequency Radars (HFRs), a multidisciplinary research team will adaptively sample the distribution of phytoplankton and zooplankton, which influence Ad\u00e9lie penguin foraging ecology, to understand how local oceanographic processes structure the ecosystem. Core educational objectives of this proposal are to increase awareness and understanding of (i) global climate change, (ii) the unique WAP ecosystem, (iii) innovative methods and technologies used by the researchers, and (iv) careers in ocean sciences, through interactive interviews with scientists, students, and technicians, during the field work. These activities will be directed towards instructional programming for K-16 students and their teachers. Researchers and educators will conduct formative and summative evaluation to improve the educational program and measure its impacts respectively.", "east": -60.0, "geometry": "POINT(-62.5 -63.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "R/V LMG; Palmer Station; PELAGIC; USA/NSF; Amd/Us; USAP-DC; AMD; LMG1509", "locations": "Palmer Station", "north": -62.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Bernard, Kim; Kohut, Josh; Oliver, Matthew; Fraser, William; Winsor, Peter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.0, "title": "Collaborative Research: Impacts of Local Oceanographic Processes on Adelie Penguin Foraging Ecology Over Palmer Deep", "uid": "p0010268", "west": -65.0}, {"awards": "1656126 Koppers, Anthony", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "OSU Marine and Geology Repository", "datasets": [{"dataset_uid": "200245", "doi": null, "keywords": null, "people": null, "repository": "OSU-MGR", "science_program": null, "title": "OSU Marine and Geology Repository", "url": "https://osu-mgr.org/"}], "date_created": "Fri, 10 Sep 2021 00:00:00 GMT", "description": "Nontechnical Description The Antarctic core collection, curated at Florida State University since 1963, is one of the world?s premier marine geology collections. Consisting of irreplaceable sediment cores, this archive has greatly advanced the understanding of the Earth system, past and present, and will remain critical to future studies of the Earth. Given Oregon State University?s (OSU) leadership in marine research and long track record providing state-of-the-art curatorial services through the OSU Marine and Geology Repository, this facility will provide world-class curatorial stewardship of the Antarctic core collection for decades to come. The Antarctic core collection will be co-located and co-managed with the current OSU collection in a single modern repository and analytical facility. The combined collection will contain more than 30 km of refrigerated sediment core from the world?s oceans and will be housed in a new 33,000 SFT facility purchased in 2009 by OSU and upgraded in 2016-17. The total refrigerated space can hold both collections comfortably and has at least five decades of expansion space. The co-location and co-management of these two collections, paired with a modern suite of analytical facilities, will lead to greater collaboration, cross-pollination of ideas, and availability of enhanced technical services and capabilities for a growing user group that increasingly relies on marine sediments. The facility will employ a comprehensive community interaction plan that takes advantage of the new OSU Marine and Geology Repository building with a 32-person seminar room, its large 1,044 square foot core lab, and ten adjoining analytical laboratories, which will provide scientific and experiential learning opportunities for students, the general public, and the Earth Sciences research community. The facility will organize small group meetings, sampling parties and summer schools that will complement ongoing support for teaching, training and learning through the use of the repository in graduate, undergraduate, and K-12 classes and Research Experience for Undergraduate programs. The repository is open to the general public for tours and presentations, and the data products derived from the facility will be disseminated via the repository website at http://osu-mgr.org/ and other national databases. Technical Description The Antarctic and the Southern Ocean National Collection of Rock and Sediment Cores currently housed at Florida State University will be relocated to Oregon State University (OSU) and housed along with the OSU Marine and Geology Repository. Oregon State University investigators will co-manage the Antarctic core collection and the Marine and Geology Repository as a single modern repository and analytical facility. The combined collection will be housed a new 33,000 square foot building with refrigerated space that can hold both collections with approximately five decades of expansion space. The co-location and co-management of these two collections offers unique curatorial synergies, cost savings, and improved capabilities to support both the research and educational needs of a wider marine and Antarctic communities. The facility will house a 32-person seminar room, a large 1,044 square foot core lab that allows layout, inspection and examination of cores, and adjoining analytical laboratories that will provide quantitative analysis as well as experiential learning opportunities for students.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS", "is_usap_dc": true, "keywords": "Dredge Samples; MARINE SEDIMENTS; Amd/Us; AMD; SHIPS; USAP-DC; Antarctica; USA/NSF; Sediment Core", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Koppers, Anthony; Stoner, Joseph", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "OSU-MGR", "repositories": "OSU-MGR", "science_programs": null, "south": -90.0, "title": "Curatorial Stewardship of the Antarctic and the Southern Ocean National Collection of Rock and Sediment Cores at the OSU Marine and Geology Repository", "uid": "p0010262", "west": -180.0}, {"awards": "2020664 Vazquez-Medina, Jose Pablo; 2020706 Hindle, Allyson", "bounds_geometry": "POLYGON((164 -77.2,164.3 -77.2,164.6 -77.2,164.9 -77.2,165.2 -77.2,165.5 -77.2,165.8 -77.2,166.1 -77.2,166.4 -77.2,166.7 -77.2,167 -77.2,167 -77.265,167 -77.33,167 -77.395,167 -77.46,167 -77.525,167 -77.59,167 -77.655,167 -77.72,167 -77.785,167 -77.85,166.7 -77.85,166.4 -77.85,166.1 -77.85,165.8 -77.85,165.5 -77.85,165.2 -77.85,164.9 -77.85,164.6 -77.85,164.3 -77.85,164 -77.85,164 -77.785,164 -77.72,164 -77.655,164 -77.59,164 -77.525,164 -77.46,164 -77.395,164 -77.33,164 -77.265,164 -77.2))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 09 Sep 2021 00:00:00 GMT", "description": "This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). Part I: Non-technical description: The Weddell seal is an iconic Antarctic species and a superb diver, swimming down to 2,000 feet and staying underwater for up to 45 minutes. However, as for any mammal, the low oxygen concentrations in the blood during diving and the recovery once back at the surface are challenges that need to be overcome making their diving ability something unique that has fascinated scientists for decades. This research project will evaluate the underlying processes in Weddell seal\u2019s physiology that protects this species from the consequences of diving. The work will combine laboratory experiments where cells that line the blood vessels will be exposed to conditions of low oxygen, similar to those that will be measured in diving seals in Antarctica. The investigarors will test a new idea that several short-term dives, performed before a long dive, allows seals to condition themselves. Measurements on the chemical compounds released to the blood during dives, combined with experiments on the genes that regulate them will provide clues on the biochemical pathways that help the seals tolerate these extreme conditions. The project allows for documentation of individual seal dives and provisioning of such information to the broader science community that seeks to study these seals, educating graduate and undergraduate students and a post-doctoral researcher and producing a science-outreach comic book for middle-school students to illustrate the project\u0027s science activities, goals and outcomes. Part II: Technical description: The Weddell seal is a champion diver with high natural tolerance for low blood oxygen concentration (hypoxemia) and inadequate blood supply (ischemia). The processes unique to this species protects their tissues from inflammation and oxidative stress observed in other mammalian tissues exposed to such physiological conditions. This project aims to understand the signatures of the processes that protect seals from inflammation and oxidant stress, using molecular, cellular and metabolic tools. Repetitive short dives before long ones are hypothesized to precondition seal tissues and activate the protective processes. The new aspect of this work is the study of endothelial cells, which sense changes in oxygen and blood flow, providing a link between breath-holding and cellular function. The approach is one of laboratory experiments combined with 2-years of field work in an ice camp off McMurdo Station in Antarctica. The study is structured by three main objectives: 1) laboratory experiments with arterial endothelial cells exposed to changes in oxygen and flow to identify molecular pathways responsible for tolerance of hypoxia and ischemia using several physiological, biochemical and genomic tools including CRSPR/Cas9 knochout and knockdown approaches. 2) Metabolomic analyses of blood metabolites produced by seals during long dives. And 3) Metabolomic and genomic determinations of seal physiology during short dives hypothesized to pre-condition tolerance responses. In the field, blood samples will be taken after seals dive in an isolated ice hole and its diving performance recorded. It is expected that the blood will contain metabolites that can be related to molecular pathways identified in lab experiments. Expert collaborators will provide field support, with the ice camp, dive hole for the seals, and telemetry associated with the seals\u2019 dives. The project builds upon previous NSF-funded projects where the seal genome and cellular resources were produced. Undergraduate researchers will be recruited from institutional programs with a track record of attracting underrepresented minorities and a minority-serving institution. To further increase polar literacy training and educational impacts, the field team will include a blog where field experiences are shared and comic book preparation with an artist designed for K-12 students and public outreach. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 167.0, "geometry": "POINT(165.5 -77.525)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; USA/NSF; AMD; MAMMALS; McMurdo Sound; Amd/Us", "locations": "McMurdo Sound", "north": -77.2, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Hindle, Allyson", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -77.85, "title": "Collaborative Research: Role of Endothelial Cell Activation in Hypoxia Tolerance of an Elite Diver, the Weddell Seal", "uid": "p0010257", "west": 164.0}, {"awards": "2039432 Grapenthin, Ronni", "bounds_geometry": "POLYGON((165.5 -77.1,165.91 -77.1,166.32 -77.1,166.73 -77.1,167.14 -77.1,167.55 -77.1,167.96 -77.1,168.37 -77.1,168.78 -77.1,169.19 -77.1,169.6 -77.1,169.6 -77.18,169.6 -77.26,169.6 -77.34,169.6 -77.42,169.6 -77.5,169.6 -77.58,169.6 -77.66,169.6 -77.74,169.6 -77.82,169.6 -77.9,169.19 -77.9,168.78 -77.9,168.37 -77.9,167.96 -77.9,167.55 -77.9,167.14 -77.9,166.73 -77.9,166.32 -77.9,165.91 -77.9,165.5 -77.9,165.5 -77.82,165.5 -77.74,165.5 -77.66,165.5 -77.58,165.5 -77.5,165.5 -77.42,165.5 -77.34,165.5 -77.26,165.5 -77.18,165.5 -77.1))", "dataset_titles": "Erebus GPS timeseries ", "datasets": [{"dataset_uid": "601471", "doi": "10.15784/601471", "keywords": "Antarctica; GPS; Mount Erebus; Ross Island", "people": "Grapenthin, Ronni", "repository": "USAP-DC", "science_program": null, "title": "Erebus GPS timeseries ", "url": "https://www.usap-dc.org/view/dataset/601471"}], "date_created": "Fri, 03 Sep 2021 00:00:00 GMT", "description": "Nontechnical Abstract Mount Erebus volcano on Ross Island, Antarctica, is the southernmost active volcano on the planet. It provides a natural laboratory to study a volcanic system that has been in a continuous state of activity with a persistent lava lake over at least the last 40 years. Worldwide only four other volcanoes with such long-lived lava lakes exist: Erta Ale, Ethiopia; Kilauea, Hawaii; Nyiragongo, Congo; and Ambrym, Vanuatu. These volcanoes are a rare anomaly that provide a window into the underlying magmatic system and behavior. Erebus is of particular interest as it cycles through phases of very explosive activity every 20 thousand years. This project will investigate interactions between the magmatic system, the rift it is located in, and the impact of the gravitational load the volcano imposes on the underlying crust and its own magmatic system. Possible interactions between these factors may explain the changes in activity. The project will analyze geophysical data that have been collected at Erebus over at least the last two decades. The results of this work will be available to the public and scientific community and inform geodynamic models in this region. The project funds an early-career scientist and a graduate student at New Mexico Tech and contributes to the development of the next generation of scientists. Technical Abstract The proposed work targets scientific questions recently formulated by the community during the 2016 NSF-sponsored Scientific Drivers and Future of Mount Erebus Volcano Observatory workshop. The location and geometry of the magmatic plumbing from vent to lower crust system remain poorly constrained, particularly below 1 km depth. The style and causes for changes in volcanic and magmatic activity over the short term (minutes to hours) and on the decadal scale remains enigmatic. Two decades of campaign and continuous GPS data on Ross Island will inform about the longer term dynamics of both, Ross Island growing within the Terror Rift, and Erebus? deeper magmatic system. This project will organize and analyze all existing GPS data for Ross Island, and interpret any anomalies in the resulting time series. These activities require organization, consistent processing and interpretation/modeling of the existing ~20 years of GPS data, which include campaign, continuous, and high-rate GPS observations. We will generate these position time series in a consistent local reference frame and make the results, including models of transient deformation available to the community. Volcanic, tectonic and isostatic adjustment related deformation will be modeled to place Erebus in a broad volcano-tectonic framework of West Antarctica. During the data analysis phase, the utility of existing GPS data for reflection studies of snow and sea-level dynamics will also be evaluated.", "east": 169.6, "geometry": "POINT(167.55 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Ross Island; TECTONICS; USAP-DC; Amd/Us; AMD; CRUSTAL MOTION; USA/NSF; FIELD SURVEYS", "locations": "Ross Island", "north": -77.1, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Instrumentation and Facilities", "paleo_time": null, "persons": "Grapenthin, Ronni", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Collaborative Research: Multi-Parameter Geophysical Constraints on Volcano Dynamics of Mt. Erebus and Ross Island, Antarctica", "uid": "p0010255", "west": 165.5}, {"awards": "1542936 Goehring, Brent; 1542976 Balco, Gregory", "bounds_geometry": "POLYGON((-145.7 -64.195,-113.988 -64.195,-82.276 -64.195,-50.564 -64.195,-18.852 -64.195,12.86 -64.195,44.572 -64.195,76.284 -64.195,107.996 -64.195,139.708 -64.195,171.42 -64.195,171.42 -66.2096,171.42 -68.2242,171.42 -70.2388,171.42 -72.2534,171.42 -74.268,171.42 -76.2826,171.42 -78.2972,171.42 -80.3118,171.42 -82.3264,171.42 -84.341,139.708 -84.341,107.996 -84.341,76.284 -84.341,44.572 -84.341,12.86 -84.341,-18.852 -84.341,-50.564 -84.341,-82.276 -84.341,-113.988 -84.341,-145.7 -84.341,-145.7 -82.3264,-145.7 -80.3118,-145.7 -78.2972,-145.7 -76.2826,-145.7 -74.268,-145.7 -72.2534,-145.7 -70.2388,-145.7 -68.2242,-145.7 -66.2096,-145.7 -64.195))", "dataset_titles": "Interface for viewing observational data related to exposure ages measurements and calculated geologic ages derived therefrom", "datasets": [{"dataset_uid": "200199", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Interface for viewing observational data related to exposure ages measurements and calculated geologic ages derived therefrom", "url": "https://version2.ice-d.org/antarctica/nsf/"}], "date_created": "Fri, 03 Sep 2021 00:00:00 GMT", "description": "The overall goal of this project is to determine the effect of past changes in the size of the Antarctic Ice Sheet on global sea level. At the peak of the last ice age 25,000 years ago, sea level was 120 meters (400 feet) lower than it is at present because water that is now part of the ocean was instead part of expanded glaciers and ice sheets in North America, Eurasia, and Antarctica. Between then and now, melting and retreat of this land ice caused sea level to rise. In this project, we aim to improve our understanding of how changes in the size of the Antarctic Ice Sheet contributed to this process. The overall strategy to accomplish this involves (i) visiting areas in Antarctica that are not now covered by ice; (ii) looking for geological evidence, specifically rock surface and sediment deposits, that indicates that these areas were covered by thicker ice in the past; and (iii) determining the age of these geological surfaces and deposits. This project addresses the final part of this strategy -- determining the age of Antarctic glacial rock surfaces or sediment deposits -- using a relatively new technique that involves measuring trace elements in rock surfaces that are produced by cosmic-ray bombardment after the rock surfaces are exposed by ice retreat. By applying this method to rock samples collected in previous visits to Antarctica, the timing of past expansion and contraction of the ice sheet can be determined. The main scientific outcomes expected from this project are (i) improved understanding of how Antarctic Ice Sheet changes contributed to past global sea level rise; and (ii) improved understanding of modern observed Antarctic Ice Sheet changes in a longer-term context. This second outcome will potentially improve predictions of future ice sheet behavior. Other outcomes of the project include training of individual undergraduate and graduate students, as well as the development of a new course on sea level change to be taught at Tulane University in New Orleans, a city that is being affected by sea level change today. This project will use measurements of in-situ-produced cosmogenic carbon-14 in quartz from existing samples collected at several sites in Antarctica to resolve major ambiguities in existing Last Glacial Maximum to present ice sheet reconstructions. This project is important because of the critical nature of accurate reconstructions of ice sheet change in constraining reconstructions of past sea level change. Although carbon-14 is most commonly exploited as a geochronometer through its production in the upper atmosphere and incorporation into organic materials, it is also produced within the crystal lattice of rocks and minerals that are exposed to the cosmic-ray flux at the Earth\u0027s surface. In this latter case, its concentration is proportional to the duration of surface exposure, and measurements of in-situ-produced carbon-14 can be used to date geological events that form or expose rock surfaces, for example, ice sheet expansion and retreat. Although carbon-14 is one of several trace radionuclides that can be used for this purpose, it is unique among them in that its half-life is short relative to the time scale of glacial-interglacial variations. Thus, in cases where rock surfaces in polar regions have been repeatedly covered and uncovered by ice sheet change during many glacial-interglacial cycles, carbon-14 measurements are uniquely suited to accurately dating the most recent episode of ice sheet advance and retreat. We aim to use this property to improve our understanding of Antarctic Ice Sheet change at a number of critically located sites at which other surface exposure dating methods have yielded ambiguous results. Geographically, these are focused in the Weddell Sea embayment of Antarctica, which is an area where the geometry of the Antarctic continent potentially permits large glacial-interglacial changes in ice volume but where existing geologic records of ice sheet change are particularly ambiguous. In addition, in-situ carbon-14 measurements, applied where independently constrained deglaciation chronologies already exist, can potentially allow us to date the last period of ice sheet advance as well as the most recent retreat.", "east": 171.42, "geometry": "POINT(12.86 -74.268)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; Cosmogenic Dating; GLACIER THICKNESS/ICE SHEET THICKNESS; AMD; USAP-DC; GLACIER ELEVATION/ICE SHEET ELEVATION; GLACIERS/ICE SHEETS; Carbon-14; USA/NSF; Weddell Sea Embayment; LABORATORY; FIELD SURVEYS; GLACIATION", "locations": "Weddell Sea Embayment", "north": -64.195, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Goehring, Brent; Balco, Gregory", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "ICE-D", "repositories": "ICE-D", "science_programs": null, "south": -84.341, "title": "COLLABORATIVE RESEARCH: Resolving Ambiguous Exposure-Age Chronologies of Antarctic Deglaciation with Measurements of In-Situ-Produced Cosmogenic Carbon-14", "uid": "p0010254", "west": -145.7}, {"awards": "0838843 Kurbatov, Andrei; 1745006 Brook, Edward J.; 1744993 Higgins, John; 1744832 Severinghaus, Jeffrey; 1745007 Mayewski, Paul", "bounds_geometry": "POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.719998,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.7,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.673336,159.16667 -76.66667))", "dataset_titles": "Allan Hills 2022-23 Shallow Ice Core Field Report; Allan Hills CMC3 ice core d18Oatm, d15N, dO2/N2, dAr/N2, d40/36Ar, d40/38Ar 2021 \u0026 2022; Allan Hills Stable Water Isotopes; CO2 and CH4 from Allan Hills ice cores ALHIC1901, 1902, and 1903; Heavy noble gases (Ar/Xe/Kr) from ALHIC1901, 1902, and 1903; I-165-M GPR Field Report 2019-2020; MOT data (Xe/Kr) from Allan Hills ice cores ALHIC1901, 1902, and 1903; Snapshot record of CO2 and CH4 from the Allan Hills, Antarctica, ranging from 400,000 to 3 million years old", "datasets": [{"dataset_uid": "601696", "doi": "10.15784/601696", "keywords": "Allan Hills; Antarctica; Ice Core", "people": "Brook, Edward J.; Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills 2022-23 Shallow Ice Core Field Report", "url": "https://www.usap-dc.org/view/dataset/601696"}, {"dataset_uid": "601620", "doi": "10.15784/601620", "keywords": "18O; Allan Hills; Allan Hills Blue Ice; Antarctica; Blue Ice; Delta 15N; Delta 18O; Dole Effect; Firn Thickness; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Chronology; Ice Core Records", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills CMC3 ice core d18Oatm, d15N, dO2/N2, dAr/N2, d40/36Ar, d40/38Ar 2021 \u0026 2022", "url": "https://www.usap-dc.org/view/dataset/601620"}, {"dataset_uid": "601896", "doi": "10.15784/601896", "keywords": "Allan Hills; Antarctica; Ch4; CO2; Cryosphere; Glaciology; Glaciology; Ice Core Data; Ice Core Records", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "CO2 and CH4 from Allan Hills ice cores ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601896"}, {"dataset_uid": "601895", "doi": "10.15784/601895", "keywords": "Allan Hills; Antarctica; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Noble Gas", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Heavy noble gases (Ar/Xe/Kr) from ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601895"}, {"dataset_uid": "601878", "doi": "10.15784/601878", "keywords": "Allan Hills; Antarctica; Blue Ice; Carbon Dioxide; Cryosphere; Methane", "people": "Shackleton, Sarah; Marks Peterson, Julia; Brook, Edward; Kalk, Michael; Severinghaus, Jeffrey P.; Hishamunda, Valens", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Snapshot record of CO2 and CH4 from the Allan Hills, Antarctica, ranging from 400,000 to 3 million years old", "url": "https://www.usap-dc.org/view/dataset/601878"}, {"dataset_uid": "609541", "doi": "10.7265/N5NP22DF", "keywords": "Allan Hills; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Isotope", "people": "Kurbatov, Andrei V.; Introne, Douglas; Mayewski, Paul A.; Spaulding, Nicole", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills Stable Water Isotopes", "url": "https://www.usap-dc.org/view/dataset/609541"}, {"dataset_uid": "601669", "doi": "10.15784/601669", "keywords": "Allan Hills; Antarctica; GPR; Ice Core; Report", "people": "Nesbitt, Ian; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "I-165-M GPR Field Report 2019-2020", "url": "https://www.usap-dc.org/view/dataset/601669"}, {"dataset_uid": "601897", "doi": "10.15784/601897", "keywords": "Allan Hills; Antarctica; Cryosphere; Glaciology; Ice Core Data; MOT; Ocean Temperature; Paleoclimate; Xe/Kr", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "MOT data (Xe/Kr) from Allan Hills ice cores ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601897"}], "date_created": "Fri, 27 Aug 2021 00:00:00 GMT", "description": "Bubbles of ancient air trapped in ice cores have been used to directly reconstruct atmospheric composition, and its links to Antarctic and global climate, over the last 800,000 years. Previous field expeditions to the Allan Hills Blue Ice Area, Antarctica, have recovered ice cores that extend as far back as 2.7 million years, by far the oldest polar ice samples yet recovered. These ice cores extend direct observations of atmospheric carbon dioxide and methane concentrations and indirect records of Antarctic climate into a period of Earth\u0027s climate history that represents a plausible geologic analogue to future anthropogenic climate change. The results demonstrate a smaller glacial-interglacial variability of climate and greenhouse gases, and a persistent linkage between Antarctic climate and atmospheric carbon dioxide, between 1 and 2 million years ago. Through this project, the team will return to the Allan Hills Blue Ice Area to recover additional ice cores that date to 2 million years or older. The climate records developed from these ice cores will provide new insights into the chemical composition of the atmosphere and Antarctic climate during times of comparable or even greater warmth than the present day. Project results will help answer questions about issues associated with anthropogenic change including the relationship between temperature change and the mass balance of Antarctic ice and the relationship between atmospheric greenhouse gases and global climate change. Earth has been cooling, and ice sheets expanding, over the past ~52 million years. Superimposed on this cooling are periodic changes in Earth\u0027s climate system driven by variations in the eccentricity, precession, and obliquity of Earth\u0027s orbit around the Sun. Climate reconstructions based on measurements of oxygen isotopes in foraminiferal calcite indicate that, from ~2.8 to 1.2 million years before present (Ma), Earth\u0027s climate system oscillated between glacial and interglacial states every ~40,000 years (the \"40k world\"). Between 1.2-0.8 Ma and continuing to the present, the period of glacial cycles increased in amplitude and lengthened to ~100,000 years (the \"100k world\"). Ice cores preserve ancient air that allows direct reconstructions of atmospheric carbon dioxide and methane. They also archive proxy records of regional climate, mean ocean temperature, global oxygen cycling, and the aridity of nearby continents. Studies of stratigraphically continuous ice cores, extending to 800,000 years before present, have demonstrated that atmospheric carbon dioxide is strongly linked to climate, and it is of great interest to extend the ice-core record into the 40k world. Recent discoveries of well-preserved ice dating from 1.0 to 2.7 Ma from ice cores drilled in the Allan Hills Blue Ice Area (BIA), Antarctica, demonstrate the potential to retrieve stratigraphically discontinuous old ice at shallow depths (\u003c200 meters). This project will continue this work by retrieving new large-volume ice cores and measuring paleoclimate properties in both new and existing ice from the Allan Hills BIA. The experimental objectives are to more fully characterize fundamental properties of the climate system and the carbon cycle during the 40k world. Project results will have implications for Pleistocene climate change, and will provide new constraints on the processes that regulate atmospheric carbon dioxide, methane, and oxygen on geologic timescales. Given a demonstrated age of the ice at the Allan Hills BIA of at least 2 million years, the team will drill additional cores to prospect for ice that predates the initiation of Northern Hemisphere glaciation at the Plio-Pleistocene transition (~2.8 Ma). This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 159.41667, "geometry": "POINT(159.29167 -76.7)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; USAP-DC; SNOW/ICE; Allan Hills; FIELD SURVEYS; USA/NSF; Amd/Us; LABORATORY", "locations": "Allan Hills", "north": -76.66667, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Mayewski, Paul A.; Kurbatov, Andrei V.; Brook, Edward J.; Severinghaus, Jeffrey P.; Higgins, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73333, "title": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area ", "uid": "p0010253", "west": 159.16667}, {"awards": "2046800 Thurber, Andrew", "bounds_geometry": "POLYGON((162 -77,162.6 -77,163.2 -77,163.8 -77,164.4 -77,165 -77,165.6 -77,166.2 -77,166.8 -77,167.4 -77,168 -77,168 -77.1,168 -77.2,168 -77.3,168 -77.4,168 -77.5,168 -77.6,168 -77.7,168 -77.8,168 -77.9,168 -78,167.4 -78,166.8 -78,166.2 -78,165.6 -78,165 -78,164.4 -78,163.8 -78,163.2 -78,162.6 -78,162 -78,162 -77.9,162 -77.8,162 -77.7,162 -77.6,162 -77.5,162 -77.4,162 -77.3,162 -77.2,162 -77.1,162 -77))", "dataset_titles": null, "datasets": null, "date_created": "Sat, 21 Aug 2021 00:00:00 GMT", "description": "Part I: Non-technical description: Methane is one of the more effective atmospheric gases at retaining heat in the lower atmosphere and the earth\u2019s crust contains large quantities of methane. Research that identifies the factors that control methane\u2019s release into the atmosphere is critical to understanding and mitigating climate change. One of the most effective natural processes that inhibits the release of methane from aquatic habitats is a community of bacteria and Archaea (microbes) that use the chemical energy stored in methane, transforming methane into less-climate-sensitive compounds. The amount of methane that may be released in Antarctica is unknown, and it is unclear which microbes consume the methane before it is released from the ocean in Antarctica. This project will study one of the few methane seeps known in Antarctica to advance our understanding of which microbes inhibit the release of methane in marine environments. The research will also identify if methane is a source of energy for other Antarctic organisms. The researchers will analyze the microbial species associated with methane consumption over several years of field and laboratory research based at an Antarctic US station, McMurdo. This project clearly expands the fundamental knowledge of Antarctic systems, biota, and processes outlined as a goal in the Antarctic solicitation. This research communicates and produces educational material for K-12, college, and graduate students to inspire and inform the public about the role Antarctic ecosystems play in the global environment. This project also provides a young professor an opportunity to establish himself as an expert in the field of Antarctic microbial ecology to help solidify his academic career. Part II: Technical description: Microbes act as filter to methane release from the ocean into the atmosphere, where microbial chemosynthetic production harvests the chemical energy stored in this greenhouse gas. In spite of methane reservoirs in Antarctica being as large as Arctic permafrost, we know only a little about the taxa or dominant processes involved in methane consumption in Antarctica. The principal investigator will undertake a genomic and transcriptomic study of microbial communities developed and still developing after initiation of methane seepage in McMurdo Sound. An Antarctic methane seep was discovered at this location in 2012 after it began seeping in 2011. Five years after it began releasing methane, the methane-oxidizing microbial community was underdeveloped and methane was still escaping from the seafloor. This project will be essential in elucidating the response of microbial communities to methane release and identify how methane oxidation occurs within the constraints of the low polar temperatures. This investigation is based on 4 years of field sampling and will establish a time series of the development of cold seep microbial communities in Antarctica. A genome-to-ecosystem approach will establish how the Southern Ocean microbial community is adapted to prevent methane release into the ocean. As methane is an organic carbon source, results from this study will have implications for the Southern Ocean carbon cycle. Two graduate students will be trained and supported with undergraduates participating in laboratory activities. The researcher aims to educate, inspire and communicate about Antarctic methane seeps to a broad community. A mixed-media approach, with videos, art and education in schools will be supported in collaboration with a filmmaker, teachers and a visual artist. Students will be trained in filmmaking and K-12 students from under-represented communities will be introduced to Antarctic science through visual arts. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 168.0, "geometry": "POINT(165 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; USA/NSF; USAP-DC; BACTERIA/ARCHAEA; McMurdo Sound; BENTHIC; FIELD SURVEYS; Amd/Us; ECOSYSTEM FUNCTIONS", "locations": "McMurdo Sound", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Thurber, Andrew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -78.0, "title": "CAREER: Ecosystem Impacts of Microbial Succession and Production at Antarctic Methane Seeps", "uid": "p0010250", "west": 162.0}, {"awards": "1643871 van Gestel, Natasja; 1947562 van Gestel, Natasja", "bounds_geometry": "POLYGON((-65 -64.5,-64.8 -64.5,-64.6 -64.5,-64.4 -64.5,-64.2 -64.5,-64 -64.5,-63.8 -64.5,-63.6 -64.5,-63.4 -64.5,-63.2 -64.5,-63 -64.5,-63 -64.55,-63 -64.6,-63 -64.65,-63 -64.7,-63 -64.75,-63 -64.8,-63 -64.85,-63 -64.9,-63 -64.95,-63 -65,-63.2 -65,-63.4 -65,-63.6 -65,-63.8 -65,-64 -65,-64.2 -65,-64.4 -65,-64.6 -65,-64.8 -65,-65 -65,-65 -64.95,-65 -64.9,-65 -64.85,-65 -64.8,-65 -64.75,-65 -64.7,-65 -64.65,-65 -64.6,-65 -64.55,-65 -64.5))", "dataset_titles": "2022-2023 Palmer Station terrestrial carbon fluxes - field warming experiment; Soil moisture and soil temperature data (0-5 cm) near Palmer Station, Antarctica", "datasets": [{"dataset_uid": "601877", "doi": "10.15784/601877", "keywords": "Antarctica; Antarctic Peninsula; Conductivity; Cryosphere; Palmer Station; Soil; Temperature", "people": "van Gestel, Natasja", "repository": "USAP-DC", "science_program": null, "title": "Soil moisture and soil temperature data (0-5 cm) near Palmer Station, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601877"}, {"dataset_uid": "601853", "doi": "10.15784/601853", "keywords": "Antarctica; CO2; Cryosphere; Field Investigations; Palmer Station", "people": "van Gestel, Natasja", "repository": "USAP-DC", "science_program": null, "title": "2022-2023 Palmer Station terrestrial carbon fluxes - field warming experiment", "url": "https://www.usap-dc.org/view/dataset/601853"}], "date_created": "Sat, 21 Aug 2021 00:00:00 GMT", "description": "Part I: Non-technical description: Earth\u2019s terrestrial ecosystems have the potential to either slow down or hasten the pace of climate change. The direction depends in part on both plant and microbial responses to warming. This study uses Antarctica as a model ecosystem to study the carbon balance of a simplified ecosystem (simplified compared to terrestrial ecosystems elsewhere) in response to a warming treatment. Carbon balance is dictated by sequestered carbon (through photosynthesis) and released carbon (plant and microbial respiration). Hence, to best assess plant and microbial responses to warming, this study uses a plant gradient that starts at the glacier (no plants, only soil microbes) to an old site entirely covered by plants. Experimental warming in the field is achieved by open-top chambers that warm the air and soil inside. The net ecosystem carbon exchange, the net result of sequestered and released carbon, will be measured in warmed and control plots with a state-of-the art gas exchange machine. Laboratory temperature incubation studies will supplement field work to attribute changes in carbon fluxes to individual plant species and soil microbial taxa (i.e., \u201cspecies\u201d). Data from this study will feed into earth system climate change models. The importance of this study will be shared with the broader community through the production of a video series created by an award-winning science media production company, an Antarctic blog, and through interactions with schools in the United States (on-site through Skype and in-person visits). Part II: Technical description: Responses of the carbon balance of terrestrial ecosystems to warming will feed back to the pace of climate change, but the size and direction of this feedback are poorly constrained. Least known are the effects of warming on carbon losses from soil, and clarifying the major microbial controls is an important research frontier. This study uses a series of experiments and observations to investigate microbial, including autotrophic taxa, and plant controls of net ecosystem productivity in response to warming in intact ecosystems. Field warming is achieved using open-top chambers paired with control plots, arrayed along a productivity gradient. Along this gradient, incoming and outgoing carbon fluxes will be measured at the ecosystem-level. The goal is to tie warming-induced shifts in net ecosystem carbon balance to warming effects on soil microbes and plants. The field study will be supplemented with lab temperature incubations. Because soil microbes dominate biogeochemical cycles in Antarctica, a major focus of this study is to determine warming responses of bacteria, fungi and archaea. This is achieved using a cutting-edge stable isotope technique, quantitative stable isotope probing (qSIP) developed by the proposing research team, that can identify the taxa that are active and involved in processing new carbon. This technique can identify individual microbial taxa that are actively participating in biogeochemical cycling of nutrients (through combined use of 18O-water and 13C-bicarbonate) and thus can be distinguished from those that are simply present (cold-preserved). The study further assesses photosynthetic uptake of carbon by the vegetation and their sensitivity to warming. Results will advance research in climate change, plant and soil microbial ecology, and ecosystem modeling. Science communication will be achieved through an informative video series, a daily Antarctic blog, and online- and in-person visits to schools in the United States. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -63.0, "geometry": "POINT(-64 -64.75)", "instruments": null, "is_usap_dc": true, "keywords": "Palmer Station; TERRESTRIAL ECOSYSTEMS; USA/NSF; AMD; Amd/Us; USAP-DC; FIELD SURVEYS", "locations": "Palmer Station", "north": -64.5, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science", "paleo_time": null, "persons": "van Gestel, Natasja", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Antarctica as a Model System for Responses of Terrestrial Carbon Balance to Warming", "uid": "p0010251", "west": -65.0}, {"awards": "1341649 Johnson, Leah; 1740239 Johnson, Leah", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 13 Aug 2021 00:00:00 GMT", "description": "Albatrosses (family Diomedeidae) are among the most threatened of bird species. Of the 22 species that are currently recognized, all are considered at least Threatened or Near-Threatened, and 9 are listed as Endangered or Critically Endangered. Because of the decline in albatross populations and the birds\u0027 role as a top predator in the pelagic ecosystem, it is vitally important to understand the factors affecting the population dynamics of these birds to better inform strategies for conservation and mitigating environmental change. The goal of this project is to answer the question: What are the population consequences of albatross bioenergetics and foraging strategies? The investigators will take a two pronged approach: 1) constructing, parameterizing, and validating an Individual Based Model (IBM) that rests on Dynamic Energy Budget theory and state dependent foraging theory; and 2) undertaking an in-depth meta-analysis of existing individual tracking and life history data from multiple albatross species across successive life stages. This theoretical work will be grounded with a unique and extensive data set on albatrosses provided by collaborator Richard Phillips from the British Antarctic Survey. The IBM approach will incorporate details such as adult energetic state, chick needs and energetics, reproductive stage, and spatial and temporal variation in prey availability within a single framework. This facilitates exploration of emergent patterns, allowing the investigators to explicitly link behavior, energetic, and population dynamics. Bioenergetics constrain a variety of behaviors. A more complete understanding of how individuals use energy can give insight into how behaviors from foraging to breeding and survival, and resulting population attributes, might change with environmental factors, due to anthropogenic and other drivers. This work will further a general understanding of how bioenergetics shapes behavior and drives population level processes, while providing an approach that can be used to guide conservation strategies for endangered populations. The research findings and activities will be made accessible to public audiences through websites and on a blog maintained for the project by a postdoctoral researcher. The project will involve undergraduate and high school researchers in the project, within formal laboratory groups and also through in-classroom presentations and activities. This project also involves outreach to local elementary schools, as the albatross-Antarctic bioenergetics system provides a charismatic and tangible teaching tool, for exploring a complex conservation issue, and demonstrating the utility of quantitative biological research approaches. All project publications will be open access, the resulting open source software will be released to the public, and metadata and analyses will be fully documented and made available through the Knowledge Network for Biodiversity, to promote further collaborative exploration of this system.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "BIRDS; Amd/Us; USAP-DC; AMD; USA/NSF; MODELS; United States Of America", "locations": "United States Of America", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Johnson, Leah; Ryan, Sadie", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Quantifying how Bioenergetics and Foraging Determine Population Dynamics in Threatened Antarctic Albatrosses", "uid": "p0010242", "west": -180.0}, {"awards": "1947453 Hunt, Kathleen; 1927742 Fleming, Alyson; 1927709 Friedlaender, Ari", "bounds_geometry": "POLYGON((150 -60,153 -60,156 -60,159 -60,162 -60,165 -60,168 -60,171 -60,174 -60,177 -60,180 -60,180 -61.5,180 -63,180 -64.5,180 -66,180 -67.5,180 -69,180 -70.5,180 -72,180 -73.5,180 -75,177 -75,174 -75,171 -75,168 -75,165 -75,162 -75,159 -75,156 -75,153 -75,150 -75,150 -73.5,150 -72,150 -70.5,150 -69,150 -67.5,150 -66,150 -64.5,150 -63,150 -61.5,150 -60))", "dataset_titles": "Bulk stable isotope data of blue and fin whales; Hormone meta data for Antarctic blue and fin whales", "datasets": [{"dataset_uid": "601901", "doi": "10.15784/601901", "keywords": "Antarctica; Biota; Cryosphere; Isotope; Southern Ocean; Whales", "people": "Fleming, Alyson; Smith, Malia", "repository": "USAP-DC", "science_program": null, "title": "Bulk stable isotope data of blue and fin whales", "url": "https://www.usap-dc.org/view/dataset/601901"}, {"dataset_uid": "601908", "doi": "10.15784/601908", "keywords": "Antarctica; Biota; Blue Whale; Cryosphere; Fin Whale; Hormones; Oceans; Reproduction; Whales", "people": "Fleming, Alyson; Hunt, Kathleen", "repository": "USAP-DC", "science_program": null, "title": "Hormone meta data for Antarctic blue and fin whales", "url": "https://www.usap-dc.org/view/dataset/601908"}], "date_created": "Tue, 10 Aug 2021 00:00:00 GMT", "description": "Blue and fin whales are the two largest animals on the planet, and the two largest krill predators in the Southern Ocean. Commercial whaling in Antarctic waters started in the early 1900?s, and by the 1970\u0027s whale populations were reduced from thousands to only a few hundred individuals. The absence of data about whale biology and ecology prior to these large population reductions has limited our understanding of how the ecosystem functioned when cetacean populations were more robust. However, an archive of baleen plates from 800 Antarctic blue and fin whales harvested between 1946 and 1948 was recently rediscovered in the Smithsonian\u0027s National Museum of Natural History that will shed insight into historic whale ecology. As baleen grows, it incorporates circulating hormones, and compounds from the whale\u0027s diet, recording continuous biological and oceanographic information across multiple years. This project will apply a suite of modern molecular techniques to these archived specimens to ask how blue and fin whale foraging and reproduction responded to climate variability, changes at the base of the food web, and whaling activities in the early 1940s. By comparison with more modern datasets, these investigations will fill major gaps in understanding of the largest krill predators, their response to disturbance and environmental change, and the impact that commercial whaling has had on the structure and function of the Antarctic marine ecosystem. This project will improve stem education through annual programming for middle and high school girls in partnership with UNCW\u0027s Marine Quest program. Public outreach will occur through partnerships with the Smithsonian and the International Association of Antarctic Tour Operators to deliver emerging research on Antarctic ecosystems and highlight the contemporary relevance and scientific value of museum collections. Examination of past conditions and adaptations of polar biota is fundamental to predictions of future climate change scenarios. The baleen record that will be used in this study forms an ideal experimental platform for studying bottom-up, top-down and anthropogenic impacts on blue and fin whales. This historic baleen archive includes years with strong climate and temperature anomalies allowing the influence of climate variability on predators and the ecosystems that support them to be examined. Additionally, the impact of commercial whaling on whale stress levels will be investigated by comparing years of intensive whaling with the non-whaling years of WWII, both of which are captured in the time series. There are three main approaches to this project. First, bulk stable isotope analysis will be used to examine the trophic dynamics of Antarctic blue and fin whales. Second, compound-specific stable isotope analyses (CSIA-AA) will characterize the biogeochemistry of the base of the Antarctic food web. Finally, analyses of hormone levels in baleen will reveal differences in stress levels and reproductive status of individuals, and inform understanding of cetacean population biology. This project will generate a new public data archive to foster research opportunities across various components of the OPP program, all free from the logistical constraints of Antarctic field work. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(165 -67.5)", "instruments": null, "is_usap_dc": true, "keywords": "ECOSYSTEM FUNCTIONS; PELAGIC; MAMMALS; LABORATORY; AMD; Amd/Us; Southern Ocean; USAP-DC; USA/NSF", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Fleming, Alyson; Friedlaender, Ari; McCarthy, Matthew; Hunt, Kathleen", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -75.0, "title": "Collaborative Research: A New Baseline for Antarctic Blue and Fin Whales", "uid": "p0010240", "west": 150.0}, {"awards": "1745057 Walker, Sally; 1745080 Gillikin, David; 1745064 Perez-Huerta, Alberto", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Analysis of striae groups and interstrial increments from Adamussium colbecki valves from Explorers Cove and Bay of Sails; Annual growth of Adamussium colbecki from Explorers Cove and Bay of Sails; Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores; Nitrogen, carbon, and oxygen isotopes in the shell of the Antarctic scallop Adamussium colbecki as a proxy for sea ice cover in Antarctica.; Stable isotopes of Oxygen and Carbon in Adamissium colbecki from Explorers Cove and Bay of Sails", "datasets": [{"dataset_uid": "601469", "doi": "10.15784/601469", "keywords": "Adamussium Colbecki; Antarctica; McMurdo", "people": "Walker, Sally; Cronin, Kelly", "repository": "USAP-DC", "science_program": null, "title": "Analysis of striae groups and interstrial increments from Adamussium colbecki valves from Explorers Cove and Bay of Sails", "url": "https://www.usap-dc.org/view/dataset/601469"}, {"dataset_uid": "601764", "doi": "10.15784/601764", "keywords": "Adamussium Colbecki; Antarctica; Biota; Carbon Isotopes; Explorers Cove; Nitrogen Isotopes; Oxygen Isotope; Scallop", "people": "Walker, Sally; Camarra, Steve; Verheyden, Anouk; Puhalski, Emma; Gillikin, David; Cronin, Kelly", "repository": "USAP-DC", "science_program": null, "title": "Nitrogen, carbon, and oxygen isotopes in the shell of the Antarctic scallop Adamussium colbecki as a proxy for sea ice cover in Antarctica.", "url": "https://www.usap-dc.org/view/dataset/601764"}, {"dataset_uid": "601761", "doi": "10.15784/601761", "keywords": "Adamussium Colbecki; Antarctica; Bay Of Sails; Carbon; Explorers Cove; McMurdo Sound; Oxygen; Stable Isotopes", "people": "Cronin, Kelly; Perez-Huerta, Alberto; Bowser, Samuel S.; Verheyden, Anouk; Camarra, Steve; Puhalski, Emma; Andrus, Fred; Walker, Sally; Gillikin, David", "repository": "USAP-DC", "science_program": null, "title": "Stable isotopes of Oxygen and Carbon in Adamissium colbecki from Explorers Cove and Bay of Sails", "url": "https://www.usap-dc.org/view/dataset/601761"}, {"dataset_uid": "601468", "doi": "10.15784/601468", "keywords": "Adamussium Colbecki; Antarctica; Growth; McMurdo Sound; Shell Fish", "people": "Cronin, Kelly; Walker, Sally", "repository": "USAP-DC", "science_program": null, "title": "Annual growth of Adamussium colbecki from Explorers Cove and Bay of Sails", "url": "https://www.usap-dc.org/view/dataset/601468"}, {"dataset_uid": "600077", "doi": "10.15784/600077", "keywords": "Antarctica; Biota; Glaciers/ice Sheet; Glaciers/Ice Sheet; McMurdo Sound; Oceans; Sample/collection Description; Sample/Collection Description", "people": "Walker, Sally", "repository": "USAP-DC", "science_program": null, "title": "Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores", "url": "https://www.usap-dc.org/view/dataset/600077"}], "date_created": "Fri, 06 Aug 2021 00:00:00 GMT", "description": "The goal of this project is to discover whether the Antarctic scallop, Adamussium colbecki, provides a guide to sea-ice conditions in nearshore Antarctica today and in the past. Scallops may grow slower and live longer in habitats where sea ice persists for many years, limited by food, compared to habitats where sea ice melts out annually. Also, the chemicals retained in the shell during growth may provide crucial habitat information related to not only changing sea-ice conditions but also the type of food, whether it is recycled from the seafloor or produced by algae blooming when sea ice has melted. Unlocking the ecological imprint captured within the shell of the Antarctic Scallop will increase our understanding of changing sea-ice conditions in Antarctica. Further, because the Antarctic scallop had relatives living at the time when the Antarctic ice sheet first appeared, the scallop shell record may contain information on the stability of the ice sheet and the history of Antarctic shallow seas. Funding will also be integral for training a new generation of geoscientists in fossil and chemical forensics related to shallow sea habitats in Antarctica. Scallops are worldwide in distribution, are integral for structuring marine communities have an extensive fossil record dating to the late Devonian, and are increasingly recognized as important paleoenvironmental proxies because they are generally well preserved in the sediment and rock record. The primary goal of this project is to assess the differences in growth, lifespan, and chemistry (stable isotopes, trace elements) archived in the shell of the Antarctic scallop that may be indicative of two ice states: persistent (multiannual) sea ice at Explorers Cove (EC) and annual sea ice (that melts out every year) at Bay of Sails (BOS), western McMurdo Sound, Antarctica. This project will investigate growth and lifespan proxies (physical and geochemical) and will use high-resolution records of stable oxygen isotopes to determine if a melt-water signal is archived in A. colbecki shells and whether that signal captures the differing ice behavior at two sites (EC versus BOS). Stable isotopes of carbon and nitrogen in association with trace elements will be used to examine subannual productivity spikes indicative of phytoplankton blooms, which are predicted to be more pronounced during open ocean conditions. Small growth increments in the outer calcite layer will be assessed to determine if they represent fortnightly growth, if so, they could provide a high-resolution proxy for monthly environmental processes. Unlocking the environmental archive preserved in A. colbecki shells may prove to be an important proxy for understanding changing sea-ice conditions in Antarctica\u0027s past. Funding will support a Ph.D. student and undergraduates from multiple institutions working on independent research projects. Web content focused on Antarctic marine communities will be designed for museum outreach, reaching thousands of middle-school children each year. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; PALEOCLIMATE RECONSTRUCTIONS; AMD; Dry Valleys; USAP-DC; LABORATORY; USA/NSF", "locations": "Dry Valleys", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Walker, Sally; Gillikin, David; Perez-Huerta, Alberto; Andrus, Fred", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative research: The Antarctic Scallop as Key to Paleoenvironments and Sea Ice Conditions: Understanding the Modern to Predict the Past", "uid": "p0010238", "west": -180.0}, {"awards": "1644155 Twining, Benjamin", "bounds_geometry": "POLYGON((78 -68.4,78.05 -68.4,78.1 -68.4,78.15 -68.4,78.2 -68.4,78.25 -68.4,78.3 -68.4,78.35 -68.4,78.4 -68.4,78.45 -68.4,78.5 -68.4,78.5 -68.419,78.5 -68.438,78.5 -68.457,78.5 -68.476,78.5 -68.495,78.5 -68.514,78.5 -68.533,78.5 -68.552,78.5 -68.571,78.5 -68.59,78.45 -68.59,78.4 -68.59,78.35 -68.59,78.3 -68.59,78.25 -68.59,78.2 -68.59,78.15 -68.59,78.1 -68.59,78.05 -68.59,78 -68.59,78 -68.571,78 -68.552,78 -68.533,78 -68.514,78 -68.495,78 -68.476,78 -68.457,78 -68.438,78 -68.419,78 -68.4))", "dataset_titles": "Flow cytometry enumeration of virus-like and bacteria-like abundance in Ace, Deep, \u0026 Organic lakes (Antarctica)", "datasets": [{"dataset_uid": "601626", "doi": "10.15784/601626", "keywords": "Ace Lake; Antarctica; Deep Lake; Organic Lake; Vestfold Hills", "people": "Martinez-Martinez, Joaquin; Twining, Benjamin", "repository": "USAP-DC", "science_program": null, "title": "Flow cytometry enumeration of virus-like and bacteria-like abundance in Ace, Deep, \u0026 Organic lakes (Antarctica)", "url": "https://www.usap-dc.org/view/dataset/601626"}], "date_created": "Fri, 06 Aug 2021 00:00:00 GMT", "description": "Viruses are prevalent in aquatic environments where they reach up to five hundred million virus particles in a teaspoon of water. Ongoing discovery of viruses seems to confirm current understanding that all forms of life can host and be infected by viruses and that viruses are one of the largest reservoirs of unexplored genetic diversity on Earth. This study aims to better understand interactions between specific viruses and phytoplankton hosts and determine how these viruses may affect different algal groups present within lakes of the Vestfold Hills, Antarctica. These lakes (Ace, Organic and Deep)were originally derived from the ocean and contain a broad range of saline conditions with a similarly broad range of physicochemical characteristics resulting from isolation and low external influence for thousands of years. These natural laboratories allow examination of microbial processes and interactions that would be difficult to characterize elsewhere on earth. The project will generate extensive genomic information that will be made freely available. The project will also leverage the study of viruses and the genomic approaches employed to advance the training of undergraduate students and to engage and foster an understanding of Antarctic science and studies of microbes during a structured informal education program in Maine for the benefit of high school students. By establishing the dynamics and interactions of (primarily) specific dsDNA virus groups in different habitats with different redox conditions throughout seasonal and inter annual cycles the project will learn about the biotic and abiotic factors that influence microbial community dynamics. This project does not require fieldwork in Antarctica. Instead, the investigators will leverage already collected and archived samples from three lakes that have concurrent measures of physicochemical information. Approximately 2 terabyte of Next Generation Sequencing (NGS) (including metagenomes, SSU rRNA amplicons and single virus genomes) will be generated from selected available samples through a Community Science Program (CSP) funded by the Joint Genome Institute. The investigators will employ bioinformatics to interrogate those sequence databases. In particular, they will focus on investigating the presence, phylogeny and co-occurrence of polintons, polinton-like viruses, virophages and large dsDNA phytoplankton viruses as well as of their putative eukaryotic microbial hosts. Bioinformatic analyses will be complemented with quantitative digital PCR and microbial association network analysis to detect specific virus?virus?host interactions from co-occurrence spatial and temporal patterns. Multivariate analysis and network analyses will also be performed to investigate which abiotic factors most closely correlate with phytoplankton and virus abundances, temporal dynamics, and observed virus-phytoplankton associations within the three lakes. The results of this project will improve understanding of phytoplankton and their viruses as vital components of the carbon cycle in Antarctic, marine-derived aquatic environments, and likely in any other aquatic environment. Overall, this work will advance understanding of the genetic underpinnings of adaptations in unique Antarctic environments.", "east": 78.5, "geometry": "POINT(78.25 -68.495)", "instruments": null, "is_usap_dc": true, "keywords": "LABORATORY; AMD; USAP-DC; VIRUSES; Vestfold Hills; Amd/Us; FIELD SURVEYS; USA/NSF", "locations": "Vestfold Hills", "north": -68.4, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Twining, Benjamin; Martinez-Martinez, Joaquin", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -68.59, "title": "Viral control of microbial communities in Antarctic lakes", "uid": "p0010237", "west": 78.0}, {"awards": "1744871 Robinson, Rebecca", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Diatom assemblage from IODP Site U1357; Diatom-bound and bulk sedimentary N isotopes from ODP Site 1098, Western Antarctic Peninsula; Diatom-bound and bulk sedimentary nitrogen isotopes from IODP Site U1357; Dissolved nutrients, cell counts, and nitrogen isotope measurements from Chaetoceros socialis culture experiments; ODP Site 1098 deglacial diatom assemblage; Sediment chemistry of ODP Site 1098", "datasets": [{"dataset_uid": "601818", "doi": "10.15784/601818", "keywords": "Antarctica; Cryosphere; Geochemistry; Sediment; Wilkes Land", "people": "Dove, Isabel", "repository": "USAP-DC", "science_program": null, "title": "Diatom assemblage from IODP Site U1357", "url": "https://www.usap-dc.org/view/dataset/601818"}, {"dataset_uid": "601727", "doi": "10.15784/601727", "keywords": "Antarctica", "people": "Dove, Isabel", "repository": "USAP-DC", "science_program": null, "title": "Dissolved nutrients, cell counts, and nitrogen isotope measurements from Chaetoceros socialis culture experiments", "url": "https://www.usap-dc.org/view/dataset/601727"}, {"dataset_uid": "601816", "doi": "10.15784/601816", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Geochemistry; Sediment", "people": "Dove, Isabel; Jones, Colin; Kelly, Roger; Robinson, Rebecca", "repository": "USAP-DC", "science_program": null, "title": "Diatom-bound and bulk sedimentary N isotopes from ODP Site 1098, Western Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601816"}, {"dataset_uid": "601778", "doi": "10.15784/601778", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere", "people": "Dove, Isabel", "repository": "USAP-DC", "science_program": null, "title": "Sediment chemistry of ODP Site 1098", "url": "https://www.usap-dc.org/view/dataset/601778"}, {"dataset_uid": "601817", "doi": "10.15784/601817", "keywords": "Antarctica; Cryosphere; Wilkes Land", "people": "Dove, Isabel; Kelly, Roger; Robinson, Rebecca", "repository": "USAP-DC", "science_program": null, "title": "Diatom-bound and bulk sedimentary nitrogen isotopes from IODP Site U1357", "url": "https://www.usap-dc.org/view/dataset/601817"}, {"dataset_uid": "601777", "doi": "10.15784/601777", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Sediment Core Data", "people": "Dove, Isabel", "repository": "USAP-DC", "science_program": null, "title": "ODP Site 1098 deglacial diatom assemblage", "url": "https://www.usap-dc.org/view/dataset/601777"}], "date_created": "Wed, 28 Jul 2021 00:00:00 GMT", "description": "The chemical composition of diatom fossils in the Southern Ocean provides information about the environmental history of Antarctica, including sea ice extent, biological production, and ocean nutrient distribution. The sea ice zone is an important habitat for a group of diatoms, largely from the genus Chaetoceros, that have a unique life cycle stage under environmental stress, when they produce a structure called a resting spore. Resting spores are meant to reseed the surface ocean when conditions are more favorable. The production of these heavy resting spores tends to remove significant amounts of carbon and silicon, essential nutrients, out of the surface ocean. As a result, this group has the potential to remove carbon from the surface ocean and can impact the sedimentary record scientists use to reconstruct environmental change. This project explores the role of resting spores in the sedimentary record using the nitrogen isotopic signature of these fossils and how those measurements are used to estimate carbon cycle changes. The work will include laboratory incubations of these organisms to answer if and how the chemistry of the resting spores differs from that of a typical diatom cell. The incubation results will be used to evaluate nutrient drawdown in sea ice environments during two contrasting intervals in earth history, the last ice age and the warm Pliocene. This work should have significant impact on how the scientific community considers the impact of seasonal sea ice cover in the Southern Ocean in terms of how it responds to and regulates global climate. The project provides training and research opportunities for undergraduate and graduate students. Ongoing research efforts in Antarctic earth sciences will be disseminated through an interactive display at the home institution. The work proposed here will address uncertainties in how Chaetoceros resting spores record surface nutrient conditions in their nitrogen stable isotopic composition, the relative impact of their specific signal with respect to the full sedimentary assemblage, and their potential to bias or enhance environmental reconstructions in the sea ice zone. Measurements of nitrogen stable isotopes of nitrate, biomass, and diatom-bound nitrogen and silicon-to-nitrogen ratios of individual species grown in the laboratory will be used to quantify how resting spores record nutrient drawdown in the water column and to what degree their signature is biased toward low nutrient conditions. These relationships will be used to inform diatom-bound nitrogen isotope reconstructions of nutrient drawdown from a Pliocene coastal polyna and an open ocean core that spans the last glacial maximum. This proposal capitalizes on the availability of Southern Ocean isolates of Chaetoceros spp. collected in 2017 for the proposed culture work and archived sediment cores and/or existing data. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; USAP-DC; Antarctica; ISOTOPES; MARINE SEDIMENTS; LABORATORY; USA/NSF; NITROGEN; AMD", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Robinson, Rebecca", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information?", "uid": "p0010234", "west": -180.0}, {"awards": "2000992 Romans, Brian", "bounds_geometry": "POINT(-172.873074 -74.274008)", "dataset_titles": "Grain size of Plio-Pleistocene continental slope and rise sediments, Hillary Canyon, Ross Sea", "datasets": [{"dataset_uid": "601807", "doi": "10.15784/601807", "keywords": "Antarctica; Cryosphere; Grain Size; Ross Sea", "people": "Romans, Brian W.; Varela, Natalia", "repository": "USAP-DC", "science_program": null, "title": "Grain size of Plio-Pleistocene continental slope and rise sediments, Hillary Canyon, Ross Sea", "url": "https://www.usap-dc.org/view/dataset/601807"}], "date_created": "Tue, 06 Jul 2021 00:00:00 GMT", "description": "Part I: Non-technical description: Predicting how polar ice sheets will respond to future global warming is difficult because all the processes that contribute to their melting are not well understood. This is important because the more ice on land that melts, the higher sea levels will rise. The most significant uncertainty in current estimates of sea-level rise in the coming decades is the potential contribution from the Antarctic Ice Sheet. One way to increase our knowledge about how large ice sheets respond to climate change in response to natural factors is to examine the geologic past. Natural global warming (and cooling) events in Earth\u2019s history provide examples that we can use to better understand processes, interactions, and responses we can\u2019t directly observe today. One such time period, approximately three million years ago (known as the Pliocene), was the last time atmospheric carbon dioxide levels were as high as they are today and, therefore, represents a time period to study to better understand the ice sheet response to a warming climate. Specifically, this project is interested in understanding how ocean currents near Antarctica, which transport heat and store carbon, behaved during these past climate events. The history of past ice sheet-ocean interactions are recorded in sediments that were deposited, layer upon layer, in the deep sea offshore Antarctica. In January-February 2018, a team of scientists and crew set sail to the Ross Sea, offshore west Antarctica, on the scientific ocean drilling vessel JOIDES Resolution to recover such sediment archives. This project focuses on a sediment core from that expedition, which captures the relatively warm Pliocene time interval, as well as the subsequent transition into cooler climates typical of the past two million years. The researchers will analyze the sediment with multiple complementary measurements, including: grain size, composition, chemistry of organic matter, physical structures, microfossil type and abundance, and more. These analyses will be done by the research team, including several students, at their respective laboratories and will then integrated into a unified record of ice sheet-ocean interactions. Ultimately, the results will be used to improve modeled projections of how the Antarctic Ice Sheet could respond to future climate change. Part II: Technical description: Geological records from the Antarctic Ice Sheet (AIS) margin demonstrate that the ice sheet oscillated in response to orbital variations in insolation (i.e., ~400, 100, 41, and 20 kyr), and it appears to be more sensitive to specific frequencies that regulate mean annual insolation (i.e., 41-kyr obliquity), particularly when the ice sheet extends into marine environments and is impacted by ocean circulation. However, the relationship between orbital forcing and the production of Antarctic Bottom Water (AABW) is unconstrained. Thus, a knowledge gap exists in understanding how changing insolation impacts ice marginal and Southern Ocean conditions that directly influence ventilation of the global ocean. The researchers hypothesize that insolation-driven changes directly affected the production and export of AABW to the Southern Ocean from the Pliocene through the Pleistocene. For example, obliquity amplification during the warmer Pliocene may have led to enhanced production and export of dense waters from the shelf due to reduced AIS extent, which, in turn, led to greater AABW outflow. To determine the relationship of AABW production to orbital regime, they plan to reconstruct both from a single, continuous record from the levee of Hillary Canyon, a major conduit of AABW outflow, on the Ross Sea continental rise. To test their hypothesis, they will analyze sediment from IODP Site U1524 (recovered in 2018 during International Ocean Discovery Program Expedition 374) and focus on three data sets. (1) They will use the occurrence, frequency, and character of mm-scale turbidite beds as a proxy of dense-shelf-water cascading outflow and AABW production. They will estimate the down-slope flux via numerical modeling of turbidity current properties using morphology, grain size, and bed thickness as input parameters. (2) They will use grain-size data, physical properties, XRF core scanning, CT imaging, and hyperspectral imaging to guide lithofacies analysis to infer processes occurring during glacial, deglacial, and interglacial periods. Statistical techniques and optimization methods will be applied to test for astronomical forcing of sedimentary packages in order to provide a cyclostratigraphic framework and interpret the orbital-forcing regime. (3) They will use bulk sedimentary carbon and nitrogen abundance and isotope data to determine how relative contributions of terrigenous and marine organic matter change in response to orbital forcing. All of these data will be integrated with sedimentological records to deconvolve organic matter production from its deposition or remobilization due to AABW outflow as a function of the oscillating extent of the AIS. These data sets will be integrated into a unified chronostratigraphy to determine the relationship between AABW outflow and orbital-forcing scenarios under the varying climate regimes of the Plio-Pleistocene. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -172.873074, "geometry": "POINT(-172.873074 -74.274008)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; LABORATORY; AMD; USA/NSF; SEDIMENTS; Amd/Us; Ross Sea", "locations": "Ross Sea", "north": -74.274008, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Patterson, Molly; Ash, Jeanine; Kulhanek, Denise; Ash, Jeannie", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -74.274008, "title": "COLLABORATIVE RESEARCH: Orbital-scale Variability of the West Antarctic Ice Sheet and the Formation of Bottom Water in the Ross Sea during the Pliocene-Pleistocene", "uid": "p0010227", "west": -172.873074}, {"awards": "2023244 Stewart, Andrew; 2023259 Thompson, Andrew; 2023303 Purkey, Sarah", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Code for reproducing the ocean-biogeochemical experiments in Sun et al. (2024); Hydrographic data collected from the Bellingshausen and Amundsen seas (NCEI Accession 0210639); Ocean CFC reconstructed data product", "datasets": [{"dataset_uid": "200427", "doi": "10.6084/m9.figshare.26787751", "keywords": null, "people": null, "repository": "Figshare (open repository)", "science_program": null, "title": "Code for reproducing the ocean-biogeochemical experiments in Sun et al. (2024)", "url": "https://doi.org/10.6084/m9.figshare.26787751"}, {"dataset_uid": "200428", "doi": "", "keywords": null, "people": null, "repository": "NOAA\u0027s National Centers for Environmental Information (NCEI)", "science_program": null, "title": "Hydrographic data collected from the Bellingshausen and Amundsen seas (NCEI Accession 0210639)", "url": "https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0210639"}, {"dataset_uid": "601752", "doi": "10.15784/601752", "keywords": "Antarctica; CFCs; GLODAP; Ocean Model; Ocean Ventilation; Southern Ocean", "people": "Cimoli, Laura; Gebbie, Jack; Purkey, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Ocean CFC reconstructed data product", "url": "https://www.usap-dc.org/view/dataset/601752"}], "date_created": "Thu, 01 Jul 2021 00:00:00 GMT", "description": "Part 1: Because of the manner in which it is formed at high latitudes in the Antarctic ice, Antarctic Bottom Water (AABW) is the coldest, saltiest and densest water on the planet. The global circulation of is often quanti\ufb01ed via the transport in a two-dimensional, latitude/depth coordinate space. However, AABW formation, northward \ufb02ow and distribution between the Atlantic, Indian and Paci\ufb01c basins are fundamentally three-dimensional processes. AABW is formed in a handful of distinct sites around the Antarctic coast, notably the southern Weddell Sea, the western Ross Sea, along the Ad\u00b4elie coast, and in Prydz Bay. AABW is one of the key components of the global ocean overturning circulation, and plays a critical role in regulating Earth\u0027s climate, on multi-decadal-to-millennial time scales. Part 2: Mapping of AABW transport to northern basins is not well constrained, with conflicting conclusions drawn in previous studies. At one extreme the ACC has been suggested to be a \u201cconduit\" that simply allows each variety of AABW to transit directly northward. At the other extreme, it has been suggested that the ACC \u201cblends\" all shelf AABW sources together before they reach the northern basins. To close the gap in understanding, this collaborative project draws on three complementary analytical tools: process-oriented modeling of AABW export across the ACC, a high-resolution global ocean model, and an observationally-constrained estimate of the global circulation. The proposed identification and mechanistic understanding of AABW pathways. This project will also advance the careers of three postdoctoral researchers and two early-career faculty members, and will continue collaborative links between the PI and a foreign investigator. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e DATA ANALYSIS \u003e ENVIRONMENTAL MODELING \u003e COMPUTER", "is_usap_dc": true, "keywords": "AMD; MODELS; USAP-DC; WATER MASSES; Southern Ocean; Amd/Us; OCEAN CURRENTS; COMPUTERS; Antarctic Circumpolar Current; USA/NSF", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Stewart, Andrew; Thompson, Andrew; Purkey, Sarah", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e MODELS \u003e MODELS", "repo": "Figshare (open repository)", "repositories": "Figshare (open repository); NOAA\u0027s National Centers for Environmental Information (NCEI); USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: The Antarctic Circumpolar Current: A Conduit or Blender of Antarctic Bottom Waters?", "uid": "p0010220", "west": -180.0}, {"awards": "2032463 Talghader, Joseph; 2032473 Kurbatov, Andrei", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Visual, thermal, chemical, and stable isotope effects of near-infrared laser cutting on freezer ice", "datasets": [{"dataset_uid": "601753", "doi": "10.15784/601753", "keywords": "Antarctica; Sampling", "people": "Talghader, Joseph; Kurbatov, Andrei V.; Mah, Merlin", "repository": "USAP-DC", "science_program": null, "title": "Visual, thermal, chemical, and stable isotope effects of near-infrared laser cutting on freezer ice", "url": "https://www.usap-dc.org/view/dataset/601753"}], "date_created": "Wed, 30 Jun 2021 00:00:00 GMT", "description": "This project will take initial development steps toward a laser-cut ice-sampling capability in glaciers and ice sheets. The collection of ice samples from the Polar Ice Sheets involves large amounts of time, effort, and expense. However, the most important science data are often retrieved from small sections of an ice core and, while replicate coring can supplement this section of ice core, there is often a need to retrieve additional ice samples based on subsequent scientific findings or borehole logging at a research site. In addition, there are currently no easy methods of extracting ice samples from a borehole drilled by non-coring mechanical drills that are faster, lighter, and less expensive to operate. There are numerous science applications that could potentially benefit from laser-cut ice samples, including sampling ice overlying buried impact craters and bolides, filling critical gaps in chemical records retrieved from damaged ice cores, and obtaining ice samples from sites where coring drills apply stresses that may fracture the ice. This award will explore a laser cutting technology to rapidly extract high-quality ice samples from a borehole wall. The project will investigate and validate the existing technology of laser ice sampling and will use a fiberoptic cable to deliver light pulses to a borehole instrument rather than attempting to assemble a complete laser system in an instrument deployed in a borehole. This offers a new way of retrieving ice samples from a polar ice sheet without the need to drill a borehole to collect ice-core samples (i.e., the hole could be mechanically drilled). This technology could also be used in existing boreholes or those that are made by augering through ice (i.e., not coring) or made with hot water. If successful, this technique would create the ability to rapidly retrieve ice samples with a small logistical footprint and enable science that might not be supportable otherwise. The proposed technology could eventually provide better access to ice-core samples to study past atmospheric composition for understanding past climate and inform on future potential for ice-sheet change. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; Laser Cutting; Ice Core; USA/NSF; AMD; SULFATE; FIELD SURVEYS; OXYGEN COMPOUNDS; USAP-DC; LABORATORY; Sulfate", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Instrumentation and Facilities; Antarctic Instrumentation and Facilities", "paleo_time": null, "persons": "Talghader, Joseph; Kurbatov, Andrei V.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Laser Cutting Technology for Borehole Sampling", "uid": "p0010218", "west": -180.0}, {"awards": "1937748 Sumner, Dawn", "bounds_geometry": "POINT(163.183333 -77.616667)", "dataset_titles": "Lake Fryxell 2022-2023 benthic microbial mat thickness and number of laminae", "datasets": [{"dataset_uid": "601839", "doi": "10.15784/601839", "keywords": "Antarctica; Cryosphere; Dry Valleys; Lake Fryxell; Laminae; Microbial Mat; Thickness", "people": "Juarez Rivera, Marisol; Mackey, Tyler; Paul, Ann; Hawes, Ian; Sumner, Dawn", "repository": "USAP-DC", "science_program": null, "title": "Lake Fryxell 2022-2023 benthic microbial mat thickness and number of laminae", "url": "https://www.usap-dc.org/view/dataset/601839"}], "date_created": "Wed, 30 Jun 2021 00:00:00 GMT", "description": "Part I: Non-technical summary: This project focuses on understanding annual changes in microbial life that grows on the bottom of Lake Fryxell, Antarctica. Because of its polar latitude, photosynthesis can only occur during the summer months. During summer, photosynthetic bacteria supply communities with energy and oxygen. However, it is unknown how the microbes behave in the dark winter, when observations are not possible. This project will install environmental monitors and light-blocking shades over parts of these communities. The shades will extend winter conditions into the spring to allow researchers to characterize the winter behavior of the microbial communities. Researchers will measure changes in the water chemistry due to microbial activities when the shades are removed and the mats first receive light. Results are expected to provide insights into how organisms interact with and change their environments. The project includes training of graduate students and early career scientists in fieldwork, including scientific ice diving techniques. In addition, the members of the project team will develop a web-based \u201cGuide to Thrive\u201d, which will compile field tips ranging from basic gear use to advanced environmental protection techniques. This will be a valuable resource for group leaders ranging from undergraduate teaching assistants to Antarctic expedition leaders to lead well-planned and tailored field expeditions. Part II: Technical summary: The research team will measure seasonal metabolic and biogeochemical changes in benthic mats using differential gene expression and geochemical gradients. They will identify seasonal phenotypic differences in microbial communities and ecosystem effects induced by spring oxygen production. To do so, researchers will install environmental sensors and opaque shades over mats at three depths in the lake. The following spring, shaded and unshaded mats will be sampled. The shades will then be removed, and changes in pore water O2, H2S, pH, and redox will be measured using microelectrodes. Mats will also be sampled for transcriptomic gene expression analyses at intervals guided by geochemical changes. Pore water will be sampled for nutrient analyses. Field research will be supplemented with laboratory experiments to refine field techniques, gene expression data analysis, and integration of results into a seasonal model of productivity and nitrogen cycling in Lake Fryxell. Results will provide insights into several key priorities for NSF, including how biotic, abiotic and environmental components of the benthic mats interact to affect Antarctic lakes. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 163.183333, "geometry": "POINT(163.183333 -77.616667)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Amd/Us; AMD; USA/NSF; FIELD SURVEYS; ECOSYSTEM FUNCTIONS; Lake Fryxell; USAP-DC; LAKE/POND", "locations": "Antarctica; Lake Fryxell", "north": -77.616667, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Integrated System Science", "paleo_time": null, "persons": "Sumner, Dawn; Mackey, Tyler", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.616667, "title": "Seasonal Primary Productivity and Nitrogen Cycling in Photosynthetic Mats, Lake Fryxell, McMurdo Dry Valleys", "uid": "p0010219", "west": 163.183333}, {"awards": "1851022 Fudge, Tyler; 1851094 Baker, Ian", "bounds_geometry": null, "dataset_titles": "Code for calculating mean gradient for EDC sulfate data; EPICA Dome C Sulfate Data 7-3190m; Forward Diffusion Model used to calculate widening of volcanic layer widths; Volcanic Widths in Dome C Interglacials and Glacials", "datasets": [{"dataset_uid": "601855", "doi": "10.15784/601855", "keywords": "Antarctica; Cryosphere", "people": "Fudge, T. J.", "repository": "USAP-DC", "science_program": null, "title": "Volcanic Widths in Dome C Interglacials and Glacials", "url": "https://www.usap-dc.org/view/dataset/601855"}, {"dataset_uid": "601759", "doi": "10.15784/601759", "keywords": "Antarctica", "people": "Fudge, T. J.; Severi, Mirko", "repository": "USAP-DC", "science_program": "COLDEX", "title": "EPICA Dome C Sulfate Data 7-3190m", "url": "https://www.usap-dc.org/view/dataset/601759"}, {"dataset_uid": "601857", "doi": "10.15784/601857", "keywords": "Antarctica; Cryosphere", "people": "Fudge, T. J.", "repository": "USAP-DC", "science_program": null, "title": "Forward Diffusion Model used to calculate widening of volcanic layer widths", "url": "https://www.usap-dc.org/view/dataset/601857"}, {"dataset_uid": "601856", "doi": "10.15784/601856", "keywords": "Antarctica; Cryosphere", "people": "Fudge, T. J.", "repository": "USAP-DC", "science_program": null, "title": "Code for calculating mean gradient for EDC sulfate data", "url": "https://www.usap-dc.org/view/dataset/601856"}], "date_created": "Mon, 28 Jun 2021 00:00:00 GMT", "description": "The ice of the polar ice sheets is among the purest substances on Earth, yet the small amount of impurities --such as acids-- are important to how the ice flows and what can be learned from ice cores about past climate. The goal of this project is to understand the role of such acids on the deformation of polycrystalline ice by comparing the deformation behavior of pure and sulfuric acid-doped samples. Sulfuric acid was chosen both because of its importance for interpreting past climate and because it can lead to water veins in ice at low temperatures. This work will focus on the location, movement, and impact of acids in polycrystalline ice that are more complex than in single crystals of ice. By deforming samples and performing microstructural characterization, the role of acids on deformation rate, grain evolution, and the movement of the acids themselves, will be assessed. The work will lead to the education of a Ph.D. student at Dartmouth College, introduce undergraduate students to research at both the University of Washington and Dartmouth College. Despite the ubiquitous use of the constitutive relation for ice commonly referred to as \"Glen\u0027s Flow Law\", significant uncertainty exists particularly with regard to the role of impurities and the development of oriented fabrics. The aim of this project is to improve the constitutive relationship for ice by performing deformation tests and microstructural characterization of pure and sulfuric acid-doped ice. The project will focus on sulfuric acid\u0027s impact on ice viscosity, fabric evolution, and diffusivity. Sulfuric acid can have both direct and indirect effects on the mechanical properties of polycrystalline ice. The direct effects change the dislocation velocity and/or density, and the indirect effects change the grain size and fabric. The complexity and interaction of these effects means that it is not possible to understand the effects of sulfuric acid by simply examining ice core specimens. In this project, the team will deform four types of ice: lab-grown ice samples doped with similar-to-natural concentrations of sulfuric acid, lab-grown high-purity ice, layered doped and pure ice, and natural ice from Antarctic ice cores. Deformation will be performed in both uniaxial compression and simple shear. The addition of simple shear tests is critical for relating the laboratory-observed deformation behavior to the behavior of polar ice sheets where the shear strain dominates ice motion in basal ice. After deformation to strains from 5 percent up to 25 percent, the microstructural development will be assessed with methods including a variety of scanning electron microscope techniques, Raman microscopy, synchrotron-based Nano-X-ray fluorescence, and ion chromatography. These analysis techniques will allow the determination of 1) the segregation and movement of impurities, 2) the rate of grain-boundary migration, 3) the number of recrystallized grains; and 4) the full orientation of the ice crystals. The results will enable both microstructural modeling of the effects of sulfuric acid and numerical modeling of diffusion in ice cores. The net result will be a better understanding of ice deformation that improves ice-core interpretation and ice-sheet modeling. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "AMD; Polycrystalline Ice; LABORATORY; Epica Dome C; SNOW/ICE; USA/NSF; USAP-DC; Ice Core; Amd/Us", "locations": "Epica Dome C", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Science and Technology; Antarctic Glaciology", "paleo_time": null, "persons": "Baker, Ian; Fudge, T. J.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: The Impact of Impurities and Stress State on Polycrystalline Ice Deformation", "uid": "p0010211", "west": null}, {"awards": "1744965 Diao, Minghui; 1744946 Gettelman, Andrew", "bounds_geometry": "POINT(166.7 -77.8)", "dataset_titles": "AWARE_Campaign_Data; Diao, M. (2020). VCSEL 1 Hz Water Vapor Data Version 1.0 for NSF SOCRATES Campaign; Diao, M. (2020). VCSEL 25 Hz Water Vapor Data Version 1.0 for NSF SOCRATES Campaign", "datasets": [{"dataset_uid": "200223", "doi": "10.17632/x6n4r3yxb2.1", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "AWARE_Campaign_Data", "url": "http://dx.doi.org/10.17632/x6n4r3yxb2.1"}, {"dataset_uid": "200225", "doi": "10.26023/V925-2H41-SD0F", "keywords": null, "people": null, "repository": "UCAR", "science_program": null, "title": "Diao, M. (2020). VCSEL 25 Hz Water Vapor Data Version 1.0 for NSF SOCRATES Campaign", "url": "https://data.eol.ucar.edu/dataset/290779"}, {"dataset_uid": "200224", "doi": "10.26023/KFSD-Y8DQ-YC0D", "keywords": null, "people": null, "repository": "UCAR", "science_program": null, "title": "Diao, M. (2020). VCSEL 1 Hz Water Vapor Data Version 1.0 for NSF SOCRATES Campaign", "url": "https://data.eol.ucar.edu/dataset/552.051"}], "date_created": "Mon, 28 Jun 2021 00:00:00 GMT", "description": "Ice supersaturation plays a key role in cloud formation and evolution, and it determines the partitioning among ice, liquid and vapor phases. Over the Southern Ocean and Antarctica, the transition between mixed-phase and ice clouds significantly impacts the radiative effects of clouds. Remote regions such as the Antarctica and Southern Ocean historically have been under-sampled by in-situ observations, especially by airborne observations. Even though more attention has been given to the cloud microphysical properties over these regions, the distribution and characteristics of ice supersaturation and its role in the current and future climate have not been fully investigated at the higher latitudes in the Southern Hemisphere. One of the main objectives of this study is to analyze observations from three recent major field campaigns sponsored by NSF and DOE, which provide intensive in-situ, airborne measurements over the Southern Ocean and ground-based observations at McMurdo station in Antarctica. This project will analyze aircraft-based and ground-based observations over the Southern Ocean and Antarctica, and compare the observations with the Community Earth System Model Version 2 (CESM2) simulations. The focus will be on the observations of ice supersaturation and the relative humidity distribution in mixed-phase and ice clouds, as well as their relationship with cloud micro- and macrophysical properties. Observations will be compared to CESM2 simulations to elucidate model biases. Surface radiation and the precipitation budget at the McMurdo station will be quantified and compared against the CESM2 simulations to improve the fidelity of the representation of Antarctic climate (and climate prediction over Antarctica). Results from our research will be released to the community for improving the understanding of cloud radiative effects and the mass transport of water in the high southern latitudes. Comparisons between the simulations and observations will provide valuable information for improving the next generation CESM model. Two education/outreach projects will be carried out by PI Diao at San Jose State University (SJSU), including a unique undergraduate student research project with hands-on laboratory work on an airborne instrument, and an outreach program that uses social media to broadcast news on polar research to the public. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 166.7, "geometry": "POINT(166.7 -77.8)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; CLIMATE MODELS; USA/NSF; SNOW; Amd/Us; USAP-DC; Chile; ATMOSPHERIC WATER VAPOR; ATMOSPHERIC TEMPERATURE; Antarctica; Southern Ocean; AMD", "locations": "Antarctica; Southern Ocean; Chile", "north": -77.8, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Diao, Minghui; Gettelman, Andrew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e MODELS \u003e CLIMATE MODELS", "repo": "Publication", "repositories": "Publication; UCAR", "science_programs": null, "south": -77.8, "title": "Collaborative Research: Ice Supersaturation over the Southern Ocean and Antarctica, and its Role in Climate", "uid": "p0010209", "west": 166.7}, {"awards": "1846837 Bowman, Jeff", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 25 Jun 2021 00:00:00 GMT", "description": "The coastal Antarctic is undergoing great environmental change. Physical changes in the environment, such as altered sea ice duration and extent, have a direct impact on the phytoplankton and bacteria species which form the base of the marine foodweb. Photosynthetic phytoplankton are the ocean\u0027s primary producers, transforming (fixing) CO2 into organic carbon molecules and providing a source of food for zooplankton and larger predators. When phytoplankton are consumed by zooplankton, or killed by viral attack, they release large amounts of organic carbon and nutrients into the environment. Heterotrophic bacteria must eat other things, and function as \"master recyclers\", consuming these materials and converting them to bacterial biomass which can feed larger organisms such as protists. Some protists are heterotrophs, but others are mixotrophs, able to grow by photosynthesis or heterotrophy. Previous work suggests that by killing and eating bacteria, protists and viruses may regulate bacterial populations, but how these processes are regulated in Antarctic waters is poorly understood. This project will use experiments to determine the rate at which Antarctic protists consume bacteria, and field studies to identify the major bacterial taxa involved in carbon uptake and recycling. In addition, this project will use new sequencing technology to obtain completed genomes for many Antarctic marine bacteria. To place this work in an ecosystem context this project will use microbial diversity data to inform rates associated with key microbial processes within the PALMER ecosystem model. This project addresses critical unknowns regarding the ecological role of heterotrophic marine bacteria in the coastal Antarctic and the top-down controls on bacterial populations. Previous work suggests that at certain times of the year grazing by heterotrophic and mixotrophic protists may meet or exceed bacterial production rates. Similarly, in more temperate waters bacteriophages (viruses) are thought to contribute significantly to bacterial mortality during the spring and summer. These different top-down controls have implications for carbon flow through the marine foodweb, because protists are grazed more efficiently by higher trophic levels than are bacteria. This project will use a combination of grazing experiments and field observations to assess the temporal dynamics of mortality due to temperate bacteriophage and protists. Although many heterotrophic bacterial strains observed in the coastal Antarctic are taxonomically similar to strains from other regions, recent work suggest that they are phylogenetically and genetically distinct. To better understand the ecological function and evolutionary trajectories of key Antarctic marine bacteria, their genomes will be isolated and sequenced. Then, these genomes will be used to improve the predictions of the paprica metabolic inference pipeline, and our understanding of the relationship between heterotrophic bacteria and their major predators in the Antarctic marine environment. Finally, researchers will modify the Regional Test-Bed Model model to enable microbial diversity data to be used to optimize the starting conditions of key parameters, and to constrain the model\u0027s data assimilation methods. There is an extensive education and outreach component to this project that is designed to engage students and the public in diverse activities centered on Antarctic microbiota and marine sciences. A new module on Antarctic marine science will be developed for the popular Sally Ride Science program, and two existing undergraduate courses at UC San Diego will be strengthened with laboratory modules introducing emerging technology, and with cutting-edge polar science. A PhD student and a post-doctoral researcher will be supported by this project. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Magmatic Volatiles; BACTERIA/ARCHAEA; VIRUSES; USA/NSF; Palmer Station; ECOSYSTEM FUNCTIONS; COMMUNITY DYNAMICS; LABORATORY; Amd/Us; PROTISTS; AMD; USAP-DC", "locations": "Palmer Station", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Bowman, Jeff; Connors, Elizabeth", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "CAREER: Understanding microbial heterotrophic processes in coastal Antarctic waters", "uid": "p0010201", "west": null}, {"awards": "1906015 Kelley, Joanna", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Data, Code, and Results for the Zoarcoidei Phylogeny (Hotaling et al.)", "datasets": [{"dataset_uid": "200221", "doi": "10.5281/zenodo.4306092).", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Data, Code, and Results for the Zoarcoidei Phylogeny (Hotaling et al.)", "url": "https://doi.org/10.5281/zenodo.4306092"}], "date_created": "Fri, 25 Jun 2021 00:00:00 GMT", "description": "Fish that reside in the harsh, subfreezing waters of the Antarctic and Arctic provide fascinating examples of adaptation to extreme environments. Species at both poles have independently evolved ways to deal with constant cold temperature, including the evolution of antifreeze proteins. Under freezing conditions, these compounds attach to ice crystals and prevent their growth. This lowers the tissue freezing point and reduces the chance the animal will be injured or killed. While it might seem that the need for unique adaptations to survive in polar waters would reduce species diversity in these habitats, recent evidence showed higher speciation rates in fishes from polar environments as compared to those found in warmer waters. This is despite the fact cold temperatures slow cellular processes, which had been expected to lower rates of molecular evolution in these species. To determine how rates of speciation and molecular evolution are linked in marine fishes, this project will compare the genomes of multiple polar and non-polar fishes. By doing so, it will (1) clarify how rates of evolution vary in polar environments, (2) identify general trends that shape the adaptive trajectories of polar fishes, and (3) determine how functional differences shape the evolution of novel compounds such as the antifreeze proteins some polar fishes rely upon to survive. In addition to training a new generation of scientists, the project will develop curriculum and outreach activities for elementary and undergraduate science courses. Materials will be delivered in classrooms across the western United States, with a focus on rural schools as part of a network for promoting evolutionary education in rural communities. To better understand the biology of polar fishes and the evolution of antifreeze proteins (AFPs), this research will compare the evolutionary histories of cold-adapted organisms to those of related non-polar species from both a genotypic and phenotypic context. In doing so, this research will test whether evolutionary rates are slowed in polar environments, perhaps due to constraints on cellular processes. It will also evaluate the effects of positive selection and the relaxation of selection on genes and pathways, both of which appear to be key adaptive strategies involved in the adaptation to polar environments. To address specific mechanisms by which extreme adaptation occurs, researchers will determine how global gradients of temperature and dissolved oxygen shape genome variation and influence adaptive trajectories among multiple species of eelpouts (family Zoarcidae). An in-vitro experimental approach will then be used to test functional hypotheses about the role of copy number variation in AFP evolution, and how and why multiple antifreeze protein isoforms have evolved. By comparing the genomes of multiple polar and non-polar fishes, the project will clarify how rates of evolution vary in polar environments, identify general trends that shape the adaptive trajectories of cold-adapted marine fishes, and determine how functional differences shape the evolution of novel proteins. This project addresses the strategic programmatic aim to provide a better understanding of the genetic underpinnings of organismal adaptations to their current environment and ways in which polar fishes may respond to changing conditions over different evolutionary time scales. The project is jointly funded by the Antarctic Organisms and Ecosystems Program in the Office of Polar Programs of the Geosciences Directorate, and the Molecular Biophysics Program of the Division of Molecular and Cellular Biosciences in the Biological Sciences Directorate. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; FISH; MARINE ECOSYSTEMS; LABORATORY; AMD; USAP-DC; Amd/Us; USA/NSF", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Kelley, Joanna", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "Zenodo", "repositories": "Zenodo", "science_programs": null, "south": -90.0, "title": "Genome Evolution in Polar Fishes", "uid": "p0010200", "west": -180.0}, {"awards": "1643120 Iverson, Neal", "bounds_geometry": null, "dataset_titles": "Ice permeameter experimental parameters and results; Softening of temperate ice by interstitial water; Tertiary creep rates if temperate ice containing greater than 0.7% liquid water", "datasets": [{"dataset_uid": "601833", "doi": "10.15784/601833", "keywords": "Antarctica; Cryosphere", "people": "Iverson, Neal", "repository": "USAP-DC", "science_program": null, "title": "Tertiary creep rates if temperate ice containing greater than 0.7% liquid water", "url": "https://www.usap-dc.org/view/dataset/601833"}, {"dataset_uid": "601460", "doi": "10.15784/601460", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Stream; Lab Experiment; Rheology; Snow/ice; Snow/Ice; Water Content", "people": "Iverson, Neal", "repository": "USAP-DC", "science_program": null, "title": "Softening of temperate ice by interstitial water", "url": "https://www.usap-dc.org/view/dataset/601460"}, {"dataset_uid": "601515", "doi": "10.15784/601515", "keywords": "Antarctica; Glacier Flow; Glacier Hydrology; Glaciological Instruments And Methods; Glaciology; Ice Physics; Ice Stream; Snow/ice; Snow/Ice", "people": "Fowler, Jacob; Iverson, Neal", "repository": "USAP-DC", "science_program": null, "title": "Ice permeameter experimental parameters and results", "url": "https://www.usap-dc.org/view/dataset/601515"}], "date_created": "Wed, 23 Jun 2021 00:00:00 GMT", "description": "Iverson/1643120 This award supports a project to study temperate ice, using both experimental methods and modeling, in order to determine the effect of water on its flow resistance and structure and to study the mobility of water within the ice. A new mathematical model of ice stream flow and temperature is developed in conjunction with these experiments. The model includes water production, storage, and movement in deforming ice and their effects on flow resistance at ice stream margins and on water availability for lubrication of ice stream beds. Results will improve estimates of the evolution of ice stream speed and geometry in a warming climate, and so improve the accuracy of assessments of the contribution of the Antarctic ice sheet to sea level rise over the next century. Ice streams are zones of rapid flow within the Antarctic ice sheet and are primarily responsible for its discharge of ice to the ocean and major effect on sea-level rise. Water plays a central role in the flow of ice streams. It lubricates their bases and softens their margins, where flow speeds abruptly transition from rapid to slow. Within ice stream margins some ice is \"temperate\", meaning that it is at its melting temperature and thus contains intercrystalline water that significantly softens the ice. Two postdoctoral researchers will be supported, trained, and mentored for academic careers, and three undergraduates will be introduced to research in the geosciences. This award is part the NSF/GEO-UK NERC lead agency opportunity (NSF 14-118) and is a collaboration between Iowa State University in the United States and Oxford University in the United Kingdom. The two-phase deformation of temperate ice will be studied, with the objective of determining its effect on the flow of Antarctic ice streams. The project has two components that reinforce each other. First there will be laboratory experiments in which a rotary device at Iowa State University will be used to determine relationships between the water content of temperate ice and its rheology and permeability. The second component will involve the development at Oxford University of a two-phase, fluid-dynamical theory of temperate ice and application of this theory in models of ice-stream dynamics. Results of the experiments will guide the constitutive rules and parameter ranges considered in the theory, and application of elements of the theory will improve interpretations of the experimental results. The theory and resultant models will predict the coupled distributions of temperate ice, water, stress, deformation, and basal slip that control the evolution of ice-stream speed and geometry. The modeling will result in parameterizations that allow ice streaming to be included in continental-scale models of ice sheets in a simplified but physically defensible way.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "GLACIER MOTION/ICE SHEET MOTION; Rheology; Antarctica; LABORATORY; Ice Stream; USA/NSF; USAP-DC; Lab Experiment; Water Content", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Iverson, Neal; Zoet, Lucas", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "NSFGEO-NERC: Collaborative Research: Two-Phase Dynamics of Temperate Ice", "uid": "p0010197", "west": null}, {"awards": "1643494 Saal, Alberto", "bounds_geometry": "POLYGON((-68.074 -57.345,-66.6033 -57.345,-65.1326 -57.345,-63.6619 -57.345,-62.1912 -57.345,-60.7205 -57.345,-59.2498 -57.345,-57.7791 -57.345,-56.3084 -57.345,-54.8377 -57.345,-53.367 -57.345,-53.367 -58.12517,-53.367 -58.90534,-53.367 -59.68551,-53.367 -60.46568,-53.367 -61.24585,-53.367 -62.02602,-53.367 -62.80619,-53.367 -63.58636,-53.367 -64.36653,-53.367 -65.1467,-54.8377 -65.1467,-56.3084 -65.1467,-57.7791 -65.1467,-59.2498 -65.1467,-60.7205 -65.1467,-62.1912 -65.1467,-63.6619 -65.1467,-65.1326 -65.1467,-66.6033 -65.1467,-68.074 -65.1467,-68.074 -64.36653,-68.074 -63.58636,-68.074 -62.80619,-68.074 -62.02602,-68.074 -61.24585,-68.074 -60.46568,-68.074 -59.68551,-68.074 -58.90534,-68.074 -58.12517,-68.074 -57.345))", "dataset_titles": "Major, trace elements contents and radiogenic isotopes of erupted lavas Antarctic Peninsula and Phoenix Ridge", "datasets": [{"dataset_uid": "601519", "doi": "10.15784/601519", "keywords": "Antarctica; Antarctic Peninsula; Chemical Composition; Chemistry:rock; Chemistry:Rock; Geochemistry; Isotope Data; Trace Elements", "people": "Saal, Alberto", "repository": "USAP-DC", "science_program": null, "title": "Major, trace elements contents and radiogenic isotopes of erupted lavas Antarctic Peninsula and Phoenix Ridge", "url": "https://www.usap-dc.org/view/dataset/601519"}], "date_created": "Tue, 22 Jun 2021 00:00:00 GMT", "description": "The Earth\u0027s mantle influences the movement of tectonic plates and volcanism on the surface. One way to understand the composition and nature of the Earth\u0027s mantle is by studying the chemistry of basalts, which originate by volcanic eruptions of partially melting mantle rocks. This study will establish the budget and distribution of volatile elements (hydrogen, carbon, fluorine, chlorine, sulfur) in volcanic basalts to better understand the composition of the Earth\u0027s interior. Volatiles influence mantle melting, magma crystallization, magma migration and volcanic eruptions. Their abundances and spatial distribution provide important constraints on models of mantle flow and temperature. Moreover, volatiles are key constituents of the Earth\u0027s atmosphere and oceans. Establishing the cycles of volatiles between the Earth\u0027s interior and surface is of fundamental importance to understand the long-term evolution of our planet. This project supports a graduate student and research scientist at Brown University. It promotes the collaboration with geochemists from eleven institutions representing six different countries: USA, Germany, United Kingdom, Argentina, South Korea and Japan, and utilizes several NSF-funded USA analytical facilities. Communication of results will occur through: 1) peer-reviewed journals, presentations at conferences and invited university lectures, 2) hands-on science learning activities for local elementary and high school classes, and 3) outreach to the general audience through public lectures. Over the last 60 years of funded research, the Antarctic Peninsula and nearby ocean ridges have been extensively investigated providing information on the origin of the magmatism, and the composition, structure, temperature and evolution of the lithospheric and asthenospheric mantle. Diverse hypotheses have been proposed for the origin of the magmatism in the Antarctic Peninsula, from flux melting of the mantle wedge during devolatilization of the subducted Phoenix plate, to adiabatic decompression melting of a carbonated and hydrous asthenosphere, to melting of a volatile-rich metasomatized subcontinental lithospheric mantle. All proposed hypotheses invoke the role of volatiles. Surprisingly, data on the volatile contents of basalts and mantle from this region are non-existent. This is a significant omission from the geochemical data set, given the important role volatile elements play in the generation and composition of magmas and their sources. The focus of our research is to examine the regional variations in volatile contents (C, H, F, S, Cl) in geochemically well-characterized Pliocene-recent basalts from the Antarctic Peninsula and Phoenix ridge. Our goal is to establish the budget and distribution of volatiles in the mantle to understand 1) the processes responsible for the generation of chemically diverse basalts in close spatial and temporal proximity and 2) the nature (lithology, composition and temperature) of the heterogeneous mantle source beneath the Antarctic Peninsula and Phoenix ridge.", "east": -53.367, "geometry": "POINT(-60.7205 -61.24585)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctic Peninsula; USA/NSF; USAP-DC; TRACE ELEMENTS; MAJOR ELEMENTS; Amd/Us; LABORATORY; ROCKS/MINERALS/CRYSTALS; Magmatic Volatiles; AMD", "locations": "Antarctic Peninsula", "north": -57.345, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Saal, Alberto", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.1467, "title": "Magmatic Volatiles, Unraveling the Reservoirs and Processes of the Volcanism in the Antarctic Peninsula", "uid": "p0010196", "west": -68.074}, {"awards": "1750903 Ingels, Jeroen; 1750888 Aronson, Richard; 1750630 Smith, Craig", "bounds_geometry": "POLYGON((-64 -66,-63.3 -66,-62.6 -66,-61.9 -66,-61.2 -66,-60.5 -66,-59.8 -66,-59.1 -66,-58.4 -66,-57.7 -66,-57 -66,-57 -66.3,-57 -66.6,-57 -66.9,-57 -67.2,-57 -67.5,-57 -67.8,-57 -68.1,-57 -68.4,-57 -68.7,-57 -69,-57.7 -69,-58.4 -69,-59.1 -69,-59.8 -69,-60.5 -69,-61.2 -69,-61.9 -69,-62.6 -69,-63.3 -69,-64 -69,-64 -68.7,-64 -68.4,-64 -68.1,-64 -67.8,-64 -67.5,-64 -67.2,-64 -66.9,-64 -66.6,-64 -66.3,-64 -66))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 21 Jun 2021 00:00:00 GMT", "description": "Worldwide publicity surrounding the calving of an iceberg the size of Delaware in July 2017 from the Larsen C Ice Shelf on the eastern side of the Antarctic Peninsula presents a unique and time-sensitive opportunity for research and education on polar ecosystems in a changing climate. The goal of this project is to convene a workshop, drawing from the large fund of intellectual capital in the US and international Antarctic research communities. The two-day workshop will be held at Florida State University where a consortium of researchers with expertise in Antarctic biological, ecological, and ecosystem sciences will be gathered to share knowledge, identify important research knowledge gaps, and outline strategic plans for research. The workshop will help advance scientific and public understanding of the continent-wide changes that Antarctic ice shelves and surrounding ecosystems experience as ice shelves change. The primary products will be reports focusing on synthesizing, coordinating and integrating research efforts to understand the ecological impacts of ice-shelf collapses and large iceberg calving along the Antarctic Peninsula. The workshop will also provide an immediate, interactive experience for K-12 school children with a hands-on ?Saturday Polar Academy?, a children?s poster session, and question-answer session during the workshop. Children will have the opportunity to interact with Antarctic researchers and become familiar with Antarctic science, organisms, ecosystems and current issues, feeding their scientific curiosity. The calving of A-68, the 5,800-km2 iceberg shed in July 2017 from the Larsen C Ice Shelf presents a unique and time-sensitive research opportunity. The scientific momentum and public interest created by this most recent event will be leveraged to convene a workshop at the earliest opportunity, drawing from the large intellectual capital in the US and international Antarctic research communities. The two-day workshop will be held at Florida State University, Coastal and Marine Laboratory on the Gulf Coast organized by Jeroen Ingels (Florida State University; FSU), Richard Aronson (Florida Institute of Technology; FIT), and Craig Smith (University of Hawaii at Manoa; UHM). A consortium of researchers with a diversity of expertise in Antarctic biological, ecological, and ecosystem sciences will be gathered to share knowledge, identify important research priorities and knowledge gaps, and outline strategic plans for research to advance understanding of the continent-wide changes that Antarctic ice shelves and surrounding ecosystems experience as ice shelves change.", "east": -57.0, "geometry": "POINT(-60.5 -67.5)", "instruments": null, "is_usap_dc": true, "keywords": "MARINE ECOSYSTEMS; USAP-DC; LABORATORY; AMD; Weddell Sea; GLACIERS/ICE SHEETS; ECOLOGICAL DYNAMICS; USA/NSF; SEA ICE; Amd/Us; Antarctica", "locations": "Antarctica; Weddell Sea", "north": -66.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ingels, Jeroen; Aronson, Richard; Smith, Craig", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -69.0, "title": "Collaborative Research: RAPID/Workshop - Antarctic Ecosystem Research following Ice Shelf Collapse and Iceberg Calving Events", "uid": "p0010189", "west": -64.0}, {"awards": "1848887 McClintock, James", "bounds_geometry": "POINT(-64.0527 -64.77423)", "dataset_titles": "2020 and 2023 Underwater video transect community analysis data; 2020 daily seawater carbonate chemistry; 2023 daily seawater carbonate chemistry; Amphipod counts from 2020 ocean acidification experiment; Feeding of Gondogeneia antarctica maintained under ambient and low pH treatments; Palatability of Desmarestia menziesii extracts from ambient and low pH treatments; Palatability of Palmaria decipiens thallus from ambient and low pH treatments; Underwater transect videos used for 2020 and 2023 community analyses", "datasets": [{"dataset_uid": "601787", "doi": "10.15784/601787", "keywords": "Antarctica; Antarctic Peninsula; Biota; Cryosphere; Species Abundance; Video Transects", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "2020 and 2023 Underwater video transect community analysis data", "url": "https://www.usap-dc.org/view/dataset/601787"}, {"dataset_uid": "601791", "doi": "10.15784/601791", "keywords": "Antarctica; Cryosphere; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Palatability of Desmarestia menziesii extracts from ambient and low pH treatments", "url": "https://www.usap-dc.org/view/dataset/601791"}, {"dataset_uid": "601792", "doi": "10.15784/601792", "keywords": "Antarctica; Cryosphere; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Palatability of Palmaria decipiens thallus from ambient and low pH treatments", "url": "https://www.usap-dc.org/view/dataset/601792"}, {"dataset_uid": "601793", "doi": "10.15784/601793", "keywords": "Antarctica; Cryosphere; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Feeding of Gondogeneia antarctica maintained under ambient and low pH treatments", "url": "https://www.usap-dc.org/view/dataset/601793"}, {"dataset_uid": "601796", "doi": "10.15784/601796", "keywords": "Antarctica; Biota; Cryosphere; Oceans; Southern Ocean; Video Transects", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Underwater transect videos used for 2020 and 2023 community analyses", "url": "https://www.usap-dc.org/view/dataset/601796"}, {"dataset_uid": "601700", "doi": "10.15784/601700", "keywords": "Antarctica; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "2020 daily seawater carbonate chemistry", "url": "https://www.usap-dc.org/view/dataset/601700"}, {"dataset_uid": "601702", "doi": "10.15784/601702", "keywords": "Antarctica; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Amphipod counts from 2020 ocean acidification experiment", "url": "https://www.usap-dc.org/view/dataset/601702"}, {"dataset_uid": "601701", "doi": "10.15784/601701", "keywords": "Antarctica; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "2023 daily seawater carbonate chemistry", "url": "https://www.usap-dc.org/view/dataset/601701"}], "date_created": "Mon, 21 Jun 2021 00:00:00 GMT", "description": "Undersea forests of seaweeds dominate the shallow waters of the central and northern coast of the western Antarctic Peninsula and provide critical structural habitat and carbon resources (food) for a host of marine organisms. Most of the seaweeds are chemically defended against herbivores yet support very high densities of herbivorous shrimp-like grazers (crustaceans, primarily amphipods) which greatly benefit their hosts by consuming filamentous and microscopic algae that otherwise overgrow the seaweeds. The amphipods benefit from the association with the chemically defended seaweeds by gaining an associational refuge from fish predation. The project builds on recent work that has demonstrated that several species of amphipods that are key members of crustacean assemblages associated with the seaweeds suffer significant mortality when chronically exposed to increased seawater acidity (reduced pH) and elevated temperatures representative of near-future oceans. By simulating these environmental conditions in the laboratory at Palmer Station, Antarctica, the investigators will test the overall hypothesis that ocean acidification and ocean warming will play a significant role in structuring crustacean assemblages associated with seaweeds. Broader impacts include expanding fundamental knowledge of the impacts of global climate change by focusing on a geographic region of the earth uniquely susceptible to climate change. This project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. This includes training graduate students and early career scientists with an emphasis on diversity, presentations to K-12 groups and the general public, and a variety of social media-based outreach programs. The project will compare population and assemblage-wide impacts of natural (ambient), carbon dioxide enriched, and elevated temperature seawater on assemblages of seaweed-associated crustacean grazers. Based on prior results, it is likely that some species will be relative \"winners\" and some will be relative \"losers\" under the changed conditions. The project will then aim to carry out measurements of growth, calcification, mineralogy, the incidence of molts, and biochemical and energetic body composition for two key amphipod \"winners\" and two key amphipod \"losers\". These measurements will allow an assessment of what factors drive species-specific enhanced or diminished performance under conditions of ocean acidification and sea surface warming. The project will expand on what little is known about prospective impacts of changing conditions on benthic marine Crustacea, in Antarctica, a taxonomic group that faces the additional physiological stressor of molting. The project is likely to provide additional insight on the indirect regulation of the seaweeds that comprise Antarctic undersea forests that provide key architectural components of the coastal marine ecosystem. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -64.0527, "geometry": "POINT(-64.0527 -64.77423)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; Amd/Us; AMD; COASTAL; BENTHIC; USAP-DC; Palmer Station; ANIMALS/INVERTEBRATES; FIELD INVESTIGATION; MACROALGAE (SEAWEEDS)", "locations": "Palmer Station", "north": -64.77423, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Amsler, Charles; McClintock, James", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.77423, "title": "Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica", "uid": "p0010193", "west": -64.0527}, {"awards": "1443556 Thomson, Stuart; 1443342 Licht, Kathy", "bounds_geometry": null, "dataset_titles": "Apatite (U-Th)/He and TREE Data Central Transantarctic Mountains", "datasets": [{"dataset_uid": "601462", "doi": "10.15784/601462", "keywords": "Antarctica; Beardmore Glacier; Erosion; Landscape Evolution; Shackleton Glacier; Transantarctic Mountains; (U-Th)/He", "people": "Licht, Kathy; Thomson, Stuart; He, John; Reiners, Peter; Hemming, Sidney R.", "repository": "USAP-DC", "science_program": null, "title": "Apatite (U-Th)/He and TREE Data Central Transantarctic Mountains", "url": "https://www.usap-dc.org/view/dataset/601462"}], "date_created": "Wed, 09 Jun 2021 00:00:00 GMT", "description": "Antarctica is almost entirely covered by ice, in places over two miles thick. This ice hides a landscape that is less well known than the surface of Mars and represents one of Earth\u0027s last unexplored frontiers. Ice-penetrating radar images provide a remote glimpse of this landscape including ice-buried mountains larger than the European Alps and huge fjords twice as deep as the Grand Canyon. The goal of this project is to collect sediment samples derived from these landscapes to determine when and under what conditions these features formed. Specifically, the project seeks to understand the landscape in the context of the history and dynamics of the overlying ice sheet and past mountain-building episodes. This project accomplishes this goal by analyzing sand collected during previous sea-floor drilling expeditions off the coast of Antarctica. This sand was supplied from the continent interior by ancient rivers when it was ice-free over 34 million year ago, and later by glaciers. The project will also study bedrock samples from rare ice-free parts of the Transantarctic Mountains. The primary activity is to apply multiple advanced dating techniques to single mineral grains contained within this sand and rock. Different methods and minerals yield different dates that provide insight into how Antarctica?s landscape has eroded over the many tens of millions of years during which sand was deposited offshore. The dating techniques that are being developed and enhanced for this study have broad application in many branches of geoscience research and industry. The project makes cost-effective use of pre-existing sample collections housed at NSF facilities including the US Polar Rock Repository, the Gulf Coast Core Repository, and the Antarctic Marine Geology Research Facility. The project will contribute to the STEM training of two graduate and two undergraduate students, and includes collaboration among four US universities as well as international collaboration between the US and France. The project also supports outreach in the form of a two-week open workshop giving ten students the opportunity to visit the University of Arizona to conduct STEM-based analytical work and training on Antarctic-based projects. Results from both the project and workshop will be disseminated through presentations at professional meetings, peer-reviewed publications, and through public outreach and media. The main objective of this project is to reconstruct a chronology of East Antarctic subglacial landscape evolution to understand the tectonic and climatic forcing behind landscape modification, and how it has influenced past ice sheet inception and dynamics. Our approach focuses on acquiring a record of the cooling and erosion history contained in East Antarctic-derived detrital mineral grains and clasts in offshore sediments deposited both before and after the onset of Antarctic glaciation. Samples will be taken from existing drill core and marine sediment core material from offshore Wilkes Land (100\u00b0E-160\u00b0E) and the Ross Sea. Multiple geo- and thermo-chronometers will be employed to reconstruct source region cooling history including U-Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar. This offshore record will be augmented and tested by applying the same methods to onshore bedrock samples in the Transantarctic Mountains obtained from the US Polar Rock Repository and through fieldwork. The onshore work will additionally address the debated incision history of the large glacial troughs that cut the range, now occupied by glaciers draining the East Antarctic Ice Sheet. This includes collection of samples from several age-elevation transects, apatite 4He/3He thermochronometry, and Pecube thermo-kinematic modeling. Acquiring an extensive geo- and thermo-chronologic database will also provide valuable new information on the poorly known ice-hidden geology and tectonics of subglacial East Antarctica that has implications for improving supercontinent reconstructions and understanding continental break-up.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "LABORATORY; LANDSCAPE; AGE DETERMINATIONS; FIELD INVESTIGATION; GLACIAL PROCESSES; Transantarctic Mountains; USA/NSF; Thermochronology; Amd/Us; USAP-DC; TRACE ELEMENTS; Provenance Analysis; AMD; LANDFORMS; GLACIAL LANDFORMS", "locations": "Transantarctic Mountains", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Thomson, Stuart; Reiners, Peter; Licht, Kathy", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: East Antarctic Glacial Landscape Evolution (EAGLE): A Study using Combined Thermochronology, Geochronology and Provenance Analysis", "uid": "p0010188", "west": null}, {"awards": "1245871 McCarthy, Christine", "bounds_geometry": null, "dataset_titles": "Dataset for Tidal modulation of ice streams: Effect of periodic sliding velocity on ice friction and healing; Rate-state friction parameters for ice-on-rock oscillation experiments; RSFitOSC", "datasets": [{"dataset_uid": "200237", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "RSFitOSC", "url": "https://github.com/rmskarbek/RSFitOSC"}, {"dataset_uid": "601497", "doi": "10.15784/601497", "keywords": "Antarctica", "people": "Savage, Heather; McCarthy, Christine M.; Skarbek, Rob", "repository": "USAP-DC", "science_program": null, "title": "Dataset for Tidal modulation of ice streams: Effect of periodic sliding velocity on ice friction and healing", "url": "https://www.usap-dc.org/view/dataset/601497"}, {"dataset_uid": "601467", "doi": "10.15784/601467", "keywords": "Antarctica", "people": "Savage, Heather; McCarthy, Christine M.; Skarbek, Rob", "repository": "USAP-DC", "science_program": null, "title": "Rate-state friction parameters for ice-on-rock oscillation experiments", "url": "https://www.usap-dc.org/view/dataset/601467"}], "date_created": "Fri, 04 Jun 2021 00:00:00 GMT", "description": "1245871/McCarthy This award supports a project to conduct laboratory experiments with a new, custom-fabricated cryo-friction apparatus to explore ice deformation oscillatory stresses like those experienced by tidewater glaciers in nature. The experimental design will explore the dynamic frictional properties of periodically loaded ice sliding on rock. Although the frictional strength of ice has been studied in the past these studies have all focused on constant rates of loading and sliding. The results of this work will advance understanding of ice stream dynamics by improving constraints on key material and frictional properties and allowing physics-based predictions of the amplitude and phase of glacier strain due to tidally induced stress variations. The intellectual merit of this work is that it will result in a better understanding of dynamic rheological parameters and will provide better predictive tools for dynamic glacier flow. The proposed experiments will provide dynamic material properties of ice and rock deformation at realistic frequencies experienced by Antarctic glaciers. The PIs will measure the full spectrum of material response from elastic to anelastic to viscous. The study will provide better constraints to improve predictive capability for glacier and ice-stream response to external forcing. The broader impacts of the work include providing estimates of material properties that can be used to broaden our understanding of glacier flow and that will ultimately be used for models of sea level rise and ice sheet stability. The ability to predict sea level in the near future is contingent on understanding of the processes responsible for flow of Antarctic ice streams and glaciers. Modulation of glacier flow by ocean tides represents a natural experiment that can be used to improve knowledge of ice and bed properties, and of the way in which these properties depend on time-varying forcings. Presently, the influence of tidal forcing on glacier movement is poorly understood, and knowledge of ice properties under tidal loading conditions is limited. The study will generate results of interest beyond polar science by examining phenomena that are of interest to seismology, glaciology and general materials science. The project will provide valuable research and laboratory experience for two undergraduate interns and will provide experience for the PI (currently a postdoc) in leading a scientific project. The three PIs are early career scientists. This proposal does not require fieldwork in the Antarctic.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; USA/NSF; Amd/Us; AMD; Ice Deformation; LABORATORY; BASAL SHEAR STRESS", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "McCarthy, Christine M.; Savage, Heather", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "GitHub", "repositories": "GitHub; USAP-DC", "science_programs": null, "south": null, "title": "Laboratory Study of Ice Deformation under Tidal Loading Conditions with Application to Antarctic Glaciers", "uid": "p0010186", "west": null}, {"awards": "1935438 McCarthy, Christine", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Thu, 03 Jun 2021 00:00:00 GMT", "description": "The ice sheets of Antarctica and Greenland are losing mass and contributing to accelerating global sea-level rise. Satellite altimetry provides precise measurement of ice-sheet volume change, but computing ice-sheet mass change\u2014the quantity relevant for estimating the ice sheet\u2019s sea-level contribution\u2014requires knowing the density of the ice sheet. The density near the ice-sheet surface also affects age estimates of air bubbles recovered in ice cores, which are a key source of information on past climate changes. Ice-sheet density is primarily controlled by the rate at which firn (snow that has persisted for a year or more on ice sheets) compacts into ice, but there is currently no widely accepted theory of how this compaction occurs. The goal of this project is thus to advance understanding of how firn densifies. The team will conduct laboratory experiments and analyze ice-penetrating radar and ice-core data from Antarctica. A key desired outcome of the project is a new model of firn densification that can be used to improve satellite-based altimetry measurements of present-day ice-sheet change and reconstructions of past climate changes from ice cores. This project will combine laboratory experiments, numerical modeling, and geophysical techniques to determine the rheology of firn as it compacts to form ice. The team will use two methods to measure firn compaction: (1) lab-based experiments and (2) analysis of ice-core and radar data. For the lab-based work, the team will conduct a suite of compaction experiments on synthetic firn samples under uni-axial strain and constant temperature and axial stress. They will also measure the grain-size evolution. By running a large number of experiments (\u003e 25), the team will constrain key parameters that determine how firn compaction rate depends on density, temperature, grain size, and axial stress. The experiments will be conducted in a table-top apparatus at temperatures as low as -40 degrees C and axial stresses up to 4 MPa. For the field-data-based component, the team will analyze ice-core and ice-penetrating radar data to produce the first coincident set of radar-derived firn compaction rates, borehole temperatures, firn densities, and firn grain sizes. Results from lab and field data will be tied together using a numerical firn compaction model. This model is formulated using conservation of mass, momentum, and energy, along with an explicit description of firn rheology and grain-size evolution. Constraints on firn rheology will be incorporated into this model and the team will use it to examine fundamental questions about how changes in the climate affect firn density. This is a crucial unknown that contributes significant measurement uncertainty in estimates of past and present climate change. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "AMD; LABORATORY; USA/NSF; COMPUTERS; USAP-DC; FIRN; Antarctic Ice Sheet; Amd/Us", "locations": "Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Arctic Natural Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "McCarthy, Christine M.; Kingslake, Jonathan", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "Understanding Firn Rheology Through Laboratory Compaction Experiments and Radar Data", "uid": "p0010185", "west": null}, {"awards": "1600823 Halzen, Francis; 2042807 Halzen, Francis; 0639286 Halzen, Francis; 0937462 Halzen, Francis", "bounds_geometry": "POINT(-180 -90)", "dataset_titles": "Amanda 7 Year Data Set; IceCube data releases", "datasets": [{"dataset_uid": "200374", "doi": "", "keywords": null, "people": null, "repository": "IceCube", "science_program": null, "title": "IceCube data releases", "url": "https://icecube.wisc.edu/science/data-releases/"}, {"dataset_uid": "601438", "doi": "10.15784/601438", "keywords": "Amanda-ii; Antarctica; Neutrino; Neutrino Candidate Events; Neutrino Telescope; South Pole", "people": "Halzen, Francis; Riedel, Benedikt", "repository": "USAP-DC", "science_program": "IceCube", "title": "Amanda 7 Year Data Set", "url": "https://www.usap-dc.org/view/dataset/601438"}], "date_created": "Wed, 07 Apr 2021 00:00:00 GMT", "description": "This award funds the continued management and operations (M\u0026O) of the IceCube Neutrino Observatory (ICNO) located at the South Pole Station. The core team of researchers and engineers maintain the existing ICNO infrastructure at the South Pole and home institution, guaranteeing an uninterrupted stream of scientifically unique, high-quality data. The M\u0026O activities are built upon eight highly successful years of managing the overall ICNO operations after the start of science operations in 2008. Construction of ICNO was supported by NSF\u0027s Major Research Equipment and Facilities Construction (MREFC) account and was completed on schedule and within budget in 2010. Effective coordination of efforts by the core M\u0026O personnel and efforts by personnel within the IceCube Collaboration has yielded significant increases in the performance of this cubic-kilometer detector over time. The scientific output from the IceCube Collaboration during the past five years has been outstanding. The broader impacts of the ICNO/M\u0026O activities are strong, involving postdoctoral, graduate, and (in some cases) undergraduate students in the day-today operation \u0026 calibration of the neutrino detector. The extraordinary physics results recently produced by ICNO and its extraordinary location at South Pole have a high potential to excite the imagination of high school children and the public in general at a national and international level. The current ICNO/M\u0026O effort produces better energy and angular resolution information about detected neutrino events, has more efficient data filters and more accurate detector simulations, and enables continuous software development for systems that are needed to acquire and analyze data. This has produced data acquisition and data management systems with high robustness, traceability, and maintainability. The current ICNO/M\u0026O effort includes: (1) resources for both distributed and centrally managed activities, and (2) additional accountability mechanisms for \"in-kind\" and institutional contributions. Both are necessary to ensure that the detector maintains its capability to produce quality scientific data at the level required to achieve the detector\u0027s scientific discovery objectives. Recent ICNO discoveries of cosmic high-energy neutrinos (some reaching energies close to and over 2.5 PeV) and oscillating atmospheric neutrinos in a previously unexplored energy range from 10 to 60 GeV became possible because of the \"state-of-the-art\" detector configuration, excellently supported infrastructure, and cutting-edge science analyses. The ICNO has set limits on Dark Matter annihilations, made precision measurements of the angular distribution of cosmic ray muons, and characterized in detail physical properties of the Antarctic 2.5-km thick ice sheet at South Pole. The discovery of high-energy cosmic neutrinos by IceCube with a flux at the level anticipated for those associated with high-energy gamma- and cosmic-ray accelerators brightens the prospect for identifying the sources of the highest energy particles.", "east": -180.0, "geometry": "POINT(-180 -90)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e ICECUBE", "is_usap_dc": true, "keywords": "USA/NSF; South Pole; OBSERVATORIES; Amd/Us; AMD; GLACIERS/ICE SHEETS; Icecube; Neutrino; USAP-DC", "locations": "South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Astrophysics and Geospace Sciences; Antarctic Astrophysics and Geospace Sciences; Antarctic Astrophysics and Geospace Sciences; Antarctic Astrophysics and Geospace Sciences", "paleo_time": null, "persons": "Halzen, Francis; Karle, Albrecht", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e OBSERVATORIES", "repo": "IceCube", "repositories": "IceCube; USAP-DC", "science_programs": "IceCube", "south": -90.0, "title": "Management and Operations of the IceCube Neutrino Observatory 2021-2026", "uid": "p0010168", "west": -180.0}, {"awards": "2317097 Venturelli, Ryan; 1738989 Venturelli, Ryan", "bounds_geometry": "POLYGON((-114 -74,-112.2 -74,-110.4 -74,-108.6 -74,-106.8 -74,-105 -74,-103.2 -74,-101.4 -74,-99.6 -74,-97.8 -74,-96 -74,-96 -74.2,-96 -74.4,-96 -74.6,-96 -74.8,-96 -75,-96 -75.2,-96 -75.4,-96 -75.6,-96 -75.8,-96 -76,-97.8 -76,-99.6 -76,-101.4 -76,-103.2 -76,-105 -76,-106.8 -76,-108.6 -76,-110.4 -76,-112.2 -76,-114 -76,-114 -75.8,-114 -75.6,-114 -75.4,-114 -75.2,-114 -75,-114 -74.8,-114 -74.6,-114 -74.4,-114 -74.2,-114 -74))", "dataset_titles": "200 MHz ground-penetrating radar from Winkie Nunatak, West Antarctica; Cosmogenic-Nuclide data at ICE-D; Firn and Ice Density at Winkie Nunatak; Ice-penetrating radar data from the northern embayment of the Mt. Murphy massif; Ice-penetrating radar data from the Thwaites Glacier grounding zone; In situ 14C data from a subglacial bedrock core near Pope and Thwaites glaciers; NBP1902 Expedition data; Pine Island Bay Relative Sea-Level Data", "datasets": [{"dataset_uid": "601860", "doi": "10.15784/601860", "keywords": "Antarctica; Cryosphere; Grounding Zone; Ice Penetrating Radar; Thwaites Glacier", "people": "Goehring, Brent; Balco, Greg; Campbell, Seth", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Ice-penetrating radar data from the Thwaites Glacier grounding zone", "url": "https://www.usap-dc.org/view/dataset/601860"}, {"dataset_uid": "601677", "doi": "10.15784/601677", "keywords": "Antarctica; Ice Penetrating Radar; Pine Island Glacier; Subglacial Bedrock", "people": "Braddock, Scott", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "200 MHz ground-penetrating radar from Winkie Nunatak, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/601677"}, {"dataset_uid": "601554", "doi": "10.15784/601554", "keywords": "Antarctica; Pine Island Bay; Radiocarbon; Raised Beaches", "people": "Braddock, Scott; Hall, Brenda", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Pine Island Bay Relative Sea-Level Data", "url": "https://www.usap-dc.org/view/dataset/601554"}, {"dataset_uid": "601834", "doi": "10.15784/601834", "keywords": "Antarctica; Cryosphere; Mount Murphy", "people": "Campbell, Seth; Balco, Greg; Goehring, Brent", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Ice-penetrating radar data from the northern embayment of the Mt. Murphy massif", "url": "https://www.usap-dc.org/view/dataset/601834"}, {"dataset_uid": "601838", "doi": "10.15784/601838", "keywords": "Antarctica; Cryosphere; Density; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Density; Ice Core Records; Snow/ice; Snow/Ice", "people": "Venturelli, Ryan", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Firn and Ice Density at Winkie Nunatak", "url": "https://www.usap-dc.org/view/dataset/601838"}, {"dataset_uid": "200296", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic-Nuclide data at ICE-D", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "601705", "doi": "10.15784/601705", "keywords": "Antarctica; Cosmogenic Radionuclides; Mount Murphy; Subglacial Bedrock", "people": "Balco, Gregory; Venturelli, Ryan; Goehring, Brent", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "In situ 14C data from a subglacial bedrock core near Pope and Thwaites glaciers", "url": "https://www.usap-dc.org/view/dataset/601705"}, {"dataset_uid": "200083", "doi": "10.7284/908147", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1902 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1902"}], "date_created": "Tue, 16 Mar 2021 00:00:00 GMT", "description": "This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. The Thwaites Glacier system dominates the contribution to sea-level rise from Antarctica. Predicting how this system will evolve in coming decades, and thereby its likely contribution to sea level, requires detailed understanding of how it has responded to changes in climate and oceanographic conditions in the past. This project will provide a record of regional sea-level change by establishing chronologies for raised marine beaches as well as the timing and duration of periods of retreat of Thwaites Glacier during the past 10,000 years by sampling and dating bedrock presently covered by Thwaites Glacier via subglacial drilling. Together with climatic and oceanographic conditions from other records, these will provide boundary conditions for past-to-present model simulations as well as those used to predict future glacier changes under a range of climate scenarios. Specifically, the project will test the hypothesis--implied by existing geological evidence from the region--that present rapid retreat of the Thwaites Glacier system is reversible. The team aims to utilize two approaches: 1. To reconstruct relative sea level during the Holocene, it will map and date raised marine and shoreline deposits throughout Pine Island Bay. Chronological constraints on sea-level change will be provided by radiocarbon dating of organic material in landforms and sediments that are genetically related to past sea level, such as shell fragments, bones of marine fauna, and penguin guano. 2. To obtain geological evidence for past episodes of grounding-line retreat, the team will apply cosmogenic-nuclide exposure-dating of subglacial bedrock. Using drill systems recently developed for subglacial bedrock recovery, the team will obtain subglacial bedrock from sites where ice thickness is dynamically linked to grounding-line position in the Thwaites system (specifically in the Hudson Mountains, and near Mount Murphy). Observation of significant cosmogenic-nuclide concentrations--the team will primarily measure Beryllium-10 and in situ Carbon-14--in these samples would provide direct, unambiguous evidence for past episodes of thinning linked to grounding-line retreat as well as constraints on their timing and duration. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -96.0, "geometry": "POINT(-105 -75)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; FIELD INVESTIGATION; GLACIERS/ICE SHEETS; GLACIAL LANDFORMS; LABORATORY; Amd/Us; USAP-DC; GLACIATION; Amundsen Sea; USA/NSF", "locations": "Amundsen Sea", "north": -74.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Goehring, Brent; Hall, Brenda; Campbell, Seth; Venturelli, Ryan A; Balco, Gregory", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "ICE-D; R2R; USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -76.0, "title": "NSF-NERC: Geological History Constraints on the Magnitude of Grounding Line Retreat in the Thwaites Glacier System", "uid": "p0010165", "west": -114.0}, {"awards": "2048351 Lindow, Julia", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 26 Feb 2021 00:00:00 GMT", "description": "Part I: Nontechnical Antarcticas ice sheets constitute the largest ice mass on Earth, with approximately 53 meters of sea level equivalent stored in the East Antarctic Ice Sheet alone. The history of the East Antarctic Ice Sheet is therefore important to understanding and predicting changes in sea level and Earths climate. There is conflicting evidence regarding long-term stability of the East Antarctic Ice Sheet, over the last twenty million years. To better understand past ice sheet changes, together with the history of the Transantarctic Mountains, accurate time scales are needed. One of the few dating methods applicable to the Antarctic glacial deposits, that record past ice sheet changes, is the measurement of rare isotopes produced by cosmic rays in surface rock samples, referred to as cosmogenic nuclides. Whenever a rock surface is exposed/free of cover, cosmic rays produce rare isotopes such as helium-3, beryllium-10, and neon-21within the minerals. This project will involve measurement of all three isotopes in some of the oldest glacial deposits found at high elevation in the Transantarctic Mountains. Because the amount of each isotope is directly linked to the exposure time, this can be used to calculate the age of a surface. This method requires knowledge of the rates that cosmic radiation produces each isotope, which depends upon mineral composition, and is presently a limitation of the method. The goal of this project is to advance and enhance existing measurement methods and expand the range of possibilities in surface dating with new measurements of all three isotopes in pyroxene, a mineral that is commonly found throughout the Transantarctic Mountains. This technological progress will allow a better application of the surface exposure dating method, which in turn will help to reconstruct Antarctic ice sheet history and provide valuable knowledge of former ice-extent. Understanding Antarcticas ice-sheet history is crucial to predict its influence on past and future sea level changes. Part II: Technical Description Measurements of in-situ produced cosmogenic nuclides in Antarctic surficial rock samples provide unique time scales for glacial and landscape evolution processes. However, due to analytical challenges, pyroxene-bearing and widely distributed lithologies like the Ferrar dolerite of the Transantarctic Mountains, are underutilized. This proposal aims to changes this and to improve the cosmogenic nuclide methodologies for stable isotopes (21Ne and 3He) and radioactive nuclides (10Be) in pyroxenes. Proposed methodological improvements will be directly applicable to erosion rates and deposition ages of important glacial deposits, such as the controversial Sirius Group tills, and also to younger glacial features. Bennett Platform is the focus of this study because it is one of the southern-most Sirius Group outcrops along the Transantarctic Mountains, where cosmogenic ages are sparse. Preliminary measurements demonstrate large discrepancies between 3He and 21Ne age determinations in Sirius Group pyroxenes. One possible explanation is composition dependence of the 21Ne production rates. Coupled measurements of 3He, 21Ne, and 10Be in well-characterized pyroxene mineral separates from Ferrar dolerite will be used to better constrain the production rates, major element and trace element dependencies, the assumptions of the method, and ultimately advance the application of cosmogenic nuclides to mafic Antarctic lithologies. The main goals of this study are to improve measurement protocols for 10Be in pyroxene, and the determination of the composition dependence of 21Ne production rates by measuring mineral compositions (by electron microprobe), and nuclide concentrations in mineral pairs from young lava flows. Further aims are the validation of the nucleogenic contributions and the effects of helium diffusive loss through measurements of 3He/21Ne production ratios, combined with measurements of shielded samples of the Ferrar dolerite. Combined measurements of 3He, 21Ne and 10Be in pyroxenes have rarely been published for individual samples in Antarctica. The new and unique measurements of this study will advance the applicability of in-situ produced cosmogenic nuclides to both young and ancient Antarctic surfaces. The study will be performed using existing samples: no field work is requested. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; AMD; FIELD INVESTIGATION; LABORATORY; Transantarctic Mountains; USAP-DC; GLACIAL LANDFORMS; Amd/Us", "locations": "Transantarctic Mountains", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Lindow, Julia; Kurz, Mark D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "New Cosmogenic 21Ne and 10Be Measurements in the Transantarctic Mountains", "uid": "p0010163", "west": null}, {"awards": "1443144 Steig, Eric; 1443448 Schaefer, Joerg", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Simulations of 10Be over Antarctica; South Pole ice Core 10Be CE", "datasets": [{"dataset_uid": "601431", "doi": "10.15784/601431", "keywords": "Antarctica; South Pole", "people": "Steig, Eric J.; Ding, Qinghua; Schaefer, Joerg", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Simulations of 10Be over Antarctica", "url": "https://www.usap-dc.org/view/dataset/601431"}, {"dataset_uid": "601535", "doi": "10.15784/601535", "keywords": "Antarctica; South Pole", "people": "Schaefer, Joerg", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole ice Core 10Be CE", "url": "https://www.usap-dc.org/view/dataset/601535"}], "date_created": "Thu, 04 Feb 2021 00:00:00 GMT", "description": "This project will acquire measurements of the concentration of beryllium-10 (10Be) from an ice core from the South Pole, Antarctica. An isotope of the element beryllium, 10Be, is produced in the atmosphere by high-energy protons (cosmic rays) that enter Earth\u0027s atmosphere from space. It is removed from the atmosphere by settling or by scavenging by rain or snowfall. Hence, concentrations of 10Be in snow at the South Pole reflect the production rate of 10Be in the atmosphere. Because the rate of production of 10Be over Antarctica depends primarily on the strength of the Sun\u0027s magnetic field, measurements of 10Be in the South Pole ice core will provide a record of changes in solar activity. The South Pole ice core will reach an age of 40,000 years at the bottom. The project will result in measurements of 10Be at annual resolution for the last 100 years and selected periods in the more distant past, such as the Maunder Minimum, a period during the late 17th century during which no sunspots were observed, or the last glacial cold period, about 20,000 years ago. A climate model that can simulate the production of 10Be in the atmosphere, it\u0027s transport through the atmosphere, and its deposition at the snow surface in Antarctica will be used to aid in using the 10Be data to determine past changes in solar activity from decadal to millennial scale, and in turn to evaluate the role of the Sun in Earth?s climate from a new perspective. The production of 10Be in Earth\u0027s atmosphere results from the spallation of oxygen and nitrogen in the atmosphere by cosmic rays. Cosmic ray variations in the high latitudes are primarily modulated by solar variability. Time-series records of 10Be from ice cores are therefore important for deriving variations in solar activity through time, which is fundamental to understanding climate variability. Deposition of 10Be to the ice surface is also influenced by variability in atmospheric circulation and deposition processes, and South Pole is the best available location for minimizing the influence of variable atmospheric circulation on 10Be deposition. To date, only one record of 10Be exists from South Pole; that record is widely used in solar forcing estimates used in climate models, but covers only the last millennium and ends in CE 1982. We will obtain 10Be concentration measurements in a 1500-m, 40000-year long ice core from the South Pole. This will extend the existing record both further back in time and forward to the present, providing overlap with the modern instrumental record of solar and climate variability. High resolution (annual to biannual) measurements will be made in targeted areas of interest, including the last 100 years, the Maunder Minimum (CE 1650-1715), and the last glacial maximum. The novel data will be used in conjunction with climate model experiments that incorporate 10Be production, transport, and deposition physics. Together, data and modeling will create an updated record of atmospheric 10Be production and hence of solar activity.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "COSMIC RAYS; LABORATORY; BERYLLIUM-10 ANALYSIS; SNOW/ICE; South Pole; GLACIERS; ICE CORE RECORDS", "locations": "South Pole", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Schaefer, Joerg; Steig, Eric J.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: A High-sensitivity Beryllium-10 Record from an Ice Core at South Pole", "uid": "p0010158", "west": -180.0}, {"awards": "1842049 Kim, Sora; 1842059 Huber, Matthew; 1842176 Bizimis, Michael; 1842115 Jahn, Alexandra", "bounds_geometry": "POLYGON((-56.693516 -64.209061,-56.6823452 -64.209061,-56.6711744 -64.209061,-56.6600036 -64.209061,-56.6488328 -64.209061,-56.637662 -64.209061,-56.6264912 -64.209061,-56.6153204 -64.209061,-56.6041496 -64.209061,-56.5929788 -64.209061,-56.581808 -64.209061,-56.581808 -64.2143344,-56.581808 -64.2196078,-56.581808 -64.2248812,-56.581808 -64.2301546,-56.581808 -64.235428,-56.581808 -64.2407014,-56.581808 -64.2459748,-56.581808 -64.2512482,-56.581808 -64.2565216,-56.581808 -64.261795,-56.5929788 -64.261795,-56.6041496 -64.261795,-56.6153204 -64.261795,-56.6264912 -64.261795,-56.637662 -64.261795,-56.6488328 -64.261795,-56.6600036 -64.261795,-56.6711744 -64.261795,-56.6823452 -64.261795,-56.693516 -64.261795,-56.693516 -64.2565216,-56.693516 -64.2512482,-56.693516 -64.2459748,-56.693516 -64.2407014,-56.693516 -64.235428,-56.693516 -64.2301546,-56.693516 -64.2248812,-56.693516 -64.2196078,-56.693516 -64.2143344,-56.693516 -64.209061))", "dataset_titles": "Data from: Probing the ecology and climate of the Eocene Southern Ocean with sand tiger sharks Striatolamia macrota", "datasets": [{"dataset_uid": "200183", "doi": "https://doi.org/10.6071/M34T1Z", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Data from: Probing the ecology and climate of the Eocene Southern Ocean with sand tiger sharks Striatolamia macrota", "url": "https://datadryad.org/stash/dataset/doi:10.6071/M34T1Z"}], "date_created": "Tue, 15 Dec 2020 00:00:00 GMT", "description": "The Earth\u0027s climate has changed through time and during the Eocene Epoch (56 to 34 million years ago) there was a transition from \u0027greenhouse\u0027 to \u0027icehouse\u0027 conditions. During the Eocene, a shift to cooler temperatures at high latitudes resulted in the inception of polar glaciation. This in turn affected the environment for living organisms. This project looks to uncover the interaction between biological, oceanographic, and climate systems for the Eocene in Antarctica using chemical analysis of fossil shark teeth collected during past expeditions. The combination of paleontological and geochemical analyses will provide insight to the past ecology and ocean conditions; climate models will be applied to test the role of tectonics, greenhouse gas concentration and ocean circulation on environmental change during this time period. The study contributes to understanding the interaction of increased atmospheric carbon dioxide and ocean circulation. This project also seeks to improve diversity, equity, and inclusion within the geosciences workforce with efforts targeted to undergraduate, graduate, postdoctoral, and early career faculty. The research goal is to elucidate the processes leading from the Eocene greenhouse to Oligocene icehouse conditions. Previous explanations for this climate shift centers on Antarctica, where tectonic configurations influenced oceanic gateways, ocean circulation reduced heat transport, and/or greenhouse gas declines prompted glaciation. The team will reconstruct watermass, current, and climate fluctuations proximal to the Antarctic Peninsula using geochemical indicators (oxygen and neodymium isotope composition) from fossil shark teeth collected from Seymour Island. The approach builds on previous shark paleontological studies, incorporates geochemical analyses for environmental reconstruction (i.e., temperature gradients and ocean circulation), and tests hypotheses on Earth System dynamics using novel global climate model simulations with geochemical tracers. This project will advance global climate modeling capabilities with experiments that consider Eocene tectonic configuration within isotope-enabled climate model simulations. A comparison of geochemical results from Eocene climate simulations and empirical records of shark teeth will reveal processes and mechanisms central to the Eocene Antarctic climatic shift. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -56.581808, "geometry": "POINT(-56.637662 -64.235428)", "instruments": null, "is_usap_dc": true, "keywords": "FISH; USA/NSF; OXYGEN ISOTOPE ANALYSIS; WATER MASSES; Amd/Us; AMD; USAP-DC; OXYGEN ISOTOPES; LABORATORY; Seymour Island; Sharks; Striatolamia Macrota", "locations": "Seymour Island", "north": -64.209061, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e PALEOGENE \u003e EOCENE", "persons": "Kim, Sora; Scher, Howard; Huber, Matthew; Jahn, Alexandra", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "Dryad", "repositories": "Dryad", "science_programs": null, "south": -64.261795, "title": "Collaborative Research: Integrating Eocene Shark Paleoecology and Climate Modeling to reveal Southern Ocean Circulation and Antarctic Glaciation", "uid": "p0010146", "west": -56.693516}, {"awards": "1644196 Cziko, Paul", "bounds_geometry": "POLYGON((163.47 -77.14,163.803 -77.14,164.136 -77.14,164.469 -77.14,164.802 -77.14,165.135 -77.14,165.468 -77.14,165.801 -77.14,166.134 -77.14,166.467 -77.14,166.8 -77.14,166.8 -77.216,166.8 -77.292,166.8 -77.368,166.8 -77.444,166.8 -77.52,166.8 -77.596,166.8 -77.672,166.8 -77.748,166.8 -77.824,166.8 -77.9,166.467 -77.9,166.134 -77.9,165.801 -77.9,165.468 -77.9,165.135 -77.9,164.802 -77.9,164.469 -77.9,164.136 -77.9,163.803 -77.9,163.47 -77.9,163.47 -77.824,163.47 -77.748,163.47 -77.672,163.47 -77.596,163.47 -77.52,163.47 -77.444,163.47 -77.368,163.47 -77.292,163.47 -77.216,163.47 -77.14))", "dataset_titles": "High-resolution nearshore benthic seawater temperature from around McMurdo Sound, Antarctica (2017-2019); Long-Term broadband underwater acoustic recordings from McMurdo Sound, Antarctica (2017-2019); Long-term underwater images from around a single mooring site in McMurdo Sound, Antarctica (2017-2019)", "datasets": [{"dataset_uid": "601420", "doi": "10.15784/601420", "keywords": "Antarctica; Benthic Ecology; CTD; Depth; McMurdo Sound; Oceanography; Oceans; Physical Oceanography; Pressure; Salinity; Seawater Measurements; Seawater Temperature; Supercooling; Tides", "people": "Cziko, Paul", "repository": "USAP-DC", "science_program": null, "title": "High-resolution nearshore benthic seawater temperature from around McMurdo Sound, Antarctica (2017-2019)", "url": "https://www.usap-dc.org/view/dataset/601420"}, {"dataset_uid": "601416", "doi": "10.15784/601416", "keywords": "Antarctica; Bioacoustics; Biota; Hydroacoustics; Killer Whales; Leptonychotes Weddellii; McMurdo Sound; Oceans; Orcinus Orca; Sea Ice; Weddell Seal; Whales", "people": "Cziko, Paul", "repository": "USAP-DC", "science_program": null, "title": "Long-Term broadband underwater acoustic recordings from McMurdo Sound, Antarctica (2017-2019)", "url": "https://www.usap-dc.org/view/dataset/601416"}, {"dataset_uid": "601417", "doi": "10.15784/601417", "keywords": "Antarctica; Benthic Ecology; Benthic Invertebrates; Biota; McMurdo Sound; Notothenioid; Notothenioid Fishes; Photo/video; Photo/Video; Rocky Reef Community; Soft-Bottom Community; Timelaps Images", "people": "Cziko, Paul", "repository": "USAP-DC", "science_program": null, "title": "Long-term underwater images from around a single mooring site in McMurdo Sound, Antarctica (2017-2019)", "url": "https://www.usap-dc.org/view/dataset/601417"}], "date_created": "Tue, 15 Dec 2020 00:00:00 GMT", "description": "Notothenioid fishes live in the world\u0027s coldest marine waters surrounding Antarctica and have evolved strategies to avoid freezing. Past studies have shown that most Antarctic notothenioids produce special antifreeze proteins that prevent the growth of ice crystals that enter the body. While these proteins help prevent individuals from being killed by growing ice crystals, it is unclear how these fish avoid the accumulation of these small ice crystals inside their tissues over time. This project will observe how ice crystal accumulation relates to the harshness of the fish\u0027s habitat and the fish\u0027s behavior within different habitats of McMurdo Sound, Antarctica. The researchers will collect fishes and ocean observations at different field sites that cover a range of habitat severity in terms of temperature and iciness. Researchers will install an underwater ocean observatory near McMurdo Station which will include a HD video camera and hydrophone. The observatory will allow continuous monitoring of ocean conditions and fish behavior that will help explain the conditions and behaviors that contribute to the acquisition and accrual of ice inside the body. Acoustic and video data from the observatory will be available to other scientists and to the public. The project will advance understanding of the many challenges life faces in extreme cold environments. This work continues a line of inquiry that has resulted in the discovery of potential medical and food preservation applications. Hundreds of antifreeze protein (AFP) structure-function studies have been conducted in the laboratory, providing a basic physical understanding of the AFP-ice interaction. How AFPs function within fishes and their range of environments, however, is far from clear. This project will provide an understanding of notothenioid\u0027s freezing avoidance mechanisms, and strategies by quantifying the acquisition, accumulation, and loss of internal ice crystals. Specifically, the goal is to determine if and how habitat severity (as defined by iciness, seawater temperature, and prevalence of supercooled water) and fish behavior influence the abundance of ice crystals in their tissues. Four locations in the McMurdo Sound with different levels of habitat severity will be sampled for oceanographic conditions and ice crystal count within fish tissues. Researchers will use a new technique to count the number of splenic ice crystals, expanding on and simplifying previous methods. Environmental data loggers will be deployed for the duration of the project at the four sites to provide context and real-time assessment of environmental conditions. An oceanographic observatory near McMurdo Station will provide year-round, real-time and archival records of oceanographic conditions, in situ video observations of anchor ice growth and ice-organism interactions, hydroacoustic recordings, and serve as proof-of concept for expanding scientific infrastructure in McMurdo Sound related to monitoring of supercooled waters and oceanographic information.", "east": 166.8, "geometry": "POINT(165.135 -77.52)", "instruments": null, "is_usap_dc": true, "keywords": "Benthic Ecology; ANIMALS/VERTEBRATES; USA/NSF; OCEAN TEMPERATURE; USAP-DC; MAMMALS; FIELD INVESTIGATION; Amd/Us; McMurdo Sound; FISH; AMD", "locations": "McMurdo Sound", "north": -77.14, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Cziko, Paul; DeVries, Arthur", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes", "uid": "p0010147", "west": 163.47}, {"awards": "1341736 Adams, Byron", "bounds_geometry": "POLYGON((-177.4099 -84.4661,-177.08229 -84.4661,-176.75468 -84.4661,-176.42707 -84.4661,-176.09946 -84.4661,-175.77185 -84.4661,-175.44424 -84.4661,-175.11663000000001 -84.4661,-174.78902 -84.4661,-174.46141 -84.4661,-174.1338 -84.4661,-174.1338 -84.56828,-174.1338 -84.67045999999999,-174.1338 -84.77264,-174.1338 -84.87482,-174.1338 -84.977,-174.1338 -85.07918,-174.1338 -85.18136,-174.1338 -85.28354,-174.1338 -85.38571999999999,-174.1338 -85.4879,-174.46141 -85.4879,-174.78902 -85.4879,-175.11663000000001 -85.4879,-175.44424 -85.4879,-175.77185 -85.4879,-176.09946 -85.4879,-176.42707 -85.4879,-176.75468 -85.4879,-177.08229 -85.4879,-177.4099 -85.4879,-177.4099 -85.38571999999999,-177.4099 -85.28354,-177.4099 -85.18136,-177.4099 -85.07918,-177.4099 -84.977,-177.4099 -84.87482,-177.4099 -84.77264,-177.4099 -84.67045999999999,-177.4099 -84.56828,-177.4099 -84.4661))", "dataset_titles": "Dataset DS-TAMS: Genetic diversity of Collembola from the Transantarctic Mountains; GenBank accession numbers MN619477 to MN619610; Meteoric 10Be data of soils from the Shackleton Glacier region; Shackleton Glacier region soil water-soluble geochemical data; Shackleton Glacier region water-soluble salt isotopes; Soil invertebrate surveys from the Shackleton Glacier region of Antarctica during the 2017-2018 austral summer", "datasets": [{"dataset_uid": "601419", "doi": "10.15784/601419", "keywords": "Antarctica; Geochemistry; Nitrate; Shackleton Glacier; Stable Isotopes; Sulfate; Transantarctic Mountains", "people": "Gardner, Christopher B.; Lyons, W. Berry; Diaz, Melisa A.", "repository": "USAP-DC", "science_program": null, "title": "Shackleton Glacier region water-soluble salt isotopes", "url": "https://www.usap-dc.org/view/dataset/601419"}, {"dataset_uid": "200174", "doi": "10.5883/DS-TAMS", "keywords": null, "people": null, "repository": "Barcode of Life Datasystems (BOLD)", "science_program": null, "title": "Dataset DS-TAMS: Genetic diversity of Collembola from the Transantarctic Mountains", "url": "http://dx.doi.org/10.5883/DS-TAMS"}, {"dataset_uid": "200175", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "GenBank accession numbers MN619477 to MN619610", "url": "https://www.ncbi.nlm.nih.gov/nuccore/MN619477"}, {"dataset_uid": "200258", "doi": "doi:10.6073/pasta/7959821e5f6f8d56d94bb6a26873b3ae", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "Soil invertebrate surveys from the Shackleton Glacier region of Antarctica during the 2017-2018 austral summer", "url": "https://doi.org/10.6073/pasta/7959821e5f6f8d56d94bb6a26873b3ae"}, {"dataset_uid": "601418", "doi": "10.15784/601418", "keywords": "Antarctica; Geochemistry; Shackleton Glacier", "people": "Diaz, Melisa A.; Lyons, W. Berry; Gardner, Christopher B.", "repository": "USAP-DC", "science_program": null, "title": "Shackleton Glacier region soil water-soluble geochemical data", "url": "https://www.usap-dc.org/view/dataset/601418"}, {"dataset_uid": "601421", "doi": "10.15784/601421", "keywords": "Antarctica; Be-10; Beryllium-10; Cosmogenic Radionuclides; Geochemistry; Geomorphology; Shackleton Glacier; Surface Exposure Dates", "people": "Diaz, Melisa A.", "repository": "USAP-DC", "science_program": null, "title": "Meteoric 10Be data of soils from the Shackleton Glacier region", "url": "https://www.usap-dc.org/view/dataset/601421"}], "date_created": "Mon, 02 Nov 2020 00:00:00 GMT", "description": "The project will characterize the functional, taxonomic, biotic and abiotic drivers of soil ecosystems in the Trans Antarctic Mountains (one of the most remote and harsh terrestrial landscapes on the planet). The work will utilize new high-throughput DNA and RNA sequencing technologies to identify members of the microbial communities and determine if the microbial community structures are independent of local environmental heterogeneities. In addition the project will determine if microbial diversity and function are correlated with time since the last glacial maximum (LGM). The expected results will greatly contribute to our knowledge regarding rates of microbial succession and help define the some of the limits to life and life-maintaining processes on Earth. The project will analyze genomes and RNA derived from these genomes to describe the relationships between biodiversity and ecosystem functioning from soils above and below LGM elevations and to correlate these with the environmental drivers associated with their development during the last ~18,000 years. The team will identify the taxonomic diversity and the functional genetic composition within a broad suite of soil biota and examine their patterns of assembly and distribution within the framework of their geological legacies. The project will mentor participants from undergraduate students to postdoctoral researchers and prepare them to effectively engage in research to meet their career aspirations. The project will contribute to ongoing public education efforts through relationships with K-12 teachers and administrators- to include University-Public School partnerships. Less formal activities include public lecture series and weblogs aimed at providing information on Antarctic polar desert ecosystems to the general public. Targeted classrooms near each PI\u0027s institution will participate in online, real-time discussions about current topics in Antarctic ecosystems research.", "east": -174.1338, "geometry": "POINT(-175.77185 -84.977)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; LABORATORY; AMD; Amd/Us; USA/NSF; TERRESTRIAL ECOSYSTEMS; Transantarctic Mountains; USAP-DC", "locations": "Transantarctic Mountains", "north": -84.4661, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Adams, Byron; Fierer, Noah; Wall, Diana; Diaz, Melisa A.; Gardner, Christopher B.; Lyons, W. Berry", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "Barcode of Life Datasystems (BOLD); EDI; NCBI GenBank; USAP-DC", "science_programs": null, "south": -85.4879, "title": "Collaborative Research: The Role of Glacial History on the Structure and Functioning of Ecological Communities in the Shackleton Glacier Region of the Transantarctic Mountains", "uid": "p0010140", "west": -177.4099}, {"awards": "1643798 Emry, Erica; 1643873 Hansen, Samantha", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "GEOSCOPE Network; IU: Global Seismograph Network; Shear Wave Velocity of the Antarctic Upper Mantle from Full Waveform Inversion and Long Period Ambient Seismic Noise; XP (2000-2004): A Broadband Seismic Investigation of Deep Continental Structure Across the East-West Antarctic Boundary ; YT (2007-2023): IPY POLENET-Antarctica: Investigating links between geodynamics and ice sheets; ZJ (2012-2015): Transantarctic Mountains Northern Network ; ZM (2007-2013): A Broadband Seismic Experiment to Image the Lithosphere beneath the Gamburtsev Mountains, East Antarctica", "datasets": [{"dataset_uid": "200168", "doi": "10.18715/GEOSCOPE.G", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "GEOSCOPE Network", "url": "http://geoscope.ipgp.fr/networks/detail/G/"}, {"dataset_uid": "200172", "doi": "10.7914/SN/ZM_2007", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": " ZM (2007-2013): A Broadband Seismic Experiment to Image the Lithosphere beneath the Gamburtsev Mountains, East Antarctica", "url": "http://www.fdsn.org/networks/detail/ZM_2007/"}, {"dataset_uid": "200169", "doi": "10.7914/SN/IU", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IU: Global Seismograph Network", "url": "http://www.fdsn.org/networks/detail/IU/"}, {"dataset_uid": "200171", "doi": "10.7914/SN/YT_2007", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "YT (2007-2023): IPY POLENET-Antarctica: Investigating links between geodynamics and ice sheets", "url": "http://www.fdsn.org/networks/detail/YT_2007/"}, {"dataset_uid": "601909", "doi": "10.15784/601909", "keywords": "Ambient Seismic Noise; Antarctica; Cryosphere; Full-Waveform Inversion; Seismic Tomography; Shear Wave Velocity", "people": "Emry, Erica; Hansen, Samantha", "repository": "USAP-DC", "science_program": null, "title": "Shear Wave Velocity of the Antarctic Upper Mantle from Full Waveform Inversion and Long Period Ambient Seismic Noise", "url": "https://www.usap-dc.org/view/dataset/601909"}, {"dataset_uid": "200170", "doi": "10.7914/SN/XP_2000", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "XP (2000-2004): A Broadband Seismic Investigation of Deep Continental Structure Across the East-West Antarctic Boundary ", "url": "http://www.fdsn.org/networks/detail/XP_2000/"}, {"dataset_uid": "200173", "doi": "10.7914/SN/ZJ_2012", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "ZJ (2012-2015): Transantarctic Mountains Northern Network ", "url": "http://www.fdsn.org/networks/detail/ZJ_2012/"}], "date_created": "Thu, 15 Oct 2020 00:00:00 GMT", "description": "Nontechnical description of proposed research: This project will apply cutting-edge seismic imaging methods to existing seismic data to study the three-dimensional structure of the Earth beneath the ice-covered Antarctic continent. The study will improve understanding of Earth structure and hotspots and geologically recent and ancient rift systems. The results will be useful for models of ice movement and bedrock elevation changes due to variation in ice sheet thickness. The results will also help guide future seismic data collection. The researchers will transfer existing software from the high-performance computers at The University of Rhode Island to the Alabama supercomputer facilities. The project will also broaden public understanding of scientific research in Antarctica by engaging with the students and teachers in Socorro County, New Mexico to discuss career opportunities in science, technology, engineering, and mathematics (STEM), the Earth Sciences, and the importance of computers in scientific research. Project personnel from Alabama will visit Socorro and share research with students at New Mexico Tech and at the Socorro High School. The project will also train undergraduate and graduate students in the expanding field of computational seismology, by applying these approaches to study Antarctic geology. Technical description of proposed research: The project seeks to better resolve the three-dimensional Antarctic mantle structure and viscosity and to identify locations of ancient rifts within the stable East Antarctic lithosphere. To accomplish this, the researchers will utilize full-waveform tomographic inversion techniques that combine long-period ambient noise data with earthquake constraints to more accurately resolve structure than traditional tomographic approaches. The proposed research will be completed using the Alabama supercomputer facilities and the programs and methodology developed at The University of Rhode Island. The new tomographic results will be useful in assessing lithospheric structure beneath Dronning Maud Land as well as the Wilkes and Aurora Subglacial Basins in East Antarctica, where previous rifting episodes and mid-lithospheric discontinuities will be explored. In West Antarctica, the work will elucidate the easternmost extent of the West Antarctic Rift System as well as rifted structure and possible compositional variations within the Weddell Sea. The accuracy of existing Antarctic seismic models will be quantified through model validation approaches. The researchers will highlight regions of Antarctica where tomographic resolution is still lacking and where future deployments would improve resolution.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": true, "keywords": "SEISMIC SURFACE WAVES; USA/NSF; USAP-DC; SEISMOLOGICAL STATIONS; Amd/Us; AMD; POLNET; TECTONICS; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Emry, Erica; Hansen, Samantha", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS", "repo": "IRIS", "repositories": "IRIS; USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Imaging Seismic Heterogeneity within the Antarctic Mantle with Full Waveform Ambient Noise Tomography", "uid": "p0010139", "west": -180.0}, {"awards": "1542885 Dunham, Eric", "bounds_geometry": null, "dataset_titles": "Earthquake Sequence Dynamics at the Interface Between an Elastic Layer and Underlying Half-Space in Antiplane Shear", "datasets": [{"dataset_uid": "601320", "doi": "10.15784/601320", "keywords": "Antarctica; Computer Model; Glaciology; Model Data; Shear Stress; Solid Earth; Whillans Ice Stream", "people": "Abrahams, Lauren", "repository": "USAP-DC", "science_program": null, "title": "Earthquake Sequence Dynamics at the Interface Between an Elastic Layer and Underlying Half-Space in Antiplane Shear", "url": "https://www.usap-dc.org/view/dataset/601320"}], "date_created": "Fri, 09 Oct 2020 00:00:00 GMT", "description": "This project investigates a rapidly moving section of the West Antarctic Ice Sheet known as the Whillans Ice Stream. Ice streams and outlet glaciers are the major pathways for ice discharge from ice sheets into the ocean. Consequently, understanding ice stream dynamics, specifically the processes controlling the frictional resistance of ice sliding on sediments at its base, is essential for predictive modeling of how Earth\u0027s ice sheets will respond to a changing climate. Rather than flowing smoothly, Whillans Ice Stream advances in stick-slip cycles: brief periods of rapid sliding, equivalent to magnitude 7 earthquakes, alternating with much longer periods of repose. The PIs will perform simulations of these stick-slip cycles using computer codes originally developed for modeling tectonic earthquakes. By matching observed ice motions, the PIs will constrain the range of frictional processes acting at the base of the ice stream. An additional focus of the project is on brittle fracture processes in ice, expressed through seismic waves radiated by faulting and/or crevassing episodes that accompany the large-scale sliding events. An understanding of ice fracture provides a basis for assessing the susceptibility of ice shelves to rifting and catastrophic disintegration. Project results will be incorporated into outreach activities (from elementary school to community college events) as well as a polar science class for the California State Summer School for Mathematics and Science (COSMOS) program for high school students. Simulations of the stick-slip cycle will employ 3D dynamic rupture models that simultaneously solve for the seismic wavefield and rupture process, consistent with elastodynamic material response and friction laws on the ice stream bed. Stresses and frictional properties will be varied to achieve consistency with surface GPS and broadband seismic data as well as borehole seismograms from the WISSARD project. The results will be interpreted using laboratory till friction experiments, which link velocity-weakening/strengthening behavior to temperature and water content, and to related experiments quantifying basal drag from ice flow over rough beds. The source mechanism of seismicity accompanying the slip events (shear faulting versus crevassing) will be determined using 3D waveform modeling in conjunction with mechanical models of the seismic source processes. This proposal does not require fieldwork in the Antarctic.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": true, "keywords": "SEISMIC PROFILE; AMD; Antarctica; GROUND-BASED OBSERVATIONS; USA/NSF; USAP-DC; Amd/Us", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Dunham, Eric", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Characterizing Brittle Failure and Fracture Propagation in Fast Ice Sliding with Dynamic Rupture Models based on Whillans Ice Stream Seismic/Geodetic Data", "uid": "p0010138", "west": null}, {"awards": "1141411 Baker, Ian", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Laboratory Experiments with H2SO4-Doped Ice; The Effects of Soluble Impurities on the Flow and Fabric of Polycrystalline Ice", "datasets": [{"dataset_uid": "601081", "doi": "10.15784/601081", "keywords": null, "people": "Hammonds, Kevin", "repository": "USAP-DC", "science_program": null, "title": "Laboratory Experiments with H2SO4-Doped Ice", "url": "https://www.usap-dc.org/view/dataset/601081"}, {"dataset_uid": "600380", "doi": "10.15784/600380", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Physical Properties; Snow", "people": "Baker, Ian", "repository": "USAP-DC", "science_program": null, "title": "The Effects of Soluble Impurities on the Flow and Fabric of Polycrystalline Ice", "url": "https://www.usap-dc.org/view/dataset/600380"}], "date_created": "Fri, 09 Oct 2020 00:00:00 GMT", "description": "Baker/1141411 This award supports a project to undertake a systematic examination of the effects of soluble impurities, particularly sulfuric acid, on the creep of polycrystalline ice as function of temperature, strain rate and impurity concentration. The working hypothesis is that soluble impurities will increase the flow rate of polycrystalline ice compared to high-purity ice, that this effect will be temperature dependent and that the impurities by affecting the re-crystallization and grain growth will change the fabric of the ice. Both H2SO4-doped and high-purity poly-crystalline ice will be produced by freezing sheets of ice, breaking them up, sieving the ice particles and then sintering them in a mold into fine-grained cylindrical specimens with at least ten grains across their diameter. The resulting microstructures (dislocation structure, grain size and shape, grain boundary character and micro-structural location of the acid) will be characterized using a variety of techniques including: optical microscopy, scanning electron microscopy, including secondary electron imaging, electron backscattered patterns, energy dispersive X-ray spectroscopy, electron channeling contrast imaging, and X-ray topography. The creep of both the H2SO4-doped and the high-purity polycrystalline ice will be undertaken at a range of temperatures and stresses. The ice?s response to the creep deformation (grain boundary sliding, dislocation motion, re-crystallization, grain boundary migration, impurity redistribution) will be studied using a combination of methods. The creep behavior will be modeled and related to the microstructure. Of particular interest is how impurities affect the activation energy for creep. The intellectual merit of the work is that it will lead to a better understanding of glacier ice and will enable glaciologists to model the influence of impurities on the flow and fabric development in polycrystalline ice. The broader impacts of the project include the knowledge that will be gained of the effects of impurities on the flow of ice which will allow paleoclimatologists to better interpret ice core data and will allow scientists developing predictive models to better address the flow of ice sheets under various climate change scenarios. The project will also lead to the education and training of a Ph.D. student, several undergraduates and some high school students. Results from the research will be published in refereed journals. Several undergraduates, typically two per year, will also perform the work. Dartmouth aggressively courts minority students at all degree levels, and we will seek women or minority group undergraduates for this project. The undergraduates will be supported by Dartmouth?s nationally-honored Women In Science Project or by REU funding. The undergraduates? research will integrate closely with the Ph.D. student?s studies. Hanover High School students will also be involved in the project and develop an educational kit to introduce students to the properties of ice. Results from the research will be published in refereed journals and presented at conferences.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; USAP-DC; SNOW/ICE; Amd/Us; LABORATORY; Antarctica; AMD", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Baker, Ian", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "The Effects of Soluble Impurities on the Flow and Fabric of Polycrystalline Ice", "uid": "p0010133", "west": -180.0}, {"awards": "1443433 Licht, Kathy; 1443213 Kaplan, Michael", "bounds_geometry": "POLYGON((159 -83.8,159.5 -83.8,160 -83.8,160.5 -83.8,161 -83.8,161.5 -83.8,162 -83.8,162.5 -83.8,163 -83.8,163.5 -83.8,164 -83.8,164 -83.87,164 -83.94,164 -84.01,164 -84.08,164 -84.15,164 -84.22,164 -84.29,164 -84.36,164 -84.43,164 -84.5,163.5 -84.5,163 -84.5,162.5 -84.5,162 -84.5,161.5 -84.5,161 -84.5,160.5 -84.5,160 -84.5,159.5 -84.5,159 -84.5,159 -84.43,159 -84.36,159 -84.29,159 -84.22,159 -84.15,159 -84.08,159 -84.01,159 -83.94,159 -83.87,159 -83.8))", "dataset_titles": "10Be and 26Al cosmogenic nuclide surface exposure data; 3He input data", "datasets": [{"dataset_uid": "601375", "doi": "10.15784/601375", "keywords": "Antarctica; Cosmogenic Dating; Transantarctic Mountains", "people": "Winckler, Gisela; Schaefer, Joerg; Kaplan, Michael", "repository": "USAP-DC", "science_program": null, "title": "10Be and 26Al cosmogenic nuclide surface exposure data", "url": "https://www.usap-dc.org/view/dataset/601375"}, {"dataset_uid": "601376", "doi": "10.15784/601376", "keywords": "Antarctica; Transantarctic Mountains", "people": "Schaefer, Joerg; Winckler, Gisela; Kaplan, Michael", "repository": "USAP-DC", "science_program": null, "title": "3He input data", "url": "https://www.usap-dc.org/view/dataset/601376"}], "date_created": "Tue, 29 Sep 2020 00:00:00 GMT", "description": "Licht/1443433 Sediments deposited by the Antarctic ice sheet are an archive of its history with time and help geologists to determine how the remote interior of the ice sheet has changed over the past several hundred thousand years. This project will focus on the formation and dynamics of moraines (accumulations of dirt and rocks that are incorporated in the glacier surface or have been pushed along by the glacier as it moves) near the blue ice area of Mt. Achernar in the central Transantarctic Mountains in Antarctica.. The study will improve basic understanding of the formation of these moraines. Fieldwork at the site will focus on imaging the internal structure of the moraine to determine the processes by which it, and others like it, form over time. Additional analyses will include measurements of ice flow and collection of rock samples to determine the timing of debris deposition and the changes in the sources of sediments from deep within the Antarctic continent. The project will provide both graduate and undergraduate students training in paleoclimate studies, geology, and numerical modeling approaches. The broader impacts of the proposed work include hands on training in the Earth Sciences for graduate and undergraduate students, collaboration with colleagues in New Zealand and Sweden to provide an international research experience for students from the US, and three educational modules to be delivered by student researchers regarding Antarctica\u0027s role in global environments. The research is societally relevant and multidisciplinary and the topics are ideal for sharing with the public. All research findings will be made publicly available to others via timely publication in high-impact, peer-reviewed journals and all data will be submitted to the National Snow and Ice Data Center, and excess samples will be provided to the U.S. Polar Rock Repository. Direct observations of ice sheet history from the margins of Antarctica\u0027s polar plateau are essential for testing numerical ice sheet models, and the laterally extensive, blue-ice moraines of the Mt. Achernar Moraine complex in the central Transantarctic Mountains contain a unique and nearly untapped direct, quasi-continuous record of ice sheet change over multiple glacial cycles. The project objectives include improved understanding of processes and rates of blue ice moraine formation, as well as identifying the topographic, glaciological, and climatic controls on their evolution. Data to be collected with fieldwork in Antarctica include: imaging of internal ice structure with ground-penetrating radar, measurement of ice flow velocity and direction with a global positioning system (GPS) array, analysis of debris concentration and composition in glacier ice, state-of-the-art cosmogenic multi-nuclide analyses to determine exposure ages of moraine debris, mapping of trimlines and provenance analysis. Numerical model simulations, constrained by field data, will be used to evaluate the factors influencing changes in glacier flow that potentially impact the accumulation of the moraine debris. All together, the new data and modeling efforts will improve conceptual models of blue ice moraine formation, and thereby make them a more valuable proxy for developing a better understanding of the history of the ice sheet.", "east": 164.0, "geometry": "POINT(161.5 -84.15)", "instruments": null, "is_usap_dc": true, "keywords": "SEDIMENTS; GLACIAL PROCESSES; Mt. Achernar; ABLATION ZONES/ACCUMULATION ZONES; GLACIER ELEVATION/ICE SHEET ELEVATION; Antarctica; Antarctic Ice Sheet; Transantarctic Mountains; GLACIATION; USAP-DC; ICE MOTION; AMD; LABORATORY; Amd/Us", "locations": "Transantarctic Mountains; Antarctic Ice Sheet; Mt. Achernar; Antarctica", "north": -83.8, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Kaplan, Michael; Schaefer, Joerg; Winckler, Gisela; Licht, Kathy", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.5, "title": "Collaborative Research: Multidisciplinary Analysis of Antarctic Blue Ice Moraine Formation and their Potential as Climate Archives over Multiple Glacial Cycles", "uid": "p0010131", "west": 159.0}, {"awards": "1724670 Williams, Trevor", "bounds_geometry": "POLYGON((-70 -60,-65 -60,-60 -60,-55 -60,-50 -60,-45 -60,-40 -60,-35 -60,-30 -60,-25 -60,-20 -60,-20 -62.5,-20 -65,-20 -67.5,-20 -70,-20 -72.5,-20 -75,-20 -77.5,-20 -80,-20 -82.5,-20 -85,-25 -85,-30 -85,-35 -85,-40 -85,-45 -85,-50 -85,-55 -85,-60 -85,-65 -85,-70 -85,-70 -82.5,-70 -80,-70 -77.5,-70 -75,-70 -72.5,-70 -70,-70 -67.5,-70 -65,-70 -62.5,-70 -60))", "dataset_titles": "Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment", "datasets": [{"dataset_uid": "601378", "doi": "10.15784/601378", "keywords": "40Ar/39Ar Thermochronology; Antarctica; Argon; Chemistry:sediment; Chemistry:Sediment; Detrital Minerals; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marine Sediments; Mass Spectrometer; Provenance; R/v Polarstern; Sediment Core Data; Subglacial Till; Till; Weddell Sea", "people": "Williams, Trevor", "repository": "USAP-DC", "science_program": null, "title": "Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment", "url": "https://www.usap-dc.org/view/dataset/601378"}, {"dataset_uid": "601379", "doi": "10.15784/601379", "keywords": "40Ar/39Ar Thermochronology; Antarctica; Argon; Chemistry:sediment; Chemistry:Sediment; Detrital Minerals; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marine Geoscience; Mass Spectrometer; Provenance; R/v Polarstern; Sediment Core Data; Subglacial Till; Till; Weddell Sea", "people": "Williams, Trevor", "repository": "USAP-DC", "science_program": null, "title": "Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment", "url": "https://www.usap-dc.org/view/dataset/601379"}, {"dataset_uid": "601377", "doi": "10.15784/601377", "keywords": "40Ar/39Ar Thermochronology; Antarctica; Argon; Chemistry:sediment; Chemistry:Sediment; Detrital Minerals; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marine Sediments; Mass Spectrometer; Provenance; R/v Polarstern; Sediment Core Data; Subglacial Till; Till; Weddell Sea", "people": "Williams, Trevor", "repository": "USAP-DC", "science_program": null, "title": "Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment", "url": "https://www.usap-dc.org/view/dataset/601377"}], "date_created": "Thu, 10 Sep 2020 00:00:00 GMT", "description": "Abstract for the general public: The margins of the Antarctic ice sheet have advanced and retreated repeatedly over the past few million years. Melting ice from the last retreat, from 19,000 to 9,000 years ago, raised sea levels by 8 meters or more, but the extents of previous retreats are less well known. The main goal of this project is to understand how Antarctic ice retreats: fast or slow, stepped or steady, and which parts of the ice sheet are most prone to retreat. Antarctica loses ice by two main processes: melting of the underside of floating ice shelves and calving of icebergs. Icebergs themselves are ephemeral, but they carry mineral grains and rock fragments that have been scoured from Antarctic bedrock. As the icebergs drift and melt, this \u0027iceberg-rafted debris\u0027 falls to the sea-bed and is steadily buried in marine sediments to form a record of iceberg activity and ice sheet retreat. The investigators will read this record of iceberg-rafted debris to find when and where Antarctic ice destabilized in the past. This information can help to predict how Antarctic ice will behave in a warming climate. The study area is the Weddell Sea embayment, in the Atlantic sector of Antarctica. Principal sources of icebergs are the nearby Antarctic Peninsula and Weddell Sea embayment, where ice streams drain about a quarter of Antarctic ice. The provenance of the iceberg-rafted debris (IRD), and the icebergs that carried it, will be found by matching the geochemical fingerprint (such as characteristic argon isotope ages) of individual mineral grains in the IRD to that of the corresponding source area. In more detail, the project will: 1. Define the geochemical fingerprints of the source areas of the glacially-eroded material using samples from each major ice stream entering the Weddell Sea. Existing data indicates that the hinterland of the Weddell embayment is made up of geochemically distinguishable source areas, making it possible to apply geochemical provenance techniques to determine the origin of Antarctica icebergs. Few samples of onshore tills are available from this area, so this project includes fieldwork to collect till samples to characterize detritus supplied by the Recovery and Foundation ice streams. 2. Document the stratigraphic changes in provenance of iceberg-rafted debris (IRD) and glacially-eroded material in two deep water sediment cores in the NW Weddell Sea. Icebergs calved from ice streams in the embayment are carried by the Weddell Gyre and deposit IRD as they pass over the core sites. The provenance information identifies which groups of ice streams were actively eroding and exporting detritus to the ocean (via iceberg rafting and bottom currents), and the stratigraphy of the cores shows the relative sequence of ice stream activity through time. A further dimension is added by determining the time lag between fine sediment erosion and deposition, using a new method of uranium-series isotope measurements in fine grained material. Technical abstract: The behavior of the Antarctic ice sheets and ice streams is a critical topic for climate change and future sea level rise. The goal of this proposal is to constrain ice sheet response to changing climate in the Weddell Sea during the three most recent glacial terminations, as analogues for potential future warming. The project will also examine possible contributions to Meltwater Pulse 1A, and test the relative stability of the ice streams draining East and West Antarctica. Much of the West Antarctic ice may have melted during the Eemian (130 to 114 Ka), so it may be an analogue for predicting future ice drawdown over the coming centuries. Geochemical provenance fingerprinting of glacially eroded detritus provides a novel way to reconstruct the location and relative timing of glacial retreat during these terminations in the Weddell Sea embayment. The two major objectives of the project are to: 1. Define the provenance source areas by characterizing Ar, U-Pb, and Nd isotopic signatures, and heavy mineral and Fe-Ti oxide compositions of detrital minerals from each major ice stream entering the Weddell Sea, using onshore tills and existing sediment cores from the Ronne and Filchner Ice Shelves. Pilot data demonstrate that detritus originating from the east and west sides of the Weddell Sea embayment can be clearly distinguished, and published data indicates that the hinterland of the embayment is made up of geochemically distinguishable source areas. Few samples of onshore tills are available from this area, so this project includes fieldwork to collect till to characterize detritus supplied by the Recovery and Foundation ice streams. 2. Document the stratigraphic changes in provenance of iceberg-rafted debris (IRD) and glacially-eroded material in two deep water sediment cores in the NW Weddell Sea. Icebergs calved from ice streams in the embayment are carried by the Weddell Gyre and deposit IRD as they pass over the core sites. The provenance information will identify which ice streams were actively eroding and exporting detritus to the ocean (via iceberg rafting and bottom currents). The stratigraphy of the cores will show the relative sequence of ice stream activity through time. A further time dimension is added by determining the time lag between fine sediment erosion and deposition, using U-series comminution ages.", "east": -20.0, "geometry": "POINT(-45 -72.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "TERRIGENOUS SEDIMENTS; Subglacial Till; USAP-DC; ICEBERGS; AMD; USA/NSF; ISOTOPES; AGE DETERMINATIONS; Argon; Provenance; Till; Amd/Us; R/V POLARSTERN; FIELD INVESTIGATION; SEDIMENT CHEMISTRY; Weddell Sea; Antarctica; LABORATORY", "locations": "Weddell Sea; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Williams, Trevor; Hemming, Sidney R.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V POLARSTERN", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.0, "title": "Collaborative Research: Deglacial Ice Dynamics in the Weddell Sea Embayment using Sediment Provenance", "uid": "p0010128", "west": -70.0}, {"awards": "1620976 Johnson, Sarah", "bounds_geometry": "POLYGON((160 -77,160.3 -77,160.6 -77,160.9 -77,161.2 -77,161.5 -77,161.8 -77,162.1 -77,162.4 -77,162.7 -77,163 -77,163 -77.1,163 -77.2,163 -77.3,163 -77.4,163 -77.5,163 -77.6,163 -77.7,163 -77.8,163 -77.9,163 -78,162.7 -78,162.4 -78,162.1 -78,161.8 -78,161.5 -78,161.2 -78,160.9 -78,160.6 -78,160.3 -78,160 -78,160 -77.9,160 -77.8,160 -77.7,160 -77.6,160 -77.5,160 -77.4,160 -77.3,160 -77.2,160 -77.1,160 -77))", "dataset_titles": "GenBank Sequence Read Archive with accession numbers SRR8217969 - SRR8217976 and project accession PRJNA506221", "datasets": [{"dataset_uid": "200164", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "GenBank Sequence Read Archive with accession numbers SRR8217969 - SRR8217976 and project accession PRJNA506221", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA506221/"}], "date_created": "Tue, 01 Sep 2020 00:00:00 GMT", "description": "Despite recent advances, we still know little about how life and its traces persist in extremely harsh conditions. What survival strategies do cells employ when pushed to their limit? Using a new technique, this project will investigate whether Antarctic paleolakes harbor \"microbial seed banks,\" or caches of viable microbes adapted to past paleoenvironments that could help transform our understanding of how cells survive over ancient timescales. Findings from this investigation could also illuminate novel DNA repair pathways with possible biomedical and biotechnology applications and help to refine life detection strategies for Mars. The project will bring Antarctic research to Georgetown University\u0027s campus for the first time, providing training opportunities in cutting edge analytical techniques for multiple students and a postdoctoral fellow. The field site will be the McMurdo Dry Valleys, which provide an unrivaled opportunity to investigate fundamental questions about the persistence of microbial life. Multiple lines of evidence, from interbedded and overlying ashfall deposits to parameterized models, suggest that the large-scale landforms there have remained essentially fixed as far back as the middle of the Miocene Epoch (i.e., ~8 million years ago). This geologic stability, coupled with geographic isolation and a steady polar climate, mean that biological activity has probably undergone few qualitative changes over the last one to two million years. The team will sample paleolake facies using sterile techniques from multiple Dry Valleys sites and extract DNA from entombed organic material. Genetic material will then be sequenced using Pacific Biosciences\u0027 Single Molecule, Real-Time DNA sequencing technology, which sequences native DNA as opposed to amplified DNA, thereby eliminating PCR primer bias, and enables read lengths that have never before been possible. The data will be analyzed with a range of bioinformatic techniques, with results that stand to impact our understanding of cell biology, Antarctic paleobiology, microbiology and biogeography, biotechnology, and planetary science.", "east": 163.0, "geometry": "POINT(161.5 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "ECOSYSTEM FUNCTIONS; COMMUNITY DYNAMICS; BACTERIA/ARCHAEA; CYANOBACTERIA (BLUE-GREEN ALGAE); LABORATORY; Dry Valleys", "locations": "Dry Valleys", "north": -77.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Johnson, Sarah", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "NCBI GenBank", "repositories": "NCBI GenBank", "science_programs": null, "south": -78.0, "title": "EAGER: Single-Molecule DNA Sequencing of Antarctic Paleolakes", "uid": "p0010125", "west": 160.0}, {"awards": "1935755 Lamp, Jennifer; 1935907 Balco, Gregory; 1935945 Tremblay, Marissa", "bounds_geometry": "POLYGON((160 -77.25,160.4 -77.25,160.8 -77.25,161.2 -77.25,161.6 -77.25,162 -77.25,162.4 -77.25,162.8 -77.25,163.2 -77.25,163.6 -77.25,164 -77.25,164 -77.325,164 -77.4,164 -77.475,164 -77.55,164 -77.625,164 -77.7,164 -77.775,164 -77.85,164 -77.925,164 -78,163.6 -78,163.2 -78,162.8 -78,162.4 -78,162 -78,161.6 -78,161.2 -78,160.8 -78,160.4 -78,160 -78,160 -77.925,160 -77.85,160 -77.775,160 -77.7,160 -77.625,160 -77.55,160 -77.475,160 -77.4,160 -77.325,160 -77.25))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 25 Aug 2020 00:00:00 GMT", "description": ". ______________________________________________________________________________________________________________ Part I: Nontechnical Description Scientists study the Earth\u0027s past climate in order to understand how the climate will respond to ongoing global change in the future. One of the best analogs for future climate might the period that occurred approximately 3 million years ago, during an interval known as the mid-Pliocene Warm Period. During this period, the concentration of carbon dioxide in the atmosphere was similar to today\u0027s and sea level was 15 or more meters higher, due primarily to warming and consequent ice sheet melting in polar regions. However, the temperatures in polar regions during the mid-Pliocene Warm Period are not well determined, in part because we do not have records like ice cores that extend this far back in time. This project will provide constraints on surface temperatures in Antarctica during the mid-Pliocene Warm Period using a new type of climate substitute, known as cosmogenic noble gas paleothermometry. This project focuses on an area of Antarctica called the McMurdo Dry Valleys. In this area, climate models suggest that temperatures were more than 10 C warmer during the mid-Pliocene than they are today, but indirect geologic observations suggest that temperatures may have been similar to today. The McMurdo Dry Valleys are also a place where rocks have been exposed to Earth surface conditions for several million years, and where this new climate substitute can be readily applied. The team will reconstruct temperatures in the McMurdo Dry Valleys during the mid-Pliocene Warm Period in order to resolve the discrepancy between models and indirect geologic observations and provide much-needed constraints on the sensitivity of Antarctic ice sheets to warming temperatures. The temperature reconstructions generated in this project will have scientific impact in multiple disciplines, including climate science, glaciology, geomorphology, and planetary science. In addition, the project will (1) broaden the participation of underrepresented groups by supporting two early-career female principal investigators, (2) build STEM talent through the education and training of a graduate student, (3) enhance infrastructure for research via publication of a publicly-accessible, open-source code library, and (4) be broadly disseminated via social media, blog posts, publications, and conference presentations. Part II: Technical Description The mid-Pliocene Warm Period (3-3.3 million years ago) is the most recent interval of the geologic past when atmospheric CO2 concentrations exceeded 400 ppm and is widely considered an analog for how Earth\u2019s climate system will respond to current global change. Climate models predict polar amplification - the occurrence of larger changes in temperatures at high latitudes than the global average due to a radiative forcing - both during the mid-Pliocene Warm Period and due to current climate warming. However, the predicted magnitude of polar amplification is highly uncertain in both cases. The magnitude of polar amplification has important implications for the sensitivity of ice sheets to warming and the contribution of ice sheet melting to sea level change. Proxy-based constraints on polar surface air temperatures during the mid-Pliocene Warm Period are sparse to non-existent. In Antarctica, there is only indirect evidence for the magnitude of warming during this time. This project will provide constraints on surface temperatures in the McMurdo Dry Valleys of Antarctica during the mid-Pliocene Warm Period using a newly developed technique called cosmogenic noble gas (CNG) paleothermometry. CNG paleothermometry utilizes the diffusive behavior of cosmogenic 3He in quartz to quantify the temperatures rocks experience while exposed to cosmic-ray particles within a few meters of the Earth\u2019s surface. The very low erosion rates and subzero temperatures characterizing the McMurdo Dry Valleys make this region uniquely suited for the application of CNG paleothermometry for addressing the question: what temperatures characterized the McMurdo Dry Valleys during the mid-Pliocene Warm Period? To address this question, the team will collect bedrock samples at several locations in the McMurdo Dry Valleys where erosion rates are known to be low enough that cosmic ray exposure extends into the mid-Pliocene or earlier. They will pair cosmogenic 3He measurements, which will record the thermal histories of our samples, with measurements of cosmogenic 10Be, 26Al, and 21Ne, which record samples exposure and erosion histories. We will also make in situ measurements of rock and air temperatures at sample sites in order to quantify the effect of radiative heating and develop a statistical relationship between rock and air temperatures, as well as conduct diffusion experiments to quantify the kinetics of 3He diffusion specific to each sample. This suite of observations will be used to model permissible thermal histories and place constraints on temperatures during the mid-Pliocene Warm Period interval of cosmic-ray exposure. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 164.0, "geometry": "POINT(162 -77.625)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; AMD; LABORATORY; USA/NSF; Amd/Us; ISOTOPES; Dry Valleys; AIR TEMPERATURE RECONSTRUCTION; GEOCHEMISTRY; USAP-DC", "locations": "Dry Valleys", "north": -77.25, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Tremblay, Marissa; Granger, Darryl; Balco, Gregory; Lamp, Jennifer", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -78.0, "title": "Collaborative \r\nResearch: Reconstructing Temperatures during the Mid-Pliocene Warm \r\nPeriod in the McMurdo Dry Valleys with Cosmogenic Noble Gases", "uid": "p0010123", "west": 160.0}, {"awards": "1541285 Tauxe, Lisa", "bounds_geometry": "POLYGON((162.144 -77.2233,162.8676 -77.2233,163.5912 -77.2233,164.3148 -77.2233,165.0384 -77.2233,165.762 -77.2233,166.4856 -77.2233,167.2092 -77.2233,167.9328 -77.2233,168.6564 -77.2233,169.38 -77.2233,169.38 -77.34097,169.38 -77.45864,169.38 -77.57631,169.38 -77.69398,169.38 -77.81165,169.38 -77.92932,169.38 -78.04699,169.38 -78.16466,169.38 -78.28233,169.38 -78.4,168.6564 -78.4,167.9328 -78.4,167.2092 -78.4,166.4856 -78.4,165.762 -78.4,165.0384 -78.4,164.3148 -78.4,163.5912 -78.4,162.8676 -78.4,162.144 -78.4,162.144 -78.28233,162.144 -78.16466,162.144 -78.04699,162.144 -77.92932,162.144 -77.81165,162.144 -77.69398,162.144 -77.57631,162.144 -77.45864,162.144 -77.34097,162.144 -77.2233))", "dataset_titles": "Four-Dimensional paleomagnetic dataset: Late Neogene paleodirection and paleointensity results from the Erebus Volcanic Province, Antarctica", "datasets": [{"dataset_uid": "200162", "doi": "", "keywords": null, "people": null, "repository": "Magnetics Infomation Consortiums MagIC", "science_program": null, "title": "Four-Dimensional paleomagnetic dataset: Late Neogene paleodirection and paleointensity results from the Erebus Volcanic Province, Antarctica", "url": "https://www2.earthref.org/MagIC/16912/14b%20cd18-4c33-858e-de5eab74c528"}], "date_created": "Mon, 24 Aug 2020 00:00:00 GMT", "description": "The geomagnetic field is decreasing rapidly, leading some to propose that it will undergo collapse followed by a return to its usual strength but in the opposite direction, a phenomenon known as a \"polarity reversal\" which happened last approximately 800,000 years ago. Such a collapse would have a potentially devastating effect on the ability of the magnetic field to shield us from cosmic ray bombardment, placing our electrical grid at grave risk, among other things. The probability of such a drastic event happening depends on the average strength of the magnetic field. If the average is approximately equal to the present field (as many researchers assume), then the fact that the field is dropping rapidly would be more alarming than if the magnetic field is quite a bit higher than average, as implied by the current data for the ancient magnetic field from Antarctica. The argument over the average field strength stems from the difficulty of its estimation. The new approach advocated for in this proposal will allow researchers to obtain a robust data set for high southerly latitudes which will greatly enhance confidence in estimates of the average ancient field strength, contributing to our ability to assess the likelihood of catastrophic collapse of the geomagnetic field. The difficulty in estimating the average magnetic field strength over the past five million years is apparent when one examines data for ancient field strength as a function of latitude. Directions of the geomagnetic field have been well approximated by an axial dipole (bar magnetic) at the center of the Earth that is aligned with the spin axis. But the signal of such an axial geomagnetic dipole, whereby the field strength doubles from the equator to the poles, is not readily apparent in the database of field strength estimates from the last five million years. There are several possible explanations for this troubling failure: 1) combining data from different ages with possibly different average intensities leads to an inappropriate comparison of field states, 2) there is a depression of field strength at high latitude, perhaps reflecting the role of the `tangent cylinder?, or 3) there is noise and/or bias introduced by poor selection criteria or poor experimental design. The latter is a likely explanation as published data from the 1960 lava flow on Hawaii display the entire range of intensity values observed on the Earth\u0027s surface today, yet samples from this lava flow should all have one distinct value. This proposal benefits from the development of new experimental methods, better field strategies and a new approach to data selection that will allow accurate estimation of the ancient field strength through a comprehensive field campaign to collect lava flow samples from previously studied outcrops targeting the most promising material. These will be analyzed using the most robust experimental protocol and subjected to rigorous selection criteria proven to reject inaccurate results, leading to both accurate and precise estimates of ancient field strength.", "east": 169.38, "geometry": "POINT(165.762 -77.81165)", "instruments": null, "is_usap_dc": true, "keywords": "McMurdo; PALEOMAGNETISM; LABORATORY", "locations": "McMurdo", "north": -77.2233, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Tauxe, Lisa; Staudigel, Hubertus", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "Magnetics Infomation Consortiums MagIC", "repositories": "Magnetics Infomation Consortiums MagIC", "science_programs": null, "south": -78.4, "title": "Finding the Missing Geomagnetic Dipole Signal in Global Pleointensity Data: Revisiting the High Southerly Latitudes", "uid": "p0010122", "west": 162.144}, {"awards": "1745049 Tyler, Scott", "bounds_geometry": null, "dataset_titles": "Ice Diver Madison Run #1 March 1, 2020", "datasets": [{"dataset_uid": "601368", "doi": "10.15784/601368", "keywords": "Antarctica; North America; Temperature", "people": "Tyler, Scott W.", "repository": "USAP-DC", "science_program": null, "title": "Ice Diver Madison Run #1 March 1, 2020", "url": "https://www.usap-dc.org/view/dataset/601368"}], "date_created": "Mon, 03 Aug 2020 00:00:00 GMT", "description": "Nontechnical Abstract Studies in Antarctica are, at present, severely limited by the costs of placing measurement instruments within and beneath thousands of meters of ice. Our aim is to enable dense, widespread measurement-networks by advancing development of low-cost ice melt probe technology to deploy instruments. Ice melt probes use electrical energy to descend through thick ice with little support structure on the ice surface. We are extending previous technology by using anti-freeze to maintain a partially open melt-hole above a descending probe, deploying as we go a new a new fiber-optic technology to measure ice temperature. Ice temperature measurements will reveal spatial patterns of heat welling up from the Earth beneath the ice, which in turn will contribute greatly to finding ancient ice that contains global climate records, and to understanding how ice flow may raise sea levels. Our immediate objective in this 1-year project is to test and refine our anti-freeze-based method in a 15 meter-tall ice column at the University of Wisconsin, so as to reduce technical risk in future field tests. Technical Abstract The overarching aim of our development is to enable widespread, spatially dense deployments of instruments within and beneath the Antarctic Ice Sheet for a variety of investigations, beginning with observations of basal temperature and geothermal flux at the base of the ice sheet. Dense, widespread deployment requires logistical costs far below current costs for ice drilling and coring. Our approach is to extend ice melt probe technology (which is inherently light, logistically) to allow the progressive deployment of cable for Distributed Temperature Sensing (DTS) from the ice surface as the probe descends, without greatly increasing logistical costs. Our extension is based on arresting refreezing of the melt-hole above the probe (at a diameter a few times the cable diameter) by injecting anti-freeze - specifically, ethanol at temperature near 0C - a few meters above the probe during descent. After thermal equilibration of the liquid ethanol/water column with the ice, DTS measurements yield the depth-profile of ice sheet temperature, from which basal temperature and (over frozen beds) geothermal flux can be inferred. We have carried out initial trials of our approach in a cold-room laboratory, but field work based only on such small-scale tests may still involve unnecessary risk. We therefore propose further testing at a facility of the Ice Drilling Design and Operations (IDDO) facility in Madison, WI. The new trials will test our approaches to melt-hole control and probe recovery in the taller column, will test cable and cable-tension-management methods more nearly approximating those needed to work on ice sheets, and will demonstrate the Distributed Temperature Sensing in its field configuration. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; North America; ICE DEPTH/THICKNESS; NOT APPLICABLE", "locations": "North America", "north": null, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Instrumentation and Facilities", "paleo_time": null, "persons": "Tyler, Scott W.", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Toward Dense Observation of Geothermal Fluxes in Antarctica Via Logistically Light Instrument Deployment", "uid": "p0010121", "west": null}, {"awards": "1543347 Rosenheim, Brad; 1543396 Christner, Brent; 1543405 Leventer, Amy; 1543453 Lyons, W. Berry; 1543537 Priscu, John; 1543441 Fricker, Helen", "bounds_geometry": "POLYGON((-163.611 -84.33543,-162.200034 -84.33543,-160.789068 -84.33543,-159.378102 -84.33543,-157.967136 -84.33543,-156.55617 -84.33543,-155.145204 -84.33543,-153.734238 -84.33543,-152.323272 -84.33543,-150.912306 -84.33543,-149.50134 -84.33543,-149.50134 -84.3659157,-149.50134 -84.3964014,-149.50134 -84.4268871,-149.50134 -84.4573728,-149.50134 -84.4878585,-149.50134 -84.5183442,-149.50134 -84.5488299,-149.50134 -84.5793156,-149.50134 -84.6098013,-149.50134 -84.640287,-150.912306 -84.640287,-152.323272 -84.640287,-153.734238 -84.640287,-155.145204 -84.640287,-156.55617 -84.640287,-157.967136 -84.640287,-159.378102 -84.640287,-160.789068 -84.640287,-162.200034 -84.640287,-163.611 -84.640287,-163.611 -84.6098013,-163.611 -84.5793156,-163.611 -84.5488299,-163.611 -84.5183442,-163.611 -84.4878585,-163.611 -84.4573728,-163.611 -84.4268871,-163.611 -84.3964014,-163.611 -84.3659157,-163.611 -84.33543))", "dataset_titles": "Antarctica - PI Continuous - GZ01-WIS_GroundingZone_01 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - GZ13-WIS_GroundingZone_13 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - LA02-WIS_LAKES_02 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - LA06-WIS_LAKES_06 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - LA07-WIS_LAKES_07 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - LA09-WIS_LAKES_09 P.S. - GPS/GNSS Observations Dataset; Bistatic Radar Sounding of Whillans Ice Stream, Antarctica and Store Glacier, Greenland; CTD data from Mercer Subglacial Lake and access borehole; Discrete bulk sediment properties data from Mercer Subglacial Lake; Isotopic data from Whillans Ice Stream grounding zone, West Antarctica; Mercer Subglacial Lake radiocarbon and stable isotope data ; Mercer Subglacial Lake (SLM) microbial composition: 16S rRNA genes (Sequence Read Archive; BioProject: PRJNA790995); Mercer Subglacial Lake (SLM) noble gas and isotopic data; Mercer Subglacial Lake water column viral metagenomic sequencing; Salsa sediment cores; Sediment porewater properties data from Mercer Subglacial Lake; Water column biogeochemical data from Mercer Subglacial Lake", "datasets": [{"dataset_uid": "200342", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Mercer Subglacial Lake water column viral metagenomic sequencing", "url": "https://www.ncbi.nlm.nih.gov/biosample/32811410"}, {"dataset_uid": "200214", "doi": "10.7283/YW8Z-TK03", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - LA02-WIS_LAKES_02 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/YW8Z-TK03"}, {"dataset_uid": "200246", "doi": "", "keywords": null, "people": null, "repository": "OSU-MGR", "science_program": null, "title": "Salsa sediment cores", "url": "https://osu-mgr.org"}, {"dataset_uid": "200215", "doi": "10.7283/C503-KS23", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - LA06-WIS_LAKES_06 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/C503-KS23"}, {"dataset_uid": "601663", "doi": "10.15784/601663", "keywords": "Antarctica; Carbon; Cell Counts; Geochemistry; Glacier; Glaciers/ice Sheet; Glaciers/Ice Sheet; Mercer Subglacial Lake; Microbes; Nutrients; SALSA; Stable Isotopes; Trace Elements; West Antarctic Ice Sheet", "people": "Priscu, John; Dore, John; Skidmore, Mark; Hawkings, Jon; Steigmeyer, August; Li, Wei; Barker, Joel; Tranter, Martyn; Science Team, SALSA", "repository": "USAP-DC", "science_program": null, "title": "Water column biogeochemical data from Mercer Subglacial Lake", "url": "https://www.usap-dc.org/view/dataset/601663"}, {"dataset_uid": "200216", "doi": "10.7283/F8NH-CV04", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - LA07-WIS_LAKES_07 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/F8NH-CV04"}, {"dataset_uid": "601672", "doi": "10.15784/601672", "keywords": "Antarctica; Isotope; Mercer Subglacial Lake; Radiocarbon; Subglacial Lake", "people": "Rosenheim, Brad; Venturelli, Ryan", "repository": "USAP-DC", "science_program": null, "title": "Mercer Subglacial Lake radiocarbon and stable isotope data ", "url": "https://www.usap-dc.org/view/dataset/601672"}, {"dataset_uid": "200213", "doi": "10.7283/F7BB-JH05", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - GZ13-WIS_GroundingZone_13 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/F7BB-JH05"}, {"dataset_uid": "200282", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Mercer Subglacial Lake (SLM) microbial composition: 16S rRNA genes (Sequence Read Archive; BioProject: PRJNA790995)", "url": "https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA790995"}, {"dataset_uid": "601661", "doi": "10.15784/601661", "keywords": "Antarctica; Carbon; Glacier; Glaciers/ice Sheet; Glaciers/Ice Sheet; Iron; Mercer Subglacial Lake; Mineralogy; Particle Size; Physical Properties; SALSA; Sediment Core; Sulfur; West Antarctic Ice Sheet", "people": "Campbell, Timothy; Michaud, Alexander; Hawkings, Jon; Skidmore, Mark; Tranter, Martyn; Venturelli, Ryan A; Dore, John; Science Team, SALSA", "repository": "USAP-DC", "science_program": null, "title": "Discrete bulk sediment properties data from Mercer Subglacial Lake", "url": "https://www.usap-dc.org/view/dataset/601661"}, {"dataset_uid": "200212", "doi": "10.7283/PT0Q-JB95", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - GZ01-WIS_GroundingZone_01 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/PT0Q-JB95"}, {"dataset_uid": "601360", "doi": "10.15784/601360", "keywords": "Antarctica; Radiocarbon; Sediment; Whillans Ice Stream", "people": "Venturelli, Ryan A", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Isotopic data from Whillans Ice Stream grounding zone, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/601360"}, {"dataset_uid": "601472", "doi": "10.15784/601472", "keywords": "Antarctica; Bistatic Radar; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS Data; Greenland; Lake Whillans; Radar; Store Glacier; Whillans Ice Stream; WISSARD", "people": "Schroeder, Dustin; Siegfried, Matthew; Peters, Sean; MacKie, Emma; Dawson, Eliza; Christoffersen, Poul; Bienert, Nicole", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Bistatic Radar Sounding of Whillans Ice Stream, Antarctica and Store Glacier, Greenland", "url": "https://www.usap-dc.org/view/dataset/601472"}, {"dataset_uid": "601498", "doi": "10.15784/601498", "keywords": "Antarctica; Mercer Subglacial Lake; Noble Gas", "people": "Lyons, W. Berry; Gardner, Christopher B.", "repository": "USAP-DC", "science_program": null, "title": "Mercer Subglacial Lake (SLM) noble gas and isotopic data", "url": "https://www.usap-dc.org/view/dataset/601498"}, {"dataset_uid": "601657", "doi": "10.15784/601657", "keywords": "Antarctica; Conductivity; CTD; Depth; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hot Water Drill; Mercer Subglacial Lake; Physical Properties; SALSA; Subglacial Lake; Temperature", "people": "Leventer, Amy; Dore, John; Priscu, John; Rosenheim, Brad", "repository": "USAP-DC", "science_program": null, "title": "CTD data from Mercer Subglacial Lake and access borehole", "url": "https://www.usap-dc.org/view/dataset/601657"}, {"dataset_uid": "200217", "doi": "10.7283/3JMY-Y504", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - LA09-WIS_LAKES_09 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/3JMY-Y504"}, {"dataset_uid": "601664", "doi": "10.15784/601664", "keywords": "Antarctica; Gas; Geochemistry; Glacier; Glaciology; Mercer Subglacial Lake; Methane; SALSA; Sediment Core; West Antarctic Ice Sheet", "people": "Skidmore, Mark; Science Team, SALSA; Steigmeyer, August; Tranter, Martyn; Michaud, Alexander; Dore, John", "repository": "USAP-DC", "science_program": null, "title": "Sediment porewater properties data from Mercer Subglacial Lake", "url": "https://www.usap-dc.org/view/dataset/601664"}], "date_created": "Thu, 16 Jul 2020 00:00:00 GMT", "description": "The Antarctic subglacial environment remains one of the least explored regions on Earth. This project will examine the physical and biological characteristics of Subglacial Lake Mercer, a lake that lies 1200m beneath the West Antarctic Ice Sheet. This study will address key questions relating to the stability of the ice sheet, the subglacial hydrological system, and the deep-cold subglacial biosphere. The education and outreach component aims to widely disseminate results to the scientific community and to the general public through short films, a blog, and a website. Subglacial Lake Mercer is one of the larger hydrologically active lakes in the southern basin of the Whillans Ice Plain, West Antarctica. It receives about 25 percent of its water from East Antarctica with the remainder originating from West Antarctica, is influenced by drain/fill cycles in a lake immediately upstream (Subglacial Lake Conway), and lies about 100 km upstream of the present grounding line of the Ross Ice Shelf. This site will yield information on the history of the Whillans and Mercer Ice Streams, and on grounding line migration. The integrated study will include direct sampling of basal ice, water, and sediment from the lake in concert with surface geophysical surveys over a three-year period to define the hydrological connectivity among lakes on the Whillans Ice Plain and their flow paths to the sea. The geophysical surveys will furnish information on subglacial hydrology, aid the site selection for hot-water drilling, and provide spatial context for interpreting findings. The hot-water-drilled boreholes will be used to collect basal ice samples, provide access for direct measurement of subglacial physical, chemical, and biological conditions in the water column and sediments, and to explore the subglacial water cavities using a remotely operated vehicle equipped with sensors, cameras, and sampling equipment. Data collected from this study will address the overarching hypothesis \"Contemporary biodiversity and carbon cycling in hydrologically-active subglacial environments associated with the Mercer and Whillans ice streams are regulated by the mineralization and cycling of relict marine organic matter and through interactions among ice, rock, water, and sediments\". The project will be undertaken by a collaborative team of scientists, with expertise in microbiology, biogeochemistry, hydrology, geophysics, glaciology, marine geology, paleoceanography, and science communication.", "east": -149.50134, "geometry": "POINT(-156.55617 -84.4878585)", "instruments": null, "is_usap_dc": true, "keywords": "SEDIMENTS; Antarctica; ISOTOPES; Subglacial Lake; USAP-DC; VIRUSES; PALEOCLIMATE RECONSTRUCTIONS; BACTERIA/ARCHAEA; LABORATORY; Radiocarbon; Whillans Ice Stream; AMD; SALSA; ECOSYSTEM FUNCTIONS; RADIOCARBON; FIELD INVESTIGATION; ICE MOTION; Mercer Ice Stream; Amd/Us; USA/NSF; GLACIERS/ICE SHEETS", "locations": "Antarctica; Mercer Ice Stream; Whillans Ice Stream", "north": -84.33543, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Instrumentation and Support; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Glaciology; Antarctic Integrated System Science", "paleo_time": null, "persons": "Rosenheim, Brad; Fricker, Helen; Priscu, John; Leventer, Amy; Dore, John; Lyons, W. Berry; Christner, Brent", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "GenBank", "repositories": "GenBank; NCBI GenBank; OSU-MGR; UNAVCO; USAP-DC", "science_programs": null, "south": -84.640287, "title": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments", "uid": "p0010119", "west": -163.611}, {"awards": "1443482 Mak, John", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Carbon monoxide mixing ratios and stable isotopic values, SPICE", "datasets": [{"dataset_uid": "601356", "doi": "10.15784/601356", "keywords": "Antarctica; CO; Delta 13C; Delta 18O; South Pole; SPICEcore", "people": "Mak, John", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Carbon monoxide mixing ratios and stable isotopic values, SPICE", "url": "https://www.usap-dc.org/view/dataset/601356"}], "date_created": "Thu, 09 Jul 2020 00:00:00 GMT", "description": "Mak/1443482 This project will compare current atmospheric conditions with those of the remote past prior to human influence. This is important in order to understand the impact of human activities on Earth\u0027s atmosphere, and to determine the stability of the composition of the atmosphere in the past. How humans have impacted Earth?s atmospheric composition is important for developing accurate predictions of future global atmospheric conditions. In addition to training students, the investigators will support continuing education of high school science teachers on Long Island through specifically tailored, interactive seminars on various topics in earth science, atmospheric sciences, physics and biology. A pilot program at Mount Sinai School District, near Stony Brook University will be the first implementation of this program. The investigators plan to reconstruct historical variations in the sources of atmospheric carbon monoxide (CO) from measurements of the concentration and stable isotopic abundance of carbon monoxide ([CO], 13CO and C18O) in the South Pole Ice Core, which is being drilled in 2014-2016. The goal is to strategically sample and reconstruct the relative variations in CO source strengths over the past 20,000 years. These will be the first measurements to extend the CO record beyond 650 years before present, back to the last glacial maximum. Both atmospheric chemical processes and variations in CO sources can impact the CO budget, and variations in the CO budget are useful in identifying and quantifying chemistry-climate interactions.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "LABORATORY; TRACE GASES/TRACE SPECIES; FIELD INVESTIGATION; South Pole", "locations": "South Pole", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Mak, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: Using Stable Isotopes to Constrain the Atmospheric Carbon Monoxide Budget over the Last 20,000 Years", "uid": "p0010117", "west": -180.0}, {"awards": "1443690 Young, Duncan", "bounds_geometry": "POLYGON((95 -68,100.5 -68,106 -68,111.5 -68,117 -68,122.5 -68,128 -68,133.5 -68,139 -68,144.5 -68,150 -68,150 -70.2,150 -72.4,150 -74.6,150 -76.8,150 -79,150 -81.2,150 -83.4,150 -85.6,150 -87.8,150 -90,144.5 -90,139 -90,133.5 -90,128 -90,122.5 -90,117 -90,111.5 -90,106 -90,100.5 -90,95 -90,95 -87.8,95 -85.6,95 -83.4,95 -81.2,95 -79,95 -76.8,95 -74.6,95 -72.4,95 -70.2,95 -68))", "dataset_titles": "Airborne potential fields data from Titan Dome, Antarctica; ICECAP Basal Interface Specularity Content Profiles: IPY and OIB; ICECAP: Gridded boundary conditions for Little Dome C, Antarctica, and extracted subglacial lake locations; ICECAP: High resolution survey of the Little Dome C region in support of the IPICS Old Ice goal; ICECAP radargrams in support of the international old ice search at Dome C - 2016; Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau; SPICECAP/ICECAP II Instrument Measurements (LASER, MAGNETICS and POSITIONING); Titan Dome, East Antarctica, Aerogeophysical Survey", "datasets": [{"dataset_uid": "601411", "doi": "10.15784/601411", "keywords": "Antarctica; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; ICECAP; Ice Penetrating Radar; Internal Reflecting Horizons", "people": "Tozer, Carly; Ritz, Catherine; Blankenship, Donald D.; Schroeder, Dustin; Mulvaney, Robert; Roberts, Jason; Frezzotti, Massimo; Paden, John; Muldoon, Gail R.; Quartini, Enrica; Kempf, Scott D.; Ng, Gregory; Greenbaum, Jamin; Cavitte, Marie G. P; Young, Duncan A.", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau", "url": "https://www.usap-dc.org/view/dataset/601411"}, {"dataset_uid": "601461", "doi": "10.15784/601461", "keywords": "Antarctica; ICECAP; Titan Dome", "people": "Greenbaum, Jamin; Jingxue, Guo; Blankenship, Donald D.; Young, Duncan A.; Bo, Sun", "repository": "USAP-DC", "science_program": null, "title": "Airborne potential fields data from Titan Dome, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601461"}, {"dataset_uid": "601463", "doi": "10.15784/601463", "keywords": "Antarctica; Epica Dome C; ICECAP; Ice Penetrating Radar; Subglacial Lake", "people": "Young, Duncan A.; Roberts, Jason; Ritz, Catherine; Frezzotti, Massimo; Quartini, Enrica; Cavitte, Marie G. P; Van Ommen, Tas; Blankenship, Donald D.; Steinhage, Daniel; Tozer, Carly; Urbini, Stefano; Corr, Hugh F. J.", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "ICECAP: Gridded boundary conditions for Little Dome C, Antarctica, and extracted subglacial lake locations", "url": "https://www.usap-dc.org/view/dataset/601463"}, {"dataset_uid": "200233", "doi": "http://dx.doi.org/doi:10.26179/5wkf-7361", "keywords": null, "people": null, "repository": "AADC", "science_program": null, "title": "ICECAP radargrams in support of the international old ice search at Dome C - 2016", "url": "https://data.aad.gov.au/metadata/records/AAS_4346_ICECAP_OIA_RADARGRAMS"}, {"dataset_uid": "601371", "doi": "10.15784/601371", "keywords": "Antarctica; East Antarctica; ICECAP; Ice Penetrating Radar; Radar Echo Sounder; Radar Echo Sounding; Subglacial Hydrology", "people": "Young, Duncan A.; Roberts, Jason; Greenbaum, Jamin; Blankenship, Donald D.; Schroeder, Dustin; Siegert, Martin; van Ommen, Tas", "repository": "USAP-DC", "science_program": null, "title": "ICECAP Basal Interface Specularity Content Profiles: IPY and OIB", "url": "https://www.usap-dc.org/view/dataset/601371"}, {"dataset_uid": "601437", "doi": "10.15784/601437", "keywords": "Airborne Laser Altimetry; Airborne Radar; Airplane; Antarctica; Bedrock Elevation; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness; Radar Echo Sounder; Surface Elevation; Titan Dome", "people": "Young, Duncan; Beem, Lucas H.; Young, Duncan A.; Greenbaum, Jamin; Ng, Gregory; Blankenship, Donald D.; Cavitte, Marie G. P; Jingxue, Guo; Bo, Sun", "repository": "USAP-DC", "science_program": null, "title": "Titan Dome, East Antarctica, Aerogeophysical Survey", "url": "https://www.usap-dc.org/view/dataset/601437"}, {"dataset_uid": "601355", "doi": "10.15784/601355", "keywords": "Aerogeophysics; Antarctica; Bed Elevation; Bed Reflectivity; Epica Dome C; Ice Thickness", "people": "Ng, Gregory; Young, Duncan A.; Roberts, Jason; Blankenship, Donald D.; van Ommen, Tas; Richter, Thomas; Greenbaum, Jamin; Cavitte, Marie G. P; Beem, Lucas H.; Quartini, Enrica; Tozer, Carly; Habbal, Feras; Kempf, Scott D.; Ritz, Catherine", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "ICECAP: High resolution survey of the Little Dome C region in support of the IPICS Old Ice goal", "url": "https://www.usap-dc.org/view/dataset/601355"}, {"dataset_uid": "200235", "doi": "10.26179/jydx-yz69", "keywords": null, "people": null, "repository": "AADC", "science_program": null, "title": "SPICECAP/ICECAP II Instrument Measurements (LASER, MAGNETICS and POSITIONING)", "url": "https://data.aad.gov.au/metadata/records/AAS_4346_ICECAP_OIA_Level1B_AEROGEOPHYSICS"}], "date_created": "Tue, 07 Jul 2020 00:00:00 GMT", "description": "Non-technical description: East Antarctica holds a vast, ancient ice sheet. The bedrock hidden beneath this ice sheet may provide clues to how today\u0027s continents formed, while the ice itself contains records of Earth\u0027s atmosphere from distant eras. New drilling technologies are now available to allow for direct sampling of these materials from more than two kilometers below the ice surface. However, getting this material will require knowing where to look. The Southern Plateau Ice-sheet Characterization and Evolution of the Central Antarctic Plate (SPICECAP) project will use internationally collected airborne survey data to search East Antarctica near the South Pole for key locations that will provide insight into Antarctica\u0027s geology and for locating the oldest intact ice on Earth. Ultimately, scientists are interested in obtaining samples of the oldest ice to address fundamental questions about the causes of changes in the timing of ice-age conditions from 40,000 to 100,000 year cycles. SPICECAP data analysis will provide site survey data for future drilling and will increase the overall understanding of Antarctica\u0027s hidden ice and geologic records. The project involves international collaboration and leveraging of internationally collected data. The SPICECAP project will train new interdisciplinary scientists at the undergraduate, graduate, and postdoctoral levels. Technical description: This study focuses on processing and interpretation of internationally collected aerogeophysical data from the Southern Plateau of the East Antarctic Ice Sheet. The data include ice penetrating radar data, laser altimetry, gravity and magnetics.\u00a0 The project will provide information on geological trends under the ice, the topography and character of the ice/rock interface, and the stratigraphy of the ice. The project will also provide baseline site characterization for future drilling. Future drilling sites and deep ice cores for old ice require that the base of the ice sheet be frozen to the bed (i.e. no free water at the interface between rock and ice) and the assessment will map the extent of frozen vs. thawed areas. Specifically, three main outcomes are anticipated for this project. First, the study will provide an assessment of the viability of Titan Dome, a subglacial highland region located near South Pole, as a potential old ice drilling prospect. The assessment will include determining the\u00a0hydraulic context of the bed by processing and interpreting the radar data,\u00a0ice sheet mass balance through time by mapping englacial reflectors in the ice and connecting them to ice stratigraphy in the recent South Pole,\u00a0and ice sheet geometry using laser altimetry. Second, the study will provide an assessment of the geological context of the Titan Dome region with respect to understanding regional geologic boundaries and the potential for bedrock sampling. For these two goals, we will use data opportunistically collected by China, and the recent PolarGAP dataset. Third, the study will provide an assessment of the risk posture for RAID site targeting in the Titan Dome region, and the Dome C region. This will use a high-resolution dataset the team collected previously at Dome C, an area similar to the coarser resolution data collected at Titan Dome, and will enable an understanding of what is missed by the wide lines spacing at Titan Dome. Specifically, we will model subglacial hydrology with and without the high resolution data, and statistically examine the detection of subglacial mountains (which could preserve old ice) and subglacial lakes (which could destroy old ice), as a function of line spacing.", "east": 150.0, "geometry": "POINT(122.5 -79)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e LIDAR ALTIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e NUCLEAR PRECESSION MAGNETOMETER", "is_usap_dc": true, "keywords": "BT-67; MAGNETIC ANOMALIES; Epica Dome C; GRAVITY ANOMALIES; GLACIER ELEVATION/ICE SHEET ELEVATION; GLACIER THICKNESS/ICE SHEET THICKNESS", "locations": "Epica Dome C", "north": -68.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Young, Duncan A.; Blankenship, Donald D.; Roberts, Jason; Bo, Sun", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e BT-67", "repo": "USAP-DC", "repositories": "AADC; USAP-DC", "science_programs": "Dome C Ice Core", "south": -90.0, "title": "Collaborative Research: Southern Plateau Ice-sheet Characterization and Evolution of the Central Antarctic Plate (SPICECAP)", "uid": "p0010115", "west": 95.0}, {"awards": "0125252 Padman, Laurence; 0125602 Padman, Laurence", "bounds_geometry": "POLYGON((-180 -40.231,-144 -40.231,-108 -40.231,-72 -40.231,-36 -40.231,0 -40.231,36 -40.231,72 -40.231,108 -40.231,144 -40.231,180 -40.231,180 -45.2079,180 -50.1848,180 -55.1617,180 -60.1386,180 -65.1155,180 -70.0924,180 -75.0693,180 -80.0462,180 -85.0231,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -85.0231,-180 -80.0462,-180 -75.0693,-180 -70.0924,-180 -65.1155,-180 -60.1386,-180 -55.1617,-180 -50.1848,-180 -45.2079,-180 -40.231))", "dataset_titles": "Antarctic Tide Gauge Database, version 1; AntTG_Database_Tools; CATS2008: Circum-Antarctic Tidal Simulation version 2008; CATS2008_v2023: Circum-Antarctic Tidal Simulation 2008, version 2023; pyTMD; TMD_Matlab_Toolbox_v2.5", "datasets": [{"dataset_uid": "200158", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "pyTMD", "url": "https://github.com/tsutterley/pyTMD"}, {"dataset_uid": "601772", "doi": "10.15784/601772", "keywords": "Antarctica; Cryosphere; Inverse Modeling; Model Data; Ocean Currents; Oceans; Sea Surface; Southern Ocean; Tide Model; Tides", "people": "Sutterley, Tyler; Howard, Susan L.; Greene, Chad A.; Padman, Laurence; Erofeeva, Svetlana", "repository": "USAP-DC", "science_program": null, "title": "CATS2008_v2023: Circum-Antarctic Tidal Simulation 2008, version 2023", "url": "https://www.usap-dc.org/view/dataset/601772"}, {"dataset_uid": "200156", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "AntTG_Database_Tools", "url": "https://github.com/EarthAndSpaceResearch/AntTG_Database_Tools"}, {"dataset_uid": "601235", "doi": "10.15784/601235", "keywords": "Antarctica; Inverse Modeling; Model Data; Ocean Currents; Sea Surface; Tidal Models; Tides", "people": "Howard, Susan L.; Padman, Laurence; Erofeeva, Svetlana", "repository": "USAP-DC", "science_program": null, "title": "CATS2008: Circum-Antarctic Tidal Simulation version 2008", "url": "https://www.usap-dc.org/view/dataset/601235"}, {"dataset_uid": "200157", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "TMD_Matlab_Toolbox_v2.5", "url": "https://github.com/EarthAndSpaceResearch/TMD_Matlab_Toolbox_v2.5"}, {"dataset_uid": "601358", "doi": "10.15784/601358", "keywords": "Antarctica; Oceans; Sea Surface Height; Tide Gauges; Tides", "people": "Howard, Susan L.; Padman, Laurence; King, Matt", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Tide Gauge Database, version 1", "url": "https://www.usap-dc.org/view/dataset/601358"}], "date_created": "Tue, 07 Jul 2020 00:00:00 GMT", "description": "The ocean tide is a large component of total variability of ocean surface height and currents in the seas surrounding Antarctica, including under the floating ice shelves. Maximum tidal height range exceeds 7 m (near the grounding line of Rutford Ice Stream) and maximum tidal currents exceed 1 m/s (near the shelf break in the northwest Ross Sea). Tides contribute to several important climate and ecosystems processes including: ocean mixing, production of dense bottom water, flow of warm Circumpolar Deep Water onto the continental shelves, melting at the bases of ice shelves, fracturing of the ice sheet near a glacier or ice stream\u2019s grounding line, production and decay of sea ice, and sediment resuspension. Tide heights and, in particular, currents can change as the ocean background state changes, and as the geometry of the coastal margins of the Antarctic Ice Sheet varies through ice shelf thickness changes and ice-front and grounding-line advances or retreats. For satellite-based studies of ocean surface height and ice shelf thickness changes, tide heights are a source of substantial noise that must be removed. Similarly, tidal currents can also be a substantial noise signal when trying to estimate mean ocean currents from short-term measurements such as from acoustic Doppler current profilers mounted on ships and CTD rosettes. Therefore, tide models play critical roles in understanding current and future ocean and ice states, and as a method for removing tides in various measurements. A paper in Reviews of Geophysics (Padman, Siegfried and Fricker, 2018, see list of project-related publications below) provides a detailed review of tides and tidal processes around Antarctica.\r\n\nThis project provides a gateway to tide models and a database of tide height coefficients at the Antarctic Data Center, and links to toolboxes to work with these models and data.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e GAUGES \u003e TIDE GAUGES", "is_usap_dc": true, "keywords": "Tide Gauges; OCEAN CURRENTS; Sea Surface Height; USAP-DC; GLACIER MOTION/ICE SHEET MOTION; Tides; Antarctica; MODELS; FIELD INVESTIGATION", "locations": "Antarctica", "north": -40.231, "nsf_funding_programs": "Arctic System Science; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Howard, Susan L.; Padman, Laurence; Erofeeva, Svetlana; King, Matt", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e MODELS \u003e MODELS", "repo": "GitHub", "repositories": "GitHub; USAP-DC", "science_programs": null, "south": -90.0, "title": "Ocean Tides around Antarctica and in the Southern Ocean", "uid": "p0010116", "west": -180.0}, {"awards": "1235094 Thurnherr, Andreas", "bounds_geometry": "POLYGON((-19 -19,-18.2 -19,-17.4 -19,-16.6 -19,-15.8 -19,-15 -19,-14.2 -19,-13.4 -19,-12.6 -19,-11.8 -19,-11 -19,-11 -19.4,-11 -19.8,-11 -20.2,-11 -20.6,-11 -21,-11 -21.4,-11 -21.8,-11 -22.2,-11 -22.6,-11 -23,-11.8 -23,-12.6 -23,-13.4 -23,-14.2 -23,-15 -23,-15.8 -23,-16.6 -23,-17.4 -23,-18.2 -23,-19 -23,-19 -22.6,-19 -22.2,-19 -21.8,-19 -21.4,-19 -21,-19 -20.6,-19 -20.2,-19 -19.8,-19 -19.4,-19 -19))", "dataset_titles": "Expedition Data; NBP1406 Expedition data; NBP1508 Expedition data; Processed Current Measurement Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508; Processed Current Measurement, Pressure and Temperature Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508 (2015); Processed Current Measurement, Pressure, Salinity and Temperature Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508", "datasets": [{"dataset_uid": "601353", "doi": null, "keywords": "CTD; CTD Data; Current Measurements; Current Meter; Mid-Ocean Ridge; Mooring; NBP1508; Oceans; Physical Oceanography; Pressure; R/v Nathaniel B. Palmer; Salinity; South Atlantic Ocean; Temperature", "people": "Thurnherr, Andreas", "repository": "USAP-DC", "science_program": null, "title": "Processed Current Measurement, Pressure and Temperature Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508 (2015)", "url": "https://www.usap-dc.org/view/dataset/601353"}, {"dataset_uid": "200153", "doi": "10.7284/903009", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1406 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1406"}, {"dataset_uid": "601352", "doi": null, "keywords": "CTD; Mid-Ocean Ridge; Mooring; NBP1508; Oceans; Physical Oceanography; Pressure; R/v Nathaniel B. Palmer; Salinity; South Atlantic Ocean; Temperature", "people": "Thurnherr, Andreas", "repository": "USAP-DC", "science_program": null, "title": "Processed Current Measurement, Pressure, Salinity and Temperature Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508", "url": "https://www.usap-dc.org/view/dataset/601352"}, {"dataset_uid": "601354", "doi": "10.15784/601354", "keywords": "Current Measurements; LADCP; Mid-Ocean Ridge; NBP1508; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer; South Atlantic Ocean", "people": "Thurnherr, Andreas", "repository": "USAP-DC", "science_program": null, "title": "Processed Current Measurement Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508", "url": "https://www.usap-dc.org/view/dataset/601354"}, {"dataset_uid": "001408", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1406"}, {"dataset_uid": "200154", "doi": "10.7284/906708", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1508 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1508"}], "date_created": "Thu, 02 Jul 2020 00:00:00 GMT", "description": "Overview: In order to close the global overturning circulation, high-density deep- and bottom waters produced at high latitudes must be made less dense and upwell to shallower depths. Available observations from the subtropical South Atlantic indicate that the bulk of the mixing in the deep ocean there takes place over the topographically rough Mid-Atlantic Ridge, in particular in the quasi-regularly spaced \"fracture zone canyons\" corrugating the ridge flanks. There, dense water is advected toward the ridge crest (i.e. upwelled) by persistent along-valley currents that flow down the unidirectional density gradients, which are maintained by strong turbulence (diapycnal mixing). Most of the data on which these inferences are based were collected during the Brazil Basin Tracer Release Experiment (BBTRE) along a single ridge-flank canyon in the western South Atlantic near 22S where previous analyses have shown that both tidal mixing and overflow processes are important. Therefore, it is likely that both processes must be considered in order to understand and parameterize the effects of turbulence and mixing in the canyons corrugating the flanks of all slow-spreading ridges, which make up large fractions of the sea floor, in particular in the Atlantic, Indian and Southern Oceans. The primary aim of this follow-on project is to improve our understanding of the dynamics over the corrugated flanks of slow-spreading mid-ocean ridges. Due to the coarse sampling resolution and choice of station locations it is not possible to answer important questions, such as the relative importance of tidal and sill mixing, from the BBTRE data. Therefore, high-resolution surveys of hydrography, three-dimensional flow, turbulence and mixing will be carried out in two neighboring canyons and over the intervening topographic spur in the BBTRE region to determine the relative contributions of tidal and sill-related mixing. Furthermore, profiling moorings deployed on two nearby sill regions will be used to derive time series of spatially integrated mixing related buoyancy fluxes and to investigate the strong but unexplained sub-inertial variability of the along-canyon flow recorded previously. Additionally, three small moorings will be deployed in saddles between the two canyons to investigate inter-canyon exchange. The data analysis will include available data from previous experiments, including a set of tracer profiles that has not been analyzed before. Intellectual Merit: The corrugated flanks of slow-spreading ridges cover large areas of the sea floor of several major ocean basins. Therefore, understanding the dynamics in the ~100 km of ridge-flank canyons and its effects on the buoyancy and upwelling budget of the abyssal ocean is of global significance. In addition to determining the relative importance of tidal mixing and cross-sill flows in two canyons, the temporal variability of turbulence and mixing from tidal to yearly time scales will be investigated to gain insights into the forcing of the along-canyon flows, the exchange between neighboring canyons, and the eventual fate of the canyon waters. Broader Impacts: It is anticipated that insights gained during this project will improve our understanding of abyssal mixing in many different regions with similar bottom topography and provide the basis for better parameterizations of the effects of turbulence and mixing in large-scale circulation and climate models that cannot resolve these small-scale processes. As part of the project, a graduate student and a post-doctoral researcher will be trained in all aspects of observational physical oceanography, from data acquisition to interpretation.", "east": -11.0, "geometry": "POINT(-15 -21)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "OCEAN CURRENTS; South Atlantic Ocean; R/V NBP; WATER MASSES", "locations": "South Atlantic Ocean", "north": -19.0, "nsf_funding_programs": null, "paleo_time": null, "persons": "Thurnherr, Andreas", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -23.0, "title": "Collaborative Research: Flow, Turbulence and Mixing in Mid-Ocean Ridge Fracture Zone Canyons", "uid": "p0010114", "west": -19.0}, {"awards": "1341658 Mukhopadhyay, Sujoy", "bounds_geometry": "POLYGON((-116.45 -84.786,-116.443 -84.786,-116.436 -84.786,-116.429 -84.786,-116.422 -84.786,-116.415 -84.786,-116.408 -84.786,-116.401 -84.786,-116.394 -84.786,-116.387 -84.786,-116.38 -84.786,-116.38 -84.7864,-116.38 -84.7868,-116.38 -84.7872,-116.38 -84.7876,-116.38 -84.788,-116.38 -84.7884,-116.38 -84.7888,-116.38 -84.7892,-116.38 -84.7896,-116.38 -84.79,-116.387 -84.79,-116.394 -84.79,-116.401 -84.79,-116.408 -84.79,-116.415 -84.79,-116.422 -84.79,-116.429 -84.79,-116.436 -84.79,-116.443 -84.79,-116.45 -84.79,-116.45 -84.7896,-116.45 -84.7892,-116.45 -84.7888,-116.45 -84.7884,-116.45 -84.788,-116.45 -84.7876,-116.45 -84.7872,-116.45 -84.7868,-116.45 -84.7864,-116.45 -84.786))", "dataset_titles": "Ohio Range Subglacial rock core cosmogenic nuclide data", "datasets": [{"dataset_uid": "601351", "doi": "10.15784/601351", "keywords": "Aluminum-26; Antarctica; Beryllium-10; Cosmogenic Dating; Cosmogenic Radionuclides; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Fluctuations; Ohio Range; Rocks", "people": "Mukhopadhyay, Sujoy", "repository": "USAP-DC", "science_program": null, "title": "Ohio Range Subglacial rock core cosmogenic nuclide data", "url": "https://www.usap-dc.org/view/dataset/601351"}], "date_created": "Sun, 28 Jun 2020 00:00:00 GMT", "description": "Modeling fluctuations in the extent of the West Antarctic Ice Sheet (WAIS) over time is a principal goal of the glaciological community. These models will provide a critical basis for predictions of future sea level change, and therefore this work great societal relevance. The mid-Pliocene time interval is of particular interest, as it is the most recent period in which global temperatures were warmer and atmospheric CO2 concentrations may have been higher than current levels. However, observational constraints on fluctuations in the WAIS older than the last glacial maximum are rare. The investigators propose to collect geochemical data from the Ohio Range and Scott Glacier to quantify past variability in the height of the WAIS. Limited available cosmogenic nuclide data are broadly consistent with a model indicating that Pliocene WAIS elevations and volumes were smaller than at present, and that WAIS collapse was common. The PIs will use geologic observations and cosmogenic nuclide concentrations from bedrock samples at multiple locations and at multiple elevations, including sub-ice samples, to constrain WAIS ice volume changes in a \"dipstick\" like fashion. Data obtained from the proposed research will provide targets for data-ice sheet model comparisons to accurately characterize Plio-Pleistocene and future WAIS behavior. As part of this project, the investigators will work with the Natural History Museum and the Earth \u0026 Planetary Science department at Harvard to develop an exhibit that will become part of the Museum\u0027s recently opened Earth and Planetary Science Gallery. The project involves mentoring of a female graduate student as well as an undergraduate student.", "east": -116.38, "geometry": "POINT(-116.415 -84.788)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ROCK CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e AMS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Ice Sheet Fluctuations; ALUMINUM-26 ANALYSIS; BERYLLIUM-10 ANALYSIS; Cosmogenic Radionuclides; USAP-DC; FIELD INVESTIGATION; AMD; Ohio Range; GLACIER THICKNESS/ICE SHEET THICKNESS; ICE SHEETS; LABORATORY", "locations": "Ohio Range", "north": -84.786, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Mukhopadhyay, Sujoy", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.79, "title": "Constraining Plio-Pleistocene West Antarctic Ice Sheet Behavior from the Ohio Range and Scott Glacier", "uid": "p0010113", "west": -116.45}, {"awards": "1745341 Sumner, Dawn", "bounds_geometry": "POLYGON((161.595 -77.527,161.5953 -77.527,161.5956 -77.527,161.5959 -77.527,161.5962 -77.527,161.5965 -77.527,161.5968 -77.527,161.5971 -77.527,161.5974 -77.527,161.5977 -77.527,161.598 -77.527,161.598 -77.5271,161.598 -77.5272,161.598 -77.5273,161.598 -77.5274,161.598 -77.5275,161.598 -77.5276,161.598 -77.5277,161.598 -77.5278,161.598 -77.5279,161.598 -77.528,161.5977 -77.528,161.5974 -77.528,161.5971 -77.528,161.5968 -77.528,161.5965 -77.528,161.5962 -77.528,161.5959 -77.528,161.5956 -77.528,161.5953 -77.528,161.595 -77.528,161.595 -77.5279,161.595 -77.5278,161.595 -77.5277,161.595 -77.5276,161.595 -77.5275,161.595 -77.5274,161.595 -77.5273,161.595 -77.5272,161.595 -77.5271,161.595 -77.527))", "dataset_titles": "GP0191362, Gp0191371; JAAXLU000000000, JAAXLT000000000", "datasets": [{"dataset_uid": "200151", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "JAAXLU000000000, JAAXLT000000000", "url": "https://www.ncbi.nlm.nih.gov/nuccore/JAAXLU000000000"}, {"dataset_uid": "200152", "doi": "", "keywords": null, "people": null, "repository": "IMG Gold", "science_program": null, "title": "GP0191362, Gp0191371", "url": "https://gold.jgi.doe.gov/study?id=Gs0127369"}], "date_created": "Mon, 22 Jun 2020 00:00:00 GMT", "description": "Atmospheric oxygen rose suddenly approximately 2.4 billion years ago after Cyanobacteria evolved the ability to produce oxygen through photosynthesis (oxygenic photosynthesis). This change permanently altered the future of life on Earth, yet little is known about the evolutionary processes leading to it. The Melainabacteria were first discovered in 2013 and are closely related non-photosynthetic relatives of the first group of organisms capable of oxygenic photosynthesis. This project will utilize existing data on metagenomes from microbial mats in Lake Vanda, an ice-covered lake in Antarctica where many sequences of Melainabacteria have been previously identified. From this genetic information, the project aims to assess the metabolic capabilities of these Melainabacteria and identify their potential ecological roles. The project will additionally evaluate the evolutionary relationships among the Cyanobacteria and Melainabacteria and closely related organisms that will allow an advancement in understanding of the evolutionary path that lead to oxygenic photosynthesis on Earth. The project will focus on extracting evolutionary information from the genomic data of Melainabacteria and Sericytochromatia, recently-described groups closely related to but basal to the Cyanobacteria. The characterization of novel members of these groups in samples from Lake Vanda, Antarctica, will provide insights into the path and processes involved in the evolution of oxygenic photosynthesis. The research will focus on assessing the metabolic capabilities of Melainabacteri, deriving the evolutionary relationships among Melainabacteria and Cyanobacteria and reconstructing potential evolutionary pathways leading to oxygenic photosynthesis. The project will focus on 12 metagenomes where the researchers expect to obtain genomes for at least the eight most abundant Melainabacteria in the dataset. Melainabacteria bins will be annotated and preliminary metabolic pathways will be constructed. The project will utilize full-length sequences of marker genes from across the bacterial domain with a particular focus on taxa that are oxygenic or anoxygenic phototrophs and use the marker genes, to build a rooted \"backbone\" tree. Incomplete or short sequences from the metagenomes will be added to the tree using the Evolutionary Placement Algorithm. The researchers will also build a corresponding phylogenetic tree using a Bayesian framework and compare their topologies. By doing so, the project aims to improve the understanding of the evolution of oxygenic photosynthesis, which caused the most significant change in Earth\u0027s surface chemistry. Specifically, they will document a significantly broader metabolic diversity within the Melainabacteria than has been previously identified, gain significant insights into their metabolic evolution, their evolutionary relationships with the Cyanobacteria, and the evolutionary steps leading to the origin of oxygenic photosynthesis. This research will have the overall effect of constraining key evolutionary processes in the origin of oxygenic photosynthesis. It will provide the foundation for future studies by indicating where a genomic record of the evolution of oxygenic photosynthesis may be preserved. Results will also be shared with middle school children through the development of scientific lesson plans in collaboration with teachers. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 161.598, "geometry": "POINT(161.5965 -77.5275)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; FIELD INVESTIGATION; CYANOBACTERIA (BLUE-GREEN ALGAE); Lake Vanda; LABORATORY; LAKE/POND; Genetic Analysis", "locations": "Lake Vanda", "north": -77.527, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Sumner, Dawn; Eisen, Jonathan; Tazi, Loubna", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "NCBI GenBank", "repositories": "IMG Gold; NCBI GenBank", "science_programs": null, "south": -77.528, "title": "Evolution of Oxygenic Photosynthesis as Preserved in Melainabacterial Genomes from Lake Vanda, Antarctica", "uid": "p0010112", "west": 161.595}, {"awards": "1246465 Brook, Edward J.", "bounds_geometry": "POINT(-112.1115 -79.481)", "dataset_titles": "WAIS Divide Ice Core Marine Isotope Stage 3 CO2 record", "datasets": [{"dataset_uid": "601337", "doi": "10.15784/601337", "keywords": "Antarctica; Carbon Cycle; CO2; Gas Chromatograph; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; WAIS Divide", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core Marine Isotope Stage 3 CO2 record", "url": "https://www.usap-dc.org/view/dataset/601337"}], "date_created": "Mon, 22 Jun 2020 00:00:00 GMT", "description": "Brook/1246465 This award supports a project to measure the carbon dioxide (CO2) concentration in the WAIS Divide ice core covering the time period 25,000 to 60,000 years before present, and to analyze the isotopic composition of CO2 in selected time intervals. The research will improve understanding of how and why atmospheric CO2 varied during the last ice age, focusing particularly on abrupt transitions in the concentration record that are associated with abrupt climate change. These events represents large perturbations to the global climate system and better information about the CO2 response should inform our understanding of carbon cycle-climate feedbacks and radiative forcing of climate. The research will also improve analytical methods in support of these goals, including completing development of sublimation methods to replace laborious mechanical crushing of ice to release air for analysis. The intellectual merit of the proposed work is that it will increase knowledge about the magnitude and timing of atmospheric CO2 variations during the last ice age, and their relationship to regional climate in Antarctica, global climate history, and the history of abrupt climate change in the Northern Hemisphere. The temporal resolution of the proposed record will in most intervals be ~ 4 x higher than previous data sets for this time period, and for selected intervals up to 8-10 times higher. Broader impacts of the proposed work include a significant addition to the amount of data documenting the history of the most important long-lived greenhouse gas in the atmosphere and more information about carbon cycle-climate feedbacks - important parameters for predicting future climate change. The project will contribute to training a postdoctoral researcher, research experience for an undergraduate and a high school student, and outreach to local middle school and other students. It will also improve the analytical infrastructure at OSU, which will be available for future projects.", "east": -112.1115, "geometry": "POINT(-112.1115 -79.481)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Carbon Cycle; Ice Core Records; USAP-DC; CO2; FIELD INVESTIGATION; CARBON DIOXIDE; LABORATORY; WAIS Divide", "locations": "WAIS Divide", "north": -79.481, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Completing the WAIS Divide Ice Core CO2 record", "uid": "p0010110", "west": -112.1115}, {"awards": "1543328 Van Mooy, Benjamin", "bounds_geometry": null, "dataset_titles": "Lipidomics of Antarctic waters. (TBD)", "datasets": [{"dataset_uid": "200149", "doi": "TBD", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Lipidomics of Antarctic waters. (TBD)", "url": "https://www.bco-dmo.org/data"}], "date_created": "Fri, 19 Jun 2020 00:00:00 GMT", "description": "The depletion of stratospheric ozone over Antarctica leads to abnormally high levels of ultraviolet radiation (UVR) from the sun reaching the surface of the ocean. This phenomenon is predicted to continue for the next half century, despite bans on ozone-destroying pollutants. Phytoplankton in the near surface ocean are subjected to variable amounts of UVR and contain a lot of lipids (fats). Because phytoplankton are at the base of the food chain their lipids makes their way into the Antarctic marine ecosystem\u0027s food web. The molecular structures of phytoplankton lipids are easily altered by UVR. When this happens, their lipids can be transformed from healthy molecules into potentially harmful molecules(oxylipins) known to be disruptive to reproductive and developmental processes. This project will use state-of-the-art molecular methods to answer questions about extent to which UVR damages lipid molecules in phytoplankton, and how these resultant molecules might effect the food chain in the ocean near Antarctica. Lipid peroxidation is often invoked as consequence of increased exposure of phytoplankton to UVR-produced reactive oxygen species (ROS), but the literature is practically silent on peroxidized lipids and their byproducts (i.e. oxylipins) in the ocean. In waters of the West Antarctic Peninsula (WAP), spring-time blooms of diatoms contribute significantly to overall marine primary production. Oxylipins from diatoms can be highly bioactive; their impact on zooplankton grazers, bacteria, and other phytoplankton has been the subject of intense study. However, almost all of this work has focused on the production of oxylipins via enzymatic pathways, not by pathways involving UVR and/or ROS. Furthermore, rigorous experimental work on the effects of oxylipins has been confined almost exclusively to pure cultures and artificial communities. Thus, the true potential of these molecules to disrupt carbon cycling is very poorly-constrained, and is entirely unknown in the waters of the WAP. Armed with new highly-sensitive, state-of-the-art analytical techniques based on high-mass-resolution mass spectrometry, the principal investigator and his research group have begun to uncover an exquisite diversity of oxylipins in natural WAP planktonic communities. These techniques will be applied to understand the connections between UVR, ROS, oxylipins, and carbon cycling. The project will answer the question of how UVR, via ROS, affects oxylipin production by diatoms in WAP surface waters in controlled experiments conducted at a field station. With the answer to this question in hand, the project will also seek to answer how this phenomenon impacts the flow of carbon, particularly the export of organic carbon from the system, during a research cruise. The level of UVR-induced stresses experienced by oxylipin-rich planktonic communities in the WAP is unique, making Antarctica the only location for answering these fundamental questions. Major activities will include laboratory experiments with artificial membranes and diatom cultures, as well field experiments with phytoplankton, zooplankton, and bacteria in WAP waters.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Oxylipins; Palmer Station; UV Radiation; USAP-DC; West Antarctic Shelf; NOT APPLICABLE; AQUATIC SCIENCES; Phytoplankton", "locations": "West Antarctic Shelf; Palmer Station", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Van Mooy, Benjamin", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "BCO-DMO", "repositories": "BCO-DMO", "science_programs": null, "south": null, "title": "Production and Fate of Oxylipins in Waters of the Western Antarctic Peninsula: Linkages Between UV Radiation, Lipid Peroxidation, and Carbon Cycling", "uid": "p0010109", "west": null}, {"awards": "1907974 Saltzman, Eric", "bounds_geometry": "POLYGON((129.26 -89.86,130.261 -89.86,131.262 -89.86,132.263 -89.86,133.264 -89.86,134.265 -89.86,135.266 -89.86,136.267 -89.86,137.268 -89.86,138.269 -89.86,139.27 -89.86,139.27 -89.861,139.27 -89.862,139.27 -89.863,139.27 -89.864,139.27 -89.865,139.27 -89.866,139.27 -89.867,139.27 -89.868,139.27 -89.869,139.27 -89.87,138.269 -89.87,137.268 -89.87,136.267 -89.87,135.266 -89.87,134.265 -89.87,133.264 -89.87,132.263 -89.87,131.262 -89.87,130.261 -89.87,129.26 -89.87,129.26 -89.869,129.26 -89.868,129.26 -89.867,129.26 -89.866,129.26 -89.865,129.26 -89.864,129.26 -89.863,129.26 -89.862,129.26 -89.861,129.26 -89.86))", "dataset_titles": "H2 in South Pole firn air", "datasets": [{"dataset_uid": "601332", "doi": "10.15784/601332", "keywords": "Antarctica; Firn; Glaciology; Hydrogen; Ice Core Records; Snow/ice; Snow/Ice; South Pole", "people": "Saltzman, Eric", "repository": "USAP-DC", "science_program": null, "title": "H2 in South Pole firn air", "url": "https://www.usap-dc.org/view/dataset/601332"}], "date_created": "Tue, 09 Jun 2020 00:00:00 GMT", "description": "Hydrogen (H2) is one of the most abundant trace gases in the atmosphere, with a mean level of 500 ppb and an atmospheric lifetime of about two years. Hydrogen has an impact on both air quality and climate, due to its role as a precursor for tropospheric ozone and stratospheric water vapor. Projections indicate that a future \"hydrogen economy\" would increase hydrogen emissions. Understanding of the atmospheric hydrogen budget is largely based on a 30-year record of surface air measurements, but there are no long-term records with which to assess either: 1) the influence of climate change on atmospheric hydrogen, or 2) the extent to which humans have impacted the hydrogen budget. Polar ice core records of hydrogen will advance our understanding of the atmospheric hydrogen cycle and provide a stronger basis for projecting future changes to atmospheric levels of hydrogen and their impacts. The research will involve laboratory work to enable the collection and analysis of hydrogen in polar ice cores. Hydrogen is a highly diffusive molecule and, unlike most other atmospheric gases, diffusion of hydrogen in ice is so rapid that ice samples must be stored in impermeable containers immediately upon drilling and recovery. This project will: 1) construct a laboratory system for extracting and analyzing hydrogen in polar ice, 2) develop and test materials and construction designs for vessels to store ice core samples in the field, and 3) test the method on samples of opportunity previously stored in the field. The goal of this project is a proven, cost-effective design for storage flasks to be fabricated for use on future polar ice coring projects. This project will support the dissertation research of a graduate student in the UC Irvine Department of Earth System Science. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 139.27, "geometry": "POINT(134.265 -89.865)", "instruments": null, "is_usap_dc": true, "keywords": "LABORATORY; Firn; TRACE GASES/TRACE SPECIES; South Pole; FIELD INVESTIGATION; USAP-DC", "locations": "South Pole", "north": -89.86, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Instrumentation and Support; Antarctic Instrumentation and Facilities", "paleo_time": null, "persons": "Saltzman, Eric", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -89.87, "title": "EAGER: Feasibility of Reconstructing the Atmospheric History of Molecular Hydrogen from Antarctic Ice", "uid": "p0010106", "west": 129.26}, {"awards": "1443576 Panter, Kurt", "bounds_geometry": "POLYGON((-154.1 -86.9,-154.03 -86.9,-153.96 -86.9,-153.89 -86.9,-153.82 -86.9,-153.75 -86.9,-153.68 -86.9,-153.61 -86.9,-153.54 -86.9,-153.47 -86.9,-153.4 -86.9,-153.4 -86.92,-153.4 -86.94,-153.4 -86.96,-153.4 -86.98,-153.4 -87,-153.4 -87.02,-153.4 -87.04,-153.4 -87.06,-153.4 -87.08,-153.4 -87.1,-153.47 -87.1,-153.54 -87.1,-153.61 -87.1,-153.68 -87.1,-153.75 -87.1,-153.82 -87.1,-153.89 -87.1,-153.96 -87.1,-154.03 -87.1,-154.1 -87.1,-154.1 -87.08,-154.1 -87.06,-154.1 -87.04,-154.1 -87.02,-154.1 -87,-154.1 -86.98,-154.1 -86.96,-154.1 -86.94,-154.1 -86.92,-154.1 -86.9))", "dataset_titles": "Volcanological and Petrological measurements on Mt. Early and Sheridan Bluff volcanoes, upper Scott Glacier, Antarctica ", "datasets": [{"dataset_uid": "601331", "doi": "10.15784/601331", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochronology; Glacial Volcanism; Magma Differentiation; Major Elements; Mantle Melting; Solid Earth; Trace Elements; Transantarctic Mountains", "people": "Panter, Kurt", "repository": "USAP-DC", "science_program": null, "title": "Volcanological and Petrological measurements on Mt. Early and Sheridan Bluff volcanoes, upper Scott Glacier, Antarctica ", "url": "https://www.usap-dc.org/view/dataset/601331"}], "date_created": "Fri, 05 Jun 2020 00:00:00 GMT", "description": "Predictions of future sea level rise require better understanding of the changing dynamics of the Greenland and Antarctic ice sheets. One way to better understand the past history of the ice sheets is to obtain records from inland ice for past geological periods, particularly in Antarctica, the world?s largest remaining ice sheet. Such records are exceedingly rare, and can be acquired at volcanic outcrops in the La Gorce Mountains of the central Transantarctic Mountains. Volcanoes now exposed within the La Gorce Mountains erupted beneath the East Antarctic ice sheet and the data collected will record how thick the ice sheet was in the past. In addition, information will be used to determine the thermal conditions at the base of the ice sheet, which impacts ice sheet stability. The project will also investigate the origin of volcanic activity in Antarctica and links to the West Antarctic Rift System (WARS). The WARS is a broad area of extended (i.e. stretched) continental crust, similar to that found in East Africa, and volcanism is wide spread and long-lived (65 million years to currently active) and despite more than 50 years of research, the fundamental cause of volcanism and rifting in Antarctica is still vigorously debated. The results of this award therefore also potentially impact the study of oceanic volcanism in the entire southwestern Pacific region (e.g., New Zealand and Australia), where volcanic fields of similar composition and age have been linked by common magma sources and processes. The field program includes a graduate student who will work on the collection, analysis, and interpretation of petrological data as part of his/her Masters project. The experience and specialized analytical training being offered will improve the quality of the student?s research and optimize their opportunities for their future. The proposed work fosters faculty and student national and international collaboration, including working with multi-user facilities that provide advanced technological mentoring of science students. Results will be broadly disseminated in peer-reviewed journals, public presentations at science meetings, and in outreach activities. Petrologic and geochemical data will be disseminated to be the community through the Polar Rock Repository. The study of subglacially erupted volcanic rocks has been developed to the extent that it is now the most powerful proxy methodology for establishing precise ?snapshots? of ice sheets, including multiple critical ice parameters. Such data should include measurements of ice thickness, surface elevation and stability, which will be used to verify, or reject, published semi-empirical models relating ice dynamics to sea level changes. In addition to establishing whether East Antarctic ice was present during the formation of the volcanoes, data will be used to derive the coeval ice thicknesses, surface elevations and basal thermal regime(s) in concert with a precise new geochronology using the 40Ar/39Ar dating method. Inferences from measurement of standard geochemical characteristics (major, trace elements and Sr, Nd, Pb, O isotopes) will be used to investigate a possible relationship between the volcanoes and the recently discovered subglacial ridge under the East Antarctic ice, which may be a rift flank uplift. The ridge has never been sampled, is undated and its significance is uncertain. The data will provide important new information about the deep Earth and geodynamic processes beneath this mostly ice covered and poorly understood sector of the Antarctic continent.", "east": -153.4, "geometry": "POINT(-153.75 -87)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; Mantle Melting; Magma Differentiation; Geochronology; Glacial Volcanism; GEOCHEMISTRY; Major Elements; ISOTOPES; Trace Elements; Transantarctic Mountains; LABORATORY; LAVA COMPOSITION/TEXTURE; USAP-DC; LAND RECORDS", "locations": "Transantarctic Mountains", "north": -86.9, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Panter, Kurt", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.1, "title": "Investigating Early Miocene Sub-ice Volcanoes in Antarctica for Improved Modeling and understanding of a Large Magmatic Province", "uid": "p0010105", "west": -154.1}, {"awards": "1643722 Brook, Edward J.", "bounds_geometry": "POINT(0 -90)", "dataset_titles": "South Pole Ice Core Methane Data and Gas Age Time Scale; South Pole ice core (SPC14) total air content (TAC)", "datasets": [{"dataset_uid": "601546", "doi": "10.15784/601546", "keywords": "Antarctica; South Pole", "people": "Epifanio, Jenna", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole ice core (SPC14) total air content (TAC)", "url": "https://www.usap-dc.org/view/dataset/601546"}, {"dataset_uid": "601329", "doi": "10.15784/601329", "keywords": "Antarctica; Gas Chromatography; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; South Pole", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Methane Data and Gas Age Time Scale", "url": "https://www.usap-dc.org/view/dataset/601329"}], "date_created": "Tue, 02 Jun 2020 00:00:00 GMT", "description": "Brook/1643722 This award supports a project to measure the concentration of the gas methane in air trapped in an ice core collected from the South Pole. The data will provide an age scale (age as a function of depth) by matching the South Pole methane changes with similar data from other ice cores for which the age vs. depth relationship is well known. The ages provided will allow all other gas measurements made on the South Pole core (by the PI and other NSF supported investigators) to be interpreted accurately as a function of time. This is critical because a major goal of the South Pole coring project is to understand the history of rare gases in the atmosphere like carbon monoxide, carbon dioxide, ethane, propane, methyl chloride, and methyl bromide. Relatively little is known about what controls these gases in the atmosphere despite their importance to atmospheric chemistry and climate. Undergraduate assistants will work on the project and be introduced to independent research through their work. The PI will continue visits to local middle schools to introduce students to polar science, and other outreach activities (e.g. laboratory tours, talks to local civic or professional organizations) as part of the project. Methane concentrations from a major portion (2 depth intervals, excluding the brittle ice-zone which is being measured at Penn State University) of the new South Pole ice core will be used to create a gas chronology by matching the new South Pole ice core record with that from the well-dated WAIS Divide ice core record. In combination with measurements made at Penn State, this will provide gas dating for the entire 50,000-year record. Correlation will be made using a simple but powerful mid-point method that has been previously demonstrated, and other methods of matching records will be explored. The intellectual merit of this work is that the gas chronology will be a fundamental component of this ice core project, and will be used by the PI and other investigators for dating records of atmospheric composition, and determining the gas age-ice age difference independently of glaciological models, which will constrain processes that affected firn densification in the past. The methane data will also provide direct stratigraphic markers of important perturbations to global biogeochemical cycles (e.g., rapid methane variations synchronous with abrupt warming and cooling in the Northern Hemisphere) that will tie other ice core gas records directly to those perturbations. A record of the total air content will also be produced as a by-product of the methane measurements and will contribute to understanding of this parameter. The broader impacts include that the work will provide a fundamental data set for the South Pole ice core project and the age scale (or variants of it) will be used by all other investigators working on gas records from the core. The project will employ an undergraduate assistant(s) in both years who will conduct an undergraduate research project which will be part of the student\u0027s senior thesis or other research paper. The project will also offer at least one research position for the Oregon State University Summer REU site program. Visits to local middle schools, and other outreach activities (e.g. laboratory tours, talks to local civic or professional organizations) will also be part of the project.", "east": 0.0, "geometry": "POINT(0 -90)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "AMD; LABORATORY; METHANE; ICE CORE RECORDS; Gas Chromatography; South Pole; USAP-DC", "locations": "South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Brook, Edward J.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "A High Resolution Atmospheric Methane Record from the South Pole Ice Core", "uid": "p0010102", "west": 0.0}, {"awards": "1807522 Jones, Tyler", "bounds_geometry": "POINT(-112.085 -79.467)", "dataset_titles": "Mid-Holocene high-resolution water isotope time series for the WAIS Divide ice core; Seasonal temperatures in West Antarctica during the Holocene ; Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "datasets": [{"dataset_uid": "601274", "doi": "10.15784/601274", "keywords": "Antarctica; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Snow/ice; Snow/Ice; WAIS Divide; WAIS Divide Ice Core; West Antarctic Ice Sheet", "people": "Jones, Tyler R.; Bradley, Elizabeth; Morris, Valerie; Price, Michael; White, James; Vaughn, Bruce; Garland, Joshua", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "url": "https://www.usap-dc.org/view/dataset/601274"}, {"dataset_uid": "601603", "doi": "10.15784/601603", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Seasonality; Seasonal Temperatures; Temperature; Water Isotopes; West Antarctic Ice Sheet", "people": "Jones, Tyler R.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Seasonal temperatures in West Antarctica during the Holocene ", "url": "https://www.usap-dc.org/view/dataset/601603"}, {"dataset_uid": "601326", "doi": "10.15784/601326", "keywords": "Antarctica; Delta 18O; Delta Deuterium; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Snow/ice; Snow/Ice; WAIS Divide Ice Core; Water Isotopes; West Antarctic Ice Sheet", "people": "Morris, Valerie; Jones, Tyler R.; Vaughn, Bruce; White, James", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Mid-Holocene high-resolution water isotope time series for the WAIS Divide ice core", "url": "https://www.usap-dc.org/view/dataset/601326"}], "date_created": "Tue, 26 May 2020 00:00:00 GMT", "description": "Ice cores contain detailed accounts of Earth\u0027s climate history. The collection of an ice core can be logistically challenging, and extraction of data from the core can be time-consuming as well as susceptible to both human and machine error. Furthermore, locked in measurements from ice cores is information that scientists have not yet found ways to recover. This project will apply techniques from information theory to ice-core data to unlock that information. The primary goal is to demonstrate that information theory can (a) identify regions of a specific ice-core record that are in need of further analysis and (b) provide some specific guidance for that analysis. A secondary goal is to demonstrate that information theory has practical and scientific utility for studies of past climate. This project aims to use information theory in two distinct ways: first, to identify regions of a core where information appears to be damaged or missing, perhaps due to human and/or machine error. In the segment of the West Antarctic Ice Sheet Divide core that is 5000-8000 years old, for instance, information-theoretic methods reveal significant levels of noise, probably due to a laboratory instrument, and something that was not visible in the raw data. This is a particularly important segment of the record, as it contains valuable clues about climatic shifts and the onset of the Holocene. Targeted re-sampling of this segment of the core and reanalysis with newer laboratory apparatus could resolve the data issues. The second way in which information theory can potentially aid in ice-core analysis is by extracting climate signals from the data--such as the accumulation rate at the core site over the period of its formation. This quantity usually requires significant time and effort to produce, but information theory could help to streamline that process. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -112.085, "geometry": "POINT(-112.085 -79.467)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "AMD; West Antarctic Ice Sheet; ISOTOPES; Amd/Us; USAP-DC; USA/NSF; Water Isotopes; WAIS Divide Ice Core; Deuterium; LABORATORY", "locations": "West Antarctic Ice Sheet", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Garland, Joshua; Jones, Tyler R.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Collaborative Research: Targeted resampling of deep polar ice cores using information theory", "uid": "p0010100", "west": -112.085}, {"awards": "1743643 Passchier, Sandra", "bounds_geometry": null, "dataset_titles": "Major and trace element analyses of Eocene-Oligocene marine sediments from ODP Site 696, South Orkney Microcontinent; Particle-size distributions of Eocene-Oligocene sediment from ODP Site 696, South Orkney Microcontinent", "datasets": [{"dataset_uid": "601581", "doi": "10.15784/601581", "keywords": "Antarctica; Glaciation; IODP 696; Marine Geoscience; Marine Sediments; Paleoceanography; Sediment Core Data; Weddell Sea", "people": "Light, Jennifer; Horowitz Castaldo, Josie; Lepp, Allison; Passchier, Sandra", "repository": "USAP-DC", "science_program": null, "title": "Particle-size distributions of Eocene-Oligocene sediment from ODP Site 696, South Orkney Microcontinent", "url": "https://www.usap-dc.org/view/dataset/601581"}, {"dataset_uid": "601582", "doi": "10.15784/601582", "keywords": "Antarctica; Glaciation; IODP 650; IODP 696; Paleoceanography; Provenance; Sediment Core Data; Weathering; Weddell Sea", "people": "Lepp, Allison; Li, Xiaona; Hojnacki, Victoria; Passchier, Sandra; States, Abbey", "repository": "USAP-DC", "science_program": null, "title": "Major and trace element analyses of Eocene-Oligocene marine sediments from ODP Site 696, South Orkney Microcontinent", "url": "https://www.usap-dc.org/view/dataset/601582"}], "date_created": "Tue, 26 May 2020 00:00:00 GMT", "description": "Abstract (non-technical) Sea level rise is a problem of global importance and it is increasingly affecting the tens of millions of Americans living along coastlines. The melting of glaciers in mountain areas worldwide in response to global warming is a major cause of sea level rise and increases in nuisance coastal flooding. However, the world\u0027s largest land-based ice sheets are situated in the Polar Regions and their response under continued warming is very difficult to predict. One reason for this uncertainty is a lack of observations of ice behavior and melt under conditions of warming, as it is a relatively new global climate state lasting only a few generations so far. Researchers will investigate ice growth on Antarctica under past warm conditions using geological archives embedded in the layers of sand and mud under the sea floor near Antarctica. By peeling back at the layers beneath the seafloor investigators can read the history book of past events affecting the ice sheet. The Antarctic continent on the South Pole, carries the largest ice mass in the world. The investigator\u0027s findings will substantially improve scientists understanding of the response of ice sheets to global warming and its effect on sea level rise. Abstract (technical) The melt of land based ice is raising global sea levels with at present only minor contributions from polar ice sheets. However, the future role of polar ice sheets in climate change is one of the most critical uncertainties in predictions of sea level rise around the globe. The respective roles of oceanic and atmospheric greenhouse forcing on ice sheets are poorly addressed with recent measurements of polar climatology, because of the extreme rise in greenhouse forcing the earth is experiencing at this time. Data on the evolution of the West Antarctic ice sheet is particularly sparse. To address the data gap, researchers will reconstruct the timing and spatial distribution of Antarctic ice growth through the last greenhouse to icehouse climate transition around 37 to 33 Ma. They will collect sedimentological and geochemical data on core samples from a high-latitude paleoarchive to trace the shutdown of the chemical weathering system, the onset of glacial erosion, ice rafting, and sea ice development, as East and West Antarctic ice sheets coalesced in the Weddell Sea sector. Their findings will lead to profound increases in the understanding of the role of greenhouse forcing in ice sheet development and its effect on the global climate system. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; AMD; SEDIMENTS; LABORATORY; USA/NSF; USAP-DC; Weddell Sea", "locations": "Weddell Sea", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Passchier, Sandra", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Timing and Spatial Distribution of Antarctic Ice Sheet Growth and Sea-ice Formation across the Eocene-Oligocene Transition", "uid": "p0010101", "west": null}, {"awards": "1419979 Severinghaus, Jeffrey", "bounds_geometry": "POLYGON((166.65 -78.62,166.654 -78.62,166.658 -78.62,166.662 -78.62,166.666 -78.62,166.67 -78.62,166.674 -78.62,166.678 -78.62,166.682 -78.62,166.686 -78.62,166.69 -78.62,166.69 -78.6205,166.69 -78.621,166.69 -78.6215,166.69 -78.622,166.69 -78.6225,166.69 -78.623,166.69 -78.6235,166.69 -78.624,166.69 -78.6245,166.69 -78.625,166.686 -78.625,166.682 -78.625,166.678 -78.625,166.674 -78.625,166.67 -78.625,166.666 -78.625,166.662 -78.625,166.658 -78.625,166.654 -78.625,166.65 -78.625,166.65 -78.6245,166.65 -78.624,166.65 -78.6235,166.65 -78.623,166.65 -78.6225,166.65 -78.622,166.65 -78.6215,166.65 -78.621,166.65 -78.6205,166.65 -78.62))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 18 May 2020 00:00:00 GMT", "description": "The PIs will design and build a new rapid access ice drill (RAID) for use in Antarctica. This drill will have the ability to rapidly drill through ice up to 3300 m thick and then collect samples of the ice, ice-sheet bed interface, and bedrock substrate below. This drilling technology will provide a new way to obtain in situ measurements and samples for interdisciplinary studies in geology, glaciology, paleoclimatology, microbiology, and astrophysics. The RAID drilling platform will give the scientific community access to records of geologic and climatic change on a variety of timescales, from the billion-year rock record to thousand-year ice and climate histories. Successful development of the RAID system will provide a research tool that is currently unavailable. Development of this platform will enable scientists to address critical questions about the deep interface between the Antarctic ice sheets and the substrate below. Development of RAID will provide a way to address many of the unknowns associated with general stability of the Antarctic ice sheets in the face of changing climate and sea level rise. The scientific rationale for RAID was reviewed in a previous proposal (Goodge 1242027). The PIs were granted ?Phase I? funding to develop a more detailed conceptual design for the RAID drill that would provide a better understanding of construction costs as well as operation and maintenance costs for RAID once it is constructed. Phase I support also allowed the PIs to work with the research community to develop more detailed science requirements for the drill. This proposal requests continued funding (Phase II) to construct, assemble and test the RAID drilling platform, through to staging it in Antarctic for future scientific operations.", "east": 166.69, "geometry": "POINT(166.67 -78.6225)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "WAIS Divide Ice Core; ICE CORE AIR BUBBLES; FIELD INVESTIGATION; USAP-DC; Minna Bluff", "locations": "Minna Bluff", "north": -78.62, "nsf_funding_programs": "Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": -78.625, "title": "Collaborative Research: Phase 2 Development of A Rapid Access Ice Drilling (RAID) Platform for Research in Antarctica", "uid": "p0010099", "west": 166.65}, {"awards": "9319877 Finn, Carol; 9319854 Bell, Robin; 9319369 Blankenship, Donald", "bounds_geometry": "POLYGON((-155 -77.5,-150 -77.5,-145 -77.5,-140 -77.5,-135 -77.5,-130 -77.5,-125 -77.5,-120 -77.5,-115 -77.5,-110 -77.5,-105 -77.5,-105 -78.2,-105 -78.9,-105 -79.6,-105 -80.3,-105 -81,-105 -81.7,-105 -82.4,-105 -83.1,-105 -83.8,-105 -84.5,-110 -84.5,-115 -84.5,-120 -84.5,-125 -84.5,-130 -84.5,-135 -84.5,-140 -84.5,-145 -84.5,-150 -84.5,-155 -84.5,-155 -83.8,-155 -83.1,-155 -82.4,-155 -81.7,-155 -81,-155 -80.3,-155 -79.6,-155 -78.9,-155 -78.2,-155 -77.5))", "dataset_titles": "SOAR-BSB Airborne gravity data for the CASERTZ/WAIS project; SOAR-IRE airborne gravity data for the CASERTZ/WAIS project; SOAR-TKD airborne gravity data for the CASERTZ/WAIS project; SOAR-WAZ Airborne gravity data for the CASERTZ/WAIS project", "datasets": [{"dataset_uid": "601288", "doi": "10.15784/601288", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Solid Earth; WAIS", "people": "Bell, Robin; Arko, Robert A.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-BSB Airborne gravity data for the CASERTZ/WAIS project", "url": "https://www.usap-dc.org/view/dataset/601288"}, {"dataset_uid": "601289", "doi": "10.15784/601289", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Potential Field; Solid Earth; WAIS", "people": "Bell, Robin; Arko, Robert A.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-TKD airborne gravity data for the CASERTZ/WAIS project", "url": "https://www.usap-dc.org/view/dataset/601289"}, {"dataset_uid": "601290", "doi": "10.15784/601290", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Potential Field; Solid Earth; WAIS", "people": "Bell, Robin; Arko, Robert A.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-IRE airborne gravity data for the CASERTZ/WAIS project", "url": "https://www.usap-dc.org/view/dataset/601290"}, {"dataset_uid": "601291", "doi": "10.15784/601291", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Potential Field; Solid Earth; WAIS", "people": "Arko, Robert A.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-WAZ Airborne gravity data for the CASERTZ/WAIS project", "url": "https://www.usap-dc.org/view/dataset/601291"}], "date_created": "Fri, 24 Apr 2020 00:00:00 GMT", "description": "Blankenship: 9319369 Bell: 9319854 Behrendt: 9319877 This award supports a project to conduct an integrated geophysical survey over a large portion of the West Antarctic Ice Sheet (WAIS) toward an understanding of the dynamic behavior of the ice sheet and the nature of the lithosphere beneath the ice sheet. West Antarctica is characterized by two kinds of the Earth s most dynamic systems, a continental rift (the West Antarctic Rift System) and a marine based ice sheet (the WAIS). Active continental rift systems, caused by divergent plate motions, result in thinned continental crust. Associated with the thin crust are fault-bounded sedimentary basins, active volcanism, and elevated heat flow. Marine ice sheets are characterized by rapidly moving streams of ice, penetrating and draining a slowly moving ice reservoir. Evidence left by past marine ice sheets indicates that they may have a strongly non- linear response to long-term climate change which results in massive and rapid discharges of ice. Understanding the evolution of the ice stream system and its interaction with the interior ice is the key to understanding this non-linear response. Subglacial geology and ice dynamics are generally studied in isolation, but evidence is mounting that the behavior of the West Antarctic ice streams may be closely linked to the nature of the underlying West Antarctic rift system. The fast moving ice streams appear to glide on a lubricating layer of water-saturated till. This till requires easily eroded sediment and a source of water, both of which may be controlled by the geology of the rift system; the sediments from the fault-bounded basins and the water from the elevated heat flux associated with active lithospheric extension. This project represents an interdisciplinary aerogeophysical study to characterize the lithosphere of the West Antarctic rift system beneath critical regions of the WAIS. The objective is to determine the effects of the rift architect ure, as manifested by the distribution of sedimentary basins and volcanic constructs, on the ice stream system. The research tool is a unique geophysical aircraft with laser altimetry, ice penetrating radar, aerogravity, and aeromagnetic systems integrated with a high precision kinematic GPS navigation system. It is capable of imaging both the surface and bed of the ice sheet while simultaneously measuring the gravity and magnetic signature of the subglacial lithosphere. Work to be done under this award will build on work already completed in the southern sector of central West Antarctica and it will focus on the region of the Byrd Subglacial Basin and Ice Stream D. The ice sheet in these regions is completely covered by satellite imagery and so this project will be integrated with remote sensing studies of the ice stream. The changing dynamics of Ice Stream D, as with other West Antarctic ice streams, seem to be correlated with changes in the morphological provinces of the underlying rift system. The experimental targets proceed from the divide of the interior ice, downstream through the onset of streaming to the trunk of Ice Stream D. This study will be coordinated with surface glaciological investigations of Ice Stream D and will be used to guide cooperative over-snow seismic investigations of the central West Antarctic rift system. The data will also be used to select a site for future deep ice coring along the crest of the WAIS. These data represent baseline data for long term global change monitoring work and represent crucial boundary conditions for ice sheet modeling efforts.", "east": -105.0, "geometry": "POINT(-130 -81)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": true, "keywords": "USAP-DC; MAGNETIC FIELD; GRAVITY FIELD; Antarctica; GLACIERS/ICE SHEETS; Marie Byrd Land; Airborne Gravity", "locations": "Marie Byrd Land; Antarctica", "north": -77.5, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Bell, Robin; Blankenship, Donald D.; Finn, C. A.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.5, "title": "Collaborative Research: Lithospheric Controls on the Behavior of the West Antarctic Ice Sheet: Corridor Aerogeophysics of Eastern Ross Transect Zone", "uid": "p0010094", "west": -155.0}, {"awards": "9615282 Siddoway, Christine; 9615281 Luyendyk, Bruce", "bounds_geometry": "POLYGON((-170 -76,-166.5 -76,-163 -76,-159.5 -76,-156 -76,-152.5 -76,-149 -76,-145.5 -76,-142 -76,-138.5 -76,-135 -76,-135 -76.8,-135 -77.6,-135 -78.4,-135 -79.2,-135 -80,-135 -80.8,-135 -81.6,-135 -82.4,-135 -83.2,-135 -84,-138.5 -84,-142 -84,-145.5 -84,-149 -84,-152.5 -84,-156 -84,-159.5 -84,-163 -84,-166.5 -84,-170 -84,-170 -83.2,-170 -82.4,-170 -81.6,-170 -80.8,-170 -80,-170 -79.2,-170 -78.4,-170 -77.6,-170 -76.8,-170 -76))", "dataset_titles": "Bedrock sample data, Ford Ranges region (Marie Byrd Land); SOAR-WMB Airborne gravity data", "datasets": [{"dataset_uid": "601829", "doi": "10.15784/601829", "keywords": "Antarctica; Cryosphere; Gondwana; Marie Byrd Land; Migmatite", "people": "Siddoway, Christine", "repository": "USAP-DC", "science_program": null, "title": "Bedrock sample data, Ford Ranges region (Marie Byrd Land)", "url": "https://www.usap-dc.org/view/dataset/601829"}, {"dataset_uid": "601294", "doi": "10.15784/601294", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Potential Field; Ross Sea; Solid Earth", "people": "Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-WMB Airborne gravity data", "url": "https://www.usap-dc.org/view/dataset/601294"}], "date_created": "Fri, 24 Apr 2020 00:00:00 GMT", "description": "OPP 9615281 Luyendyk OPP 9615282 Siddoway Abstract This award supports a collaborative project that combines air and ground geological-geophysical investigations to understand the tectonic and geological development of the boundary between the Ross Sea Rift and the Marie Byrd Land (MBL) volcanic province. The project will determine the Cenozoic tectonic history of the region and whether Neogene structures that localized outlet glacier flow developed within the context of Cenozoic rifting on the eastern Ross Embayment margin, or within the volcanic province in MBL. The geological structure at the boundary between the Ross Embayment and western MBL may be a result of: 1) Cenozoic extension on the eastern shoulder of the Ross Sea rift; 2) uplift and crustal extension related to Neogene mantle plume activity in western MBL; or a combination of the two. Faulting and volcanism, mountain uplift, and glacier downcutting appear to now be active in western MBL, where generally East-to-West-flowing outlet glaciers incise Paleozoic and Mesozoic bedrock, and deglaciated summits indicate a previous North-South glacial flow direction. This study requires data collection using SOAR (Support Office for Aerogeophysical Research, a facility supported by Office of Polar Programs which utilizes high precision differential GPS to support a laser altimeter, ice-penetrating radar, a towed proton magnetometer, and a Bell BGM-3 gravimeter). This survey requires data for 37,000 square kilometers using 5.3 kilometer line spacing with 15.6 kilometer tie lines, and 86,000 square kilometers using a grid of 10.6 by 10.6 kilometer spacing. Data will be acquired over several key features in the region including, among other, the eastern edge of the Ross Sea rift, over ice stream OEO, the transition from the Edward VII Peninsula plateau to the Ford Ranges, the continuation to the east of a gravity high known from previous reconnaissance mapping over the Fosdick Metamorphic Complex, an d the extent of the high-amplitude magnetic anomalies (volcanic centers?) detected southeast of the northern Ford Ranges by other investigators. SOAR products will include glaciology data useful for studying driving stresses, glacial flow and mass balance in the West Antarctic Ice Sheet (WAIS). The ground program is centered on the southern Ford Ranges. Geologic field mapping will focus on small scale brittle structures for regional kinematic interpretation, on glaciated surfaces and deposits, and on datable volcanic rocks for geochronologic control. The relative significance of fault and joint sets, the timing relationships between them, and the probable context of their formation will also be determined. Exposure ages will be determined for erosion surfaces and moraines. Interpretation of potential field data will be aided by on ground sampling for magnetic properties and density as well as ground based gravity measurements. Oriented samples will be taken for paleomagnetic studies. Combined airborne and ground investigations will obtain basic data for describing the geology and structure at the eastern boundary of the Ross Embayment both in outcrop and ice covered areas, and may be used to distinguish between Ross Sea rift- related structural activity from uplift and faulting on the perimeter of the MBL dome and volcanic province. Outcrop geology and structure will be extrapolated with the aerogeophysical data to infer the geology that resides beneath the WAIS. The new knowledge of Neogene tectonics in western MBL will contribute to a comprehensive model for the Cenozoic Ross rift and to understanding of the extent of plume activity in MBL. Both are important for determining the influence of Neogene tectonics on the ice streams and WAIS.", "east": -135.0, "geometry": "POINT(-152.5 -80)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e LGS", "is_usap_dc": true, "keywords": "GRAVITY; USAP-DC; Ross Sea; TECTONICS; Marie Byrd Land", "locations": "Ross Sea; Marie Byrd Land", "north": -76.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Luyendyk, Bruce P.; Siddoway, Christine", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.0, "title": "Air-Ground Study of Tectonics at the Boundary Between the Eastern Ross Embayment and Western Marie Byrd Land, Antarctica: Basement Geology and Structure", "uid": "p0010096", "west": -170.0}, {"awards": "9978236 Bell, Robin", "bounds_geometry": "POLYGON((101 -75.5,101.9 -75.5,102.8 -75.5,103.7 -75.5,104.6 -75.5,105.5 -75.5,106.4 -75.5,107.3 -75.5,108.2 -75.5,109.1 -75.5,110 -75.5,110 -75.85,110 -76.2,110 -76.55,110 -76.9,110 -77.25,110 -77.6,110 -77.95,110 -78.3,110 -78.65,110 -79,109.1 -79,108.2 -79,107.3 -79,106.4 -79,105.5 -79,104.6 -79,103.7 -79,102.8 -79,101.9 -79,101 -79,101 -78.65,101 -78.3,101 -77.95,101 -77.6,101 -77.25,101 -76.9,101 -76.55,101 -76.2,101 -75.85,101 -75.5))", "dataset_titles": "SOAR-Lake Vostok Survey airborne radar data; SOAR-Lake Vostok Survey bed elevation data; SOAR-Lake Vostok Survey Gravity data; SOAR-Lake Vostok Survey ice thickness data; SOAR-Lake Vostok survey magnetic anomaly data; SOAR-Lake Vostok Survey surface elevation data", "datasets": [{"dataset_uid": "601296", "doi": " 10.1594/IEDA/306564", "keywords": "Airborne Magnetic; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Lake Vostok; Magnetic; Magnetic Anomaly; Magnetometer; Potential Field; SOAR; Solid Earth", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok survey magnetic anomaly data", "url": "https://www.usap-dc.org/view/dataset/601296"}, {"dataset_uid": "601299", "doi": "10.1594/IEDA/306565", "keywords": "Airborne Laser Altimeters; Airborne Laser Altimetry; Airborne Radar; Airplane; Antarctica; Bed Elevation; Bedrock Elevation; Digital Elevation Model; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Lake Vostok; Radar; Radar Echo Sounder; SOAR", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey bed elevation data", "url": "https://www.usap-dc.org/view/dataset/601299"}, {"dataset_uid": "601300", "doi": "10.1594/IEDA/306568", "keywords": "Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Lake Vostok; Navigation; Radar; SOAR; Subglacial Lakes", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey airborne radar data", "url": "https://www.usap-dc.org/view/dataset/601300"}, {"dataset_uid": "601295", "doi": "10.1594/IEDA/306563", "keywords": "Airborne Gravity; Airplane; Antarctica; East Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Lake Vostok; Potential Field; Solid Earth", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey Gravity data", "url": "https://www.usap-dc.org/view/dataset/601295"}, {"dataset_uid": "601298", "doi": "10.1594/IEDA/306566", "keywords": "Airborne Altimetry; Airborne Laser Altimeters; Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Ice Sheet Elevation; Ice Surface; Lake Vostok; Radar Echo Sounder; SOAR; Surface Elevation", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey surface elevation data", "url": "https://www.usap-dc.org/view/dataset/601298"}, {"dataset_uid": "601297", "doi": "10.1594/IEDA/306567", "keywords": "Airborne Laser Altimeters; Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Sheet; Ice Stratigraphy; Ice Thickness; Ice Thickness Distribution; Lake Vostok; Radar; Radar Altimetry; Radar Echo Sounder; SOAR; Subglacial Lake", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey ice thickness data", "url": "https://www.usap-dc.org/view/dataset/601297"}], "date_created": "Fri, 24 Apr 2020 00:00:00 GMT", "description": "9978236 Bell Abstract This award, provided by the Office of Polar Programs under the Life in Extreme Environments (LExEn) Program, supports a geophysical study of Lake Vostok, a large lake beneath the East Antarctic Ice Sheet. Subglacial ecosystems, in particular subglacial lake ecosystems are extreme oligotrophic environments. These environments, and the ecosystems which may exist within them, should provide key insights into a range of fundamental questions about the development of Earth and other bodies in the Solar System including: 1) the processes associated with rapid evolutionary radiation after the extensive Neoproterozoic glaciations; 2) the overall carbon cycle through glacial and interglacial periods; and 3) the possible adaptations organisms may require to thrive in environments such as on Europa, the ice covered moon of Jupiter. Over 70 subglacial lakes have been identified beneath the 3-4 kilometer thick ice of Antarctica. One lake, Lake Vostok, is sufficiently large to be clearly identified from space with satellite altimetry. Lake Vostok is similar to Lake Ontario in area but with a much larger volume including measured water depths of 600 meters. The overlying ice sheet is acting as a conveyer belt continually delivering new water, nutrients, gas hydrates, sediments and microbes as the ice sheet flows across the lake. The goal of this program is to determine the fundamental boundary conditions for this subglacial lake as an essential first step toward understanding the physical processes within the lake. An aerogeophysical survey over the lake and into the surrounding regions will be acquired to meet this goal. This data set includes gravity, magnetic, laser altimetry and ice penetrating radar data and will be used to compile a basic set of ice surface elevation, subglacial topography, gravity and magnetic anomaly maps. Potential field methods widely used in the oil industry will be modified to estimate the subglacial topography from gravity data where the ice penetrating radar will be unable to recover the depth of the lake. A similar method can be modified to estimate the thickness of the sediments beneath the lake from magnetic data. These methods will be tested and applied to subglacial lakes near South Pole prior to the Lake Vostok field campaign and will provide valuable comparisons to the planned survey. Once the methods have been adjusted for the Lake Vostok application, maps of the water cavity and sediment thickness beneath the lake will be produced. These maps will become tools to explore the geologic origin of the lake. The two endmember models are, first, that the lake is an active tectonic rift such as Lake Baikal and, second, the lake is the result of glacial scouring. The distinct characteristics of an extensional rift can be easily identified with our aerogeophysical survey. The geological interpretation of the airborne geophysical survey will provide the first geological constraints of the interior of the East Antarctic continent based on modern data. In addition, the underlying geology will influence the ecosystem within the lake. One of the critical issues for the ecosystem within the lake will be the flux of nutrients. A preliminary estimation of the regions of freezing and melting based on the distance between distinctive internal layers observed on the radar data will be made. These basic boundary conditions will provide guidance for a potential international effort aimed at in situ exploration of the lake and improve the understanding of East Antarctic geologic structures.", "east": 110.0, "geometry": "POINT(105.5 -77.25)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e MAGNETOMETERS \u003e MGF; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e AIRGRAV", "is_usap_dc": true, "keywords": "Gravity; GLACIERS/ICE SHEETS; East Antarctica; USAP-DC; Lake Vostok; Airborne Radar; Subglacial Lake; MAGNETIC FIELD; GRAVITY", "locations": "East Antarctica; Lake Vostok", "north": -75.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bell, Robin; Studinger, Michael S.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work\r\n", "uid": "p0010097", "west": 101.0}, {"awards": "9615704 Bell, Robin; 9615832 Blankenship, Donald", "bounds_geometry": "POLYGON((-180 -74,-176 -74,-172 -74,-168 -74,-164 -74,-160 -74,-156 -74,-152 -74,-148 -74,-144 -74,-140 -74,-140 -75.6,-140 -77.2,-140 -78.8,-140 -80.4,-140 -82,-140 -83.6,-140 -85.2,-140 -86.8,-140 -88.4,-140 -90,-144 -90,-148 -90,-152 -90,-156 -90,-160 -90,-164 -90,-168 -90,-172 -90,-176 -90,180 -90,174 -90,168 -90,162 -90,156 -90,150 -90,144 -90,138 -90,132 -90,126 -90,120 -90,120 -88.4,120 -86.8,120 -85.2,120 -83.6,120 -82,120 -80.4,120 -78.8,120 -77.2,120 -75.6,120 -74,126 -74,132 -74,138 -74,144 -74,150 -74,156 -74,162 -74,168 -74,174 -74,-180 -74))", "dataset_titles": "SOAR-PPT Airborne gravity data; SOAR-WLK Airborne gravity data", "datasets": [{"dataset_uid": "601293", "doi": "10.15784/601293", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Potential Field; Solid Earth; Transantarctic Mountains", "people": "Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-WLK Airborne gravity data", "url": "https://www.usap-dc.org/view/dataset/601293"}, {"dataset_uid": "601292", "doi": "10.15784/601292", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Potential Field; Solid Earth; Transantarctic Mountains", "people": "Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-PPT Airborne gravity data", "url": "https://www.usap-dc.org/view/dataset/601292"}], "date_created": "Fri, 24 Apr 2020 00:00:00 GMT", "description": "Bell and Buck: OPP 9615704 Blankenship: OPP 9615832 Abstract Continental extension produces a great variety of structures from the linear narrow rifts of the East African Rift to the diffuse extension of the Basin and Range Province of the Western U.S. Rift shoulder uplift varies dramatically between rift flanks. The cause of variable rift width and crustal thinning is fairly well explained by variable initial heat flow and crustal thickness. Mechanical stretching of the lithosphere has been linked to rift shoulder uplift but the cause of variable rift flank uplift remains poorly understood. The Transantarctic Mountains (TAM) are an extreme example of rift flank uplift, extending over 3500 km across Antarctica and reaching elevations up to 4500 m and thus constitute a unique feature of EarthOs crust. The range was formed in the extensional environment associated with the Mesozoic and Cenozoic breakup of Gondwanaland. Geological and geophysical work has shown that the TAM developed along the long-lived lithospheric boundary between East and West Antarctica reactivated by a complex history of extensional and translational microplate motions. The TAM are not uniform along strike. Along the OWilkes FrontO, the northern segment of the rift extends from North Victoria Land to Byrd Glacier. The Wilkes Front architecture consists of (1) thin, extended crust forming the Victoria Land Basin in the Ross Sea, (2) the TAM rift shoulder, and (3) a long-wavelength down- ward forming the Wilkes Basin. Contrasting structures are mapped along the OPensacola/PoleO Front, the southern segment of the rift extending from the Nimrod Glacier to the Pensacola Mountains. Along this southern section no rift basin has been mapped to date and the down-ward along the East Antarctic, or ObacksideO, edge of the mountains is less pronounced. A flexural model linking the extension in the Ross Sea to the formation of both the mountains and the Wilkes Basin has been considered as a me chanism for uplift of the entire mountain range. The variability in fundamental architecture along the TAM indicates that neither a single event nor a sequence of identical events produced the rift flank uplift. The observation of variable architecture suggests complex mechanisms and possibly a fundamental limitation in maximum sustainable rift flank elevation. The motivation for studying the TAM is to try to understand the geodynamics of this extreme elevation rift flank. Are the geodynamics of the area unique, or does the history of glaciation and related erosion contribute to the extreme uplift? With the existing data sets it is difficult to confidently constrain the geological architecture across representative sections of the TAM. Any effort to refine geodynamic mechanisms requires this basic understanding of the TAM architecture. The goal of this project is to (1) constrain the architecture of the rift system as well as the distribution and structure of sedimentary basins, glacial erosion and mafic igneous rocks surrounding the rift flank by acquiring three long wavelength geophysical transects with integrated gravity, magnetics, ice- penetrating radar, and ice surface measurements, (2) quantify the contribution of various geodynamic mechanisms to understand the geological conditions which can lead to extreme rift flank uplift, and (3) use the improved understanding of architecture and geophysical data to test geodynamic models in order to improve our understanding both of the TAM geodynamics and the general problem of the geodynamics of rift flank uplift worldwide. This project will allow development of a generalized framework for understanding the development of rift flank uplift as well as address the question of the specific geodynamic evolution of the TAM.", "east": -140.0, "geometry": "POINT(170 -82)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": true, "keywords": "USAP-DC; Transantarctic Mountains; GRAVITY FIELD; TECTONICS", "locations": "Transantarctic Mountains", "north": -74.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Bell, Robin; Buck, W. Roger; Blankenship, Donald D.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Contrasting Architecture and Dynamics of the Transantarctic Mountains", "uid": "p0010095", "west": 120.0}, {"awards": "1142158 Cheng, Chi-Hing; 0231006 DeVries, Arthur", "bounds_geometry": "POLYGON((163 -76.5,163.5 -76.5,164 -76.5,164.5 -76.5,165 -76.5,165.5 -76.5,166 -76.5,166.5 -76.5,167 -76.5,167.5 -76.5,168 -76.5,168 -76.63,168 -76.76,168 -76.89,168 -77.02,168 -77.15,168 -77.28,168 -77.41,168 -77.54,168 -77.67,168 -77.8,167.5 -77.8,167 -77.8,166.5 -77.8,166 -77.8,165.5 -77.8,165 -77.8,164.5 -77.8,164 -77.8,163.5 -77.8,163 -77.8,163 -77.67,163 -77.54,163 -77.41,163 -77.28,163 -77.15,163 -77.02,163 -76.89,163 -76.76,163 -76.63,163 -76.5))", "dataset_titles": "High-resolution benthic seawater temperature record 1999-2012 (25-40m depth) from near intake jetty at McMurdo Station, Antarctica; Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae)", "datasets": [{"dataset_uid": "601811", "doi": null, "keywords": "Antarctica; Bellingshausen Sea; Cryosphere; Southern Ocean", "people": "Biesack, Ellen; Corso, Andrew; Desvignes, Thomas; McDowell, Jan; Cheng, Chi-Hing; Steinberg, Deborah; Hilton, Eric", "repository": "USAP-DC", "science_program": "LTER", "title": "Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae)", "url": "https://www.usap-dc.org/view/dataset/601811"}, {"dataset_uid": "601275", "doi": null, "keywords": "Antarctica; Benthic; McMurdo Sound; Mcmurdo Station; Oceans; Physical Oceanography; Temperature Probe; Water Temperature", "people": "Cziko, Paul; Devries, Arthur; Cheng, Chi-Hing", "repository": "USAP-DC", "science_program": null, "title": "High-resolution benthic seawater temperature record 1999-2012 (25-40m depth) from near intake jetty at McMurdo Station, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601275"}], "date_created": "Wed, 08 Apr 2020 00:00:00 GMT", "description": "Antarctic notothenioid fishes exhibit two adaptive traits to survive in frigid temperatures. The first of these is the production of anti-freeze proteins in their blood and tissues. The second is a system-wide ability to perform cellular and physiological functions at extremely cold temperatures.The proposal goals are to show how Antarctic fishes use these characteristics to avoid freezing, and which additional genes are turned on, or suppressed in order for these fishes to maintain normal physiological function in extreme cold temperatures. Progressively colder habitats are encountered in the high latitude McMurdo Sound and Ross Shelf region, along with somewhat milder near?shore water environments in the Western Antarctic Peninsula (WAP). By quantifying the extent of ice crystals invading and lodging in the spleen, the percentage of McMurdo Sound fish during austral summer (Oct-Feb) will be compared to the WAP intertidal fish during austral winter (Jul-Sep) to demonstrate their capability and extent of freeze avoidance. Resistance to ice entry in surface epithelia (e.g. skin, gill and intestinal lining) is another expression of the adaptation of these fish to otherwise lethally freezing conditions. The adaptive nature of a uniquely characteristic polar genome will be explored by the study of the transcriptome (the set of expressed RNA transcripts that constitutes the precursor to set of proteins expressed by an entire genome). Three notothenioid species (E.maclovinus, D. Mawsoni and C. aceratus) will be analysed to document evolutionary genetic changes (both gain and loss) shaped by life under extreme chronic cold. A differential gene expression (DGE) study will be carried out on these different species to evaluate evolutionary modification of tissue-wide response to heat challenges. The transcriptomes and other sequencing libraries will contribute to de novo ice-fish genome sequencing efforts.", "east": 168.0, "geometry": "POINT(165.5 -77.15)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD", "is_usap_dc": true, "keywords": "McMurdo Sound; MARINE ECOSYSTEMS; Water Temperature; AQUATIC SCIENCES; OCEAN TEMPERATURE; FIELD INVESTIGATION; USAP-DC", "locations": "McMurdo Sound", "north": -76.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Cheng, Chi-Hing; Devries, Arthur", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.8, "title": "Antarctic Notothenioid Fish Freeze Avoidance and Genome-wide Evolution for Life in the Cold", "uid": "p0010091", "west": 163.0}, {"awards": "1840058 Jenouvrier, Stephanie", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Causes and consequences of pair-bond disruption in a sex-skewed population of a long-lived monogamous seabird: the wandering Albatross; Demographic outputs and their variances for three life history complexes for the Southern Fulmar across contrasted sea ice conditions.; Impact of Climate Change on Pair-Bond Dynamics of Snow Petrels (Pagodroma nivea); Supplementary material from \"Boldness predicts divorce rates in wandering albatrosses", "datasets": [{"dataset_uid": "601585", "doi": "10.15784/601585", "keywords": "Antarctica; Biota; Birds; East Antarctica; Southern Fulmar", "people": "Jenouvrier, Stephanie", "repository": "USAP-DC", "science_program": null, "title": "Demographic outputs and their variances for three life history complexes for the Southern Fulmar across contrasted sea ice conditions.", "url": "https://www.usap-dc.org/view/dataset/601585"}, {"dataset_uid": "601832", "doi": "10.15784/601832", "keywords": "Antarctica; Climate Change; Cryosphere; Ile des Petrels, Pointe Geologie Archipelago (66\u25e640\u2032 S, 140\u25e601\u2032 106 E), Terre Adelie, Antarctica.", "people": "jenouvrier, stephanie", "repository": "USAP-DC", "science_program": null, "title": "Impact of Climate Change on Pair-Bond Dynamics of Snow Petrels (Pagodroma nivea)", "url": "https://www.usap-dc.org/view/dataset/601832"}, {"dataset_uid": "200372", "doi": "https://rs.figshare.com/collections/Supplementary_material_from_Boldness_predicts_divorce_rates_in_wandering_albatrosses_i_Diomedea_exulans_i_/6181063", "keywords": null, "people": null, "repository": "https://rs.figshare.com/", "science_program": null, "title": "Supplementary material from \"Boldness predicts divorce rates in wandering albatrosses", "url": "https://rs.figshare.com/collections/Supplementary_material_from_Boldness_predicts_divorce_rates_in_wandering_albatrosses_i_Diomedea_exulans_i_/6181063"}, {"dataset_uid": "601518", "doi": "10.15784/601518", "keywords": "Antarctica; Biota; Wandering Albatross", "people": "Sun, Ruijiao; Barbraud, Christophe; Delord, Karine; Jenouvrier, Stephanie", "repository": "USAP-DC", "science_program": null, "title": "Causes and consequences of pair-bond disruption in a sex-skewed population of a long-lived monogamous seabird: the wandering Albatross", "url": "https://www.usap-dc.org/view/dataset/601518"}], "date_created": "Wed, 01 Apr 2020 00:00:00 GMT", "description": "Many animals, from crustaceans to humans, engage in long-term relationships. The demographic consequences of divorce or widowhood for monogamous species are poorly understood. This research seeks to advance understanding of the drivers of partner loss and quantify its resulting effects on individual fitness and population dynamics in polar species that form life-long relationships. The project will focus on pair disruption in two seabirds that form long-last pair bonds: the wandering albatross and the snow petrel. Unique long-term individual mark-recapture data sets exist for these iconic polar species, allowing for a comprehensive study of the rates, causes and consequences of pair disruption and how they may differ among Antarctic species. Insights might be gained regarding the effects of changing environmental regimes as well as by direct and indirect effects of fisheries as a by-product of this research. The aim of the project is to better understand the implications of different drivers of pair disruption and quantify its resulting effects on individual fitness components and population growth rate and structure for two procellariiformes breeding in the Southern Ocean. The project will focus on the wandering albatross and the snow petrel, which both form long-lasting pair bonds. The unique long-term individual mark-recapture data sets allow for a study of the rates, causes and consequences of pair disruption and how they differ among species with different life histories as well as expected differences in mechanisms and rates of pair disruptions. The study will result in a detailed analysis of the impact of social monogamy and long-term pair bonds on individual fitness components (vital rates: survival, recruitment and fecundity; life-history outcomes: life expectancy, age at 1st breeding and lifetime reproductive success; and occupancy times: duration of pair bond or widowhood) and population growth and structure (e.g, sex ratio of individuals available for mating). Specifically, the project will assess: 1. Variations in pair disruption rates, and if they are related to global change (by-catch in the case of albatross widowing, and climate in the case of petrel divorce) by developing a statistical multievent mark-recapture model. 2. Impacts of pair disruption on vital rates, specifically whether i) greater familiarity and better coordination within pairs improves breeding performance and survival, ii) mating costs reduce the probability of breeding and iii) divorce is more likely to occur after a breeding failure. 3. Impacts of pair disruption on life-history outcomes and occupancy times using Markov chain stochastic life cycle models. 4. Impacts of pair disruption on population dynamics by developing a novel non-linear two-sex matrix population model. The research will include sensitivity and Life Table Response Experiment analyses to examine the respective effects of fisheries, climate, vital rates, and pair-disruption rates on life-history outcomes, occupancy times, and population growth and structure, and their variations among year and species This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e VISUAL OBSERVATIONS", "is_usap_dc": true, "keywords": "ECOLOGICAL DYNAMICS; FIELD INVESTIGATION; East Antarctica; USAP-DC", "locations": "East Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Jenouvrier, Stephanie", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "https://rs.figshare.com/; USAP-DC", "science_programs": null, "south": -90.0, "title": "Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics", "uid": "p0010090", "west": -180.0}, {"awards": "1341602 Crockett, Elizabeth; 1341663 O\u0027Brien, Kristin", "bounds_geometry": null, "dataset_titles": "Acclimation of cardiovascular function in Notothenia coriiceps; Adrenergic and adenosinergic regulation of the cardiovascular system in the Antarctic icefish Chaenocephalus aceratus; Cardiac metabolism in Antarctic fishes in response to an acute increase in temperature; Chaenocephalus aceratus HIF-1A mRNA, complete cds; Chionodraco rastrospinosus HIF-1A mRNA, partial cds; Effects of acute warming on cardiovascular performance of Antarctic fishes; Eleginops maclovinus HIF-1A mRNA, partial cds; Gymnodraco acuticeps HIF-1A mRNA, partial cds; Hypoxia response of hearts of Antarctic fishes; Maximum cardiac performance of Antarctic fishes that lack haemoglobin and myoglobin: exploring the effect of warming on nature\u2019s natural knockouts; Measurements of splenic contraction in Antarctic fishes; Mitochondrial membranes in cardiac muscle from Antarctic notothenioid fishes vary in phospholipid composition and membrane fluidity; Notothenia coriiceps HIF-1A mRNA, complete cds; Parachaenichthys charcoti HIF-1A mRNA, partial cds; Physical, chemical, and functional properties of neuronal membranes vary between species of Antarctic notothenioids differing in thermal tolerance; Thermal sensitivity of membrane fluidity and integrity in hearts of Antarctic fishes that vary in expression of hemoglobin and myoglobin", "datasets": [{"dataset_uid": "601406", "doi": "10.15784/601406", "keywords": "Antarctica; Antarctic Peninsula", "people": "O\u0027Brien, Kristin", "repository": "USAP-DC", "science_program": null, "title": "Hypoxia response of hearts of Antarctic fishes", "url": "https://www.usap-dc.org/view/dataset/601406"}, {"dataset_uid": "601405", "doi": "10.15784/601405", "keywords": "Antarctica; Antarctic Peninsula", "people": "O\u0027Brien, Kristin", "repository": "USAP-DC", "science_program": null, "title": "Cardiac metabolism in Antarctic fishes in response to an acute increase in temperature", "url": "https://www.usap-dc.org/view/dataset/601405"}, {"dataset_uid": "200192", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Chionodraco rastrospinosus HIF-1A mRNA, partial cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/kx950831"}, {"dataset_uid": "200185", "doi": "10.5061/dryad.k90h35k", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Mitochondrial membranes in cardiac muscle from Antarctic notothenioid fishes vary in phospholipid composition and membrane fluidity", "url": "https://doi.org/10.5061/dryad.k90h35k"}, {"dataset_uid": "200186", "doi": "10.5061/dryad.qm0b25h", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Physical, chemical, and functional properties of neuronal membranes vary between species of Antarctic notothenioids differing in thermal tolerance", "url": "https://doi.org/10.5061/dryad.qm0b25h"}, {"dataset_uid": "200187", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Chaenocephalus aceratus HIF-1A mRNA, complete cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/KX950828"}, {"dataset_uid": "200188", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Notothenia coriiceps HIF-1A mRNA, complete cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/KX950829"}, {"dataset_uid": "200189", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Eleginops maclovinus HIF-1A mRNA, partial cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/KX950830"}, {"dataset_uid": "601410", "doi": "10.15784/601410", "keywords": "Antarctica; Antarctic Peninsula; Biota; Fish", "people": "O\u0027Brien, Kristin; Crockett, Elizabeth; Egginton, Stuart; Axelsson, Michael; Farrell, Anthony; Joyce, William", "repository": "USAP-DC", "science_program": null, "title": "Effects of acute warming on cardiovascular performance of Antarctic fishes", "url": "https://www.usap-dc.org/view/dataset/601410"}, {"dataset_uid": "601409", "doi": "10.15784/601409", "keywords": "Antarctica; Antarctic Peninsula", "people": "Joyce, Michael; Axelsson, Michael; Farrell, Anthony; Egginton, Stuart; O\u0027Brien, Kristin", "repository": "USAP-DC", "science_program": null, "title": "Adrenergic and adenosinergic regulation of the cardiovascular system in the Antarctic icefish Chaenocephalus aceratus", "url": "https://www.usap-dc.org/view/dataset/601409"}, {"dataset_uid": "601408", "doi": "10.15784/601408", "keywords": "Antarctica; Antarctic Peninsula", "people": "Crockett, Elizabeth; Joyce, William; Farrell, Anthony; Egginton, Stuart; Axelsson, Michael; O\u0027Brien, Kristin", "repository": "USAP-DC", "science_program": null, "title": "Acclimation of cardiovascular function in Notothenia coriiceps", "url": "https://www.usap-dc.org/view/dataset/601408"}, {"dataset_uid": "601407", "doi": "10.15784/601407", "keywords": "Antarctica; Antarctic Peninsula", "people": "Axelsson, Michael; O\u0027Brien, Kristin; Joyce, William", "repository": "USAP-DC", "science_program": null, "title": "Measurements of splenic contraction in Antarctic fishes", "url": "https://www.usap-dc.org/view/dataset/601407"}, {"dataset_uid": "200191", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Gymnodraco acuticeps HIF-1A mRNA, partial cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/kx950832"}, {"dataset_uid": "601414", "doi": "10.15784/601414", "keywords": "Antarctica; Antarctic Peninsula", "people": "Crockett, Elizabeth; O\u0027Brien, Kristin; Evans, Elizabeth; Farnoud, Amir", "repository": "USAP-DC", "science_program": null, "title": "Thermal sensitivity of membrane fluidity and integrity in hearts of Antarctic fishes that vary in expression of hemoglobin and myoglobin", "url": "https://www.usap-dc.org/view/dataset/601414"}, {"dataset_uid": "200190", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Parachaenichthys charcoti HIF-1A mRNA, partial cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/KX950833"}, {"dataset_uid": "200184", "doi": "10.5061/dryad.83vc5", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Maximum cardiac performance of Antarctic fishes that lack haemoglobin and myoglobin: exploring the effect of warming on nature\u2019s natural knockouts", "url": "https://doi.org/10.5061/dryad.83vc5"}], "date_created": "Wed, 26 Feb 2020 00:00:00 GMT", "description": "The ocean surrounding Antarctica is home to an extraordinary assemblage of fishes, dominated by a single group that are extremely well-suited to life in icy waters and which are of significant ecological importance there. Of great concern is the capacity of these fishes to withstand increases in temperature as the region of the Western Antarctic Peninsula warms at a rate faster than any other area in the Southern hemisphere. One particular group of Antarctic fishes, known as the icefishes, are particularly vulnerable to increases in temperature because unlike all other vertebrates on earth, icefishes are white-blooded due to their lack of the oxygen-binding protein hemoglobin. This greatly reduces their capacity to transport and deliver oxygen to tissues compared to red-blooded Antarctic fishes. Previous studies have shown that icefishes are indeed less tolerant to elevations in temperature but the underlying factors are completely unknown. Additionally, it is not understood if red- or white-blooded Antarctic fishes can adjust, or acclimate, to modest increases in temperature, similar to those changes in temperature the animals might experience as the earth warms. The investigators will determine if heart function and/or nervous system function limits thermal tolerance of Antarctic fishes, and will determine their capacity to acclimate to warmer temperatures. The project will further the NSF goal of training new generations of scientists by training graduate and undergraduate students. In addition, the project will collaborate with a high school biology teacher from a school which serves a largely minority student body. The students will learn about the marine environment, and will construct a camera to be used in the field to learn more about Antarctic fishes. Two students and the teacher will also attend a summer marine biology internship program. Antarctic fishes within the suborder Notothenioidei (called \"notothenioids\") are among the organisms on earth least able to deal with changes in temperature. The hemoglobinless icefish are even less able to withstand temperature changes than are red-blooded notothenioids. While this is well documented, the underlying physiological and biochemical mechanisms responsible are unknown. The investigators will test the hypotheses that cardiac work is significantly greater in icefishes compared to red-blooded species, and that as temperature increases, the greater cardiac work of icefishes, coupled with reduced blood oxygen-carrying capacity, results in cardiac failure at a lower temperature compared to red-blooded species. They also hypothesize that neuronal function limits thermal tolerance of red-blooded notothenioids. These hypotheses will be tested using a wide variety of experiments. For example, the investigators will measure heart rate concurrently with critical thermal maximum. They will also characterize metabolic and gene-expression responses to elevated temperature and determine if mitochondrial function contributes to thermal tolerance using a variety of techniques. To determine if neuronal function limits thermal tolerance they will quantify behavioral responses to warming of whole animals and to warming of only the brain area. They will also determine if acclimation to warmer temperatures impacts heart function and they will measure activities of a variety of enzymes from central metabolic pathways.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Amd/Us; FISH; USA/NSF; FIELD INVESTIGATION; AMD; Antarctic Peninsula; LABORATORY; USAP-DC", "locations": "Antarctica; Antarctic Peninsula", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Crockett, Elizabeth; O\u0027Brien, Kristin", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "Dryad; GenBank; USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes", "uid": "p0010084", "west": null}, {"awards": "1543383 Postlethwait, John", "bounds_geometry": "POLYGON((-66 -62,-65.2 -62,-64.4 -62,-63.6 -62,-62.8 -62,-62 -62,-61.2 -62,-60.4 -62,-59.6 -62,-58.8 -62,-58 -62,-58 -62.4,-58 -62.8,-58 -63.2,-58 -63.6,-58 -64,-58 -64.4,-58 -64.8,-58 -65.2,-58 -65.6,-58 -66,-58.8 -66,-59.6 -66,-60.4 -66,-61.2 -66,-62 -66,-62.8 -66,-63.6 -66,-64.4 -66,-65.2 -66,-66 -66,-66 -65.6,-66 -65.2,-66 -64.8,-66 -64.4,-66 -64,-66 -63.6,-66 -63.2,-66 -62.8,-66 -62.4,-66 -62))", "dataset_titles": "C. aceratus pronephric kidney (head kidney) miRNA; mirtop\r\ncommand lines tool to annotate miRNAs with a standard mirna/isomir naming; Patagonotothen cornucola isolate Pcor_18_01 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial; Patagonotothen sima isolate Psim_18_11 cardiac muscle myosin heavy chain 6 (myh6) gene, partial cds; Patagonotothen sima isolate Psim_18_11 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial; Patagonotothen sima isolate Psim_18_12 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial; Prost!, a tool for miRNA annotation and next generation smallRNA sequencing experiment analysis; Quantifying expression levels of smallRNAs between tissues in Danio Rerio strain AB.; Quantifying expression levels of smallRNAs between tissues in three-spined stickleback", "datasets": [{"dataset_uid": "200131", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Prost!, a tool for miRNA annotation and next generation smallRNA sequencing experiment analysis", "url": "https://github.com/uoregon-postlethwait/prost"}, {"dataset_uid": "200130", "doi": "", "keywords": null, "people": null, "repository": "NCBI SRA", "science_program": null, "title": "C. aceratus pronephric kidney (head kidney) miRNA", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=SRP069031"}, {"dataset_uid": "200129", "doi": "", "keywords": null, "people": null, "repository": "NCBI SRA", "science_program": null, "title": "Quantifying expression levels of smallRNAs between tissues in Danio Rerio strain AB.", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=SRP039502"}, {"dataset_uid": "200136", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Patagonotothen sima isolate Psim_18_11 cardiac muscle myosin heavy chain 6 (myh6) gene, partial cds", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=MN136234+"}, {"dataset_uid": "200135", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Patagonotothen sima isolate Psim_18_12 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=MN136233+"}, {"dataset_uid": "200128", "doi": "", "keywords": null, "people": null, "repository": "NCBI SRA", "science_program": null, "title": "Quantifying expression levels of smallRNAs between tissues in three-spined stickleback", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=SRP157992"}, {"dataset_uid": "200132", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "mirtop\r\ncommand lines tool to annotate miRNAs with a standard mirna/isomir naming", "url": "https://github.com/miRTop"}, {"dataset_uid": "200134", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Patagonotothen sima isolate Psim_18_11 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=MN136232"}, {"dataset_uid": "200133", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Patagonotothen cornucola isolate Pcor_18_01 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=MN136231"}], "date_created": "Wed, 26 Feb 2020 00:00:00 GMT", "description": "Icefish live in frigid Antarctic seas, and have unique traits such as the absence of red blood cells, enlarged hearts, large diameter blood vessels, low bone mineral densities, and fat droplets that disrupt their muscles. These features would be harmful in other animals. In mammals and fish inhabiting warm waters, development of organs involved in these traits is modulated by genes that encode specific proteins, but the rate of protein production is often regulated by short RNA molecules called microRNAs (miRNAs). Genes that code for proteins must first make an RNA copy, and the actual protein is made from this RNA copy intermediate. MiRNAs regulate the amount of protein that is made by binding to the RNA intermediate and interrupting its production of protein. Binding of miRNAs to RNA depends strongly on temperature. Regulation of genes by miRNAs has not been studied in Antarctic fish, which live in seas with temperatures below the freezing point of fresh water. This project will compare miRNA regulation 1) in Antarctic fish vs. warm-water fish to learn how miRNAs regulate gene expression in constant cold; and 2) in Antarctic icefish with no red blood cells, enlarged hearts, and reduced bone density vs. closely related Antarctic fish containing red blood cells, normal hearts, and dense bones. The project will have broad impacts to science and society nationally and globally. First, this will be the first study of important factors in gene regulation (miRNAs) in Antarctic fish, which are an essential component of the entire ecology of the Southern Ocean, and will shed light on how these fish might respond to the warming of Antarctic waters. Second, it will bring Antarctic science to under-represented high school students at a local alternative downtown high school by conducting video conferences during the Antarctic field seasons and hosting student investigations of Antarctic fish in the research laboratory. microRNAs (miRNAs) are key post-transcriptional regulators of gene expression that modulate development and physiology in temperate animals. Although miRNAs act by binding to messenger RNAs (mRNAs), a process that is strongly sensitive to temperature, miRNAs have yet not been studied in Antarctic animals, including Notothenioid fish, which dominate the Southern Ocean. This project will compare miRNA regulation in 1) Antarctic vs. temperate fish to learn the roles of miRNA regulation in adaptation to constant cold; and in 2) bottom-dwelling, dense-boned, red-blooded Nototheniods vs. high buoyancy, osteopenic, white-blooded icefish to understand miRNA regulation in specialized organs after the evolution of the loss of hemoglobin genes and red blood cells, the origin of enlarged heart and vasculature, and the evolution of increased buoyancy, which arose by decreased bone mineralization and increased lipid deposition. Aim 1 is to test the hypothesis that Antarctic fish evolved miRNA-related genome specializations in response to constant cold. The project will compare four Antarctic Notothenioid species to two temperate Notothenioids and two temperate laboratory species to test the hypotheses that (a) Antarctic fish evolved miRNA genome repertoires by loss of ancestral genes and/or gain of new genes, (b) express miRNAs that are involved in cold tolerance, and (c) respond to temperature change by changing miRNA gene expression. Aim 2 is to test the hypothesis that the evolution of icefish from red-blooded bottom-dwelling ancestors was accompanied by an altered miRNA genomic repertoire, sequence, and/or expression. The project will test the hypotheses that (a) miRNAs in icefish evolved in sequence and/or in expression in icefish specializations, including head kidney (origin of red blood cells); heart (changes in vascular system), cranium and pectoral girdle (reduced bone mineral density); and skeletal muscle (lipid deposition), and (b) miRNAs that evolved in icefish specializations had ancestral functions related to their derived roles in icefish, as determined by functional tests of zebrafish orthologs of icefish miRNAs in developing zebrafish. The program will isolate, sequence, and determine the expression of miRNAs and mRNAs using high-throughput transcriptomics and novel software. Results will show how the microRNA system evolves in vertebrate animals pushed to physiological extremes and provide insights into the prospects of key species in the most rapidly warming part of the globe.", "east": -58.0, "geometry": "POINT(-62 -64)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; Palmer Station; NOT APPLICABLE; FISH", "locations": "Palmer Station", "north": -62.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Postlethwait, John; Desvignes, Thomas", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "GitHub", "repositories": "GitHub; NCBI GenBank; NCBI SRA", "science_programs": null, "south": -66.0, "title": "Antarctic Fish and MicroRNA Control of Development and Physiology", "uid": "p0010085", "west": -66.0}, {"awards": "1341432 Brzezinski, Mark; 1341464 Robinson, Rebecca", "bounds_geometry": "POLYGON((-175 -54,-174 -54,-173 -54,-172 -54,-171 -54,-170 -54,-169 -54,-168 -54,-167 -54,-166 -54,-165 -54,-165 -55.3,-165 -56.6,-165 -57.9,-165 -59.2,-165 -60.5,-165 -61.8,-165 -63.1,-165 -64.4,-165 -65.7,-165 -67,-166 -67,-167 -67,-168 -67,-169 -67,-170 -67,-171 -67,-172 -67,-173 -67,-174 -67,-175 -67,-175 -65.7,-175 -64.4,-175 -63.1,-175 -61.8,-175 -60.5,-175 -59.2,-175 -57.9,-175 -56.6,-175 -55.3,-175 -54))", "dataset_titles": "Diatom assemblage counts from NBP17-02 shipboard carboy experiments; Dissolved nutrient profiles from along 170\u00b0W between 67 and 54\u00b0S; Expedition Data of NBP1702; Particle composition measurements from along 170\u00b0W between 67-54\u00b0S; Particulate silicon and nitrogen concentrations and isotopic composition measurements in McLane pump profiles from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean; Silicon concentration and isotopic composition measurements in pore waters and sediments from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean; Surface Southern Ocean community growouts to evaluate the diatom bound N isotope proxy", "datasets": [{"dataset_uid": "601522", "doi": "10.15784/601522", "keywords": "Antarctica; Nitrogen Isotopes; Oceans; Paleoproxies; Southern Ocean", "people": "Jones, Colin; Riesselman, Christina; Robinson, Rebecca; Closset, Ivia; Kelly, Roger; Robinson, Rebecca ; Brzezinski, Mark", "repository": "USAP-DC", "science_program": null, "title": "Surface Southern Ocean community growouts to evaluate the diatom bound N isotope proxy", "url": "https://www.usap-dc.org/view/dataset/601522"}, {"dataset_uid": "601523", "doi": "10.15784/601523", "keywords": "Antarctica; Biota; Carboy Growouts; Diatom; Diatom Assemblage Data; NBP1702; Oceans; R/v Nathaniel B. Palmer; Southern Ocean; Southern Ocean Summer", "people": "Jones, Colin; Robinson, Rebecca; Riesselman, Christina; Robinson, Rebecca ", "repository": "USAP-DC", "science_program": null, "title": "Diatom assemblage counts from NBP17-02 shipboard carboy experiments", "url": "https://www.usap-dc.org/view/dataset/601523"}, {"dataset_uid": "601562", "doi": "10.15784/601562", "keywords": "Antarctica; Biogenic Silica; Chemistry:sediment; Chemistry:Sediment; Lithogenic Silica; Marine Geoscience; NBP1702; Pore Water Biogeochemistry; Sediment; Silicon Cycle; Silicon Stable Isotope; Southern Ocean", "people": "Jones, Janice L.; Closset, Ivia; Brzezinski, Mark", "repository": "USAP-DC", "science_program": null, "title": "Silicon concentration and isotopic composition measurements in pore waters and sediments from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean", "url": "https://www.usap-dc.org/view/dataset/601562"}, {"dataset_uid": "601276", "doi": "10.15784/601276", "keywords": "Antarctica; Biogenic Silica; Nitrogen Isotopes; Southern Ocean", "people": "Robinson, Rebecca; Brzezinski, Mark", "repository": "USAP-DC", "science_program": null, "title": "Particle composition measurements from along 170\u00b0W between 67-54\u00b0S", "url": "https://www.usap-dc.org/view/dataset/601276"}, {"dataset_uid": "200126", "doi": "10.7284/907211", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP1702", "url": "https://www.rvdata.us/search/cruise/NBP1702"}, {"dataset_uid": "601269", "doi": "10.15784/601269", "keywords": "Antarctica; Chlorophyll; Southern Ocean", "people": "Robinson, Rebecca; Brzezinski, Mark", "repository": "USAP-DC", "science_program": null, "title": "Dissolved nutrient profiles from along 170\u00b0W between 67 and 54\u00b0S", "url": "https://www.usap-dc.org/view/dataset/601269"}, {"dataset_uid": "601576", "doi": "10.15784/601576", "keywords": "Antarctica; Biogenic Silica; Chemistry:sediment; Chemistry:Sediment; Diatom; Diatom Bound; Lithogenic Silica; Marine Geoscience; NBP1702; Nitrogen Isotopes; Silicon Cycle; Silicon Stable Isotope; Southern Ocean", "people": "Robinson, Rebecca; Brzezinski, Mark; Jones, Janice L.; Closset, Ivia", "repository": "USAP-DC", "science_program": null, "title": " Particulate silicon and nitrogen concentrations and isotopic composition measurements in McLane pump profiles from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean", "url": "https://www.usap-dc.org/view/dataset/601576"}], "date_created": "Wed, 26 Feb 2020 00:00:00 GMT", "description": "Collaborative Proposal: A field and laboratory examination of the diatom N and Si isotope proxies: Implications for assessing the Southern Ocean biological pump The rise in atmospheric carbon dioxide concentrations and associated climate changes make understanding the role of the ocean in large scale carbon cycle a priority. Geologic samples allow exploration of potential mechanisms for carbon dioxide drawdown during glacial periods through the use of geochemical proxies. Nitrogen and silicon isotope signatures from fossil diatoms (microscopic plants) are used to investigate changes in the physical supply and biological demand for nutrients (like nitrogen and silicon and carbon) in the Southern Ocean. The project will evaluate the use the nitrogen and silicon isotope proxies through a series of laboratory experiments and Southern Ocean field sampling. The results will provide quantification of real relationships between nitrogen and silicon isotopes and nutrient usage in the Southern Ocean and allow exploration of the role of other factors, including biological diversity, ice cover, and mixing, in altering the chemical signatures recorded by diatoms. Seafloor sediment samples will be used to evaluate how well the signal created in the water column is recorded by fossil diatoms buried in the seafloor. Improving the nutrient isotope proxies will allow for a more quantitative understanding of the role of polar biology in regulating natural variation in atmospheric carbon dioxide. The project will also result in the training of a graduate student and development of outreach materials targeting a broad popular audience. This project seeks to test the fidelity of the diatom nitrogen and silicon isotope proxies, two commonly used paleoceanographic tools for investigating the role of the Southern Ocean biological pump in regulating atmospheric CO2 concentrations on glacial-interglacial timescales. Existing ground-truthing data, including culture experiments, surface sediment data and downcore reconstructions, all suggest that nutrient utilization is the primary driver of isotopic variation in the Southern Ocean. However, strong contribution of interspecific variation is implied by recent culture results. Moreover, field and laboratory studies present some contradictory results in terms of the relative importance of interspecific variation and of inferred post-depositional alteration of the nutrient isotope signals. Here, a first order test of the N and Si diatom nutrient isotope paleo-proxies, involving water column dissolved and particulate sampling and laboratory culturing of field-isolates, is proposed. Southern Ocean water, biomass, live diatoms and fossil diatom sampling will be conducted to investigate species and assemblage related variability in diatom nitrogen and silicon isotopes and their relationship to surface nutrient fields and early diagenesis. Access to fresh materials produced in an analogous environmental context to the sediments of primary interest is critical for making robust paleoceanographic reconstructions. Field sampling will occur along 175\u00b0W, transecting the Antarctic Circumpolar Current from the subtropics to the marginal ice edge. Collection of water, sinking/suspended particles and multi-core samples from 13 stations and 3 shipboard incubation experiments will be used to test four proposed hypotheses that together evaluate the significance of existing culture results and seek to allow the best use of diatom nutrient isotope proxies in evaluating the biological pump.", "east": -165.0, "geometry": "POINT(-170 -60.5)", "instruments": null, "is_usap_dc": true, "keywords": "Southern Ocean; AMD; NITROGEN ISOTOPES; R/V NBP; NSF/USA; NUTRIENTS; USAP-DC; Amd/Us", "locations": "Southern Ocean", "north": -54.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Robinson, Rebecca; Brzezinski, Mark", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -67.0, "title": "Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump", "uid": "p0010083", "west": -175.0}, {"awards": "1644020 Sims, Kenneth W.; 1644027 Wallace, Paul; 1644013 Gaetani, Glenn", "bounds_geometry": "POLYGON((164.1 -77.1,164.65 -77.1,165.2 -77.1,165.75 -77.1,166.3 -77.1,166.85 -77.1,167.4 -77.1,167.95 -77.1,168.5 -77.1,169.05 -77.1,169.6 -77.1,169.6 -77.235,169.6 -77.37,169.6 -77.505,169.6 -77.64,169.6 -77.775,169.6 -77.91,169.6 -78.045,169.6 -78.18,169.6 -78.315,169.6 -78.45,169.05 -78.45,168.5 -78.45,167.95 -78.45,167.4 -78.45,166.85 -78.45,166.3 -78.45,165.75 -78.45,165.2 -78.45,164.65 -78.45,164.1 -78.45,164.1 -78.315,164.1 -78.18,164.1 -78.045,164.1 -77.91,164.1 -77.775,164.1 -77.64,164.1 -77.505,164.1 -77.37,164.1 -77.235,164.1 -77.1))", "dataset_titles": "G170 Electron Microprobe Analyses of Melt Inclusions and Host Olivines; G170 Raman Spectroscopy \u0026 Tomography Volumes of Melt Inclusions and Vapor Bubbles; G170 Sample Locations Ross Island \u0026 Discovery Province; G170 Secondary Ion Mass Spectrometry Analses of Melt Inclusion Volatiles; G170 Secondary Ion Mass Spectrometry Analyses of Melt Inclusion Hydrogen Isotopes; Location and Description of Tephra Samples from the Erebus and Discovery Sub-provinces", "datasets": [{"dataset_uid": "601505", "doi": "10.15784/601505", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Electron Microprobe Analyses; Olivine; Petrography; Ross Island", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Electron Microprobe Analyses of Melt Inclusions and Host Olivines", "url": "https://www.usap-dc.org/view/dataset/601505"}, {"dataset_uid": "601506", "doi": "10.15784/601506", "keywords": "Antarctica; Ion Mass Spectrometry; Ross Island; Volatiles", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Secondary Ion Mass Spectrometry Analses of Melt Inclusion Volatiles", "url": "https://www.usap-dc.org/view/dataset/601506"}, {"dataset_uid": "601507", "doi": "10.15784/601507", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Hydrogen; Ion Mass Spectrometry; Ross Island", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Secondary Ion Mass Spectrometry Analyses of Melt Inclusion Hydrogen Isotopes", "url": "https://www.usap-dc.org/view/dataset/601507"}, {"dataset_uid": "601250", "doi": "10.15784/601250", "keywords": "Antarctica; Hut Point Peninsula; Mt. Bird; Mt. Morning; Mt. Terror; Ross Island; Turks Head; Turtle Rock", "people": "Gaetani, Glenn; Pamukcu, Ayla", "repository": "USAP-DC", "science_program": null, "title": "Location and Description of Tephra Samples from the Erebus and Discovery Sub-provinces", "url": "https://www.usap-dc.org/view/dataset/601250"}, {"dataset_uid": "601508", "doi": "10.15784/601508", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Melt Inclusions; Raman Spectroscopy; Ross Island; Vapor Bubbles; Volcanic", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Raman Spectroscopy \u0026 Tomography Volumes of Melt Inclusions and Vapor Bubbles", "url": "https://www.usap-dc.org/view/dataset/601508"}, {"dataset_uid": "601504", "doi": "10.15784/601504", "keywords": "Antarctica; Ross Island; Sample/collection Description; Sample/Collection Description; Sample Location", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Sample Locations Ross Island \u0026 Discovery Province", "url": "https://www.usap-dc.org/view/dataset/601504"}], "date_created": "Sat, 08 Feb 2020 00:00:00 GMT", "description": "Nontechnical project description Globally, 500 million people live near and are threatened by active volcanoes. An important step in mitigating volcanic hazards is understanding the variables that influence the explosivity of eruptions. The rate at which a magma ascends from the reservoir within the Earth to the surface is one such variable. However, magma ascent rates are particularly difficult to determine because of the lack of reliable methods for investigating the process. This research applies a new approach to study magma storage depths and ascent rates at the Erebus volcanic province of Antarctica, one of Earth\u0027s largest alkaline volcanic centers. Small pockets of magma that become trapped within growing olivine crystals are called melt inclusions. The concentrations of water and carbon dioxide in these melt inclusions preserve information on the depth of magma reservoirs. Changes to the concentration and isotopic composition of water in the inclusions provide information on how long it took for the host magma to rise to the surface. In combination, these data from samples of olivine-rich volcanic deposits in the Erebus volcanic province will be used to determine the depths at which magmas are stored and their ascent rates. The project results will provide a framework for understanding volcanic hazards associated with alkaline volcanism worldwide. In addition, this project facilitates collaboration among three institutions, and provides an important educational opportunity for a postdoctoral researcher. Technical project description The depths at which magmas are stored, their pre-eruptive volatile contents, and the rates at which they ascend to the Earth\u0027s surface are important controls on the dynamics of volcanic eruptions. Basaltic magmas are likely to be vapor undersaturated as they begin their ascent from the mantle through the crust, but volatile solubility drops with decreasing pressure. Once vapor saturation is achieved and the magma begins to degas, its pre-eruptive volatile content is determined largely by the depth at which it resides within the crust. Magma stored in deeper reservoirs tend to experience less pre-eruptive degassing and to be richer in volatiles than magma shallower reservoirs. Eruptive style is influenced by the rate at which a magma ascends from the reservoir to the surface through its effect on the efficiency of vapor bubble nucleation, growth, and coalescence. The proposed work will advance our understanding of pre-eruptive storage conditions and syn-eruptive ascent rates through a combined field and analytical research program. Volatile measurements from olivine-hosted melt inclusions will be used to systematically investigate magma storage depths and ascent rates associated with alkaline volcanism in the Erebus volcanic province. A central goal of the project is to provide a spatial and temporal framework for interpreting results from studies of present-day volcanic processes at Mt Erebus volcano. The Erebus volcanic province of Antarctica is especially well suited to this type of investigation because: (1) there are many exposed mafic scoria cones, fissure vents, and hyaloclastites (exposed in sea cliffs) that produced rapidly quenched, olivine-rich tephra; (2) existing volatile data for Ross Island MIs show that magma storage was relatively deep compared to many mafic volcanic systems; (3) some of the eruptive centers ejected mantle xenoliths, allowing for comparison of ascent rates for xenolith-bearing and xenolith-free eruptions, and comparison of ascent rates for those bearing xenoliths with times estimated from settling velocities; and (4) the cold, dry conditions in Antarctica result in excellent tephra preservation compared to tropical and even many temperate localities. The project provides new tools for assessing volcanic hazards, facilitates collaboration involving researchers from three different institutions (WHOI, U Wyoming, and U Oregon), supports the researchers\u0027 involvement in teaching, advising, and outreach, and provides an educational opportunity for a promising young postdoctoral researcher. Understanding the interrelationships among magma volatile contents, reservoir depths, and ascent rates is vital for assessing volcanic hazards associated with alkaline volcanism across the globe.", "east": 169.6, "geometry": "POINT(166.85 -77.775)", "instruments": null, "is_usap_dc": true, "keywords": "Tephra; Turtle Rock; USA/NSF; Amd/Us; LABORATORY; AMD; Ross Island; Turks Head; Hut Point Peninsula; LAVA SPEED/FLOW; USAP-DC; Mt. Morning; Mt. Terror; ROCKS/MINERALS/CRYSTALS; Mt. Bird; FIELD INVESTIGATION", "locations": "Ross Island; Mt. Morning; Mt. Bird; Mt. Terror; Hut Point Peninsula; Turtle Rock; Turks Head", "north": -77.1, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Gaetani, Glenn; Le Roux, Veronique; Sims, Kenneth; Wallace, Paul", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.45, "title": "Collaborative Research: Determining Magma Storage Depths and Ascent Rates for the Erebus Volcanic Province, Antarctica Using Diffusive Water Loss from Olivine-hosted Melt Inclusion", "uid": "p0010081", "west": 164.1}, {"awards": "1643864 Talghader, Joseph", "bounds_geometry": "POINT(-112.085 -79.467)", "dataset_titles": " Automated c-axis stage images of WDC-06A 420 vertical thin section from WAIS Divide, Antarctica", "datasets": [{"dataset_uid": "601254", "doi": "10.15784/601254", "keywords": "Antarctica; C-axis; Ice; Microscopy; Thin Sections", "people": "Talghader, Joseph; Mah, Merlin", "repository": "USAP-DC", "science_program": null, "title": " Automated c-axis stage images of WDC-06A 420 vertical thin section from WAIS Divide, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601254"}], "date_created": "Sat, 08 Feb 2020 00:00:00 GMT", "description": "Part I: Nontechnical One of the most interesting historical records that science can provide is contained in the ice of Antarctica. Layer by layer over hundreds of thousands of years, snow has precipitated on the ice sheet, become compacted, and turned into additional ice. Any dust or other impurities in the air or snow have been precipitated as well and thus each snowfall leaves a snapshot record of the atmosphere that existed at or near the time of deposition. A detailed chronology of volcanic eruptions can be obtained from the ice layers where ash and other volcanic products were deposited. Normally, the analysis of volcanic layers requires the physical extraction of a core from the ice sheet; however, chronologies from cores have discontinuities and are difficult, time-consuming, and expensive to obtain. Borehole logging is a measurement method where one lowers instrumentation into a drilled hole in the ice, whether or not core has been retrieved. To date, this technology has only been used to measure optical systems to identify volcanic ash and other impurity layers. In this program, a profiling technology will be developed that measures the conductivity of the ice. A radio-frequency emitter lowered into the borehole will create a return signal that changes depending on the local conductivity, which depends on the concentration of dissolved ions. For example, dissolved sulfates are a critical marker of volcanic activity that may not be coincident with deposited ash. Other dissolved ions, such as chloride, can be indicative of other processes. It is expected that this borehole profiling instrument will be able to help rapidly identify volcanic eruptions that had potentially global impact, distinguish between different dissolved ions via their frequency dependencies, and assist in establishing chronologies between different ice cores and boreholes. Part II: Technical Description Borehole logging of the polar ice sheets is one of the most important methods that earth scientists have to identify and date volcanic eruptions. However, current technology only indicates the presence and depth of ash from an eruption. In order to extract more detailed information, one must obtain an ice core, and laboriously measure each section in the laboratory using electrical conductivity or dielectric measurements to determine the presence or absence of dissolved sulfate and its location relative to the corresponding ash, if any. This program will investigate and demonstrate a borehole logging-compatible radio-frequency dielectric sensor to detect and measure spikes in dissolved major ions chemistry in ice, particularly in intervals corresponding to volcanically produced sulfates. The sulfate layers are one of the primary signatures of volcanic products. However, other ions, such as chlorides, calcium, and others are also commonly seen in ice, and the dielectric logging technology of this program would also measure these. It is expected that certain sets of ions will be distinguishable by their frequency dependencies. This technique could guide other investigators, who are using conventional core scanning and sampling methods, to regions of special interest in corresponding core. We plan to construct a ring-based electrode system and test this system on a variety of artificial ice boreholes and ice cores. This unit will not include a pressure vessel or other borehole logger packing. We will test different means of applying electrical signals including short pulses and periodic waves. We will further utilize differential measurements with low noise circuits and filters to achieve maximum sensitivity. We will correlate the signals extracted with known molarities of sulfates and other ions and measured ECM records. We will perform scaled-down experiments using real ice cores stored in Bay?s lab at UC Berkeley. This will permit testing of different designs in ice with natural impurities and polycrystalline structure. This small collection includes cores from a variety of locations in Antarctica and Greenland, and a variety of ages as old as a million years.", "east": -112.085, "geometry": "POINT(-112.085 -79.467)", "instruments": null, "is_usap_dc": true, "keywords": "WAIS Divide; USAP-DC; Amd/Us; GLACIERS/ICE SHEETS; USA/NSF; FIELD INVESTIGATION; Ice Core; AMD", "locations": "WAIS Divide", "north": -79.467, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Instrumentation and Facilities", "paleo_time": null, "persons": "Talghader, Joseph", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Collaborative Research: Borehole Logging to Classify Volcanic Signatures in Antarctic Ice", "uid": "p0010080", "west": -112.085}, {"awards": "1341496 Girton, James", "bounds_geometry": "POLYGON((-142 -66,-135.3 -66,-128.6 -66,-121.9 -66,-115.2 -66,-108.5 -66,-101.8 -66,-95.1 -66,-88.4 -66,-81.7 -66,-75 -66,-75 -66.8,-75 -67.6,-75 -68.4,-75 -69.2,-75 -70,-75 -70.8,-75 -71.6,-75 -72.4,-75 -73.2,-75 -74,-81.7 -74,-88.4 -74,-95.1 -74,-101.8 -74,-108.5 -74,-115.2 -74,-121.9 -74,-128.6 -74,-135.3 -74,-142 -74,-142 -73.2,-142 -72.4,-142 -71.6,-142 -70.8,-142 -70,-142 -69.2,-142 -68.4,-142 -67.6,-142 -66.8,-142 -66))", "dataset_titles": "Bottom Photographs from the Antarctic Peninsula acquired during R/V Laurence M. Gould expedition LMG1703; Expedition Data; Expedition data of NBP1701", "datasets": [{"dataset_uid": "002661", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1701", "url": "https://www.rvdata.us/search/cruise/NBP1701"}, {"dataset_uid": "001369", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1701"}, {"dataset_uid": "601302", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Benthic Images; Benthos; Biota; LMG1708; Oceans; Photo; Photo/video; Photo/Video; R/v Laurence M. Gould; Ship; Yoyo Camera", "people": "Girton, James", "repository": "USAP-DC", "science_program": null, "title": "Bottom Photographs from the Antarctic Peninsula acquired during R/V Laurence M. Gould expedition LMG1703", "url": "https://www.usap-dc.org/view/dataset/601302"}], "date_created": "Tue, 10 Dec 2019 00:00:00 GMT", "description": "Current oceanographic interest in the interaction of relatively warm water of the Southern Ocean Circumpolar Deep Water ( CDW) as it moves southward to the frigid waters of the Antarctic continental shelves is based on the potential importance of heat transport from the global ocean to the base of continental ice shelves. This is needed to understand the longer term mass balance of the continent, the stability of the vast Antarctic ice sheets and the rate at which sea-level will rise in a warming world. Improved observational knowledge of the mechanisms of how warming CDW moves across the Antarctic Circumpolar Current (ACC) is needed. Understanding this dynamical transport, believed to take place by the eddy flux of time-varying mesoscale circulation features, will improve coupled ocean-atmospheric climate models. The development of the next generation of coupled ocean-ice- climate models help us understand future changes in atmospheric heat fluxes, glacial and sea-ice balance, and changes in the Antarctic ecosystems. A recurring obstacle to our understanding is the lack of data in this distant region. In this project, a number of subsurface profiling EM-APEX floats adapted to operate under sea ice will be launched on up to 4 cruises of opportunity to the Pacific sector during Austral summer. The floats will be launched south of the Polar Front and measure shear, turbulence, temperature, and salinity to 2000m depth for up to 2 year missions while following the CDW layer.", "east": -75.0, "geometry": "POINT(-108.5 -70)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERA", "is_usap_dc": true, "keywords": "OCEAN TEMPERATURE; R/V NBP; USAP-DC; ICE DEPTH/THICKNESS; HEAT FLUX; OCEAN CURRENTS; SALINITY/DENSITY; LMG1703; Bellingshausen Sea; Yoyo Camera; WATER MASSES; R/V LMG; NBP1701", "locations": "Bellingshausen Sea", "north": -66.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Girton, James; Rynearson, Tatiana", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -74.0, "title": "Collaborative Research: Pathways of Circumpolar Deep Water to West Antarctica from Profiling Float and Satellite Measurements", "uid": "p0010074", "west": -142.0}, {"awards": "1443296 Cottle, John", "bounds_geometry": "POLYGON((-180 -76.85314,-179.4383642 -76.85314,-178.8767284 -76.85314,-178.3150926 -76.85314,-177.7534568 -76.85314,-177.191821 -76.85314,-176.6301852 -76.85314,-176.0685494 -76.85314,-175.5069136 -76.85314,-174.9452778 -76.85314,-174.383642 -76.85314,-174.383642 -77.658865,-174.383642 -78.46459,-174.383642 -79.270315,-174.383642 -80.07604,-174.383642 -80.881765,-174.383642 -81.68749,-174.383642 -82.493215,-174.383642 -83.29894,-174.383642 -84.104665,-174.383642 -84.91039,-174.9452778 -84.91039,-175.5069136 -84.91039,-176.0685494 -84.91039,-176.6301852 -84.91039,-177.191821 -84.91039,-177.7534568 -84.91039,-178.3150926 -84.91039,-178.8767284 -84.91039,-179.4383642 -84.91039,180 -84.91039,177.4459565 -84.91039,174.891913 -84.91039,172.3378695 -84.91039,169.783826 -84.91039,167.2297825 -84.91039,164.675739 -84.91039,162.1216955 -84.91039,159.567652 -84.91039,157.0136085 -84.91039,154.459565 -84.91039,154.459565 -84.104665,154.459565 -83.29894,154.459565 -82.493215,154.459565 -81.68749,154.459565 -80.881765,154.459565 -80.07604,154.459565 -79.270315,154.459565 -78.46459,154.459565 -77.658865,154.459565 -76.85314,157.0136085 -76.85314,159.567652 -76.85314,162.1216955 -76.85314,164.675739 -76.85314,167.2297825 -76.85314,169.783826 -76.85314,172.3378695 -76.85314,174.891913 -76.85314,177.4459565 -76.85314,-180 -76.85314))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 02 Dec 2019 00:00:00 GMT", "description": "Subduction takes place at convergent plate boundaries and involves sinking of one tectonic plate underneath another. Although this process is a key aspect of plate tectonics that shapes the planet over geologic time, and is a primary cause of earthquakes, it is not known what causes subduction to cease, and what effect it has on the deepest portions of the crust and the upper part of the mantle. By studying the age and composition of igneous rocks emplaced at the very end of the subduction cycle, this project seeks to understand what causes subduction to cease, and how this changes the composition and structure of the crust and upper mantle. Because this process occurs deep within the earth, the project will focus on rocks in the root of an ancient subduction zone, now exposed in the Transantarctic Mountains of Antarctica. In addition, Antarctica remains relatively poorly understood, and this project will contribute directly to increasing our understanding of the geologic history of this region. The project will focus on training graduate and undergraduate students - incorporating hands-on experience with an array of state-of-the-art analytical instrumentation. Students will also gain a range of more general skills including Geographic Information Systems (GIS), written and oral communication, and data management - strengths that are highly relevant to careers both in the academic and Geosciences industry. Each summer, high school students will be incorporated into aspects of the laboratory-based research through the UCSB research mentorship program. The PI and graduate students will engage the general public through a purpose-built iPhone App and multimedia website. Activities will include live phone and video conversations from the field between elementary school students and members of the team in Antarctica. The mechanisms by which the deep crustal delaminates or \"founders\" and is returned to the mantle remains a fundamental problem in earth science. Specifically, little is known about the temporal and spatial scales over which this process occurs or the mechanisms that trigger such catastrophic events. Igneous rocks highly enriched in potassium, called lamprophyres, are often emplaced during, and immediately after, termination of subduction and therefore potentially provide direct insight into foundering. These enigmatic rocks are important because they represent near-primary mantle melt compositions and therefore their age, geochemistry and petrologic evolution reveal key information on both the composition of the upper mantle and its thermal state. Of equal importance, they reveal how these key parameters vary through both space and time. By evaluating lamprophyres along a subduction zone margin it is possible to extract: 1) local-scale information, such as the timing and duration of melting and the role of igneous crystallization processes in generation of isotopic heterogeneities; 2) along-strike variations in mantle source composition, temperature, and depth of melting 3) the plate-scale forces that control foundering and termination of subduction. This project will study a suite of lamprophyres along the axis of the Transantarctic Mountains, emplaced during the latest stages of the Neoproterozoic - Ordovician Ross orogeny, Antarctica (roughly 505 to 470 million years before present). High-precision geochronology (age determinations) will be combined with geochemical measurements on the rocks and minerals to understand the mechanisms and timing of deep crustal foundering/delamination.", "east": -174.383642, "geometry": "POINT(170.0379615 -80.881765)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "AGE DETERMINATIONS; ISOTOPES; PLATE TECTONICS; Antarctica; USAP-DC; NOT APPLICABLE", "locations": "Antarctica", "north": -76.85314, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Cottle, John", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repositories": null, "science_programs": null, "south": -84.91039, "title": "Petrologic Constraints on Subduction Termination From Lamprophyres, Ross Orogen, Antarctica", "uid": "p0010071", "west": 154.459565}, {"awards": "1643550 Sletten, Ronald", "bounds_geometry": "POLYGON((160.5 -77.3,160.67 -77.3,160.84 -77.3,161.01 -77.3,161.18 -77.3,161.35 -77.3,161.52 -77.3,161.69 -77.3,161.86 -77.3,162.03 -77.3,162.2 -77.3,162.2 -77.35,162.2 -77.4,162.2 -77.45,162.2 -77.5,162.2 -77.55,162.2 -77.6,162.2 -77.65,162.2 -77.7,162.2 -77.75,162.2 -77.8,162.03 -77.8,161.86 -77.8,161.69 -77.8,161.52 -77.8,161.35 -77.8,161.18 -77.8,161.01 -77.8,160.84 -77.8,160.67 -77.8,160.5 -77.8,160.5 -77.75,160.5 -77.7,160.5 -77.65,160.5 -77.6,160.5 -77.55,160.5 -77.5,160.5 -77.45,160.5 -77.4,160.5 -77.35,160.5 -77.3))", "dataset_titles": "Timelapse photography of Don Juan Pond and surrounding basin", "datasets": [{"dataset_uid": "601487", "doi": "10.15784/601487", "keywords": "Antarctica; Brine; CaCl2; Don Juan Pond; Dry Valleys; Salt", "people": "Toner, Jonathan; Sletten, Ronald S.; Mushkin, Amit", "repository": "USAP-DC", "science_program": null, "title": "Timelapse photography of Don Juan Pond and surrounding basin", "url": "https://www.usap-dc.org/view/dataset/601487"}], "date_created": "Thu, 21 Nov 2019 00:00:00 GMT", "description": "This study aims to better understand salt accumulation in cold deserts and develop a model of salt transport by groundwater. Cold deserts, like the Antarctic McMurdo Dry Valleys (MDV), are similar to hot deserts in that they accumulate high concentrations of salts because there is not enough water to flush the salts out of the soils into the ocean. The accumulation of salt allows for the creation of brine-rich groundwater that freezes at much lower temperatures. Field work will focus on several groundwater features in the MDV including Don Juan Pond, a shallow lake that accumulates extremely high levels of salts and does not freeze until the temperature reaches -51 degrees C (-60 degrees F). The setting offers the potential to better understand this unique water environment including life at its extremes. It also serves as an analog environment for Mars, a planet that is entirely underlain by permafrost, similar to the MDV. This project will support a doctoral student at the University of Washington Department of Earth and Space Sciences, who will be trained in chemical analysis, chemical and physical modeling, and remote field work in a polar desert environment. Past research suggests that the movement of soluble ions in sediment and soil is controlled by the water activity, permeability, and the thermal regime; however, processes controlling the ionic redistribution in Antarctic environments are poorly constrained. This project aims to better understand the formation, salt redistribution, and water activity of pervasive brine-rich groundwater that is enriched in calcium chloride. A primary goal is to develop a brine thermal;reactive;transport model for the MDV region using data collected from the field to constrain model inputs and ground-truth model outputs. The model will develop a Pitzer-type thermodynamic, reactive transport model and couple it to a ground temperature model. The model will test mechanisms of groundwater formation in the MDV and the properties (e.g. composition, temperature, and water activity) of widespread shallow brine-rich waters. Water is an essential ingredient for life and defining processes that control the availability of water is critical for understanding the habitability of extreme environments, including Mars.", "east": 162.2, "geometry": "POINT(161.35 -77.55)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERA", "is_usap_dc": true, "keywords": "Amd/Us; AMD; Antarctica; USA/NSF; USAP-DC; SOIL CHEMISTRY; FIELD INVESTIGATION", "locations": "Antarctica", "north": -77.3, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Sletten, Ronald S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.8, "title": "Formation and Characteristics of Brine-rich Water in the Dry Valleys, Antarctica", "uid": "p0010069", "west": 160.5}, {"awards": "1443105 Steig, Eric", "bounds_geometry": "POINT(0 -90)", "dataset_titles": "Continuous-flow measurements of the complete water isotope ratios (D/H, 17O/16O, 18O/16) from the South Pole ice core; South Pole high resolution ice core water stable isotope record for dD, d18O; South Pole Ice Core Holocene Major Ion Dataset; South Pole Ice Core Sea Salt and Major Ions; SP19 Gas Chronology; Temperature, accumulation rate, and layer thinning from the South Pole ice core (SPC14)", "datasets": [{"dataset_uid": "601380", "doi": "10.15784/601380", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Core Stratigraphy; Methane; South Pole; SPICEcore", "people": "Epifanio, Jenna", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SP19 Gas Chronology", "url": "https://www.usap-dc.org/view/dataset/601380"}, {"dataset_uid": "601429", "doi": "10.15784/601429", "keywords": "Antarctica; Climate; Deuterium; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hydrogen; Ice; Ice Core; Ice Core Chemistry; Oxygen; Paleoclimate; Snow/ice; Snow/Ice; South Pole; Stable Isotopes", "people": "Jones, Tyler R.; White, James; Vaughn, Bruce; Morris, Valerie; Kahle, Emma; Schauer, Andrew; Steig, Eric J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Continuous-flow measurements of the complete water isotope ratios (D/H, 17O/16O, 18O/16) from the South Pole ice core", "url": "https://www.usap-dc.org/view/dataset/601429"}, {"dataset_uid": "601239", "doi": "10.15784/601239", "keywords": "Antarctica; Cavity Ring Down Spectrometers; Delta 18O; Delta Deuterium; Deuterium Isotopes; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core; Ice Core Chemistry; Ice Core Data; Oxygen Isotope; Snow/ice; Snow/Ice; Stable Isotopes", "people": "Steig, Eric J.; Schauer, Andrew; Kahle, Emma; Vaughn, Bruce; Morris, Valerie; Jones, Tyler R.; White, James", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole high resolution ice core water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601239"}, {"dataset_uid": "601851", "doi": "10.15784/601851", "keywords": "Antarctica; Cryosphere; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "people": "Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Sea Salt and Major Ions", "url": "https://www.usap-dc.org/view/dataset/601851"}, {"dataset_uid": "601850", "doi": "10.15784/601850", "keywords": "Antarctica; Cryosphere; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "people": "Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Holocene Major Ion Dataset", "url": "https://www.usap-dc.org/view/dataset/601850"}, {"dataset_uid": "601396", "doi": "10.15784/601396", "keywords": "Accumulation; Antarctica; Diffusion Length; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Dynamic; Layer Thinning; Oxygen Isotope; South Pole; SPICEcore; Temperature", "people": "Conway, Howard; Stevens, Max; Steig, Eric J.; Schauer, Andrew; Vaughn, Bruce; Morris, Valerie; Kahle, Emma; Koutnik, Michelle; Fudge, T. J.; Buizert, Christo; White, James; Epifanio, Jenna; Jones, Tyler R.; Waddington, Edwin D.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Temperature, accumulation rate, and layer thinning from the South Pole ice core (SPC14)", "url": "https://www.usap-dc.org/view/dataset/601396"}], "date_created": "Sun, 17 Nov 2019 00:00:00 GMT", "description": "This project will develop a record of the stable-isotope ratios of water from an ice core at the South Pole, Antarctica. Water-isotope ratio measurements provide a means to determine variability in temperature through time. South Pole is distinct from most other locations in Antarctica in showing no warming in recent decades, but little is known about temperature variability in this location prior to the installation of weather stations in 1957. The measurements made as part of this project will result in a much longer temperature record, extending at least 40,000 years, aiding our ability to understand what controls Antarctic climate, and improving projections of future Antarctic climate change. Data from this project will be critical to other investigators working on the South Pole ice core, and of general interest to other scientists and the public. Data will be provided rapidly to other investigators and made public as soon as possible. This project will obtain records of the stable-isotope ratios of water on the ice core currently being obtained at South Pole. The core will reach a depth of 1500 m and an age of 40,000 years. The project will use laser spectroscopy to obtain both an ultra-high-resolution record of oxygen 18/16 and deuterium-hydrogen ratios, and a lower-resolution record of oxygen 17/16 ratios. The high-resolution measurements will be used to aid in dating the core, and to provide estimates of isotope diffusion that constrain the process of firn densification. The novel 17/16 measurement provides additional constraints on the isotope fractionation due to the temperature-dependent supersaturation ratio, which affects the fractionation of water during the liquid-solid condensate transition. Together, these techniques will allow for improved accuracy in the use of the water isotope ratios as proxies for ice-sheet temperature, sea-surface temperature, and atmospheric circulation. The result will be a record of decadal through centennial and millennial scale climate change in a climatically distinct region in East Antarctica that has not been previously sampled by deep ice coring. The project will support a graduate student who will be co-advised by faculty at the University of Washington and the University of Colorado, and will be involved in all aspects of the work.", "east": 0.0, "geometry": "POINT(0 -90)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "SPICEcore; D18O; LABORATORY; OXYGEN ISOTOPE ANALYSIS; Oxygen Isotope; South Pole; USAP-DC; GLACIERS/ICE SHEETS; Antarctica; AMD; FIELD INVESTIGATION; Ice Core", "locations": "Antarctica; South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Steig, Eric J.; White, James", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: Record of the Triple-oxygen Isotope and Hydrogen Isotope Composition of Ice from an Ice Core at South Pole", "uid": "p0010065", "west": 0.0}, {"awards": "1738942 Wellner, Julia", "bounds_geometry": "POLYGON((-120 -71,-118 -71,-116 -71,-114 -71,-112 -71,-110 -71,-108 -71,-106 -71,-104 -71,-102 -71,-100 -71,-100 -71.5,-100 -72,-100 -72.5,-100 -73,-100 -73.5,-100 -74,-100 -74.5,-100 -75,-100 -75.5,-100 -76,-102 -76,-104 -76,-106 -76,-108 -76,-110 -76,-112 -76,-114 -76,-116 -76,-118 -76,-120 -76,-120 -75.5,-120 -75,-120 -74.5,-120 -74,-120 -73.5,-120 -73,-120 -72.5,-120 -72,-120 -71.5,-120 -71))", "dataset_titles": "A multibeam-bathymetric compilation for the southern Amundsen Sea shelf, 1999-2019; Expedition Data of NBP2002; Expedition Data of NBP2202; NBP1902 Expedition data; Physical and geochemical data from sediment cores collected offshore Thwaites Glacier", "datasets": [{"dataset_uid": "200311", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP2202", "url": "https://www.rvdata.us/search/cruise/NBP2202"}, {"dataset_uid": "200161", "doi": "10.5285/F2DFEDA9-BF44-4EF5-89A3-EE5E434A385C", "keywords": null, "people": null, "repository": "UK PDC", "science_program": null, "title": "A multibeam-bathymetric compilation for the southern Amundsen Sea shelf, 1999-2019", "url": "https://doi.org/10.5285/F2DFEDA9-BF44-4EF5-89A3-EE5E434A385C"}, {"dataset_uid": "200083", "doi": "10.7284/908147", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1902 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1902"}, {"dataset_uid": "200248", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP2002", "url": "https://www.rvdata.us/search/cruise/NBP2002"}, {"dataset_uid": "601514", "doi": "10.15784/601514", "keywords": "Antarctica; Chemistry:sediment; Chemistry:Sediment; Glaciomarine Sediment; Grain Size; Magnetic Susceptibility; Marine Geoscience; Marine Sediments; NBP1902; NBP2002; Physical Properties; R/v Nathaniel B. Palmer; Sediment Core Data; Thwaites Glacier; Trace Elements; XRF", "people": "Lepp, Allison", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Physical and geochemical data from sediment cores collected offshore Thwaites Glacier", "url": "https://www.usap-dc.org/view/dataset/601514"}], "date_created": "Fri, 01 Nov 2019 00:00:00 GMT", "description": "This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Satellite observations extending over the last 25 years show that Thwaites Glacier is rapidly thinning and accelerating. Over this same period, the Thwaites grounding line, the point at which the glacier transitions from sitting on the seabed to floating, has retreated. Oceanographic studies demonstrate that the main driver of these changes is incursion of warm water from the deep ocean that flows beneath the floating ice shelf and causes basal melting. The period of satellite observation is not long enough to determine how a large glacier, such as Thwaites, responds to long-term and near-term changes in the ocean or the atmosphere. As a result, records of glacier change from the pre-satellite era are required to build a holistic understanding of glacier behavior. Ocean-floor sediments deposited at the retreating grounding line and further offshore contain these longer-term records of changes in the glacier and the adjacent ocean. An additional large unknown is the topography of the seafloor and how it influences interactions of landward-flowing warm water with Thwaites Glacier and affects its stability. Consequently, this project focuses on the seafloor offshore from Thwaites Glacier and the records of past glacial and ocean change contained in the sediments deposited by the glacier and surrounding ocean. Uncertainty in model projections of the future of Thwaites Glacier will be significantly reduced by cross-disciplinary investigations seaward of the current grounding line, including extracting the record of decadal to millennial variations in warm water incursion, determining the pre-satellite era history of grounding-line migration, and constraining the bathymetric pathways that control flow of warm water to the grounding line. Sedimentary records and glacial landforms preserved on the seafloor will allow reconstruction of changes in drivers and the glacial response to them over a range of timescales, thus providing reference data that can be used to initiate and evaluate the reliability of models. Such data will further provide insights on the influence of poorly understood processes on marine ice sheet dynamics. This project will include an integrated suite of marine and sub-ice shelf research activities aimed at establishing boundary conditions seaward of the Thwaites Glacier grounding line, obtaining records of the external drivers of change, improving knowledge of processes leading to collapse of Thwaites Glacier, and determining the history of past change in grounding line migration and conditions at the glacier base. These objectives will be achieved through high-resolution geophysical surveys of the seafloor and analysis of sediments collected in cores from the inner shelf seaward of the Thwaites Glacier grounding line using ship-based equipment, and from beneath the ice shelf using a corer deployed through the ice shelf via hot water drill holes. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -100.0, "geometry": "POINT(-110 -73.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS", "is_usap_dc": true, "keywords": "BATHYMETRY; Antarctica; MARINE SEDIMENTS; AMD; MARINE GEOPHYSICS; Amd/Us; USAP-DC; Thwaites Glacier; LABORATORY; Southern Ocean; ICE SHEETS; USA/NSF; GLACIERS/ICE SHEETS; R/V NBP", "locations": "Antarctica; Southern Ocean; Thwaites Glacier", "north": -71.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Wellner, Julia; Larter, Robert; Minzoni, Rebecca; Hogan, Kelly; Anderson, John; Graham, Alastair; Hillenbrand, Claus-Dieter; Nitsche, Frank O.; Simkins, Lauren; Smith, James A.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; UK PDC; USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -76.0, "title": "NSF-NERC: THwaites Offshore Research (THOR)", "uid": "p0010062", "west": -120.0}, {"awards": "1142517 Aydin, Murat; 1141839 Steig, Eric; 1142646 Twickler, Mark", "bounds_geometry": "POINT(90 -90)", "dataset_titles": "South Pole Ice Core Holocene Major Ion Dataset; South Pole Ice Core Sea Salt and Major Ions; South Pole ice core (SPC14) discrete methane data; South Pole Ice Core (SPICEcore) SPC14 Core Quality Versus Depth; SP19 Gas Chronology; Temperature, accumulation rate, and layer thinning from the South Pole ice core (SPC14)", "datasets": [{"dataset_uid": "601396", "doi": "10.15784/601396", "keywords": "Accumulation; Antarctica; Diffusion Length; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Dynamic; Layer Thinning; Oxygen Isotope; South Pole; SPICEcore; Temperature", "people": "Conway, Howard; Stevens, Max; Steig, Eric J.; Schauer, Andrew; Vaughn, Bruce; Morris, Valerie; Kahle, Emma; Koutnik, Michelle; Fudge, T. J.; Buizert, Christo; White, James; Epifanio, Jenna; Jones, Tyler R.; Waddington, Edwin D.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Temperature, accumulation rate, and layer thinning from the South Pole ice core (SPC14)", "url": "https://www.usap-dc.org/view/dataset/601396"}, {"dataset_uid": "601380", "doi": "10.15784/601380", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Core Stratigraphy; Methane; South Pole; SPICEcore", "people": "Epifanio, Jenna", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SP19 Gas Chronology", "url": "https://www.usap-dc.org/view/dataset/601380"}, {"dataset_uid": "601381", "doi": "10.15784/601381", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Methane; South Pole; SPICEcore", "people": "Aydin, Murat; Severinghaus, Jeffrey P.; Kennedy, Joshua A.; Ferris, David G.; Kalk, Michael; Hood, Ekaterina; Fudge, T. J.; Osterberg, Erich; Winski, Dominic A.; Steig, Eric J.; Kahle, Emma; Sowers, Todd A.; Edwards, Jon S.; Kreutz, Karl; Buizert, Christo; Brook, Edward J.; Epifanio, Jenna", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole ice core (SPC14) discrete methane data", "url": "https://www.usap-dc.org/view/dataset/601381"}, {"dataset_uid": "601851", "doi": "10.15784/601851", "keywords": "Antarctica; Cryosphere; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "people": "Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Sea Salt and Major Ions", "url": "https://www.usap-dc.org/view/dataset/601851"}, {"dataset_uid": "601221", "doi": "10.15784/601221", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Depth; Ice Core Records; Snow/ice; Snow/Ice; SPICEcore", "people": "Fudge, T. J.; Kahle, Emma; Nicewonger, Melinda R.; Hargreaves, Geoff; Nunn, Richard; Steig, Eric J.; Aydin, Murat; Casey, Kimberly A.; Fegyveresi, John; Twickler, Mark; Souney, Joseph Jr.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core (SPICEcore) SPC14 Core Quality Versus Depth", "url": "https://www.usap-dc.org/view/dataset/601221"}, {"dataset_uid": "601850", "doi": "10.15784/601850", "keywords": "Antarctica; Cryosphere; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "people": "Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Holocene Major Ion Dataset", "url": "https://www.usap-dc.org/view/dataset/601850"}], "date_created": "Wed, 30 Oct 2019 00:00:00 GMT", "description": "1142517/Saltzman This proposal requests support for a project to drill and recover a new ice core from South Pole, Antarctica. The South Pole ice core will be drilled to a depth of 1500 m, providing an environmental record spanning approximately 40 kyrs. This core will be recovered using a new intermediate drill, which is under development by the U.S. Ice Drilling Design and Operations (IDDO) group in collaboration with Danish scientists. This proposal seeks support to provide: 1) scientific management and oversight for the South Pole ice core project, 2) personnel for ice core drilling and core processing, 3) data management, and 3) scientific coordination and communication via scientific workshops. The intellectual merit of the work is that the analysis of stable isotopes, atmospheric gases, and aerosol-borne chemicals in polar ice has provided unique information about the magnitude and timing of changes in climate and climate forcing through time. The international ice core research community has articulated the goal of developing spatial arrays of ice cores across Antarctica and Greenland, allowing the reconstruction of regional patterns of climate variability in order to provide greater insight into the mechanisms driving climate change. The broader impacts of the project include obtaining the South Pole ice core will support a wide range of ice core science projects, which will contribute to the societal need for a basic understanding of climate and the capability to predict climate and ice sheet stability on long time scales. Second, the project will help train the next generation of ice core scientists by providing the opportunity for hands-on field and core processing experience for graduate students and postdoctoral researchers. A postdoctoral researcher at the University of Washington will be directly supported by this project, and many other young scientists will interact with the project through individual science proposals. Third, the project will result in the development of a new intermediate drill which will become an important resource to US ice core science community. This drill will have a light logistical footprint which will enable a wide range of ice core projects to be carried out that are not currently feasible. Finally, although this project does not request funds for outreach activities, the project will run workshops that will encourage and enable proposals for coordinated outreach activities involving the South Pole ice core science team.", "east": 90.0, "geometry": "POINT(90 -90)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "USAP-DC; Amd/Us; Antarctica; ANALYTICAL LAB; USA/NSF; AMD; South Pole; ICE CORE RECORDS; FIELD INVESTIGATION; Ice Core", "locations": "Antarctica; South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Twickler, Mark; Souney, Joseph Jr.; Aydin, Murat; Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e ANALYTICAL LAB", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: A 1500m Ice Core from South Pole", "uid": "p0010060", "west": 90.0}, {"awards": "1443397 Kreutz, Karl; 1443663 Cole-Dai, Jihong; 1443336 Osterberg, Erich", "bounds_geometry": "POINT(-180 -90)", "dataset_titles": "Preliminary SPC14 high-resolution Fe and Mn biologically relevant and dissolved trace metal concentrations spanning -42 \u2013 54,300 years BP.; South Pole Ice Core Holocene Major Ion Dataset; South Pole Ice Core Sea Salt and Major Ions; South Pole ice core (SPC14) discrete methane data; South Pole (SPC14) microparticle concentration, mass concentration, flux, particle-size-distribution mode, and aspect ratio measurements; SPICEcore 400-480 m Major Ions SDSU; The South Pole Ice Core (SPICEcore) chronology and supporting data", "datasets": [{"dataset_uid": "601206", "doi": "10.15784/601206", "keywords": "Antarctica; Calcium (ca); Chemistry:ice; Chemistry:Ice; Depth; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciochemistry; Glaciology; Ice; Ice Core; Ice Core Chemistry; Ice Core Data; Ice Core Records; Ice Core Stratigraphy; Nitrate; Nitrogen Isotopes; Paleoclimate; Snow/ice; Snow/Ice; South Pole; SPICEcore", "people": "Brook, Edward J.; Severinghaus, Jeffrey P.; Osterberg, Erich; Waddington, Edwin D.; Iverson, Nels; Alley, Richard; Casey, Kimberly A.; Nicewonger, Melinda R.; Aydin, Murat; Ferris, David G.; Jones, Tyler R.; Kahle, Emma; Morris, Valerie; Steig, Eric J.; Sowers, Todd A.; Beaudette, Ross; Ortman, Nikolas; Epifanio, Jenna; Kreutz, Karl; Cox, Thomas S.; Thundercloud, Zayta; Cole-Dai, Jihong; Fegyveresi, John; McConnell, Joseph; Sigl, Michael; Souney, Joseph Jr.; Bay, Ryan; Buizert, Christo; Dunbar, Nelia; Fudge, T. J.; Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "The South Pole Ice Core (SPICEcore) chronology and supporting data", "url": "https://www.usap-dc.org/view/dataset/601206"}, {"dataset_uid": "601851", "doi": "10.15784/601851", "keywords": "Antarctica; Cryosphere; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "people": "Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Sea Salt and Major Ions", "url": "https://www.usap-dc.org/view/dataset/601851"}, {"dataset_uid": "601675", "doi": "10.15784/601675", "keywords": "Antarctica; South Pole; SPICEcore", "people": "Kreutz, Karl", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Preliminary SPC14 high-resolution Fe and Mn biologically relevant and dissolved trace metal concentrations spanning -42 \u2013 54,300 years BP.", "url": "https://www.usap-dc.org/view/dataset/601675"}, {"dataset_uid": "601430", "doi": "10.15784/601430", "keywords": "Antarctica; Ions; South Pole; SPICEcore", "people": "Cole-Dai, Jihong; Larrick, Carleigh", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SPICEcore 400-480 m Major Ions SDSU", "url": "https://www.usap-dc.org/view/dataset/601430"}, {"dataset_uid": "601553", "doi": "10.15784/601553", "keywords": "Antarctica; Dust; Ice Core; South Pole", "people": "Kreutz, Karl", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole (SPC14) microparticle concentration, mass concentration, flux, particle-size-distribution mode, and aspect ratio measurements", "url": "https://www.usap-dc.org/view/dataset/601553"}, {"dataset_uid": "601381", "doi": "10.15784/601381", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Methane; South Pole; SPICEcore", "people": "Aydin, Murat; Severinghaus, Jeffrey P.; Kennedy, Joshua A.; Ferris, David G.; Kalk, Michael; Hood, Ekaterina; Fudge, T. J.; Osterberg, Erich; Winski, Dominic A.; Steig, Eric J.; Kahle, Emma; Sowers, Todd A.; Edwards, Jon S.; Kreutz, Karl; Buizert, Christo; Brook, Edward J.; Epifanio, Jenna", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole ice core (SPC14) discrete methane data", "url": "https://www.usap-dc.org/view/dataset/601381"}, {"dataset_uid": "601850", "doi": "10.15784/601850", "keywords": "Antarctica; Cryosphere; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "people": "Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Holocene Major Ion Dataset", "url": "https://www.usap-dc.org/view/dataset/601850"}], "date_created": "Thu, 29 Aug 2019 00:00:00 GMT", "description": "This collaborative project explores the signatures and causes of natural climate change in the region surrounding Antarctica over the last 40,000 years as the Earth transitioned from an ice age into the modern warm period. The researchers will investigate how the wind belts that surround Antarctica changed in their strength and position through time, and document explosive volcanic eruptions and CO2 cycling in the Southern Ocean as potential climate forcing mechanisms over this interval. Understanding how and why the climate varied naturally in the past is critical for improving understanding of modern climate change and projections of future climate under higher levels of atmospheric CO2. The investigators plan to conduct a suite of chemical measurements along the 1500m length of the South Pole Ice Core, including major ion and trace element concentrations, and microparticle (dust) concentrations and size distributions. These measurements will (1) extend the South Pole record of explosive volcanic eruptions to 40,000 years using sulfate and particle data; (2) establish the relative timing of climate changes in dust source regions of Patagonia, New Zealand, and Australia using dust flux data; (3) investigate changes in the strength and position of the westerly wind belt using dust size distribution data; and (4) quantify the flux of bioavailable trace metals deposited as dust to the Southern Ocean over time. These chemistry records will also be critical for creating the timescale that will be used by all researchers studying records from the South Pole core. The project will support four graduate students and several undergraduate students across three different institutions, and become a focus of the investigators\u0027 efforts to disseminate outcomes of climate change science to the broader community.", "east": -180.0, "geometry": "POINT(-180 -90)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; ICE CORE RECORDS; USAP-DC; Amd/Us; USA/NSF; LABORATORY; AMD", "locations": "Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Osterberg, Erich", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements", "uid": "p0010051", "west": -180.0}, {"awards": "1826712 McMahon, Kelton; 1443386 Emslie, Steven; 1443585 Polito, Michael; 1443424 McMahon, Kelton", "bounds_geometry": "POLYGON((-180 -60,-166 -60,-152 -60,-138 -60,-124 -60,-110 -60,-96 -60,-82 -60,-68 -60,-54 -60,-40 -60,-40 -61.8,-40 -63.6,-40 -65.4,-40 -67.2,-40 -69,-40 -70.8,-40 -72.6,-40 -74.4,-40 -76.2,-40 -78,-54 -78,-68 -78,-82 -78,-96 -78,-110 -78,-124 -78,-138 -78,-152 -78,-166 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -76.2,160 -74.4,160 -72.6,160 -70.8,160 -69,160 -67.2,160 -65.4,160 -63.6,160 -61.8,160 -60,162 -60,164 -60,166 -60,168 -60,170 -60,172 -60,174 -60,176 -60,178 -60,-180 -60))", "dataset_titles": "Amino acid nitrogen isotope values of modern and ancient Ad\u00e9lie penguin eggshells from the Ross Sea and Antarctic Peninsula regions; Amino acid nitrogen isotope values of penguins from the Antarctic Peninsula region 1930s to 2010s; Ancient Adelie penguin colony revealed by snowmelt at Cape Irizar, Ross Sea, Antarctica; Carbon and nitrogen stable isotope values of Antarctic Krill from the South Shetland Islands and the northern Antarctic Peninsula 2007 and 2009; Radiocarbon dates from pygoscelid penguin tissues excavated at Stranger Point, King George Island, Antarctic Peninsula; Radiocarbon dating and stable isotope values of penguin and seal tissues recovered from ornithogenic soils on Platter Island, Danger Islands Archipelago, Antarctic Peninsula in December 2015.; Radioisotope dates and carbon (\u03b413C) and nitrogen (\u03b415N) stable isotope values from modern and mummified Ad\u00e9lie Penguin chick carcasses and tissue from the Ross Sea, Antarctica; Radiometric dating, geochemical proxies, and predator biological remains obtained from aquatic sediment cores on South Georgia Island.; Receding ice drove parallel expansions in Southern Ocean penguin; SNP data from \"Receding ice drove parallel expansions in Southern Ocean penguins\".; Stable isotope analysis of multiple tissues from chick carcasses of three pygoscelid penguins in Antarctica; Stable isotopes of Adelie Penguin chick bone collagen; The rise and fall of an ancient Adelie penguin \u0027supercolony\u0027 at Cape Adare, Antarctica", "datasets": [{"dataset_uid": "601327", "doi": "10.15784/601327", "keywords": "Adelie Penguin; Antarctica; Biota; Cape Adare; East Antarctica; Population Movement; Pygoscelis Adeliae; Radiocarbon; Ross Sea; Sea Level Rise; Stable Isotopes", "people": "Patterson, William; McKenzie, Ashley; Emslie, Steven D.", "repository": "USAP-DC", "science_program": null, "title": "The rise and fall of an ancient Adelie penguin \u0027supercolony\u0027 at Cape Adare, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601327"}, {"dataset_uid": "601212", "doi": "10.15784/601212", "keywords": "Abandoned Colonies; Antarctica; Antarctic Peninsula; Beach Deposit; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Holocene; Penguin; Radiocarbon; Radiocarbon Dates; Snow/ice; Snow/Ice; Stranger Point", "people": "Emslie, Steven D.", "repository": "USAP-DC", "science_program": null, "title": "Radiocarbon dates from pygoscelid penguin tissues excavated at Stranger Point, King George Island, Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601212"}, {"dataset_uid": "601210", "doi": "10.15784/601210", "keywords": "Antarctica; Antarctic Krill; Antarctic Peninsula; Biota; Carbon Isotopes; Isotope Data; Krill; Nitrogen Isotopes; Oceans; Southern Ocean; Stable Isotope Analysis", "people": "Polito, Michael", "repository": "USAP-DC", "science_program": null, "title": "Carbon and nitrogen stable isotope values of Antarctic Krill from the South Shetland Islands and the northern Antarctic Peninsula 2007 and 2009", "url": "https://www.usap-dc.org/view/dataset/601210"}, {"dataset_uid": "601232", "doi": "10.15784/601232", "keywords": "Amino Acids; Antarctica; Antarctic Peninsula; Biota; Isotope Data; Nitrogen Isotopes; Oceans; Penguin; Southern Ocean; Stable Isotope Analysis", "people": "Polito, Michael; McMahon, Kelton", "repository": "USAP-DC", "science_program": null, "title": "Amino acid nitrogen isotope values of penguins from the Antarctic Peninsula region 1930s to 2010s", "url": "https://www.usap-dc.org/view/dataset/601232"}, {"dataset_uid": "601374", "doi": "10.15784/601374", "keywords": "Adelie Penguin; Antarctica; Cape Irizar; Drygalski Ice Tongue; Ross Sea; Stable Isotopes", "people": "Emslie, Steven D.", "repository": "USAP-DC", "science_program": null, "title": "Ancient Adelie penguin colony revealed by snowmelt at Cape Irizar, Ross Sea, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601374"}, {"dataset_uid": "601382", "doi": "10.15784/601382", "keywords": "25 De Mayo/King George Island; Antarctica; Biota; Delta 13C; Delta 15N; Dietary Shifts; Opportunistic Sampling; Penguin; Pygoscelis Penguins; Stranger Point", "people": "Emslie, Steven D.; Ciriani, Yanina", "repository": "USAP-DC", "science_program": null, "title": "Stable isotope analysis of multiple tissues from chick carcasses of three pygoscelid penguins in Antarctica", "url": "https://www.usap-dc.org/view/dataset/601382"}, {"dataset_uid": "601913", "doi": "10.15784/601913", "keywords": "Adelie Penguin; Antarctica; Cryosphere; Foraging; Polynya; Pygoscelis Adeliae; Ross Sea; Stable Isotopes", "people": "Powers, Shannon; Emslie, Steven D.; Reaves, Megan", "repository": "USAP-DC", "science_program": null, "title": "Stable isotopes of Adelie Penguin chick bone collagen", "url": "https://www.usap-dc.org/view/dataset/601913"}, {"dataset_uid": "601509", "doi": "10.15784/601509", "keywords": "Antarctica; Antarctic Fur Seal; Elemental Concentrations; King Penguin; Population Dynamics; South Atlantic Ocean; South Georgia Island; Stable Isotope Analysis; Sub-Antarctic", "people": "Polito, Michael; McMahon, Kelton; Maiti, Kanchan; Kristan, Allyson", "repository": "USAP-DC", "science_program": null, "title": "Radiometric dating, geochemical proxies, and predator biological remains obtained from aquatic sediment cores on South Georgia Island.", "url": "https://www.usap-dc.org/view/dataset/601509"}, {"dataset_uid": "601760", "doi": "10.15784/601760", "keywords": "Adelie Penguin; Amino Acids; Antarctica; Antarctic Peninsula; Ross Sea; Stable Isotope Analysis; Trophic Position", "people": "Patterson, William; Emslie, Steven D.; Michelson, Chantel; Polito, Michael; Wonder, Michael; McCarthy, Matthew; McMahon, Kelton", "repository": "USAP-DC", "science_program": null, "title": "Amino acid nitrogen isotope values of modern and ancient Ad\u00e9lie penguin eggshells from the Ross Sea and Antarctic Peninsula regions", "url": "https://www.usap-dc.org/view/dataset/601760"}, {"dataset_uid": "200181", "doi": "10.6084/m9.figshare.c.4475300.v1", "keywords": null, "people": null, "repository": "Figshare", "science_program": null, "title": "SNP data from \"Receding ice drove parallel expansions in Southern Ocean penguins\".", "url": "https://doi.org/10.6084/m9.figshare.c.4475300.v1"}, {"dataset_uid": "601263", "doi": "10.15784/601263", "keywords": "Abandoned Colonies; Antarctica; Holocene; Penguin; Ross Sea; Stable Isotope Analysis", "people": "Patterson, William; Emslie, Steven D.; Kristan, Allyson", "repository": "USAP-DC", "science_program": null, "title": "Radioisotope dates and carbon (\u03b413C) and nitrogen (\u03b415N) stable isotope values from modern and mummified Ad\u00e9lie Penguin chick carcasses and tissue from the Ross Sea, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601263"}, {"dataset_uid": "601364", "doi": "10.15784/601364", "keywords": "Antarctica; Antarctic Peninsula; Arctocephalus Gazella; Carbon; Holocene; Nitrogen; Paleoecology; Penguin; Pygoscelis Spp.; Stable Isotope Analysis; Weddell Sea", "people": "Herman, Rachael; Kalvakaalva, Rohit; Clucas, Gemma; Polito, Michael", "repository": "USAP-DC", "science_program": null, "title": "Radiocarbon dating and stable isotope values of penguin and seal tissues recovered from ornithogenic soils on Platter Island, Danger Islands Archipelago, Antarctic Peninsula in December 2015.", "url": "https://www.usap-dc.org/view/dataset/601364"}, {"dataset_uid": "200180", "doi": "", "keywords": null, "people": null, "repository": "NCBI BioProject", "science_program": null, "title": "Receding ice drove parallel expansions in Southern Ocean penguin", "url": "https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA589336"}], "date_created": "Thu, 08 Aug 2019 00:00:00 GMT", "description": "The Antarctic marine ecosystem is highly productive and supports a diverse range of ecologically and commercially important species. A key species in this ecosystem is Antarctic krill, which in addition to being commercially harvested, is the principle prey of a wide range of marine organisms including penguins, seals and whales. The aim of this study is to use penguins and other krill predators as sensitive indicators of past changes in the Antarctic marine food web resulting from climate variability and the historic harvesting of seals and whales by humans. Specifically this study will recover and analyze modern (\u003c20 year old), historic (20-200 year old) and ancient (200-10,000 year old) penguin and other krill predator tissues to track their past diets and population movements relative to shifts in climate and the availability of Antarctic krill. Understanding how krill predators were affected by these factors in the past will allow us to better understand how these predators, the krill they depend on, and the Antarctic marine ecosystem as a whole will respond to current challenges such as global climate change and an expanding commercial fishery for Antarctic krill. The project will further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. This project will support the cross-institutional training of undergraduate and graduate students in advanced analytical techniques in the fields of ecology and biogeochemistry. In addition, this project includes educational outreach aimed encouraging participation in science careers by engaging K-12 students in scientific issues related to Antarctica, penguins, marine ecology, biogeochemistry, and global climate change. This research will help place recent ecological changes in the Southern Ocean into a larger historical context by examining decadal and millennial-scale shifts in the diets and population movements of Antarctic krill predators (penguins, seals, and squid) in concert with climate variability and commercial harvesting. This will be achieved by coupling advanced stable and radio isotope techniques, particularly compound-specific stable isotope analysis, with unprecedented access to modern, historical, and well-preserved paleo-archives of Antarctic predator tissues dating throughout the Holocene. This approach will allow the project to empirically test if observed shifts in Antarctic predator bulk tissue stable isotope values over the past millennia were caused by climate-driven shifts at the base of the food web in addition to, or rather than, shifts in predator diets due to a competitive release following the historic harvesting of krill eating whale and seals. In addition, this project will track the large-scale abandonment and reoccupation of penguin colonies around Antarctica in response to changes in climate and sea ice conditions over the past several millennia. These integrated field studies and laboratory analyses will provide new insights into the underlying mechanisms that influenced past shifts in the diets and population movements of charismatic krill predators such as penguins. This will allow for improved projections of the ecosystem consequences of future climate change and anthropogenic harvesting scenarios in the Antarctica that are likely to affect the availability of Antarctic krill.", "east": -40.0, "geometry": "POINT(-120 -69)", "instruments": null, "is_usap_dc": true, "keywords": "ANIMAL ECOLOGY AND BEHAVIOR; South Shetland Islands; Penguin; Stable Isotopes; Polar; Ross Sea; USA/NSF; Weddell Sea; AMD; MARINE ECOSYSTEMS; USAP-DC; Antarctica; PENGUINS; Southern Hemisphere; FIELD INVESTIGATION; Amd/Us; Krill; MACROFOSSILS", "locations": "Southern Hemisphere; Ross Sea; South Shetland Islands; Weddell Sea; Polar; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Polito, Michael; Kelton, McMahon; Patterson, William; McCarthy, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "Figshare; NCBI BioProject; USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators", "uid": "p0010047", "west": 160.0}, {"awards": "1744645 Young, Jodi", "bounds_geometry": "POLYGON((-64.4 -64.2,-64.38 -64.2,-64.36 -64.2,-64.34 -64.2,-64.32 -64.2,-64.3 -64.2,-64.28 -64.2,-64.26 -64.2,-64.24 -64.2,-64.22 -64.2,-64.2 -64.2,-64.2 -64.26,-64.2 -64.32,-64.2 -64.38,-64.2 -64.44,-64.2 -64.5,-64.2 -64.56,-64.2 -64.62,-64.2 -64.68,-64.2 -64.74,-64.2 -64.8,-64.22 -64.8,-64.24 -64.8,-64.26 -64.8,-64.28 -64.8,-64.3 -64.8,-64.32 -64.8,-64.34 -64.8,-64.36 -64.8,-64.38 -64.8,-64.4 -64.8,-64.4 -64.74,-64.4 -64.68,-64.4 -64.62,-64.4 -64.56,-64.4 -64.5,-64.4 -64.44,-64.4 -64.38,-64.4 -64.32,-64.4 -64.26,-64.4 -64.2))", "dataset_titles": "Dataset: Particulate Organic Carbon and Particulate Nitrogen; Dataset: Photosynthetic Pigments; Dataset: Physical Profiles of Temperature, Salinity, and Brine Volume; Sea-ice diatom compatible solute shifts", "datasets": [{"dataset_uid": "200378", "doi": "10.26008/1912/bco-dmo.913655.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Dataset: Physical Profiles of Temperature, Salinity, and Brine Volume", "url": "https://www.bco-dmo.org/dataset/913655"}, {"dataset_uid": "200377", "doi": "10.26008/1912/bco-dmo.913222.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Dataset: Photosynthetic Pigments", "url": "https://www.bco-dmo.org/dataset/913222"}, {"dataset_uid": "200322", "doi": "10.21228/M84386", "keywords": null, "people": null, "repository": "Metabolomics workbench", "science_program": null, "title": "Sea-ice diatom compatible solute shifts", "url": "https://www.metabolomicsworkbench.org/data/DRCCMetadata.php?Mode=Study\u0026StudyID=ST001393"}, {"dataset_uid": "200376", "doi": "10.26008/1912/bco-dmo.913566.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Dataset: Particulate Organic Carbon and Particulate Nitrogen", "url": "https://www.bco-dmo.org/dataset/913566"}], "date_created": "Tue, 23 Jul 2019 00:00:00 GMT", "description": "Rapid changes in the extent and thickness of sea ice during the austral spring subject microorganisms within or attached to the ice to large fluctuations in temperature, salinity, light and nutrients. This project aims to identify cellular responses in sea-ice algae to increasing temperature and decreasing salinity during the spring melt along the western Antarctic Peninsula and to determine how associated changes at the cellular level can potentially affect dynamic, biologically driven processes. Understanding how sea-ice algae cope with, and are adapted to, their environment will not only help predict how polar ecosystems may change as the extent and thickness of sea ice change, but will also provide a better understanding of the widespread success of photosynthetic life on Earth. The scientific context and resulting advances from the research will be communicated to the general public through outreach activities that includes work with Science Communication Fellows and the popular Polar Science Weekend at the Pacific Science Center in Seattle, Washington. The project will provide student training to college students as well as provide for educational experiences for K-12 school children. There is currently a poor understanding of feedback relationships that exist between the rapidly changing environment in the western Antarctic Peninsula region and sea-ice algal production. The large shifts in temperature and salinity that algae experience during the spring melt affect critical cellular processes, including rates of enzyme-catalyzed reactions involved in photosynthesis and respiration, and the production of stress-protective compounds. These changes in cellular processes are poorly constrained but can be large and may have impacts on local ecosystem productivity and biogeochemical cycles. In particular, this study will focus on the thermal sensitivity of enzymes and the cycling of compatible solutes and exopolymers used for halo- and cryo-protection, and how they influence primary production and the biogeochemical cycling of carbon and nitrogen. Approaches will include field sampling during spring melt, incubation experiments of natural sea-ice communities under variable temperature and salinity conditions, and controlled manipulation of sea-ice algal species in laboratory culture. Employment of a range of techniques, from fast repetition rate fluorometry and gross and net photosynthetic measurements to metabolomics and enzyme kinetics, will tease apart the mechanistic effects of temperature and salinity on cell metabolism and primary production with the goal of quantifying how these changes will impact biogeochemical processes along the western Antarctic Peninsula. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -64.2, "geometry": "POINT(-64.3 -64.5)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; SHIPS; DIATOMS; Antarctic Peninsula", "locations": "Antarctic Peninsula", "north": -64.2, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Young, Jodi; Deming, Jody", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "BCO-DMO", "repositories": "BCO-DMO; Metabolomics workbench", "science_programs": null, "south": -64.8, "title": "Spring Blooms of Sea Ice Algae Along the Western Antarctic Peninsula: Effects of Warming and Freshening on Cell Physiology and Biogeochemical Cycles.", "uid": "p0010039", "west": -64.4}, {"awards": "1543267 Brook, Edward J.; 1543229 Severinghaus, Jeffrey", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Multi-site ice core Krypton stable isotope ratios; Noble Gas Data from recent ice in Antarctica for 86Kr problem", "datasets": [{"dataset_uid": "601195", "doi": "10.15784/601195", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Krypton; Noble Gas; Xenon", "people": "Severinghaus, Jeffrey P.; Shackleton, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Noble Gas Data from recent ice in Antarctica for 86Kr problem", "url": "https://www.usap-dc.org/view/dataset/601195"}, {"dataset_uid": "601394", "doi": "10.15784/601394", "keywords": "Antarctica; Bruce Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenland Ice Cap; Ice Core; Ice Core Chemistry; Ice Core Records; James Ross Island; Krypton; Law Dome; Low Dome Ice Core; Roosevelt Island; Siple Dome; Siple Dome Ice Core; South Pole; SPICEcore; WAIS Divide; WAIS Divide Ice Core", "people": "Bertler, Nancy; Etheridge, David; Shackleton, Sarah; Pyne, Rebecca L.; Buizert, Christo; Mulvaney, Robert; Severinghaus, Jeffrey P.; Brook, Edward J.; Baggenstos, Daniel; Mosley-Thompson, Ellen; Bereiter, Bernhard", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Multi-site ice core Krypton stable isotope ratios", "url": "https://www.usap-dc.org/view/dataset/601394"}, {"dataset_uid": "601394", "doi": "10.15784/601394", "keywords": "Antarctica; Bruce Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenland Ice Cap; Ice Core; Ice Core Chemistry; Ice Core Records; James Ross Island; Krypton; Law Dome; Low Dome Ice Core; Roosevelt Island; Siple Dome; Siple Dome Ice Core; South Pole; SPICEcore; WAIS Divide; WAIS Divide Ice Core", "people": "Etheridge, David; Brook, Edward J.; Bereiter, Bernhard; Severinghaus, Jeffrey P.; Bertler, Nancy; Buizert, Christo; Shackleton, Sarah; Baggenstos, Daniel; Pyne, Rebecca L.; Mulvaney, Robert; Mosley-Thompson, Ellen", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Multi-site ice core Krypton stable isotope ratios", "url": "https://www.usap-dc.org/view/dataset/601394"}, {"dataset_uid": "601394", "doi": "10.15784/601394", "keywords": "Antarctica; Bruce Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenland Ice Cap; Ice Core; Ice Core Chemistry; Ice Core Records; James Ross Island; Krypton; Law Dome; Low Dome Ice Core; Roosevelt Island; Siple Dome; Siple Dome Ice Core; South Pole; SPICEcore; WAIS Divide; WAIS Divide Ice Core", "people": "Severinghaus, Jeffrey P.; Bertler, Nancy; Pyne, Rebecca L.; Shackleton, Sarah; Buizert, Christo; Mulvaney, Robert; Mosley-Thompson, Ellen; Etheridge, David; Bereiter, Bernhard; Baggenstos, Daniel; Brook, Edward J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Multi-site ice core Krypton stable isotope ratios", "url": "https://www.usap-dc.org/view/dataset/601394"}], "date_created": "Wed, 10 Jul 2019 00:00:00 GMT", "description": "Brook 1543267 Approximately half of the human caused carbon dioxide emissions to the atmosphere are absorbed by the ocean, which reduces the amount of global warming associated with these emissions. Much of this carbon uptake occurs in the Southern Ocean around Antarctica, where water from the deep ocean comes to the surface. How much water \"up-wells,\" and therefore how much carbon is absorbed, is believed to depend on the strength and location of the major westerly winds in the southern hemisphere. These wind patterns have been shifting southward in recent decades, and future changes could impact the global carbon cycle and promote the circulation of relatively warm water from the deep ocean on to the continental shelf, which contributes to enhanced Antarctic ice melt and sea level rise. Understanding of the westerly winds and their role in controlling atmospheric carbon dioxide levels and the circulation of ocean water is therefore very important. The work supported by this award will study past movement of the SH westerlies in response to natural climate variations. Of particular interest is the last deglaciation (20,000 to 10,000 years ago), when the global climate made a transition from an ice age climate to the current warm period. During this period, atmospheric carbon dioxide rose from about 180 ppm to 270 parts per million, and one leading hypothesis is that the rise in carbon dioxide was driven by a southward movement of the southern hemisphere westerlies. The broader impacts of the work include a perspective on past movement of the southern hemisphere westerlies and their link to atmospheric carbon dioxide, which could guide projections of future oceanic carbon dioxide uptake, with strong societal benefits; international collaboration with German scientists; training of a postdoctoral investigator; and outreach to public schools. This project will investigate whether the abundance of a noble gas, krypton-86, trapped in Antarctic ice cores, records atmospheric pressure variability, and whether or not this pressure variability can be used to infer past movement of the Southern Hemisphere westerly winds. The rationale for the project is that models of air movement in the snow pack (firn) in Antarctica indicate that pressure variations drive air movement that disturbs the normal enrichment in krypton-86 caused by gravitational settling of gases. Calculations predict that the krypton-86 deviation from gravitational equilibrium reflects the magnitude of pressure variations. In turn, atmospheric data show that pressure variability over Antarctica is linked to the position of the southern hemisphere westerly winds. Preliminary data from the West Antarctic Ice Sheet (WAIS) Divide ice core show a large excursion in krypton-86 during the transition from the last ice age to the current warm period. The investigators will perform krypton-86 analysis on ice core and firn air samples to establish whether the Kr-86 deviation is linked to pressure variability, refine the record of krypton isotopes from the WAIS Divide ice core, investigate the role of pressure variability in firn air transport using firn air models, and investigate how barometric pressure variability in Antarctica is linked to the position/strength of the SH westerlies in past and present climates.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USA/NSF; FIRN; ICE CORE RECORDS; USAP-DC; Greenland; Xenon; Noble Gas; Ice Core; Amd/Us; Antarctica; AMD; LABORATORY; Krypton; ATMOSPHERIC PRESSURE", "locations": "Greenland; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.; Brook, Edward J.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative research: Kr-86 as a proxy for barometric pressure variability and movement of the SH westerlies during the last\r\ndeglaciation", "uid": "p0010037", "west": -180.0}, {"awards": "1443534 Bell, Robin; 1443677 Padman, Laurence; 1443498 Fricker, Helen; 1443497 Siddoway, Christine", "bounds_geometry": "POLYGON((-180 -77,-177 -77,-174 -77,-171 -77,-168 -77,-165 -77,-162 -77,-159 -77,-156 -77,-153 -77,-150 -77,-150 -77.9,-150 -78.8,-150 -79.7,-150 -80.6,-150 -81.5,-150 -82.4,-150 -83.3,-150 -84.2,-150 -85.1,-150 -86,-153 -86,-156 -86,-159 -86,-162 -86,-165 -86,-168 -86,-171 -86,-174 -86,-177 -86,180 -86,178.1 -86,176.2 -86,174.3 -86,172.4 -86,170.5 -86,168.6 -86,166.7 -86,164.8 -86,162.9 -86,161 -86,161 -85.1,161 -84.2,161 -83.3,161 -82.4,161 -81.5,161 -80.6,161 -79.7,161 -78.8,161 -77.9,161 -77,162.9 -77,164.8 -77,166.7 -77,168.6 -77,170.5 -77,172.4 -77,174.3 -77,176.2 -77,178.1 -77,-180 -77))", "dataset_titles": "Basal Melt, Ice thickness and structure of the Ross Ice Shelf using airborne radar data; CATS2008: Circum-Antarctic Tidal Simulation version 2008; CATS2008_v2023: Circum-Antarctic Tidal Simulation 2008, version 2023; Deep ICE (DICE) Radar Dataset from Ross Ice Shelf (ROSETTA-Ice); LiDAR Nadir and Swath Data from Ross Ice Shelf, Antarctica (ROSETTA-Ice); ROSETTA-Ice data page; Ross Sea ocean model simulation used to support ROSETTA-Ice ; Shallow Ice Radar (SIR) Dataset from Ross Ice Shelf (ROSETTA-Ice)", "datasets": [{"dataset_uid": "601788", "doi": null, "keywords": "Antarctica; Cryosphere; Ross Ice Shelf", "people": "Boghosian, Alexandra; Bertinato, Christopher; Locke, Caitlin; Dhakal, Tejendra; Becker, Maya K; Starke, Sarah", "repository": "USAP-DC", "science_program": null, "title": "LiDAR Nadir and Swath Data from Ross Ice Shelf, Antarctica (ROSETTA-Ice)", "url": "https://www.usap-dc.org/view/dataset/601788"}, {"dataset_uid": "601794", "doi": null, "keywords": "Antarctica; Cryosphere; Remote Sensing; Ross Ice Shelf", "people": "Cordero, Isabel; Wearing, Martin; Spergel, Julian; Packard, Sarah; Dong, LingLing; Das, Indrani; Bell, Robin; Bertinato, Christopher; Chu, Winnie; Dhakal, Tejendra; Frearson, Nicholas; Keeshin, Skye", "repository": "USAP-DC", "science_program": null, "title": "Shallow Ice Radar (SIR) Dataset from Ross Ice Shelf (ROSETTA-Ice)", "url": "https://www.usap-dc.org/view/dataset/601794"}, {"dataset_uid": "601789", "doi": null, "keywords": "Airborne Radar; Antarctica; Cryosphere; Ice Thickness; Remote Sensing; Ross Ice Shelf", "people": "Millstein, Joanna; Cordero, Isabel; Frearson, Nicholas; Dhakal, Tejendra; Bertinato, Christopher; Wilner, Joel; Dong, LingLing; Das, Indrani; Spergel, Julian; Chu, Winnie; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "Deep ICE (DICE) Radar Dataset from Ross Ice Shelf (ROSETTA-Ice)", "url": "https://www.usap-dc.org/view/dataset/601789"}, {"dataset_uid": "601772", "doi": "10.15784/601772", "keywords": "Antarctica; Cryosphere; Inverse Modeling; Model Data; Ocean Currents; Oceans; Sea Surface; Southern Ocean; Tide Model; Tides", "people": "Sutterley, Tyler; Howard, Susan L.; Greene, Chad A.; Padman, Laurence; Erofeeva, Svetlana", "repository": "USAP-DC", "science_program": null, "title": "CATS2008_v2023: Circum-Antarctic Tidal Simulation 2008, version 2023", "url": "https://www.usap-dc.org/view/dataset/601772"}, {"dataset_uid": "200100", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "ROSETTA-Ice data page", "url": "http://wonder.ldeo.columbia.edu/data/ROSETTA-Ice/"}, {"dataset_uid": "601235", "doi": "10.15784/601235", "keywords": "Antarctica; Inverse Modeling; Model Data; Ocean Currents; Sea Surface; Tidal Models; Tides", "people": "Howard, Susan L.; Padman, Laurence; Erofeeva, Svetlana", "repository": "USAP-DC", "science_program": null, "title": "CATS2008: Circum-Antarctic Tidal Simulation version 2008", "url": "https://www.usap-dc.org/view/dataset/601235"}, {"dataset_uid": "601242", "doi": "10.15784/601242", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Penetrating Radar; Ice-Shelf Basal Melting; Radar Echo Sounder; Radar Echo Sounding; Snow/ice; Snow/Ice", "people": "Mosbeux, Cyrille; Cordero, Isabel; Tinto, Kirsty; Siegfried, Matthew; Siddoway, Christine; Dhakal, Tejendra; Das, Indrani; Bell, Robin; Padman, Laurence; Fricker, Helen; Frearson, Nicholas; Hulbe, Christina", "repository": "USAP-DC", "science_program": null, "title": "Basal Melt, Ice thickness and structure of the Ross Ice Shelf using airborne radar data", "url": "https://www.usap-dc.org/view/dataset/601242"}, {"dataset_uid": "601255", "doi": "10.15784/601255", "keywords": "Antarctica; Basal Melt; Ice Shelf; Model Output; Ocean Circulation Model; Ross Ice Shelf; Ross Sea", "people": "Howard, Susan L.; Springer, Scott; Padman, Laurence", "repository": "USAP-DC", "science_program": null, "title": "Ross Sea ocean model simulation used to support ROSETTA-Ice ", "url": "https://www.usap-dc.org/view/dataset/601255"}], "date_created": "Wed, 03 Jul 2019 00:00:00 GMT", "description": "The Ross Ice Shelf is the largest existing ice shelf in Antarctica, and is currently stabilizing significant portions of the land ice atop the Antarctic continent. An ice shelf begins where the land ice goes afloat on the ocean, and as such, the Ross Ice Shelf interacts with the ocean and seafloor below, and the land ice behind. Currently, the Ross Ice Shelf slows down, or buttresses, the fast flowing ice streams of the West Antarctic Ice Sheet (WAIS), a marine-based ice sheet, which if melted, would raise global sea level by 3-4 meters. The Ross Ice Shelf average ice thickness is approximately 350 meters, and it covers approximately 487,000 square kilometers, an area slightly larger than the state of California. The Ross Ice Shelf has disappeared during prior interglacial periods, suggesting in the future it may disappear again. Understanding the dynamics, stability and future of the West Antarctic Ice Sheet therefore requires in-depth knowledge of the Ross Ice Shelf. The ROSETTA-ICE project brings together scientists from 4 US institutions and from the Institute of Geological and Nuclear Sciences Limited, known as GNS Science, New Zealand. The ROSETTA-ICE data on the ice shelf, the water beneath the ice shelf, and the underlying rocks, will allow better predictions of how the Ross Ice Shelf will respond to changing climate, and therefore how the WAIS will behave in the future. The interdisciplinary ROSETTA-ICE team will train undergraduate and high school students in cutting edge research techniques, and will also work to educate the public via a series of vignettes integrating ROSETTA-ICE science with the scientific and human history of Antarctic research. The ROSETTA-ICE survey will acquire gravity and magnetics data to determine the water depth beneath the ice shelf. Radar, LIDAR and imagery systems will be used to map the Ross Ice Shelf thickness and fine structure, crevasses, channels, debris, surface accumulation and distribution of marine ice. The high resolution aerogeophysical data over the Ross Ice Shelf region in Antarctica will be acquired using the IcePod sensor suite mounted externally on an LC-130 aircraft operating from McMurdo Station, Antarctica. Field activities will include ~36 flights on LC-130 aircraft over two field seasons in Antarctica. The IcePod instrument suite leverages the unique experience of the New York Air National Guard operating in Antarctica for NSF scientific research as well as infrastructure and logistics. The project will answer questions about the stability of the Ross Ice Shelf in future climate, and the geotectonic evolution of the Ross Ice Shelf Region, a key component of the West Antarctic Rift system. The comprehensive benchmark data sets acquired will enable broad, interdisciplinary analyses and modeling, which will also be performed as part of the project. ROSETTA-ICE will illuminate Ross ice sheet-ice shelf-ocean dynamics as the system nears a critical juncture but still is intact. Through interacting with an online data visualization tool, and comparing the ROSETTA-ICE data and results from earlier studies, we will engage students and young investigators, equipping them with new capabilities for the study of critical earth systems that influence global climate.", "east": 161.0, "geometry": "POINT(-174.5 -81.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LIDAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e PROTON MAGNETOMETER", "is_usap_dc": true, "keywords": "Airborne Radar; LIDAR; Ross Ice Shelf; SALINITY; SALINITY/DENSITY; CONDUCTIVITY; ICE DEPTH/THICKNESS; Tidal Models; GRAVITY ANOMALIES; Ross Sea; Antarctica; BATHYMETRY; C-130; MAGNETIC ANOMALIES; USAP-DC; Airborne Gravity", "locations": "Ross Sea; Antarctica; Ross Ice Shelf", "north": -77.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Bell, Robin; Frearson, Nicholas; Das, Indrani; Fricker, Helen; Padman, Laurence; Springer, Scott; Siddoway, Christine; Tinto, Kirsty", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e C-130", "repo": "USAP-DC", "repositories": "PI website; USAP-DC", "science_programs": null, "south": -86.0, "title": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE)", "uid": "p0010035", "west": -150.0}, {"awards": "1744849 Sokol, Eric; 1744785 Barrett, John; 1745053 Salvatore, Mark", "bounds_geometry": "POLYGON((162.92 -77.56,162.971 -77.56,163.022 -77.56,163.073 -77.56,163.124 -77.56,163.175 -77.56,163.226 -77.56,163.277 -77.56,163.328 -77.56,163.379 -77.56,163.43 -77.56,163.43 -77.571,163.43 -77.582,163.43 -77.593,163.43 -77.604,163.43 -77.615,163.43 -77.626,163.43 -77.637,163.43 -77.648,163.43 -77.659,163.43 -77.67,163.379 -77.67,163.328 -77.67,163.277 -77.67,163.226 -77.67,163.175 -77.67,163.124 -77.67,163.073 -77.67,163.022 -77.67,162.971 -77.67,162.92 -77.67,162.92 -77.659,162.92 -77.648,162.92 -77.637,162.92 -77.626,162.92 -77.615,162.92 -77.604,162.92 -77.593,162.92 -77.582,162.92 -77.571,162.92 -77.56))", "dataset_titles": "McMurdo Dry Valleys LTER: Microbial mat biomass and Normalized Difference Vegetation Index (NDVI) values from Lake Fryxell Basin, Antarctica, January 2018", "datasets": [{"dataset_uid": "200344", "doi": "10.6073/pasta/9acbbde9abc1e013f8c9fd9c383327f4", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "McMurdo Dry Valleys LTER: Microbial mat biomass and Normalized Difference Vegetation Index (NDVI) values from Lake Fryxell Basin, Antarctica, January 2018", "url": "https://portal.edirepository.org/nis/mapbrowse?packageid=knb-lter-mcm.263.1"}], "date_created": "Wed, 03 Jul 2019 00:00:00 GMT", "description": "Microbial mats are found throughout the McMurdo Dry Valleys where summer snowmelt provides liquid water that allows these mats to flourish. Researchers have long studied the environmental conditions microbial mats need to grow. Despite these efforts, it has been difficult to develop a broad picture of these unique ecosystems. Recent advances in satellite technology now provide researchers an exciting new tool to study these special Antarctic ecosystems from space using the unique spectral signatures associated with microbial mats. This new technology not only offers the promise that microbial mats can be mapped and studied from space, this research will also help protect these delicate environments from potentially harmful human impacts that can occur when studying them from the ground. This project will use satellite imagery and spectroscopic techniques to identify and map microbial mat communities and relate their properties and distributions to both field and lab-based measurements. This research provides an exciting new tool to help document and understand the distribution of a major component of the Antarctic ecosystem in the McMurdo Dry Valleys. The goal of this project is to establish quantitative relationships between spectral signatures derived from orbit and the physiological status and biogeochemical properties of microbial mat communities in Taylor Valley, Antarctica, as measured by field and laboratory analyses on collected samples. The goal wioll be met by (1) refining atmospheric correction techniques using in situ radiometric rectification to derive accurate surface spectra; (2) collecting multispectral orbital images concurrent with in situ sampling and spectral measurements in the field to ensure temporal comparability; (3) measuring sediment, water, and microbial mat samples for organic and inorganic carbon content, essential biogeochemical nutrients, and chlorophyll-a to determine relevant mat characteristics; and (4) quantitatively associating these laboratory-derived characteristics with field-derived and orbital spectral signatures and parameters. The result of this work will be a more robust quantitative link between the distribution of microbial mat communities and their biogeochemical properties to landscape-scale spectral signatures. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 163.43, "geometry": "POINT(163.175 -77.615)", "instruments": null, "is_usap_dc": true, "keywords": "RIVERS/STREAM; CYANOBACTERIA (BLUE-GREEN ALGAE); USAP-DC; Taylor Valley; INFRARED IMAGERY; WORLDVIEW-2; WORLDVIEW-3; Antarctica; FIELD INVESTIGATION; Amd/Us; ACTIVE LAYER", "locations": "Antarctica; Taylor Valley", "north": -77.56, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Salvatore, Mark; Barrett, John; Sokol, Eric", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e WORLDVIEW \u003e WORLDVIEW-2; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e WORLDVIEW \u003e WORLDVIEW-3", "repo": "EDI", "repositories": "EDI", "science_programs": null, "south": -77.67, "title": "COLLABORATIVE RESEARCH: Remote Characterization of Microbial Mats in Taylor Valley, Antarctica, through In Situ Sampling and Spectral Validation", "uid": "p0010036", "west": 162.92}, {"awards": "1745036 Marchetti, Adrian; 1744760 Hopkinson, Brian", "bounds_geometry": "POLYGON((-77 -61,-75.2 -61,-73.4 -61,-71.6 -61,-69.8 -61,-68 -61,-66.2 -61,-64.4 -61,-62.6 -61,-60.8 -61,-59 -61,-59 -62.1,-59 -63.2,-59 -64.3,-59 -65.4,-59 -66.5,-59 -67.6,-59 -68.7,-59 -69.8,-59 -70.9,-59 -72,-60.8 -72,-62.6 -72,-64.4 -72,-66.2 -72,-68 -72,-69.8 -72,-71.6 -72,-73.4 -72,-75.2 -72,-77 -72,-77 -70.9,-77 -69.8,-77 -68.7,-77 -67.6,-77 -66.5,-77 -65.4,-77 -64.3,-77 -63.2,-77 -62.1,-77 -61))", "dataset_titles": "Photosynthetic physiological data of Proteorhodopsin containing diatoms under differing iron availabilities", "datasets": [{"dataset_uid": "601530", "doi": "10.15784/601530", "keywords": "Antarctica; Diatom", "people": "Plumb, Kaylie; Hopkinson, Brian; Marchetti, Adrian; Andrew, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Photosynthetic physiological data of Proteorhodopsin containing diatoms under differing iron availabilities", "url": "https://www.usap-dc.org/view/dataset/601530"}], "date_created": "Sun, 16 Jun 2019 00:00:00 GMT", "description": "Proteorhodopsins are proteins that are embedded in membranes that can act as light-driven proton pumps to generate energy for metabolism and growth. The discovery of proteorhodopsins in many diverse marine prokaryotic microbes has initiated extensive investigation into their distributions and functional roles. Recently, a proton-pumping, rhodopsin-like gene was identified in diatoms, a group of marine phytoplankton that dominates the base of the food web in much of the Southern Ocean. Since this time, proteorhodopsins have been identified in many, but not all, diatom species. The proteorhodopsin gene is more frequently found in diatoms residing in cold, iron-limited regions of the ocean, including the Southern Ocean, than in diatoms from other regions. It is thought that proteorhodopsin is especially suited for use energy production in the Southern Ocean since it uses no iron and its reaction rate is insensitive to temperature (unlike conventional photosynthesis). The overall objective of the project is to characterize Antarctic diatom-proteorhodopsin and determine its role in the adaptation of these diatoms to low iron concentrations and extremely low temperatures found in Antarctic waters. This research will provide new information on the genetic underpinnings that contribute to the success of diatoms in the Southern Ocean and how this unique molecule may play a pivotal role in providing energy to the base of the Antarctic food web. Broader impact activities are aimed to promote the teaching and learning of polar marine-sciences related topics by translating research objectives into readily accessible educational materials for middle-school students. This project will combine molecular, biochemical and physiological measurements to determine the role and importance of proteorhodopsin in diatom isolates from the Western Antarctic Peninsula region. Proton-pumping characteristics and pumping rates of proteorhodopsin as a function of light intensity and temperature, the resultant proteorhodopsin-linked intracellular ATP production rates, and the cellular localization of the protein will be determined. The project will examine the environmental conditions where Antarctic diatom-proteorhodopsin is most highly expressed and construct a cellular energy budget that includes diatom-proteorhodopsin when grown under these different environmental conditions. Estimates of the energy flux generated by proteorhodopsin will be compared to total energy generation by the photosynthetic light reactions and metabolically coupled respiration rates. Finally, the characteristics and gene expression of diatom-proteorhodopsin in Antarctic diatoms and a proteorhodopsin-containing diatom isolates from temperate regions will be compared in order to determine if there is a preferential dependence on energy production through proteorhodopsin in diatoms residing in cold, iron-limited regions of the ocean. Educational activities will be performed in collaboration with the Morehead Planetarium and Science Center who co-ordinates the SciVentures program, a popular summer camp for middle-school students from Chapel Hill and surrounding areas. In collaboration with the Planetarium, the researchers will develop activities that focus on phytoplankton and the important role they play within polar marine food webs for the SciVentures participants. Additionally, a teaching module on Antarctic phytoplankton will be developed for classrooms and made available to educational networking websites and presented at workshops for science educators nationwide. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -59.0, "geometry": "POINT(-68 -66.5)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; NSF/USA; Southern Ocean; AMD; Amd/Us; LABORATORY; USAP-DC; BIOGEOCHEMICAL CYCLES", "locations": "Southern Ocean", "north": -61.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Marchetti, Adrian; Septer, Alecia; Hopkinson, Brian", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -72.0, "title": "Collaborative research: Antarctic diatom proteorhodopsins: Characterization and a potential role in the iron-limitation response", "uid": "p0010033", "west": -77.0}, {"awards": "1341717 Ackley, Stephen; 1341606 Stammerjohn, Sharon; 1341513 Maksym, Edward; 1543483 Sedwick, Peter; 1341725 Guest, Peter", "bounds_geometry": "POLYGON((-180 -55,-177 -55,-174 -55,-171 -55,-168 -55,-165 -55,-162 -55,-159 -55,-156 -55,-153 -55,-150 -55,-150 -57.3,-150 -59.6,-150 -61.9,-150 -64.2,-150 -66.5,-150 -68.8,-150 -71.1,-150 -73.4,-150 -75.7,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -75.7,160 -73.4,160 -71.1,160 -68.8,160 -66.5,160 -64.2,160 -61.9,160 -59.6,160 -57.3,160 -55,162 -55,164 -55,166 -55,168 -55,170 -55,172 -55,174 -55,176 -55,178 -55,-180 -55))", "dataset_titles": "ASPeCt Visual Ice Observations on PIPERS Cruise NBP1704 April-June 2017; Expedition data of NBP1704; Impact of Convective Processes and Sea Ice Formation on the Distribution of Iron in the Ross Sea: Closing the Seasonal Cycle; NBP1704 CTD sensor data; NBP1704 Expedition Data; PIPERS Airborne LiDAR Data; PIPERS Meteorology Rawinsonde Data; PIPERS Meteorology Time Series; PIPERS Noble Gases; Sea Ice Layer Cakes, PIPERS 2017; SUMO unmanned aerial system (UAS) atmospheric data", "datasets": [{"dataset_uid": "601609", "doi": "10.15784/601609", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Mass Spectrometer; NBP1704; Noble Gas; Oceans; Ross Sea; R/v Nathaniel B. Palmer", "people": "Loose, Brice", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Noble Gases", "url": "https://www.usap-dc.org/view/dataset/601609"}, {"dataset_uid": "601422", "doi": "10.15784/601422", "keywords": "Antarctica; CTD; CTD Data; NBP1704; Ocean Profile Data; Ross Sea; R/v Nathaniel B. Palmer; Salinity; Temperature", "people": "Stammerjohn, Sharon", "repository": "USAP-DC", "science_program": null, "title": "NBP1704 CTD sensor data", "url": "https://www.usap-dc.org/view/dataset/601422"}, {"dataset_uid": "601183", "doi": "10.15784/601183", "keywords": "Antarctica; Glaciology; Ice Concentration; Ice Thickness; Ice Type; NBP1704; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Sea Ice; Snow Depth; Snow/ice; Snow/Ice; Visual Observations", "people": "Ackley, Stephen", "repository": "USAP-DC", "science_program": null, "title": "ASPeCt Visual Ice Observations on PIPERS Cruise NBP1704 April-June 2017", "url": "https://www.usap-dc.org/view/dataset/601183"}, {"dataset_uid": "601184", "doi": "10.15784/601184 ", "keywords": "Air Temperature; Antarctica; Atmosphere; Meteorology; Near-Surface Air Temperatures; PIPERS; Radiation; Sea Ice Temperatures; Temperature; Weather Station Data; Wind Direction; Wind Speed", "people": "Guest, Peter", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Meteorology Time Series", "url": "https://www.usap-dc.org/view/dataset/601184"}, {"dataset_uid": "601185", "doi": "10.15784/601185 ", "keywords": "Air Temperature; Antarctica; Atmosphere; Atmospheric Surface Winds; Meteorology; NBP1704; PIPERS; Pressure; Radiosonde; Rawinsonde; Relative Humidity; Ross Sea; R/v Nathaniel B. Palmer; Wind Direction; Wind Speed", "people": "Guest, Peter", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Meteorology Rawinsonde Data", "url": "https://www.usap-dc.org/view/dataset/601185"}, {"dataset_uid": "002663", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1704", "url": "https://www.rvdata.us/search/cruise/NBP1704"}, {"dataset_uid": "601188", "doi": "10.15784/601188", "keywords": "Aerogeophysics; Airborne Laser Altimetry; Antarctica; LIDAR; PIPERS; Ross Sea; Sea Ice", "people": "Bertinato, Christopher; Locke, Caitlin; Bell, Robin; Xie, Hongjie; Dhakal, Tejendra", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Airborne LiDAR Data", "url": "https://www.usap-dc.org/view/dataset/601188"}, {"dataset_uid": "001363", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1704 Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1704"}, {"dataset_uid": "601191", "doi": "10.15784/601191", "keywords": "Air Temperature; Antarctica; Atmosphere; Meteorology; NBP1704; PIPERS; R/v Nathaniel B. Palmer; Southern Ocean; Temperature Profiles; UAV; Unmanned Aircraft", "people": "Cassano, John", "repository": "USAP-DC", "science_program": null, "title": "SUMO unmanned aerial system (UAS) atmospheric data", "url": "https://www.usap-dc.org/view/dataset/601191"}, {"dataset_uid": "200150", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Impact of Convective Processes and Sea Ice Formation on the Distribution of Iron in the Ross Sea: Closing the Seasonal Cycle", "url": "https://www.bco-dmo.org/project/815403"}, {"dataset_uid": "601207", "doi": "10.15784/601207", "keywords": "Antarctica; Digital Elevation Model; Glaciology; Ice; Ice Thickness; Ice Thickness Distribution; LIDAR; NBP1704; PIPERS; Ross Sea; R/v Nathaniel B. Palmer; Sea Ice; Snow; Snow Depth; Surface Elevation", "people": "Maksym, Edward; Jeffrey Mei, M.; Mei, M. Jeffrey", "repository": "USAP-DC", "science_program": null, "title": "Sea Ice Layer Cakes, PIPERS 2017", "url": "https://www.usap-dc.org/view/dataset/601207"}], "date_created": "Mon, 10 Jun 2019 00:00:00 GMT", "description": "Proposal Title: Collaborative Research: Seasonal Sea Ice Production in the Ross Sea, Antarctica (working title changed from submitted title) Institutions: UT-San Antonio; Columbia University; Naval Postgraduate School; Woods Hole Oceanographic Institute; UC@Boulder The one place on Earth consistently showing increases in sea ice area, duration, and concentration is the Ross Sea in Antarctica. Satellite imagery shows about half of the Ross Sea increases are associated with changes in the austral fall, when the new sea ice is forming. The most pronounced changes are also located near polynyas, which are areas of open ocean surrounded by sea ice. To understand the processes driving the sea ice increase, and to determine if the increase in sea ice area is also accompanied by a change in ice thickness, this project will conduct an oceanographic cruise to the polynyas of the Ross Sea in April and May, 2017, which is the austral fall. The team will deploy state of the art research tools including unmanned airborne systems (UASs, commonly called drones), autonomous underwater vehicles (AUVs), and remotely operated underwater vehicles (ROVs). Using these tools and others, the team will study atmospheric, oceanic, and sea ice properties and processes concurrently. A change in sea ice production will necessarily change the ocean water below, which may have significant consequences for global ocean circulation patterns, a topic of international importance. All the involved institutions will be training students, and all share the goal of expanding climate literacy in the US, emphasizing the role high latitudes play in the Earth\u0027s dynamic climate. The main goal of the project is to improve estimates of sea ice production and water mass transformation in the Ross Sea. The team will fully capture the spatial and temporal changes in air-ice-ocean interactions when they are initiated in the austral fall, and then track the changes into the winter and spring using ice buoys, and airborne mapping with the newly commissioned IcePod instrument system, which is deployed on the US Antarctic Program\u0027s LC-130 fleet. The oceanographic cruise will include stations in and outside of both the Terra Nova Bay and Ross Ice Shelf polynyas. Measurements to be made include air-sea boundary layer fluxes of heat, freshwater, and trace gases, radiation, and meteorology in the air; ice formation processes, ice thickness, snow depth, mass balance, and ice drift within the sea ice zone; and temperature, salinity, and momentum in the ocean below. Following collection of the field data, the team will improve both model parameterizations of air-sea-ice interactions and remote sensing algorithms. Model parameterizations are needed to determine if sea-ice production has increased in crucial areas, and if so, why (e.g., stronger winds or fresher oceans). The remote sensing validation will facilitate change detection over wider areas and verify model predictions over time. Accordingly this project will contribute to the international Southern Ocean Observing System (SOOS) goal of measuring essential climate variables continuously to monitor the state of the ocean and ice cover into the future.", "east": -150.0, "geometry": "POINT(-175 -66.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LIDAR; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "OCEAN MIXED LAYER; TRACE ELEMENTS; CARBON DIOXIDE; ATMOSPHERIC RADIATION; ICE GROWTH/MELT; AMD; BOUNDARY LAYER TEMPERATURE; SULFUR COMPOUNDS; NBP1704; HEAT FLUX; ICE DEPTH/THICKNESS; R/V NBP; USA/NSF; BOUNDARY LAYER WINDS; SNOW DEPTH; VERTICAL PROFILES; METHANE; POLYNYAS; CONDUCTIVITY; SEA ICE; Ross Sea; WATER MASSES; TURBULENCE; USAP-DC; Amd/Us", "locations": "Ross Sea", "north": -55.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Instrumentation and Support; Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Ackley, Stephen; Bell, Robin; Weissling, Blake; Nuss, Wendell; Maksym, Edward; Stammerjohn, Sharon; Cassano, John; Guest, Peter; Sedwick, Peter; Xie, Hongjie", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "BCO-DMO; R2R; USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research: Seasonal Sea Ice Production in the Ross Sea, Antarctica", "uid": "p0010032", "west": 160.0}, {"awards": "1246357 Bart, Philip", "bounds_geometry": null, "dataset_titles": "NBP1502 Cruise Geophysics and underway data; NBP1502 YoYo camera benthic images from Ross Sea", "datasets": [{"dataset_uid": "601182", "doi": "10.15784/601182", "keywords": "Antarctica; Benthic; Benthic Images; Benthos; Bentic Fauna; Camera Tow; Marine Geoscience; Marine Sediments; NBP1502; Photo; Photo/video; Photo/Video; Ross Sea; R/v Nathaniel B. Palmer; Southern Ocean; Yoyo Camera", "people": "Bart, Philip", "repository": "USAP-DC", "science_program": null, "title": "NBP1502 YoYo camera benthic images from Ross Sea", "url": "https://www.usap-dc.org/view/dataset/601182"}, {"dataset_uid": "000245", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1502 Cruise Geophysics and underway data", "url": "https://www.rvdata.us/search/cruise/NBP1502"}], "date_created": "Mon, 03 Jun 2019 00:00:00 GMT", "description": "Intellectual Merit: Evidence from the eastern Ross Sea continental shelf indicates that the West Antarctic Ice Sheet advanced and retreated during the last glacial cycle, but it is unclear whether the ice sheet advanced to the shelf edge or just to the middle shelf. These two end-member scenarios offer different interpretations as to why, how, and when the West Antarctic Ice Sheet oscillated. The PI proposes to acquire seismic, multibeam, and core data from Whales Deep, to evaluate the timing and duration of two advances of grounded ice to the outer and middle shelf of the Whales Deep Basin, a West Antarctic Ice Sheet paleo ice stream trough in eastern Ross Sea. Grounding events are represented by seismically resolvable Grounding Zone Wedges. The PI will collect radiocarbon dates on in situ benthic foraminifera from the grounding zone diamict as well as ramped pyrolysis radiocarbon dates on acid insoluble organics from open-marine mud overlying the grounding zone diamict. Using these data the PI will calculate the duration of the two grounding events. Furthermore, the PI will test a numerical model prediction that West Antarctic Ice Sheet retreat must have involved melting at the marine terminus of the ice sheet. Pore-water from the grounding zone diamict will be extracted from piston cores to determine salinity and \u0026#948;18O values that should indicate if significant melting occurred at the grounding line. Broader impacts: The data collected will provide constraints on the timing and pattern of Last Glacial Maximum advance and retreat that can be incorporated into interpretations of ice-surface elevation changes. The proposed activities will provide valuable field and research training to undergraduate/graduate students and a Louisiana high-school science teacher. The research will be interactively shared with middle- and high-school science students and with visitors to the LSU Museum of Natural Science Weekend-Science Program.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e AIRGUN ARRAYS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e SEISMIC REFLECTION PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e LONG STREAMERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERA; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "STRATIGRAPHIC SEQUENCE; R/V NBP; Ross Sea; Antarctica; MICROFOSSILS; RADIOCARBON; PALEOCLIMATE RECONSTRUCTIONS; SEDIMENTS; Southern Ocean; OCEANS; GEOSCIENTIFIC INFORMATION", "locations": "Antarctica; Ross Sea; Southern Ocean", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bart, Philip; Steinberg, Deborah", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": null, "title": "Timing and Duration of the LGM and Post-LGM Grounding Events in Whales Deep Paleo Ice Stream, Eastern Ross Sea Middle Continental Shelf", "uid": "p0000877", "west": null}, {"awards": "1544526 Omelon, Christopher", "bounds_geometry": "POLYGON((160 -76.5,160.37 -76.5,160.74 -76.5,161.11 -76.5,161.48 -76.5,161.85 -76.5,162.22 -76.5,162.59 -76.5,162.96 -76.5,163.33 -76.5,163.7 -76.5,163.7 -76.63,163.7 -76.76,163.7 -76.89,163.7 -77.02,163.7 -77.15,163.7 -77.28,163.7 -77.41,163.7 -77.54,163.7 -77.67,163.7 -77.8,163.33 -77.8,162.96 -77.8,162.59 -77.8,162.22 -77.8,161.85 -77.8,161.48 -77.8,161.11 -77.8,160.74 -77.8,160.37 -77.8,160 -77.8,160 -77.67,160 -77.54,160 -77.41,160 -77.28,160 -77.15,160 -77.02,160 -76.89,160 -76.76,160 -76.63,160 -76.5))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 09 May 2019 00:00:00 GMT", "description": "Cryptoendoliths are organisms that colonize microscopic cavities of rocks, which give them protection and allow them to inhabit extreme environments, such as the cold, arid desert of the Dry Valleys of Antarctica. Fossilized cryptoendoliths preserve the forms and features of organisms from the past and thus provide a unique opportunity to study the organisms? life histories and environments. To study this fossil record, there needs to be a better understanding of what environmental conditions allow these fossils to form. A climate gradient currently exists in the Dry Valleys that allows us to study living, dead, and fossilized cryptoendoliths from mild to increasingly harsh environments; providing insight to the limits of life and how these fossils are formed. This project will develop instruments to detect the biological activity of the live microorganisms and conduct laboratory experiments to determine the environmental limits of their survival. The project also will characterize the chemical and structural features of the living, dead, and fossilized cryptoendoliths to understand how they become fossilized. Knowing how microorganisms are preserved as fossils in cold and dry environments like Antarctica can help to refine methods that can be used to search for and identify evidence for extraterrestrial life in similar habitats on planets such as Mars. This project includes training of graduate and undergraduate students. Little is known about cryptoendolithic microfossils and their formation processes in cold, arid terrestrial habitats of the Dry Valleys of Antarctica, where a legacy of activity is discernible in the form of biosignatures including inorganic materials and microbial fossils that preserve and indicate traces of past biological activity. The overarching goals of the proposed work are: (1) to determine how rates of microbial respiration and biodegradation of organic matter control microbial fossilization; and (2) to characterize microbial fossils and their living counterparts to elucidate mechanisms for fossilization. Using samples collected across an increasingly harsher (more cold and dry) climatic gradient that encompasses living, dead, and fossilized cryptoendolithic microorganisms, the proposed work will: (1) develop an instrument to be used in the field that can measure small concentrations of CO2 in cryptoendolithic habitats in situ; (2) conduct incubation experiments to target variations in microbial activity in samples containing living, dead, and fossilized microorganisms as well as limits to microbial activity by measuring CO2 evolution and delta13C signatures; and (3) use a suite of microscopy techniques (CLSM, cryo-SEM, FIB-SEM, \u00b5-XFM) to correlate laboratory experimental evidence for microbial viability and activity and to identify the chemical and morphological characteristics of biosignatures and microbial fossils. A metagenomic survey of microbial communities in these samples will be used to characterize differences in diversity, identify if specific microorganisms (e.g. prokaryotes, eukaryotes) are more capable of surviving under these harsh climatic conditions, and to corroborate microscopic observations of the viability states of these microorganisms.", "east": 163.7, "geometry": "POINT(161.85 -77.15)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; Antarctica; NOT APPLICABLE; TERRESTRIAL ECOSYSTEMS", "locations": "Antarctica", "north": -76.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Omelon, Christopher; Breecker, Daniel; Bennett, Philip", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repositories": null, "science_programs": null, "south": -77.8, "title": "Activity, Preservation and Fossilization of Cryptoendolithic Microorganisms in Antarctica", "uid": "p0010028", "west": 160.0}, {"awards": "1247510 Detrich, H. William", "bounds_geometry": null, "dataset_titles": "E-MTAB-6759: RNA-seq across tissues in four Notothenioid species (Antarctic icefish); Expedition Data; Expedition data of LMG1003; Expedition data of LMG1004; PRJNA420419: Chaenocephalus aceratus Genome sequencing; PRJNA66471: Notothenia coriiceps Genome Sequencing Notothenia coriiceps isolate:Sejong01 (black rockcod); S-BSST 132: Assembled Transcriptomes for Berthelot et al. (2018); SRA091269: Notothenia coriiceps RNA Raw Sequence Reads; SRP047484: RAD-tag Sequences of Genetically Mapped Notothenia coriiceps Embryos ; SRP118539: RAD-tag Sequences of Genetically Mapped Chaenocephalus aceratus Embryos", "datasets": [{"dataset_uid": "200142", "doi": "", "keywords": null, "people": null, "repository": "NCBI BioProject", "science_program": null, "title": "PRJNA66471: Notothenia coriiceps Genome Sequencing Notothenia coriiceps isolate:Sejong01 (black rockcod)", "url": "https://www.ncbi.nlm.nih.gov/bioproject/66471"}, {"dataset_uid": "002685", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1004", "url": "https://www.rvdata.us/search/cruise/LMG1004"}, {"dataset_uid": "200026", "doi": "", "keywords": null, "people": null, "repository": "NCBI SRA", "science_program": null, "title": "SRA091269: Notothenia coriiceps RNA Raw Sequence Reads", "url": "https://www.ncbi.nlm.nih.gov/sra/?term=SRA091269"}, {"dataset_uid": "001509", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0806"}, {"dataset_uid": "001508", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0807"}, {"dataset_uid": "002684", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1003", "url": "https://www.rvdata.us/search/cruise/LMG1003"}, {"dataset_uid": "200146", "doi": "", "keywords": null, "people": null, "repository": "NCBI SRA", "science_program": null, "title": "SRP047484: RAD-tag Sequences of Genetically Mapped Notothenia coriiceps Embryos ", "url": "https://www.ncbi.nlm.nih.gov/sra/?term=SRP047484"}, {"dataset_uid": "200145", "doi": "", "keywords": null, "people": null, "repository": "BioStudies", "science_program": null, "title": "S-BSST 132: Assembled Transcriptomes for Berthelot et al. (2018)", "url": "https://www.ebi.ac.uk/biostudies/studies/S-BSST132"}, {"dataset_uid": "200144", "doi": "", "keywords": null, "people": null, "repository": "Array Express", "science_program": null, "title": "E-MTAB-6759: RNA-seq across tissues in four Notothenioid species (Antarctic icefish)", "url": "https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6759/"}, {"dataset_uid": "200143", "doi": "", "keywords": null, "people": null, "repository": "NCBI BioProject", "science_program": null, "title": "PRJNA420419: Chaenocephalus aceratus Genome sequencing", "url": "https://www.ncbi.nlm.nih.gov/bioproject/420419"}, {"dataset_uid": "200093", "doi": "", "keywords": null, "people": null, "repository": "NCBI SRA", "science_program": null, "title": "SRP118539: RAD-tag Sequences of Genetically Mapped Chaenocephalus aceratus Embryos", "url": "https://www.ncbi.nlm.nih.gov/sra/SRP118539 "}], "date_created": "Mon, 08 Apr 2019 00:00:00 GMT", "description": "Since the advent of Antarctic continental glaciation, the opening of the Drake Passage between South America and the Antarctic Peninsula, and the onset of cooling of the Southern Ocean ~40-25 million years ago, evolution of the Antarctic marine biota has been driven by the development of extreme cold temperatures. As circum-Antarctic coastal temperatures declined during this period from ~20\u00b0C to the modern ?1.9 to +2.0\u00b0C (reached ~8-10 million years ago), the psychrophilic (cold-loving) ectotherms of the Southern Ocean evolved compensatory molecular, cellular, and physiological traits that enabled them to maintain normal metabolic function at cold temperatures. Today, these organisms are threatened by rapid warming of the Southern Ocean over periods measured in centuries (as much as 5\u00b0C/100 yr), a timeframe so short that re-adaptation and/or acclimatization to the ?new warm? may not be possible. Thus, the long-term goals of this research project are: 1) to understand the biochemical and physiological capacities of the embryos of Antarctic notothenioid fish to resist or compensate for rapid oceanic warming; and 2) to assess the genetic toolkit available to support the acclimatization and adaptation of Antarctic notothenioid embryos to their warming habitat. The specific aims of this work are: 1) to determine the capacity of the chaperonin complex of notothenioid fishes to assist protein folding at temperatures between ?4 and +20\u00b0C; and 2) to evaluate the genetic responses of notothenioid embryos, measured as global differential gene transcription, to temperature challenge, with ?1.9\u00b0C as the ?normal? control and +4 and +10\u00b0C as high temperature insults. The physiology of embryonic development of marine stenotherms under future climate change scenarios is an important but understudied problem. This project will provide valuable insights into the capacity of Antarctic fish embryos to acclimatize and adapt to plausible climate change scenarios by examining multiple levels of biological organization, from the biochemical to the organismal. The results should also be broadly applicable to understanding the impact of global warming on marine biota worldwide. The research will also introduce graduate and REU undergraduate students to state-of-the-art biochemical, cellular, and molecular-biological research relevant to ecological and environmental issues of the Antarctic marine ecosystem.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e TRAWLS/NETS \u003e BOTTOM TRAWL", "is_usap_dc": false, "keywords": "AQUATIC SCIENCES; R/V LMG; USAP-DC; Southern Ocean", "locations": "Southern Ocean", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Detrich, H. William", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "NCBI BioProject", "repositories": "Array Express; BioStudies; NCBI BioProject; NCBI SRA; R2R", "science_programs": null, "south": null, "title": "Protein Folding and Embryogenesis in Antarctic Fishes: A Comparative Approach to Environmental Stress", "uid": "p0010024", "west": null}, {"awards": "1758224 Salvatore, Mark", "bounds_geometry": "POLYGON((-180 -83,-178 -83,-176 -83,-174 -83,-172 -83,-170 -83,-168 -83,-166 -83,-164 -83,-162 -83,-160 -83,-160 -83.4,-160 -83.8,-160 -84.2,-160 -84.6,-160 -85,-160 -85.4,-160 -85.8,-160 -86.2,-160 -86.6,-160 -87,-162 -87,-164 -87,-166 -87,-168 -87,-170 -87,-172 -87,-174 -87,-176 -87,-178 -87,180 -87,178 -87,176 -87,174 -87,172 -87,170 -87,168 -87,166 -87,164 -87,162 -87,160 -87,160 -86.6,160 -86.2,160 -85.8,160 -85.4,160 -85,160 -84.6,160 -84.2,160 -83.8,160 -83.4,160 -83,162 -83,164 -83,166 -83,168 -83,170 -83,172 -83,174 -83,176 -83,178 -83,-180 -83))", "dataset_titles": "Laboratory Hyperspectral Reflectance Data of Central Transantarctic Mountain Rocks and Sediments; Orbital imagery used for SpecMap project", "datasets": [{"dataset_uid": "002735", "doi": null, "keywords": null, "people": null, "repository": "PGC", "science_program": null, "title": "Orbital imagery used for SpecMap project", "url": "https://www.pgc.umn.edu/projects/specmap/"}, {"dataset_uid": "601163", "doi": "10.15784/601163", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Remote Sensing; Rocks; Solid Earth; Spectroscopy; Transantarctic Mountains", "people": "Salvatore, Mark", "repository": "USAP-DC", "science_program": null, "title": "Laboratory Hyperspectral Reflectance Data of Central Transantarctic Mountain Rocks and Sediments", "url": "https://www.usap-dc.org/view/dataset/601163"}], "date_created": "Thu, 14 Mar 2019 00:00:00 GMT", "description": "Intellectual Merit: Ice free rock outcrops in the Transantarctic Mountains provide the only accessible windows into the interior of the ice covered Antarctic continent; they are extremely remote and difficult to study. This region also hosts the highest latitude ice-free valley systems on the planet. Based on two interdisciplinary workshops, the Transantarctic region near the Shackleton Glacier has been identified as a high priority site for further studies, with a field camp proposed for the 2015-2016 Antarctic field season. The geology of this region has been studied since the heroic era of Antarctic exploration, in the early 1900s, but geologic mapping has not been updated in more than forty years, and existing maps are at poor resolution (typically 1:250,000). This project would utilize the WorldView-2 multispectral orbital dataset to supplement original geologic mapping efforts near the proposed 2015-2016 Shackleton Glacier camp. The WorldView-2 satellite is the only multispectral orbiting sensor capable of imaging the entirety of the Transantarctic Mountains, and all necessary data are currently available to the Polar Geospatial Center. High-latitude atmospheric correction of multispectral data for geologic investigations has only recently been tested, but has never been applied to WorldView-2 data, and never for observations of this type. Therefore, this research will require technique refinements and methodological developements to accomplish the goals. Atmospheric correction refinements and spectral validation will be made possible by laboratory spectroscopic measurements of rock samples currently stored at the U.S. Polar Rock Repository, at the Ohio State University. This project will result in spectral unit identification and boundary mapping at a factor of four higher resolution (1:62,500) than previous geologic mapping efforts, and more detailed investigations (1:5,123) are possible at resolutions more than a factor of forty-eight improved over previous geologic maps. Validated spectral mapping at these improved resolutions will allow for detailed lithologic, and potentially biologic, mapping using existing satellite imagery. This will greatly enhance planning capabilities, thus maximizing the efficiency of the scientific research and support logistics associated with the Shackleton Glacier deep field camp. Broader impacts: The proposed work will have multiple impacts on the broader scientific community. First, the refinement of existing atmospheric correction methodologies, and the development of new spectral mapping techniques, may substantially improve our ability to remotely investigate geologic surfaces throughout Antarctica. The ability to validate this orbital dataset will be of use to both current and future geologic, environmental, and biologic studies, potentially across the entire continent. The project will yield a specific spectral mapping product (at a scale of 1:62,500) to the scientific community by a targeted date of 01 March 2014, in order to support proposals submitted to the National Science Foundation for the proposed 2015/2016 Shackleton Glacier camp. High-resolution spectral mapping products (up to a maximum resolution of 2 meters per pixel) will also be generated for regions of particular scientific interest. The use of community based resources, such as Polar Geospatial Center (PGC) imagery and U.S. Polar Rock Repository rock samples, will generate new synergistic and collaborative research possibilities within the Antarctic research community. In addition, the lead PI (Salvatore) is an early career scientist who is active in both Antarctic and planetary remote sensing. There are overlaps in the calibration, correction, and validation of remote spectral datasets for Antarctic and planetary applications which can lead to benefits and insights to an early career PI, as well as the two communities.", "east": -160.0, "geometry": "POINT(180 -85)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; Antarctica; GEOCHEMISTRY; LANDSCAPE; REFLECTED INFRARED; USAP-DC", "locations": "Antarctica", "north": -83.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Salvatore, Mark", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "PGC", "repositories": "PGC; USAP-DC", "science_programs": null, "south": -87.0, "title": "EAGER: Surface Variability and Spectral Analyses of the Central Transantarctic Mountains, Antarctica", "uid": "p0010020", "west": 160.0}, {"awards": "1341479 Marchetti, Adrian", "bounds_geometry": "POLYGON((-72.8 -48,-67.12 -48,-61.44 -48,-55.76 -48,-50.08 -48,-44.4 -48,-38.72 -48,-33.04 -48,-27.36 -48,-21.68 -48,-16 -48,-16 -50.02,-16 -52.04,-16 -54.06,-16 -56.08,-16 -58.1,-16 -60.12,-16 -62.14,-16 -64.16,-16 -66.18,-16 -68.2,-21.68 -68.2,-27.36 -68.2,-33.04 -68.2,-38.72 -68.2,-44.4 -68.2,-50.08 -68.2,-55.76 -68.2,-61.44 -68.2,-67.12 -68.2,-72.8 -68.2,-72.8 -66.18,-72.8 -64.16,-72.8 -62.14,-72.8 -60.12,-72.8 -58.1,-72.8 -56.08,-72.8 -54.06,-72.8 -52.04,-72.8 -50.02,-72.8 -48))", "dataset_titles": "16S and 18S Sequence data; Fragilariopsis kerguelensis iron and light transcriptomes; Physiology and transcriptomes of polar isolates; Polar isolate transcriptomes; Sequence data from Ocean Station Papa seawater ; Sequence data RNA-Seq of marine phytoplankton: FeB12", "datasets": [{"dataset_uid": "200016", "doi": "", "keywords": null, "people": null, "repository": "iMicrobe", "science_program": null, "title": "Fragilariopsis kerguelensis iron and light transcriptomes", "url": "https://www.imicrobe.us/#/projects/104"}, {"dataset_uid": "200021", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "16S and 18S Sequence data", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA299401"}, {"dataset_uid": "200020", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Physiology and transcriptomes of polar isolates", "url": "https://www.bco-dmo.org/project/653229"}, {"dataset_uid": "200019", "doi": "", "keywords": null, "people": null, "repository": "Cyverse Data Commons", "science_program": null, "title": "Polar isolate transcriptomes", "url": "http://datacommons.cyverse.org/search/?search_term=unc_phyto_isolates"}, {"dataset_uid": "200018", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Sequence data from Ocean Station Papa seawater ", "url": "https://www.ncbi.nlm.nih.gov/sra/SRP006906"}, {"dataset_uid": "200017", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Sequence data RNA-Seq of marine phytoplankton: FeB12", "url": "https://www.ncbi.nlm.nih.gov/sra/SRP074366"}], "date_created": "Mon, 11 Mar 2019 00:00:00 GMT", "description": "The Southern Ocean surrounding Antarctica is changing rapidly in response to Earth\u0027s warming climate. These changes will undoubtedly influence communities of primary producers (the organisms at the base of the food chain, particularly plant-like organisms using sunlight for energy) by altering conditions that influence their growth and composition. Because primary producers such as phytoplankton play an important role in global biogeochemical cycling, it is essential to understand how they will respond to changes in their environment. The growth of phytoplankton in certain regions of the Southern Ocean is constrained by steep gradients in chemical and physical properties that vary in both space and time. Light and iron have been identified as key variables influencing phytoplankton abundance and distribution within Antarctic waters. Microscopic algae known as diatoms are dominant members of the phytoplankton and sea ice communities, accounting for significant proportions of primary production. The overall objective of this project is to identify the molecular bases for the physiological responses of polar diatoms to varying light and iron conditions. The project should provide a means of evaluating the extent these factors regulate diatom growth and influence net community productivity in Antarctic waters. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. It will facilitate the teaching and learning of polar-related topics by translating the research objectives into readily accessible educational materials for middle-school students. This project will also provide funding to enable a graduate student and several undergraduate students to be trained in the techniques and perspectives of modern biology. Although numerous studies have investigated how polar diatoms are affected by varying light and iron, the cellular mechanisms leading to their distinct physiological responses remain unknown. Using comparative transcriptomics, the expression patterns of key genes and metabolic pathways in several ecologically important polar diatoms recently isolated from Antarctic waters and grown under varying iron and irradiance conditions will be examined. In addition, molecular indicators for iron and light limitation will be developed within these polar diatoms through the identification of iron- and light-responsive genes -- the expression patterns of which can be used to determine their physiological status. Upon verification in laboratory cultures, these indicators will be utilized by way of metatranscriptomic sequencing to examine iron and light limitation in natural diatom assemblages collected along environmental gradients in Western Antarctic Peninsula waters. In order to fully understand the role phytoplankton play in Southern Ocean biogeochemical cycles, dependable methods that provide a means of elucidating the physiological status of phytoplankton at any given time and location are essential.", "east": -16.0, "geometry": "POINT(-44.4 -58.1)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; AQUATIC SCIENCES; PHYTOPLANKTON; USAP-DC; Southern Ocean; Sea Surface; DIATOMS", "locations": "Sea Surface; Southern Ocean", "north": -48.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Marchetti, Adrian", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "iMicrobe", "repositories": "BCO-DMO; Cyverse Data Commons; iMicrobe; NCBI GenBank", "science_programs": null, "south": -68.2, "title": "Iron and Light Limitation in Ecologically Important Polar Diatoms: Comparative Transcriptomics and Development of Molecular Indicators", "uid": "p0010018", "west": -72.8}, {"awards": "1245766 Waller, Rhian", "bounds_geometry": "POINT(-63.0796667 -61.5157)", "dataset_titles": "Expedition Data; Log Sheets of coral samples for LMG1509", "datasets": [{"dataset_uid": "601160", "doi": "10.15784/601160", "keywords": "Antarctica; Antarctic Peninsula; Biota; Corals; CTD; LMG1509; Oceans; Otter Trawl; R/v Laurence M. Gould; Sample/collection Description; Sample/Collection Description; Sample Location; Southern Ocean", "people": "Waller, Rhian", "repository": "USAP-DC", "science_program": null, "title": "Log Sheets of coral samples for LMG1509", "url": "https://www.usap-dc.org/view/dataset/601160"}, {"dataset_uid": "001378", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1509"}], "date_created": "Thu, 07 Mar 2019 00:00:00 GMT", "description": "The Western Antarctic Peninsula is experiencing climate change at one of the fastest rates of anywhere around the globe. Accelerated climate change is likely to affect the many benthic marine invertebrates that live within narrow temperature windows along the Antarctic Continental Shelf in presently unidentified ways. At present however, there are few data on the physiological consequences of climate change on the sensitive larval stages of cold-water corals, and none on species living in thermal extremes such as polar waters. This project will collect the larvae of the non-seasonal, brooding scleractinian Flabellum impensum to be used in a month-long climate change experiment at Palmer Station. Multidisciplinary techniques will be used to examine larval development and cellular stress using a combination of electron microscopy, flow cytometry, and Inductively Coupled Plasma Mass Spectometry. Data from this project will form the first systematic study of the larval stages of polar cold-water corals, and how these stages are affected by temperature stress at the cellular and developmental level. Cold-water corals have been shown to be important ecosystem engineers, providing habitat for thousands of associated species, including many that are of commercial importance. Understanding how the larvae of these corals react to warming trends seen today in our oceans will allow researchers to predict future changes in important benthic communities around the globe. Associated education and outreach include: 1) Increasing student participation in polar research by involving postdoctoral and undergraduate students in the field and research program; ii) promotion of K-12 teaching and learning programs by providing information via a research website, Twitter, and in-school talks in the local area; iii) making the data collected available to the wider research community via peer reviewed published literature and iv) reaching a larger public audience through such venues as interviews in the popular media, You Tube and other popular media outlets, and local talks to the general public.", "east": -63.0796667, "geometry": "POINT(-63.0796667 -61.5157)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e TRAWLS/NETS \u003e OTTER TRAWL", "is_usap_dc": true, "keywords": "AQUATIC SCIENCES; ANIMALS/INVERTEBRATES; R/V LMG; Southern Ocean; USAP-DC; WATER TEMPERATURE", "locations": "Southern Ocean", "north": -61.5157, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Waller, Rhian; Jay, Lunden", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -61.5157, "title": "Cold Corals in Hot Water - Investigating the Physiological Responses of Antarctic Coral Larvae to Climate change Stress", "uid": "p0010017", "west": -63.0796667}, {"awards": "1341339 Baker, Bill; 1341333 McClintock, James", "bounds_geometry": "POLYGON((-65 -65,-64.8 -65,-64.6 -65,-64.4 -65,-64.2 -65,-64 -65,-63.8 -65,-63.6 -65,-63.4 -65,-63.2 -65,-63 -65,-63 -64.9,-63 -64.8,-63 -64.7,-63 -64.6,-63 -64.5,-63 -64.4,-63 -64.3,-63 -64.2,-63 -64.1,-63 -64,-63.2 -64,-63.4 -64,-63.6 -64,-63.8 -64,-64 -64,-64.2 -64,-64.4 -64,-64.6 -64,-64.8 -64,-65 -64,-65 -64.1,-65 -64.2,-65 -64.3,-65 -64.4,-65 -64.5,-65 -64.6,-65 -64.7,-65 -64.8,-65 -64.9,-65 -65))", "dataset_titles": "Data from Amsler et al. 2019 Antarctic Science; Plocamium cartilagineum field chemotyping; Plocamium reproductive system data and R code; Plocamium transect and transplant data; Raw gastropod collection data from Amsler et al. 2022 Antarctic Science; Supplementary information provided with Murray et al.: Discovery of an Antarctic ascidian-associated uncultivated Verrucomicrobia with antimelanoma palmerolide biosynthetic potential; Synoicum adareanum sampling underwater video Mar 2011 Palmer Station Antarctica; The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2010 experimental data; The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2010 field data; The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2011 Clad Outplant; The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2013 Chemo Phylo data", "datasets": [{"dataset_uid": "601533", "doi": "10.15784/601533", "keywords": "Antarctica; Benthos; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Raw gastropod collection data from Amsler et al. 2022 Antarctic Science", "url": "https://www.usap-dc.org/view/dataset/601533"}, {"dataset_uid": "601622", "doi": "10.15784/601622", "keywords": "Antarctica; Benthic; Biota; Macroalgae; Population Genetics", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Plocamium reproductive system data and R code", "url": "https://www.usap-dc.org/view/dataset/601622"}, {"dataset_uid": "600046", "doi": "10.15784/600046", "keywords": "Antarctica; Biota; Oceans; Southern Ocean", "people": "McClintock, James; Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2010 field data", "url": "https://www.usap-dc.org/view/dataset/600046"}, {"dataset_uid": "601215", "doi": "10.15784/601215", "keywords": "Algae; Antarctica; Biota; Chemical Ecology; Chemotyping; Halogenated Monoterpenes; Natural Products; Oceans; Palmer Station; Plocamium Cartilagineum; Southern Ocean; Terpenes", "people": "Baker, Bill", "repository": "USAP-DC", "science_program": null, "title": "Plocamium cartilagineum field chemotyping", "url": "https://www.usap-dc.org/view/dataset/601215"}, {"dataset_uid": "601159", "doi": "601159", "keywords": "Antarctica; Benthic; Biota; Macroalgae; Mesograzer; Microscopy; Oceans; Zooplankton", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Data from Amsler et al. 2019 Antarctic Science", "url": "https://www.usap-dc.org/view/dataset/601159"}, {"dataset_uid": "600096", "doi": "10.15784/600096", "keywords": "Algae; Antarctica; Antarctic Peninsula; Biota; Oceans; Southern Ocean", "people": "Baker, Bill", "repository": "USAP-DC", "science_program": null, "title": "The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2013 Chemo Phylo data", "url": "https://www.usap-dc.org/view/dataset/600096"}, {"dataset_uid": "600095", "doi": "10.15784/600095", "keywords": "Algae; Antarctica; Antarctic Peninsula; Biota; Oceans; Southern Ocean", "people": "Amsler, Charles; McClintock, James", "repository": "USAP-DC", "science_program": null, "title": "The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2011 Clad Outplant", "url": "https://www.usap-dc.org/view/dataset/600095"}, {"dataset_uid": "200357", "doi": "10.5061/dryad.gxd2547gw", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Synoicum adareanum sampling underwater video Mar 2011 Palmer Station Antarctica", "url": "https://datadryad.org/stash/dataset/doi:10.5061/dryad.gxd2547gw"}, {"dataset_uid": "200356", "doi": "10.5061/dryad.8sf7m0cpp", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Supplementary information provided with Murray et al.: Discovery of an Antarctic ascidian-associated uncultivated Verrucomicrobia with antimelanoma palmerolide biosynthetic potential", "url": "https://datadryad.org/stash/dataset/doi:10.5061/dryad.8sf7m0cpp"}, {"dataset_uid": "600047", "doi": "10.15784/600047", "keywords": "Antarctica; Biota; Oceans; Southern Ocean", "people": "Baker, Bill", "repository": "USAP-DC", "science_program": null, "title": "The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2010 experimental data", "url": "https://www.usap-dc.org/view/dataset/600047"}, {"dataset_uid": "601621", "doi": "10.15784/601621", "keywords": "Antarctica; Benthic; Biota; Macroalgae; Mesograzer; Microscopy; Oceans; Secondary Metabolites", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Plocamium transect and transplant data", "url": "https://www.usap-dc.org/view/dataset/601621"}], "date_created": "Tue, 05 Mar 2019 00:00:00 GMT", "description": "The coastal environments of the western Antarctic Peninsula harbor rich assemblages of marine animals and algae. The importance of the interactions between these groups of organisms in the ecology of coastal Antarctica are well known and often mediated by chemical defenses in the tissues of the algae. These chemicals are meant to deter feeding by snails and other marine animals making the Antarctic Peninsula an excellent place to ask important questions about the functional and evolutionary significance of chemical compound diversity for marine communities. This project will focus on three main objectives: the first objective is to expand the current understanding of the relationship between algae and their associated marine animals. The second objective focuses on the diversity of chemical compounds used to defend algae from being consumed. The third objective seeks to understand how marine animals can benefit from these compounds by consuming the algae that contain them, and then using those compounds to chemically deter predators. The field components of this research will be performed during three expeditions to the US Palmer Station, Antarctica. During these expeditions, a variety of laboratory feeding bioassays, manipulative field and laboratory experiments, and on-site chemical analyses will be performed. The investigators will also foster opportunities to integrate their NSF research with a variety of educational activities. As in the past they will support undergraduate research, both through NSF programs as well as home, university-based, programs, and they will also continue to support and foster graduate education. Through their highly successful University of Alabama in Antarctica interactive web program (two time recipient of awards of excellence from the US Council for Advancement and Support of Education), they will continue to involve large numbers of teachers, K-12 students, and other members of the community at large in their scientific endeavors in Antarctica. In addition, the investigators have hosted K-12 teachers on their Antarctic field teams through the former NSF Teachers Experiencing Antarctica and the Arctic program and will pursue participation in PolarTREC, the successor to this valuable program. Moreover, they will actively participate in outreach efforts by presenting numerous talks on their research to local school and community groups. The near shore environments of the western Antarctic Peninsula harbor rich assemblages of macroalgae and macroinvertebrates. The importance of predator-prey interactions and chemical defenses in mediating community-wide trophic interactions makes the western Antarctic Peninsula an excellent place to ask important questions about the functional and evolutionary significance of defensive compound diversity for marine communities. This project will focus on three main objectives which are a direct outcome of the past studies of the chemical ecology of shallow-water marine macroalgae and invertebrates on the Antarctic Peninsula by this group of investigators. The first objective is to expand the current understanding of a community-wide mutualism between macroalgae and their associated amphipods to include gastropods, which are also abundant on many macroalgae. The second objective focuses on the diversity of chemical compounds used to defend macroalgae from being consumed, particularly in the common red alga Plocamium cartilagineum. The third objective seeks to understand the relationship between P. cartilagineum and the amphipod Paradexamine fissicauda, including the ecological benefits and costs to P. fissicauda resulting from the ability to consume P. cartilagineum and other chemically defended red algae. The investigators will focus on the costs and benefits related to the ability of P. fissicauda to sequester defensive compounds from the alga P. cartilagineum and use those chemicals to defend itself from predation. The field components of this research will be performed during three expeditions to Palmer Station, Antarctica. During these expeditions, a variety of laboratory feeding bioassays, manipulative field and laboratory experiments, and on-site chemical analyses will be performed. Phylogenetic analyses, detailed secondary metabolite chemical analyses and purifications, and other data analyses will also be performed at the investigators\u0027 home institutions between and after their field seasons.", "east": -63.0, "geometry": "POINT(-64 -64.5)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; Antarctica; BENTHIC; USAP-DC", "locations": "Antarctica", "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Amsler, Charles; Baker, Bill; McClintock, James", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "Dryad; USAP-DC", "science_programs": null, "south": -65.0, "title": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing", "uid": "p0010016", "west": -65.0}, {"awards": "1750630 Smith, Craig", "bounds_geometry": "POLYGON((-64 -66,-63.3 -66,-62.6 -66,-61.9 -66,-61.2 -66,-60.5 -66,-59.8 -66,-59.1 -66,-58.4 -66,-57.7 -66,-57 -66,-57 -66.3,-57 -66.6,-57 -66.9,-57 -67.2,-57 -67.5,-57 -67.8,-57 -68.1,-57 -68.4,-57 -68.7,-57 -69,-57.7 -69,-58.4 -69,-59.1 -69,-59.8 -69,-60.5 -69,-61.2 -69,-61.9 -69,-62.6 -69,-63.3 -69,-64 -69,-64 -68.7,-64 -68.4,-64 -68.1,-64 -67.8,-64 -67.5,-64 -67.2,-64 -66.9,-64 -66.6,-64 -66.3,-64 -66))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 15 Feb 2019 00:00:00 GMT", "description": "Worldwide publicity surrounding the calving of an iceberg the size of Delaware in July 2017 from the Larsen C Ice Shelf on the eastern side of the Antarctic Peninsula presents a unique and time-sensitive opportunity for research and education on polar ecosystems in a changing climate. The goal of this project was to convene a workshop, drawing from the large fund of intellectual capital in the US and international Antarctic research communities. The two-day workshop was designed to bring scientists with expertise in Antarctic biological, ecological, and ecosystem sciences to Florida State University to share knowledge, identify important research knowledge gaps, and outline strategic plans for research. \r\n\r\nMajor outcomes from the project were as follows. The international workshop to share and review knowledge concerning the response of Antarctic ecosystems to ice-shelf collapse was held at the Florida State University Coastal and Marine Laboratory (FSUCML) on 18-19 November 2017. Thirty-eight U.S. and international scientists attended the workshop, providing expertise in biological, ecological, geological, biogeographical, and glaciological sciences. Twenty-six additional scientists were either not able to attend or were declined because of having reached maximum capacity of the venue or for not responding to our invitation before the registration deadline.\r\n\r\nThe latest results of ice-shelf research were presented, providing an overview of the current scientific knowledge and understanding of the biological, ecological,\r\ngeological and cryospheric processes associated with ice-shelf collapse and its\r\necosystem-level consequences. In addition, several presentations focused on future plans to investigate the impacts of the recent Larsen C collapse. The following presentations were given at the meeting:\r\n\r\n1) Cryospheric dynamics and ice-shelf collapse \u2013 past and future (M. Truffer,\r\nUniversity of Alaska, Fairbanks)\r\n2) The geological history and geological impacts of ice-shelf collapse on the Antarctic Peninsula (Scottt Ishman, Amy Leventer)\r\n3) Pelagic ecosystem responses to ice-shelf collapse (Mattias Cape, Amy Leventer)\r\n4) Benthic ecosystem response to ice-shelf collapse (Craig Smith, Pavica Sr\u0161en, Ann Vanreusel)\r\n5) Larsen C and biotic homogenization of the benthos (Richard Aronson, James\r\nMcClintock, Kathryn Smith, Brittany Steffel)\r\n6) British Antarctic Survey: plans for Larsen C investigations early 2018 and in the\r\nfuture (Huw Griffiths)\r\n7) Feedback on the workshop \u201cClimate change impacts on marine ecosystems:\r\nimplications for management of living resources and conservation\u201d held 19-22\r\nSeptember 2017, Cambridge, UK (Alex Rogers)\r\n8) Past research activities and plans for Larsen field work by the Alfred Wegener\r\nInstitute, Germany (Charlotte Havermans, Dieter Piepenburg.\r\n\r\nOne of the salient points emerging from the presentations and ensuing discussions was that, given our poor abilities to predict ecological outcomes of ice-shelf collapses, major cross-disciplinary efforts are needed on a variety of spatial and temporal scales to achieve a broader, predictive understanding of ecosystem\r\nconsequences of climatic warming and ice-shelf failure. As part of the workshop, the FSUCML Polar Academy Team\u2014Dr. Emily Dolan, Dr. Heidi Geisz, Barbara Shoplock, and Dr. Jeroen Ingels\u2014initiated AntICE: \"Antarctic Influences of Climate Change on Ecosystems\" (AntICE). They reached out to various groups of school children in the local area (and continue to do so). The AntICE Team have been interacting with these children at Wakulla High School and Wakulla Elementary in Crawfordville; children from the Cornerstone Learning Community, Maclay Middle School, Gilchrist Elementary, and the School of Arts and Sciences in Tallahassee; and the Tallahassee-area homeschooling community to educate them about Antarctic ecosystems and ongoing climate change. The underlying idea was to\r\nmake the children aware of climatic changes in the Antarctic and their effect on\r\necosystems so they, in turn, can spread this knowledge to their communities, family\r\nand friends \u2013 acting as \u2018Polar Ambassadors\u2019. We collaborated with the Polar-ICE\r\nproject, an NSF-funded educational project that established the Polar Literacy\r\nInitiative. This program developed the Polar Literacy Principles, which outline\r\nessential concepts to improve public understanding of Antarctic and Arctic\r\necosystems. In the Polar Academy work, we used the Polar Literacy principles, the\r\nPolar Academy Team\u2019s own Antarctic scientific efforts, and the experience of the FSU outreach and education program to engage with the children. We focused on the importance of Antarctic organisms and ecosystems, the uniqueness of its biota and the significance of its food webs, as well as how all these are changing and will\r\nchange further with climate change. Using general presentations, case studies,\r\nscientific methodology, individual experiences, interactive discussions and Q\u0026A\r\nsessions, the children were guided through the many issues Antarctic ecosystems\r\nare facing. Over 300 \u0027Polar ambassadors\u0027 attended the interactive lectures and\r\nafterwards took their creativity to high latitudes by creating welcome letters, displays, dioramas, sculptures, videos and online media to present at the scientific workshop. Over 50 projects were created by the children (Please see supporting files for images). We were also joined by a photographer, Ryan David Reines, to document the event. More information, media and links to online outreach products are available at https://marinelab.fsu.edu/labs/ingels/outreach/polar-academy/", "east": -57.0, "geometry": "POINT(-60.5 -67.5)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; USAP-DC; ECOLOGICAL DYNAMICS; NOT APPLICABLE; MARINE ECOSYSTEMS; Weddell Sea", "locations": "Weddell Sea", "north": -66.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Craig", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repositories": null, "science_programs": null, "south": -69.0, "title": "Collaborative Research: RAPID/Workshop- Antarctic Ecosystem Research following Ice Shelf Collapse and Iceberg Calving Events", "uid": "p0010012", "west": -64.0}, {"awards": "1443680 Smith, Craig; 1443733 Winsor, Peter; 1443705 Vernet, Maria", "bounds_geometry": "POLYGON((-66 -64,-65.6 -64,-65.2 -64,-64.8 -64,-64.4 -64,-64 -64,-63.6 -64,-63.2 -64,-62.8 -64,-62.4 -64,-62 -64,-62 -64.1,-62 -64.2,-62 -64.3,-62 -64.4,-62 -64.5,-62 -64.6,-62 -64.7,-62 -64.8,-62 -64.9,-62 -65,-62.4 -65,-62.8 -65,-63.2 -65,-63.6 -65,-64 -65,-64.4 -65,-64.8 -65,-65.2 -65,-65.6 -65,-66 -65,-66 -64.9,-66 -64.8,-66 -64.7,-66 -64.6,-66 -64.5,-66 -64.4,-66 -64.3,-66 -64.2,-66 -64.1,-66 -64))", "dataset_titles": "Andvord Bay Glacier Timelapse; Andvord Bay sediment core data collected during the FjordEco project (LMG1510 and NBP1603); Expedition Data; Expedition data of LMG1702; FjordEco Phytoplankton Ecology Dataset in Andvord Bay ; Fjord-Eco Sediment OrgC OrgN Data - Craig Smith; LMG1510 Expedition data; NBP1603 Expedition data; Sediment macrofaunal abundance and family richness from inner Andvord Bay to the open continental shelf", "datasets": [{"dataset_uid": "200040", "doi": "10.7284/907085", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "LMG1510 Expedition data", "url": "https://www.rvdata.us/search/cruise/LMG1510"}, {"dataset_uid": "601158", "doi": "10.15784/601158", "keywords": "Antarctica; Antarctic Peninsula; Biota; Ecology; Fjord; Phytoplankton", "people": "Forsch, Kiefer; Vernet, Maria; Manck, Lauren; Pan, B. Jack", "repository": "USAP-DC", "science_program": "FjordEco", "title": "FjordEco Phytoplankton Ecology Dataset in Andvord Bay ", "url": "https://www.usap-dc.org/view/dataset/601158"}, {"dataset_uid": "601111", "doi": "10.15784/601111", "keywords": "Antarctica; Antarctic Peninsula; Glaciers/ice Sheet; Glaciers/Ice Sheet; Iceberg; Photo; Photo/video; Photo/Video", "people": "Truffer, Martin; Winsor, Peter", "repository": "USAP-DC", "science_program": "FjordEco", "title": "Andvord Bay Glacier Timelapse", "url": "https://www.usap-dc.org/view/dataset/601111"}, {"dataset_uid": "002733", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1702", "url": "https://www.rvdata.us/search/cruise/LMG1702"}, {"dataset_uid": "200039", "doi": "10.7284/907205", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1603 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1603"}, {"dataset_uid": "601236", "doi": "10.15784/601236", "keywords": "Abundance; Andvord Bay; Antarctica; Antarctic Peninsula; Biota; Fjord; LMG1510; Marine Sediments; Oceans; Polychaete; Polychaete Family Richness; R/v Laurence M. Gould; Sediment Core Data; Sediment Macrofauna", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "FjordEco", "title": "Sediment macrofaunal abundance and family richness from inner Andvord Bay to the open continental shelf", "url": "https://www.usap-dc.org/view/dataset/601236"}, {"dataset_uid": "000402", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1702"}, {"dataset_uid": "601193", "doi": "10.15784/601193", "keywords": "Antarctica; Geochronology; Grain Size; LMG1510; NBP1603; Sediment; Sediment Core Data", "people": "Nittrouer, Charles; Eidam, Emily; Homolka, Khadijah; Smith, Craig", "repository": "USAP-DC", "science_program": null, "title": "Andvord Bay sediment core data collected during the FjordEco project (LMG1510 and NBP1603)", "url": "https://www.usap-dc.org/view/dataset/601193"}, {"dataset_uid": "001366", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1702"}, {"dataset_uid": "601157", "doi": "10.15784/601157", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Snow/ice; Snow/Ice", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "FjordEco", "title": "Fjord-Eco Sediment OrgC OrgN Data - Craig Smith", "url": "https://www.usap-dc.org/view/dataset/601157"}], "date_created": "Wed, 13 Feb 2019 00:00:00 GMT", "description": "Marine communities along the western Antarctic Peninsula are highly productive ecosystems which support a diverse assemblage of charismatic animals such as penguins, seals, and whales as well as commercial fisheries such as that on Antarctic krill. Fjords (long, narrow, deep inlets of the sea between high cliffs) along the central coast of the Peninsula appear to be intense, potentially climate sensitive, hotspots of biological production and biodiversity, yet the structure and dynamics of these fjord ecosystems are very poorly understood. Because of this intense biological activity and the charismatic fauna it supports, these fjords are also major destinations for a large Antarctic tourism industry. This project is an integrated field and modeling program to evaluate physical oceanographic processes, glacial inputs, water column community dynamics, and seafloor bottom community structure and function in these important yet little understood fjord systems. These Antarctic fjords have characteristics that are substantially different from well-studied Arctic fjords, likely yielding much different responses to climate warming. This project will provide major new insights into the dynamics and climate sensitivity of Antarctic fjord ecosystems, highlighting contrasts with Arctic sub-polar fjords, and potentially transforming our understanding of the ecological role of fjords in the rapidly warming west Antarctic coastal marine landscape. The project will also further the NSF goal of training new generations of scientists, providing scientific training for undergraduate, graduate, and postdoctoral students. This includes the unique educational opportunity for undergraduates to participate in research cruises in Antarctica and the development of a novel summer graduate course on fjord ecosystems. Internet based outreach activities will be enhanced and extended by the participation of a professional photographer who will produce magazine articles, websites, radio broadcasts, and other forms of public outreach on the fascinating Antarctic ecosystem. This project will involve a 15-month field program to test mechanistic hypotheses concerning oceanographic and glaciological forcing, and phytoplankton and benthic community response in the Antarctic fjords. Those efforts will be followed by a coupled physical/biological modeling effort to evaluate the drivers of biogeochemical cycles in the fjords and to explore their potential sensitivity to enhanced meltwater and sediment inputs. Fieldwork over two oceanographic cruises will utilize moorings, weather stations, and glacial, sea-ice and seafloor time-lapse cameras to obtain an integrated view of fjord ecosystem processes. The field team will also make multiple shipboard measurements and will use towed and autonomous underwater vehicles to intensively evaluate fjord ecosystem structure and function during spring/summer and autumn seasons. These integrated field and modeling studies are expected to elucidate fundamental properties of water column and sea bottom ecosystem structure and function in the fjords, and to identify key physical-chemical-glaciological forcing in these rapidly warming ecosystems.", "east": -62.0, "geometry": "POINT(-64 -64.5)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "OCEAN CURRENTS; Bellingshausen Sea; LMG1702; COMMUNITY DYNAMICS; FJORDS; R/V LMG; MARINE ECOSYSTEMS; USAP-DC; ECOSYSTEM FUNCTIONS; ANIMALS/INVERTEBRATES; SEDIMENTATION; NOT APPLICABLE; BENTHIC", "locations": "Bellingshausen Sea", "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Winsor, Peter; Truffer, Martin; Smith, Craig; Powell, Brian; Merrifield, Mark; Vernet, Maria; Kohut, Josh", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": "FjordEco", "south": -65.0, "title": "Collaborative Research: Fjord Ecosystem Structure and Function on the West Antarctic Peninsula - Hotspots of Productivity and Biodiversity? (FjordEco)", "uid": "p0010010", "west": -66.0}, {"awards": "1443347 Condron, Alan; 1443394 Pollard, David", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctic Ice Sheet simulations for role of freshwater in future warming scenarios; Future climate response to Antarctic Ice Sheet melt caused by anthropogenic warming; Simulated changes in Southern Ocean salinity", "datasets": [{"dataset_uid": "601449", "doi": "10.15784/601449", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Meltwater", "people": "Condron, Alan", "repository": "USAP-DC", "science_program": null, "title": "Future climate response to Antarctic Ice Sheet melt caused by anthropogenic warming", "url": "https://www.usap-dc.org/view/dataset/601449"}, {"dataset_uid": "601154", "doi": "10.15784/601154 ", "keywords": "Antarctic; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Ice Sheet Model; Meltwater; Model Data; Modeling; Model Output", "people": "Pollard, David", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Ice Sheet simulations for role of freshwater in future warming scenarios", "url": "https://www.usap-dc.org/view/dataset/601154"}, {"dataset_uid": "601442", "doi": "10.15784/601442", "keywords": "Antarctica; Computer Model; Freshwater; Glaciers/ice Sheet; Glaciers/Ice Sheet; Model Data; Ocean Model; Oceans; Salinity", "people": "Condron, Alan", "repository": "USAP-DC", "science_program": null, "title": "Simulated changes in Southern Ocean salinity", "url": "https://www.usap-dc.org/view/dataset/601442"}], "date_created": "Mon, 04 Feb 2019 00:00:00 GMT", "description": "There is compelling historical evidence that the West Antarctic Ice Sheet (WAIS) is vulnerable to rapid retreat and collapse. Recent observations, compared to observations made 20-30 years before, indicate that both ice shelves (thick ice with ocean below) and land ice (thick ice with land below), are now melting at a much faster rate. Some numerical models suggest that significant ice retreat may begin within many of our lifetimes, starting with the abrupt collapse of Pine Island and Thwaites Glaciers in the next 50 years. This may be followed by retreat of much of the WAIS and then the collapse of parts of the East Antarctic ice sheet (EAIS). This research project will assess the extent to which global ocean circulation and climate will be impacted if enormous volumes of fresh water and ice flow into the Southern Ocean. It will establish whether a rapid collapse of WAIS in the near-future poses any significant threat to the stability of modern-day climate and human society. This is a topic that has so far received little attention as most prior research has focused on the response of climate to melting the Greenland ice sheet. Yet model simulations predict that the volumes of fresh water and ice released from Antarctica in the next few centuries could be up at least ten-times larger than from Greenland. The Intellectual Merit of this project stems from its ability to establish a link between the physical Antarctic system (ice sheet dynamics, fresh water discharge and iceberg calving) and global climate. The PIs (Principal Investigators) will assess the sensitivity of ocean circulation and climate to increased ice sheet melt using a combination of ocean, iceberg, ice sheet and climate models. Results from this study will help identify areas of the ice sheet that are vulnerable to collapse and also regions of the ocean where a significant freshening will have a considerable impact on climate, and serve to guide the deployment of an observational monitoring system capable of warning us when ice and fresh water discharge start to approach levels capable of disrupting ocean circulation and global climate. This project will support and train two graduate students, and each PI will be involved with local primary and secondary schools, making presentations, mentoring science fair projects, and contributing to curriculum development. A novel, web-based, interactive, cryosphere learning tool will be developed to help make school children more aware of the importance of the Polar Regions in global climate, and this software will be introduced to science teachers at a half day workshop organized by the UMass STEM Education Institute. Recent numerical simulations using a continental ice sheet/shelf model show the potential for more rapid and greater Antarctic ice sheet retreat in the next 50-300 years (under the full range of IPCC RCP (Intergovernmental Panel on Climate Change, Representative Concentration Pathways) future warming scenarios) than previously projected. Exactly how the release of enormous volumes of ice and fresh water to the Southern Ocean will impact global ocean circulation and climate has yet to be accurately assessed. This is in part because previous model simulations were too coarse to accurately resolve narrow coastal boundary currents, shelf breaks, fronts, and mesoscale eddies that are all very important for realistically simulating fresh water transport in the ocean. In this award, future projections of fresh water discharge and iceberg calving from Antarctic will be used to force a high resolution eddy-resolving ocean model (MITgcm) coupled to a new iceberg module and a fully-coupled global climate model (CCSM4). High resolution ocean/iceberg simulations will determine the role of mesoscale eddies in freshwater transport and give new insight into how fresh water is advected to far-field locations, including deep water formation sites in the North Atlantic. These simulations will provide detailed information about subsurface temperatures and changes in ocean circulation close to the ice front and grounding line. An accompanying set of fully coupled climate model simulations (NCAR CCSM4) will identify multidecadal-to-centennial changes in the climate system triggered by increased high-latitude Southern Ocean freshwater forcing. Particular attention will be given to changes in the strength of the Atlantic Meridional Overturning Circulation (AMOC), wind stress, sea ice formation, and global temperatures. In doing so, this project will more accurately determine whether abrupt and potentially catastrophic changes in global climate are likely to be triggered by changes in the Antarctic system in the near-future.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e DATA ANALYSIS \u003e ENVIRONMENTAL MODELING \u003e COMPUTER", "is_usap_dc": true, "keywords": "USAP-DC; USA/NSF; AMD; MODELS; Amd/Us; Antarctica; GLACIERS/ICE SHEETS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Pollard, David; Condron, Alan; DeConto, Robert", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Assessing the Global Climate Response to Melting of the Antarctic Ice Sheet", "uid": "p0010007", "west": -180.0}, {"awards": "1443464 Sowers, Todd; 1443472 Brook, Edward J.; 1443710 Severinghaus, Jeffrey", "bounds_geometry": "POINT(0 -90)", "dataset_titles": "South Pole CH4 data for termination; South Pole Ice Core Isotopes of N2 and Ar; South Pole ice core (SPC14) discrete methane data; South Pole ice core total air content; South Pole (SPICECORE) 15N, 18O, O2/N2 and Ar/N2; SP19 Gas Chronology", "datasets": [{"dataset_uid": "601152", "doi": "10.15784/601152", "keywords": "Antarctica; Antarctic Ice Sheet; Chemistry:gas; Chemistry:Gas; Chemistry:ice; Chemistry:Ice; Delta 18O; Dole Effect; Firn Thickness; Gas Isotopes; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Gravitational Settling; Ice; Ice Core Chemistry; Ice Core Data; Ice Core Gas Records; Ice Core Records; Inert Gases; Nitrogen; Nitrogen Isotopes; Oxygen; Oxygen Isotope; Snow/ice; Snow/Ice; South Pole; SPICEcore", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole (SPICECORE) 15N, 18O, O2/N2 and Ar/N2", "url": "https://www.usap-dc.org/view/dataset/601152"}, {"dataset_uid": "601380", "doi": "10.15784/601380", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Core Stratigraphy; Methane; South Pole; SPICEcore", "people": "Epifanio, Jenna", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SP19 Gas Chronology", "url": "https://www.usap-dc.org/view/dataset/601380"}, {"dataset_uid": "601517", "doi": "10.15784/601517", "keywords": "Antarctica; Argon; Argon Isotopes; Firn; Firn Temperature Gradient; Firn Thickness; Gas Isotopes; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Nitrogen; Nitrogen Isotopes; South Pole; SPICEcore", "people": "Severinghaus, Jeffrey P.; Morgan, Jacob", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Isotopes of N2 and Ar", "url": "https://www.usap-dc.org/view/dataset/601517"}, {"dataset_uid": "601230", "doi": "10.15784/601230", "keywords": "Antarctica; Atmospheric CH4; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Data; Methane; Methane Concentration; Snow/ice; Snow/Ice; South Pole; SPICEcore", "people": "Sowers, Todd A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole CH4 data for termination", "url": "https://www.usap-dc.org/view/dataset/601230"}, {"dataset_uid": "601231", "doi": "10.15784/601231", "keywords": "Air Content; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Snow/ice; Snow/Ice; South Pole; SPICEcore", "people": "Sowers, Todd A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole ice core total air content", "url": "https://www.usap-dc.org/view/dataset/601231"}, {"dataset_uid": "601381", "doi": "10.15784/601381", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Methane; South Pole; SPICEcore", "people": "Aydin, Murat; Severinghaus, Jeffrey P.; Kennedy, Joshua A.; Ferris, David G.; Kalk, Michael; Hood, Ekaterina; Fudge, T. J.; Osterberg, Erich; Winski, Dominic A.; Steig, Eric J.; Kahle, Emma; Sowers, Todd A.; Edwards, Jon S.; Kreutz, Karl; Buizert, Christo; Brook, Edward J.; Epifanio, Jenna", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole ice core (SPC14) discrete methane data", "url": "https://www.usap-dc.org/view/dataset/601381"}], "date_created": "Sat, 02 Feb 2019 00:00:00 GMT", "description": "Gases trapped in ice cores have revealed astonishing things about the greenhouse gas composition of the past atmosphere, including the fact that carbon dioxide concentrations never rose above 300 parts per million during the last 800,000 years. This places today\u0027s concentration of 400 parts per million in stark contrast. Furthermore, these gas records show that natural sources of greenhouse gas such as oceans and ecosystems act as amplifiers of climate change by increasing emissions of gases during warmer periods. Such amplification is expected to occur in the future, adding to the human-produced gas burden. The South Pole ice core will build upon these prior findings by expanding the suite of gases to include, for the first time, those potent trace gases that both trapped heat and depleted ozone during the past 40,000 years. The present project on inert gases and methane in the South Pole ice core will improve the dating of this crucial record, to unprecedented precision, so that the relative timing of events can be used to learn about the mechanism of trace gas production and destruction, and consequent climate change amplification. Ultimately, this information will inform predictions of future atmospheric chemical cleansing mechanisms and climate in the context of our rapidly changing atmosphere. This award also engages young people in the excitement of discovery and polar research, helping to entrain the next generations of scientists and educators. Education of graduate students, a young researcher (Buizert), and training of technicians, will add to the nation?s human resource base. This award funds the construction of the gas chronology for the South Pole 1500m ice core, using measured inert gases (d15N and d40Ar--Nitrogen and Argon isotope ratios, respectively) and methane in combination with a next-generation firn densification model that treats the stochastic nature of air trapping and the role of impurities on densification. The project addresses fundamental gaps in scientific understanding that limit the accuracy of gas chronologies, specifically a poor knowledge of the controls on ice-core d15N and the possible role of layering and impurities in firn densification. These gaps will be addressed by studying the gas enclosure process in modern firn at the deep core site. The work will comprise the first-ever firn air pumping experiment that has tightly co-located measurements of firn structural properties on the core taken from the same borehole. The project will test the hypothesis that the lock-in horizon as defined by firn air d15N, CO2, and methane is structurally controlled by impermeable layers, which are in turn created by high-impurity content horizons in which densification is enhanced. Thermal signals will be sought using the inert gas measurements, which improve the temperature record with benefits to the firn densification modeling. Neon, argon, and oxygen will be measured in firn air and a limited number of deep core samples to test whether glacial period layering was enhanced, which could explain low observed d15N in the last glacial period. Drawing on separate volcanic and methane synchronization to well-dated ice cores to create independent ice and gas tie points, independent empirical estimates of the gas age-ice age difference will be made to check the validity of the firn densification model-inert gas approach to calculating the gas age-ice age difference. These points will also be used to test whether the anomalously low d15N seen during the last glacial period in east Antarctic ice cores is due to deep air convection in the firn, or a missing impurity dependence in the firn densification models. The increased physical understanding gained from these studies, combined with new high-precision measurements, will lead to improved accuracy of the gas chronology of the South Pole ice core, which will enhance the overall science return from this gas-oriented core. This will lead to clarification of timing of atmospheric gas variations and temperature, and aid in efforts to understand the biogeochemical feedbacks among trace gases. These feedbacks bear on the future response of the Earth System to anthropogenic forcing. Ozone-depleting substances will be measured in the South Pole ice core record, and a precise gas chronology will add value. Lastly, by seeking a better understanding of the physics of gas entrapment, the project aims to have an impact on ice-core science in general.", "east": 0.0, "geometry": "POINT(0 -90)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "USAP-DC; AMD; LABORATORY; Antarctica; NITROGEN ISOTOPES; USA/NSF; METHANE; Amd/Us; FIELD INVESTIGATION", "locations": "Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.; Sowers, Todd A.; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core", "uid": "p0010005", "west": 0.0}, {"awards": "1644245 Aydin, Murat", "bounds_geometry": null, "dataset_titles": "Ice Core Air Ethane and Acetylene Measurements - South Pole SPC14 Ice Core (SPICEcore project); Ice core ethane measurements, Greenland and Antarctica, 1000-1900 CE.", "datasets": [{"dataset_uid": "002574", "doi": "", "keywords": null, "people": null, "repository": "Arctic Data Center", "science_program": null, "title": "Ice core ethane measurements, Greenland and Antarctica, 1000-1900 CE.", "url": "https://arcticdata.io/catalog/view/doi:10.18739/A2CR5NC1B"}, {"dataset_uid": "601367", "doi": "10.15784/601367", "keywords": "Antarctica; Ethane", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Ice Core Air Ethane and Acetylene Measurements - South Pole SPC14 Ice Core (SPICEcore project)", "url": "https://www.usap-dc.org/view/dataset/601367"}], "date_created": "Tue, 13 Nov 2018 00:00:00 GMT", "description": "Aydin/1644245 This award supports a project to measure ethane in ice core air extracted from the recently drilled intermediate depth South Pole ice core (SPICECORE). Ethane is an abundant hydrocarbon in the atmosphere. The ice core samples that will be used in this analysis will span about 150 years before present to about 55,000 years before present and therefore, ethane emissions linked to human activities are not a subject of this study. The study will focus on quantifying the variability in the natural sources of ethane and the processes that govern its removal from the atmosphere. A long-term ice core ethane record will provide new knowledge on the chemistry of Earth?s atmosphere during time periods when human influence was either much smaller than present day or non-existent. The broader impacts of this work include education and training of students and a contribution to a better understanding of the chemistry of the atmosphere in the past and how it has been impacted by past changes in climate. Natural sources that emit ethane are both geologic (e.g. seeps, vents, mud volcanoes etc.) and pyrogenic (wild fires) which is commonly called biomass burning. Ethane is removed from the atmosphere via oxidation reactions. The ice core ethane measurements have great potential as a proxy for gaseous emissions from biomass burning. This is especially true for time periods preceding the industrial revolution when atmospheric variability of trace gases was largely controlled by natural processes. Another objective of this study is to improve understanding of the causes of atmospheric methane variability apparent which are in the existing ice core records. Methane is a simpler hydrocarbon than ethane and more abundant in the atmosphere. Even though the project does not include any methane measurements; the commonalities between the sources and removal of atmospheric ethane and methane mean that ethane measurements can be used to gain insight into the causes of changes in atmospheric methane levels. The broader impacts of the project include partial support for one Ph.D. student and support for undergraduate researchers at UC Irvine. The PIs group currently has 4 undergraduate researchers. The PI and the graduate students in the UCI ice core laboratory regularly participate in on- and off-campus activities such as laboratory tours and lectures directed towards educating high-school students and science teachers, and the local community at large about the scientific value of polar ice cores as an environmental record of our planet\u0027s past. The results of this research will be disseminated via peer-review publications and will contribute to policy-relevant activities such as the IPCC Climate Assessment. Data resulting from this project will be archived in a national data repository. This award does not have field work in Antarctica.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; NOT APPLICABLE", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Aydin, Murat", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "Arctic Data Center", "repositories": "Arctic Data Center; USAP-DC", "science_programs": "SPICEcore", "south": null, "title": "Ethane Measurements in the Intermediate Depth South Pole Ice Core (SPICECORE)", "uid": "p0000762", "west": null}, {"awards": "1443263 Higgins, John; 1443306 Mayewski, Paul", "bounds_geometry": null, "dataset_titles": "Allan Hills ice water stable isotope record for dD, d18O; Carbon dioxide concentration and its stable carbon isotope composition in Allan Hills ice cores; Elemental and isotopic composition of heavy noble gases in Allan Hills ice cores; Elemental and isotopic composition of nitrogen, oxygen, and argon in Allan Hills ice cores; Greenhouse gas composition in the Allan Hills S27 ice core; Methane concentration in Allan Hills ice cores; Stable isotope composition of the trapped air in the Allan Hills S27 ice core; Stable water isotope data for the AH-1502 ice core drilled at the Allan Hills Blue ice area; Stable water isotope data for the AH-1503 ice core drilled at the Allan Hills Blue ice area; Stable water isotope data for the surface samples collected at the Allan Hills Blue ice area", "datasets": [{"dataset_uid": "601203", "doi": "10.15784/601203", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Chemistry:ice; Chemistry:Ice; Gas Chromatography; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenhouse Gas; Ice; Ice Core Data; Ice Core Gas Records; Methane; Snow/ice; Snow/Ice", "people": "Bender, Michael; Brook, Edward J.; Yan, Yuzhen; Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Methane concentration in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601203"}, {"dataset_uid": "601201", "doi": "10.15784/601201", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Argon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Data; Ice Core Gas Records; Krypton; Mass Spectrometer; Noble Gas; Snow/ice; Snow/Ice; Xenon", "people": "Yan, Yuzhen; Ng, Jessica; Higgins, John; Severinghaus, Jeffrey P.; Bender, Michael", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Elemental and isotopic composition of heavy noble gases in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601201"}, {"dataset_uid": "601128", "doi": "10.15784/601128", "keywords": "Allan Hills; Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope Record; Mass Spectrometry; Stable Water Isotopes", "people": "Kurbatov, Andrei V.; Mayewski, Paul A.; Introne, Douglas; Yan, Yuzhen", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable water isotope data for the AH-1503 ice core drilled at the Allan Hills Blue ice area", "url": "https://www.usap-dc.org/view/dataset/601128"}, {"dataset_uid": "601129", "doi": "10.15784/601129", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Blue Ice; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Isotope Data; Oxygen; Snow/ice; Snow/Ice; Stable Water Isotopes; Transantarctic Mountains", "people": "Kurbatov, Andrei V.; Mayewski, Paul A.; Introne, Douglas; Yan, Yuzhen", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable water isotope data for the AH-1502 ice core drilled at the Allan Hills Blue ice area", "url": "https://www.usap-dc.org/view/dataset/601129"}, {"dataset_uid": "601130", "doi": "10.15784/601130", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; Delta 18O; Delta Deuterium; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Gas Records; Ice Core Records; Oxygen; Snow/ice; Snow/Ice; Stable Water Isotopes; Transantarctic Mountains", "people": "Introne, Douglas; Kurbatov, Andrei V.; Mayewski, Paul A.; Yan, Yuzhen", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable water isotope data for the surface samples collected at the Allan Hills Blue ice area", "url": "https://www.usap-dc.org/view/dataset/601130"}, {"dataset_uid": "601483", "doi": "10.15784/601483", "keywords": "Allan Hills; Antarctica; Argon; Ice; Ice Core Data; Ice Core Gas Records; Isotope; Mass Spectrometry; Nitrogen; Oxygen", "people": "Higgins, John; Bender, Michael; Yan, Yuzhen", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Elemental and isotopic composition of nitrogen, oxygen, and argon in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601483"}, {"dataset_uid": "601863", "doi": null, "keywords": "Allan Hills; Antarctica; Cryosphere; Isotope Data", "people": "Higgins, John; Severinghaus, Jeffrey P.; Introne, Douglas; Mayewski, Paul A.; Brook, Edward; Kurbatov, Andrei V.", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Allan Hills ice water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601863"}, {"dataset_uid": "601863", "doi": null, "keywords": "Allan Hills; Antarctica; Cryosphere; Isotope Data", "people": "Kurbatov, Andrei V.; Mayewski, Paul A.; Brook, Edward; Introne, Douglas; Higgins, John; Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills ice water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601863"}, {"dataset_uid": "601512", "doi": "10.15784/601512", "keywords": "Allan Hills; Antarctica; Blue Ice; Ice Core; Ice Core Gas Records; Isotope; Nitrogen; Oxygen", "people": "Yan, Yuzhen; Higgins, John; Bender, Michael", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable isotope composition of the trapped air in the Allan Hills S27 ice core", "url": "https://www.usap-dc.org/view/dataset/601512"}, {"dataset_uid": "601425", "doi": "10.15784/601425", "keywords": "Allan Hills; Antarctica; Blue Ice; Carbon Dioxide; Ice Core; Methane", "people": "Brook, Edward J.; Yan, Yuzhen", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Greenhouse gas composition in the Allan Hills S27 ice core", "url": "https://www.usap-dc.org/view/dataset/601425"}, {"dataset_uid": "601202", "doi": "10.15784/601202", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Carbon Dioxide; Carbon Isotopes; Chemistry:ice; Chemistry:Ice; CO2; Gas Chromatography; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Gas Records; Ice Core Records; Mass Spectrometer; Mass Spectrometry; Methane; Snow/ice; Snow/Ice", "people": "Brook, Edward J.; Bender, Michael; Yan, Yuzhen; Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Carbon dioxide concentration and its stable carbon isotope composition in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601202"}], "date_created": "Thu, 18 Oct 2018 00:00:00 GMT", "description": "Bubbles of ancient air trapped in ice cores permit the direct reconstruction of atmospheric composition and allow us to link greenhouse gases and global climate over the last 800,000 years. Previous field expeditions to the Allan Hills blue ice area, Antarctica, have recovered ice cores that date to one million years, the oldest ice cores yet recovered from Antarctica. These records have revealed that interglacial CO2 concentrations decreased by 800,000 years ago and that, in the warmer world 1 million years ago, CO2 and Antarctic temperature were linked as during the last 800,000 years. This project will return to the Allan Hills blue ice area to recover additional ice cores that date to 1 million years or older. The climate records developed from the drilled ice cores will provide new insights into the chemical composition of the atmosphere and Antarctic climate during times of comparable or even greater warmth than the present day. Our results will help answer questions about issues associated with anthropogenic change. These include the relationship between temperature change and the mass balance of Antarctic ice; precipitation and aridity variations associated with radiatively forced climate change; and the climate significance of sea ice extent. The project will entrain two graduate students and a postdoctoral scholar, and will conduct outreach including workshops to engage teachers in carbon science and ice cores. Between about 2.8-0.9 million years ago, Earth\u0027s climate was characterized by 40,000-year cycles, driven or paced by changes in the tilt of Earth\u0027s spin axis. Much is known about the \"40,000-year\" world from studies of deep-sea sediments, but our understanding of climate change during this period is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of ancient ice from the Main Ice Field, Allan Hills, Antarctica. During previous field seasons we recovered ice extending, discontinuously, from 0.1-1.0 million years old. Ice was dated by measuring the 40Ar/38Ar (Argon) ratio of the trapped gases. Our discovery of million year-old ice demonstrates that there is gas-record-quality ice from the 40,000-year world in the Allan Hills Main Ice Field. We have identified two different sites, each overlying bedrock at ~ 200 m depth, that are attractive targets for coring ice dating to 1 million years and older. This project aims to core the ice at these two sites, re-occupy a previous site with million year-old ice and drill it down to the bedrock, and generate 10-20 short (~10-meter) cores in areas where our previous work and terrestrial meteorite ages suggest ancient surface ice. We plan to date the ice using the 40Ar/38Ar ages of trapped Argon. We also plan to characterize the continuity of our cores by measuring the deuterium and oxygen isotope ratios in the ice, methane, ratios of Oxygen and Argon to Nitrogen in trapped gas, the Nitrogen-15 isotope (d15N) of Nitrogen, and the Oxygen-18 isotope (d18O) of Oxygen. As the ice may be stratigraphically disturbed, these measurements will provide diagnostic properties for assessing the continuity of the ice-core records. Successful retrieval of ice older than one million years will provide the opportunity for follow-up work to measure the CO2 concentration and other properties within the ice to inform on the temperature history of the Allan Hills region, dust sources and source-area aridity, moisture sources, densification conditions, global average ocean temperature, and greenhouse gas concentrations. We will analyze the data in the context of leading hypotheses of the 40,000-year world and the Mid-Pleistocene Transition to the 100,000-year world. We expect to advance understanding of climate dynamics during these periods.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Amd/Us; AMD; Allan Hills; USA/NSF; FIELD INVESTIGATION; USAP-DC; Ice Core; LABORATORY", "locations": "Allan Hills", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Mayewski, Paul A.; Kurbatov, Andrei V.; Higgins, John; Bender, Michael", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": null, "title": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area", "uid": "p0000760", "west": null}, {"awards": "0838763 Anandakrishnan, Sridhar; 0839059 Powell, Ross; 0839107 Powell, Ross; 0839142 Tulaczyk, Slawek; 0838855 Jacobel, Robert; 0838947 Tulaczyk, Slawek; 0838764 Anandakrishnan, Sridhar", "bounds_geometry": null, "dataset_titles": "Basal melt rates of the Ross Ice Shelf near the Whillans Ice Stream grounding line; Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats in W Antarctica - Lake and Ice Stream Subglacial Access Research Drilling (LISSARD); Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats - Robotic Access to Grounding-zones for Exploration and Science (RAGES); IRIS ID#s 201035, 201162, 201205; IRIS offers free and open access to a comprehensive data store of raw geophysical time-series data collected from a large variety of sensors, courtesy of a vast array of US and International scientific networks, including seismometers (permanent and temporary), tilt and strain meters, infrasound, temperature, atmospheric pressure and gravimeters, to support basic research aimed at imaging the Earth\u0027s interior.; Paleogene marine and terrestrial development of the West Antarctic Rift System: Biomarker Data Set; Paleogene marine and terrestrial development of the West Antarctic Rift System: Palynomorph Data Set; Radar Studies of Subglacial Lake Whillans and the Whillans Ice Stream Grounding Zone; The IRIS DMC archives and distributes data to support the seismological research community.; UNAVCO ID#s WHL1, WHL2, LA02, LA09 (full data link not provided)", "datasets": [{"dataset_uid": "609594", "doi": "10.7265/N54J0C2W", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; GPS; Radar; Whillans Ice Stream", "people": "Jacobel, Robert", "repository": "USAP-DC", "science_program": null, "title": "Radar Studies of Subglacial Lake Whillans and the Whillans Ice Stream Grounding Zone", "url": "https://www.usap-dc.org/view/dataset/609594"}, {"dataset_uid": "601122", "doi": "10.15784/601122", "keywords": "Antarctica; Flexure Zone; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Ice-Shelf Basal Melting; Ice-Shelf Strain Rate", "people": "Begeman, Carolyn", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Basal melt rates of the Ross Ice Shelf near the Whillans Ice Stream grounding line", "url": "https://www.usap-dc.org/view/dataset/601122"}, {"dataset_uid": "000148", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IRIS ID#s 201035, 201162, 201205", "url": "http://ds.iris.edu/"}, {"dataset_uid": "001405", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IRIS offers free and open access to a comprehensive data store of raw geophysical time-series data collected from a large variety of sensors, courtesy of a vast array of US and International scientific networks, including seismometers (permanent and temporary), tilt and strain meters, infrasound, temperature, atmospheric pressure and gravimeters, to support basic research aimed at imaging the Earth\u0027s interior.", "url": "http://www.iris.edu/hq/data_and_software"}, {"dataset_uid": "000150", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "UNAVCO ID#s WHL1, WHL2, LA02, LA09 (full data link not provided)", "url": "http://www.unavco.org/"}, {"dataset_uid": "601245", "doi": "10.15784/601245", "keywords": "Antarctica; Pollen; West Antarctica; WISSARD", "people": "Warny, Sophie; Casta\u00f1eda, Isla; Coenen, Jason; Askin, Rosemary; Baudoin, Patrick; Scherer, Reed Paul", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Paleogene marine and terrestrial development of the West Antarctic Rift System: Palynomorph Data Set", "url": "https://www.usap-dc.org/view/dataset/601245"}, {"dataset_uid": "601234", "doi": "10.15784/601234", "keywords": "ACL; Antarctica; Biomarker; BIT Index; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Stream; Whillans Ice Stream; WISSARD", "people": "Scherer, Reed Paul; Baudoin, Patrick; Warny, Sophie; Casta\u00f1eda, Isla; Coenen, Jason; Askin, Rosemary", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Paleogene marine and terrestrial development of the West Antarctic Rift System: Biomarker Data Set", "url": "https://www.usap-dc.org/view/dataset/601234"}, {"dataset_uid": "600155", "doi": "10.15784/600155", "keywords": "Antarctica; Glaciology; Oceans; Southern Ocean; WISSARD", "people": "Powell, Ross", "repository": "USAP-DC", "science_program": null, "title": "Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats - Robotic Access to Grounding-zones for Exploration and Science (RAGES)", "url": "https://www.usap-dc.org/view/dataset/600155"}, {"dataset_uid": "001406", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "The IRIS DMC archives and distributes data to support the seismological research community.", "url": "http://ds.iris.edu/ds/nodes/dmc/"}, {"dataset_uid": "600154", "doi": "10.15784/600154", "keywords": "Antarctica; Biota; Diatom; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Lake Whillans; Paleoclimate; Ross Sea; Southern Ocean; Subglacial Lake; WISSARD", "people": "Powell, Ross", "repository": "USAP-DC", "science_program": null, "title": "Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats in W Antarctica - Lake and Ice Stream Subglacial Access Research Drilling (LISSARD)", "url": "https://www.usap-dc.org/view/dataset/600154"}], "date_created": "Mon, 10 Sep 2018 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The LISSARD project (Lake and Ice Stream Subglacial Access Research Drilling) is one of three research components of the WISSARD integrative initiative (Whillans Ice Stream Subglacial Access Research Drilling) that is being funded by the Antarctic Integrated System Science Program of NSF\u0027s Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The LISSARD component of WISSARD focuses on the role of active subglacial lakes in determining how fast the West Antarctic ice sheet loses mass to the global ocean and influences global sea level changes. The importance of Antarctic subglacial lakes has only been recently recognized, and the lakes have been identified as high priority targets for scientific investigations because of their unknown contributions to ice sheet stability under future global warming scenarios. LISSARD has several primary science goals: A) To provide an observational basis for improving treatments of subglacial hydrological and mechanical processes in models of ice sheet mass balance and stability; B) To reconstruct the past history of ice stream stability by analyzing archives of past basal water and ice flow variability contained in subglacial sediments, porewater, lake water, and basal accreted ice; C) To provide background understanding of subglacial lake environments to benefit RAGES and GBASE (the other two components of the WISSARD project); and D) To synthesize data and concepts developed as part of this project to determine whether subglacial lakes play an important role in (de)stabilizing Antarctic ice sheets. We propose an unprecedented synthesis of approaches to studying ice sheet processes, including: (1) satellite remote sensing, (2) surface geophysics, (3) borehole observations and measurements and, (4) basal and subglacial sampling. \u003cbr/\u003e\u003cbr/\u003eINTELLECTUAL MERIT: The latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations. \u003cbr/\u003e\u003cbr/\u003eBROADER IMPACTS: Societal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS", "is_usap_dc": true, "keywords": "USAP-DC; Ice Penetrating Radar; Antarctic; Subglacial Lake; Subglacial Hydrology; Grounding Line; Sea Level Rise; Bed Reflectivity; Ice Sheet Stability; Stability; Radar; Sub-Ice-Shelf; Geophysics; Biogeochemical; LABORATORY; Sediment; Sea Floor Sediment; Ice Thickness; Model; Ice Stream Stability; Basal Ice; SATELLITES; Ice Sheet Thickness; Subglacial; Antarctica; NOT APPLICABLE; Antarctic Ice Sheet; Ice Sheet; FIELD SURVEYS; Surface Elevation; Geochemistry; FIELD INVESTIGATION; Not provided", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Tulaczyk, Slawek; Fisher, Andrew; Powell, Ross; Anandakrishnan, Sridhar; Jacobel, Robert; Scherer, Reed Paul", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES", "repo": "USAP-DC", "repositories": "IRIS; UNAVCO; USAP-DC", "science_programs": "WISSARD", "south": null, "title": "Collaborative Research: Integrative Study of Marine Ice Sheet Stability \u0026 Subglacial Life Habitats in W Antarctica - Lake \u0026 Ice Stream Subglacial Access Research Drilling (LISSARD)", "uid": "p0000105", "west": null}, {"awards": "1443126 MacAyeal, Douglas", "bounds_geometry": "POLYGON((166.1631 -77.9007,166.19736 -77.9007,166.23162 -77.9007,166.26588 -77.9007,166.30014 -77.9007,166.3344 -77.9007,166.36866 -77.9007,166.40292 -77.9007,166.43718 -77.9007,166.47144 -77.9007,166.5057 -77.9007,166.5057 -77.90423,166.5057 -77.90776,166.5057 -77.91129,166.5057 -77.91482,166.5057 -77.91835,166.5057 -77.92188,166.5057 -77.92541,166.5057 -77.92894,166.5057 -77.93247,166.5057 -77.936,166.47144 -77.936,166.43718 -77.936,166.40292 -77.936,166.36866 -77.936,166.3344 -77.936,166.30014 -77.936,166.26588 -77.936,166.23162 -77.936,166.19736 -77.936,166.1631 -77.936,166.1631 -77.93247,166.1631 -77.92894,166.1631 -77.92541,166.1631 -77.92188,166.1631 -77.91835,166.1631 -77.91482,166.1631 -77.91129,166.1631 -77.90776,166.1631 -77.90423,166.1631 -77.9007))", "dataset_titles": "McMurdo Ice Shelf AWS data; McMurdo Ice Shelf GPS survey of vertical motion; Supraglacial Lake Depths on McMurdo Ice Shelf, Antarctica; Time-lapse video of McMurdo Ice Shelf surface melting and hydrology", "datasets": [{"dataset_uid": "601107", "doi": "10.15784/601107", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ice Flow Velocity; Ice Shelf; Ice-Shelf Flexure; Snow/ice; Snow/Ice; Surface Melt", "people": "MacAyeal, Douglas; Banwell, Alison", "repository": "USAP-DC", "science_program": null, "title": "McMurdo Ice Shelf GPS survey of vertical motion", "url": "https://www.usap-dc.org/view/dataset/601107"}, {"dataset_uid": "601116", "doi": "10.15784/601116", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Snow/ice; Snow/Ice; Subglacial And Supraglacial Water Depth; Supraglacial Lake; Supraglacial Meltwater; Water Depth", "people": "MacAyeal, Douglas; Banwell, Alison", "repository": "USAP-DC", "science_program": null, "title": "Supraglacial Lake Depths on McMurdo Ice Shelf, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601116"}, {"dataset_uid": "601106", "doi": "10.15784/601106", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hydrology; Ice Shelf; Snow/ice; Snow/Ice; Surface Hydrology; Surface Mass Balance; Weather Station Data", "people": "MacAyeal, Douglas; Banwell, Alison", "repository": "USAP-DC", "science_program": null, "title": "McMurdo Ice Shelf AWS data", "url": "https://www.usap-dc.org/view/dataset/601106"}, {"dataset_uid": "601113", "doi": "10.15784/601113", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Photo/video; Photo/Video; Supraglacial Meltwater", "people": "Banwell, Alison; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Time-lapse video of McMurdo Ice Shelf surface melting and hydrology", "url": "https://www.usap-dc.org/view/dataset/601113"}], "date_created": "Tue, 24 Jul 2018 00:00:00 GMT", "description": "Meltwater lakes that sit on top of Antarctica\u0027s floating ice shelves have likely contributed to the dramatic changes seen in Antarctica\u0027s glacial ice cover over the past two decades. In 2002, the 1,600-square-kilometer Larsen B Ice Shelf located on the Eastern side of the Antarctic Peninsula, for example, broke into thousands of small icebergs, which subsequently floated away as a result of the formation of more than 2,000 meltwater lakes on its surface over the prior decade. Our research project addresses the reasons why surface lakes form on Antarctic ice shelves and how these surface lakes subsequently contribute to the forces that may contribute to ice-shelf breakup like that of the Larsen B. Our project focuses primarily on making precise global positioning system (GPS) measurements of ice-shelf bending in response to the filling and draining of a surface lake on the McMurdo Ice Shelf. The observed vertical displacements (on the order of tens of centimeters) in response to lake filling will be used to calibrate and test computer simulation models that predict the response of ice shelves to surface lakes more generally and in a variety of future climate conditions. Our project will make hourly measurements of both vertical ice-shelf movements (using GPS surveying instruments) and of temperature and sunlight conditions (that drive melting) around a surface lake located close to the McMurdo Station airfield. Following this initial data-gathering effort, computer simulations and other more theoretical analysis will be undertaken to determine the suitability of the chosen McMurdo Ice Shelf surface lake as a field-laboratory for continued study. Ultimately, the research will contribute to understanding of the glaciological processes that link climate change to rising sea level. A successful outcome of the research will allow glaciologists to better assess the processes that promote or erode the influence Antarctic ice shelves have in controlling the transfer of ice from the interior of Antarctica into the ocean. The project will undertake two outreach activities: (1) web-posting of a field-activity journal and (2) establishing an open-access glaciological teaching and outreach web-sharing site for the International Glaciological Society. The proposed project seeks to experimentally verify a theory of ice-shelf instability proposed to explain the explosive break-up of Larsen B Ice Shelf in 2002. This theory holds that the filling and draining of supraglacial lakes on floating ice shelves induces sufficient flexure stress within the ice to (a) induce upward/downward propagating fractures originating at the base/surface of the ice shelf that (b) dissect the ice shelf into fragments that tend to have widths less than about half the ice thickness. The significance of narrow widths is that they promote capsize of the ice-shelf fragments during the break-up process. This capsize releases large amounts of gravitational potential energy (comparable to thousands of kilotons of TNT for the Larsen B Ice Shelf) thereby promoting explosiveness of the Larsen B event. The observational motivation for experimentally verifying the surface-lake mechanism for ice-shelf breakup is based on the fact that \u003e2,000 surface lakes developed on the Larsen B Ice Shelf in the decade prior to its break up, and that these lakes were observed (via satellite imagery) to drain in a coordinated fashion during the day prior to the initiation of the break up. The field-observation component of the project will focus on a supraglacial lake on the McMurdo Ice Shelf where there is persistent summer season surface melting. The lake will be studied during a single provisional field season to determine whether grooming of surrounding surface streams and shorelines with heavy construction equipment will allow surface water to be manually encouraged to fill the lake. If successfully encouraged to develop, the McMurdo Ice Shelf surface lake will allow measurements of key ice-shelf flexure and stress variables needed to develop the theory of ice-shelf surface lakes without having to access the much more logistically demanding surface lakes of ice-shelves located elsewhere in Antarctica. Data to be gathered during the 6-week provisional field season include: energy- and water-balance parameters determining how the surface lake grows and fills, and various global positioning system measurements of the vertical bending of the ice sheet in response to the changing meltwater load contained within the surface lake. These data will be used to (1) constrain a computer model of viscoelastic flexure and possible fracture of the ice shelf in response to the increasing load of meltwater in the lake, and (2) determine whether continued study of the incipient surface-meltwater lake features on the McMurdo Ice Shelf provides a promising avenue for constraining the more-general behavior of surface meltwater lakes on other ice shelves located in warmer parts of Antarctica. Computer models constrained by the observational data obtained from the field project will inform energy- and water-balance models of ice shelves in general, and allow more accurate forecasts of changing ice-shelf conditions surrounding the inland ice of Antarctica. The project will create the first-ever ground-based observations useful for spawning the development of models capable of predicting viscoelastic and fracture behavior of ice shelves in response to supraglacial lake evolution, including slow changes due to energy balance effects, as well as fast changes due to filling and draining.", "east": 166.5057, "geometry": "POINT(166.3344 -77.91835)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS", "is_usap_dc": true, "keywords": "USAP-DC; AWOS", "locations": null, "north": -77.9007, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "MacAyeal, Douglas", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e AWOS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.936, "title": "Impact of Supraglacial Lakes on Ice-Shelf Stability", "uid": "p0000138", "west": 166.1631}, {"awards": "2023425 Schofield, Oscar; 1440435 Ducklow, Hugh", "bounds_geometry": "POLYGON((-80 -63,-78.3 -63,-76.6 -63,-74.9 -63,-73.2 -63,-71.5 -63,-69.8 -63,-68.1 -63,-66.4 -63,-64.7 -63,-63 -63,-63 -63.8,-63 -64.6,-63 -65.4,-63 -66.2,-63 -67,-63 -67.8,-63 -68.6,-63 -69.4,-63 -70.2,-63 -71,-64.7 -71,-66.4 -71,-68.1 -71,-69.8 -71,-71.5 -71,-73.2 -71,-74.9 -71,-76.6 -71,-78.3 -71,-80 -71,-80 -70.2,-80 -69.4,-80 -68.6,-80 -67.8,-80 -67,-80 -66.2,-80 -65.4,-80 -64.6,-80 -63.8,-80 -63))", "dataset_titles": "Environmental Data Initiative Repository, Supporting LTER; Expedition Data; Expedition data of LMG1501; Expedition data of LMG1601; Expedition data of LMG1701; Expedition data of LMG1801; Expedition data of LMG1901; Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae); UAV images and video of whales in the Antarctic Penisula during LMG1802", "datasets": [{"dataset_uid": "200125", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1901", "url": "https://www.rvdata.us/search/cruise/LMG1901"}, {"dataset_uid": "001367", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1701"}, {"dataset_uid": "601811", "doi": null, "keywords": "Antarctica; Bellingshausen Sea; Cryosphere; Southern Ocean", "people": "Biesack, Ellen; Corso, Andrew; Desvignes, Thomas; McDowell, Jan; Cheng, Chi-Hing; Steinberg, Deborah; Hilton, Eric", "repository": "USAP-DC", "science_program": "LTER", "title": "Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae)", "url": "https://www.usap-dc.org/view/dataset/601811"}, {"dataset_uid": "601318", "doi": "10.15784/601318", "keywords": "Aerial Imagery; Antarctica; Antarctic Peninsula; Biota; Camera; Humpback Whales; LMG1802; LTER; Minke Whales; Oceans; Palmer Station; Photo; Photo/video; Photo/Video; R/v Laurence M. Gould; Species Size; UAV; Video Data; Whales", "people": "Bierlich, KC; Dale, Julian; Friedlaender, Ari; Nowacek, Douglas; Boyer, Keyvi", "repository": "USAP-DC", "science_program": "LTER", "title": "UAV images and video of whales in the Antarctic Penisula during LMG1802", "url": "https://www.usap-dc.org/view/dataset/601318"}, {"dataset_uid": "002729", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1701", "url": "https://www.rvdata.us/search/cruise/LMG1701"}, {"dataset_uid": "200124", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1801", "url": "https://www.rvdata.us/search/cruise/LMG1801"}, {"dataset_uid": "200122", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1501", "url": "https://www.rvdata.us/search/cruise/LMG1501"}, {"dataset_uid": "200123", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1601", "url": "https://www.rvdata.us/search/cruise/LMG1601"}, {"dataset_uid": "000246", "doi": "", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "Environmental Data Initiative Repository, Supporting LTER", "url": "https://portal.edirepository.org/nis/browseServlet?searchValue=PAL"}], "date_created": "Fri, 11 May 2018 00:00:00 GMT", "description": "The Palmer Antarctica LTER (Long Term Ecological Research) site has been in operation since 1990. The goal of all the LTER sites is to conduct policy-relevant research on ecological questions that require tens of years of data, and cover large geographical areas. For the Palmer Antarctica LTER, the questions are centered around how the marine ecosystem west of the Antarctica peninsula is responding to a climate that is changing as rapidly as any place on the Earth. For example, satellite observations over the past 35 years indicate the average duration of sea ice cover is now ~90 days (3 months!) shorter than it was. The extended period of open water has implications for many aspects of ecosystem research, with the concurrent decrease of Ad\u00e8lie penguins within this region regularly cited as an exemplar of climate change impacts in Antarctica. Cutting edge technologies such as autonomous underwater (and possibly airborne) vehicles, seafloor moorings, and numerical modeling, coupled with annual oceanographic cruises, and weekly environmental sampling, enables the Palmer Antarctica LTER to expand and bridge the time and space scales needed to assess climatic impacts. This award includes for the first time study of the roles of whales as major predators in the seasonal sea ice zone ecosystem. The team will also focus on submarine canyons, special regions of enhanced biological activity, along the Western Antarctic Peninsula (WAP). The current award\u0027s overarching research question is: How do seasonality, interannual variability, and long term trends in sea ice extent and duration influence the structure and dynamics of marine ecosystems and biogeochemical cycling? Specific foci within the broad question include: 1. Long-term change and ecosystem transitions. What is the sensitivity or resilience of the ecosystem to external perturbations as a function of the ecosystem state? 2. Lateral connectivity and vertical stratification. What are the effects of lateral transports of freshwater, heat and nutrients on local ocean stratification and productivity and how do they drive changes in the ecosystem? 3. Top-down controls and shifting baselines. How is the ecosystem responding to the cessation of whaling and subsequent long-term recovery of whale stocks? 4. Foodweb structure and biogeochemical processes. How do temporal and spatial variations in foodweb structure influence carbon and nutrient cycling, export, and storage? The broader impacts of the award leverage local educational partnerships including the Sandwich, MA STEM Academy, the New England Aquarium, and the NSF funded Polar Learning and Responding (PoLAR) Climate Change Education Partnership at Columbia\u0027s Earth Institute to build new synergies between Arctic and Antarctic, marine and terrestrial scientists and students, governments and NGOs. The Palmer Antarctic LTER will also conduct appropriate cross LTER site comparisons, and serve as a leader in information management to enable knowledge-building within and beyond the Antarctic, oceanographic, and LTER communities.", "east": -63.0, "geometry": "POINT(-71.5 -67)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "PELAGIC; USAP-DC; R/V LMG; NOT APPLICABLE; Palmer Station; LMG1701", "locations": "Palmer Station", "north": -63.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ducklow, Hugh; Martinson, Doug; Schofield, Oscar", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "EDI; R2R; USAP-DC", "science_programs": "LTER", "south": -71.0, "title": "LTER Palmer, Antarctica (PAL): Land-Shelf-Ocean Connectivity, Ecosystem Resilience and Transformation in a Sea-Ice Influenced Pelagic Ecosystem", "uid": "p0000133", "west": -80.0}, {"awards": "1443232 Waddington, Edwin", "bounds_geometry": "POLYGON((110 -89,117 -89,124 -89,131 -89,138 -89,145 -89,152 -89,159 -89,166 -89,173 -89,180 -89,180 -89.1,180 -89.2,180 -89.3,180 -89.4,180 -89.5,180 -89.6,180 -89.7,180 -89.8,180 -89.9,180 -90,173 -90,166 -90,159 -90,152 -90,145 -90,138 -90,131 -90,124 -90,117 -90,110 -90,110 -89.9,110 -89.8,110 -89.7,110 -89.6,110 -89.5,110 -89.4,110 -89.3,110 -89.2,110 -89.1,110 -89))", "dataset_titles": "AC-ECM for SPICEcore; ECM (DC and AC) multi-track data and images from 2016 processing season", "datasets": [{"dataset_uid": "601366", "doi": "10.15784/601366", "keywords": "Antarctica", "people": "Fudge, T. J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "ECM (DC and AC) multi-track data and images from 2016 processing season", "url": "https://www.usap-dc.org/view/dataset/601366"}, {"dataset_uid": "601189", "doi": " 10.15784/601189 ", "keywords": "Antarctica; Electrical Conductivity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Physical Properties; Snow/ice; Snow/Ice; South Pole; SPICEcore; Volcanic", "people": "Fudge, T. J.; Waddington, Edwin D.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "AC-ECM for SPICEcore", "url": "https://www.usap-dc.org/view/dataset/601189"}], "date_created": "Tue, 08 May 2018 00:00:00 GMT", "description": "Ice cores record detailed histories of past climate variations. The South Pole ice core will allow investigation of atmospheric trace gases and fill an important gap in understanding the pattern of climate variability across Antarctica. An accurate timescale that assigns an age to the ice at each depth in the core is essential to interpretation of the ice-core records. This work will use electrical methods to identify volcanic eruptions throughout the past ~40,000 years in the core by detecting the enhanced electrical conductance in those layers due to volcanic impurities in the ice. These eruptions will be pattern-matched to other cores across Antarctica, synchronizing the timing of climate variations among cores and allowing the precise timescales developed for other Antarctic ice cores to be transferred to the South Pole ice core. The well-dated records of volcanic forcing will be combined with records of atmospheric gases, stable water-isotopes, and aerosols to better understand the large natural climate variations of the past 40,000 years. The electrical conductance method and dielectric profiling measurements will be made along the length of each section of the South Pole ice core at the National Ice Core Lab. These measurements will help to establish a timescale for the core. Electrical measurements will provide a continuous record of volcanic events for the entire core including through the brittle ice (550-1250m representing ~10,000-20,000 year-old ice) where the core quality and thin annual layers may prevent continuous melt analysis and cause discrete measurements to miss volcanic events. The electrical measurements also produce a 2-D image of the electrical layering on a longitudinal cut surface of each core. These data will be used to identify any irregular or absent layering that would indicate a stratigraphic disturbance in the core. A robust chronology is essential to interpretation of the paleoclimate records from the South Pole ice core. The investigators will engage teachers through talks and webinars with the National Science Teachers Association and will share information with the public at events such as Polar Science Weekend at the Pacific Science Center. Results will be disseminated through publications and conference presentations and the data will be archived and publicly available.", "east": 180.0, "geometry": "POINT(145 -89.5)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; USA/NSF; Amd/Us; AMD; LABORATORY", "locations": null, "north": -89.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Fudge, T. J.; Waddington, Edwin D.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Using Electrical Conductance Measurements to Develop the South Pole Ice Core Chronology", "uid": "p0000378", "west": 110.0}, {"awards": "1341729 Kirschvink, Joseph", "bounds_geometry": "POLYGON((-58.9 -63.5,-58.63 -63.5,-58.36 -63.5,-58.09 -63.5,-57.82 -63.5,-57.55 -63.5,-57.28 -63.5,-57.01 -63.5,-56.74 -63.5,-56.47 -63.5,-56.2 -63.5,-56.2 -63.62,-56.2 -63.74,-56.2 -63.86,-56.2 -63.98,-56.2 -64.1,-56.2 -64.22,-56.2 -64.34,-56.2 -64.46,-56.2 -64.58,-56.2 -64.7,-56.47 -64.7,-56.74 -64.7,-57.01 -64.7,-57.28 -64.7,-57.55 -64.7,-57.82 -64.7,-58.09 -64.7,-58.36 -64.7,-58.63 -64.7,-58.9 -64.7,-58.9 -64.58,-58.9 -64.46,-58.9 -64.34,-58.9 -64.22,-58.9 -64.1,-58.9 -63.98,-58.9 -63.86,-58.9 -63.74,-58.9 -63.62,-58.9 -63.5))", "dataset_titles": "2016 Paleomagnetic samples from the James Ross Basin, Antarctica; Expedition data of NBP1601", "datasets": [{"dataset_uid": "002665", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1601", "url": "https://www.rvdata.us/search/cruise/NBP1601"}, {"dataset_uid": "601094", "doi": "10.15784/601094", "keywords": "Antarctica; Geochronology; Geology/Geophysics - Other; Glaciology; James Ross Basin; Marine Geoscience; Marine Sediments", "people": "Kirschvink, Joseph; Skinner, Steven", "repository": "USAP-DC", "science_program": null, "title": "2016 Paleomagnetic samples from the James Ross Basin, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601094"}], "date_created": "Fri, 27 Apr 2018 00:00:00 GMT", "description": "Non-Technical Summary: About 80 million years ago, the tip of the Antarctic Peninsula in the vicinity of what is now James Ross Island experienced an episode of rapid subsidence, creating a broad depositional basin that collected sediments eroding from the high mountains to the West. This depression accumulated a thick sequence of fossil-rich, organic-rich sediments of the sort that are known to preserve hydrocarbons, and for which Argentina, Chile, and the United Kingdom have overlapping territorial claims. The rocks preserve one of the highest resolution records of the biological and climatic events that led to the eventual death of the dinosaurs at the Cretaceous-Tertiary boundary (about 66 million years ago). A previous collaboration between scientists from the Instituto Ant\u00e1rtico Argentino (IAA) and NSF-supported teams from Caltech and the University of Washington were able to show that this mass extinction event started nearly 50,000 years before the sudden impact of an asteroid. The asteroid obviously hit the biosphere hard, but something else knocked it off balance well before the asteroid hit. A critical component of the previous work was the use of reversals in the polarity of the Earth?s magnetic field as a dating tool ? magnetostratigraphy. This allowed the teams to correlate the pattern of magnetic reversals from Antarctica with elsewhere on the planet. This includes data from a major volcanic eruption (a flood basalt province) that covered much of India 65 million years ago. The magnetic patterns indicate that the Antarctic extinction started with the first pulse of this massive eruption, which was also coincident with a rapid spike in polar temperature. The Argentinian and US collaborative teams will extend this magnetic polarity record back another ~ 20 million years in time, and expand it laterally to provide magnetic reversal time lines across the depositional basin. They hope to recover the end of the Cretaceous Long Normal interval, which is one of the most distinctive events in the history of Earth?s magnetic field. The new data should refine depositional models of the basin, allow better estimates of potential hydrocarbon reserves, and allow biotic events in the Southern hemisphere to be compared more precisely with those elsewhere on Earth. Other potential benefits of this work include exposing several US students and postdoctoral fellows to field based research in Antarctica, expanding the international aspects of this collaborative work via joint IAA/US field deployments, and follow-up laboratory investigations and personnel exchange of the Junior scientists. Technical Description of Project The proposed research will extend the stratigraphic record in the late Cretaceous and early Tertiary sediments (~ 83 to 65 Ma before present) of the James Ross Basin, Antarctica, using paleo-magnetic methods. Recent efforts provided new methods to analyze these rocks, yielding their primary magnetization, and producing both magnetic polarity patterns and paleomagnetic pole positions. This provided the first reliable age constraints for the younger sediments on Seymour Island, and quantified the sedimentation rate in this part of the basin. The new data will allow resolution of the stable, remnant magnetization of the sediments from the high deposition rate James Ross basin (Tobin et al., 2012), yielding precise chronology/stratigraphy. This approach will be extended to the re-maining portions of this sedimentary basin, and will allow quantitative estimates for tectonic and sedimentary processes between Cretaceous and Early Tertiary time. The proposed field work will refine the position of several geomagnetic reversals that occurred be-tween the end of the Cretaceous long normal period (Chron 34N, ~ 83 Ma), and the lower portion of Chron 31R (~ 71 Ma). Brandy Bay provides the best locality for calibrating the stratigraphic position of the top of the Cretaceous Long Normal Chron, C34N. Although the top of the Cretaceous long normal Chron is one of the most important correlation horizons in the entire geological timescale, it is not properly correlated to the southern hemisphere biostratigraphy. Locating this event, as well as the other reversals, will be a major addition to understanding of the geological history of the Antarctic Peninsula. These data will also help refine tectonic models for the evolution of the Southern continents, which will be of use across the board for workers in Cretaceous stratigraphy (including those involved in oil exploration). This research is a collaborative effort with Dr. Edward Olivero of the Centro Austral de Investigaciones Cientificas (CADIC/CONICET) and Prof. Augusto Rapalini of the University of Buenos Aires. The collaboration will include collection of samples on their future field excursions to important targets on and around James Ross Island, supported by the Argentinian Antarctic Program (IAA). Argentinian scientists and students will also be involved in the US Antarctic program deployments, proposed here for the R/V Laurence Gould, and will continue the pattern of joint international publication of the results.", "east": -56.2, "geometry": "POINT(-57.55 -64.1)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; R/V NBP; USAP-DC", "locations": null, "north": -63.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kirschvink, Joseph; Christensen, John", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -64.7, "title": "Paleomagnetism and Magnetostratigraphy of the James Ross Basin, Antarctica", "uid": "p0000276", "west": -58.9}, {"awards": "1056396 Morgan-Kiss, Rachael", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Genetic sequence identifier: Accession Numbers: GU132860-GU132939; JN091926-JN091960; JQ9243533-JQ924384; KJ848331-KJ848439; KU196097-KU196166; PRJNA396917", "datasets": [{"dataset_uid": "000241", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Genetic sequence identifier: Accession Numbers: GU132860-GU132939; JN091926-JN091960; JQ9243533-JQ924384; KJ848331-KJ848439; KU196097-KU196166; PRJNA396917", "url": "https://www.ncbi.nlm.nih.gov/genbank/"}], "date_created": "Mon, 26 Feb 2018 00:00:00 GMT", "description": "This CAREER proposal will support an early career female PI to establish an integrated research and education program in the fields of polar biology and environmental microbiology, focusing on single-celled eukaryotes (protists) in high latitude ice-covered Antarctic lakes systems. Protists play important roles in energy flow and material cycling, and act as both primary producers (fixing inorganic carbon by photosynthesis) and consumers (preying on bacteria by phagotrophic digestion). The McMurdo Dry Valleys (MDV) located in Victoria Land, Antarctica, harbor microbial communities which are isolated in the unique aquatic ecosystem of perennially ice-capped lakes. The lakes support exclusively microbial consortia in chemically stratified water columns that are not influenced by seasonal mixing, allochthonous inputs, or direct human impact. This project will exploit permanently stratified biogeochemistry that is unique across the water columns of several MDV lakes to address gaps in our understanding of protist trophic function in aquatic food webs. The proposed research will examine (1) the impact of permanent biogeochemical gradients on protist trophic strategy, (2) the effect of major abiotic drivers (light and nutrients) on the distribution of two key mixotrophic and photoautotrophic protist species, and (3) the effect of episodic nutrient pulses on mixotroph communities in high latitude (ultraoligotrophic) MDV lakes versus low latitude (eutrophic) watersheds. The project will impact the fields of microbial ecology and environmental microbiology by combining results from field, laboratory and in situ incubation studies to synthesize new models for the protist trophic roles in the aquatic food web. The research component of this proposed project will be tightly integrated with the development of two new education activities designed to exploit the inherent excitement associated with polar biological research. The educational objectives are: 1) to establish a teaching module in polar biology in a core undergraduate course for microbiology majors; 2) to develop an instructional module to engage middle school girls in STEM disciplines. Undergraduates and middle school girls will also work with a doctoral student on his experiments in local Ohio watersheds.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Morgan-Kiss, Rachael", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "NCBI GenBank", "repositories": "NCBI GenBank", "science_programs": null, "south": -90.0, "title": "CAREER:Protist Nutritional Strategies in Permanently Stratified Antarctic Lakes", "uid": "p0000310", "west": -180.0}, {"awards": "0944021 Brook, Edward J.; 0943466 Hawley, Robert; 0944307 Conway, Howard", "bounds_geometry": "POLYGON((-163 -79,-162.8 -79,-162.6 -79,-162.4 -79,-162.2 -79,-162 -79,-161.8 -79,-161.6 -79,-161.4 -79,-161.2 -79,-161 -79,-161 -79.05,-161 -79.1,-161 -79.15,-161 -79.2,-161 -79.25,-161 -79.3,-161 -79.35,-161 -79.4,-161 -79.45,-161 -79.5,-161.2 -79.5,-161.4 -79.5,-161.6 -79.5,-161.8 -79.5,-162 -79.5,-162.2 -79.5,-162.4 -79.5,-162.6 -79.5,-162.8 -79.5,-163 -79.5,-163 -79.45,-163 -79.4,-163 -79.35,-163 -79.3,-163 -79.25,-163 -79.2,-163 -79.15,-163 -79.1,-163 -79.05,-163 -79))", "dataset_titles": "Roosevelt Island Borehole Firn temperatures; Roosevelt Island Borehole Optical Televiewer logs; Roosevelt Island Ice Core Time Scale and Associated Data; Roosevelt Island: Radar and GPS", "datasets": [{"dataset_uid": "601070", "doi": "10.15784/601070", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; GPS Data; Ice Velocity; Navigation; Radar; Roosevelt Island; Ross Sea", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island: Radar and GPS", "url": "https://www.usap-dc.org/view/dataset/601070"}, {"dataset_uid": "601359", "doi": "10.15784/601359", "keywords": "Antarctica; CO2; Ice Core; Roosevelt Island", "people": "Brook, Edward J.; Lee, James", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Ice Core Time Scale and Associated Data", "url": "https://www.usap-dc.org/view/dataset/601359"}, {"dataset_uid": "601086", "doi": "10.15784/601086", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Roosevelt Island; Snow/ice; Snow/Ice", "people": "Clemens-Sewall, David; Hawley, Robert L.", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Borehole Optical Televiewer logs", "url": "https://www.usap-dc.org/view/dataset/601086"}, {"dataset_uid": "601085", "doi": "10.15784/601085", "keywords": "Antarctica; Borehole; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Records; Ice Fabric; Optical Images; Roosevelt Island; Snow/ice; Snow/Ice; Temperature", "people": "Hawley, Robert L.; Clemens-Sewall, David; Giese, Alexandra", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Borehole Firn temperatures", "url": "https://www.usap-dc.org/view/dataset/601085"}], "date_created": "Fri, 16 Feb 2018 00:00:00 GMT", "description": "This award supports a project to use the Roosevelt Island ice core as a glaciological dipstick for the eastern Ross Sea. Recent attention has focused on the eastern Ross Embayment, where there are no geological constraints on ice thickness changes, due to the lack of protruding rock \"dipsticks\" where the ice sheet can leave datable records of high stands. Recent work has shown how dated ice cores can be used as dipsticks to derive ice-thickness histories. Partners from New Zealand and Denmark will extract an ice core from Roosevelt Island during the 2010-2011 and 2011-12 austral summers. Their science objective is to contribute to understanding of climate variability over the past 40kyr. The science goal of this project is not the climate record, but rather the history of deglaciation in the Ross Sea. The new history from the eastern Ross Sea will be combined with the glacial histories from the central Ross Sea (Siple Dome and Byrd) and existing and emerging histories from geologic and marine records along the western Ross Sea margin and will allow investigators to establish an updated, self-consistent model of the configuration and thickness of ice in the Ross Embayment during the LGM, and the timing of deglaciation. Results from this work will provide ground truth for new-generation ice-sheet models that incorporate ice streams and fast-flow dynamics. Realistic ice-sheet models are needed not only for predicting the response to future possible environments, but also for investigating past behaviors of ice sheets. This research contributes to the primary goals of the West Antarctic Ice Sheet Initiative as well as the IPY focus on ice-sheet history and dynamics. It also contributes to understanding spatial and temporal patterns of climate change and climate dynamics over the past 40kyr, one of the primary goals of the International Partnerships in Ice Core Sciences (IPICS). The project will help to develop the next generation of scientists and will contribute to the education and training of two Ph.D. students. All participants will benefit from the international collaboration, which will expose them to different field and laboratory techniques and benefit future collaborative work. All participants are involved in scientific outreach and undergraduate education, and are committed to fostering diversity. Outreach will be accomplished through regularly scheduled community and K-12 outreach events, talks and popular writing by the PIs, as well as through University press offices.", "east": -161.0, "geometry": "POINT(-162 -79.25)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "AMD; FIELD INVESTIGATION; Amd/Us; Deglaciation; USAP-DC; USA/NSF; NOT APPLICABLE; Ice Core; Not provided; Ross Sea Embayment", "locations": "Ross Sea Embayment", "north": -79.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Conway, Howard; Brook, Edward J.; Hawley, Robert L.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.5, "title": "Collaborative Research: Deglaciation of the Ross Sea Embayment - constraints from Roosevelt Island", "uid": "p0000272", "west": -163.0}, {"awards": "1246353 Anderson, John", "bounds_geometry": "POLYGON((-180 -74,-144.9 -74,-109.8 -74,-74.7 -74,-39.6 -74,-4.5 -74,30.6 -74,65.7 -74,100.8 -74,135.9 -74,171 -74,171 -74.3,171 -74.6,171 -74.9,171 -75.2,171 -75.5,171 -75.8,171 -76.1,171 -76.4,171 -76.7,171 -77,135.9 -77,100.8 -77,65.7 -77,30.6 -77,-4.5 -77,-39.6 -77,-74.7 -77,-109.8 -77,-144.9 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -76.7,180 -76.4,180 -76.1,180 -75.8,180 -75.5,180 -75.2,180 -74.9,180 -74.6,180 -74.3,180 -74,180 -74,180 -74,180 -74,180 -74,180 -74,180 -74,180 -74,180 -74,180 -74,-180 -74))", "dataset_titles": "Circum-Antarctic grounding-line sinuosity; NBP1502A Cruise Core Data; NBP1502 Cruise Geophysics and underway data; Pennell Trough, Ross Sea bathymetry and glacial landforms", "datasets": [{"dataset_uid": "601484", "doi": "10.15784/601484", "keywords": "Antarctica; Bed Roughness; Bed Slope; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Pinning Points", "people": "Stearns, Leigh; Riverman, Kiya; Simkins, Lauren", "repository": "USAP-DC", "science_program": null, "title": "Circum-Antarctic grounding-line sinuosity", "url": "https://www.usap-dc.org/view/dataset/601484"}, {"dataset_uid": "000245", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1502 Cruise Geophysics and underway data", "url": "https://www.rvdata.us/search/cruise/NBP1502"}, {"dataset_uid": "601083", "doi": "10.15784/601083", "keywords": "Antarctica; Chemistry:sediment; Chemistry:Sediment; Geochronology; Marine Geoscience; Marine Sediments; NBP1502; R/v Nathaniel B. Palmer; Sediment Core", "people": "Prothro, Lindsay; Simkins, Lauren; Anderson, John", "repository": "USAP-DC", "science_program": null, "title": "NBP1502A Cruise Core Data", "url": "https://www.usap-dc.org/view/dataset/601083"}, {"dataset_uid": "601474", "doi": "10.15784/601474", "keywords": "Antarctica; Bathymetry; Elevation; Geomorphology; Glacial History; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marine Geoscience; NBP1502; Pennell Trough; Ross Sea; R/v Nathaniel B. Palmer", "people": "Munevar Garcia, Santiago; Prothro, Lindsay; Simkins, Lauren; Greenwood, Sarah; Anderson, John; Eareckson, Elizabeth", "repository": "USAP-DC", "science_program": null, "title": "Pennell Trough, Ross Sea bathymetry and glacial landforms", "url": "https://www.usap-dc.org/view/dataset/601474"}], "date_created": "Tue, 06 Feb 2018 00:00:00 GMT", "description": "Intellectual Merit: The PI hypothesizes that bedforms found in the Central and Joides troughs can be interpreted as having been formed by rapid retreat, and possible collapse of an ice stream that occupied this area. To test this hypothesis, the PI proposes to conduct a detailed marine geological and geophysical survey of Central and Joides Troughs in the western Ross Sea. This project will bridge gaps between the small and isolated areas previously surveyed and will acquire a detailed sedimentological record of the retreating grounding line. The PI will reconstruct the retreat history of the Central and Joides troughs to century-scale resolution using radiocarbon dating methods and by looking at geomorphic features that are formed at regular time intervals. Existing multibeam, deep tow side-scan sonar, and core data will provide a framework for this research. The western Ross Sea is an ideal study area to investigate a single ice stream and the dynamics controlling its stability, including interactions between both East and West Antarctic Ice Sheets. Broader impacts: This proposal includes a post-doc, a graduate and two undergraduate students. The post-doc is involved with teaching an in-service K-12 teacher development and training course at Rice University for high-need teachers with a focus on curriculum enhancement. The project fosters collaboration for the PI and students with researchers at Louisiana State University and international colleagues at the Institute for Paleobiology at the Polish Academy of Sciences. The results from this project could lead to a better understanding of ice sheet and ice stream stability. This project will yield implications for society\u0027s understanding of climate change, as this work improves understanding of the behavior of ice sheets and their links to global climate.", "east": 179.99, "geometry": "POINT(175.495 -75.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e CARBON ANALYZERS", "is_usap_dc": true, "keywords": "AMD; Amd/Us; USAP-DC; USA/NSF; R/V NBP; NBP1502", "locations": null, "north": -74.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, John", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -77.0, "title": "Evidence for Paleo Ice Stream Collapse in the Western Ross Sea since the Last Glacial Maximum.", "uid": "p0000395", "west": 171.0}, {"awards": "1341669 DeMaster, David", "bounds_geometry": "POLYGON((-70 -62,-68.8 -62,-67.6 -62,-66.4 -62,-65.2 -62,-64 -62,-62.8 -62,-61.6 -62,-60.4 -62,-59.2 -62,-58 -62,-58 -62.6,-58 -63.2,-58 -63.8,-58 -64.4,-58 -65,-58 -65.6,-58 -66.2,-58 -66.8,-58 -67.4,-58 -68,-59.2 -68,-60.4 -68,-61.6 -68,-62.8 -68,-64 -68,-65.2 -68,-66.4 -68,-67.6 -68,-68.8 -68,-70 -68,-70 -67.4,-70 -66.8,-70 -66.2,-70 -65.6,-70 -65,-70 -64.4,-70 -63.8,-70 -63.2,-70 -62.6,-70 -62))", "dataset_titles": "DeMaster Compiled Larsen Ice Shelf and the West Antarctic Peninsula C14 Data; Expedition Data of NBP1203; Labile Organic Carbon distributions on the West Antarctic Peninsula Shelf; Radioisotope data (C-14 and Pb-210) from bulk sediments, Larsen A Ice Shelf; Species Abundance Data from the Larsen Ice Shelf Ice acquired during R/V Nathaniel B. Palmer expedition NBP1203", "datasets": [{"dataset_uid": "001438", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP1203", "url": "https://www.rvdata.us/search/cruise/NBP1203"}, {"dataset_uid": "601304", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Biota; Box Corer; LARISSA; Larsen Ice Shelf; Macrofauna; Megafauna; NBP1203; Oceans; R/v Nathaniel B. Palmer; Seafloor Sampling; Species Abundance", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Species Abundance Data from the Larsen Ice Shelf Ice acquired during R/V Nathaniel B. Palmer expedition NBP1203", "url": "https://www.usap-dc.org/view/dataset/601304"}, {"dataset_uid": "601319", "doi": "10.15784/601319", "keywords": "Antarctica; Antarctic Peninsula; Biota; Bioturbation Coefficients; Diagenesis; Labile Organic Carbon; LOC Mean Residence Times; Marguerite Bay; Oceans; Organic Carbon Degradation Rates; Sediment Core", "people": "Taylor, Richard; Smith, Craig; Isla, Enrique; Thomas, Carrie; DeMaster, David", "repository": "USAP-DC", "science_program": null, "title": "Labile Organic Carbon distributions on the West Antarctic Peninsula Shelf", "url": "https://www.usap-dc.org/view/dataset/601319"}, {"dataset_uid": "601336", "doi": "10.15784/601336", "keywords": "Antarctica; Carbon-14; Larsen Ice Shelf; Lead-210; Marine Sediments; Radioisotope Analysis", "people": "Taylor, Richard; DeMaster, David", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Radioisotope data (C-14 and Pb-210) from bulk sediments, Larsen A Ice Shelf", "url": "https://www.usap-dc.org/view/dataset/601336"}, {"dataset_uid": "601082", "doi": "10.15784/601082", "keywords": null, "people": "DeMaster, David", "repository": "USAP-DC", "science_program": "LARISSA", "title": "DeMaster Compiled Larsen Ice Shelf and the West Antarctic Peninsula C14 Data", "url": "https://www.usap-dc.org/view/dataset/601082"}], "date_created": "Sat, 03 Feb 2018 00:00:00 GMT", "description": "Intellectual Merit: The PI requests support to analyze sediments from multi-cores and mega-cores previously collected from beneath the former Larsen B and Larsen A ice shelves. These unique cores will allow the PI to develop a time-integrated understanding of the benthic response to ice shelf collapse off the East Antarctic Peninsula over time periods as short as 5 years following ice shelf collapse up to \u003e170 years after collapse. High latitudes are responding to climate change more rapidly than the rest of the planet and the disappearance of ice shelves are a key manifestation of climate warming. The PI will investigate the newly created benthic environments and associated ecosystems that have resulted from the re-initiation of fresh planktonic material to the sediment-water interface. This proposal will use a new geochemical technique, based on naturally occurring 14C that can be used to assess the distribution and inventory of recently produced organic carbon accumulating in the sediments beneath the former Larsen A and B ice shelves. The PI will couple 14C measurements with 210Pb analyses to assess turnover times for sedimentary labile organic matter. By comparing the distributions and inventories of labile organic matter as well as the bioturbation intensities among different locations as a function of time following ice shelf collapse/retreat, the nature and timing of the benthic response to ice shelf collapse can be assessed. Broader impacts: This study will provide important information characterizing changes occurring on the seafloor after the collapse of ice shelves. This research will support the research project of a graduate student. This project brings together researchers from both the European community and the LARISSA Project.", "east": -58.0, "geometry": "POINT(-64 -65)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Pb-210; C-14; NBP1203; Radioisotop; USAP-DC; R/V NBP; Species Abundance; Labile Organic Carbon; LABORATORY", "locations": null, "north": -62.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "DeMaster, David; Smith, Craig", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": "LARISSA", "south": -68.0, "title": "Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change", "uid": "p0000382", "west": -70.0}, {"awards": "0732711 Smith, Craig; 0732655 Mosley-Thompson, Ellen; 0732983 Vernet, Maria; 0732651 Gordon, Arnold; 0732625 Leventer, Amy; 0732602 Truffer, Martin", "bounds_geometry": "POLYGON((-68 -57.8,-66.78 -57.8,-65.56 -57.8,-64.34 -57.8,-63.12 -57.8,-61.9 -57.8,-60.68 -57.8,-59.46 -57.8,-58.24 -57.8,-57.02 -57.8,-55.8 -57.8,-55.8 -58.8,-55.8 -59.8,-55.8 -60.8,-55.8 -61.8,-55.8 -62.8,-55.8 -63.8,-55.8 -64.8,-55.8 -65.8,-55.8 -66.8,-55.8 -67.8,-57.02 -67.8,-58.24 -67.8,-59.46 -67.8,-60.68 -67.8,-61.9 -67.8,-63.12 -67.8,-64.34 -67.8,-65.56 -67.8,-66.78 -67.8,-68 -67.8,-68 -66.8,-68 -65.8,-68 -64.8,-68 -63.8,-68 -62.8,-68 -61.8,-68 -60.8,-68 -59.8,-68 -58.8,-68 -57.8))", "dataset_titles": "Abrupt Environmental Change in the Larsen Ice Shelf System (LARISSA) - Marine Ecosystems; Biology Species Abundance from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expeditions NBP1001 and NBP1203; Bruce Plateau Accumulation O18 2009-1900; Easten Antarctic Peninsula Surface Sediment Diatom Data; LMG13-11 JKC-1 Paleoceanographic data; Macrofauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001; Megafauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001; NBP1001 cruise data; NBP1203 cruise data; Processed CTD Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001; Processed CTD Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203; Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001; Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203; Radioisotope data (C-14 and Pb-210) from bulk sediments, Larsen A Ice Shelf; Sediment samples (full data link not provided)", "datasets": [{"dataset_uid": "601345", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; CTD; CTD Data; LARISSA; Larsen Ice Shelf; NBP1001; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Temperature", "people": "Gordon, Arnold; Huber, Bruce", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Processed CTD Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601345"}, {"dataset_uid": "601347", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Current Measurements; LADCP; LARISSA; Larsen Ice Shelf; NBP1203; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer", "people": "Gordon, Arnold; Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203", "url": "https://www.usap-dc.org/view/dataset/601347"}, {"dataset_uid": "000142", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1001 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP1001"}, {"dataset_uid": "601348", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; CTD; CTD Data; LARISSA; Larsen Ice Shelf; NBP1203; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Temperature", "people": "Gordon, Arnold; Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Processed CTD Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203", "url": "https://www.usap-dc.org/view/dataset/601348"}, {"dataset_uid": "000143", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1203 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP1203"}, {"dataset_uid": "000145", "doi": "", "keywords": null, "people": null, "repository": "AMGRF", "science_program": null, "title": "Sediment samples (full data link not provided)", "url": "http://arf.fsu.edu/"}, {"dataset_uid": "601336", "doi": "10.15784/601336", "keywords": "Antarctica; Carbon-14; Larsen Ice Shelf; Lead-210; Marine Sediments; Radioisotope Analysis", "people": "Taylor, Richard; DeMaster, David", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Radioisotope data (C-14 and Pb-210) from bulk sediments, Larsen A Ice Shelf", "url": "https://www.usap-dc.org/view/dataset/601336"}, {"dataset_uid": "601485", "doi": "10.15784/601485", "keywords": "Antarctica; Antarctic Peninsula; Delta 13C; Delta 18O; Paleoceanography; Temperature", "people": "Shevenell, Amelia", "repository": "USAP-DC", "science_program": "LARISSA", "title": "LMG13-11 JKC-1 Paleoceanographic data", "url": "https://www.usap-dc.org/view/dataset/601485"}, {"dataset_uid": "600073", "doi": "10.15784/600073", "keywords": "Antarctica; Antarctic Peninsula; Araon1304; Biota; LARISSA; Larsen B Ice Shelf; NBP1001; NBP1203; Oceans; Physical Oceanography; Southern Ocean; Weddell Sea", "people": "Vernet, Maria", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Abrupt Environmental Change in the Larsen Ice Shelf System (LARISSA) - Marine Ecosystems", "url": "https://www.usap-dc.org/view/dataset/600073"}, {"dataset_uid": "000226", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "Biology Species Abundance from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expeditions NBP1001 and NBP1203", "url": "https://doi.org/10.1594/ieda/320821"}, {"dataset_uid": "601306", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Biota; Box Corer; LARISSA; Larsen Ice Shelf; Macrofauna; NBP1001; Oceans; R/v Nathaniel B. Palmer; Seafloor Sampling; Species Abundance", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Macrofauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601306"}, {"dataset_uid": "601305", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Biota; Box Corer; LARISSA; Larsen Ice Shelf; Macrofauna; Megafauna; NBP1001; Oceans; R/v Nathaniel B. Palmer; Seafloor Sampling; Species Abundance", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Megafauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601305"}, {"dataset_uid": "601211", "doi": "10.15784/601211", "keywords": "Antarctica; Antarctic Peninsula; Benthos; Biota; Diatom; Geology/Geophysics - Other; LMG0502; Marine Geoscience; Marine Sediments; Microscope; NBP0003; NBP0107; NBP0603; NBP1203; R/v Nathaniel B. Palmer; Surface Sediment", "people": "Leventer, Amy", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Easten Antarctic Peninsula Surface Sediment Diatom Data", "url": "https://www.usap-dc.org/view/dataset/601211"}, {"dataset_uid": "600167", "doi": "10.15784/600167", "keywords": "Antarctica; Antarctic Peninsula; Bruce Plateau; Glaciology; Ice Core Records; Isotope; LARISSA; Paleoclimate; Sample/collection Description; Sample/Collection Description; Snow Accumulation", "people": "Mosley-Thompson, Ellen; Thompson, Lonnie G.", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Bruce Plateau Accumulation O18 2009-1900", "url": "https://www.usap-dc.org/view/dataset/600167"}, {"dataset_uid": "601346", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Current Measurements; LADCP; Larsen Ice Shelf; NBP1001; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer", "people": "Huber, Bruce; Gordon, Arnold", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601346"}], "date_created": "Thu, 01 Feb 2018 00:00:00 GMT", "description": "Like no other region on Earth, the northern Antarctic Peninsula represents a spectacular natural laboratory of climate change and provides the opportunity to study the record of past climate and ecological shifts alongside the present-day changes in one of the most rapidly warming regions on Earth. This award supports the cryospheric and oceano-graphic components of an integrated multi-disciplinary program to address these rapid and fundamental changes now taking place in Antarctic Peninsula (AP). By making use of a marine research platform (the RV NB Palmer and on-board helicopters) and additional logistical support from the Argentine Antarctic program, the project will bring glaciologists, oceanographers, marine geologists and biologists together, working collaboratively to address fundamentally interdisciplinary questions regarding climate change. The project will include gathering a new, high-resolution paleoclimate record from the Bruce Plateau of Graham Land, and using it to compare Holocene- and possibly glacial-epoch climate to the modern period; investigating the stability of the remaining Larsen Ice Shelf and rapid post-breakup glacier response ? in particular, the roles of surface melt and ice-ocean interactions in the speed-up and retreat; observing the contribution of, and response of, oceanographic systems to ice shelf disintegration and ice-glacier interactions. Helicopter support on board will allow access to a wide range of glacial and geological areas of interest adjacent to the Larsen embayment. At these locations, long-term in situ glacial monitoring, isostatic uplift, and ice flow GPS sites will be established, and high-resolution ice core records will be obtained using previously tested lightweight drilling equipment. Long-term monitoring of deep water outflow will, for the first time, be integrated into changes in ice shelf extent and thickness, bottom water formation, and multi-level circulation by linking near-source observations to distal sites of concentrated outflow. The broader impacts of this international, multidisciplinary effort are that it will significantly advance our understanding of linkages amongst the earth\u0027s systems in the Polar Regions, and are proposed with international participation (UK, Spain, Belgium, Germany and Argentina) and interdisciplinary engagement in the true spirit of the International Polar Year (IPY). It will also provide a means of engaging and educating the public in virtually all aspects of polar science and the effects of ongoing climate change. The research team has a long record of involving undergraduates in research, educating high-performing graduate students, and providing innovative and engaging outreach products to the K-12 education and public media forums. Moreover, forging the new links both in science and international Antarctic programs will provide a continuing legacy, beyond IPY, of improved understanding and cooperation in Antarctica.", "east": -55.8, "geometry": "POINT(-61.9 -62.8)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e BOX CORE; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ICE AUGERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SNOW DENSITY CUTTER", "is_usap_dc": true, "keywords": "Paleoclimate; Megafauna; USAP-DC; AMD; Amd/Us; Antarctica; Climate Change; LABORATORY; Climate Variability; Multi-Disciplinary; Cryosphere; NBP1001; FIELD SURVEYS; Not provided; Antarctic Peninsula; R/V NBP; FIELD INVESTIGATION; USA/NSF; Ice Core; Holocene", "locations": "Antarctica; Antarctic Peninsula", "north": -57.8, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Truffer, Martin; Gordon, Arnold; Huber, Bruce; Mosley-Thompson, Ellen; Leventer, Amy; Vernet, Maria; Smith, Craig; Thompson, Lonnie G.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "AMGRF; MGDS; R2R; USAP-DC", "science_programs": "LARISSA", "south": -67.8, "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans", "uid": "p0000101", "west": -68.0}, {"awards": "1143833 Orsi, Alejandro; 1143836 Leventer, Amy; 1143834 Huber, Bruce; 1430550 Domack, Eugene", "bounds_geometry": "POLYGON((116 -65.2,116.5 -65.2,117 -65.2,117.5 -65.2,118 -65.2,118.5 -65.2,119 -65.2,119.5 -65.2,120 -65.2,120.5 -65.2,121 -65.2,121 -65.38,121 -65.56,121 -65.74,121 -65.92,121 -66.1,121 -66.28,121 -66.46,121 -66.64,121 -66.82,121 -67,120.5 -67,120 -67,119.5 -67,119 -67,118.5 -67,118 -67,117.5 -67,117 -67,116.5 -67,116 -67,116 -66.82,116 -66.64,116 -66.46,116 -66.28,116 -66.1,116 -65.92,116 -65.74,116 -65.56,116 -65.38,116 -65.2))", "dataset_titles": "AU1402 Final UCTD data; AU1402 mooring data; Bottom photos from the Southern Ocean acquired during R/V Nathaniel B. Palmer expedition NBP1402 ; NBP1402 diatom data; NBP1402 Final CTD data; NBP1402 Final UCTD data; NBP1402 JPC43 Diatom Data; NBP14-02 JPC-54 and JPC-55 Pollen Assemblage data; NBP14-02 JPC-55 Bulk Sediment Carbon and Nitrogen data; NBP14-02 JPC-55 foraminifer assemblage data; NBP1402 Lowered ADCP data; Near-bottom Videos from the Southern Ocean acquired during R/V Nathaniel B. Palmer expedition NBP1402; Sabrina Coast mooring data - sediment trap mooring 2014", "datasets": [{"dataset_uid": "601310", "doi": null, "keywords": "Antarctica; Benthic Images; Benthos; East Antarctica; Marine Geoscience; NBP1402; Photo; Photo/video; Photo/Video; R/v Nathaniel B. Palmer; Totten Glacier; Yoyo Camera", "people": "Orsi, Alejandro; Huber, Bruce; Domack, Eugene Walter; Leventer, Amy; Post, Alexandra; Gulick, Sean; Shevenell, Amelia", "repository": "USAP-DC", "science_program": null, "title": "Bottom photos from the Southern Ocean acquired during R/V Nathaniel B. Palmer expedition NBP1402 ", "url": "https://www.usap-dc.org/view/dataset/601310"}, {"dataset_uid": "601845", "doi": "10.15784/601845", "keywords": "Antarctica; Cryosphere; Diatom; NBP1402; Totten Glacier", "people": "Leventer, Amy; NBP1402 science party, ", "repository": "USAP-DC", "science_program": null, "title": "NBP1402 diatom data", "url": "https://www.usap-dc.org/view/dataset/601845"}, {"dataset_uid": "601068", "doi": "10.15784/601068", "keywords": "ADCP Acoustic Doppler Current Profiler; Antarctica; NBP1402; Oceans; Physical Oceanography; Sabrina Coast; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "NBP1402 Lowered ADCP data", "url": "https://www.usap-dc.org/view/dataset/601068"}, {"dataset_uid": "601440", "doi": "10.15784/601440", "keywords": "Antarctica; Diatom; Holocene; Jumbo Piston Corer; NBP1402; R/v Nathaniel B. Palmer; Sabrina Coast; Sediment Core Data; Species Abundance; Totten Glacier", "people": "Leventer, Amy", "repository": "USAP-DC", "science_program": null, "title": "NBP1402 JPC43 Diatom Data", "url": "https://www.usap-dc.org/view/dataset/601440"}, {"dataset_uid": "601147", "doi": "10.15784/601147", "keywords": "Antarctica; CTD Data; NBP1402; Ocean Temperature; Physical Oceanography; Sabrina Coast; Salinity; Southern Ocean; Temperature; Underway CTD", "people": "Orsi, Alejandro", "repository": "USAP-DC", "science_program": null, "title": "AU1402 Final UCTD data", "url": "https://www.usap-dc.org/view/dataset/601147"}, {"dataset_uid": "601148", "doi": "10.15784/601148", "keywords": "Antarctica; Au1402; Mooring; NBP1402; Oceans; Ocean Temperature; Physical Oceanography; R/v Aurora Australis; R/v Nathaniel B. Palmer; Sabrina Coast; Salinity; Southern Ocean; Temperature", "people": "Orsi, Alejandro", "repository": "USAP-DC", "science_program": null, "title": "AU1402 mooring data", "url": "https://www.usap-dc.org/view/dataset/601148"}, {"dataset_uid": "601312", "doi": null, "keywords": "Antarctica; Benthic Images; Camera; East Antarctica; Marine Geoscience; NBP1402; Photo/video; Photo/Video; R/v Nathaniel B. Palmer; Sabrina Coast; Totten Glacier; Video Data; Yoyo Camera", "people": "Huber, Bruce; Leventer, Amy; Shevenell, Amelia; Gulick, Sean; Blankenship, Donald D.; Domack, Eugene Walter; Orsi, Alejandro; Post, Alexandra", "repository": "USAP-DC", "science_program": null, "title": "Near-bottom Videos from the Southern Ocean acquired during R/V Nathaniel B. Palmer expedition NBP1402", "url": "https://www.usap-dc.org/view/dataset/601312"}, {"dataset_uid": "601067", "doi": "10.15784/601067", "keywords": "Antarctica; CTD Data; NBP1402; Oceans; Physical Oceanography; Sabrina Coast; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "NBP1402 Final CTD data", "url": "https://www.usap-dc.org/view/dataset/601067"}, {"dataset_uid": "601069", "doi": "10.15784/601069", "keywords": "Antarctica; Mooring; NBP1402; Oceans; Physical Oceanography; Sabrina Coast; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Sabrina Coast mooring data - sediment trap mooring 2014", "url": "https://www.usap-dc.org/view/dataset/601069"}, {"dataset_uid": "601146", "doi": "10.15784/601146", "keywords": "Antarctica; CTD Data; NBP1402; Oceans; Ocean Temperature; Physical Oceanography; R/v Nathaniel B. Palmer; Sabrina Coast; Salinity; Southern Ocean; Temperature", "people": "Orsi, Alejandro", "repository": "USAP-DC", "science_program": null, "title": "NBP1402 Final UCTD data", "url": "https://www.usap-dc.org/view/dataset/601146"}, {"dataset_uid": "601042", "doi": "10.15784/601042", "keywords": "Antarctica; Biota; Continental Margin; Foraminifera; NBP1402; Oceans; Paleoclimate; Sabrina Coast; Sample/collection Description; Sample/Collection Description; Southern Ocean; Totten Glacier", "people": "Leventer, Amy; Shevenell, Amelia", "repository": "USAP-DC", "science_program": null, "title": "NBP14-02 JPC-55 foraminifer assemblage data", "url": "https://www.usap-dc.org/view/dataset/601042"}, {"dataset_uid": "601044", "doi": "10.15784/601044", "keywords": "Antarctica; Carbon; Chemistry:sediment; Chemistry:Sediment; Geochemistry; Marine Sediments; NBP1402; Nitrogen; Oceans; Sabrina Coast; Sediment Core; Southern Ocean; Totten Glacier", "people": "Smith, Catherine; Shevenell, Amelia; Domack, Eugene Walter", "repository": "USAP-DC", "science_program": null, "title": "NBP14-02 JPC-55 Bulk Sediment Carbon and Nitrogen data", "url": "https://www.usap-dc.org/view/dataset/601044"}, {"dataset_uid": "601046", "doi": "10.15784/601046", "keywords": "Antarctica; Biota; Marine Sediments; NBP1402; Oceans; Paleoclimate; Pollen; Sabrina Coast; Sediment Core; Southern Ocean; Totten Glacier", "people": "Shevenell, Amelia; Smith, Catherine; Domack, Eugene Walter", "repository": "USAP-DC", "science_program": null, "title": "NBP14-02 JPC-54 and JPC-55 Pollen Assemblage data", "url": "https://www.usap-dc.org/view/dataset/601046"}], "date_created": "Fri, 26 Jan 2018 00:00:00 GMT", "description": "This project will investigate the marine component of the Totten Glacier and Moscow University Ice Shelf, East Antarctica. This system is of critical importance because it drains one-eighth of the East Antarctic Ice Sheet and contains a volume equivalent to nearly 7 meters of potential sea level rise, greater than the entire West Antarctic Ice Sheet. This nearly completely unexplored region is the single largest and least understood marine glacial system that is potentially unstable. Despite intense scrutiny of marine based systems in the West Antarctic Ice Sheet, little is known about the Totten Glacier system. This study will add substantially to the meager oceanographic and marine geology and geophysics data available in this region, and will significantly advance understanding of this poorly understood glacial system and its potentially sensitive response to environmental change. Independent, space-based platforms indicate accelerating mass loss of the Totten system. Recent aerogeophysical surveys of the Aurora Subglacial Basin, which contains the deepest ice in Antarctica and drains into the Totten system, have provided the subglacial context for measured surface changes and show that the Totten Glacier has been the most significant drainage pathway for at least two previous ice flow regimes. However, the offshore context is far less understood. Limited physical oceanographic data from the nearby shelf/slope break indicate the presence of Modified Circumpolar Deep Water within a thick bottom layer at the mouth of a trough with apparent access to Totten Glacier, suggesting the possibility of sub-glacial bottom inflow of relatively warm water, a process considered to be responsible for West Antarctic Ice Sheet grounding line retreat. This project will conduct a ship-based marine geologic and geophysical survey of the region, combined with a physical oceanographic study, in order to evaluate both the recent and longer-term behavior of the glacial system and its relationship to the adjacent oceanographic system. This endeavor will complement studies of other Antarctic ice shelves, oceanographic studies near the Antarctic Peninsula, and ongoing development of ice sheet and other ocean models.", "east": 121.0, "geometry": "POINT(118.5 -66.1)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD", "is_usap_dc": true, "keywords": "Totten Glacier; NBP1402; Sabrina Coast; LABORATORY; Diatom; R/V NBP; Amd/Us; Bottom Photos; R/V AA; Not provided; USAP-DC; AMD; USA/NSF", "locations": "Sabrina Coast; Totten Glacier", "north": -65.2, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Orsi, Alejandro; Huber, Bruce; Leventer, Amy; Domack, Eugene Walter", "platforms": "Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V AA; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.0, "title": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics", "uid": "p0000008", "west": 116.0}, {"awards": "0838735 Nitsche, Frank O.", "bounds_geometry": "POLYGON((-140 -68,-136 -68,-132 -68,-128 -68,-124 -68,-120 -68,-116 -68,-112 -68,-108 -68,-104 -68,-100 -68,-100 -68.75,-100 -69.5,-100 -70.25,-100 -71,-100 -71.75,-100 -72.5,-100 -73.25,-100 -74,-100 -74.75,-100 -75.5,-104 -75.5,-108 -75.5,-112 -75.5,-116 -75.5,-120 -75.5,-124 -75.5,-128 -75.5,-132 -75.5,-136 -75.5,-140 -75.5,-140 -74.75,-140 -74,-140 -73.25,-140 -72.5,-140 -71.75,-140 -71,-140 -70.25,-140 -69.5,-140 -68.75,-140 -68))", "dataset_titles": "Bathymetry compilation of Pine Island Bay, Amundsen Sea, Antarctica; OSO0910 Expedition Data", "datasets": [{"dataset_uid": "000525", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "OSO0910 Expedition Data", "url": "https://www.marine-geo.org/tools/search/entry.php?id=OSO0910"}, {"dataset_uid": "000225", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "Bathymetry compilation of Pine Island Bay, Amundsen Sea, Antarctica", "url": "http://dx.doi.org/10.1594/IEDA/320080"}], "date_created": "Fri, 26 Jan 2018 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The West Antarctic Ice Sheet is believed to be vulnerable to climate change as it is grounded below sea level, is drained by rapidly flowing ice streams and is fringed by floating ice shelves subject to melting by incursions of relatively warm Antarctic circumpolar water. Currently, the most rapidly thinning glaciers in Antarctica occur in the Amundsen and Bellingshausen Sea sectors. This study seeks to place the present day observations into a longer-term geological context over a broad scale by high-resolution swath bathymetric mapping of continental shelf sea floor features that indicate past ice presence and behavior. Gaps in existing survey coverage of glacial lineations and troughs indicating ice flow direction and paleo-grounding zone wedges over the Ross, Amundsen and Bellingshausen Sea sectors are targeted. The surveys will be conducted as part of the 2010 Icebreaker Oden science opportunity and will take advantage of the vessel?s state-of-the-art swath mapping system.\u003cbr/\u003e\u003cbr/\u003eBroader impacts:\u003cbr/\u003eThis activity will supplement and complement more focused regional studies by US, Swedish, UK, French, Japanese and Polish collaborators also sailing on the Oden. The PI will compile bathymetric data to be acquired by the Oden and other ships in the region over the duration of the project into the existing bathymetric data base. The compiled data set will be made publically available through the NSF founded Antarctic Multibeam Bathymetry and Geophysical Data Synthesis (AMBS) site. It will also be integrated into the GEBCO International Bathymetric Chart of the Southern Ocean (IBCSO) and so significantly improve the basis for ship navigation in the Pacific sector of the Southern Ocean. Undergraduate students will be involved in the research under supervision of the PI via the Lamont summer internship program. The PI is a young investigator and this will be his first NSF grant as a PI.", "east": -100.0, "geometry": "POINT(-120 -71.75)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES", "is_usap_dc": true, "keywords": "BATHYMETRY; SHIPS; Southern Ocean; Antarctica; Polar; GLACIERS/ICE SHEETS; R/V NBP", "locations": "Polar; Southern Ocean; Antarctica", "north": -68.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Nitsche, Frank O.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "MGDS", "repositories": "MGDS", "science_programs": null, "south": -75.5, "title": "Ice sheet Dynamics and Processes along the West Antarctic Continental Shelf", "uid": "p0010001", "west": -140.0}, {"awards": "1543380 Shadwick, Elizabeth", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG1704", "datasets": [{"dataset_uid": "001364", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1704"}, {"dataset_uid": "002732", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1704", "url": "https://www.rvdata.us/search/cruise/LMG1704"}], "date_created": "Fri, 29 Dec 2017 00:00:00 GMT", "description": "Interest in the reduced alkalinity of high latitude waters under conditions of enhanced CO2 uptake from the atmosphere have been the impetus of numerous recent studies of bio-stressors in the polar marine environment. The project seeks to improve our understanding of the variance of coastal Southern Ocean carbonate species (CO2 system), its diurnal and inter-annual variability, by acquiring autonomous, high frequency observations from an Antarctic coastal mooring(s). A moored observing system co-located within the existing Palmer LTER array will measure pH, CO2 partial pressure, temperature, salinity and dissolved oxygen with 3-hour frequency in this region of the West Antarctic Peninsula continental shelf. Such observations will help estimate the dominant physical and biological controls on the seasonal variations in the CO2 system in coastal Antarctic waters, including the sign, seasonality and the flux of the net annual air-sea exchange of carbon dioxide. The Palmer LTER site is experiencing rapid ecological change in the West Antarctic Peninsula, a region that is warming at rates faster than any other region of coastal Antarctica.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V LMG; LMG1704", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Shadwick, Elizabeth; Shadwick, Elizabeth", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Resolving CO2 System Seasonality in the West Antarctic Peninsula with Autonomous Observations", "uid": "p0000875", "west": null}, {"awards": "1425989 Sarmiento, Jorge", "bounds_geometry": "POLYGON((-180 -52.6153,-168.67689 -52.6153,-157.35378 -52.6153,-146.03067 -52.6153,-134.70756 -52.6153,-123.38445 -52.6153,-112.06134 -52.6153,-100.73823 -52.6153,-89.41512 -52.6153,-78.09201 -52.6153,-66.7689 -52.6153,-66.7689 -55.18958,-66.7689 -57.76386,-66.7689 -60.33814,-66.7689 -62.91242,-66.7689 -65.4867,-66.7689 -68.06098,-66.7689 -70.63526,-66.7689 -73.20954,-66.7689 -75.78382,-66.7689 -78.3581,-78.09201 -78.3581,-89.41512 -78.3581,-100.73823 -78.3581,-112.06134 -78.3581,-123.38445 -78.3581,-134.70756 -78.3581,-146.03067 -78.3581,-157.35378 -78.3581,-168.67689 -78.3581,180 -78.3581,178.62318 -78.3581,177.24636 -78.3581,175.86954 -78.3581,174.49272 -78.3581,173.1159 -78.3581,171.73908 -78.3581,170.36226 -78.3581,168.98544 -78.3581,167.60862 -78.3581,166.2318 -78.3581,166.2318 -75.78382,166.2318 -73.20954,166.2318 -70.63526,166.2318 -68.06098,166.2318 -65.4867,166.2318 -62.91242,166.2318 -60.33814,166.2318 -57.76386,166.2318 -55.18958,166.2318 -52.6153,167.60862 -52.6153,168.98544 -52.6153,170.36226 -52.6153,171.73908 -52.6153,173.1159 -52.6153,174.49272 -52.6153,175.86954 -52.6153,177.24636 -52.6153,178.62318 -52.6153,-180 -52.6153))", "dataset_titles": "Biogeochemical profiling float data from the Southern Ocean Carbon and Climate Observation and Modeling (SOCCOM) program.UCSD Research Data Collections DOI:10.6075/J09021PC; Expedition Data; Model output NOAA GFDL CM2_6 Cant Hant storage", "datasets": [{"dataset_uid": "000208", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Biogeochemical profiling float data from the Southern Ocean Carbon and Climate Observation and Modeling (SOCCOM) program.UCSD Research Data Collections DOI:10.6075/J09021PC", "url": "http://library.ucsd.edu/dc/object/bb66239018"}, {"dataset_uid": "001369", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1701"}, {"dataset_uid": "601144", "doi": "10.15784/601144", "keywords": "Antarctica; Anthropogenic Heat; Atmosphere; Carbon Storage; Climate Change; Eddy; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Heat Budget; Modeling; Model Output; Oceans; Paleoclimate; Snow/ice; Snow/Ice; Southern Ocean", "people": "Chen, Haidi", "repository": "USAP-DC", "science_program": null, "title": "Model output NOAA GFDL CM2_6 Cant Hant storage", "url": "https://www.usap-dc.org/view/dataset/601144"}], "date_created": "Fri, 29 Dec 2017 00:00:00 GMT", "description": "Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project seeks to drive a transformative shift in our understanding of the crucial role of the Southern Ocean in taking up anthropogenic carbon and heat, and resupplying nutrients from the abyss to the surface. An observational program will generate vast amounts of new biogeochemical data that will provide a greatly improved view of the dynamics and ecosystem responses of the Southern Ocean. A modeling component will apply these observations to enhancing understanding of the current ocean, reducing uncertainty in projections of future carbon and nutrient cycles and climate. Because it serves as the primary gateway through which the intermediate, deep, and bottom waters of the ocean interact with the surface layers and thus the atmosphere, the Southern Ocean has a profound influence on the oceanic uptake of anthropogenic carbon and heat as well as nutrient resupply from the abyss to the surface. Yet it is the least observed and understood region of the world ocean. The oceanographic community is on the cusp of two major advances that have the potential to transform understanding of the Southern Ocean. The first is the development of new biogeochemical sensors mounted on autonomous profiling floats that allow sampling of ocean biogeochemistry and acidification in 3-dimensional space with a temporal resolution of five to ten days. The SOCCOM float program proposed will increase the average number of biogeochemical profiles measured per month in the Southern Ocean by ~10-30x. The second is that the climate modeling community now has the computational resources and physical understanding to develop fully coupled climate models that can represent crucial mesoscale processes in the Southern Ocean, as well as corresponding models that assimilate observations to produce a state estimate. Together with the observations, this new generation of models provides the tools to vastly improve understanding of Southern Ocean processes and the ability to quantitatively assess uptake of anthropogenic carbon and heat, as well as nutrient resupply, both today and into the future. In order to take advantage of the above technological and modeling breakthroughs, SOCCOM will implement the following research programs: * Theme 1: Observations. Scripps Institution of Oceanography will lead a field program to expand the number of Southern Ocean autonomous profiling floats and equip them with sensors to measure pH, nitrate, and oxygen. The University of Washington and Monterey Bay Aquarium Research Institute will design, build, and oversee deployment of the floats. Scripps will also develop a mesoscale eddying Southern Ocean state estimate that assimilates physical and biogeochemical data into the MIT ocean general circulation model. * Theme 2: Modeling. University of Arizona and Princeton University, together with NOAA\u0027s Geophysical Fluid Dynamics Laboratory (GFDL), will use SOCCOM observations to develop data/model assessment metrics and next-generation model analysis and evaluation, with the goal of improving process level understanding and reducing the uncertainty in projections of our future climate. Led by Climate Central, an independent, non-profit journalism and research organization that promotes understanding of climate science, SOCCOM will collaborate with educators and media professionals to inform policymakers and the public about the challenges of climate change and its impacts on marine life in the context of the Southern Ocean. In addition, the integrated team of SOCCOM scientists and educators will: * communicate data and results of the SOCCOM efforts quickly to the public through established data networks, publications, broadcast media, and a public portal; * train a new generation of diverse ocean scientists, including undergraduate students, graduate students, and postdoctoral fellows versed in field techniques, data calibration, modeling, and communication of research to non-scientists; * transfer new sensor technology and related software to autonomous instrument providers and manufacturers to ensure that they become widely useable.", "east": -66.7689, "geometry": "POINT(-130.26855 -65.4867)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "USAP-DC; R/V NBP; NBP1701; CLIMATE MODELS", "locations": null, "north": -52.6153, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science", "paleo_time": null, "persons": "Sarmiento, Jorge; Rynearson, Tatiana", "platforms": "OTHER \u003e MODELS \u003e CLIMATE MODELS; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "PI website", "repositories": "PI website; R2R; USAP-DC", "science_programs": null, "south": -78.3581, "title": "Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM)", "uid": "p0000197", "west": 166.2318}, {"awards": "1245703 Manahan, Donal", "bounds_geometry": "POLYGON((-68.0574 -52.7267,-67.39775 -52.7267,-66.7381 -52.7267,-66.07845 -52.7267,-65.4188 -52.7267,-64.75915 -52.7267,-64.0995 -52.7267,-63.43985 -52.7267,-62.7802 -52.7267,-62.12055 -52.7267,-61.4609 -52.7267,-61.4609 -53.95849,-61.4609 -55.19028,-61.4609 -56.42207,-61.4609 -57.65386,-61.4609 -58.88565,-61.4609 -60.11744,-61.4609 -61.34923,-61.4609 -62.58102,-61.4609 -63.81281,-61.4609 -65.0446,-62.12055 -65.0446,-62.7802 -65.0446,-63.43985 -65.0446,-64.0995 -65.0446,-64.75915 -65.0446,-65.4188 -65.0446,-66.07845 -65.0446,-66.7381 -65.0446,-67.39775 -65.0446,-68.0574 -65.0446,-68.0574 -63.81281,-68.0574 -62.58102,-68.0574 -61.34923,-68.0574 -60.11744,-68.0574 -58.88565,-68.0574 -57.65386,-68.0574 -56.42207,-68.0574 -55.19028,-68.0574 -53.95849,-68.0574 -52.7267))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001372", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1606"}], "date_created": "Fri, 29 Dec 2017 00:00:00 GMT", "description": "This project will support two training courses that will introduce early-career scientists from a wide range of disciplinary backgrounds to key issues in polar science, and especially to provide the opportunity to gain hands-on experience in Antarctic field activities. Antarctica is an ideal location to study a wide variety of questions in biology. However, few students and early-career scientists have the opportunity to work on-site in Antarctica unless they are directly associated with a senior scientist who has a funded Antarctic project. The project will further the NSF goal of training new generations of scientists by providing hands-on training in Antarctica during one course at Palmer Station in 2016 and another at McMurdo Station in 2018. This represents a continuation of nine previous courses at McMurdo Station which have a proven record of introducing participants to Antarctic science under realistic field conditions, providing opportunities to understand and appreciate the complexities and logistical challenges of undertaking science in Antarctica, enhancing the professional careers of the participants, and increasing international collaborations for early-career scientists. The proposed training courses will be open to Ph.D. students and post-doctoral scientists who have interests in the study of Antarctic marine organisms to help prepare them for success in developing their own independent research programs in polar regions. Long-standing and recent questions in evolution and ecology of Antarctic organisms will be examined with 1) field collections, 2) physiological experiments on whole organisms, 3) studies of isolated cells and tissues, 4) experiments on macromolecular processes (e.g., enzymes), and 5) molecular biological analyses.", "east": -61.4609, "geometry": "POINT(-64.75915 -58.88565)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V LMG; LMG1606", "locations": null, "north": -52.7267, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Manahan, Donal", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.0446, "title": "Collaborative Research: Biological Adaptations to Environmental Change in Antarctica - An Advanced Training Program for Early Career Scientists", "uid": "p0000392", "west": -68.0574}, {"awards": "1543256 Shuster, David", "bounds_geometry": null, "dataset_titles": "Detrital low-temperature thermochronometry from Bourgeois Fjord, AP; Expedition Data; Expedition data of LMG1702", "datasets": [{"dataset_uid": "002733", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1702", "url": "https://www.rvdata.us/search/cruise/LMG1702"}, {"dataset_uid": "000402", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1702"}, {"dataset_uid": "601259", "doi": "10.15784/601259", "keywords": "Antarctica; Antarctic Peninsula", "people": "Clinger, Anna", "repository": "USAP-DC", "science_program": null, "title": "Detrital low-temperature thermochronometry from Bourgeois Fjord, AP", "url": "https://www.usap-dc.org/view/dataset/601259"}], "date_created": "Fri, 29 Dec 2017 00:00:00 GMT", "description": "The extreme mountain topographies of alpine landscapes at mid latitudes (e.g., European Alps, Patagonia, Alaska) are thought to have formed by the erosive action of glaciers, yet our understanding of exactly when and how those topographies developed is limited. If glacial ice was responsible for forming them, then those landscapes must have developed primarily over the last 2-3 million years when ice was present at those latitudes; this timing has only recently been confirmed by observations. In contrast, the Antarctic Peninsula, which contains similarly spectacular topographic relief, is known to have hosted alpine glaciers as early as 37 million years ago, and is currently covered by ice. Thus, if caused by glacial erosion, the high relief of the peninsula should have formed much earlier than what has been observed at mid latitude sites, yet we know nearly nothing about the timing of its development. The primary benefit of this research will be to study the timing of topography development along the Antarctic Peninsula by applying state of the art chemical analyses to sediments collected offshore. This research is important because studying a high latitude site will enable comparison with sites at mid latitudes and test current hypotheses on the development of glacial landscapes in general. This project aims to apply low-temperature thermochronometry based on the (U-Th)/He system in apatite to investigate the exhumation history, the development of the present topography, and the pattern of glacial erosion in the central Antarctic Peninsula. A number of recent studies have used this approach to study the dramatic, high-relief landscapes formed by Pleistocene alpine glacial erosion in temperate latitudes: New Zealand, the Alps, British Columbia, Alaska, and Patagonia. These studies have not only revealed when these landscapes formed, but have also provided new insights into the physical mechanisms of glacial erosion. The Antarctic Peninsula is broadly akin to temperate alpine landscapes in that the dominant landforms are massive glacial troughs. However, what we know about Antarctic glacial history suggests that the timing and history of glacial erosion was most likely very different from the temperate alpine setting: The Antarctic Peninsula has been glaciated since the Eocene, and Pleistocene climate cooling is hypothesized to have suppressed, rather than enhanced, glacial erosion. Our goal is to evaluate these hypotheses by developing a direct thermochronometric record of when and how the present glacial valley relief formed. We propose to learn about the timing and process of glacial valley formation through apatite (U-Th)/He and 4He/3He measurements on glacial sediment collected near the grounding lines of major glaciers draining the Peninsula. In effect, since we cannot sample bedrock directly that is currently covered by ice, we will rely on these glaciers to do it for us.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V LMG; LMG1702; Antarctic Peninsula; ICE SHEETS", "locations": "Antarctic Peninsula", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kohut, Josh; Shuster, David; Balco, Gregory; Jenkins, Bethany", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": null, "title": "Antarctic Peninsula Exhumation and Landscape Development Investigated by Low-Temperature Detrital Thermochronometry", "uid": "p0000876", "west": null}, {"awards": "1543245 Rynearson, Tatiana", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP1701; NCBI Popset of 43 Southern Ocean diatom isolates, including accessions ON678208.1 - ON678250.1; Specific growth rate measurements for 43 Southern Ocean diatoms", "datasets": [{"dataset_uid": "601586", "doi": "10.15784/601586", "keywords": "Antarctica; Biota; NBP1701; Phytoplankton; R/v Nathaniel B. Palmer; Specific Growth Rate; Thermal Optimum Temperature", "people": "Bishop, Ian", "repository": "USAP-DC", "science_program": null, "title": "Specific growth rate measurements for 43 Southern Ocean diatoms", "url": "https://www.usap-dc.org/view/dataset/601586"}, {"dataset_uid": "002661", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1701", "url": "https://www.rvdata.us/search/cruise/NBP1701"}, {"dataset_uid": "200328", "doi": "", "keywords": null, "people": null, "repository": "NCBI", "science_program": null, "title": "NCBI Popset of 43 Southern Ocean diatom isolates, including accessions ON678208.1 - ON678250.1", "url": "https://www.ncbi.nlm.nih.gov/popset/?term=2248543458"}, {"dataset_uid": "001369", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1701"}], "date_created": "Fri, 29 Dec 2017 00:00:00 GMT", "description": "The research will examine how diatoms (an important group of plankton in the Southern Ocean) adapt to environmental change. Diatoms will be sampled from different regions of the Southern Ocean, including the Drake Passage, the Pacific Sector of the Southern Ocean and the Ross Sea and examined to determine the range of genetic variation among diatoms in these regions. Experiments on a range of diatoms will be conducted in home laboratories and will be aimed at measuring shifts in physiological capacities over many generations in response to directional changes in the environment (temperature and pH). The information on the genetic diversity of field populations combined with information on potential rates of adaptability and genome changes will provide insight into ways in which polar marine diatoms populations may respond to environmental changes that may occur in surface oceans in the future or may have occurred during past climate conditions. Such information allows better modeling of biogeochemical cycles in the ocean as well as improves our abilities to interpret records of past ocean conditions. The project will support a doctoral student and a postdoctoral researcher as well as several undergraduate students. These scientists will learn the fundamentals of experimental evolution, a skill set that is being sought in the fields of biology and oceanography. The project also includes a collaboration with the Metcalf Institute for Marine and Environmental Reporting that will design and facilitate a session focused on current research related to evolution and climate change to be held at the annual conference of the National Association of Science Writers (NASW). Both physiological and genetic variation are key parameters for understanding evolutionary processes in phytoplankton but they are essentially unknown for Southern Ocean diatoms. The extent to which these two factors determine plasticity and adaptability in field populations and the interaction between them will influence how and whether cold-adapted diatoms can respond to changing environments. This project includes a combination of field work to identify genetic diversity within diatoms using molecular approaches and experiments in the lab to assess the range of physiological variation in contemporary populations of diatoms and evolution experiments in the lab to assess how the combination of genetic diversity and physiological variation influence the evolutionary potential of diatoms under a changing environment. This research will uncover general relationships between physiological variation, genetic diversity, and evolutionary potential that may apply across microbial taxa and geographical regions, substantially improving efforts to predict shifts in marine ecosystems. Results from this study can be integrated into developing models that incorporate evolution to predict ecosystem changes under future climate change scenarios.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "USAP-DC; NBP1701; R/V NBP; AMD; USA/NSF; Amd/Us; DIATOMS", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Rynearson, Tatiana; Bishop, Ian", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "NCBI; R2R; USAP-DC", "science_programs": null, "south": null, "title": "NSFGEO-NERC: Evolutionary Response of Southern Ocean Diatoms to Environmental Change", "uid": "p0000850", "west": null}, {"awards": "1143981 Domack, Eugene", "bounds_geometry": "POLYGON((-69.9517 -52.7581,-69.02971 -52.7581,-68.10772 -52.7581,-67.18573 -52.7581,-66.26374 -52.7581,-65.34175 -52.7581,-64.41976 -52.7581,-63.49777 -52.7581,-62.57578 -52.7581,-61.65379 -52.7581,-60.7318 -52.7581,-60.7318 -54.31551,-60.7318 -55.87292,-60.7318 -57.43033,-60.7318 -58.98774,-60.7318 -60.54515,-60.7318 -62.10256,-60.7318 -63.65997,-60.7318 -65.21738,-60.7318 -66.77479,-60.7318 -68.3322,-61.65379 -68.3322,-62.57578 -68.3322,-63.49777 -68.3322,-64.41976 -68.3322,-65.34175 -68.3322,-66.26374 -68.3322,-67.18573 -68.3322,-68.10772 -68.3322,-69.02971 -68.3322,-69.9517 -68.3322,-69.9517 -66.77479,-69.9517 -65.21738,-69.9517 -63.65997,-69.9517 -62.10256,-69.9517 -60.54515,-69.9517 -58.98774,-69.9517 -57.43033,-69.9517 -55.87292,-69.9517 -54.31551,-69.9517 -52.7581))", "dataset_titles": "Expedition Data; Processed Camera Images acquired during the Laurence M. Gould expedition LMG1311", "datasets": [{"dataset_uid": "001366", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1702"}, {"dataset_uid": "601311", "doi": "10.15784/601311", "keywords": "Antarctica; Antarctic Peninsula; Benthic Images; Camera; LARISSA; LMG1311; Marine Geoscience; Photo; Photo/video; Photo/Video; R/v Laurence M. Gould", "people": "Domack, Eugene Walter", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Processed Camera Images acquired during the Laurence M. Gould expedition LMG1311", "url": "https://www.usap-dc.org/view/dataset/601311"}, {"dataset_uid": "000402", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1702"}], "date_created": "Fri, 29 Dec 2017 00:00:00 GMT", "description": "This project aims to identify which portions of the glacial cover in the Antarctic Peninsula are losing mass to the ocean. This is an important issue to resolve because the Antarctic Peninsula is warming at a faster rate than any other region across the earth. Even though glaciers across the Antarctic Peninsula are small, compared to the continental ice sheet, defining how rapidly they respond to both ocean and atmospheric temperature rise is critical. It is critical because it informs us about the exact mechanisms which regulate ice flow and melting into the ocean. For instance, after the break- up of the Larsen Ice Shelf in 2002 many glaciers began to flow rapidly into the sea. Measuring how much ice was involved is difficult and depends upon accurate estimates of volume and area. One way to increase the accuracy of our estimates is to measure how fast the Earth\u0027s crust is rebounding or bouncing back, after the ice has been removed. This rebound effect can be measured with very precise techniques using instruments locked into ice free bedrock surrounding the area of interest. These instruments are monitored by a set of positioning satellites (the Global Positioning System or GPS) in a continuous fashion. Of course the movement of the Earth\u0027s bedrock relates not only to the immediate response but also the longer term rate that reflects the long vanished ice masses that once covered the entire Antarctic Peninsula?at the time of the last glaciation. These rebound measurements can, therefore, also tell us about the amount of ice which covered the Antarctic Peninsula thousands of years ago. Glacial isostatic rebound is one of the complicating factors in allowing us to understand how much the larger ice sheets are losing today, something that can be estimated by satellite techniques but only within large errors when the isostatic (rebound) correction is unknown. The research proposed consists of maintaining a set of six rebound stations until the year 2016, allowing for a longer time series and thus more accurate estimates of immediate elastic and longer term rebound effects. It also involves the establishment of two additional GPS stations that will focus on constraining the \"bull\u0027s eye\" of rebound suggested by measurements over the past two years. In addition, several more geologic data points will be collected that will help to reconstruct the position of the ice sheet margin during its recession from the full ice sheet of the last glacial maximum. These will be based upon the coring of marine sediment sequences now recognized to have been deposited along the margins of retreating ice sheets and outlets. Precise dating of the ice margin along with the new and improved rebound data will help to constrain past ice sheet configurations and refine geophysical models related to the nature of post glacial rebound. Data management will be under the auspices of the UNAVCO polar geophysical network or POLENET and will be publically available at the time of station installation. This project is a small scale extension of the ongoing LARsen Ice Shelf, Antarctica Project (LARISSA), an IPY (International Polar Year)-funded interdisciplinary study aimed at understanding earth system connections related to the Larsen Ice Shelf and the northern Antarctic Peninsula.", "east": -60.7318, "geometry": "POINT(-65.34175 -60.54515)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e SEISMIC REFLECTION PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "LMG1702; R/V LMG", "locations": null, "north": -52.7581, "nsf_funding_programs": "Antarctic Integrated System Science", "paleo_time": null, "persons": "Kohut, Josh; Domack, Eugene Walter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -68.3322, "title": "Continuation of the LARISSA Continuous GPS Network in View of Observed Dynamic Response to Antarctic Peninsula Ice Mass Balance and Required Geologic Constraints", "uid": "p0000233", "west": -69.9517}, {"awards": "1443474 Jenkins, Bethany", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP1608", "datasets": [{"dataset_uid": "002664", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1608", "url": "https://www.rvdata.us/search/cruise/NBP1608"}], "date_created": "Fri, 29 Dec 2017 00:00:00 GMT", "description": "This project focuses on an important group of photosynthetic algae in the Southern Ocean (SO), diatoms, and the roles associated bacterial communities play in modulating their growth. Diatom growth fuels the SO food web and balances atmospheric carbon dioxide by sequestering the carbon used for growth to the deep ocean on long time scales as cells sink below the surface. The diatom growth is limited by the available iron in the seawater, most of which is not freely available to the diatoms but instead is tightly bound to other compounds. The nature of these compounds and how phytoplankton acquire iron from them is critical to understanding productivity in this region and globally. The investigators will conduct experiments to characterize the relationship between diatoms, their associated bacteria, and iron in open ocean and inshore waters. Experiments will involve supplying nutrients at varying nutrient ratios to natural phytoplankton assemblages to determine how diatoms and their associated bacteria respond to different conditions. This will provide valuable data that can be used by climate and food web modelers and it will help us better understand the relationship between iron, a key nutrient in the ocean, and the organisms at the base of the food web that use iron for photosynthetic growth and carbon uptake. The project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. The project supports early career senior investigators and the training of graduate and undergraduate students as well as outreach activities with middle school Girl Scouts in Rhode Island, inner city middle and high school age girls in Virginia, and middle school girls in Florida. The project combines trace metal biogeochemistry, phytoplankton cultivation, and molecular biology to address questions regarding the production of iron-binding compounds and the role of diatom-bacterial interactions in this iron-limited region. Iron is an essential micronutrient for marine phytoplankton. Phytoplankton growth in the SO is limited by a lack of sufficient iron, with important consequences for carbon cycling and climate in this high latitude regime. Some of the major outstanding questions in iron biogeochemistry relate to the organic compounds that bind \u003e99.9% of dissolved iron in surface oceans. The investigators\u0027 prior research in this region suggests that production of strong iron-binding compounds in the SO is linked to diatom blooms in waters with high nitrate to iron ratios. The sources of these compounds are unknown but the investigators hypothesize that they may be from bacteria, which are known to produce such compounds for their own use. The project will test three hypotheses concerning the production of these iron-binding compounds, limitations on the biological availability of iron even if present in high concentrations, and the roles of diatom-associated bacteria in these processes. Results from this project will provide fundamental information about the biogeochemical trigger, and biological sources and function, of natural strong iron-binding compound production in the SO, where iron plays a critical role in phytoplankton productivity, carbon cycling, and climate regulation.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V NBP; NBP1608", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Jenkins, Bethany", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Investigating Iron-inding Ligands in Southern Ocean Diatom Communities: The Role of Diatom-Bacteria Associations", "uid": "p0000852", "west": null}, {"awards": "1245737 Cassano, John; 1245663 Lazzara, Matthew", "bounds_geometry": "POLYGON((161.714 -77.522,162.6077 -77.522,163.5014 -77.522,164.3951 -77.522,165.2888 -77.522,166.1825 -77.522,167.0762 -77.522,167.9699 -77.522,168.8636 -77.522,169.7573 -77.522,170.651 -77.522,170.651 -77.6702,170.651 -77.8184,170.651 -77.9666,170.651 -78.1148,170.651 -78.263,170.651 -78.4112,170.651 -78.5594,170.651 -78.7076,170.651 -78.8558,170.651 -79.004,169.7573 -79.004,168.8636 -79.004,167.9699 -79.004,167.0762 -79.004,166.1825 -79.004,165.2888 -79.004,164.3951 -79.004,163.5014 -79.004,162.6077 -79.004,161.714 -79.004,161.714 -78.8558,161.714 -78.7076,161.714 -78.5594,161.714 -78.4112,161.714 -78.263,161.714 -78.1148,161.714 -77.9666,161.714 -77.8184,161.714 -77.6702,161.714 -77.522))", "dataset_titles": "SUMO unmanned aerial system (UAS) atmospheric data", "datasets": [{"dataset_uid": "601054", "doi": "10.15784/601054", "keywords": "Antarctica; Atmosphere; Meteorology; Navigation; UAS", "people": "Cassano, John", "repository": "USAP-DC", "science_program": null, "title": "SUMO unmanned aerial system (UAS) atmospheric data", "url": "https://www.usap-dc.org/view/dataset/601054"}], "date_created": "Wed, 22 Nov 2017 00:00:00 GMT", "description": "The Antarctic Automatic Weather Station (AAWS) network, first commenced in 1978, is the most extensive ground meteorological network in the Antarctic, approaching its 30th year at several of its installations. Its prime focus as a long term observational record is to measure the near surface weather and climatology of the Antarctic atmosphere. AWS sites measure air-temperature, pressure, wind speed and direction at a nominal surface height of 3m. Other parameters such as relative humidity and snow accumulation may also be measured. Observational data from the AWS are collected via the DCS Argos system aboard either NOAA or MetOp polar orbiting satellites and thus made available in near real time to operational and synoptic weather forecasters. The surface observations from the AAWS network are important records for recent climate change and meteorological processes. The surface observations from the AAWS network are also used operationally, and in the planning of field work. The surface observations from the AAWS network have been used to check on satellite and remote sensing observations.", "east": 170.651, "geometry": "POINT(166.1825 -78.263)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e GAUGES \u003e ADG; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e BAROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HUMIDITY SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e SNOWPACK TEMPERATURE PROBE; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e RADIO \u003e ARGOS", "is_usap_dc": true, "keywords": "Automated Weather Station; Antarctica; AWS; FIXED OBSERVATION STATIONS", "locations": "Antarctica", "north": -77.522, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew; Cassano, John; Costanza, Carol", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.004, "title": "Collaborative Research: Antarctic Automatic Weather Station Program 2013-2017", "uid": "p0000363", "west": 161.714}, {"awards": "1246378 Shevenell, Amelia", "bounds_geometry": "POLYGON((-65.32 -64.15,-65.309 -64.15,-65.298 -64.15,-65.287 -64.15,-65.276 -64.15,-65.265 -64.15,-65.254 -64.15,-65.243 -64.15,-65.232 -64.15,-65.221 -64.15,-65.21 -64.15,-65.21 -64.186,-65.21 -64.222,-65.21 -64.258,-65.21 -64.294,-65.21 -64.33,-65.21 -64.366,-65.21 -64.402,-65.21 -64.438,-65.21 -64.474,-65.21 -64.51,-65.221 -64.51,-65.232 -64.51,-65.243 -64.51,-65.254 -64.51,-65.265 -64.51,-65.276 -64.51,-65.287 -64.51,-65.298 -64.51,-65.309 -64.51,-65.32 -64.51,-65.32 -64.474,-65.32 -64.438,-65.32 -64.402,-65.32 -64.366,-65.32 -64.33,-65.32 -64.294,-65.32 -64.258,-65.32 -64.222,-65.32 -64.186,-65.32 -64.15))", "dataset_titles": "Anvers Trough Foraminifer Stable Isotope data; Geochemical and sedimentologic data from NBP01-01 JPC-34", "datasets": [{"dataset_uid": "601064", "doi": "10.15784/601064", "keywords": "Antarctica; Antarctic Peninsula; Anvers Trough; Chemistry:sediment; Chemistry:Sediment; Foraminifera; Geochemistry; Isotope; LMG1211; LMG1311; Marine Sediments; Oceans; Paleoclimate; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Shevenell, Amelia", "repository": "USAP-DC", "science_program": null, "title": "Anvers Trough Foraminifer Stable Isotope data", "url": "https://www.usap-dc.org/view/dataset/601064"}, {"dataset_uid": "601180", "doi": "10.15784/601180", "keywords": "Antarctica; Be-10; Glaciers/ice Sheet; Glaciers/Ice Sheet; Grain Size; Late Quaternary; Magnetic Susceptibility; Mass Spectrometry; NBP0101; Paleoenvironment; Prydz Bay; Radiocarbon; R/v Nathaniel B. Palmer; Sediment; Sediment Core; Sediment Core Data", "people": "Shevenell, Amelia", "repository": "USAP-DC", "science_program": null, "title": "Geochemical and sedimentologic data from NBP01-01 JPC-34", "url": "https://www.usap-dc.org/view/dataset/601180"}], "date_created": "Fri, 27 Oct 2017 00:00:00 GMT", "description": "Intellectual Merit: Southern Ocean processes play an important role in Late Quaternary glacial-interglacial climate change. However, the direct influence of newly upwelled warm nutrient-rich Circumpolar Deep Water on the Antarctic cryosphere remains speculative. The PI proposes to test the hypothesis that Circumpolar Deep Water-derived ocean heat negatively impacts the mass-balance of Antarctica?s ice sheets during deglaciations using precisely dated late Quaternary paleoceanographic studies of Antarctic margin sediments and a suite of geochemical proxies measured on three existing glacial marine sediment cores from the Prydz Channel, Antarctica. Specifically, the PI will use these data to reconstruct the Late Quaternary history of the Lambert Glacier/Amery Ice Shelf system; evaluate the timing, speed, and style of retreat of the Lambert Glacier/Amery Ice Shelf system during the last deglaciation, and to assess the impact of Circumpolar Deep Water intrusions on the Lambert Glacier/Amery Ice Shelf system in the Late Quaternary. Diatom bound radiocarbon and optically stimulated luminescence techniques will be used to obtain precise stratigraphic age control for the Prydz Channel siliceous muddy ooze intervals. In addition, the PI will measure sedimentary 10Be concentrations to determine the origin of the siliceous muddy ooze units and to track past changes in the position of the ice shelf front. Broader impacts: This proposal will support an early career female scientist and will provide professional development and research experiences for women/minority graduate and undergraduate students. The PI will take advantage of USF?s Oceanography Camp for Girls.", "east": -65.21, "geometry": "POINT(-65.265 -64.33)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS", "is_usap_dc": true, "keywords": "Amd/Us; R/V NBP; USAP-DC", "locations": null, "north": -64.15, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Shevenell, Amelia", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.51, "title": "Late Quaternary Evolution of the Lambert Glacier/Amery Ice Shelf System, Prydz Bay, Antarctica", "uid": "p0000381", "west": -65.32}, {"awards": "1246378 Shevenell, Amelia", "bounds_geometry": "POLYGON((70 -68,70.5 -68,71 -68,71.5 -68,72 -68,72.5 -68,73 -68,73.5 -68,74 -68,74.5 -68,75 -68,75 -68.2,75 -68.4,75 -68.6,75 -68.8,75 -69,75 -69.2,75 -69.4,75 -69.6,75 -69.8,75 -70,74.5 -70,74 -70,73.5 -70,73 -70,72.5 -70,72 -70,71.5 -70,71 -70,70.5 -70,70 -70,70 -69.8,70 -69.6,70 -69.4,70 -69.2,70 -69,70 -68.8,70 -68.6,70 -68.4,70 -68.2,70 -68))", "dataset_titles": "Anvers Trough Foraminifer Stable Isotope data; Geochemical and sedimentologic data from NBP01-01 JPC-34", "datasets": [{"dataset_uid": "601064", "doi": "10.15784/601064", "keywords": "Antarctica; Antarctic Peninsula; Anvers Trough; Chemistry:sediment; Chemistry:Sediment; Foraminifera; Geochemistry; Isotope; LMG1211; LMG1311; Marine Sediments; Oceans; Paleoclimate; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Shevenell, Amelia", "repository": "USAP-DC", "science_program": null, "title": "Anvers Trough Foraminifer Stable Isotope data", "url": "https://www.usap-dc.org/view/dataset/601064"}, {"dataset_uid": "601180", "doi": "10.15784/601180", "keywords": "Antarctica; Be-10; Glaciers/ice Sheet; Glaciers/Ice Sheet; Grain Size; Late Quaternary; Magnetic Susceptibility; Mass Spectrometry; NBP0101; Paleoenvironment; Prydz Bay; Radiocarbon; R/v Nathaniel B. Palmer; Sediment; Sediment Core; Sediment Core Data", "people": "Shevenell, Amelia", "repository": "USAP-DC", "science_program": null, "title": "Geochemical and sedimentologic data from NBP01-01 JPC-34", "url": "https://www.usap-dc.org/view/dataset/601180"}], "date_created": "Fri, 27 Oct 2017 00:00:00 GMT", "description": "Intellectual Merit: Southern Ocean processes play an important role in Late Quaternary glacial-interglacial climate change. However, the direct influence of newly upwelled warm nutrient-rich Circumpolar Deep Water on the Antarctic cryosphere remains speculative. The PI proposes to test the hypothesis that Circumpolar Deep Water-derived ocean heat negatively impacts the mass-balance of Antarctica?s ice sheets during deglaciations using precisely dated late Quaternary paleoceanographic studies of Antarctic margin sediments and a suite of geochemical proxies measured on three existing glacial marine sediment cores from the Prydz Channel, Antarctica. Specifically, the PI will use these data to reconstruct the Late Quaternary history of the Lambert Glacier/Amery Ice Shelf system; evaluate the timing, speed, and style of retreat of the Lambert Glacier/Amery Ice Shelf system during the last deglaciation, and to assess the impact of Circumpolar Deep Water intrusions on the Lambert Glacier/Amery Ice Shelf system in the Late Quaternary. Diatom bound radiocarbon and optically stimulated luminescence techniques will be used to obtain precise stratigraphic age control for the Prydz Channel siliceous muddy ooze intervals. In addition, the PI will measure sedimentary 10Be concentrations to determine the origin of the siliceous muddy ooze units and to track past changes in the position of the ice shelf front. Broader impacts: This proposal will support an early career female scientist and will provide professional development and research experiences for women/minority graduate and undergraduate students. The PI will take advantage of USF?s Oceanography Camp for Girls.", "east": 75.0, "geometry": "POINT(72.5 -69)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS", "is_usap_dc": true, "keywords": "Amd/Us; R/V NBP; USAP-DC", "locations": null, "north": -68.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Shevenell, Amelia", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "Late Quaternary Evolution of the Lambert Glacier/Amery Ice Shelf System, Prydz Bay, Antarctica", "uid": "p0000381", "west": 70.0}, {"awards": "1460449 Goehring, Brent; 1341420 Balco, Gregory; 1341364 Todd, Claire", "bounds_geometry": "POLYGON((164.08 -74.6,164.0842 -74.6,164.0884 -74.6,164.0926 -74.6,164.0968 -74.6,164.101 -74.6,164.1052 -74.6,164.1094 -74.6,164.1136 -74.6,164.1178 -74.6,164.122 -74.6,164.122 -74.6023,164.122 -74.6046,164.122 -74.6069,164.122 -74.6092,164.122 -74.6115,164.122 -74.6138,164.122 -74.6161,164.122 -74.6184,164.122 -74.6207,164.122 -74.623,164.1178 -74.623,164.1136 -74.623,164.1094 -74.623,164.1052 -74.623,164.101 -74.623,164.0968 -74.623,164.0926 -74.623,164.0884 -74.623,164.0842 -74.623,164.08 -74.623,164.08 -74.6207,164.08 -74.6184,164.08 -74.6161,164.08 -74.6138,164.08 -74.6115,164.08 -74.6092,164.08 -74.6069,164.08 -74.6046,164.08 -74.6023,164.08 -74.6))", "dataset_titles": "Interface to observational data associated with exposure-age measurements and resulting calculated ages. Dynamic content, updated.", "datasets": [{"dataset_uid": "200196", "doi": null, "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Interface to observational data associated with exposure-age measurements and resulting calculated ages. Dynamic content, updated.", "url": "https://version2.ice-d.org/antarctica/nsf/"}], "date_created": "Wed, 18 Oct 2017 00:00:00 GMT", "description": "The investigators will map glacial deposits and date variations in glacier variability at several ice-free regions in northern Victoria Land, Antarctica. These data will constrain the nature and timing of past ice thickness changes for major glaciers that drain into the northwestern Ross Sea. This is important because during the Last Glacial Maximum (15,000 - 18,000 years ago) these glaciers were most likely flowing together with grounded ice from both the East and West Antarctic Ice Sheets that expanded across the Ross Sea continental shelf to near the present shelf edge. Thus, the thickness of these glaciers was most likely controlled in part by the extent and thickness of the Ross Sea ice sheet and ice shelf. The data the PIs propose to collect can provide constraints on the position of the grounding line in the western Ross Sea during the Last Glacial Maximum, the time that position was reached, and ice thickness changes that occurred after that time. The primary intellectual merit of this project will be to improve understanding of a period of Antarctic ice sheet history that is relatively unconstrained at present and also potentially important in understanding past ice sheet-sea level interactions. This proposal will support an early career researcher\u0027s ongoing program of undergraduate education and research that is building a socio-economically diverse student body with students from backgrounds underrepresented in the geosciences. This proposal will also bring an early career researcher into Antarctic research.", "east": 164.122, "geometry": "POINT(164.101 -74.6115)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; Cosmogenic Dating; Exposure Age; LABORATORY; NOT APPLICABLE; Amd/Us; Ross Sea", "locations": "Ross Sea", "north": -74.6, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Goehring, Brent; Balco, Gregory; Todd, Claire", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "ICE-D", "repositories": "ICE-D", "science_programs": null, "south": -74.623, "title": "Collaborative Research: Terrestrial Exposure-Age Constraints on the last Glacial Maximum Extent of the Antarctic Ice Sheet in the Western Ross Sea", "uid": "p0000306", "west": 164.08}, {"awards": "1341712 Hallet, Bernard", "bounds_geometry": "POLYGON((160.9 -76.7,161.08 -76.7,161.26 -76.7,161.44 -76.7,161.62 -76.7,161.8 -76.7,161.98 -76.7,162.16 -76.7,162.34 -76.7,162.52 -76.7,162.7 -76.7,162.7 -76.79,162.7 -76.88,162.7 -76.97,162.7 -77.06,162.7 -77.15,162.7 -77.24,162.7 -77.33,162.7 -77.42,162.7 -77.51,162.7 -77.6,162.52 -77.6,162.34 -77.6,162.16 -77.6,161.98 -77.6,161.8 -77.6,161.62 -77.6,161.44 -77.6,161.26 -77.6,161.08 -77.6,160.9 -77.6,160.9 -77.51,160.9 -77.42,160.9 -77.33,160.9 -77.24,160.9 -77.15,160.9 -77.06,160.9 -76.97,160.9 -76.88,160.9 -76.79,160.9 -76.7))", "dataset_titles": "Long-term rock abrasion study in the Dry Valleys", "datasets": [{"dataset_uid": "601060", "doi": "10.15784/601060", "keywords": "Antarctica; Dry Valleys; Geology/Geophysics - Other; Rocks", "people": "Sletten, Ronald S.; Hallet, Bernard; Malin, Michael", "repository": "USAP-DC", "science_program": null, "title": "Long-term rock abrasion study in the Dry Valleys", "url": "https://www.usap-dc.org/view/dataset/601060"}], "date_created": "Fri, 13 Oct 2017 00:00:00 GMT", "description": "Paragraph for Public Audiences: Many of the natural processes that modify the landscape inhabited by humans occur over very long timescales, making them difficult to observe. Exceptions include rare catastrophic events such as earthquakes, volcanic eruptions, and floods that occur on short timescales. Many significant processes that affect the land and landscape that we inhabit operate on time scales imperceptible to humans. One of these processes is wind transport of sand, with related impacts to exposed rock surfaces and man-made objects, including buildings, windshields, solar panels and wind-farm turbine blades. The goal of this project is to gain an understanding of wind erosion processes over long timescales, in the Antarctic Dry Valleys, a cold desert environment where there were no competing processes (such as rain and vegetation) that might mask the effects. The main objective is recovery of rock samples that were deployed in 1983/1984 at 11 locations in the Antarctic Dry Valleys, along with measurements on the rock samples and characterization of the sites. In the late 1980\u0027s and early 1990\u0027s some of these samples were returned and indicated more time was needed to accumulate information about the timescales and impacts of the wind erosion processes. This project will allow collection of the remaining samples from this experiment after 30 to 31 years of exposure. The field work will be carried out during the 2014/15 Austral summer. The results will allow direct measurement of the abrasion rate and hence the volumes and timescales of sand transport; this will conclude the longest direct examination of such processes ever conducted. Appropriate scaling of the results may be applied to buildings, vegetation (crops), and other aspects of human presence in sandy and windy locations, in order to better determine the impact of these processes and possible mitigation of the impacts. The project is a collaborative effort between a small business, Malin Space Science Systems (MSSS), and the University of Washington (UW). MSSS will highlight this Antarctic research on its web site, by developing thematic presentations describing our research and providing a broad range of visual materials. The public will be engaged through daily updates on a website and through links to material prepared for viewing in Google Earth. UW students will be involved in the laboratory work and in the interpretation of the results. Technical Description of Project: The goal of this project is to study the role of wind abrasion by entrained particles in the evolution of the McMurdo Dry Valleys in the Transantarctic Mountains. During the 1983 to 1984 field seasons, over 5000 rock targets were installed at five heights facing the 4 cardinal directions at 10 locations (with an additional site containing fewer targets) to study rates of physical weathering due primarily to eolian abrasion. In addition, rock cubes and cylinders were deployed at each site to examine effects of chemical weathering. The initial examination of samples returned after 1, 5, and 10 years of exposure, showed average contemporary abrasion rates consistent with those determined by cosmogenic isotope studies, but further stress that \"average\" should not be interpreted as meaning \"uniform.\" The samples will be characterized using mass measurements wtih 0.01 mg precision balances, digital microphotography to compare the evolution of their surface features and textures, SEM imaging to examine the micro textures of abraded rock surfaces, and optical microscopy of thin sections of a few samples to examine the consequences of particle impacts extending below the abraded surfaces. As much as 60-80% of the abrasion measured in samples from 1984-1994 appears to have occurred during a few brief hours in 1984. This is consistent with theoretical models that suggest abrasion scales as the 5th power of wind velocity. The field work will allow return of multiple samples after three decades of exposure, which will provide a statistical sampling (beyond what is acquired by studying a single sample), and will yield the mass loss data in light of complementary environmental and sand kinetic energy flux data from other sources (e.g. LTER meteorology stations). This study promises to improve insights into one of the principal active geomorphic process in the Dry Valleys, an important cold desert environment, and the solid empirical database will provide general constraints on eolian abrasion under natural conditions.", "east": 162.7, "geometry": "POINT(161.8 -77.15)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -76.7, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Hallet, Bernard; Sletten, Ronald S.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.6, "title": "Collaborative Proposal: Decades-long Experiment on Wind-Driven Rock Abrasion in the Ice-Free Valleys, Antarctica", "uid": "p0000074", "west": 160.9}, {"awards": "1443554 Buys, Emmanuel", "bounds_geometry": "POLYGON((166.163 -76.665,166.2635 -76.665,166.364 -76.665,166.4645 -76.665,166.565 -76.665,166.6655 -76.665,166.766 -76.665,166.8665 -76.665,166.967 -76.665,167.0675 -76.665,167.168 -76.665,167.168 -76.782,167.168 -76.899,167.168 -77.016,167.168 -77.133,167.168 -77.25,167.168 -77.367,167.168 -77.484,167.168 -77.601,167.168 -77.718,167.168 -77.835,167.0675 -77.835,166.967 -77.835,166.8665 -77.835,166.766 -77.835,166.6655 -77.835,166.565 -77.835,166.4645 -77.835,166.364 -77.835,166.2635 -77.835,166.163 -77.835,166.163 -77.718,166.163 -77.601,166.163 -77.484,166.163 -77.367,166.163 -77.25,166.163 -77.133,166.163 -77.016,166.163 -76.899,166.163 -76.782,166.163 -76.665))", "dataset_titles": "Biosamples and observations from Weddell Seal colonies in McMurdo Sound during the 2015-2016 Antarctic field season", "datasets": [{"dataset_uid": "601028", "doi": "10.15784/601028", "keywords": "Antarctica; Biota; McMurdo Sound; Ross Sea; Sample/collection Description; Sample/Collection Description; Seals", "people": "Buys, Emmanuel; Hindle, Allyson", "repository": "USAP-DC", "science_program": null, "title": "Biosamples and observations from Weddell Seal colonies in McMurdo Sound during the 2015-2016 Antarctic field season", "url": "https://www.usap-dc.org/view/dataset/601028"}], "date_created": "Fri, 26 May 2017 00:00:00 GMT", "description": "The Weddell seal is a champion diving mammal. The physiology that permits these animals to sustain extended breath-hold periods and survive the extreme pressure of diving deep allows them to thrive in icy Antarctic waters. Key elements of their physiological specializations to breath-hold diving are their ability for remarkable adjustment of their heart and blood vessel system, coordinating blood pressure and flow to specific body regions based on their metabolic requirements, and their ability to sustain periods without oxygen. Identifying the details of these strategies has tremendous potential to better inform human medicine, helping us to develop novel therapies for cardiovascular trauma (e.g. stroke, heart attack) and diseases associated with blunted oxygen delivery to tissues (e.g. pneumonia, sepsis, or cancer). The goal of this project is to document specific genes that control these cardiovascular adjustments in seals, and to compare their abundance and activity with humans. Specifically, the investigators will study a signaling pathway that coordinates local blood flow. They will also use tissue samples to generate cultured cells from Weddell seals that can be used to study the molecular effects of low oxygen conditions in the laboratory. The project will further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. The project will train a pre-veterinary student researcher will conduct public outreach via a center for community health improvement, a multicultural affairs office, and a public aquarium. The goal of this study is to unravel the molecular mechanisms underlying the dive response. A hallmark of the dive response is tissue-specific vascular system regulation, likely resulting from variation in both nerve inputs and in production of local signaling molecules produced by blood vessel cells. The investigators will use emerging genomic information to begin to unravel the genetics underlying redistribution of the circulation during diving. They will also directly test the hypothesis that modifications in the signaling system prevent local blood vessel changes under low oxygen conditions, thereby allowing the centrally mediated diving reflex to override local physiological responses and to control the constriction of blood vessel walls in Weddell seals. They will perform RNA-sequencing of Weddell seal tissues and use the resulting sequence, along with information from other mammals such as dog, to obtain a full annotation (identifying all genes based on named features of reference genomes) of the existing genome assembly for the Weddell seal, facilitating comparative and species-specific genomic research. They will also generate a Weddell seal pluripotent stem cell line which should be a valuable research tool for cell biologists, molecular biologists and physiologists that will allow them to further test their hypotheses. It is expected that the proposed studies will advance our knowledge of the biochemical and physiological adaptations that allow the Weddell seal to thrive in the Antarctic environment.", "east": 167.168, "geometry": "POINT(166.6655 -77.25)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -76.665, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Buys, Emmanuel; Costa, Daniel; Zapol, Warren; Hindle, Allyson", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.835, "title": "Unraveling the Genomic and Molecular Basis of the Dive Response: Nitric Oxide Signaling and Vasoregulation in the Weddell Seal", "uid": "p0000072", "west": 166.163}, {"awards": "1245283 Passchier, Sandra", "bounds_geometry": "POLYGON((66 -68,67.3 -68,68.6 -68,69.9 -68,71.2 -68,72.5 -68,73.8 -68,75.1 -68,76.4 -68,77.7 -68,79 -68,79 -68.2,79 -68.4,79 -68.6,79 -68.8,79 -69,79 -69.2,79 -69.4,79 -69.6,79 -69.8,79 -70,77.7 -70,76.4 -70,75.1 -70,73.8 -70,72.5 -70,71.2 -70,69.9 -70,68.6 -70,67.3 -70,66 -70,66 -69.8,66 -69.6,66 -69.4,66 -69.2,66 -69,66 -68.8,66 -68.6,66 -68.4,66 -68.2,66 -68))", "dataset_titles": "Antarctic Geochemistry Data and Mean Annual Temperature Reconstruction through the Eocene-Oligocene Transition; GSA Data Repository Item 2016298 - Passchier, S., Ciarletta, D.J., Miriagos, T.E., Bijl, P.K., and Bohaty, S.M., 2016, An Antarctic stratigraphic record of step-wise ice growth through the Eocene-Oligocene transition: GSA Bulletin, doi:10.1130/B31482.1.; Particle-size distributions of Eocene-Oligocene sediment from ODP Site 739, Prydz Bay; Particle-size distributions of Eocene-Oligocene sediment from ODP Site 742, Prydz Bay; Particle-size distributions of Eocene sediment from ODP Site 1166, Prydz Bay", "datasets": [{"dataset_uid": "601454", "doi": "10.15784/601454", "keywords": "Antarctica; Eocene; Marine Geoscience; ODP742; Oligocene; Particle Size; Prydz Bay; Sediment Core Data", "people": "Ciarletta, Daniel; Passchier, Sandra", "repository": "USAP-DC", "science_program": null, "title": "Particle-size distributions of Eocene-Oligocene sediment from ODP Site 742, Prydz Bay", "url": "https://www.usap-dc.org/view/dataset/601454"}, {"dataset_uid": "000192", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Antarctic Geochemistry Data and Mean Annual Temperature Reconstruction through the Eocene-Oligocene Transition", "url": "https://www.ncdc.noaa.gov/paleo-search/study/21770"}, {"dataset_uid": "200200", "doi": "10.1130/2016298", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": " GSA Data Repository Item 2016298 - Passchier, S., Ciarletta, D.J., Miriagos, T.E., Bijl, P.K., and Bohaty, S.M., 2016, An Antarctic stratigraphic record of step-wise ice growth through the Eocene-Oligocene transition: GSA Bulletin, doi:10.1130/B31482.1.", "url": "https://gsapubs.figshare.com/articles/journal_contribution/Supplemental_material_An_Antarctic_stratigraphic_record_of_step-wise_ice_growth_through_the_Eocene-Oligocene_transition/12534185"}, {"dataset_uid": "601455", "doi": "10.15784/601455", "keywords": "Antarctica; Eocene; Marine Geoscience; ODP1166; Particle Size; Prydz Bay; Sediment Core Data", "people": "Passchier, Sandra; Ciarletta, Daniel", "repository": "USAP-DC", "science_program": null, "title": "Particle-size distributions of Eocene sediment from ODP Site 1166, Prydz Bay", "url": "https://www.usap-dc.org/view/dataset/601455"}, {"dataset_uid": "601453", "doi": "10.15784/601453", "keywords": "Antarctica; Eocene; Marine Geoscience; ODP739; Oligocene; Particle Size; Prydz Bay; Sediment Core Data", "people": "Ciarletta, Daniel; Passchier, Sandra", "repository": "USAP-DC", "science_program": null, "title": "Particle-size distributions of Eocene-Oligocene sediment from ODP Site 739, Prydz Bay", "url": "https://www.usap-dc.org/view/dataset/601453"}], "date_created": "Tue, 25 Apr 2017 00:00:00 GMT", "description": "Intellectual Merit: This project will investigate glacial advance and retreat of the East Antarctic Ice Sheet through the Eocene-Oligocene transition, a major episode of ice growth. In Prydz Bay, East Antarctica, a 130-170 m thick Eocene-Oligocene transition interval of glaciomarine sediments was cored in drillholes of the Ocean Drilling Program at Sites 739, 742 and 1166. Correlations between the Prydz Bay drillholes have recently been made through well-log and multichannel seismic interpretations. Recent drilling on the Wilkes Land margin of East Antarctica recovered earliest Oligocene sediments overlying a major regional unconformity in two drillholes. The PI will study the lithostratigraphy and weathering history of cores in the five drillholes, to establish a unique Eocene-Oligocene transition record within Antarctic continental margin sediments of glacial advance and retreat cycles, the onset of physical weathering, and glacio-isostasy and self-gravitation processes with implications for the margin architecture, sediment routing, and off-shore sediment dispersal. Cores from the five drillholes will be re-examined through detailed core description using an updated classification scheme, so that lithofacies can be compared between drillholes. Samples will be collected for detailed laser particle size and bulk major element geochemistry via ICP-AES to determine the degree of chemical alteration of the sediments. Phases of major ice growth will be recognized as marker beds of physically eroded sediment and will be correlated to isotopic records documenting Antarctic ice growth offshore in the Southern Ocean. Broader impacts: This project will benefit a large minority undergraduate student population through the availability of up to two paid laboratory internships, a classroom exercise, and the availability of research equipment supported by this award. The project also allows support and training of a graduate student.", "east": 79.0, "geometry": "POINT(72.5 -69)", "instruments": null, "is_usap_dc": true, "keywords": "ICE SHEETS; Not provided; Prydz Bay; SEDIMENTS", "locations": "Prydz Bay", "north": -68.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Passchier, Sandra", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "NCEI; Publication; USAP-DC", "science_programs": null, "south": -70.0, "title": "The Stratigraphic Expression of the Onset of Glaciation in Eocene-Oligocene Successions on the Antarctic Continental Margin", "uid": "p0000309", "west": 66.0}, {"awards": "0538049 Steig, Eric; 0538520 Thiemens, Mark", "bounds_geometry": "POINT(-112.085 -79.5)", "dataset_titles": "Multiple Isotope Analysis of Sulfate in the West Antarctic Ice Sheet Divide Ice Core; WAIS Divide sulfate and nitrate isotopes; WAIS ice core isotope data #387, 385 (full data link not provided)", "datasets": [{"dataset_uid": "609479", "doi": "10.7265/N5BG2KXH", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Thiemens, Mark H.", "repository": "USAP-DC", "science_program": null, "title": "Multiple Isotope Analysis of Sulfate in the West Antarctic Ice Sheet Divide Ice Core", "url": "https://www.usap-dc.org/view/dataset/609479"}, {"dataset_uid": "601007", "doi": "10.15784/601007", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Nitrate; Oxygen Isotope; Sulfate; WAIS Divide; WAIS Divide Ice Core", "people": "Steig, Eric J.; Alexander, Becky", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide sulfate and nitrate isotopes", "url": "https://www.usap-dc.org/view/dataset/601007"}, {"dataset_uid": "002512", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "WAIS ice core isotope data #387, 385 (full data link not provided)", "url": "http://www.waisdivide.unh.edu/"}], "date_created": "Tue, 25 Apr 2017 00:00:00 GMT", "description": "0538520\u003cbr/\u003eThiemens\u003cbr/\u003eThis award supports a project to develop the first complete record of multiple isotope ratios of nitrate and sulfate covering the last ~100,000 years, from the deep ice core planned for the central ice divide of the West Antarctic Ice Sheet (WAIS). The WAIS Divide ice core will be the highest resolution long ice core obtained from Antarctica and we can expect important complementary information to be available, including accurate knowledge of past accumulation rates, temperatures, and compounds such as H2O2, CO and CH4. These compounds play significant roles in global atmospheric chemistry and climate. Especially great potential lies in the use of multiple isotope signatures. The unique mass independent fractionation (MIF) 17O signature of ozone is observed in both nitrate and sulfate, due to the interaction of their precursors with ozone. The development of methods to measure the multiple-isotope composition of small samples of sulfate and nitrate makes continuous high resolution measurements on ice cores feasible for the first time. Recent work has shown that such measurements can be used to determine the hydroxyl radial (OH) and ozone (O3) concentrations in the paleoatmosphere as well as to apportion sulfate and nitrate sources. There is also considerable potential in using these isotope measurements to quantify post depositional changes. In the first two years, continuous measurements from the upper ~100-m of ice at WAIS divide will be obtained, to provide a detailed look at seasonal through centennial scale variability. In the third year, measurements will be made throughout the available depth of the deep core (expected to reach ~500 m at this time). The broader impacts of the project include applications to diverse fields including atmospheric chemistry, glaciology, meteorology, and paleoclimatology. Because nitrate and sulfate are important atmospheric pollutants, the results will also have direct and relevance to global environmental policy. This project will coincide with the International Polar Year (2007-2008), and contributes to goals of the IPY, which include the fostering of interdisciplinary research toward enhanced understanding of atmospheric chemistry and climate in the polar regions.", "east": -112.085, "geometry": "POINT(-112.085 -79.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Isotope Ratios; Temperature; Sulfate; West Antarctic; Paleoatmosphere; LABORATORY; Ice Core; Ice Core Data; Mass Independent Fractionation; FIELD SURVEYS; Not provided; Accumulation Rate; Oxygen Isotope; FIELD INVESTIGATION; Ice Core Chemistry; Isotope", "locations": "West Antarctic", "north": -79.5, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Alexander, Becky; Steig, Eric J.; Thiemens, Mark H.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "Project website; USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.5, "title": "Collaborative Research: Multiple-isotope Analysis of Nitrate and Sulfate in the West Antarctic Ice Sheet Divide Ice Core", "uid": "p0000020", "west": -112.085}, {"awards": "0947821 Ashworth, Allan", "bounds_geometry": "POLYGON((-180 -85.095235,-145.3719418 -85.095235,-110.7438836 -85.095235,-76.1158254 -85.095235,-41.4877672 -85.095235,-6.859709 -85.095235,27.7683492 -85.095235,62.3964074 -85.095235,97.0244656 -85.095235,131.6525238 -85.095235,166.280582 -85.095235,166.280582 -85.0996451,166.280582 -85.1040552,166.280582 -85.1084653,166.280582 -85.1128754,166.280582 -85.1172855,166.280582 -85.1216956,166.280582 -85.1261057,166.280582 -85.1305158,166.280582 -85.1349259,166.280582 -85.139336,131.6525238 -85.139336,97.0244656 -85.139336,62.3964074 -85.139336,27.7683492 -85.139336,-6.859709 -85.139336,-41.4877672 -85.139336,-76.1158254 -85.139336,-110.7438836 -85.139336,-145.3719418 -85.139336,180 -85.139336,178.6280582 -85.139336,177.2561164 -85.139336,175.8841746 -85.139336,174.5122328 -85.139336,173.140291 -85.139336,171.7683492 -85.139336,170.3964074 -85.139336,169.0244656 -85.139336,167.6525238 -85.139336,166.280582 -85.139336,166.280582 -85.1349259,166.280582 -85.1305158,166.280582 -85.1261057,166.280582 -85.1216956,166.280582 -85.1172855,166.280582 -85.1128754,166.280582 -85.1084653,166.280582 -85.1040552,166.280582 -85.0996451,166.280582 -85.095235,167.6525238 -85.095235,169.0244656 -85.095235,170.3964074 -85.095235,171.7683492 -85.095235,173.140291 -85.095235,174.5122328 -85.095235,175.8841746 -85.095235,177.2561164 -85.095235,178.6280582 -85.095235,-180 -85.095235))", "dataset_titles": "Neogene Paleoecology of the Beardmore Glacier Region", "datasets": [{"dataset_uid": "600387", "doi": "10.15784/600387", "keywords": "Antarctica; Beardmore Glacier; Biota; Fossil; GPS; Oliver Bluffs; Paleoclimate; Sample/collection Description; Sample/Collection Description; Seeds; Solid Earth; Transantarctic Mountains", "people": "Ashworth, Allan", "repository": "USAP-DC", "science_program": null, "title": "Neogene Paleoecology of the Beardmore Glacier Region", "url": "https://www.usap-dc.org/view/dataset/600387"}], "date_created": "Thu, 12 Jan 2017 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThe primary goal of this project is to sample two beds in the Meyer Desert Formation, which are known to be especially fossiliferous containing plants, insects, other arthropods, freshwater mollusks, and fish. There is a possibility that the teeth and bones of a small marsupial could also be found. Previous studies have demonstrated that these horizons contain unique fossil assemblages that provide information used to reconstruct paleoenvironments and paleoclimate. The fossils represent organisms previously not found in Antarctica and consequently their study will lead to the development of new hypotheses concerning southern hemisphere biogeography. The new discoveries will also increase knowledge of paleoenvironments and paleoclimates as well as biogeographic relationships of the biota of the southern hemisphere. For some organisms, such as Nothofagus (Southern Beech) or the trechine groundbeetle, fossils would confirm that Antarctica was inhabited as part of Gondwana. For other fossils, such as the cyclorrhaphan fly or freshwater mollusks not expected to have inhabited Antarctica, the discoveries will require a reassessment of phylogenetic interpretations and a reinvestigation of the role of Antarctica in the evolutionary history of those organisms. The new fossil-based knowledge will require integration with interpretations from cladistics and molecular genetics to develop more comprehensive phylogenetic hypotheses for a range of organisms.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThe discovery of fossils in Antarctica and implications for climate change has proven to be popular with the media. This attention will help disseminate the results of this study. Before the field season, the PI will work with local media and with area schools to set up field interviews and web casts from Antarctica. The project will also involve the training of a graduate student in the field and in the follow up studies of the fossils in the laboratory.", "east": 166.280582, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -85.095235, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Ashworth, Allan", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.139336, "title": "Neogene Paleoecology of the Beardmore Glacier Region", "uid": "p0000424", "west": 166.280582}, {"awards": "0539578 Alley, Richard; 0539232 Cuffey, Kurt", "bounds_geometry": "POINT(112.083 -79.467)", "dataset_titles": "Grain Size Full Population Dataset from WDC06A Core; Temperature Profile of the West Antarctic Ice Sheet Divide Deep Borehole; Temperature Reconstruction at the West Antarctic Ice Sheet Divide; Updated (2017) bubble number-density, size, shape, and modeled paleoclimate data; WAIS Divide Ice Core Vertical Thin Section Low-resolution Digital Imagery; WAIS Divide Surface and Snow-pit Data, 2009-2013; WDC 06A Mean Grain Size Data", "datasets": [{"dataset_uid": "601079", "doi": "10.15784/601079", "keywords": "Antarctica; Atmosphere; AWS; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Meteorology; Physical Properties; Snow Pit; Temperature; WAIS Divide; WAIS Divide Ice Core; Weatherstation", "people": "Alley, Richard; Fegyveresi, John", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Surface and Snow-pit Data, 2009-2013", "url": "https://www.usap-dc.org/view/dataset/601079"}, {"dataset_uid": "609656", "doi": "10.7265/N5MC8X08", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Grain Size; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Fitzpatrick, Joan; Cravens, Eric D.", "repository": "USAP-DC", "science_program": null, "title": "WDC 06A Mean Grain Size Data", "url": "https://www.usap-dc.org/view/dataset/609656"}, {"dataset_uid": "600377", "doi": "10.15784/600377", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Nitrogen; Paleoclimate; Temperature; WAIS Divide; WAIS Divide Ice Core", "people": "Cuffey, Kurt M.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Temperature Reconstruction at the West Antarctic Ice Sheet Divide", "url": "https://www.usap-dc.org/view/dataset/600377"}, {"dataset_uid": "609655", "doi": "10.7265/N5VX0DG0", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Grain Size; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Cravens, Eric D.; Fitzpatrick, Joan", "repository": "USAP-DC", "science_program": null, "title": "Grain Size Full Population Dataset from WDC06A Core", "url": "https://www.usap-dc.org/view/dataset/609655"}, {"dataset_uid": "609550", "doi": "10.7265/N5V69GJW", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Temperature; WAIS Divide; WAIS Divide Ice Core", "people": "Clow, Gary D.; Cuffey, Kurt M.", "repository": "USAP-DC", "science_program": null, "title": "Temperature Profile of the West Antarctic Ice Sheet Divide Deep Borehole", "url": "https://www.usap-dc.org/view/dataset/609550"}, {"dataset_uid": "609654", "doi": "10.7265/N5GM858X", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Photo/video; Photo/Video; Thin Sections; WAIS Divide; WAIS Divide Ice Core", "people": "Cravens, Eric D.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core Vertical Thin Section Low-resolution Digital Imagery", "url": "https://www.usap-dc.org/view/dataset/609654"}, {"dataset_uid": "601224", "doi": "10.15784/601224", "keywords": "Antarctic; Antarctica; Bubble Number Density; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Records; NSF-ICF Microtome and Photography Stage; Paleoclimate; Physical Properties; Snow/ice; Snow/Ice; WAIS Divide Ice Core; West Antarctic Ice Sheet", "people": "Voigt, Donald E.; Fegyveresi, John; Fitzpatrick, Joan; Spencer, Matthew; Alley, Richard", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Updated (2017) bubble number-density, size, shape, and modeled paleoclimate data", "url": "https://www.usap-dc.org/view/dataset/601224"}], "date_created": "Thu, 12 Jan 2017 00:00:00 GMT", "description": "0539578\u003cbr/\u003eAlley \u003cbr/\u003eThis award supports a five-year collaborative project to study the physical-properties of the planned deep ice core and the temperature of the ice in the divide region of the West Antarctic Ice Sheet. The intellectual merit of the proposed research is to provide fundamental information on the state of the ice sheet, to validate the integrity of the climate record, to help reconstruct the climate record, and to understand the flow state and history of the ice sheet. This information will initially be supplied to other investigators and then to the public and to appropriate databases, and will be published in the refereed scientific literature. The objectives of the proposed research are to aid in dating of the core through counting of annual layers, to identify any exceptionally warm intervals in the past through counting of melt layers, to learn as much as possible about the flow state and history of the ice through measurement of size, shape and arrangements of bubbles, clathrate inclusions, grains and their c-axes, to identify any flow disturbances through these indicators, and to learn the history of snow accumulation and temperature from analyses of bubbles and borehole temperatures combined with flow modeling and use of data from other collaborators. These results will then be synthesized and communicated. Failure to examine cores can lead to erroneous identification of flow features as climate changes, so careful examination is required. Independent reconstruction of accumulation rate provides important data on climate change, and improves confidence in interpretation of other climate indicators. Borehole temperatures are useful recorders of temperature history. Flow state and history are important in understanding climate history and potential contribution of ice to sea-level change. By contributing to all of these and additional issues, the proposed research will be of considerable value. The broader impacts of the research include making available to the public improved knowledge on societally central questions involving abrupt climate change and sea-level rise. The project will also contribute to the education of advanced students, will utilize results in education of introductory students, and will make vigorous efforts in outreach, informal science education, and supplying information to policy-makers as requested, thus contributing to a more-informed society.", "east": 112.083, "geometry": "POINT(112.083 -79.467)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERA; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS", "is_usap_dc": true, "keywords": "LABORATORY; WAIS Divide; Ice Core; Temperature Profiles; FIELD SURVEYS; Bubble Number Density; GROUND-BASED OBSERVATIONS; Wais Divide-project", "locations": "WAIS Divide", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Fitzpatrick, Joan; Alley, Richard; Fegyveresi, John; Clow, Gary D.; Cuffey, Kurt M.; Cravens, Eric D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Collaborative Research: Physical Properties of the WAIS Divide Deep Core", "uid": "p0000038", "west": 112.083}, {"awards": "0944671 Wiens, Douglas; 0944794 Winberry, J. Paul", "bounds_geometry": "POLYGON((-163 -83.7,-161.9 -83.7,-160.8 -83.7,-159.7 -83.7,-158.6 -83.7,-157.5 -83.7,-156.4 -83.7,-155.3 -83.7,-154.2 -83.7,-153.1 -83.7,-152 -83.7,-152 -83.8,-152 -83.9,-152 -84,-152 -84.1,-152 -84.2,-152 -84.3,-152 -84.4,-152 -84.5,-152 -84.6,-152 -84.7,-153.1 -84.7,-154.2 -84.7,-155.3 -84.7,-156.4 -84.7,-157.5 -84.7,-158.6 -84.7,-159.7 -84.7,-160.8 -84.7,-161.9 -84.7,-163 -84.7,-163 -84.6,-163 -84.5,-163 -84.4,-163 -84.3,-163 -84.2,-163 -84.1,-163 -84,-163 -83.9,-163 -83.8,-163 -83.7))", "dataset_titles": "Geophysical Study of Ice Stream Stick Slip; Whillans Ice Stream Stick-slip", "datasets": [{"dataset_uid": "000169", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Geophysical Study of Ice Stream Stick Slip", "url": "http://ds.iris.edu/mda/2C/?timewindow=2010-2011"}, {"dataset_uid": "609632", "doi": "10.7265/N5PC309V", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Whillans Ice Stream", "people": "Anandakrishnan, Sridhar; Winberry, Paul; Wiens, Douglas; Alley, Richard", "repository": "USAP-DC", "science_program": null, "title": "Whillans Ice Stream Stick-slip", "url": "https://www.usap-dc.org/view/dataset/609632"}], "date_created": "Wed, 16 Nov 2016 00:00:00 GMT", "description": "This award supports a three-year study of the ongoing deceleration and stick-slip motion of Whillans Ice Stream (WIS), West Antarctica. Understanding the dynamic behavior of ice streams is essential for predicting the future of the West Antarctic Ice Sheet (WAIS). Despite being one of the best-studied ice streams in Antarctica, the surprising flow characteristics of WIS continue to demand interdisciplinary research. Recent estimates indicate that the WIS may stagnate within 50 years, resulting in a significant change to the mass balance of the Siple Coast sector of West Antarctica. The reasons for the ongoing stagnation are not well known, and are possibly linked (causally or coincidentally) to the stick-slip behavior. Our recent work on WIS stick-slip motion suggest that all slip events nucleate from a common location on the ice stream, suggesting that a relatively small (approximately 10 km in diameter) region of the exerts fundamental control over the flow of this large ice stream (100s of km long and 100 kilometers wide). We hypothesize that this is a region of increased bed strength and our measurements will address that hypothesis. We will deploy a series of GPS receivers and seismometers on the ice stream to accurately locate the nucleation region so that a comprehensive ground based geophysical survey can be conducted to determine the physical properties of bed at the nucleation point. The ground geophysical program will consist of reflection seismic and ice-penetrating radar studies that will better constrain the properties of both the hypothesized higher-friction nucleation zone and the surrounding regions. Slip events also generate seismic energy that can be recorded 100s of km away from the ice stream, thus, the GPS and seismometer deployment will also aid us in relating seismic waveforms directly with the rapid motion that occurs during slip events. The increased ability to relate rupture processes with seismic emissions will allow us to use archived seismic records to explore changes in the behavior of WIS during the later half of the 20th century. Broader impacts of this study include improved knowledge ice sheet dynamics, which remain a poorly constrained component of the climate system, thus, limiting our ability to predict the Earth\u0027s response to climate change. The scientific work includes the education of two graduate students and continued training of one post-doctoral scholar, thus helping to train the next generation of polar scientists. We will expose the broader public to polar science through interactions with the media and by take advantaging of programs to include K-12 educators in our field work.", "east": -152.0, "geometry": "POINT(-157.5 -84.2)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": true, "keywords": "West Antarctic Ice Sheet; Geodesy; GROUND-BASED OBSERVATIONS; Not provided; Seismic; Geodetic Gps Data", "locations": "West Antarctic Ice Sheet", "north": -83.7, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Winberry, Paul; Anandakrishnan, Sridhar; Alley, Richard; Wiens, Douglas", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided", "repo": "IRIS", "repositories": "IRIS; USAP-DC", "science_programs": null, "south": -84.7, "title": "Collaborative Research: Geophysical Study of Ice Stream Stick-slip Dynamics", "uid": "p0000053", "west": -163.0}, {"awards": "1043018 Pollard, David; 1043485 Curtice, Josh; 1043517 Clark, Peter", "bounds_geometry": "POLYGON((163.5 -77.57,163.685 -77.57,163.87 -77.57,164.055 -77.57,164.24 -77.57,164.425 -77.57,164.61 -77.57,164.795 -77.57,164.98 -77.57,165.165 -77.57,165.35 -77.57,165.35 -77.645,165.35 -77.72,165.35 -77.795,165.35 -77.87,165.35 -77.945,165.35 -78.02,165.35 -78.095,165.35 -78.17,165.35 -78.245,165.35 -78.32,165.165 -78.32,164.98 -78.32,164.795 -78.32,164.61 -78.32,164.425 -78.32,164.24 -78.32,164.055 -78.32,163.87 -78.32,163.685 -78.32,163.5 -78.32,163.5 -78.245,163.5 -78.17,163.5 -78.095,163.5 -78.02,163.5 -77.945,163.5 -77.87,163.5 -77.795,163.5 -77.72,163.5 -77.645,163.5 -77.57))", "dataset_titles": "A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea; Ice Sheet Model Output, West Antarctic Ice Sheet Deglaciation", "datasets": [{"dataset_uid": "600123", "doi": "10.15784/600123", "keywords": "Antarctica; Cosmogenic Dating; Ross Sea; Sample/collection Description; Sample/Collection Description; Southern Ocean; WAIS", "people": "Kurz, Mark D.; Curtice, Josh", "repository": "USAP-DC", "science_program": null, "title": "A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea", "url": "https://www.usap-dc.org/view/dataset/600123"}, {"dataset_uid": "609639", "doi": "10.7265/N5NC5Z53", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model", "people": "Pollard, David", "repository": "USAP-DC", "science_program": null, "title": "Ice Sheet Model Output, West Antarctic Ice Sheet Deglaciation", "url": "https://www.usap-dc.org/view/dataset/609639"}], "date_created": "Sat, 15 Oct 2016 00:00:00 GMT", "description": "1043517/Clark This award supports a project to develop a better understanding of the response of the WAIS to climate change. The timing of the last deglaciation of the western Ross Sea will be improved using in situ terrestrial cosmogenic nuclides (3He, 10Be, 14C, 26Al, 36Cl) to date glacial erratics at key areas and elevations along the western Ross Sea coast. A state-of-the art ice sheet-shelf model will be used to identify mechanisms of deglaciation of the Ross Sea sector of WAIS. The model results and forcing will be compared with observations including the new cosmogenic data proposed here, with the aim of better determining and understanding the history and causes of WAIS deglaciation in the Ross Sea. There is considerable uncertainty, however, in the history of grounding line retreat from its last glacial maximum position, and virtually nothing is known about the timing of ice- surface lowering prior to ~10,000 years ago. Given these uncertainties, we are currently unable to assess one of the most important questions regarding the last deglaciation of the global ice sheets, namely as to whether the Ross Sea sector of WAIS contributed significantly to meltwater pulse 1A (MWP-1A), an extraordinarily rapid (~500-year duration) episode of ~20 m sea-level rise that occurred ~14,500 years ago. The intellectual merit of this project is that recent observations of startling changes at the margins of the Greenland and Antarctic ice sheets indicate that dynamic responses to warming may play a much greater role in the future mass balance of ice sheets than considered in current numerical projections of sea level rise. The broader impacts of this work are that it has direct societal relevance to developing an improved understanding of the response of the West Antarctic ice sheet to current and possible future environmental changes including the sea-level response to glacier and ice sheet melting due to global warming. The PI will communicate results from this project to a variety of audiences through the publication of peer-reviewed papers and by giving talks to public audiences. Finally the project will support a graduate student and undergraduate students in all phases of field-work, laboratory work and data interpretation.", "east": 165.35, "geometry": "POINT(164.425 -77.945)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e DATA ANALYSIS \u003e ENVIRONMENTAL MODELING \u003e COMPUTER", "is_usap_dc": true, "keywords": "Ocean Depth; Not provided; Bed Elevation; Model Output; Sea Level Rise; Surface Accumulation Rate; Surface Melt Rate; Ocean Melt Rate; Total Ice Volume; Modeling; Calving Rate; Total Ice Area; LABORATORY", "locations": null, "north": -77.57, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Pollard, David; Curtice, Josh; Clark, Peter; Kurz, Mark D.", "platforms": "Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.32, "title": "Collaborative Research: A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea", "uid": "p0000194", "west": 163.5}, {"awards": "1043092 Steig, Eric; 1043167 White, James", "bounds_geometry": "POINT(-112.08 -79.47)", "dataset_titles": "Resampling of Deep Polar Ice Cores using Information Theory; Seasonal temperatures in West Antarctica during the Holocene ; Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core; WAIS Divide Ice Core Discrete CH4 (80-3403m)", "datasets": [{"dataset_uid": "600169", "doi": "10.15784/600169", "keywords": "Antarctica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; Snow Accumulation; WAIS Divide; WAIS Divide Ice Core", "people": "Morris, Valerie; Jones, Tyler R.; White, James; Vaughn, Bruce", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "url": "https://www.usap-dc.org/view/dataset/600169"}, {"dataset_uid": "601741", "doi": "10.15784/601741", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Methane; WAIS", "people": "Brook, Edward J.; Sowers, Todd A.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core Discrete CH4 (80-3403m)", "url": "https://www.usap-dc.org/view/dataset/601741"}, {"dataset_uid": "601603", "doi": "10.15784/601603", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Seasonality; Seasonal Temperatures; Temperature; Water Isotopes; West Antarctic Ice Sheet", "people": "Jones, Tyler R.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Seasonal temperatures in West Antarctica during the Holocene ", "url": "https://www.usap-dc.org/view/dataset/601603"}, {"dataset_uid": "601365", "doi": "10.15784/601365", "keywords": "Antarctica; Delta 18O; Isotope; WAIS Divide; WAIS Divide Ice Core; West Antarctic Ice Sheet", "people": "Jones, Tyler R.; Vaughn, Bruce; White, James; Morris, Valerie; Garland, Joshua", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Resampling of Deep Polar Ice Cores using Information Theory", "url": "https://www.usap-dc.org/view/dataset/601365"}, {"dataset_uid": "601274", "doi": "10.15784/601274", "keywords": "Antarctica; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Snow/ice; Snow/Ice; WAIS Divide; WAIS Divide Ice Core; West Antarctic Ice Sheet", "people": "Jones, Tyler R.; Bradley, Elizabeth; Morris, Valerie; Price, Michael; White, James; Vaughn, Bruce; Garland, Joshua", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "url": "https://www.usap-dc.org/view/dataset/601274"}], "date_created": "Thu, 15 Sep 2016 00:00:00 GMT", "description": "Steig/1043092 This award supports a project to contribute one of the cornerstone analyses, stable isotopes of ice (Delta-D, Delta-O18) to the ongoing West Antarctic Ice Sheet Divide (WAIS) deep ice core. The WAIS Divide drilling project, a multi-institution project to obtain a continuous high resolution ice core record from central West Antarctica, reached a depth of 2560 m in early 2010; it is expected to take one or two more field seasons to reach the ice sheet bed (~3300 m), plus an additional four seasons for borehole logging and other activities including proposed replicate coring. The current proposal requests support to complete analyses on the WAIS Divide core to the base, where the age will be ~100,000 years or more. These analyses will form the basis for the investigation of a number of outstanding questions in climate and glaciology during the last glacial period, focused on the dynamics of the West Antarctic Ice Sheet and the relationship of West Antarctic climate to that of the Northern polar regions, the tropical Pacific, and the rest of the globe, on time scales ranging from years to tens of thousands of years. One new aspect of this work is the growing expertise at the University of Washington in climate modeling with isotope-tracer-enabled general circulation models, which will aid in the interpretation of the data. Another major new aspect is the completion and use of a high-resolution, semi-automated sampling system at the University of Colorado, which will permit the continuous analysis of isotope ratios via laser spectroscopy, at an effective resolution of ~2 cm or less, providing inter-annual time resolution for most of the core. Because continuous flow analyses of stable ice isotopes is a relatively new measurement, we will complement them with parallel measurements, every ~10-20 m, using traditional discrete sampling and analysis by mass spectrometry at the University of Washington. The intellectual merit and the overarching goal of the work are to see Inland WAIS become the reference ice isotope record for West Antarctica. The broader impacts of the work are that the data generated in this project pertain directly to policy-relevant and immediate questions of the stability of the West Antarctic ice sheet, and thus past and future changes in sea level, as well as the nature of climate change in the high southern latitudes. The project will also contribute to the development of modern isotope analysis techniques using laser spectroscopy, with applications well beyond ice cores. The project will involve a graduate student and postdoc who will work with both P.I.s, and spend time at both institutions. Data will be made available rapidly through the Antarctic Glaciological Data Center, for use by other researchers and the public.", "east": -112.08, "geometry": "POINT(-112.08 -79.47)", "instruments": null, "is_usap_dc": true, "keywords": "LABORATORY", "locations": null, "north": -79.47, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "White, James; Vaughn, Bruce; Jones, Tyler R.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.47, "title": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "uid": "p0000078", "west": -112.08}, {"awards": "1141877 Aronson, Richard", "bounds_geometry": "POLYGON((-111.18 -49.98,-105.429 -49.98,-99.678 -49.98,-93.927 -49.98,-88.176 -49.98,-82.425 -49.98,-76.674 -49.98,-70.923 -49.98,-65.172 -49.98,-59.421 -49.98,-53.67 -49.98,-53.67 -52.826,-53.67 -55.672,-53.67 -58.518,-53.67 -61.364,-53.67 -64.21,-53.67 -67.056,-53.67 -69.902,-53.67 -72.748,-53.67 -75.594,-53.67 -78.44,-59.421 -78.44,-65.172 -78.44,-70.923 -78.44,-76.674 -78.44,-82.425 -78.44,-88.176 -78.44,-93.927 -78.44,-99.678 -78.44,-105.429 -78.44,-111.18 -78.44,-111.18 -75.594,-111.18 -72.748,-111.18 -69.902,-111.18 -67.056,-111.18 -64.21,-111.18 -61.364,-111.18 -58.518,-111.18 -55.672,-111.18 -52.826,-111.18 -49.98))", "dataset_titles": "Climate Change and Predatory Invasion of the Antarctic Benthos; Expedition Data; Material properties of the exoskeleton of Paralomis birsteini", "datasets": [{"dataset_uid": "001417", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1310"}, {"dataset_uid": "601109", "doi": "10.15784/601109", "keywords": "Antarctica; Biota; Callinectes; Exoskeleton; Fish; Glaciers/ice Sheet; Glaciers/Ice Sheet; Paralomis", "people": "Steffel, Brittan", "repository": "USAP-DC", "science_program": null, "title": "Material properties of the exoskeleton of Paralomis birsteini", "url": "https://www.usap-dc.org/view/dataset/601109"}, {"dataset_uid": "600385", "doi": "10.15784/600385", "keywords": "Antarctica; Antarctic Peninsula; Anvers Island; Benthos; Biota; Camera Tow; LMG1502; Marguerite Bay; NBP1002; NBP1310; Oceans; Photo/video; Photo/Video; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Aronson, Richard", "repository": "USAP-DC", "science_program": null, "title": "Climate Change and Predatory Invasion of the Antarctic Benthos", "url": "https://www.usap-dc.org/view/dataset/600385"}, {"dataset_uid": "600171", "doi": "10.15784/600171", "keywords": "Antarctica; Antarctic Peninsula; Anvers Island; Benthos; Biota; Camera Tow; LMG1502; Marguerite Bay; NBP1002; NBP1310; Oceans; Photo/video; Photo/Video; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Aronson, Richard", "repository": "USAP-DC", "science_program": null, "title": "Climate Change and Predatory Invasion of the Antarctic Benthos", "url": "https://www.usap-dc.org/view/dataset/600171"}], "date_created": "Wed, 14 Sep 2016 00:00:00 GMT", "description": "Elevated temperatures and ocean acidification are both threatening the Southern Ocean. The effects of these environmental changes are poorly understood, but preliminary data suggest that they are driving a biological invasion. Specifically, large populations of skeleton-crushing king crabs, Paralomis birsteini, have been detected off Marguerite Bay on the West Antarctic Peninsula. These crabs appear to be invading the continental shelf region where benthic communities have evolved in the absence of such top-predators. Thus, this invasion could result in a wholesale restructuring of the Antarctic benthic ecosystem. The proposed work seeks to document this invasion and better understand the effects of the introduction of P. birsteini on the ecology of this region. A towed underwater vehicle will be used to photographically image communities, and communities with and without P. birsteini will be compared quantitatively. Additionally, crabs will trapped and various aspects of their morphology and physiology will be assessed. This research is unique in that it will document a biological invasion in real-time and it will therefore enhance our general understandings of the drivers of invasion and resilience in biological communities. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of undergraduate and graduate students and will foster an international collaboration with British scientists. Researchers on this project will participate in outreach thorough the development of K-12 curricular materials.", "east": -53.67, "geometry": "POINT(-82.425 -64.21)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "R/V NBP; Not provided", "locations": null, "north": -49.98, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Aronson, Richard", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -78.44, "title": "Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos", "uid": "p0000303", "west": -111.18}, {"awards": "1246202 Hofmann, Gretchen", "bounds_geometry": "POLYGON((163.317388 -77.3354,163.6520742 -77.3354,163.9867604 -77.3354,164.3214466 -77.3354,164.6561328 -77.3354,164.990819 -77.3354,165.3255052 -77.3354,165.6601914 -77.3354,165.9948776 -77.3354,166.3295638 -77.3354,166.66425 -77.3354,166.66425 -77.386975,166.66425 -77.43855,166.66425 -77.490125,166.66425 -77.5417,166.66425 -77.593275,166.66425 -77.64485,166.66425 -77.696425,166.66425 -77.748,166.66425 -77.799575,166.66425 -77.85115,166.3295638 -77.85115,165.9948776 -77.85115,165.6601914 -77.85115,165.3255052 -77.85115,164.990819 -77.85115,164.6561328 -77.85115,164.3214466 -77.85115,163.9867604 -77.85115,163.6520742 -77.85115,163.317388 -77.85115,163.317388 -77.799575,163.317388 -77.748,163.317388 -77.696425,163.317388 -77.64485,163.317388 -77.593275,163.317388 -77.5417,163.317388 -77.490125,163.317388 -77.43855,163.317388 -77.386975,163.317388 -77.3354))", "dataset_titles": "mRNA sequencing - RNAseq; Nearshore pH, temperature, (salinity, depth) at mooring sites in McMurdo Sound, Antarctica, Overwinter 2011-2016; pH temp sal measurement data", "datasets": [{"dataset_uid": "601141", "doi": "10.15784/601141", "keywords": "Antarctica; McMurdo Sound; Mcmurdo Station; Mooring; Oceans; Ocean Temperature; PH; Physical Oceanography; Ross Sea; Sea Surface Temperature; Seawater Measurements; Southern Ocean; Temperature", "people": "Hofmann, Gretchen; Hoshijima, Umihiko; Kapsenberg, Lydia", "repository": "USAP-DC", "science_program": null, "title": "Nearshore pH, temperature, (salinity, depth) at mooring sites in McMurdo Sound, Antarctica, Overwinter 2011-2016", "url": "https://www.usap-dc.org/view/dataset/601141"}, {"dataset_uid": "000181", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "mRNA sequencing - RNAseq", "url": "http://www.bco-dmo.org/dataset/639502"}, {"dataset_uid": "002576", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "pH temp sal measurement data", "url": "https://www.bco-dmo.org/dataset/639502"}], "date_created": "Tue, 13 Sep 2016 00:00:00 GMT", "description": "The research supported in this project will examine the effects of environmental change on a key Antarctic marine invertebrate, a pelagic mollusk, the pteropod, Limacina helicina antarctica. There are two main activities in this project: (1) to deploy oceanographic equipment ? in this case, autonomously recording pH sensors called SeaFETs and other devices that record temperature and salinity, and (2) to use these environmental data in the laboratory at McMurdo Station to study the response of the marine invertebrates to future changes in water quality that is expected in the next few decades. Notably, changes in oceanic pH (aka ocean acidification) and ocean warming are projected to be particularly threatening to calcifying marine organisms in cold-water, high latitude seas, making tolerance data on these organisms a critical research need in Antarctic marine ecosystems. These Antarctic shelled-animals are especially vulnerable to dissolution stress from ocean acidification because they currently inhabit seawater that is barely at the saturation level to support biogenic calcification. Indeed, these polar animals are considered to be the \u0027first responders\u0027 to chemical changes in the surface oceans. Thus, this project will lead to information about the adaptive capacity of L. helcina antarctica. From an ecological perspective this is important because this animal is a critical part of the Antarctic food chain in coastal waters and changes in its abundance will impact other species. Finally, the research conducted in this project will serve as a training and educational opportunity for undergraduate and graduate students as well as postdoctoral scholars.", "east": 166.66425, "geometry": "POINT(164.990819 -77.593275)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.3354, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Hofmann, Gretchen", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "BCO-DMO; USAP-DC", "science_programs": null, "south": -77.85115, "title": "Ocean Acidification Seascape: Linking Natural Variability and Anthropogenic changes in pH and Temperature to Performance in Calcifying Antarctic Marine Invertebrates", "uid": "p0000390", "west": 163.317388}, {"awards": "0838817 Kyle, Philip", "bounds_geometry": "POLYGON((167 -77.3,167.05 -77.3,167.1 -77.3,167.15 -77.3,167.2 -77.3,167.25 -77.3,167.3 -77.3,167.35 -77.3,167.4 -77.3,167.45 -77.3,167.5 -77.3,167.5 -77.34,167.5 -77.38,167.5 -77.42,167.5 -77.46,167.5 -77.5,167.5 -77.54,167.5 -77.58,167.5 -77.62,167.5 -77.66,167.5 -77.7,167.45 -77.7,167.4 -77.7,167.35 -77.7,167.3 -77.7,167.25 -77.7,167.2 -77.7,167.15 -77.7,167.1 -77.7,167.05 -77.7,167 -77.7,167 -77.66,167 -77.62,167 -77.58,167 -77.54,167 -77.5,167 -77.46,167 -77.42,167 -77.38,167 -77.34,167 -77.3))", "dataset_titles": "Mount Erebus Volcano Observatory III (MEVO III): Conduit Processes and Surveillance", "datasets": [{"dataset_uid": "600153", "doi": "10.15784/600153", "keywords": "Antarctica; Cable Observatory; Intracontinental Magmatism; IntraContinental Magmatism; MEVO; Mount Erebus; Photo/video; Photo/Video; Ross Sea; Solid Earth; Volcano", "people": "Kyle, Philip", "repository": "USAP-DC", "science_program": "MEVO", "title": "Mount Erebus Volcano Observatory III (MEVO III): Conduit Processes and Surveillance", "url": "https://www.usap-dc.org/view/dataset/600153"}], "date_created": "Thu, 23 Jun 2016 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). Mount Erebus is Antarctica?s most active volcano that has been in a persistent state of activity for at least the last 35 years. It has a unique geochemistry among the Earth\u0027s active volcanoes and is also unique in hosting a persistent convecting lake(s) of anorthclase phonolite magma in its summit crater. The relative simplicity of the magmatic system, consistency of activity, and accessibility of close-range observation make Erebus attractive as a target for extensive studies. Although the Erebus\u0027 seismicity and eruptive activity and processes are becoming increasingly well understood over years of research, there is a near total lack of understanding its deeper magmatic system. The primary goal of this proposal is to continue supporting the Mt. Erebus Volcano Observatory (MEVO III) improving our current understanding of the Erebus eruptive and non-eruptive magmatic system using an integrated approach from geophysical, geochemical and remote sensing observations. This goal can be grouped into the following fundamental research objectives: (a) to sustain year-round surveillance of on-going volcanic activity primarily using geophysical observatories; (b) to understand processes within the convecting conduit which feeds the persistent lava lakes; and (c) to understand the impact of Erebus eruptive activity upon the Antarctic environment. Continued reliance on students provides a broader impact to this proposed research and firmly grounds this effort in its educational mission.", "east": 167.5, "geometry": "POINT(167.25 -77.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS", "is_usap_dc": true, "keywords": "Ice Caves; USAP-DC; Amd/Us; Distributed Temperature Sensing; FIELD SURVEYS; Not provided; AMD; Optical Fiber", "locations": null, "north": -77.3, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kyle, Philip; Curtis, Aaron; Rotman, Holly", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "MEVO", "south": -77.7, "title": "Mount Erebus Volcano Observatory III (MEVO III): Conduit Processes and Surveillance", "uid": "p0000488", "west": 167.0}, {"awards": "1043481 Creyts, Timothy", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 17 Jun 2016 00:00:00 GMT", "description": "1043481/Creyts This award supports a project to develop models of subglacial hydrology in order to understand dynamics of water movement, lake drainage, and how drainage affects ice slip over deformable till with the goal of understanding present and future behavior of fast flowing regions of Antarctica. Drainage of subglacial water falls into two broad categories: distributed and channelized. In distributed systems, water is forced out along the ice?bed interface. Conversely, in channelized systems water is drawn toward a few major arteries. Observations of lake filling and draining sup- port changes in subglacial water flow and suggest a switch from a low to high discharge state or vice versa. Filling or draining can move the subglacial system from one type of drainage morphology to the other. A switch of drainage type will affect slip along the ice-bed interface because distributed morphologies tend to cause enhanced sliding whereas channelized morphologies tend to cause enhanced coupling of the ice-bed interface. Conditions beneath fast flowing ice streams of West Antarctica are ideal for switching between subglacial drainage morphologies. Fast flowing ice in West Antarctica commonly rests on sub- glacial tills and is coincident, in some areas, with observed subglacial lake filling and draining. The goal of the work is to develop the next generation of spatially distributed hydraulic models that capture lake filling and draining phenomena and investigate the effects on subglacial till. Models will be theoretical, process-based descriptions of water drainage and till failure along fast flowing ice streams. Models will be based on balance of mass, momentum, and energy. Building on previous studies, we will incorporate two dimensional movement of water to investigate distributed basal hydrology, distributed basal hydrology coupled to channels, and couple these models with till deformation. These models will provide a framework for determining how lake draining and filling affects ice discharge by providing a constraints on ice?bed coupling. The intellectual merit of the work is that it will advance knowledge about drainage of water subglacially beneath Antarctica and how water affects ice motion. Our modeling provides a unique opportunity to understand the role subglacial hydrology plays in the dynamics of key outlet glaciers and ice streams. The broader impacts of the work include training for one postdoctoral scientist and training for a summer student in simple laboratory techniques for analog experiments. In addition, the proposal dovetails into an existing polar education and outreach plan by including a component of physical, numerical, and scale models in programs developed for high school and middle school classroom visits, teacher workshops and community events. Additionally, because knowledge of glacial hydrology is increasing rapidly, we will convene a workshop on observations and models of subglacial hydrology to facilitate transfer of knowledge and ideas.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Creyts, Timothy; Bell, Robin", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -90.0, "title": "Subglacial drainage and slip modeling in Antarctica: relating lakes to ice discharge", "uid": "p0000345", "west": -180.0}, {"awards": "1142052 MacPhee, Ross", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP1602", "datasets": [{"dataset_uid": "002666", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1602", "url": "https://www.rvdata.us/search/cruise/NBP1602"}], "date_created": "Tue, 26 Apr 2016 00:00:00 GMT", "description": "Intellectual Merit: The role that Antarctica has played in vertebrate evolution and paleobiogeography during the Late Cretaceous and early Paleogene is largely unknown. Evidence indicates that Antarctica was home to a diverse flora during the Late Cretaceous and Paleogene, yet the vertebrates that must have existed on the continent remain virtually unknown. To fill this gap, the PIs have formed the Antarctic Vertebrate Paleontology Initiative (AVPI), whose goal is to search for and collect Late Cretaceous-Paleogene vertebrate fossils in Antarctica at localities that have never been properly surveyed, as well as in areas of proven potential. Two field seasons are proposed for the James Ross Island Group on the northeastern margin of the Antarctic Peninsula. Expected finds include chondrichthyan and osteichthyan fishes, marine reptiles, ornithischian and non-avian theropod dinosaurs, ornithurine birds, and therian and non-therian mammals. Hypotheses to be tested include: 1) multiple extant bird and/or therian mammal lineages originated during the Cretaceous and survived the K-Pg boundary extinction event; 2) the ?Scotia Portal? permitted the dispersal of continental vertebrates between Antarctica and South America prior to the latest Cretaceous and through to the late Paleocene or early Eocene; 3) Late Cretaceous non-avian dinosaurs from Antarctica are closely related to coeval taxa from other Gondwanan landmasses; 4) terminal Cretaceous marine reptile faunas from southern Gondwana differed from contemporaneous but more northerly assemblages; and 5) the collapse of Antarctic ichthyofaunal diversity during the K-Pg transition was triggered by a catastrophic extinction. Broader impacts: The PIs will communicate discoveries to audiences through a variety of channels, such as the Dinosaurs in Their Time exhibition at Carnegie Museum of Natural History and the outreach programs of the Environmental Science Institute of the University of Texas at Austin. In addition, Carnegie Museum will launch a student-oriented programming initiative using AVPI research as a primary focus. This array of activities will help some 2,000 Pittsburgh-area undergraduates to explore the relevance of deep-time discoveries to critical modern issues. The AVPI will provide research opportunities for eight undergraduate and three graduate students, several of whom will receive field training in Antarctica. Fossils will be accessioned into the Carnegie Museum collection, and made accessible virtually through the NSF-funded Digital Morphology library at University of Texas.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Lamanna, Matthew", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Late Cretaceous-Paleogene Vertebrates from Antarctica: Implications for Paleobiogeography, Paleoenvironment, and Extinction in Polar Gondwana", "uid": "p0000854", "west": null}, {"awards": "1043152 Cottle, John", "bounds_geometry": "POINT(162.66667 -78.16667)", "dataset_titles": "EarthChem Library #925.", "datasets": [{"dataset_uid": "000167", "doi": "", "keywords": null, "people": null, "repository": "EarthChem", "science_program": null, "title": "EarthChem Library #925.", "url": "http://www.earthchem.org/library/browse/view?id=925"}], "date_created": "Tue, 01 Mar 2016 00:00:00 GMT", "description": "Intellectual Merit: Magmas generated during subduction of oceanic lithosphere beneath active continental margins typically have a calc-alkaline chemistry. However, igneous rocks with signatures usually associated with anorogenic magmatism are increasingly being found with calc-alkaline rocks in subduction zones. These enigmatic rocks provide insight into a variety of magmatic and structural processes that are fundamental to subduction zone dynamics but processes that lead to their petrogenesis remain a matter of debate. This project will investigate the Koettlitz Glacier Alkaline Province (KGAP) in the Transantarctic Mountains, which is a section through a Na-alkaline province bounded to the north and south by calc-alkaline magmatism. This province potentially contains key information on the thermo-mechanical processes leading to generation of Na-alkaline rocks in subduction systems. The PI will examine structures that bound the KGAP as well as intrusives and metasedimentary rocks contained within it to determine the tectonomagmatic history in the framework of two end-member hypotheses: the KGAP represents a crustal-scale extensional or transtensional domain in a subduction setting; or the KGAP formed in response to ridge subduction. Broader impacts: This study will train three graduate and three undergraduate students incorporating hands-on experience with state of the art instrumentation. Each summer, four high school students will be incorporated into various aspects of the laboratory-based research through the UCSB research mentorship program. This project will stimulate refinement of in-situ LA-ICPMS methods and development of collaborative linkages with Antarctic geologists at GNS Science in New Zealand. Results will be disseminated via papers and presentations at international conferences.", "east": 162.66667, "geometry": "POINT(162.66667 -78.16667)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -78.16667, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Cottle, John", "platforms": "Not provided", "repo": "EarthChem", "repositories": "EarthChem", "science_programs": null, "south": -78.16667, "title": "Exploring the Significance of Na-Alkaline Magmatism in Subduction Systems, a Case Study From the Ross Orogen, Antarctica", "uid": "p0000331", "west": 162.66667}, {"awards": "1043145 Obbard, Rachel", "bounds_geometry": "POLYGON((164.1005 -77.1188,164.36443 -77.1188,164.62836 -77.1188,164.89229 -77.1188,165.15622 -77.1188,165.42015 -77.1188,165.68408 -77.1188,165.94801 -77.1188,166.21194 -77.1188,166.47587 -77.1188,166.7398 -77.1188,166.7398 -77.19337,166.7398 -77.26794,166.7398 -77.34251,166.7398 -77.41708,166.7398 -77.49165,166.7398 -77.56622,166.7398 -77.64079,166.7398 -77.71536,166.7398 -77.78993,166.7398 -77.8645,166.47587 -77.8645,166.21194 -77.8645,165.94801 -77.8645,165.68408 -77.8645,165.42015 -77.8645,165.15622 -77.8645,164.89229 -77.8645,164.62836 -77.8645,164.36443 -77.8645,164.1005 -77.8645,164.1005 -77.78993,164.1005 -77.71536,164.1005 -77.64079,164.1005 -77.56622,164.1005 -77.49165,164.1005 -77.41708,164.1005 -77.34251,164.1005 -77.26794,164.1005 -77.19337,164.1005 -77.1188))", "dataset_titles": "Bromide in Snow in the Sea Ice Zone", "datasets": [{"dataset_uid": "600158", "doi": "10.15784/600158", "keywords": "Atmosphere; Chemistry:ice; Chemistry:Ice; Critical Zone; Crystals; Glaciology; Oceans; Photo/video; Photo/Video; Ross Sea; Sea Ice; Sea Surface; Snow; Southern Ocean", "people": "Obbard, Rachel", "repository": "USAP-DC", "science_program": null, "title": "Bromide in Snow in the Sea Ice Zone", "url": "https://www.usap-dc.org/view/dataset/600158"}], "date_created": "Tue, 01 Mar 2016 00:00:00 GMT", "description": "A range of chemical and microphysical pathways in polar latitudes, including spring time (tropospheric) ozone depletion, oxidative pathways for mercury, and cloud condensation nuclei (CCN) production leading to changes in the cloud cover and attendant surface energy budgets, have been invoked as being dependent upon the emission of halogen gases formed in sea-ice. The prospects for climate warming induced reductions in sea ice extent causing alteration of these incompletely known surface-atmospheric feedbacks and interactions requires confirmation of mechanistic details in both laboratory studies and field campaigns. One such mechanistic question is how bromine (BrO and Br) enriched snow migrates or is formed through processes in sea-ice, prior to its subsequent mobilization as an aerosol fraction into the atmosphere by strong winds. Once aloft, it may react with ozone and other atmospheric species. Dartmouth researchers will collect snow from the surface of sea ice, from freely blowing snow and in sea-ice cores from Cape Byrd, Ross Sea. A range of spectroscopic, microanalytic and and microstructural approaches will be subsequently used to determine the Br distribution gradients through sea-ice, in order to shed light on how sea-ice first forms and then releases bromine species into the polar atmospheric boundary layer.", "east": 166.7398, "geometry": "POINT(165.42015 -77.49165)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.1188, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Obbard, Rachel", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.8645, "title": "Bromide in Snow in the Sea Ice Zone", "uid": "p0000414", "west": 164.1005}, {"awards": "1043518 Brook, Edward J.", "bounds_geometry": "POINT(-112.08648 -79.46763)", "dataset_titles": "Continuous, Ultra-high Resolution WAIS-Divide Ice Core Methane Record 9.8-67.2 ka BP; Early Holocene methane records from Siple Dome, Antarctica; Methan record", "datasets": [{"dataset_uid": "601055", "doi": "10.15784/601055", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Yang, Ji-Woong; Ahn, Jinho", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Early Holocene methane records from Siple Dome, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601055"}, {"dataset_uid": "609628", "doi": "10.7265/N5JM27K4", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph; Brook, Edward J.; Rhodes, Rachel", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Continuous, Ultra-high Resolution WAIS-Divide Ice Core Methane Record 9.8-67.2 ka BP", "url": "https://www.usap-dc.org/view/dataset/609628"}, {"dataset_uid": "000176", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Methan record", "url": "https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/ice-core"}, {"dataset_uid": "601055", "doi": "10.15784/601055", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Ahn, Jinho; Yang, Ji-Woong", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Early Holocene methane records from Siple Dome, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601055"}], "date_created": "Tue, 12 Jan 2016 00:00:00 GMT", "description": "1043500/Sowers This award supports a project to develop a 50 yr resolution methane data set that will play a pivotal role in developing the WAIS Divide timescale as well as providing a common stratigraphic framework for comparing climate records from Greenland and West Antarctica. Even higher resolution data are proposed for key intervals to assist in precisely defining the phasing of abrupt climate change between the hemispheres. Concurrent analysis of a suit of samples from both the WAIS Divide and GISP-2 cores throughout the last 110,000 years is also proposed, to establish the interpolar methan (CH4) gradient that will be used to identify geographic areas responsible for the climate related methane emission changes. The intellectual merit of the proposed work is that it will provide chronological control needed to examine the timing of changes in climate proxies, and critical chronological ties to the Greenland ice core records via methane variations. One main objective is to understand the interpolar timing of millennial-scale climate change. This is an important scientific goal relevant to understanding climate change mechanisms in general. The proposed work will help establish a chronological framework for addressing these issues. In addition, this proposal addresses the question of what methane sources were active during the ice age, through the work on the interpolar methane gradient. This work is directed at the fundamental question of what part of the biosphere controlled past methane variations, and is important for developing more sophisticated understanding of those variations. The broader impacts of the work are that the ultra-high resolution CH4 record will directly benefit all ice core paleoclimate research and the chronological refinements will impact paleoclimate studies that rely on ice core timescales for correlation purposes. The project will support both graduate and undergraduate students and the PIs will participate in outreach to the public.", "east": -112.08648, "geometry": "POINT(-112.08648 -79.46763)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e INFRARED LASER SPECTROSCOPY", "is_usap_dc": true, "keywords": "WAIS Divide; Not provided; LABORATORY; Wais Divide-project; Methane Concentration", "locations": "WAIS Divide", "north": -79.46763, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Rhodes, Rachel; Brook, Edward J.; McConnell, Joseph", "platforms": "Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "NCEI; USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.46763, "title": "Collaborative Research: Completing an ultra-high resolution methane record from the WAIS Divide ice core", "uid": "p0000185", "west": -112.08648}, {"awards": "1142018 Arrigo, Kevin", "bounds_geometry": "POLYGON((-75.8 -61.08,-74.457 -61.08,-73.114 -61.08,-71.771 -61.08,-70.428 -61.08,-69.085 -61.08,-67.742 -61.08,-66.399 -61.08,-65.056 -61.08,-63.713 -61.08,-62.37 -61.08,-62.37 -61.684,-62.37 -62.288,-62.37 -62.892,-62.37 -63.496,-62.37 -64.1,-62.37 -64.704,-62.37 -65.308,-62.37 -65.912,-62.37 -66.516,-62.37 -67.12,-63.713 -67.12,-65.056 -67.12,-66.399 -67.12,-67.742 -67.12,-69.085 -67.12,-70.428 -67.12,-71.771 -67.12,-73.114 -67.12,-74.457 -67.12,-75.8 -67.12,-75.8 -66.516,-75.8 -65.912,-75.8 -65.308,-75.8 -64.704,-75.8 -64.1,-75.8 -63.496,-75.8 -62.892,-75.8 -62.288,-75.8 -61.684,-75.8 -61.08))", "dataset_titles": "Adaptive Responses of Phaeocystis Populations in Antarctic Ecosystems; Expedition Data", "datasets": [{"dataset_uid": "600161", "doi": "10.15784/600161", "keywords": "Antarctica; Antarctic Peninsula; Biota; Chlorophyll; CTD Data; NBP1310; NBP1409; Oceans; Physical Oceanography; Phytoplankton; Sea Surface; Southern Ocean", "people": "Arrigo, Kevin", "repository": "USAP-DC", "science_program": null, "title": "Adaptive Responses of Phaeocystis Populations in Antarctic Ecosystems", "url": "https://www.usap-dc.org/view/dataset/600161"}, {"dataset_uid": "001417", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1310"}], "date_created": "Mon, 11 Jan 2016 00:00:00 GMT", "description": "Global climate change is having significant effects on areas of the Southern Ocean, and a better understanding of this ecosystem will permit predictions about the large-scale implications of these shifts. The haptophyte Phaeocystis antarctica is an important component of the phytoplankton communities in this region, but little is known about the factors controlling its distribution. Preliminary data suggest that P. antarctica posses unique adaptations that allow it to thrive in regions with dynamic light regimes. This research will extend these results to identify the physiological and genetic mechanisms that affect the growth and distribution of P. antarctica. This work will use field and laboratory-based studies and a suite of modern molecular techniques to better understand the biogeography and physiology of this key organism. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of two graduate students and will foster an established international collaboration with Dutch scientists. Researchers on this project will participate in outreach programs targeting K12 teachers as well as high school students.", "east": -62.37, "geometry": "POINT(-69.085 -64.1)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "R/V NBP; Not provided", "locations": null, "north": -61.08, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Arrigo, Kevin", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -67.12, "title": "Collaborative Research: Adaptive Responses of Phaeocystis Populations in Antarctic Ecosystems", "uid": "p0000446", "west": -75.8}, {"awards": "0948247 Pettit, Erin", "bounds_geometry": "POINT(-123.35 -75.1)", "dataset_titles": null, "datasets": null, "date_created": "Wed, 06 Jan 2016 00:00:00 GMT", "description": "Pettit/0948247\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to study of the relationship between fabric and climate for the ice near the EPICA Dome C ice core site, East Antarctica. The work builds on an ongoing study at Siple Dome, West Antarctica and takes advantage of collaborations with European scientists and access to the Dome C borehole to make measurements of sonic velocity. The intellectual merit of the project is that a better understanding of how fabric preserves past climate information can improve models of the ice flow near ice core sites and the interpreta-tion of ice core data (particularly paleo-accumulation), and it may allow us to extract climate information directly from fabric data. In addition, because ice deformation is sensitive to the orientation of crystals, ice flow patterns are sensitive to the fabric. Thus, variations in the fabric between glacial and interglacial ice can affect how ice deforms and how fabric in the ice sheet develops. The Dome C site is particularly important for answering these questions, because the ice core shows evidence of eight glacial cycles, not just one as found at Siple Dome or the Greenland sites. The research will improve the understanding of the proxy relationship between sonic-velocity data and fabric; will help to model the pattern of ice flow caused by the fabric variation between glacial and interglacial time periods using these data, existing ice core chemistry and existing and new thin section data, improved surface strain data, and borehole deformation data; and will help to better understand the positive feedback mechanism that enhances fabric (and corresponding rheological) variability through a focused study of several climate transitions and the associated fabric changes. Borehole compressional-wave sonic-velocity will be measured which will complement the sonic-velocity data that already exist for boreholes in Greenland and West Antarctica. These will be the first sonic-velocity measurements in East Antarctica and the first measurements that extend for more than a single glacial/interglacial transition. The project will ultimately contribute to better interpretation of ice core records for both paleoclimate studies and for ice flow history, both of which connect to the broader questions of the role of ice in the climate system. This project will also strengthen the international collaborations within the paleoclimate and ice sheet modeling communities. This project will partially support a graduate student at the University of Alaska Fairbanks who is currently working on modeling ice including anisotropy and it will support the growth of a young scientist through a Post-Doc position. This Post Doc will gain important experience collaborating with the EPICA scientists in studying the climate-fabric relationship. Erin Pettit is active in field-science education for high school students, under-graduates, teachers, and adults. This project will help support the continued development and enhancement of Girls on Ice a program that encourages young women to explore science and the natural world.", "east": -123.35, "geometry": "POINT(-123.35 -75.1)", "instruments": null, "is_usap_dc": false, "keywords": "LABORATORY; Crystals; Deformation; FIELD INVESTIGATION; Model; Sonic Logger; Ice Flow; Rheology; FIELD SURVEYS; Borehole; Climate; Ice Fabric; Antarctica; Interglacial", "locations": "Antarctica", "north": -75.1, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Pettit, Erin; Hansen, Sharon", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -75.1, "title": "The Relationship between Climate and Ice Rheology at Dome C, East Antarctica", "uid": "p0000708", "west": -123.35}, {"awards": "1043454 Kooyman, Gerald", "bounds_geometry": "POLYGON((-172.642 -72.55,-170.9074 -72.55,-169.1728 -72.55,-167.4382 -72.55,-165.7036 -72.55,-163.969 -72.55,-162.2344 -72.55,-160.4998 -72.55,-158.7652 -72.55,-157.0306 -72.55,-155.296 -72.55,-155.296 -73.0743,-155.296 -73.5986,-155.296 -74.1229,-155.296 -74.6472,-155.296 -75.1715,-155.296 -75.6958,-155.296 -76.2201,-155.296 -76.7444,-155.296 -77.2687,-155.296 -77.793,-157.0306 -77.793,-158.7652 -77.793,-160.4998 -77.793,-162.2344 -77.793,-163.969 -77.793,-165.7036 -77.793,-167.4382 -77.793,-169.1728 -77.793,-170.9074 -77.793,-172.642 -77.793,-172.642 -77.2687,-172.642 -76.7444,-172.642 -76.2201,-172.642 -75.6958,-172.642 -75.1715,-172.642 -74.6472,-172.642 -74.1229,-172.642 -73.5986,-172.642 -73.0743,-172.642 -72.55))", "dataset_titles": "NBP1302 data; Pre and Post Molt Biology of Emperor Penguins - Oden Trans - Ross / Amundsen Sea Cruise", "datasets": [{"dataset_uid": "000179", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1302 data", "url": "https://www.rvdata.us/search/cruise/NBP1302"}, {"dataset_uid": "600149", "doi": "10.15784/600149", "keywords": "Amundsen Sea; Biota; Oceans; Penguin; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Kooyman, Gerald", "repository": "USAP-DC", "science_program": null, "title": "Pre and Post Molt Biology of Emperor Penguins - Oden Trans - Ross / Amundsen Sea Cruise", "url": "https://www.usap-dc.org/view/dataset/600149"}], "date_created": "Sat, 12 Dec 2015 00:00:00 GMT", "description": "The emperor penguin dives deeper and longer, fasts longer, and endures the harshest weather conditions of all diving birds. It spends about four and half months per annum deep in Antarctic pack ice away from shore and stations, and thus is largely unavailable for study. This time includes preparation for the molt, and travel to the colony to breed, a time period in which great swings in body weight occur. This study will fill an important gap in what we know about the biology of the annual cycle of the emperor by examining the molt-post molt period. The P.I. proposes to traverse the Amundsen and Bellingshausen seas on the Oden, to locate and tag emperor penguins during the molt season. The objectives are to (1) Place satellite tags on 20 adult post molt birds to determine their route, rate of travel, and diving behavior as they return back to their breeding colonies, (2) Obtain an index of body condition, (3) Collect guano to determine the type of food consumed by emperor penguins in the region, (4) Conduct shipboard surveys to sight and plot the location and abundance of adult and juvenile birds on the ship\u0027s track. The PI hypothesizes that bird dives will be shallow during the initial post-molt phase, and that food will consist primarily of krill; that there will be differential dispersal of birds from the Ross Sea vs. Marie Byrd Land, with Ross Sea birds traveling farther; and that the greatest adult mortality occurs during the molt and early post molt period. Broader impacts include training of a post doc, a graduate student, and an aquarium volunteer. The P.I. also will present findings through a website, through public lectures, and in collaboration with the Birch aquarium.", "east": -155.296, "geometry": "POINT(-163.969 -75.1715)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "R/V NBP; Not provided", "locations": null, "north": -72.55, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Kooyman, Gerald", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -77.793, "title": "Pre and post molt biology of emperor penguins - Oden trans - Ross / Amundsen Sea cruise", "uid": "p0000325", "west": -172.642}, {"awards": "1043724 Swanger, Kate", "bounds_geometry": "POLYGON((160.3 -77.4,160.52 -77.4,160.74 -77.4,160.96 -77.4,161.18 -77.4,161.4 -77.4,161.62 -77.4,161.84 -77.4,162.06 -77.4,162.28 -77.4,162.5 -77.4,162.5 -77.44,162.5 -77.48,162.5 -77.52,162.5 -77.56,162.5 -77.6,162.5 -77.64,162.5 -77.68,162.5 -77.72,162.5 -77.76,162.5 -77.8,162.28 -77.8,162.06 -77.8,161.84 -77.8,161.62 -77.8,161.4 -77.8,161.18 -77.8,160.96 -77.8,160.74 -77.8,160.52 -77.8,160.3 -77.8,160.3 -77.76,160.3 -77.72,160.3 -77.68,160.3 -77.64,160.3 -77.6,160.3 -77.56,160.3 -77.52,160.3 -77.48,160.3 -77.44,160.3 -77.4))", "dataset_titles": null, "datasets": null, "date_created": "Sat, 05 Dec 2015 00:00:00 GMT", "description": "Intellectual Merit: The PIs propose to investigate the impact of earth surface processes on the application of cosmogenic exposure dating in Antarctica by combining multi-nuclide techniques, detailed field experiments, rock-mechanic studies, and climate modeling. They will analyze cosmogenic-nuclide inventories for a suite of six alpine-moraine systems in inland regions of the McMurdo Dry Valleys. This area is ideally suited for this study because 1) the targeted alpine moraine sequences are critically important in helping to reconstruct past temperature and precipitation values over the last several million years, 2) the production rates for cosmogenic nuclides are typically high and well-known, and 3) the complexity of surface processes is relatively low. Their work has two specific goals: to evaluate the effects of episodic geomorphic events in modulating cosmogenic inventories in surface rocks in polar deserts and to generate an alpine glacier chronology that will serve as a robust record of regional climate variation over the last several million years. A key objective is to produce a unique sampling strategy that yields consistent exposure-age results by minimizing the effects of episodic geomorphic events that obfuscate cosmogenic-nuclide chronologies. They will link their moraine chronology with regional-scale atmospheric models developed by collaborators at University of Massachusetts Amherst. Broader impacts: This research is interdisciplinary and includes two early career scientists. Results of this work will be used to enhance undergraduate education by engaging two female students in Antarctic field and summer research projects. Extended outreach includes development of virtual Antarctic field trips for Colgate University?s Ho Tung Visualization Laboratory and Boston University?s Antarctic Digital Image Analyses Laboratory. The PIs will continue to work with the Los Angeles Valley Community College, which serves students of mostly Hispanic origin as part of the PolarTREC program. This project will contribute to the collaboration between LDEO and several New York City public high schools within the Lamont-Doherty Secondary School Field Program.", "east": 162.5, "geometry": "POINT(161.4 -77.6)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.4, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Swanger, Kate", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -77.8, "title": "Collaborative Research: Multi-nuclide approach to systematically evaluate the scatter in surface exposure ages in Antarctica and to develop consistent alpine glacier chronologies", "uid": "p0000406", "west": 160.3}, {"awards": "1141936 Foreman, Christine", "bounds_geometry": "POINT(112.085 -79.467)", "dataset_titles": "Molecular Level Characterization of Dissolved Organic Carbon and Microbial Diversity in the WAIS Divide Replicate Core", "datasets": [{"dataset_uid": "600133", "doi": "10.15784/600133", "keywords": "Antarctica; Biota; Genetic Sequences; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Foreman, Christine", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Molecular Level Characterization of Dissolved Organic Carbon and Microbial Diversity in the WAIS Divide Replicate Core", "url": "https://www.usap-dc.org/view/dataset/600133"}], "date_created": "Thu, 05 Nov 2015 00:00:00 GMT", "description": "This award supports a detailed, molecular level characterization of dissolved organic carbon and microbes in Antarctic ice cores. Using the most modern biological (genomic), geochemical techniques, and advanced chemical instrumentation researchers will 1) optimize protocols for collecting, extracting and amplifying DNA from deep ice cores suitable for use in next generation pyrosequencing; 2) determine the microbial diversity within the ice core; and 3) obtain and analyze detailed molecular characterizations of the carbon in the ice by ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS). With this pilot study investigators will be able to quantify the amount of material (microbial biomass and carbon) required to perform these characterizations, which is needed to inform future ice coring projects. The ultimate goal will be to develop protocols that maximize the yield, while minimizing the amount of ice required. The broader impacts include education and outreach at both the local and national levels. As a faculty mentor with the American Indian Research Opportunities and BRIDGES programs at Montana State University, Foreman will serve as a mentor to a Native American student in the lab during the summer months. Susan Kelly is an Education and Outreach Coordinator with a MS degree in Geology and over 10 years of experience in science outreach. She will coordinate efforts for comprehensive educational collaboration with the Hardin School District on the Crow Indian Reservation in South-central Montana.", "east": 112.085, "geometry": "POINT(112.085 -79.467)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ADS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Dissolved Organic Carbon; Microbes; Ice Core; Not provided; Pyrosequencing; Microbial Diversity; Molecular; WAIS Divide; LABORATORY; FIELD SURVEYS; Antarctic; FIELD INVESTIGATION; DNA", "locations": "Antarctic; WAIS Divide", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Foreman, Christine", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Molecular Level Characterization of Dissolved Organic Carbon and Microbial Diversity in the WAIS Divide Replicate Core", "uid": "p0000342", "west": 112.085}, {"awards": "1142173 Bay, Ryan; 1142010 Talghader, Joseph", "bounds_geometry": "POINT(112.085 -79.467)", "dataset_titles": "Optical Fabric and Fiber Logging of Glacial Ice (1142010)", "datasets": [{"dataset_uid": "600172", "doi": "10.15784/600172", "keywords": "Antarctica; Ash Layer; Borehole Camera; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Talghader, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Optical Fabric and Fiber Logging of Glacial Ice (1142010)", "url": "https://www.usap-dc.org/view/dataset/600172"}], "date_created": "Thu, 05 Nov 2015 00:00:00 GMT", "description": "1142010/Talghader This award supports a project to combine the expertise of both glaciologists and optical engineers to develop polarization- preserving optical scattering techniques for borehole tools to identify changes in high-resolution crystal structure (fabric) and dust content of glacial ice. The intellectual merit of this work is that the fabric and impurity content of the ice contain details on climate, volcanic activity and ice flow history. Such fabric measurements are currently taken by slicing an ice core into sections after it has started to depressurize which is an extremely time-intensive process that damages the core and does not always preserve the properties of ice in its in-situ state. In addition the ice core usually must be consumed in order to measure the components of the dust. The fabric measurements of this study utilize the concept that singly-scattered light in ice preserves most of its polarization when it is backscattered once from bubbles or dust; therefore, changes to the polarization of singly-backscattered light must originate with the birefringence. Measurements based on this concept will enable this program to obtain continuous records of fabric and correlate them to chronology and dust content. The project will also develop advanced borehole instruments to replace current logging tools, which require optical sources, detectors and power cables to be submerged in borehole fluid and lowered into the ice sheet at temperatures of -50oC. The use of telecommunications fiber will allow all sources and detectors to remain at the surface and enable low-noise signal processing techniques such as lock-in amplification that increase signal integrity and reduce needed power. Further, fiber logging systems would be much smaller and more flexible than current tools and capable of navigating most boreholes without a heavy winch. In order to assess fabric in situ and test fiber-optic borehole tools, field measurements will be made at WAIS Divide and a deep log will also be made at Siple Dome, both in West Antarctica. If successful, the broader impacts of the proposed research would include the development of new analytical methods and lightweight logging tools for ice drilling research that can operate in boreholes drilled in ice. Eventually the work could result in the development of better prehistoric records of glacier flow, atmospheric particulates, precipitation, and climate forcing. The project encompasses a broad base of theoretical, experimental, and design work, which makes it ideal for training graduate students and advanced undergraduates. Collaboration with schools and classroom teachers will help bring aspects of optics, climate, and polar science to an existing Middle School curriculum.", "east": 112.085, "geometry": "POINT(112.085 -79.467)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS", "is_usap_dc": true, "keywords": "Fabric; Optical Scattering; Not provided; FIELD SURVEYS; Ice Core; Siple Dome; Antarctic; Dust; WAIS Divide; LABORATORY; Crystal Structure; Chronology; FIELD INVESTIGATION; Borehole", "locations": "Antarctic; WAIS Divide; Siple Dome", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Talghader, Joseph; Bay, Ryan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.467, "title": "Optical Fabric and Fiber Logging of Glacial Ice", "uid": "p0000339", "west": 112.085}, {"awards": "1043780 Aydin, Murat", "bounds_geometry": null, "dataset_titles": "Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core; Ultra-trace Measurements in the WAIS Divide 06A Ice Core", "datasets": [{"dataset_uid": "609659", "doi": "10.7265/N5CV4FPK", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Aydin, Murat; Saltzman, Eric", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Ultra-trace Measurements in the WAIS Divide 06A Ice Core", "url": "https://www.usap-dc.org/view/dataset/609659"}, {"dataset_uid": "601361", "doi": "10.15784/601361", "keywords": "Antarctica; Carbonyl Sulfide; Trace Gases", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/601361"}], "date_created": "Tue, 27 Oct 2015 00:00:00 GMT", "description": "Aydin/1043780 This award supports the analysis of the trace gas carbonyl sulfide (COS) in a deep ice core from West Antarctic Ice Sheet Divide (WAIS-D), Antarctica. COS is the most abundant sulfur gas in the troposphere and a precursor of stratospheric sulfate. It has a large terrestrial COS sink that is tightly coupled to the photosynthetic uptake of atmospheric carbon dioxide (CO2). The primary goal of this project is to develop high a resolution Holocene record of COS from the WAIS-D 06A ice core. The main objectives are 1) to assess the natural variability of COS and the extent to which its atmospheric variability was influenced by climate variability, and 2) to examine the relationship between changes in atmospheric COS and CO2. This project also includes low-resolution sampling and analysis of COS from 10,000-30,000 yrs BP, covering the transition from the Last Glacial Maximum into the early Holocene. The goal of this work is to assess the stability of COS in ice core air over long time scales and to establish the COS levels during the last glacial maximum and the magnitude of the change between glacial and interglacial conditions. The results of this work will be disseminated via peer-review publications and will contribute to environmental assessments such as the WMO Stratospheric Ozone Assessment and IPCC Climate Assessment. This project will support a PhD student and undergraduate researcher in the Department of Earth System Science at the University of California, Irvine, and will create summer research opportunities for undergraduates from non-research active Universities.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Ethane; LABORATORY; N-Butane; Carbonyl Sulfide; Propane; Methyl Bromide; Methyl Chloride; Carbon Disulfide", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Aydin, Murat; Saltzman, Eric", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Carbonyl Sulfide Measurements in the Deep West Antarctic Ice Sheet Divide Ice Core", "uid": "p0000055", "west": null}, {"awards": "1042883 Mayewski, Paul", "bounds_geometry": null, "dataset_titles": "LA-ICP-MS Results: 3 Siple Dome A Glacial Age Archives; Roosevelt Island Climate Evolution Ice Core ICP-MS data", "datasets": [{"dataset_uid": "609621", "doi": "10.7265/N52J68SQ", "keywords": "Antarctica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; ICP-MS; Roosevelt Island; Ross Ice Shelf", "people": "Mayewski, Paul A.; Kurbatov, Andrei V.; Beers, Thomas M.", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Climate Evolution Ice Core ICP-MS data", "url": "https://www.usap-dc.org/view/dataset/609621"}, {"dataset_uid": "609636", "doi": "10.7265/N5WS8R6H", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; ICP-MS; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Kurbatov, Andrei V.; Haines, Skylar; Mayewski, Paul A.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "LA-ICP-MS Results: 3 Siple Dome A Glacial Age Archives", "url": "https://www.usap-dc.org/view/dataset/609636"}], "date_created": "Tue, 27 Oct 2015 00:00:00 GMT", "description": "1042883/Mayewski This award supports a project to analyze a deep ice core which will be drilled by a New Zealand research team at Roosevelt Island. The objectives are to process the ice core at very high resolution to (a) better understand phasing sequences in Arctic/Antarctic abrupt climate change, even at the level of individual storm events; (b) determine the impact of changes in the Westerlies and the Amundsen Sea Low on past/present/future climate change; (c) determine how sea ice extent has varied in the area; (d) compare the response of West Antarctica climate to other regions during glacial/interglacial cycles; and (e) determine how climate of the Ross Sea Embayment changed during the transition from Ross Ice Sheet to Ross Ice Shelf. The intellectual merit of the RICE deep ice core project is that it is expected to provide a 30kyr long (and possibly 150kyr long) extremely high-resolution view of climate change in the Ross Sea Embayment Region and data essential to test and understand critical questions that have emerged as a consequence of the recent synthesis of Antarctic and Southern Ocean climate change presented in the Scientific Commission for Antarctic Research document: Antarctic Climate Change and the Environment (ACCE, 2009). Ice core processing and analysis will be performed jointly by University of Maine and the collaborators from New Zealand. Co-registered sampling for all chemical analyses will be accomplished by a joint laboratory effort at the IGNS NZ ice core facility using a continuous melter system developed by the University of Maine. The RICE deep ice core record will provide information necessary in unraveling the significance of multi-millennial underpinning for climate change and in the understanding of observed and projected climate change in light of current dramatic human impact on Antarctica and the Southern Ocean. The broader impacts of the project include the fact that two CCI graduate students will be funded through the project, and will be involved in all aspects of field research, core sampling, sample processing, analytical and numerical analyses, data interpretation, writing of manuscripts, and presentation of results at national and international conferences. Data and ideas developed in this project and associated work will be used in several courses taught at the University of Maine. Innovative cyberinfrastructure will be incorporated into this work and ground breaking analytical technologies, and data access/storage tools will be used.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e LA-ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS", "is_usap_dc": true, "keywords": "LABORATORY", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Haines, Skylar; Kurbatov, Andrei V.; Mayewski, Paul A.; Beers, Thomas M.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Roosevelt Island Climate Evolution Project (RICE): US Deep Ice Core Glaciochemistry Contribution (2011- 2014)", "uid": "p0000193", "west": null}, {"awards": "1043706 Marchant, David", "bounds_geometry": "POLYGON((160 -76.5,160.45 -76.5,160.9 -76.5,161.35 -76.5,161.8 -76.5,162.25 -76.5,162.7 -76.5,163.15 -76.5,163.6 -76.5,164.05 -76.5,164.5 -76.5,164.5 -76.7,164.5 -76.9,164.5 -77.1,164.5 -77.3,164.5 -77.5,164.5 -77.7,164.5 -77.9,164.5 -78.1,164.5 -78.3,164.5 -78.5,164.05 -78.5,163.6 -78.5,163.15 -78.5,162.7 -78.5,162.25 -78.5,161.8 -78.5,161.35 -78.5,160.9 -78.5,160.45 -78.5,160 -78.5,160 -78.3,160 -78.1,160 -77.9,160 -77.7,160 -77.5,160 -77.3,160 -77.1,160 -76.9,160 -76.7,160 -76.5))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 23 Oct 2015 00:00:00 GMT", "description": "Intellectual Merit: The PIs propose to investigate the impact of earth surface processes on the application of cosmogenic exposure dating in Antarctica by combining multi-nuclide techniques, detailed field experiments, rock-mechanic studies, and climate modeling. They will analyze cosmogenic-nuclide inventories for a suite of six alpine-moraine systems in inland regions of the McMurdo Dry Valleys. This area is ideally suited for this study because 1) the targeted alpine moraine sequences are critically important in helping to reconstruct past temperature and precipitation values over the last several million years, 2) the production rates for cosmogenic nuclides are typically high and well-known, and 3) the complexity of surface processes is relatively low. Their work has two specific goals: to evaluate the effects of episodic geomorphic events in modulating cosmogenic inventories in surface rocks in polar deserts and to generate an alpine glacier chronology that will serve as a robust record of regional climate variation over the last several million years. A key objective is to produce a unique sampling strategy that yields consistent exposure-age results by minimizing the effects of episodic geomorphic events that obfuscate cosmogenic-nuclide chronologies. They will link their moraine chronology with regional-scale atmospheric models developed by collaborators at University of Massachusetts Amherst. Broader impacts: This research is interdisciplinary and includes two early career scientists. Results of this work will be used to enhance undergraduate education by engaging two female students in Antarctic field and summer research projects. Extended outreach includes development of virtual Antarctic field trips for Colgate University?s Ho Tung Visualization Laboratory and Boston University?s Antarctic Digital Image Analyses Laboratory. The PIs will continue to work with the Los Angeles Valley Community College, which serves students of mostly Hispanic origin as part of the PolarTREC program. This project will contribute to the collaboration between LDEO and several New York City public high schools within the Lamont-Doherty Secondary School Field Program.", "east": 164.5, "geometry": "POINT(162.25 -77.5)", "instruments": null, "is_usap_dc": false, "keywords": "McMurdo Dry Valleys; Rock Weathering; Not provided", "locations": "McMurdo Dry Valleys", "north": -76.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Marchant, David", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -78.5, "title": "Collaborative Research: Multi-nuclide approach to systematically evaluate the scatter in surface exposure ages in Antarctica and to develop consistent alpine glacier chronologies", "uid": "p0000269", "west": 160.0}, {"awards": "1343649 Levy, Joseph", "bounds_geometry": "POLYGON((162.852 -77.6111,162.9893 -77.6111,163.1266 -77.6111,163.2639 -77.6111,163.4012 -77.6111,163.5385 -77.6111,163.6758 -77.6111,163.8131 -77.6111,163.9504 -77.6111,164.0877 -77.6111,164.225 -77.6111,164.225 -77.65331,164.225 -77.69552,164.225 -77.73773,164.225 -77.77994,164.225 -77.82215,164.225 -77.86436,164.225 -77.90657,164.225 -77.94878,164.225 -77.99099,164.225 -78.0332,164.0877 -78.0332,163.9504 -78.0332,163.8131 -78.0332,163.6758 -78.0332,163.5385 -78.0332,163.4012 -78.0332,163.2639 -78.0332,163.1266 -78.0332,162.9893 -78.0332,162.852 -78.0332,162.852 -77.99099,162.852 -77.94878,162.852 -77.90657,162.852 -77.86436,162.852 -77.82215,162.852 -77.77994,162.852 -77.73773,162.852 -77.69552,162.852 -77.65331,162.852 -77.6111))", "dataset_titles": "Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica", "datasets": [{"dataset_uid": "600139", "doi": "10.15784/600139", "keywords": "Antarctica; Chemistry:soil; Chemistry:Soil; Critical Zone; Dry Valleys; Permafrost; Sample/collection Description; Sample/Collection Description; Well Measurements", "people": "Levy, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica", "url": "https://www.usap-dc.org/view/dataset/600139"}], "date_created": "Mon, 05 Oct 2015 00:00:00 GMT", "description": "Intellectual Merit: The PIs propose to quantify the hillslope water, solute, and carbon budgets for Taylor Valley in the McMurdo Dry Valleys, using water tracks to investigate near-surface geological processes and challenge the paradigm that shallow groundwater is minimal or non-exixtant. Water tracks are linear zones of high soil moisture that route shallow groundwater downslope in permafrost dominated soils. Four hypotheses will be tested: 1) water tracks are important pathways for water and solute transport; 2) water tracks transport more dissolved silica than streams in Taylor Valley indicating they are the primary site of chemical weathering for cold desert soils and bedrock; 3) water tracks that drain highland terrains are dominated by humidity-separated brines while water tracks that drain lowland terrains are dominated by marine aerosols; 4) water tracks are the sites of the highest terrestrial soil carbon concentrations and the strongest CO2 fluxes in Taylor Valley and their carbon content increases with soil age, while carbon flux decreases with age. To test these hypotheses the PIs will carry out a suite of field measurements supported by modeling and remote sensing. They will install shallow permafrost wells in water tracks that span the range of geological, climatological, and topographic conditions in Taylor Valley. Multifrequency electromagnetic induction sounding of the upper ~1 m of the permafrost will create the first comprehensive map of soil moisture in Taylor Valley, and will permit direct quantification of water track discharge across the valley. The carbon contents of water track soils will be measured and linked to global carbon dynamics. Broader impacts: Non-science majors at Oregon State University will be integrated into the proposed research through a new Global Environmental Change course focusing on the scientific method in Antarctica. Three undergraduate students, members of underrepresented minorities, will be entrained in the research, will contribute to all aspects of field and laboratory science, and will present results at national meetings.", "east": 164.225, "geometry": "POINT(163.5385 -77.82215)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.6111, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Levy, Joseph", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0332, "title": "Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica", "uid": "p0000407", "west": 162.852}, {"awards": "0632282 Jacobs, Stanley", "bounds_geometry": "POLYGON((-129.6 -54.2,-124.44 -54.2,-119.28 -54.2,-114.12 -54.2,-108.96 -54.2,-103.8 -54.2,-98.64 -54.2,-93.48 -54.2,-88.32 -54.2,-83.16 -54.2,-78 -54.2,-78 -56.29,-78 -58.38,-78 -60.47,-78 -62.56,-78 -64.65,-78 -66.74,-78 -68.83,-78 -70.92,-78 -73.01,-78 -75.1,-83.16 -75.1,-88.32 -75.1,-93.48 -75.1,-98.64 -75.1,-103.8 -75.1,-108.96 -75.1,-114.12 -75.1,-119.28 -75.1,-124.44 -75.1,-129.6 -75.1,-129.6 -73.01,-129.6 -70.92,-129.6 -68.83,-129.6 -66.74,-129.6 -64.65,-129.6 -62.56,-129.6 -60.47,-129.6 -58.38,-129.6 -56.29,-129.6 -54.2))", "dataset_titles": "Amundsen Sea Continental Shelf Mooring Data (2006-2007); Calibrated Hydrographic Data acquired with a LADCP from the Amundsen Sea acquired during the Nathaniel B. Palmer expedition NBP0901; NBP07-09 cruise data; NBP07-09 processed CTD data; NBP09-01 cruise data; NBP09-01 processed CTD data; Processed Temperature, Salinity, and Current Measurement Data from the Amundsen Sea acquired during the Nathaniel B. Palmer expedition NBP0901", "datasets": [{"dataset_uid": "000128", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "NBP07-09 processed CTD data", "url": "http://accession.nodc.noaa.gov/0120761"}, {"dataset_uid": "000130", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "NBP09-01 processed CTD data", "url": "http://accession.nodc.noaa.gov/0071179"}, {"dataset_uid": "000129", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP09-01 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP0901"}, {"dataset_uid": "000127", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP07-09 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP0709"}, {"dataset_uid": "601350", "doi": null, "keywords": "Amundsen Sea; Antarctic; Antarctica; CTD; CTD Data; Current Measurements; NBP0901; Oceans; Physical Oceanography; Pine Island Bay; Pine Island Glacier; R/v Nathaniel B. Palmer; Salinity; Southern Ocean; Temperature", "people": "Jacobs, Stanley; Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Processed Temperature, Salinity, and Current Measurement Data from the Amundsen Sea acquired during the Nathaniel B. Palmer expedition NBP0901", "url": "https://www.usap-dc.org/view/dataset/601350"}, {"dataset_uid": "601809", "doi": "10.15784/601809", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Mooring; Ocean Currents; Pressure; Salinity; Temperature", "people": "Giulivi, Claudia F.; Jacobs, Stanley", "repository": "USAP-DC", "science_program": null, "title": "Amundsen Sea Continental Shelf Mooring Data (2006-2007)", "url": "https://www.usap-dc.org/view/dataset/601809"}, {"dataset_uid": "601349", "doi": null, "keywords": "Amundsen Sea; Antarctica; Current Measurements; LADCP; NBP0901; Oceans; Physical Oceanography; Pine Island Bay; R/v Nathaniel B. Palmer; Southern Ocean", "people": "Thurnherr, Andreas", "repository": "USAP-DC", "science_program": null, "title": "Calibrated Hydrographic Data acquired with a LADCP from the Amundsen Sea acquired during the Nathaniel B. Palmer expedition NBP0901", "url": "https://www.usap-dc.org/view/dataset/601349"}], "date_created": "Fri, 25 Sep 2015 00:00:00 GMT", "description": "The Office of Polar Programs, Antarctic Science Division, Ocean \u0026 Climate Systems Program has made this award to support a multidisciplinary effort to study the upwelling of relatively warm deep water onto the Amundsen Sea continental shelf and how it relates to atmospheric forcing and bottom bathymetry and how the warm waters interact with both glacial and sea ice. This study constitutes a contribution of a coordinated research effort in the region known as the Amundsen Sea Embayment Project or ASEP. Previous work by the PI and others has shown that the West Antarctic Ice Sheet has been found to be melting faster, perhaps by orders of magnitude, than ice sheets elsewhere around Antarctica, excluding those on the Peninsula. Submarine channels that incise the continental shelf are thought to provide fairly direct access of relatively warm circum polar deep water to the cavity under the floating extension of the ice shelf. Interactions with sea ice en route can modify the upwelled waters. The proposed investigations build on previous efforts by the PI and colleagues to use hydrographic measurements to put quantitative bounds on the rate of glacial ice melt by relatively warm seawater. \u003cbr/\u003eThe region can be quite difficult to access due to sea ice conditions and previous hydrographic measurements have been restricted to the austral summer time frame. In this project it was proposed to obtain the first austral spring hydrographic data via CTD casts and XBT drops (September-October 2007) as part of a separately funded cruise (PI Steve Ackley) the primary focus of which is sea-ice conditions to be studied while the RV Nathanial B Palmer (RV NBP) drifts in the ice pack. This includes opportunistic sampling for pCO2 and TCO2. A dedicated cruise in austral summer 2009 will follow this opportunity. The principal objectives of the dedicated field program are to deploy a set of moorings with which to characterize temporal variability in warm water intrusions onto the shelf and to conduct repeat hydrographic surveying and swath mapping in targeted areas, ice conditions permitting. Automatic weather stations are to be deployed in concert with the program, sea-ice observations will be undertaken from the vessel and the marine cavity beneath the Pine Island may be explored pending availability of the British autonomous underwater vehicle Autosub 3. These combined ocean-sea ice-atmosphere observations are aimed at a range of model validations. A well-defined plan for making data available as well as archiving in a timely fashion should facilitate a variety of modeling efforts and so extend the value of the spatially limited observations. \u003cbr/\u003eBroader impacts: This project is relevant to an International Polar Year research emphasis on ice sheet dynamics focusing in particular on the seaward ocean-ice sheet interactions. Such interactions must be clarified for understanding the potential for sea level rise by melt of the West Antarctic ice Sheet. The project entails substantive international partnerships (British Antarctic Survey and Alfred Wegner Institute) and complements other Amundsen Sea Embayment Project proposals covering other elements of ice sheet dynamics. The proposal includes partial support for 2 graduate students and 2 post docs. Participants from the Antarctic Artists and Writers program are to take part in the cruise and so aid in outreach. In addition, the project is to be represented in the Lamont-Doherty annual open house.", "east": -78.0, "geometry": "POINT(-103.8 -64.65)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": true, "keywords": "Not provided; R/V NBP", "locations": null, "north": -54.2, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jacobs, Stanley; Hellmer, Hartmut; Jenkins, Adrian", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "NCEI", "repositories": "NCEI; R2R; USAP-DC", "science_programs": null, "south": -75.1, "title": "Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise - IPY/ASEP", "uid": "p0000332", "west": -129.6}, {"awards": "1142044 Dunbar, Robert; 1142117 Hansell, Dennis; 1142097 Bochdansky, Alexander; 1142065 DiTullio, Giacomo", "bounds_geometry": "POLYGON((165 -52,166 -52,167 -52,168 -52,169 -52,170 -52,171 -52,172 -52,173 -52,174 -52,175 -52,175 -54.65,175 -57.3,175 -59.95,175 -62.6,175 -65.25,175 -67.9,175 -70.55,175 -73.2,175 -75.85,175 -78.5,174 -78.5,173 -78.5,172 -78.5,171 -78.5,170 -78.5,169 -78.5,168 -78.5,167 -78.5,166 -78.5,165 -78.5,165 -75.85,165 -73.2,165 -70.55,165 -67.9,165 -65.25,165 -62.6,165 -59.95,165 -57.3,165 -54.650000000000006,165 -52))", "dataset_titles": "Carbon chemistry from CTD; Deployment: NBP1302; NBP1302 data; Video Particle Profiler (VPP) and Digital Inline Holographic Microscopy (DIHM) data from cruise NBP1302", "datasets": [{"dataset_uid": "600388", "doi": "10.15784/600388", "keywords": "Antarctica; Biota; Holographic Microscopy; Oceans; Photo/video; Photo/Video; Phytoplankton; Ross Sea; Sample/collection Description; Sample/Collection Description; Southern Ocean; Video Particle Profiler", "people": "Bochdansky, Alexander", "repository": "USAP-DC", "science_program": null, "title": "Video Particle Profiler (VPP) and Digital Inline Holographic Microscopy (DIHM) data from cruise NBP1302", "url": "https://www.usap-dc.org/view/dataset/600388"}, {"dataset_uid": "000220", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Carbon chemistry from CTD", "url": "http://www.bco-dmo.org/dataset/658394"}, {"dataset_uid": "000221", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Deployment: NBP1302", "url": "http://www.bco-dmo.org/deployment/547873"}, {"dataset_uid": "000179", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1302 data", "url": "https://www.rvdata.us/search/cruise/NBP1302"}], "date_created": "Wed, 26 Aug 2015 00:00:00 GMT", "description": "Intellectual Merit: Sinking particles are a major element of the biological pump and they are commonly assigned to two fates: mineralization in the water column and accumulation at the seafloor. However, there is another fate of export hidden within the vertical decline of carbon, the transformation of sinking organic matter to fine suspended and/or dissolved organic fractions. This process has been suggested but has rarely been observed or quantified. As a result, it is presumed that the solubilized fraction is largely mineralized over short time scales. However, global ocean surveys of dissolved organic carbon are demonstrating a significant water column accumulation of organic matter under high productivity environments. This proposal will investigate the transformation of organic particles from sinking to solubilized phases of the export flux in the Ross Sea. The Ross Sea experiences high export particle production, low dissolved organic carbon export with overturning circulation, and the area has a predictable succession of production and export events. In addition, the basin is shallow (\u003c 000 m) so the products the PIs will target are relatively concentrated. To address the proposed hypothesis, the PIs will use both well-established and novel biochemical and optical measures of export production and its fate. The outcomes of this work will help researchers close the carbon budget in the Ross Sea. Broader impacts: This research will support graduate and undergraduate students and will provide undergraduates and pre-college students with field-based research experience. Scientifically, this research will increase understanding of carbon sinks in the Ross Sea and will help develop new tools for identifying, quantifying, and tracking that carbon. The PIs will interface with K-12 students through daily reports from the field and through educational modules developed by several of the PIs in collaboration with science education specialists and college students. A K-12 educator will be included on the research cruises. Outreach will be through COSEE Florida and the Maritime Center in Norfolk, VA.", "east": 175.0, "geometry": "POINT(170 -65.25)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e DIHM; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "Not provided; NBP1302; Phaeocystis; R/V NBP", "locations": null, "north": -52.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Bochdansky, Alexander; Dunbar, Robert; DiTullio, Giacomo; Ditullio, Giacomo; Harry, Dennis L.; HANSELL, DENNIS", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "BCO-DMO; R2R; USAP-DC", "science_programs": null, "south": -78.5, "title": "Collaborative research: TRacing the fate of Algal Carbon Export in the Ross Sea (TRACERS)", "uid": "p0000307", "west": 165.0}, {"awards": "1043421 Severinghaus, Jeffrey; 1043522 Brook, Edward J.", "bounds_geometry": "POINT(-112.09 -79.47)", "dataset_titles": "WAIS Divide Replicate Core Methane Isotopic Data Set", "datasets": [{"dataset_uid": "601059", "doi": "10.15784/601059", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Replicate Core Methane Isotopic Data Set", "url": "https://www.usap-dc.org/view/dataset/601059"}], "date_created": "Mon, 13 Jul 2015 00:00:00 GMT", "description": "1043421/Severinghaus This award supports a project to obtain samples of ice in selected intervals for replication and verification of the validity and spatial representativeness of key results in the WAIS Divide ice core, and to obtain additional ice samples in areas of intense scientific interest where demand is high. The US Ice Core Working Group recommended in 2003 that NSF pursue the means to take replicate samples, termed \"replicate coring\". This recommendation was part of an agreement to reduce the diameter of the (then) new drilling system (the DISC drill) core to 12.2 cm to lighten logistics burdens, and the science community accepted the reduction in ice sample with the understanding that replicate coring would be able to provide extra sample volume in key intervals. The WAIS Divide effort would particularly benefit from replicate coring, because of the unique quality of the expected gas record and the large samples needed for gases and gas isotopes; thus this proposal to employ replicate coring at WAIS Divide. In addition, scientific demand for ice samples has been, and will continue to be, very unevenly distributed, with the ice core archive being completely depleted in depth intervals of high scientific interest (abrupt climate changes, volcanic sulfate horizons, meteor impact horizons, for example). The broader impacts of the proposed research may include identification of leads and lags between Greenland, tropical, and Antarctic climate change, enabling critical tests of hypotheses for the mechanism of abrupt climate change. Improved understanding of volcanic impacts on atmospheric chemistry and climate may also emerge. This understanding may ultimately help improve climate models and prediction of the Earth System feedback response to ongoing human perturbation in coming centuries. Outreach and public education about climate change are integral components of the PIs\u0027 activities and the proposed work will enhance these efforts. Broader impacts also include education and training of 2 postdoctoral scholars and 1 graduate student, and invaluable field experience for the graduate and undergraduate students who will likely make up the core processing team at WAIS Divide.", "east": -112.09, "geometry": "POINT(-112.09 -79.47)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": false, "keywords": "Ice Core Gas Records; Firn Air Isotopes; LABORATORY; FIELD SURVEYS; Mass Spectrometry; Not provided; FIELD INVESTIGATION; Ice Core; WAIS Divide", "locations": "WAIS Divide", "north": -79.47, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.47, "title": "Collaborative Research: Replicate Coring at WAIS Divide to Obtain Additional Samples at Events of High Scientific Interest", "uid": "p0000751", "west": -112.09}, {"awards": "1143619 Severinghaus, Jeffrey", "bounds_geometry": "POINT(-112.09 -79.47)", "dataset_titles": null, "datasets": null, "date_created": "Mon, 13 Jul 2015 00:00:00 GMT", "description": "1143619/Severinghaus This award supports a project to extend the study of gases in ice cores to those gases whose small molecular diameters cause them to escape rapidly from ice samples (the so-called \"fugitive gases\"). The work will employ helium, neon, argon, and oxygen measurements in the WAIS Divide ice core to better understand the mechanism of the gas close-off fractionation that occurs while air bubbles are incorporated into ice. The intellectual merit of the proposed work is that corrections for this fractionation using neon (which is constant in the atmosphere) may ultimately enable the first ice core-based atmospheric oxygen and helium records. Neon may also illuminate the mechanistic link between local insolation and oxygen used for astronomical dating of ice cores. Helium measure-ments in the deepest ~100 m of the core will also shed light on the stratigraphic integrity of the basal ice, and serve as a probe of solid earth-ice interaction at the base of the West Antarctic ice sheet. Past atmospheric oxygen records, currently unavailable prior to 1989 CE, would reveal changes in the size of the terrestrial biosphere carbon pool that accompany climate variations and place constraints on the biogeochemical feedback response to future warming. An atmospheric helium-3/helium-4 record would test the hypothesis that the solar wind (which is highly enriched in helium-3) condensed directly into Earth?s atmosphere during the collapse of the geomagnetic field that occurred 41,000 years ago, known as the Laschamp Event. Fugitive-gas samples will be taken on-site immediately after recovery of the ice core by the PI and one postdoctoral scholar, under the umbrella of an existing project to support replicate coring and borehole deepening. This work will add value to the scientific return from field work activity with little additional cost to logistical resources. The broader impacts of the work on atmospheric oxygen are that it may increase understanding of how terrestrial carbon pools and atmospheric greenhouse gas sources will respond in a feedback sense to the coming warming. Long-term atmospheric oxygen trends are also of interest for understanding biogeochemical regulatory mechanisms and the impact of atmospheric evolution on life. Helium records have value in understanding the budget of this non-renewable gas and its implications for space weather and solar activity. The project will train one graduate student and one postdoctoral scholar. The fascination of linking solid earth, cryosphere, atmosphere, and space weather will help to entrain and excite young scientists and efforts to understand the Earth as a whole interlinked system will provide fuel to outreach efforts at all ages.", "east": -112.09, "geometry": "POINT(-112.09 -79.47)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": false, "keywords": "WAIS Divide; Not provided; Tracers; FIELD INVESTIGATION; Past Biospheric Carbon Storage; LABORATORY; Fugitive Gases; Basal Processes; Neon; Helium; FIELD SURVEYS; Antarctica", "locations": "WAIS Divide; Antarctica", "north": -79.47, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -79.47, "title": "Fugitive Gases (Helium, Neon, and Oxygen) in the WAIS Divide Ice Core as Tracers of Basal Processes and Past Biospheric Carbon Storage", "uid": "p0000441", "west": -112.09}, {"awards": "1245659 Petrenko, Vasilii; 1246148 Severinghaus, Jeffrey; 1245821 Brook, Edward J.", "bounds_geometry": "POINT(162.167 -77.733)", "dataset_titles": "Gas and Dust Measurements for Taylor Glacier and Taylor Dome Ice Cores; Last Interglacial Mean Ocean Temperature; Mean Ocean Temperature in Marine Isotope Stage 4; Measurements of 14CH4 and 14CO in ice from Taylor Glacier: Last Deglaciation; N2O Concentration and Isotope Data for 74-59 ka from Taylor Glacier, Antarctica; Taylor Glacier CO2 Isotope Data 74-59 kyr; Taylor Glacier Noble Gases - Younger Dryas; The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "datasets": [{"dataset_uid": "601398", "doi": "10.15784/601398", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Gas Records; Ice Core Records; Marine Isotope Stage 4; MIS 4; Nitrous Oxide; Pleistocene; Taylor Dome Ice Core; Taylor Glacier", "people": "Shackleton, Sarah; Petrenko, Vasilii; Severinghaus, Jeffrey P.; Dyonisius, Michael; Schilt, Adrian; Brook, Edward J.; Menking, James", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "N2O Concentration and Isotope Data for 74-59 ka from Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601398"}, {"dataset_uid": "601176", "doi": "10.15784/601176", "keywords": "Antarctica; CO2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Methane; Noble Gas; Noble Gas Isotopes; Snow/ice; Snow/Ice; Taylor Glacier; Younger Dryas", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Taylor Glacier Noble Gases - Younger Dryas", "url": "https://www.usap-dc.org/view/dataset/601176"}, {"dataset_uid": "601198", "doi": "10.15784/601198", "keywords": "Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; CO2; Dust; Gas; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Mass Spectrometer; Methane; Nitrogen Isotopes; Oxygen Isotope; Paleoclimate; Snow/ice; Snow/Ice; Taylor Dome; Taylor Dome Ice Core", "people": "Severinghaus, Jeffrey P.; Bauska, Thomas; Rhodes, Rachel; McConnell, Joseph; Petrenko, Vasilii; Dyonisius, Michael; Shackleton, Sarah; Barker, Stephen; Baggenstos, Daniel; Marcott, Shaun; Brook, Edward J.; Menking, James", "repository": "USAP-DC", "science_program": null, "title": "Gas and Dust Measurements for Taylor Glacier and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/601198"}, {"dataset_uid": "601218", "doi": "10.15784/601218", "keywords": "Antarctica; Carbon-14; Carbon Dioxide; Chemistry:ice; Chemistry:Ice; CO2; Dome C Ice Core; Epica; Epica Dome C; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Chemistry; Ice Core Data; Ice Core Gas Records; Ice Core Records; Isotope Data; Last Interglacial; Mass Spectrometer; Mass Spectrometry; Methane; Oxygen; Oxygen Isotope; Paleotemperature; Pleistocene; Snow/ice; Snow/Ice; Taylor Dome Ice Core; Taylor Glacier", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Last Interglacial Mean Ocean Temperature", "url": "https://www.usap-dc.org/view/dataset/601218"}, {"dataset_uid": "601218", "doi": "10.15784/601218", "keywords": "Antarctica; Carbon-14; Carbon Dioxide; Chemistry:ice; Chemistry:Ice; CO2; Dome C Ice Core; Epica; Epica Dome C; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Chemistry; Ice Core Data; Ice Core Gas Records; Ice Core Records; Isotope Data; Last Interglacial; Mass Spectrometer; Mass Spectrometry; Methane; Oxygen; Oxygen Isotope; Paleotemperature; Pleistocene; Snow/ice; Snow/Ice; Taylor Dome Ice Core; Taylor Glacier", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Last Interglacial Mean Ocean Temperature", "url": "https://www.usap-dc.org/view/dataset/601218"}, {"dataset_uid": "601260", "doi": "10.15784/601260", "keywords": "Antarctica; Carbon-14; Cosmogenic; Ice Core; Methane", "people": "Petrenko, Vasilii; Dyonisius, Michael", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Measurements of 14CH4 and 14CO in ice from Taylor Glacier: Last Deglaciation", "url": "https://www.usap-dc.org/view/dataset/601260"}, {"dataset_uid": "601600", "doi": "10.15784/601600", "keywords": "Antarctica; Taylor Glacier", "people": "Barker, Stephen; Menking, James; Petrenko, Vasilii; Dyonisius, Michael; Severinghaus, Jeffrey P.; Menking, Andy; Buffen, Aron; Brook, Edward J.; Shackleton, Sarah; Bauska, Thomas", "repository": "USAP-DC", "science_program": null, "title": "Taylor Glacier CO2 Isotope Data 74-59 kyr", "url": "https://www.usap-dc.org/view/dataset/601600"}, {"dataset_uid": "600163", "doi": "10.15784/600163", "keywords": "Antarctica; Atmosphere; Geochemistry; Ice Core Records; Isotope; Paleoclimate; Taylor Glacier; Transantarctic Mountains", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "url": "https://www.usap-dc.org/view/dataset/600163"}, {"dataset_uid": "601415", "doi": "10.15784/601415", "keywords": "Antarctica; Glaciology; Ice Core Data; Ice Core Records; Paleoclimate; Paleotemperature; Taylor Glacier", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Mean Ocean Temperature in Marine Isotope Stage 4", "url": "https://www.usap-dc.org/view/dataset/601415"}], "date_created": "Mon, 13 Jul 2015 00:00:00 GMT", "description": "1245659/Petrenko This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, \u0026#948;18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, \u0026#948;13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of \u0026#948;13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica.", "east": 162.167, "geometry": "POINT(162.167 -77.733)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Not provided; USAP-DC; FIELD INVESTIGATION; Stratigraphy; FIELD SURVEYS; Antarctica; Paleoenvironment; Methane; Ice Core; Carbon Dioxide; FIXED OBSERVATION STATIONS; Stable Isotopes; Ablation Zone; Taylor Glacier; Nitrous Oxide; USA/NSF; LABORATORY; AMD; Cosmogenic; Amd/Us", "locations": "Taylor Glacier; Antarctica", "north": -77.733, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Petrenko, Vasilii; Brook, Edward J.; Severinghaus, Jeffrey P.; PETRENKO, VASILLI", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": -77.733, "title": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "uid": "p0000283", "west": 162.167}, {"awards": "0944165 McGillicuddy, Dennis; 0944254 Smith, Walker", "bounds_geometry": "POLYGON((168 -65,168.2 -65,168.4 -65,168.6 -65,168.8 -65,169 -65,169.2 -65,169.4 -65,169.6 -65,169.8 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,169.8 -65,169.6 -65,169.4 -65,169.2 -65,169 -65,168.8 -65,168.6 -65,168.4 -65,168.2 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65))", "dataset_titles": "Data from expdition NBP1201; Expedition Data; Project data: Processes Regulating Iron Supply at the Mesoscale - Ross Sea", "datasets": [{"dataset_uid": "000155", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Project data: Processes Regulating Iron Supply at the Mesoscale - Ross Sea", "url": "http://www.bco-dmo.org/project/2155"}, {"dataset_uid": "000156", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Data from expdition NBP1201", "url": "http://www.bco-dmo.org/deployment/506350"}, {"dataset_uid": "001442", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1201"}], "date_created": "Wed, 08 Jul 2015 00:00:00 GMT", "description": "The Ross Sea continental shelf is one of the most productive areas in the Southern Ocean, and may comprise a significant, but unaccounted for, oceanic CO2 sink, largely driven by phytoplankton production. The processes that control the magnitude of primary production in this region are not well understood, but data suggest that iron limitation is a factor. Field observations and model simulations indicate four potential sources of dissolved iron to surface waters of the Ross Sea: (1) circumpolar deep water intruding from the shelf edge; (2) sediments on shallow banks and nearshore areas; (3) melting sea ice around the perimeter of the polynya; and (4) glacial meltwater from the Ross Ice Shelf. The principal investigators hypothesize that hydrodynamic transport via mesoscale currents, fronts, and eddies facilitate the supply of dissolved iron from these four sources to the surface waters of the Ross Sea polynya. These hypotheses will be tested through a combination of in situ observations and numerical modeling, complemented by satellite remote sensing. In situ observations will be obtained during a month-long cruise in the austral summer. The field data will be incorporated into model simulations, which allow quantification of the relative contributions of the various hypothesized iron supply mechanisms, and assessment of their impact on primary production. The research will provide new insights and a mechanistic understanding of the complex oceanographic phenomena that regulate iron supply, primary production, and biogeochemical cycling. The research will thus form the basis for predictions about how this system may change in a warming climate. The broader impacts include training of graduate and undergraduate students, international collaboration, and partnership with several ongoing outreach programs that address scientific research in the Southern Ocean. The research also will contribute to the goals of the international research programs ICED (Integrated Climate and Ecosystem Dynamics) and GEOTRACES (Biogeochemical cycling and trace elements in the marine environment).", "east": 170.0, "geometry": "POINT(169 -65)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "R/V NBP; Not provided", "locations": null, "north": -65.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Walker; McGillicuddy, Dennis", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "BCO-DMO", "repositories": "BCO-DMO; R2R", "science_programs": null, "south": -65.0, "title": "Collaborative Research: Impact of Mesoscale Processes on Iron Supply and Phytoplankton Dynamics in the Ross Sea", "uid": "p0000330", "west": 168.0}, {"awards": "1044982 Bucklin, Ann", "bounds_geometry": "POLYGON((-69.3804 -52.760597,-67.79698 -52.760597,-66.21356 -52.760597,-64.63014 -52.760597,-63.04672 -52.760597,-61.4633 -52.760597,-59.87988 -52.760597,-58.29646 -52.760597,-56.71304 -52.760597,-55.12962 -52.760597,-53.5462 -52.760597,-53.5462 -53.9928073,-53.5462 -55.2250176,-53.5462 -56.4572279,-53.5462 -57.6894382,-53.5462 -58.9216485,-53.5462 -60.1538588,-53.5462 -61.3860691,-53.5462 -62.6182794,-53.5462 -63.8504897,-53.5462 -65.0827,-55.12962 -65.0827,-56.71304 -65.0827,-58.29646 -65.0827,-59.87988 -65.0827,-61.4633 -65.0827,-63.04672 -65.0827,-64.63014 -65.0827,-66.21356 -65.0827,-67.79698 -65.0827,-69.3804 -65.0827,-69.3804 -63.8504897,-69.3804 -62.6182794,-69.3804 -61.3860691,-69.3804 -60.1538588,-69.3804 -58.9216485,-69.3804 -57.6894382,-69.3804 -56.4572279,-69.3804 -55.2250176,-69.3804 -53.9928073,-69.3804 -52.760597))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001445", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1110"}], "date_created": "Wed, 17 Jun 2015 00:00:00 GMT", "description": "The proposed research targets the molecular genetics of salps, an increasingly important member of the zooplankton in Antarctic waters who\u0027s dominance appears to be related to climate warming and sea ice loss. Specifically the research will examine genome-wide patterns of gene expression, target gene expression levels, and patterns of population genetic diversity and structure underlying the complex life history and population dynamics of S. thompsoni. The P.I.s hypothesize that (1) deep analysis of the Salpa thompsoni transcriptome will reveal significant associations among selected set of differentially expressed genes and critical life history stages and events (e.g., ontogenetic maturation, sexual reproduction, senescence) of the salp; and 2) the species will show variable levels of clonal diversity and significant genetic differentiation among populations in different regions of the Southern Ocean. Broader impacts include training of two graduate students; inclusion of undergraduates in research, and in a formal training workshop; development of a summer workshop for high school teachers in collaboration with Connecticut Sea Grant; and public outreach via postings on the Census of Marine Zooplankton homepage.", "east": -53.5462, "geometry": "POINT(-61.4633 -58.9216485)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "PLANKTON; Antarctic Peninsula; R/V LMG", "locations": "Antarctic Peninsula", "north": -52.760597, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Bucklin, Ann", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.0827, "title": "Population ecology of Salpa thompsoni based on molecular indicators", "uid": "p0000508", "west": -69.3804}, {"awards": "1141890 Huber, Bruce", "bounds_geometry": "POLYGON((-62.176502 -57.913998,-61.4764715 -57.913998,-60.776441 -57.913998,-60.0764105 -57.913998,-59.37638 -57.913998,-58.6763495 -57.913998,-57.976319 -57.913998,-57.2762885 -57.913998,-56.576258 -57.913998,-55.8762275 -57.913998,-55.176197 -57.913998,-55.176197 -58.6469082,-55.176197 -59.3798184,-55.176197 -60.1127286,-55.176197 -60.8456388,-55.176197 -61.578549,-55.176197 -62.3114592,-55.176197 -63.0443694,-55.176197 -63.7772796,-55.176197 -64.5101898,-55.176197 -65.2431,-55.8762275 -65.2431,-56.576258 -65.2431,-57.2762885 -65.2431,-57.976319 -65.2431,-58.6763495 -65.2431,-59.37638 -65.2431,-60.0764105 -65.2431,-60.776441 -65.2431,-61.4764715 -65.2431,-62.176502 -65.2431,-62.176502 -64.5101898,-62.176502 -63.7772796,-62.176502 -63.0443694,-62.176502 -62.3114592,-62.176502 -61.578549,-62.176502 -60.8456388,-62.176502 -60.1127286,-62.176502 -59.3798184,-62.176502 -58.6469082,-62.176502 -57.913998))", "dataset_titles": "Expedition Data of NBP1203; Processed CTD Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203; Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203", "datasets": [{"dataset_uid": "601348", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; CTD; CTD Data; LARISSA; Larsen Ice Shelf; NBP1203; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Temperature", "people": "Gordon, Arnold; Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Processed CTD Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203", "url": "https://www.usap-dc.org/view/dataset/601348"}, {"dataset_uid": "601347", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Current Measurements; LADCP; LARISSA; Larsen Ice Shelf; NBP1203; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer", "people": "Gordon, Arnold; Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203", "url": "https://www.usap-dc.org/view/dataset/601347"}, {"dataset_uid": "001438", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP1203", "url": "https://www.rvdata.us/search/cruise/NBP1203"}], "date_created": "Wed, 17 Jun 2015 00:00:00 GMT", "description": "Time series data, from ocean moorings, on key aspects of evolving ocean properties are of considerable importance in assessing the condition of the ocean system. They are needed, for example, their understand how the oceans are warming, and how they continue to uptake greenhouse gases such as CO2. The Cape Adare Long Term Mooring (CALM) program goal was to observe the bottom water export from the Ross Sea to the deep ocean. To accomplish this two instrumented moorings were set on the continental slope off Cape Adare (western Ross Sea, Antarctica), positioned to capture the export of Antarctic Bottom Water (AABW), some of the coldest and densest water found in the global ocean. Data records for the moorings spans over some four years in this very remote part of the ocean. The CALM analysis will address some specific objectives: ? Characterize the temperature, salinity and current variability associated with the Ross Sea AABW export. ? Examine the linkages between observed variability to regional tides, atmosphere and sea ice forcing. ? Relate the Ross Sea AABW export fluctuations to the larger scale climate system dynamics, such as ENSO and SAM, and to AABW formation along other margins of Antarctica, e.g. the Weddell Sea", "east": -55.176197, "geometry": "POINT(-58.6763495 -61.578549)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -57.913998, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Huber, Bruce; Vernet, Maria", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -65.2431, "title": "Cape Adare Long Term Moorings (CALM): Analysis Phase", "uid": "p0000495", "west": -62.176502}, {"awards": "1043217 Zagorodnov, Victor", "bounds_geometry": null, "dataset_titles": "Fiber-Optic Distributed Temperature Sensing at Windless Bight", "datasets": [{"dataset_uid": "609604", "doi": "10.7265/N5V122QS", "keywords": "Antarctica; Ice Shelf; McMurdo Sound; Mooring; Oceans; Physical Oceanography; Ross Ice Shelf; Southern Ocean", "people": "Holland, David; Zagorodnov, Victor; Tyler, Scott W.", "repository": "USAP-DC", "science_program": null, "title": "Fiber-Optic Distributed Temperature Sensing at Windless Bight", "url": "https://www.usap-dc.org/view/dataset/609604"}], "date_created": "Tue, 05 May 2015 00:00:00 GMT", "description": "Abstract Researchers will explore the use of a distributed temperature sensing monitoring system (DTS), using fiber-optical (FO) technology, as the basis of a sustainable, sub-ice cavity sensing array. FO cable systems, such as may be deployed through a hot-water drilled hole through an ice shelf, passing through the underlying cavity to the sea floor, are capable of measuring temperatures down fiber at 1 meter intervals, and at time frequencies as high as 15 seconds. DTS FO systems operate via optical time domain reflectometry along the fiber waveguide using inelastic backscatter of coherent laser light as a probe beam in the FO environment. The introduction of new technologies to the harsh environmental conditions of the Antarctic are often associated with high risk. However, the potential rewards of this approach (e.g. multiyear capability, minimal submerged mechanical or electrical components that may fail, relative simplicity of deployment and measurement principle, yet yielding distributed real time and spatial observation) are attractive enough to conduct a pilot project at a field-ready location (McMurdo). Current indications are that the instability of some of the world\u0027s largest ice sheets located around the Antarctic and Greenland may be caused by the presence of warming, deep ocean waters, shoaling over continental shelves, and melting the underside of floating ice shelves. Additional knowledge of the temporal and spatial variability of the temperature fields underneath terminal ice shelves, such as those draining the West Antarctic Ice Sheet, are needed to accurately project future global climate effects on ice-shelf ocean interactions, and in order to inform societal and technological aspects of adaption to changing sea-level.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e TEMPERATURE LOGGERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS", "is_usap_dc": true, "keywords": "GROUND STATIONS; Not provided; Conservative Temperature; MOORINGS; Ice Shelf Temperature; Ocean Temperature", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Zagorodnov, Victor; Holland, David; Tyler, Scott W.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED \u003e MOORINGS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Application of Distributed Temperature Sensors (DTS) for Antarctic Ice Shelves and Cavities", "uid": "p0000183", "west": null}, {"awards": "1146554 Rack, Frank", "bounds_geometry": "POLYGON((153.694 -77.89028,155.025433 -77.89028,156.356866 -77.89028,157.688299 -77.89028,159.019732 -77.89028,160.351165 -77.89028,161.682598 -77.89028,163.014031 -77.89028,164.345464 -77.89028,165.676897 -77.89028,167.00833 -77.89028,167.00833 -78.525252,167.00833 -79.160224,167.00833 -79.795196,167.00833 -80.430168,167.00833 -81.06514,167.00833 -81.700112,167.00833 -82.335084,167.00833 -82.970056,167.00833 -83.605028,167.00833 -84.24,165.676897 -84.24,164.345464 -84.24,163.014031 -84.24,161.682598 -84.24,160.351165 -84.24,159.019732 -84.24,157.688299 -84.24,156.356866 -84.24,155.025433 -84.24,153.694 -84.24,153.694 -83.605028,153.694 -82.970056,153.694 -82.335084,153.694 -81.700112,153.694 -81.06514,153.694 -80.430168,153.694 -79.795196,153.694 -79.160224,153.694 -78.525252,153.694 -77.89028))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 27 Apr 2015 00:00:00 GMT", "description": "This award provides support for \"EAGER: Handbook of Hot Water Drill System (HWDS) Design Considerations and Best Practices\" from the Antarctic Integrated System Science within the Office of Polar Programs. More and more science projects are proposing to use hot-water drilling systems (HWDS) to rapidly and/or cleanly access glacial and subglacial systems. To date the hot-water drill systems have been developed in isolation, and no attempt has been made to gather information about the different systems in one place. This proposal requests funds to document existing HWDS, and to then assess the design, testing, and development of a hot-water drill system that will be integrated with the evolving over-ice traverse capability of the USAP program. Intellectual Merit: A working handbook of best practices for hot-water drill design systems, including safety considerations, is long overdue, and will 1) provide suggestions for optimizing current systems; 2) contribute in the very near term to already funded projects such as WISSARD (Whillans Ice Stream Subglacial Access and Research Drilling); and 3) fit the long-term needs of the Antarctic science community who have identified rapid and clean access to glacial and subglaical environments as a top priority for the next decades. The collected information will be used for community education and training, will discuss potential design and operational trade-offs, and will identify ways to optimize the capabilities of an integrated USAP traverse and HWDS infrastructure. EAGER funding for this project is warranted because such a handbook has not been tried before, and needs to be shown to be doable prior to larger investments in such compilations. It fits the AISS (Antarctic Integrated System Science) program as an optimized HWDS will meet the needs of many different Antarctic research disciplines including biology, geology, glaciology, and oceanography. Broader Impacts: The proposed work is being done on behalf of the Antarctic research community, and will seek to capture the knowledge of experienced hot-water drill engineers who are nearing retirement, and to educate the next generation of hot-water drillers and engineers. The PI indicates he will work with the owners of such systems both within the US and abroad. Identification of best practices in hot-water drilling will save several different Antarctic research communities significant time, effort, and funding in the future.", "east": 167.00833, "geometry": "POINT(160.351165 -81.06514)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e GRAVITY CORER; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE TRANSDUCERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e NISKIN BOTTLES; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e FSI; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS", "is_usap_dc": false, "keywords": "Hot Water Drill; Subglacial Lake; Ross Ice Shelf; West Antarctic Ice Sheet; FIELD SURVEYS; TRAVERSE; Clean Access Drilling; Drilling Parameters; FIELD INVESTIGATION; DRILLING PLATFORMS; Not provided; Antarctica; WISSARD; Whillans Ice Stream; FIXED OBSERVATION STATIONS", "locations": "Antarctica; West Antarctic Ice Sheet; Whillans Ice Stream; Ross Ice Shelf", "north": -77.89028, "nsf_funding_programs": "Antarctic Integrated System Science", "paleo_time": null, "persons": "Rack, Frank", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; LAND-BASED PLATFORMS \u003e VEHICLES \u003e TRAVERSE; Not provided; WATER-BASED PLATFORMS \u003e FIXED PLATFORMS \u003e SURFACE \u003e DRILLING PLATFORMS", "repositories": null, "science_programs": null, "south": -84.24, "title": "EAGER: Handbook of Hot Water Drill System (HWDS) Design Considerations and Best Practices.", "uid": "p0000729", "west": 153.694}, {"awards": "1141275 Warren, Stephen", "bounds_geometry": null, "dataset_titles": "Antarctic field campaign data page", "datasets": [{"dataset_uid": "001399", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Antarctic field campaign data page", "url": "http://www.atmos.washington.edu/articles/EastAntarctica_SeaIceAlbedos_SnowImpurities/"}], "date_created": "Fri, 30 Jan 2015 00:00:00 GMT", "description": "The albedo, or reflection coefficient, is a measure of the diffuse reflectivity of an irradiated surface. With the sunlit atmosphere as a light source, and sea-ice as a diffuse reflecting surface, the albedo would be the fraction of incident light that is returned to the atmosphere. A perfect (white) reflecting surface would have an albedo of 1; a perfect (black) absorbing surface would have an albedo of 0. The albedo of sea-ice is needed to assess the solar energy budget of the marginal ice zone, to compute the partial solar bands in radiation budgets in general circulation and earth system models, and is also needed to interpret remote sensing imagery data products. Applications requiring albedos further into the near IR, out to 2500nm, are assumed or approximated. Modern spectral radiometers, such as will be used in this campaign on a Southern Ocean voyage from Hobart to Antarctica, can extend these measurements of albedo from 350 to 2500nm, allowing earlier estimates to be verified, or corrected. Surfaces to be encountered on this research cruise are expected to include open water, grease ice, nila ice, pancake ice, young grey ice, young grey-white ice, along with first year ice. The presence of variable amounts of snow on these surfaces is also of interest. Light absorbing impurities in the snow and ice, including black carbon and organic matter (brown carbon) are different from those found in Arctic Sea ice, the Antarctic being so remote from combustion sources. This may allow better understanding of the seasonal cycles, energy budgets and their recent trends in spatial extent and thickness. The project will also broaden the educational experiences of both US and Australian students participating in the measurement campaign", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Radiometers; Radiation Budgets; Sea Ice; Energy Budgets; Impurities; COMPUTERS; Albedo; Spectral; LABORATORY; Antarctica; Snow Temperature; Reflecting Surface; Snow Density; R/V AA", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Warren, Stephen; Zatko, Maria", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V AA", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": null, "title": "Spectral and Broadband Albedo of Antarctic Sea-ice Types", "uid": "p0000375", "west": null}, {"awards": "0944087 Hamilton, Gordon", "bounds_geometry": "POLYGON((145 -80,147 -80,149 -80,151 -80,153 -80,155 -80,157 -80,159 -80,161 -80,163 -80,165 -80,165 -80.035,165 -80.07,165 -80.105,165 -80.14,165 -80.175,165 -80.21,165 -80.245,165 -80.28,165 -80.315,165 -80.35,163 -80.35,161 -80.35,159 -80.35,157 -80.35,155 -80.35,153 -80.35,151 -80.35,149 -80.35,147 -80.35,145 -80.35,145 -80.315,145 -80.28,145 -80.245,145 -80.21,145 -80.175,145 -80.14,145 -80.105,145 -80.07,145 -80.035,145 -80))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 23 Jan 2015 00:00:00 GMT", "description": "This award supports a project to understand the flow dynamics of large, fast-moving outlet glaciers that drain the East Antarctic Ice Sheet. The project includes an integrated field, remote sensing and modeling study of Byrd Glacier which is a major pathway for the discharge of mass from the East Antarctic Ice Sheet (EAIS) to the ocean. Recent work has shown that the glacier can undergo short-lived but significant changes in flow speed in response to perturbations in its boundary conditions. Because outlet glacier speeds exert a major control on ice sheet mass balance and modulate the ice sheet contribution to sea level rise, it is essential that their sensitivity to a range of dynamic processes is properly understood and incorporated into prognostic ice sheet models. The intellectual merit of the project is that the results from this study will provide critically important information regarding the flow dynamics of large EAIS outlet glaciers. The proposed study is designed to address variations in glacier behavior on timescales of minutes to years. A dense network of global positioning satellite (GPS) instruments on the grounded trunk and floating portions of the glacier will provide continuous, high-resolution time series of horizontal and vertical motions over a 26-month period. These results will be placed in the context of a longer record of remote sensing observations covering a larger spatial extent, and the combined datasets will be used to constrain a numerical model of the glacier\u0027s flow dynamics. The broader impacts of the work are that this project will generate results which are likely to be a significant component of next-generation ice sheet models seeking to predict the evolution of the Antarctic Ice Sheet and future rates of sea level rise. The most recent report from the Intergovernmental Panel on Climate Change (IPCC) highlights the imperfect understanding of outlet glacier dynamics as a major obstacle to the production of an accurate sea level rise projections. This project will provide significant research opportunities for several early-career scientists, including the lead PI for this proposal (she is both a new investigator and a junior faculty member at a large research university) and two PhD-level graduate students. The students will be trained in glaciology, geodesy and numerical modeling, contributing to society\u0027s need for experts in those fields. In addition, this project will strengthen international collaboration between polar scientists and geodesists in the US and Spain. The research team will work closely with science educators in the Center for Remote Sensing of Ice Sheets (CReSIS) outreach program to disseminate project results to non-specialist audiences.", "east": 165.0, "geometry": "POINT(155 -80.175)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "Sea Level Rise; FIELD INVESTIGATION; Glacier; LABORATORY; Outlet Glaciers; Boundary Conditions; Model; Numerical Model; FIELD SURVEYS; Antarctica; COMPUTERS; Not provided; Flow Dynamics", "locations": "Antarctica", "north": -80.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Stearns, Leigh; Hamilton, Gordon S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -80.35, "title": "Collaborative Research: Byrd Glacier Flow Dynamics", "uid": "p0000319", "west": 145.0}, {"awards": "0632136 Nyblade, Andrew; 0632322 Wilson, Terry", "bounds_geometry": "POLYGON((-20 -70,-1 -70,18 -70,37 -70,56 -70,75 -70,94 -70,113 -70,132 -70,151 -70,170 -70,170 -72,170 -74,170 -76,170 -78,170 -80,170 -82,170 -84,170 -86,170 -88,170 -90,151 -90,132 -90,113 -90,94 -90,75 -90,56 -90,37 -90,18 -90,-1 -90,-20 -90,-20 -88,-20 -86,-20 -84,-20 -82,-20 -80,-20 -78,-20 -76,-20 -74,-20 -72,-20 -70))", "dataset_titles": "Incorporated Research Institutions for Seismology (IRIS); University NAVSTAR Consortium (UNAVCO)", "datasets": [{"dataset_uid": "000132", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Incorporated Research Institutions for Seismology (IRIS)", "url": "http://www.iris.edu/mda/YT?timewindow=2007-2018"}, {"dataset_uid": "000131", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "University NAVSTAR Consortium (UNAVCO)", "url": "http://www.unavco.org/data/gps-gnss/data-access-methods/dai2/app/dai2.html#groupingMod=contains;grouping=POLENET%20-%20ANET;scope=Station;sampleRate=normal"}], "date_created": "Thu, 22 Jan 2015 00:00:00 GMT", "description": "This project constructs POLENET a network of GPS and seismic stations in West Antarctica to understand how the mass of the West Antarctic ice sheet (WAIS) changes with time. The information is ultimately used to predict sea level rise accompanying global warming and interpret climate change records. The GPS (global positioning system) stations measure vertical and horizontal movements of bedrock, while the seismic stations characterize physical properties of the ice/rock interface, lithosphere, and mantle. Combined with satellite data, this project offers a more complete picture of the ice sheet\u0027s current state, its likely change in the near future, and its overall size during the last glacial maximum. This data will also be used to infer sub-ice sheet geology and the terrestrial heat flux, critical inputs to models of glacier movement. As well, this project improves tomographic models of the earth\u0027s deep interior and core through its location in the Earth\u0027s poorly instrumented southern hemisphere. \u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eBroader impacts of this project are varied. The work is relevant to society for improving our understanding of the impacts of global warming on sea level rise. It also supports education at the postdoctoral, graduate, and undergraduate levels, and outreach to groups underrepresented in the sciences. As an International Polar Year contribution, this project establishes a legacy of infrastructure for polar measurements. It also involves an international collaboration of twenty four countries. For more information see IPY Project #185 at IPY.org. NSF is supporting a complementary Arctic POLENET array being constructed in Greenland under NSF Award #0632320.", "east": 170.0, "geometry": "POINT(75 -80)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "Antarctica; Bedrock; Ice/Rock Interface; Climate Change; Seismic; West Antarctic Ice Sheet; FIELD SURVEYS; LABORATORY; Not provided; FIELD INVESTIGATION; Mass Balance; COMPUTERS; Sub-Ice Sheet Geology; Sea Level; Terrestrial Heat Flux", "locations": "Antarctica; West Antarctic Ice Sheet", "north": -70.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Wilson, Terry; Bevis, Michael; Anandakrishnan, Sridhar; Wiens, Douglas; Aster, Richard; Smalley, Robert; Nyblade, Andrew; Winberry, Paul; Hothem, Larry; Dalziel, Ian W.; Huerta, Audrey D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "IRIS", "repositories": "IRIS; UNAVCO", "science_programs": null, "south": -90.0, "title": "Collaborative Research: IPY: POLENET-Antarctica: Investigating Links Between Geodynamics and Ice Sheets", "uid": "p0000315", "west": -20.0}, {"awards": "0732804 McPhee, Miles; 0732730 Truffer, Martin; 0732869 Holland, David; 0732906 Nowicki, Sophie", "bounds_geometry": "POINT(-100.728 -75.0427)", "dataset_titles": "Automatic Weather Station Pine Island Glacier; Borehole Temperatures at Pine Island Glacier, Antarctica; Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica", "datasets": [{"dataset_uid": "600072", "doi": "10.15784/600072", "keywords": "Antarctica; Atmosphere; McMurdo; Meteorology; Oceans; Ross Island; Southern Ocean", "people": "McPhee, Miles G.", "repository": "USAP-DC", "science_program": null, "title": "Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica", "url": "https://www.usap-dc.org/view/dataset/600072"}, {"dataset_uid": "601216", "doi": "10.15784/601216", "keywords": "Antarctica; Atmosphere; Automated Weather Station; Flux; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Meteorology; Pine Island Glacier; Weather Station Data", "people": "Mojica Moncada, Jhon F.; Holland, David", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Automatic Weather Station Pine Island Glacier", "url": "https://www.usap-dc.org/view/dataset/601216"}, {"dataset_uid": "609627", "doi": "10.7265/N5T151MV", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Pine Island Glacier; Temperature", "people": "Truffer, Martin; Stanton, Timothy", "repository": "USAP-DC", "science_program": null, "title": "Borehole Temperatures at Pine Island Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609627"}], "date_created": "Tue, 30 Dec 2014 00:00:00 GMT", "description": "Collaborative With: McPhee 0732804, Holland 0732869, Truffer 0732730, Stanton 0732926, Anandakrishnan 0732844 \u003cbr/\u003eTitle: Collaborative Research: IPY: Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica\u003cbr/\u003e\u003cbr/\u003eThe Office of Polar Programs, Antarctic Integrated and System Science Program has made this award to support an interdisciplinary study of the effects of the ocean on the stability of glacial ice in the most dynamic region the West Antarctic Ice Sheet, namely the Pine Island Glacier in the Amundsen Sea Embayment. The collaborative project builds on the knowledge gained by the highly successful West Antarctic Ice Sheet program and is being jointly sponsored with NASA. Recent observations indicate a significant ice loss, equivalent to 10% of the ongoing increase in sea-level rise, in this region. These changes are largest along the coast and propagate rapidly inland, indicating the critical impact of the ocean on ice sheet stability in the region. While a broad range of remote sensing and ground-based instrumentation is available to characterize changes of the ice surface and internal structure (deformation, ice motion, melt) and the shape of the underlying sediment and rock bed, instrumentation has yet to be successfully deployed for observing boundary layer processes of the ocean cavity which underlies the floating ice shelf and where rapid melting is apparently occurring. Innovative, mini ocean sensors that can be lowered through boreholes in the ice shelf (about 500 m thick) will be developed and deployed to automatically provide ocean profiling information over at least three years. Their data will be transmitted through a conducting cable frozen in the borehole to the surface where it will be further transmitted via satellite to a laboratory in the US. Geophysical and remote sensing methods (seismic, GPS, altimetry, stereo imaging, radar profiling) will be applied to map the geometry of the ice shelf, the shape of the sub ice-shelf cavity, the ice surface geometry and deformations within the glacial ice. To integrate the seismic, glaciological and oceanographic observations, a new 3-dimensional coupled ice-ocean model is being developed which will be the first of its kind. NASA is supporting satellite based research and the deployment of a robotic-camera system to explore the environment in the ocean cavity underlying the ice shelf and NSF is supporting all other aspects of this study. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: This project is motivated by the potential societal impacts of rapid sea level rise and should result in critically needed improvements in characterizing and predicting the behavior of coupled ocean-ice systems. It is a contribution to the International Polar Year and was endorsed by the International Council for Science as a component of the \"Multidisciplinary Study of the Amundsen Sea Embayment\" proposal #258 of the honeycomb of endorsed IPY activities. The research involves substantial international partnerships with the British Antarctic Survey and the University of Bristol in the UK. The investigators will partner with the previously funded \"Polar Palooza\" education and outreach program in addition to undertaking a diverse set of outreach activities of their own. Eight graduate students and one undergraduate as well as one post doc will be integrated into this research project.", "east": -100.728, "geometry": "POINT(-100.728 -75.0427)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e SEISMIC REFLECTION PROFILERS", "is_usap_dc": true, "keywords": "West Antarctica; Seismic; LABORATORY; Amundsen Sea; Ocean-Ice Interaction; Remote Sensing; COMPUTERS; FIELD SURVEYS; LANDSAT-8; FIELD INVESTIGATION; Ocean Profiling; AUVS; Sea Level Rise; Stability; Not provided; Deformation; SATELLITES; Ice Movement; GROUND-BASED OBSERVATIONS; Ice Temperature; International Polar Year; Borehole", "locations": "West Antarctica; Amundsen Sea", "north": -75.0427, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Truffer, Martin; Stanton, Timothy; Bindschadler, Robert; Behar, Alberto; Nowicki, Sophie; Anandakrishnan, Sridhar; Holland, David; McPhee, Miles G.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e LANDSAT \u003e LANDSAT-8; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES; WATER-BASED PLATFORMS \u003e UNCREWED VEHICLES \u003e SUBSURFACE \u003e AUVS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -75.0427, "title": "Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica", "uid": "p0000043", "west": -100.728}, {"awards": "1441432 Scambos, Ted", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 30 Dec 2014 00:00:00 GMT", "description": "The investigators propose to build and test a multi-sensor, automated measurement station for monitoring Arctic and Antarctic ice-ocean environments. The system, based on a previously successful design, will incorporate weather and climate sensors, camera, snow and firn sensors, instruments to measure ice motion, ice and ocean thermal profilers, hydrophone, and salinity sensors. This new system will have two-way communications for real-time data delivery and is designed for rapid deployment by a small field group. AMIGOS-II will be capable of providing real time information on geophysical processes such as weather, snowmelt, ice motion and strain, fractures and melt ponds, firn thermal profiling, and ocean conditions from multiple levels every few hours for 2-4 years. Project personnel will conduct a field test of the new system at a location with a deep ice-covered lake. Development of AMIGOS-II is motivated by recent calls by the U.S. Antarctic Program Blue-Ribbon Panel to increase Antarctic logistical effectiveness, which cites a need for greater efficiency in logistical operations. Installation of autonomous stations with reduced logistical requirements advances this goal.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e CURRENT METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e TEMPERATURE PROFILERS", "is_usap_dc": false, "keywords": "Ice Ocean Interface; FIELD SURVEYS; Climate; Firn Temperature Measurements; Snowmelt; Strain; Ice Movement; Melt Ponds; LABORATORY; Not provided; Multi-Sensor; FIELD INVESTIGATION", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Scambos, Ted", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "A Low-power, Quick-install Polar Observation System (\u0027AMIGOS-II\u0027) for Monitoring Climate-ice-ocean Interactions", "uid": "p0000443", "west": null}, {"awards": "0838849 Bender, Michael; 0838843 Kurbatov, Andrei", "bounds_geometry": "POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.719998,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.7,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.673336,159.16667 -76.66667))", "dataset_titles": "Allan Hills Stable Water Isotopes; Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "datasets": [{"dataset_uid": "609541", "doi": "10.7265/N5NP22DF", "keywords": "Allan Hills; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Isotope", "people": "Kurbatov, Andrei V.; Introne, Douglas; Mayewski, Paul A.; Spaulding, Nicole", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills Stable Water Isotopes", "url": "https://www.usap-dc.org/view/dataset/609541"}, {"dataset_uid": "600099", "doi": "10.15784/600099", "keywords": "Allan Hills; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Ice Core Records; Paleoclimate; Solid Earth", "people": "Bender, Michael", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "url": "https://www.usap-dc.org/view/dataset/600099"}], "date_created": "Wed, 10 Dec 2014 00:00:00 GMT", "description": "This award supports a project to generate an absolute timescale for the Allan Hills Blue Ice Area (BIA), and then to reconstruct details of past climate changes and greenhouse gas concentrations for certain time periods back to 2.5 Ma. Ice ages will be determined by applying emerging methods for absolute and relative dating of trapped air bubbles (based on Argon-40/Argon-38, delta-18O of O2, and the O2/N2 ratio). To demonstrate the potential of the Allan Hills BIAs as a paleoclimate archive trenches and ice cores will be collected for age intervals corresponding to 110-140 ka, 1 Ma, and 2.5 Ma. During the proposed two field seasons a total of 6x100 m and additional 15 m cores will be combined with trenching. The intellectual merit of the proposed activity is that the results of this work will extend the landmark work of EPICA and other deep ice coring efforts, which give records dating back to 0.8 Ma, and will complement work planned by IPICS to drill a continuous Antarctic ice core extending to 1.5 Ma. The results will help to advance understanding of major climate regimes and transitions that took place between 0-2.5 Ma, including the 40 kyr world and the mid-Pleistocene climate transition. A major long-term scientific goal is to provide a transformative approach to the collection of paleoclimate records by establishing an \"International Climate Park\" in the Allan Hills BIA that would enable sampling of large quantities of known age ice as old as 2.5 Ma, by any interested American or foreign investigator. The broader impacts resulting from the proposed activity include training students who are well versed in advanced field, laboratory and numerical modeling methods combining geochemistry, glaciology, and paleoclimatology. We will include material relevant to our proposed research in our ongoing efforts in local education and in our outreach efforts for media. The University of Maine already has cyberinfrastructure, using state of the art web-based technology, which can provide a wide community of scientists with fast access to the results of our research. The work will contribute to the broad array of climate change studies that is informing worldwide understanding of natural and anthropogenic forced climate change, and the options for responding. This award has field work in Antarctica.", "east": 159.41667, "geometry": "POINT(159.29167 -76.7)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "GROUND-BASED OBSERVATIONS; LABORATORY; Deuterium Isotopes; Not provided; Oxygen Isotope", "locations": null, "north": -76.66667, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Spaulding, Nicole; Introne, Douglas; Bender, Michael; Kurbatov, Andrei V.; Mayewski, Paul A.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73333, "title": "Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "uid": "p0000046", "west": 159.16667}, {"awards": "1043092 Steig, Eric; 1043167 White, James", "bounds_geometry": null, "dataset_titles": "17O excess from WAIS Divide, 0 to 25 ka BP; WAIS Divide Ice Core Discrete CH4 (80-3403m); WAIS Divide WDC06A Oxygen Isotope Record", "datasets": [{"dataset_uid": "601741", "doi": "10.15784/601741", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Methane; WAIS", "people": "Brook, Edward J.; Sowers, Todd A.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core Discrete CH4 (80-3403m)", "url": "https://www.usap-dc.org/view/dataset/601741"}, {"dataset_uid": "601413", "doi": "10.15784/601413", "keywords": "Antarctica; Ice Core; Oxygen Isotope; WAIS Divide", "people": "Schoenemann, Spruce; Steig, Eric J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "17O excess from WAIS Divide, 0 to 25 ka BP", "url": "https://www.usap-dc.org/view/dataset/601413"}, {"dataset_uid": "609629", "doi": "10.7265/N5GT5K41", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Steig, Eric J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide WDC06A Oxygen Isotope Record", "url": "https://www.usap-dc.org/view/dataset/609629"}], "date_created": "Sat, 06 Dec 2014 00:00:00 GMT", "description": "This award supports a project to contribute one of the cornerstone analyses, stable isotopes of ice (Delta-D, Delta-O18) to the ongoing West Antarctic Ice Sheet Divide (WAIS) deep ice core. The WAIS Divide drilling project, a multi-institution project to obtain a continuous high resolution ice core record from central West Antarctica, reached a depth of 2560 m in early 2010; it is expected to take one or two more field seasons to reach the ice sheet bed (~3300 m), plus an additional four seasons for borehole logging and other activities including proposed replicate coring. The current proposal requests support to complete analyses on the WAIS Divide core to the base, where the age will be ~100,000 years or more. These analyses will form the basis for the investigation of a number of outstanding questions in climate and glaciology during the last glacial period, focused on the dynamics of the West Antarctic Ice Sheet and the relationship of West Antarctic climate to that of the Northern polar regions, the tropical Pacific, and the rest of the globe, on time scales ranging from years to tens of thousands of years. One new aspect of this work is the growing expertise at the University of Washington in climate modeling with isotope-tracer-enabled general circulation models, which will aid in the interpretation of the data. Another major new aspect is the completion and use of a high-resolution, semi-automated sampling system at the University of Colorado, which will permit the continuous analysis of isotope ratios via laser spectroscopy, at an effective resolution of ~2 cm or less, providing inter-annual time resolution for most of the core. Because continuous flow analyses of stable ice isotopes is a relatively new measurement, we will complement them with parallel measurements, every ~10-20 m, using traditional discrete sampling and analysis by mass spectrometry at the University of Washington. The intellectual merit and the overarching goal of the work are to see Inland WAIS become the reference ice isotope record for West Antarctica. The broader impacts of the work are that the data generated in this project pertain directly to policy-relevant and immediate questions of the stability of the West Antarctic ice sheet, and thus past and future changes in sea level, as well as the nature of climate change in the high southern latitudes. The project will also contribute to the development of modern isotope analysis techniques using laser spectroscopy, with applications well beyond ice cores. The project will involve a graduate student and postdoc who will work with both P.I.s, and spend time at both institutions. Data will be made available rapidly through the Antarctic Glaciological Data Center, for use by other researchers and the public.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e INFRARED LASER SPECTROSCOPY; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e INFRARED LASER SPECTROSCOPY", "is_usap_dc": true, "keywords": "AMD; ANALYTICAL LAB; USAP-DC; Amd/Us; LABORATORY; ICE CORE RECORDS; Antarctica; Wais Divide-project; FIELD SURVEYS; USA/NSF", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e ANALYTICAL LAB; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "uid": "p0000010", "west": null}, {"awards": "1241574 Hemming, Sidney; 1241460 Barbeau, David", "bounds_geometry": "POLYGON((-67 -63.2,-65.97 -63.2,-64.94 -63.2,-63.91 -63.2,-62.88 -63.2,-61.85 -63.2,-60.82 -63.2,-59.79 -63.2,-58.76 -63.2,-57.73 -63.2,-56.7 -63.2,-56.7 -63.54,-56.7 -63.88,-56.7 -64.22,-56.7 -64.56,-56.7 -64.9,-56.7 -65.24,-56.7 -65.58,-56.7 -65.92,-56.7 -66.26,-56.7 -66.6,-57.73 -66.6,-58.76 -66.6,-59.79 -66.6,-60.82 -66.6,-61.85 -66.6,-62.88 -66.6,-63.91 -66.6,-64.94 -66.6,-65.97 -66.6,-67 -66.6,-67 -66.26,-67 -65.92,-67 -65.58,-67 -65.24,-67 -64.9,-67 -64.56,-67 -64.22,-67 -63.88,-67 -63.54,-67 -63.2))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 03 Dec 2014 00:00:00 GMT", "description": "Intellectual Merit: Recent geochemical, sequence stratigraphic, and integrated investigations of marine strata from several continental margins and ocean basins suggest that ephemeral ice sheets may have existed on Antarctica during parts of the Cretaceous and early Paleogene. However, atmospheric carbon dioxide estimates for this time are as much as four times modern levels. With such greenhouse conditions, the presence of Antarctic ice sheets would imply that our current understanding of Earth?s climate system, and specifically the interpreted thresholds of Antarctic glaciation and deglaciation should be reconsidered. The proposed research will compare the quantity and provenance of Cretaceous sediments in the Larsen basin of the eastern Antarctic Peninsula with the exhumation chronology and composition of potential sediment source terranes on the peninsula and in adjacent regions. New outcrop stratigraphic analyses with improvements in the age models from radioisotopic approaches will be integrated to determine the amount of detrital sediment fluxed to the Larsen basin between key chronostratigraphic surfaces. Microtextural analysis of quartz sand and silt grains will help determine whether the Larsen basin detrital sediment originated from glacial weathering. These preliminary results will test the viability of the proposed approach to assess the controversial Cretaceous Antarctic glaciation hypothesis. Broader impacts: The proposed work will partially support a PhD, a MSc, and three undergraduate students at the University of South Carolina. The PIs will publicize this work through volunteer speaking engagements and the development of videos and podcasts. They also commit to prompt publication of the results and timely submission of data to archives. The development/improvement of the Larsen basin age model will benefit ongoing research in paleobiology, paleoclimate and biogeography. Development of the glauconite K-Ar and Rb-Sr chronometers could be an important outcome beyond the direct scope of the proposed research.", "east": -56.7, "geometry": "POINT(-61.85 -64.9)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e LA-ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MC-ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e IRMS", "is_usap_dc": true, "keywords": "Not provided; Noble-Gas Mass Spectrometer; Antarctic Peninsula", "locations": "Antarctic Peninsula", "north": -63.2, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": "PROTEROZOIC; PHANEROZOIC \u003e PALEOZOIC; PHANEROZOIC \u003e MESOZOIC; PHANEROZOIC \u003e CENOZOIC; PHANEROZOIC \u003e MESOZOIC \u003e CRETACEOUS; PHANEROZOIC \u003e CENOZOIC \u003e PALEOGENE", "persons": "Barbeau, David; Hemming, Sidney R.; Barbeau, David Jr", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -66.6, "title": "Collaborative Research: EAGER: Evaluating the Larsen basin\u0027s suitability for testing the Cretaceous Glaciation Hypothesis", "uid": "p0000369", "west": -67.0}, {"awards": "0943935 Isbell, John; 0943934 Taylor, Edith", "bounds_geometry": null, "dataset_titles": "Portal to search geologic sample collections, Polar Rock Repository, Byrd Polar Research Center, The Ohio State University; Portal to search paleobotanical collections, Biodiversity Institute, University of Kansas", "datasets": [{"dataset_uid": "001377", "doi": "", "keywords": null, "people": null, "repository": "PRR", "science_program": null, "title": "Portal to search geologic sample collections, Polar Rock Repository, Byrd Polar Research Center, The Ohio State University", "url": "http://research.bpcrc.osu.edu/rr/"}, {"dataset_uid": "002567", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Portal to search paleobotanical collections, Biodiversity Institute, University of Kansas", "url": "http://biodiversity.ku.edu/paleobotany/collections/collections-search"}, {"dataset_uid": "001402", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Portal to search paleobotanical collections, Biodiversity Institute, University of Kansas", "url": "http://biodiversity.ku.edu/paleobotany/collections/collections-search"}], "date_created": "Tue, 23 Sep 2014 00:00:00 GMT", "description": "Intellectual Merit:\u003cbr/\u003eThe focus of this proposal is to collect fossil plants and palynomorphs from Permian-Triassic (P-T) rocks of the central Transantarctic Mountains (CTM), together with detailed data on sedimentologic and paleoecologic depositional environments. Fossil plants are important climate proxies that offer a unique window into the past, and the CTM fossils are an important source of data on the ways that plants responded to a strongly seasonal, polar light regime during a time of global change. The proposed project uses paleobotanical expertise, integrated with detailed sedimentology and stratigraphy, to reconstruct Permian-Triassic plant communities and their paleoenvironments. This interdisciplinary approach could uncover details of Antarctica?s complex late Paleozoic and Mesozoic environmental and climatic history which included: 1) deglaciation, 2) development and evolution of a post-glacial landscape and biota, 3) environmental and biotic change associated with the end-Permian mass extinction, 4) environmental recovery in the earliest Triassic, 5) strong, possible runaway Triassic greenhouse, and 6) widespread orogenesis and development of a foreland basin system. The PIs will collect compression floras both quantitatively and qualitatively to obtain biodiversity and abundance data. Since silicified wood is also present, the PIs will analyze tree rings and growth in a warm, high-latitude environment for which there is no modern analogue. Fossil plants from the CTM can provide biological and environmental information to: 1) interpret paleoclimate when Gondwana moved from icehouse to greenhouse conditions; 2) trace floral evolution across the P-T boundary; 3) reconstruct Antarctic plant life; 4) further understanding of plant adaptations to high latitudes. The Intellectual Merit of the research includes: 1) tracing floral evolution after the retreat of glaciers; 2) examining floral composition and diversity across the PTB; and 3) obtaining data on the recovery of these ecosystems in the Early Triassic, as well as changes in floral cover and diversity in the Early-Middle Triassic. Antarctica is the only place on Earth that includes extensive outcrops of terrestrial rocks, combined with widespread and well-preserved plant fossils, which spans this crucial time period.\u003cbr/\u003e\u003cbr/\u003eBroader impacts:\u003cbr/\u003eThe broader impacts include public outreach; teaching, and mentoring of women and underrepresented students; mentoring graduate student, postdoctoral, and new faculty women; development of an inquiry-based workshop on Antarctic paleoclimate with the Division of Education, KU Natural History Museum; continuing support of workshops for middle school girls in science via the Expanding Your Horizons Program, Emporia State University, and the TRIO program, KU; exploring Antarctic geosciences through video/computer links from McMurdo Station and satellite phone conferences from the field with K-12 science classes in Wisconsin and Kansas, and through participation in the NSF Research Experiences for Teachers program at the University of Wisconsin.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "FIELD SURVEYS; LABORATORY; Transanatarctic Basin; Paleobotany; Fossil Plants; FIELD INVESTIGATION; Sedimentology; Late Paleozoic Ice Age; Not provided; Central Transantarctic Mountains; Beardmore Glacier", "locations": "Transanatarctic Basin; Central Transantarctic Mountains; Beardmore Glacier", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Instrumentation and Support; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e PALEOZOIC \u003e PERMIAN; PHANEROZOIC \u003e MESOZOIC \u003e TRIASSIC; PHANEROZOIC \u003e PALEOZOIC \u003e PERMIAN; PHANEROZOIC \u003e MESOZOIC \u003e TRIASSIC", "persons": "Isbell, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "PRR", "repositories": "PI website; PRR", "science_programs": null, "south": null, "title": "Collaborative Research: Antarctic Ecosystems across the Permian-Triassic Boundary: Integrating Paleobotany, Sedimentology, and Paleoecology", "uid": "p0000372", "west": null}, {"awards": "0944199 Waddington, Edwin", "bounds_geometry": null, "dataset_titles": "WAIS Divide Sonic Log Data", "datasets": [{"dataset_uid": "609592", "doi": "10.7265/N5T72FD2", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Physical Properties; Sonic Log; WAIS Divide; WAIS Divide Ice Core", "people": "Kluskiewicz, Dan; Waddington, Edwin D.; McCarthy, Michael; Anandakrishnan, Sridhar; Matsuoka, Kenichi", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Sonic Log Data", "url": "https://www.usap-dc.org/view/dataset/609592"}], "date_created": "Wed, 03 Sep 2014 00:00:00 GMT", "description": "0944199/Matsuoka\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to test the hypothesis that abrupt changes in fabric exist and are associated with both climate transitions and volcanic eruptions. It requires depth-continuous measurements of the fabric. By lowering a new logging tool into the WAIS Divide borehole after the completion of the core drilling, this project will measure acoustic-wave speeds as a function of depth and interpret it in terms of ice fabrics. This interpretation will be guided by ice-core-measured fabrics at sparse depths. This project will apply established analytical techniques for the ice-sheet logging and estimate depth profiles of both compressional- and shear-wave speeds at short intervals (~ 1 m). Previous logging projects measured only compressional-wave speeds averaged over typically 5-7 m intervals. Thus the new logger will enable more precise fabric interpretations. Fabric measurements using thin sections have revealed distinct fabric patterns separated by less than several meters; fabric measurements over a shorter period are crucial. At the WAIS Divide borehole, six two-way logging runs will be made with different observational parameters so that multiple wave-propagation modes will be identified, yielding estimates of both compressional- and shear-wave speeds. Each run takes approximately 24 hours to complete; we propose to occupy the boreholes in total eight days. The logging at WAIS Divide is temporarily planned in December 2011, but the timing is not critical. This project?s scope is limited to the completion of the logging and fabric interpretations. Results will be immediately shared with other WAIS Divide researchers. Direct benefits of this data sharing include guiding further thin-section analysis of the fabric, deriving a precise thinning function that retrieves more accurate accumulation history and depth-age scales. The PIs of this project have conducted radar and seismic surveys in this area and this project will provide a ground truth for these regional remote-sensing assessments of the ice interior. In turn, these remote sensing means can extend the results from the borehole to larger parts of the central West Antarctica. This project supports education for two graduate students for geophysics, glaciology, paleoclimate, and polar logistics. The instrument that will be acquired in this project can be used at other boreholes for ice-fabric characterizations and for englacial hydrology (wetness of temperate ice).", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e PROBES", "is_usap_dc": true, "keywords": "WAIS Divide; GROUND STATIONS; Western Divide Core; Antarctic Ice Sheet", "locations": "Antarctic Ice Sheet; WAIS Divide", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Matsuoka, Kenichi; Kluskiewicz, Dan; Anandakrishnan, Sridhar; McCarthy, Michael; Waddington, Edwin D.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Collaborative research: acoustic logging of the WAIS Divide borehole", "uid": "p0000051", "west": null}, {"awards": "0944193 MacAyeal, Douglas", "bounds_geometry": null, "dataset_titles": "Iceberg Capsize Kinematics and Energetics", "datasets": [{"dataset_uid": "609590", "doi": "10.7265/N56H4FCJ", "keywords": "Antarctica; Glaciology; Iceberg; Kinetics", "people": "MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Iceberg Capsize Kinematics and Energetics", "url": "https://www.usap-dc.org/view/dataset/609590"}], "date_created": "Mon, 25 Aug 2014 00:00:00 GMT", "description": "This award supports a project to examine and test a 3-step process model for explosive ice-shelf disintegration that emerged in the wake of the recent 2008 and 2009 events of the Wilkins Ice Shelf. The model is conditioned on Summer melt-driven increase in free-surface water coupled with surface and basal crevasse density growth necessary to satisfy an \"enabling condition\". Once met, the collapse proceeds through three steps: (Step 1), calving of a \"leading phalanx\" of tabular icebergs from the seaward ice front of the ice shelf which creates in its wake a region, called a \"mosh pit\" (located between the phalanx and the edge of the intact ice shelf), where ocean surface-gravity waves are trapped by reflection (a fast mechanically enabled process), (Step 2), and a rapid, runaway conversion of gravitational potential energy into ocean-wave energy by iceberg capsize and fragmentation within the \"mosh pit\" which leads to further wave-induced calving, capsize and fragmentation (Step 3). The project will be conducted by a multidisciplinary team and will focus on theoretical model development, numerical method development and application and new observations. The project will participate in both the Research Experience for Undergraduates program in the Physics Department and the Summer Research Early Identification Program (SR-EIP) that fosters participation in research by underrepresented minorities. The PIs, postdoctoral scholar, graduate students and unfunded participants will develop a graduate-level seminar/tutorial to introduce advanced computational methods to glaciology. A postdoctoral scholar and graduate student will be trained in new research techniques during the project.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e VIDEO CAMERA", "is_usap_dc": true, "keywords": "LABORATORY; Iceberg Kinetic Energy; Iceberg Velocity", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "MacAyeal, Douglas", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Explosive Ice-Shelf Disintegration", "uid": "p0000005", "west": null}, {"awards": "0944078 Albert, Mary", "bounds_geometry": "POINT(112.05 79.28)", "dataset_titles": "Firn Permeability and Density at WAIS Divide", "datasets": [{"dataset_uid": "609602", "doi": "10.7265/N57942NT", "keywords": "Antarctica; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; WAIS Divide; WAIS Divide Ice Core", "people": "Albert, Mary R.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Firn Permeability and Density at WAIS Divide", "url": "https://www.usap-dc.org/view/dataset/609602"}], "date_created": "Fri, 15 Aug 2014 00:00:00 GMT", "description": "This award supports a project to investigate the transformations from snow to firn to ice and the underlying physics controlling firn\u0027s ability to store atmospheric samples from the past. Senior researchers, a graduate student, and several undergraduates will make high-resolution measurements of both the diffusivity and permeability profiles of firn cores from several sites in Antarctica and correlate the results with their microstructures quantified using advanced materials characterization techniques (scanning electron microscopy and x-ray computed tomography). The use of cores from different sites will enable us to examine the influence of different local climate conditions on the firn structure. We will use the results to help interpret existing measurements of firn air chemical composition at several sites where firn air measurements exist. There are three closely-linked goals of this project: to quantify the dependence of interstitial transport properties on firn microstructure from the surface down to the pore close-off depth, to determine at what depths bubbles form and entrap air, and investigate the extent to which these features exhibit site-to-site differences, and to use the measurements of firn air composition and firn structure to better quantify the differences between atmospheric composition (present and past), and the air trapped in both the firn and in air bubbles within ice by comparing the results of the proposed work with firn air measurements that have been made at the WAIS Divide and Megadunes sites. The broader impacts of this project are that the study will this study will enable us to elucidate the fundamental controls on the metamorphism of firn microstructure and its impact on processes of gas entrapment that are important to understanding ice core evidence of past atmospheric composition and climate change. The project will form the basis for the graduate research of a PhD student at Dartmouth, with numerous opportunities for undergraduate involvement in cold room measurements and outreach. The investigators have a track record of successfully mentoring women students, and will build on this experience. In conjunction with local earth science teachers, and graduate and undergraduate students will design a teacher-training module on the role of the Polar Regions in climate change. Once developed and tested, this module will be made available to the broader polar research community for their use with teachers in their communities.", "east": -112.05, "geometry": "POINT(-112.05 -79.28)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e MICROTOMOGRAPHY; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES", "is_usap_dc": true, "keywords": "Firn Air; FIELD SURVEYS; Physics; GROUND-BASED OBSERVATIONS; Antarctica; Megadunes; Tomography; Wais Divide-project; Firn Core; FIELD INVESTIGATION; Not provided; Firn Permeability; LABORATORY; Visual Observations; Ice; Firn; WAIS Divide; Microstructure; Density", "locations": "Antarctica; WAIS Divide", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Baker, Ian; Albert, Mary R.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.28, "title": "Firn Metamorphism: Microstructure and Physical Properties", "uid": "p0000049", "west": -112.05}, {"awards": "0087345 Conway, Howard", "bounds_geometry": "POINT(112 79)", "dataset_titles": null, "datasets": null, "date_created": "Fri, 15 Aug 2014 00:00:00 GMT", "description": "This award supports a program of ground-based geophysical measurements to map in detail the spatial variations of ice flow, accumulation rate, internal layering and ice thickness at the sites which have been identified as promising locations to drill the next deep ice core in West Antarctica. The main investigative tools are a high- and low-frequency ice penetrating radar to image the topography of internal layers and the bed, repeat GPS surveys to calculate the present day surface velocity field, synthetic aperture radar (SAR) interferometry to calculate the regional velocity field, and short firn cores to calculate present day accumulation rates. The data which will be collected will be used to as input to time-dependent ice flow and temperature models that will predict depth variation of age, layer thickness, and temperature. As well as yielding an estimate of expected conditions before drilling, the mismatch between the model prediction and data eventually recovered from the core will help infer thinning and climate (accumulation and temperature) histories for the region. The Western Divide, between the Ross Sea Embayment and the Amundsen Sea, has been identified as the region which best satisfies the criteria which have been established for a deep drilling site. Preliminary site selection using airborne geophysical methods has identified several potential drill sites on the Western Divide where the climate record should be best preserved. This work will contribute in a major way to the final site selection for the next deep ice core in West Antarctica.", "east": -112.0, "geometry": "POINT(-112 -79)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e SAR", "is_usap_dc": false, "keywords": "FIELD SURVEYS; Internal Layering; Radar; Accumulation Rate; FIELD INVESTIGATION; LABORATORY; Not provided; Internal Layers; Antarctica; Ice Flow; Interferometry; Ice Thickness", "locations": "Antarctica", "north": -79.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Conway, Howard; Waddington, Edwin D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -79.0, "title": "Collaborative Research: Western Divide West Antarctic Ice Cores (WAISCORES) Site Selection", "uid": "p0000557", "west": -112.0}, {"awards": "0944343 Severinghaus, Jeffrey", "bounds_geometry": "POINT(-112.05 -79.28)", "dataset_titles": null, "datasets": null, "date_created": "Fri, 15 Aug 2014 00:00:00 GMT", "description": "Severinghaus/0944343\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to develop both a record of past local temperature change at the WAIS Divide site, and past mean ocean temperature using solubility effects on atmospheric krypton and xenon. The two sets of products share some of the same measurements, because the local temperature is necessary to make corrections to krypton and xenon, and thus synergistically support each other. Further scientific synergy is obtained by the fact that the mean ocean temperature is constrained to vary rather slowly, on a 1000-yr timescale, due to the mixing time of the deep ocean. Thus rapid changes are not expected, and can be used to flag methodological problems if they appear in the krypton and xenon records. The mean ocean temperature record produced will have a temporal resolution of 500 years, and will cover the entire 3400 m length of the core. This record will be used to test hypotheses regarding the cause of atmospheric carbon dioxide (CO2) variations, including the notion that deep ocean stratification via a cold salty stagnant layer caused atmospheric CO2 drawdown during the last glacial period. The local surface temperature record that results will synergistically combine with independent borehole thermometry and water isotope records to produce a uniquely precise and accurate temperature history for Antarctica, on a par with the Greenland temperature histories. This history will be used to test hypotheses that the ?bipolar seesaw? is forced from the North Atlantic Ocean, which makes a specific prediction that the timing of Antarctic cooling should slightly lag abrupt Greenland warming. The WAIS Divide ice core is expected to be the premier atmospheric gas record of the past 100,000 years for the foreseeable future, and as such, making this set of high precision noble gas measurements adds value to the other gas records because they all share a common timescale and affect each other in terms of physical processes such as gravitational fractionation. Broader impact of the proposed work: The clarification of timing of atmospheric CO2 and Antarctic surface temperature, along with deep ocean temperature, will aid in efforts to understand the feedbacks among CO2, temperature, and ocean circulation. These feedbacks bear on the future response of the Earth System to anthropogenic forcing. A deeper understanding of the mechanism of deglaciation, and the role of atmospheric CO2, will go a long way towards clarifying a topic that has become quite confused in the public mind in the public debate over climate change. Elucidating the role of the bipolar seesaw in ending glaciations and triggering CO2 increases may also provide an important warning that this represents a potential positive feedback, not currently considered by IPCC. Education of one graduate student, and training of one technician, will add to the nation?s human resource base. Outreach activities will be enhanced and will to continue to entrain young people in discovery, and excitement will enhance the training of the next generation of scientists and educators.", "east": -112.05, "geometry": "POINT(-112.05 -79.28)", "instruments": null, "is_usap_dc": false, "keywords": "Noble Gas; FIELD INVESTIGATION; Climate; Xenon; FIELD SURVEYS; Ice Core; Antarctica; Krypton; LABORATORY", "locations": "Antarctica", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -79.28, "title": "Noble Gases in the WAIS Divide Ice Core as Indicators of Local and Mean-ocean Temperature", "uid": "p0000430", "west": -112.05}, {"awards": "0636493 Chereskin, Teresa; 0635437 Donohue, Kathleen", "bounds_geometry": "POLYGON((-65.09 -54.96,-64.618 -54.96,-64.146 -54.96,-63.674 -54.96,-63.202 -54.96,-62.73 -54.96,-62.258 -54.96,-61.786 -54.96,-61.314 -54.96,-60.842 -54.96,-60.37 -54.96,-60.37 -55.661,-60.37 -56.362,-60.37 -57.063,-60.37 -57.764,-60.37 -58.465,-60.37 -59.166,-60.37 -59.867,-60.37 -60.568,-60.37 -61.269,-60.37 -61.97,-60.842 -61.97,-61.314 -61.97,-61.786 -61.97,-62.258 -61.97,-62.73 -61.97,-63.202 -61.97,-63.674 -61.97,-64.146 -61.97,-64.618 -61.97,-65.09 -61.97,-65.09 -61.269,-65.09 -60.568,-65.09 -59.867,-65.09 -59.166,-65.09 -58.465,-65.09 -57.764,-65.09 -57.063,-65.09 -56.362,-65.09 -55.661,-65.09 -54.96))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001522", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1107"}, {"dataset_uid": "001490", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0812"}, {"dataset_uid": "001476", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0908"}, {"dataset_uid": "001463", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1004"}, {"dataset_uid": "001521", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0710"}], "date_created": "Tue, 12 Aug 2014 00:00:00 GMT", "description": "The proposed work is a multi-year study of the transport of water through Drake Passage by the Antarctic Circumpolar Current (ACC). Drake Passage acts as a chokepoint that is not only well suited geographically for measuring the time-varying transport, but observations and computer models suggest that dynamical balances which control the transport are particularly effective here. An array of Current Meters and Pressure-recording Inverted Echo Sounders (CPIES) will be set out for a period of 4 years to quantify the transport and dynamics of the Antarctic Circumpolar Current. Data will be collected annually by acoustic telemetry, leaving the instruments undisturbed until recovered at the end of the project. \u003cbr/\u003e\u003cbr/\u003eThe Southern Ocean is believed to be especially sensitive to climate change, responding to winds that have increased over the past thirty years, and warming significantly more than the global ocean over the past fifty years. The proposed observations will resolve the seasonal and interannual variability of the total ACC transport, as well as its vertical and lateral structure. Although not submitted specifically to the International Polar Year (IPY) Program Solicitation, the proposed project contributes to the IPY goal of understanding environmental change in polar regions and represents a pulse of activity in the IPY time frame that will extend the legacy of the IPY. The data and findings will be reported to publicly accessible archives and submitted for publication in the scientific literature. It is a scientific collaboration between the University of California, San Diego, and the University of Rhode Island.", "east": -60.37, "geometry": "POINT(-62.73 -58.465)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e WATER BOTTLES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -54.96, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Chereskin, Teresa; Donohue, Kathleen; Watts, D.; Tracey, Karen; Kennelly, Maureen", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -61.97, "title": "Collaborative Research: Dynamics and Transport of the Antarctic Circumpolar Current in Drake Passage", "uid": "p0000543", "west": -65.09}, {"awards": "0944475 Kaplan, Michael", "bounds_geometry": "POLYGON((-149.7 -84.1,-118.61 -84.1,-87.52 -84.1,-56.43 -84.1,-25.34 -84.1,5.75 -84.1,36.84 -84.1,67.93 -84.1,99.02 -84.1,130.11 -84.1,161.2 -84.1,161.2 -84.43,161.2 -84.76,161.2 -85.09,161.2 -85.42,161.2 -85.75,161.2 -86.08,161.2 -86.41,161.2 -86.74,161.2 -87.07,161.2 -87.4,130.11 -87.4,99.02 -87.4,67.93 -87.4,36.84 -87.4,5.75 -87.4,-25.34 -87.4,-56.43 -87.4,-87.52 -87.4,-118.61 -87.4,-149.7 -87.4,-149.7 -87.07,-149.7 -86.74,-149.7 -86.41,-149.7 -86.08,-149.7 -85.75,-149.7 -85.42,-149.7 -85.09,-149.7 -84.76,-149.7 -84.43,-149.7 -84.1))", "dataset_titles": "Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines", "datasets": [{"dataset_uid": "600115", "doi": "10.15784/600115", "keywords": "Antarctica; Cosmogenic Dating; Sample/collection Description; Sample/Collection Description; Solid Earth; Transantarctic Mountains", "people": "Kaplan, Michael", "repository": "USAP-DC", "science_program": null, "title": "Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines", "url": "https://www.usap-dc.org/view/dataset/600115"}], "date_created": "Thu, 17 Jul 2014 00:00:00 GMT", "description": "The proposed work will investigate changes in the compositional variation of glacial tills over time across two concentric sequences of Pleistocene moraines located adjacent to the heads of East Antarctic outlet glaciers in the Transantarctic Mountains (TAM). The chronologic framework for this work will be generated from cosmogenic exposure ages of boulders on prominent morainal ridges. The PIs hypothesize that variations in till composition may indicate a change in ice flow direction or a change in the composition of the original source area, while ages of the moraines provide a long-term terrestrial perspective on ice sheet dynamics. Both results are vital for modeling experiments that aim to reconstruct the East Antarctic Ice Sheet and assess its role in the global climate system and its potential impact on global sea level rise. The variation of till compositions through time also allows for a more accurate interpretation of sediment cores from the Ross Sea and the Southern Ocean. Additionally, till exposures at the head of some East Antarctic outlet glaciers have been shown to contain subglacial material derived from East Antarctic bedrock, providing a window through the ice to view East Antarctica?s inaccessible bedrock. Till samples will be collected from two well-preserved sequences of moraine crests at Mt. Howe (head of Scott Glacier) and Mt. Achernar (between Beardmore and Nimrod Glaciers). Each size fraction in glacial till provides potentially valuable information, and the PIs will measure the petrography of the clast and sand fractions, quantitative X-ray diffraction on the crushed \u003c2mm fraction, elemental abundance of the silt/clay fraction, and U/Pb of detrital zircons in the sand fraction. Data collection will rely on established methods previously used in this region and the PIs will also explore new methods to assess their efficacy. On the same moraines crests sampled for provenance studies, the PIs will sample for cosmogenic surface exposure analyses to provide a chronologic framework at the sites for provenance changes through time. \u003cbr/\u003e\u003cbr/\u003eBroader Impact \u003cbr/\u003eThe proposed research involves graduate and undergraduate training in a diverse array of laboratory methods. Students and PIs will be make presentations to community and campus groups, as well as conduct interviews with local news outlets. The proposed work also establishes a new, potentially long-term, collaboration between scientists at IUPUI and LDEO and brings a new PI (Kaplan) into the field of Antarctic Earth Sciences.", "east": 161.2, "geometry": "POINT(5.75 -85.75)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION", "locations": null, "north": -84.1, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kaplan, Michael", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.4, "title": "Collaborative Research: Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines", "uid": "p0000459", "west": -149.7}, {"awards": "0839093 McConnell, Joseph; 0839075 Priscu, John; 0839122 Saltzman, Eric", "bounds_geometry": "POINT(112.05 -79.28)", "dataset_titles": "Fluorescence spectroscopy data from the West Antarctic Ice Sheet (WAIS) Divide ice core, WDC06A; Holocene Black Carbon in Antarctica; Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core; Prokaryotic cell concentration record from the WAIS Divide ice core", "datasets": [{"dataset_uid": "601006", "doi": "10.15784/601006", "keywords": "Antarctica; Fluorescence Spectroscopy; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; WAIS Divide; WAIS Divide Ice Core", "people": "D\u0027Andrilli, Juliana; Priscu, John", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Fluorescence spectroscopy data from the West Antarctic Ice Sheet (WAIS) Divide ice core, WDC06A", "url": "https://www.usap-dc.org/view/dataset/601006"}, {"dataset_uid": "601034", "doi": "10.15784/601034", "keywords": "Antarctica; Atmosphere; Black Carbon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph; Arienzo, Monica", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Holocene Black Carbon in Antarctica", "url": "https://www.usap-dc.org/view/dataset/601034"}, {"dataset_uid": "601072", "doi": "10.15784/601072", "keywords": "Antarctica; Biota; Cell Counts; Glaciology; Microbiology; WAIS Divide; WAIS Divide Ice Core", "people": "Santibanez, Pamela; Priscu, John", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Prokaryotic cell concentration record from the WAIS Divide ice core", "url": "https://www.usap-dc.org/view/dataset/601072"}, {"dataset_uid": "601361", "doi": "10.15784/601361", "keywords": "Antarctica; Carbonyl Sulfide; Trace Gases", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/601361"}], "date_created": "Fri, 30 May 2014 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to use the WAIS Divide deep core to investigate the Last Deglaciation at sub-annual resolution through an integrated set of chemical and biological analyses. The intellectual merit of the project is that these analyses, combined with others, will take advantage of the high snow accumulation WAIS Divide site yielding the highest time resolution glacio-biogeochemical and gas record of any deep Antarctic ice core. With other high resolution Greenland cores (GISP2 and GRIP) and lower resolution Antarctic cores, the combined record will yield new insights into worldwide climate dynamics and abrupt change. The proposed chemical, biological, and elemental tracer measurements will also be used to address all of the WAIS Divide science themes. The broader impacts of the project include education and outreach activities such as numerous presentations to local K-12 students; opportunities for student and teacher involvement in the laboratory work; a teacher training program in Earth sciences in the heavily minority Santa Ana, Compton, and Costa Mesa, California school districts; and development of high school curricula. Extensive graduate and undergraduate student involvement also is planned and will include one post doctoral associate, one graduate student, and undergraduate hourly involvement at DRI; a graduate student and undergraduates at University of California, Irvine (UCI); and a post doctoral fellow at MSU. Student recruitment will be made from underrepresented groups building on a long track record of involvement and will include the NSF funded California Alliance for Minority Participation (CAMP) and the Montana American Indian Research Opportunities (AIRO).\u003cbr/\u003e\u003cbr/\u003eThis award does not involve field work in Antarctica.", "east": 112.05, "geometry": "POINT(112.05 -79.28)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e CARBON ANALYZERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e WAS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e ICE CORE MELTER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PHOTOMETERS \u003e SPECTROPHOTOMETERS", "is_usap_dc": true, "keywords": "FIELD SURVEYS; Bacteria Ice Core; LABORATORY; Ice Core; FIELD INVESTIGATION; West Antarctica; Not provided; Dissolved Organic Carbon", "locations": "West Antarctica", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY", "persons": "Foreman, Christine; Skidmore, Mark; Saltzman, Eric; McConnell, Joseph; Priscu, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.28, "title": "Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core", "uid": "p0000273", "west": 112.05}, {"awards": "0839066 Cole-Dai, Jihong", "bounds_geometry": null, "dataset_titles": "Major Ion Chemistry Data of WAIS Divide Ice Core Brittle Ice", "datasets": [{"dataset_uid": "609546", "doi": "10.7265/N5RF5S0D", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ion Chromatograph; WAIS Divide; WAIS Divide Ice Core", "people": "Cole-Dai, Jihong", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Major Ion Chemistry Data of WAIS Divide Ice Core Brittle Ice", "url": "https://www.usap-dc.org/view/dataset/609546"}], "date_created": "Wed, 19 Mar 2014 00:00:00 GMT", "description": "Cole-Dai/0839066\u003cbr/\u003e\u003cbr/\u003eThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to make continuous major ion analyses in the West Antarctica Ice Sheet Divide (WAIS Divide) ice core by sampling the brittle ice zone (approximately from 500 m to 1500 m). The intellectual merit of the project is that these will likely be the only chemical measurements on the brittle ice zone and, therefore, will bridge the gap in the expected continuous records of climate, ice sheet dynamics and biological evolution based on chemical measurements. High resolution sampling and analysis, probably on selected portions and depth intervals in the brittle ice zone, will help with the independent, high-precision dating of the WAIS Divide core and contribute to the achievement of the major objectives of the WAIS Divide project?development of high resolution climate records with which to investigate issues of climate forcing by greenhouse gases and the role of Antarctica and Southern Hemisphere in the global climate system. Planned collaboration with other WAIS Divide investigators will develop the longest and most detailed volcanic record from Antarctica ice cores. The broader impacts of this project include a contribution to enhancing our knowledge of the climate system. Such improvements in understanding of the global climate system and the ability to predict the magnitude and uncertainty of future changes are highly relevant to the global community. The project will support post-doctoral scientists and graduate students, including those from under-represented groups, will contribute to education, an help to train future scientists and promote diversity in research and education. Public outreach activities of this project will contribute to informal science education of school age children in the Eastern South Dakota region.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Paleoclimate; LABORATORY; Ions; GROUND-BASED OBSERVATIONS; WAISCORES; Ion Chromatograph; Not provided; Ice Core", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "NOT APPLICABLE", "persons": "Cole-Dai, Jihong", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Major Ion Chemical Analysis of Brittle Ice in the WAIS Divide Ice Core", "uid": "p0000047", "west": null}, {"awards": "0838996 Hollibaugh, James", "bounds_geometry": "POLYGON((-79 -63,-77.5 -63,-76 -63,-74.5 -63,-73 -63,-71.5 -63,-70 -63,-68.5 -63,-67 -63,-65.5 -63,-64 -63,-64 -63.8,-64 -64.6,-64 -65.4,-64 -66.2,-64 -67,-64 -67.8,-64 -68.6,-64 -69.4,-64 -70.2,-64 -71,-65.5 -71,-67 -71,-68.5 -71,-70 -71,-71.5 -71,-73 -71,-74.5 -71,-76 -71,-77.5 -71,-79 -71,-79 -70.2,-79 -69.4,-79 -68.6,-79 -67.8,-79 -67,-79 -66.2,-79 -65.4,-79 -64.6,-79 -63.8,-79 -63))", "dataset_titles": "Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula; Expedition data of LMG1006", "datasets": [{"dataset_uid": "002722", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1006", "url": "https://www.rvdata.us/search/cruise/LMG1006"}, {"dataset_uid": "600105", "doi": "10.15784/600105", "keywords": "Biota; Chemistry:fluid; Chemistry:Fluid; LMG1006; LMG1101; LTER Palmer Station; Oceans; Southern Ocean", "people": "Hollibaugh, James T.", "repository": "USAP-DC", "science_program": null, "title": "Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/600105"}], "date_created": "Thu, 13 Mar 2014 00:00:00 GMT", "description": "Ammonia oxidation is the first step in the conversion of regenerated nitrogen to dinitrogen gas, a 3-step pathway mediated by 3 distinct guilds of bacteria and archaea. Ammonia oxidation and the overall process of nitrification-denitrification have received relatively little attention in polar oceans where the effects of climate change on biogeochemical rates are likely to be pronounced. Previous work on Ammonia Oxidizing Archaea (AOA) in the Palmer LTER study area West of the Antarctic Peninsula (WAP), has suggested strong vertical segregation of crenarchaeote metabolism, with the \"winter water\" (WW, ~50-100 m depth range) dominated by non-AOA crenarchaeotes, while Crenarchaeota populations in the \"circumpolar deep water\" (CDW), which lies immediately below the winter water (150-3500 m), are dominated by AOA. Analysis of a limited number of samples from the Arctic Ocean did not reveal a comparable vertical segregation of AOA, and suggested that AOA and Crenarchaeota abundance is much lower there than in the Antarctic. These findings led to 3 hypotheses that will be tested in this project: 1) the apparent low abundance of Crenarchaeota and AOA in Arctic Ocean samples may be due to spatial or temporal variability in populations; 2) the WW population of Crenarchaeota in the WAP is dominated by a heterotroph; 3) the WW population of Crenarchaeota in the WAP \"grows in\" during spring and summer after this water mass forms. \u003cbr/\u003e\u003cbr/\u003eThe study will contribute substantially to understanding an important aspect of the nitrogen cycle in the Palmer LTER (Long Term Ecological Research) study area by providing insights into the ecology and physiology of AOA. The natural segregation of crenarchaeote phenotypes in waters of the WAP, coupled with metagenomic studies in progress in the same area by others (A. Murray, H. Ducklow), offers the possibility of major breakthroughs in understanding of the metabolic capabilities of these organisms. This knowledge is needed to model how water column nitrification will respond to changes in polar ecosystems accompanying global climate change. The Principal Investigator will participate fully in the education and outreach efforts of the Palmer LTER, including making highlights of our findings available for posting to their project web site and participating in outreach (for example, Schoolyard LTER). The research also will involve undergraduates (including the field work if possible) and will support high school interns in the P.I.\u0027s laboratory over the summer.", "east": -64.0, "geometry": "POINT(-71.5 -67)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "R/V LMG", "locations": null, "north": -63.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Hollibaugh, James T.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": "LTER", "south": -71.0, "title": "Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula", "uid": "p0000359", "west": -79.0}, {"awards": "1043619 Hemming, Sidney; 1043572 Licht, Kathy", "bounds_geometry": "POLYGON((-177.982 -63.997,-149.64107 -63.997,-121.30014 -63.997,-92.95921 -63.997,-64.61828 -63.997,-36.27735 -63.997,-7.93642 -63.997,20.40451 -63.997,48.74544 -63.997,77.08637 -63.997,105.4273 -63.997,105.4273 -66.3324,105.4273 -68.6678,105.4273 -71.0032,105.4273 -73.3386,105.4273 -75.674,105.4273 -78.0094,105.4273 -80.3448,105.4273 -82.6802,105.4273 -85.0156,105.4273 -87.351,77.08637 -87.351,48.74544 -87.351,20.40451 -87.351,-7.93642 -87.351,-36.27735 -87.351,-64.61828 -87.351,-92.95921 -87.351,-121.30014 -87.351,-149.64107 -87.351,-177.982 -87.351,-177.982 -85.0156,-177.982 -82.6802,-177.982 -80.3448,-177.982 -78.0094,-177.982 -75.674,-177.982 -73.3386,-177.982 -71.0032,-177.982 -68.6678,-177.982 -66.3324,-177.982 -63.997))", "dataset_titles": "East Antarctic outlet glacier contributions to the Ross Sea from chronology of detrital grains", "datasets": [{"dataset_uid": "600124", "doi": "10.15784/600124", "keywords": "Antarctica; East Antarctica; Geochemistry; Ross Sea; Sample/collection Description; Sample/Collection Description; Solid Earth; Southern Ocean; West Antarctica", "people": "Hemming, Sidney R.", "repository": "USAP-DC", "science_program": null, "title": "East Antarctic outlet glacier contributions to the Ross Sea from chronology of detrital grains", "url": "https://www.usap-dc.org/view/dataset/600124"}], "date_created": "Tue, 18 Feb 2014 00:00:00 GMT", "description": "Intellectual Merit: The PIs proposed a provenance study of glacial deposits in the Ross Embayment that will provide a broad scale geochronologic survey of detrital minerals in till to help characterize bedrock beneath the East Antarctic ice sheet and constrain Antarctica?s glacial history. This project capitalizes on previous investments in field sampling. Analytical tools applied to single mineral grains extracted from existing collections of glacial till will generate ?fingerprints? of East Antarctic outlet glaciers and West Antarctic till to refine paleo-ice flow models for the Ross Embayment during the last glacial maximum, older records from ANDRILL cores, and to assess IRD sources in the Southern Ocean. New provenance tracers will include a suite of geochronological methods that together provide greater insights into the orogenic and erosional history the region. This project will include U/Pb of detrital zircons, (U-Th)/He on a subset of the U/Pb dated zircons, as well as Ar-Ar of detrital hornblende, mica and feldspars. Broader impacts: This research will train one M.S. student at IUPUI, a Ph.D. student at Columbia, and several undergraduates at both institutions. Graduate students involved in the project will be involved in mentoring undergraduate researchers. Incorporation of research discoveries will be brought into the classroom by providing concrete examples and exercises at the appropriate level. Licht and Columbia graduate student E. Pierce are developing outreach projects with local secondary school teachers to investigate the provenance of glacial materials in their local areas. The research will have broad applicability to many fields.", "east": 105.4273, "geometry": "POINT(-36.27735 -75.674)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e LA-ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e PETROGRAPHIC MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS", "is_usap_dc": true, "keywords": "Not provided; FIELD SURVEYS", "locations": null, "north": -63.997, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY", "persons": "Licht, Kathy; Hemming, Sidney R.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.351, "title": "Collaborative Research: East Antarctic outlet glacier contributions to the Ross Sea from chronology of detrital grains", "uid": "p0000333", "west": -177.982}, {"awards": "1043690 Scherer, Reed", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Southern Ocean Diatom Taphonomy and Paleoproductivity: A Laboratory Study of Silica Degradation and Export", "datasets": [{"dataset_uid": "600127", "doi": "10.15784/600127", "keywords": "Antarctica; Biota; Diatom; Marine Sediments; Oceans; Sediment Core; Southern Ocean", "people": "Haji-Sheikh, Michael; Scherer, Reed Paul", "repository": "USAP-DC", "science_program": null, "title": "Southern Ocean Diatom Taphonomy and Paleoproductivity: A Laboratory Study of Silica Degradation and Export", "url": "https://www.usap-dc.org/view/dataset/600127"}], "date_created": "Fri, 14 Feb 2014 00:00:00 GMT", "description": "Intellectual Merit: Diatom abundance in sediment cores is typically used as a proxy for paleo primary productivity. This record is complicated by variable preservation, with most loss occurring in the water column via dissolution and zooplankton grazing. This study will investigate preservational biases via a series of controlled experiments to create proxies of original productivity based on morphological changes associated with diatom dissolution and fracture. The PIs will utilize fresh diatoms from culture. Specific objectives include: (1) Linking changes in diatom morphology to availability of dissolved silica and other physical and chemical parameters; (2) Documenting the dissolution process under controlled conditions; (3) Assessment of changes in morphology and diatom surface roughness with increased dissolution; (4) Documenting the physical effects of grazing and fecal pellet formation on diatom fragmentation and dissolution; and (5) Analyzing the impact of diatom dissolution on silica and carbon export. These objectives will be achieved by growing Southern Ocean diatom species in the laboratory under differing physical and chemical conditions; controlled serial dissolution experiments on cultured diatoms; analysis of the dissolution process by imaging frustules under scanning electron microscopy (SEM) and with micro-analysis of surface texture by atomic force microscopy (AFM); making the cultures available to krill and other live zooplankton crustaceans in order to analyze the specific effects of grazing and pelletization on diatom morphology; and comparing experimental results with natural plankton, sediment trap material, and selected Holocene, Pleistocene and Pliocene sediment core material. Broader impacts: This work will contribute to understanding of the use of diatom abundance as an indicator of paleoproductivity. The proposed experiments are multi-disciplinary in nature. Importantly, the project was designed, and the proposal largely written, by a Ph.D. candidate. The research proposed here will lead to peer-reviewed publications and provide a base for future studies over the course of an extremely promising scientific career. The project will also support an undergraduate research student at NIU. The PI is heavily involved in science outreach, including classroom visits, museum events and webinars related to evolution and climate change, and is active with NSF-funded outreach activities linked to the ANDRILL and WISSARD programs. He will continue these efforts with this project.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Haji-Sheikh, Michael; Scherer, Reed Paul", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Southern Ocean Diatom Taphonomy and Paleoproductivity: A Laboratory Study of Silica Degradation and Export", "uid": "p0000360", "west": -180.0}, {"awards": "1043745 Halanych, Kenneth", "bounds_geometry": null, "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001427", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1210"}, {"dataset_uid": "000439", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1312"}], "date_created": "Fri, 07 Feb 2014 00:00:00 GMT", "description": "The research will explore the genetics, diversity, and biogeography of Antarctic marine benthic invertebrates, seeking to overturn the widely accepted suggestion that benthic fauna do not constitute a large, panmictic population. The investigators will sample adults and larvae from undersampled regions of West Antarctica that, combined with existing samples, will provide significant coverage of the western hemisphere of the Southern Ocean. The objectives are: 1) To assess the degree of genetic connectivity (or isolation) of benthic invertebrate species in the Western Antarctic using high-resolution genetic markers. 2) To begin exploring planktonic larvae spatial and bathymetric distributions for benthic shelf invertebrates in the Bellinghausen, Amundsen and Ross Seas. 3) To continue to develop a Marine Antarctic Genetic Inventory (MAGI) that relates larval and adult forms via DNA barcoding. Broader impacts include traditional forms of training (postdocs, graduate studentships, undergraduate research experiences) and lectures to K-12 groups.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e PROFILERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES", "is_usap_dc": false, "keywords": "R/V LMG; R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Halanych, Kenneth", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Genetic connectivity and biogeographic patterns of Antarctic benthic invertebrates", "uid": "p0000263", "west": null}, {"awards": "1232962 Ledwell, James", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP1310A", "datasets": [{"dataset_uid": "002658", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1310A", "url": "https://www.rvdata.us/search/cruise/NBP1310A"}], "date_created": "Fri, 07 Feb 2014 00:00:00 GMT", "description": "Intellectual Merit: The Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) is a study of ocean mixing in the Antarctic Circumpolar Current (ACC) which runs west to east all around the continent of Antarctica, south of the other continents. This current system is somewhat of a barrier to transport of heat, carbon dioxide and other important ocean constituents between the far south and the rest of the ocean, and mixing processes play an important role in those transports. DIMES is a multi-investigator cooperative project, led by physical oceanographers in the U.S. and in the U.K. A passive tracer and an array of sub-surface floats were deployed early in 2009 more than 2000 km west of Drake Passage on a surface of constant density about 1500 m deep between the Sub Antarctic Front and the Polar Front of the ACC. In early 2010 a U.S. led research cruise sampled the tracer, turbulence levels, and the velocity and density profiles that govern the generation of that turbulence, and additional U.K. led research cruises in 2011 and 2012 continue this sampling as the tracer has made its way through Drake Passage, into the Scotia Sea, and over the North Scotia Ridge, a track of more than 3000 km. The initial results show that diapycnal, i.e., vertical, mixing west of Drake Passage where the bottom is relatively smooth is no larger than in most other regions of the open ocean. In contrast, there are strong velocity shears and intense turbulence levels over the rough topography in Drake Passage and diapycnal diffusivity of the tracer more than 10 times larger in Drake Passage and to the east than west of Drake Passage. The DIMES field program continues with the U.S. team collecting new velocity and turbulence data in the Scotia Sea. It is anticipated that the tracer will continue passing through the Scotia Sea until at least early 2014. The U.K. partners have scheduled sampling of the tracer on cruises at the North Scotia Ridge and in the eastern and central Scotia Sea in early 2013 and early 2014. The current project will continue the time series of the tracer at Drake Passage on two more U.S. led cruises, in late 2012 and late 2013. Trajectories through the Scotia Sea estimated from the tracer observations, from neutrally buoyant floats, and from numerical models will be used to accurately estimate mixing rates of the tracer and to locate where the mixing is concentrated. During the 2013 cruise the velocity and turbulence fields along high-resolution transects along the ACC and across the ridges of Drake Passage will be measured to see how far downstream of the ridges the mixing is enhanced, and to test the hypothesis that mixing is enhanced by breaking lee waves generated by flow over the rough topography. Broader Impacts: DIMES (see web site at http://dimes.ucsd.edu) involves many graduate students and post-doctoral researchers. Two graduate students, who would become expert in ocean turbulence and the processes generating it, will continue be trained on this project. The work in DIMES is ultimately motivated by the need to understand the overturning circulation of the global ocean. This circulation governs the transport and storage of heat and carbon dioxide within the huge oceanic reservoir, and thus plays a major role in regulating the earth?s climate. Understanding the circulation and how it changes in reaction to external forces is necessary to the understanding of past climate change and of how climate might change in the future, and is therefore of great importance to human well-being. The data collected and analyzed by the DIMES project will be assembled and made publicly available at the end of the project. The DIMES project is a process experiment sponsored by the U.S. CLIVAR (Climate variability and predictability) program.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": null, "paleo_time": null, "persons": "Ledwell, James", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Studies of Turbulence and Mixing in the Antarctic Circumpolar Current, a Continuation of DIMES", "uid": "p0000846", "west": null}, {"awards": "1142107 Durbin, Edward", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP1304", "datasets": [{"dataset_uid": "002660", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1304", "url": "https://www.rvdata.us/search/cruise/NBP1304"}], "date_created": "Fri, 07 Feb 2014 00:00:00 GMT", "description": "Krill, Euphausia superba, is a keystone species in the Antarctic ecosystem and provides the trophic link between microscopic plankton and charismatic megafauna such as penguins and whales. Recent evidence suggests krill may not be exclusively planktonivorous, which introduces the potential of new pathways of carbon flux through krill based ecosystems. A change in our view of krill from one of being herbivores to omnivores opens up several questions. Climate induced change in the extent, thickness and duration of overlying sea ice coverage is expected to change the prey fields available to krill, and to have subsequent effects on the suite of predators supported by krill. The nature of this benthic prey?krill link, which may be crucial in those parts of the seasonal cycle other than the well studied spring bloom, is yet to be determined. DNA techniques will be used to identify and quantify the prey organisms. This project will measure the in situ feeding ecology and behavior of krill and, ultimately, the success of this key species. An overall goal is to investigate seasonal changes in Euphausia superba in-situ feeding and swimming behavior in the Wilhelmina Bay region of the Western Antarctic Peninsula (WAP) area, known to be a region of changing climate. Understanding the biological impacts of climate change is important to societal and economic goals. The project scientists will additionally team with a marine and environmental reporting group to design presentations for an annual journalist meeting.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Durbin, Edward", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Seasonal Trophic Roles of Euphausia Superba (STRES)", "uid": "p0000848", "west": null}, {"awards": "0934534 Sergienko, Olga", "bounds_geometry": "POLYGON((-106 -70,-105.4 -70,-104.8 -70,-104.2 -70,-103.6 -70,-103 -70,-102.4 -70,-101.8 -70,-101.2 -70,-100.6 -70,-100 -70,-100 -70.6,-100 -71.2,-100 -71.8,-100 -72.4,-100 -73,-100 -73.6,-100 -74.2,-100 -74.8,-100 -75.4,-100 -76,-100.6 -76,-101.2 -76,-101.8 -76,-102.4 -76,-103 -76,-103.6 -76,-104.2 -76,-104.8 -76,-105.4 -76,-106 -76,-106 -75.4,-106 -74.8,-106 -74.2,-106 -73.6,-106 -73,-106 -72.4,-106 -71.8,-106 -71.2,-106 -70.6,-106 -70))", "dataset_titles": "Inverted Basal Shear Stress of Antarctic and Greenland Ice Streams and Glaciers", "datasets": [{"dataset_uid": "609626", "doi": "10.7265/N5XS5SBW", "keywords": "Antarctica; Arctic; Bindschadler Ice Stream; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenland; Lambert Ice Stream; Macayeal Ice Stream; Pine Island Glacier; Thwaites Glacier", "people": "Sergienko, Olga", "repository": "USAP-DC", "science_program": null, "title": "Inverted Basal Shear Stress of Antarctic and Greenland Ice Streams and Glaciers", "url": "https://www.usap-dc.org/view/dataset/609626"}], "date_created": "Thu, 06 Feb 2014 00:00:00 GMT", "description": "Funds are provided to enable applications of powerful mathematical concepts and computational tools for rigorous sensitivity analysis, pseudo-spectra and generalized stability theory, and advanced state estimation in the context of large-scale ice sheet modeling. At the center of the proposal is the generation and application of adjoint model (ADM) and tangent linear model (TLM) components of the new Community Ice Sheet Model (CISM). The goal will be achieved through rigorous use of automatic differentiation (AD) to ensure synchronicity between the ongoing model development and improvement in terms of better representation of higher-order stress terms (which account for crucial fast flow regimes) of the nonlinear forward model (NLM) code and the derivative codes. The adjoint enables extremely efficient computation of gradients of scalar-valued functions in very high-dimensional control spaces. A hierarchy of applications is envisioned: (1) sensitivity calculations in support of the Intergovernmental Panel on Climate Change (IPCC) in order to determine to which control variables the polar ice sheet volumes are most sensitive; based on adjoint sensitivity maps, to establish quantitative estimates of ice sheet volume changes for relevant forcing scenarios; and to assess how sensitivities change when including higher-order stress terms; (2) coupling of the ADM and TLM to calculate pseudo-spectra or singular vectors (SV?s) of relevant ice sheet norms; SV?s provide perturbation patterns which lead to non-normal growth, optimally amplifying norm kernels over finite times; among the many applications of SV?s are optimal initialization of ensembles to assess uncertainties; SV?s are calculated through matrix-free iterative solution of a generalized eigenvalue problem via Lanczos or Arnoldi implicit restart algorithms; (3) a long-term goal is the development of an ice sheet state estimation system based on the adjoint or Lagrange Multiplier Method (LMM) in order to synthesize, in a formal manner, the increasing number and heterogeneous types of observations with a three-dimensional, state-of-the-art ice sheet model; an important requirement is that the adjoint incorporate new schemes that are being developed for CISM to capture crucial, but as yet unrepresented physical processes.", "east": -100.0, "geometry": "POINT(-103 -73)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e VISUAL OBSERVATIONS", "is_usap_dc": true, "keywords": "Not provided; Inverse Modeling; GROUND-BASED OBSERVATIONS; Basal Shear Stress", "locations": null, "north": -70.0, "nsf_funding_programs": "Arctic Natural Sciences", "paleo_time": null, "persons": "Sergienko, Olga", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.0, "title": "COLLABORATIVE RESEARCH: Enabling ice sheet sensitivity and stability analysis with a large-scale higher-order ice sheet model\u0027s adjoint to support sea level change assessment", "uid": "p0000048", "west": -106.0}, {"awards": "0944662 Elliot, David; 0944532 Isbell, John", "bounds_geometry": "POLYGON((158.9 -83,159.583 -83,160.266 -83,160.949 -83,161.632 -83,162.315 -83,162.998 -83,163.681 -83,164.364 -83,165.047 -83,165.73 -83,165.73 -83.21,165.73 -83.42,165.73 -83.63,165.73 -83.84,165.73 -84.05,165.73 -84.26,165.73 -84.47,165.73 -84.68,165.73 -84.89,165.73 -85.1,165.047 -85.1,164.364 -85.1,163.681 -85.1,162.998 -85.1,162.315 -85.1,161.632 -85.1,160.949 -85.1,160.266 -85.1,159.583 -85.1,158.9 -85.1,158.9 -84.89,158.9 -84.68,158.9 -84.47,158.9 -84.26,158.9 -84.05,158.9 -83.84,158.9 -83.63,158.9 -83.42,158.9 -83.21,158.9 -83))", "dataset_titles": "Rock Samples (full data link not provided)", "datasets": [{"dataset_uid": "000171", "doi": "", "keywords": null, "people": null, "repository": "PRR", "science_program": null, "title": "Rock Samples (full data link not provided)", "url": "http://bprc.osu.edu/rr/"}], "date_created": "Thu, 05 Dec 2013 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThe goal of this project is to address relationships between foreland basins and their tectonic settings by combining detrital zircon isotope characteristics and sedimentological data. To accomplish this goal the PIs will develop a detailed geochronology and analyze Hf- and O-isotopes of detrital zircons in sandstones of the Devonian Taylor Group and the Permian-Triassic Victoria Group. These data will allow them to better determine provenance and basin fill, and to understand the nature of the now ice covered source regions in East and West Antarctica. The PIs will document possible unexposed/unknown crustal terrains in West Antarctica, investigate sub-glacial terrains of East Antarctica that were exposed to erosion during Devonian to Triassic time, and determine the evolving provenance and tectonic history of the Devonian to Triassic Gondwana basins in the central Transantarctic Mountains. Detrital zircon data will be interpreted in the context of fluvial dispersal/drainage patterns, sandstone petrology, and sequence stratigraphy. This interpretation will identify source terrains and evolving sediment provenances. Paleocurrent analysis and sequence stratigraphy will determine the timing and nature of changing tectonic conditions associated with development of the depositional basins and document the tectonic history of the Antarctic sector of Gondwana. Results from this study will answer questions about the Panthalassan margin of Gondwana, the Antarctic craton, and the Beacon depositional basin and their respective roles in global tectonics and the geologic and biotic history of Antarctica. The Beacon basin and adjacent uplands played an important role in the development and demise of Gondwanan glaciation through modification of polar climates, development of peat-forming mires, colonization of the landscape by plants, and were a migration route for Mesozoic vertebrates into Antarctica. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis proposal includes support for two graduate students who will participate in the fieldwork, and also support for other students to participate in laboratory studies. Results of the research will be incorporated in classroom teaching at the undergraduate and graduate levels and will help train the next generation of field geologists. Interactions with K-12 science classes will be achieved by video/computer conferencing and satellite phone connections from Antarctica. Another outreach effort is the developing cooperation between the Byrd Polar Research Center and the Center of Science and Industry in Columbus.", "east": 165.73, "geometry": "POINT(162.315 -84.05)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e XRF", "is_usap_dc": true, "keywords": "Not provided; LABORATORY", "locations": null, "north": -83.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Elliot, David; Isbell, John", "platforms": "Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "PRR", "repositories": "PRR", "science_programs": null, "south": -85.1, "title": "Collaborative Research:Application of Detrital Zircon Isotope Characteristics and Sandstone Analysis of Beacon Strata to the Tectonic Evolution of the Antarctic Sector of Gondwana", "uid": "p0000312", "west": 158.9}, {"awards": "0944042 Warren, Joseph", "bounds_geometry": "POLYGON((-70 -59,-68 -59,-66 -59,-64 -59,-62 -59,-60 -59,-58 -59,-56 -59,-54 -59,-52 -59,-50 -59,-50 -59.7,-50 -60.4,-50 -61.1,-50 -61.8,-50 -62.5,-50 -63.2,-50 -63.9,-50 -64.6,-50 -65.3,-50 -66,-52 -66,-54 -66,-56 -66,-58 -66,-60 -66,-62 -66,-64 -66,-66 -66,-68 -66,-70 -66,-70 -65.3,-70 -64.6,-70 -63.9,-70 -63.2,-70 -62.5,-70 -61.8,-70 -61.1,-70 -60.4,-70 -59.7,-70 -59))", "dataset_titles": "Data from expdition LMG1010; Expedition Data; Expedition data of LMG1010; Expedition data of LMG1110", "datasets": [{"dataset_uid": "002723", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1010", "url": "https://www.rvdata.us/search/cruise/LMG1010"}, {"dataset_uid": "000153", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Data from expdition LMG1010", "url": "https://www.rvdata.us/search/cruise/LMG1010"}, {"dataset_uid": "001445", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1110"}, {"dataset_uid": "002671", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1110", "url": "https://www.rvdata.us/search/cruise/LMG1110"}], "date_created": "Tue, 03 Dec 2013 00:00:00 GMT", "description": "The importance of gelatinous zooplankton in marine systems worldwide is increasing. In Southern Ocean, increasing salp densities could have a detrimental effect on higher predators, including penguins, fur seals, and baleen whales. The proposed research is a methods-develoment project that will improve the capability to indirectly assess abundances and distributions of salps in the Southern Ocean through acoustic surveys. Hydrographic, net tow, and acoustic backscatter data will be collected in the waters surrounding the South Shetland Islands and the Antarctic peninsula, where both krill and salps are found and compete for food. Shipboard experimental manipulations and measurements will lead to improved techniques for assessment of salp biomass acoustically. Experiments will focus on material properties (density and sound speed), size and shape of salps, as well as how these physical properties will vary with the salp\u0027s environment, feeding rate, and reproductive status. In the field, volume backscattering data from an acoustic echosounder will be collected at the same locations as the net tows to enable comparison of net and acoustic estimates of salp abundance. A physics-based scattering model for salps will be developed and validated, to determine if multiple acoustic frequencies can be used to discriminate between scattering associated with krill swarms and that from salp blooms. During the same period as the Antarctic field work, a parallel outreach and education study will be undertaken in Long Island, New York examining local gelatinous zooplankton. This study will enable project participants to learn and practice research procedures and methods before traveling to Antarctica; provide a comparison time-series that will be used for educational purposes; and include many more students and teachers in the research project than would be able to participate in the Antarctic field component.", "east": -50.0, "geometry": "POINT(-60 -62.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "R/V LMG; Not provided", "locations": null, "north": -59.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Warren, Joseph", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -66.0, "title": "Acoustic Assessment of Southern Ocean Salps and Their Ecosystem Impact", "uid": "p0000481", "west": -70.0}, {"awards": "1043367 Aciego, Sarah", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 01 Nov 2013 00:00:00 GMT", "description": "Aciego/1043367 This award supports the development of a new method for determining the absolute age of samples from deep ice cores. The project will: (1) prove the efficacy of the Uranium-series dating method on a high accumulation rate ice core, and (2) address the uncertainties in the age dating of the EPICA Dronning-Maud Land (EDML) ice core in the lower 300 m. The well-dated upper section of the ice core (down to 150,000 years at 2415.7 m) will provide excellent constraints to validate the ages determined by the U-series method. After verification, and possible adjustments to the laboratory chemistry, the method will be applied to a suite of ice samples of unknown age in the lower part of the EDML ice core. Within the lower 300 m of this ice core, the climate records are disturbed by tilting and folding of the ice, and, due to the uncertainties in how the ice has flowed, it is impossible to determine if accurate age dates can be obtained to access the record of climate change, or if mixing of the ice is too incoherent. As part of the methodology, the PI will measure surface area of dust included in the ice using a gas adsorption technique developed for ultra-small samples; these measurements will be made on a BET nano-scale which is to be purchased from the funding of this project. Intellectual Merit: The proposed research will contribute to our understanding of geophysical processes that fold and tilt ice. This will allow new paleoclimate records to be recovered from ice cores that have been physically deformed and disturbed and previously did not permit accurate dating. Broader Impacts: This funding will provide support for one PhD graduate student and contribute to their training as a researcher in geochemistry and paleoclimate studies. The PI will teach classes in earth surface processes (including glaciology) and in advanced isotope geochemistry. Work related to this research will be integrated as a teaching tool into the classroom to provide a hands-on, relevant learning experience. Furthermore, samples examined as part of this research will be made available from the AWI archive in Bremerhaven, Germany as part of the collaboration between the PI in the United States and the European ice core community.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Aciego, Sarah", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Detangling Flow Regimes and Paleoclimate in the Deepest Section of the EDML Ice Core using U-series Ages.", "uid": "p0000712", "west": null}, {"awards": "0838955 Gast, Rebecca", "bounds_geometry": "POLYGON((71.504166 -76.159164,71.5142214 -76.159164,71.5242768 -76.159164,71.5343322 -76.159164,71.5443876 -76.159164,71.554443 -76.159164,71.5644984 -76.159164,71.5745538 -76.159164,71.5846092 -76.159164,71.5946646 -76.159164,71.60472 -76.159164,71.60472 -76.2018032,71.60472 -76.2444424,71.60472 -76.2870816,71.60472 -76.3297208,71.60472 -76.37236,71.60472 -76.4149992,71.60472 -76.4576384,71.60472 -76.5002776,71.60472 -76.5429168,71.60472 -76.585556,71.5946646 -76.585556,71.5846092 -76.585556,71.5745538 -76.585556,71.5644984 -76.585556,71.554443 -76.585556,71.5443876 -76.585556,71.5343322 -76.585556,71.5242768 -76.585556,71.5142214 -76.585556,71.504166 -76.585556,71.504166 -76.5429168,71.504166 -76.5002776,71.504166 -76.4576384,71.504166 -76.4149992,71.504166 -76.37236,71.504166 -76.3297208,71.504166 -76.2870816,71.504166 -76.2444424,71.504166 -76.2018032,71.504166 -76.159164))", "dataset_titles": "Alternative Nutritional Strategies in Antarctic Protists", "datasets": [{"dataset_uid": "600103", "doi": "10.15784/600103", "keywords": "Biota; Microbiology; NBP0305; NBP0405; NBP0508; NBP1101; Oceans; Southern Ocean", "people": "Gast, Rebecca", "repository": "USAP-DC", "science_program": null, "title": "Alternative Nutritional Strategies in Antarctic Protists", "url": "https://www.usap-dc.org/view/dataset/600103"}], "date_created": "Wed, 30 Oct 2013 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). \u003cbr/\u003e\u003cbr/\u003eMost organisms meet their carbon and energy needs using photosynthesis (phototrophy) or ingestion/assimilation of organic substances (heterotrophy). However, a nutritional strategy that combines phototrophy and heterotrophy - mixotrophy - is geographically and taxonomically widespread in aquatic systems. While the presence of mixotrophs in the Southern Ocean is known only recently, preliminary evidence indicates a significant role in Southern Ocean food webs. Recent work on Southern Ocean dinoflagellate, Kleptodinium, suggests that it sequesters functional chloroplasts of the bloom-forming haptophyte, Phaeocystis antarctica. This dinoflagellate is abundant in the Ross Sea, has been reported elsewhere in the Southern Ocean, and may have a circumpolar distribution. By combining nutritional modes. mixotrophy may offer competitive advantages over pure autotrophs and heterotrophs. \u003cbr/\u003e\u003cbr/\u003eThe goals of this project are to understand the importance of alternative nutritional strategies for Antarctic species that combine phototrophic and phagotrophic processes in the same organism. The research will combine field investigations of plankton and ice communities in the Southern Ocean with laboratory experiments on Kleptodinium and recently identified mixotrophs from our Antarctic culture collections. The research will address: 1) the relative contributions of phototrophy and phagotrophy in Antarctic mixotrophs; 2) the nature of the relationship between Kleptodinium and its kleptoplastids; 3) the distributions and abundances of mixotrophs and Kleptodinium in the Southern Ocean during austral spring/summer; and 4) the impacts of mixotrophs and Kleptodinium on prey populations, the factors influencing these behaviors and the physiological conditions of these groups in their natural environment. The project will contribute to the maintenance of a culture collection of heterotrophic, phototrophic and mixotrophic Antarctic protists that are available to the scientific community, and it will train graduate and undergraduate students at Temple University. Research findings and activities will be summarized for non-scientific audiences through the PIs\u0027 websites and through other public forums, and will involve middle school teachers via collaboration with COSEE-New England.", "east": 71.60472, "geometry": "POINT(71.554443 -76.37236)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -76.159164, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Gast, Rebecca", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.585556, "title": "Collaborative Research: Alternative Nutritional Strategies in Antarctic Protists", "uid": "p0000490", "west": 71.504166}, {"awards": "1240707 Fahnestock, Mark; 0632292 Bell, Robin", "bounds_geometry": "POLYGON((65 -77.5,67.4 -77.5,69.8 -77.5,72.2 -77.5,74.6 -77.5,77 -77.5,79.4 -77.5,81.8 -77.5,84.2 -77.5,86.6 -77.5,89 -77.5,89 -78.25,89 -79,89 -79.75,89 -80.5,89 -81.25,89 -82,89 -82.75,89 -83.5,89 -84.25,89 -85,86.6 -85,84.2 -85,81.8 -85,79.4 -85,77 -85,74.6 -85,72.2 -85,69.8 -85,67.4 -85,65 -85,65 -84.25,65 -83.5,65 -82.75,65 -82,65 -81.25,65 -80.5,65 -79.75,65 -79,65 -78.25,65 -77.5))", "dataset_titles": "Data Access Tool; Processed Ice Penetrating Radar Altimeter data (SEGY format) from the Gamburtsev Mountains in Antarctica acquired during GAMBIT; Processed Ice Penetrating Radar Data (jpeg images) from the Gamburtsev Mountains in Antarctica acquired during GAMBIT ; Processed Ice Penetrating Radar Data (Matlab format) from the Gamburtsev Mountains in Antarctica acquired during GAMBIT ; Processed Ice Penetrating Radar Data (Netcdf format) from the Gamburtsev Mountains in Antarctica acquired during GAMBIT ", "datasets": [{"dataset_uid": "601286", "doi": "10.15784/601286", "keywords": "AGAP; Airborne Radar; Airplane; Antarctica; East Antarctica; Gamburtsev Mountains; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Radar; Radar Echo Sounder", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "Processed Ice Penetrating Radar Data (jpeg images) from the Gamburtsev Mountains in Antarctica acquired during GAMBIT ", "url": "https://www.usap-dc.org/view/dataset/601286"}, {"dataset_uid": "001489", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "Data Access Tool", "url": "http://www.marine-geo.org/tools/search/entry.php?id=AGAP_GAMBIT"}, {"dataset_uid": "601284", "doi": null, "keywords": "Airborne Radar; Airplane; Antarctica; East Antarctica; Gamburtsev Mountains; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Radar; Radar Echo Sounder", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "Processed Ice Penetrating Radar Data (Matlab format) from the Gamburtsev Mountains in Antarctica acquired during GAMBIT ", "url": "https://www.usap-dc.org/view/dataset/601284"}, {"dataset_uid": "601285", "doi": null, "keywords": "Airborne Radar; Airplane; Antarctica; East Antarctica; Gamburtsev Mountains; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Radar Echo Sounder", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "Processed Ice Penetrating Radar Data (Netcdf format) from the Gamburtsev Mountains in Antarctica acquired during GAMBIT ", "url": "https://www.usap-dc.org/view/dataset/601285"}, {"dataset_uid": "601283", "doi": "10.1594/IEDA/318208", "keywords": "Aerogeophysics; AGAP; Airborne Radar; Airplane; Antarctica; East Antarctica; Gamburtsev Mountains; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Radar; Radar Echo Sounder", "people": "Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "Processed Ice Penetrating Radar Altimeter data (SEGY format) from the Gamburtsev Mountains in Antarctica acquired during GAMBIT", "url": "https://www.usap-dc.org/view/dataset/601283"}], "date_created": "Sun, 29 Sep 2013 00:00:00 GMT", "description": "This award supports an aerogeophysical study of the Gamburtsev Subglacial Mountains (GSM), a Texas-sized mountain range buried beneath the ice sheets of East Antarctica. The project would perform a combined gravity, magnetics, and radar study to achieve a range of goals including: advancing our understanding of the origin and evolution of the polar ice sheets and subglacial lakes; defining the crustal architecture of East Antarctica, a key question in the earth\u0027s history; and locating the oldest ice in East Antarctica, which may ultimately help find ancient climate records. Virtually unexplored, the GSM represents the largest unstudied area of crustal uplift on earth. As well, the region is the starting point for growth of the Antarctic ice sheets. Because of these outstanding questions, the GSM has been identified by the international Antarctic science community as a research focus for the International Polar Year (2007-2009). In addition to this study, NSF is also supporting a seismological survey of the GSM under award number 0537371. Major international partners in the project include Germany, China, Australia, and the United Kingdom. For more information see IPY Project #67 at IPY.org. In terms of broader impacts, this project also supports postdoctoral and graduate student research, and various forms of outreach including a focus on groups underrepresented in the earth sciences.", "east": 89.0, "geometry": "POINT(77 -81.25)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e AIRBORNE LASER SCANNER; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS", "is_usap_dc": false, "keywords": "GRAVITY; East Antarctica; GLACIERS/ICE SHEETS; ICE SHEETS; DHC-6; MAGNETIC FIELD; Not provided; Gamburtsev Mountains", "locations": "East Antarctica; Gamburtsev Mountains", "north": -77.5, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Bell, Robin; Studinger, Michael S.; Fahnestock, Mark", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6; Not provided", "repo": "USAP-DC", "repositories": "MGDS; USAP-DC", "science_programs": null, "south": -85.0, "title": "Collaborative Research: IPY: GAMBIT: Gamburtsev Aerogeophysical Mapping of Bedrock and Ice Targets", "uid": "p0000114", "west": 65.0}, {"awards": "0739783 Junge, Karen", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Metabolic Activities and Gene Expression of Marine Psychrophiles in Cold Ice", "datasets": [{"dataset_uid": "600083", "doi": "10.15784/600083", "keywords": "Antarctica; Biota; Microbiology; Oceans; Sea Ice; Southern Ocean", "people": "Junge, Karen", "repository": "USAP-DC", "science_program": null, "title": "Metabolic Activities and Gene Expression of Marine Psychrophiles in Cold Ice", "url": "https://www.usap-dc.org/view/dataset/600083"}], "date_created": "Wed, 25 Sep 2013 00:00:00 GMT", "description": "The mechanisms enabling bacteria to be metabolically active at very low temperatures are of considerable importance to polar microbial ecology, astrobiology, climate and cryopreservation. This research program has two main objectives. The first is to investigate metabolic activities and gene expression of polar marine psychrophilic bacteria when confronted with freezing conditions at temperatures above the eutectic of seawater (\u003c54C) to unveil cold adaptation mechanisms with relevance to wintertime sea-ice ecology. The second objective is to discern if psychrophilic processes of leucine incorporation into proteins, shown to occur to -196C, amount to metabolic activity providing for the survival of cells or are merely biochemical reactions still possible in flash-frozen samples without any effect on survival. We will examine extracellular and intracellular processes of psychrophilic activity above and below the eutectic by (i) determining the temperature range of metabolic activities such as DNA synthesis, carbon utilization, respiration and ATP generation using radioactive tracer technology, including a control at liquid helium temperature (-268.9C), (ii) analyzing gene expression in ice using whole genome and microarray analyses and iii) examining the role of exopolymeric substances (EPS) and ice micro-physics for the observed activity using an in-situ microscopy technique. Results of the proposed research can be expected to aid in the determination of cellular and genetic strategies that allow cells to maintain activity at extremely low temperatures within an icy matrix and/or to resume activity again when more growth-permissive conditions are encountered. The research is an interdisciplinary collaboration involving three different institutions with participants in Oceanography, Genomics, and Geophysical Sciences. The proposed activity will support the beginning professional career of a female researcher and will serve as the basis for several undergraduate student laboratory projects.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Junge, Karen", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Metabolic Activities and Gene Expression of Marine Psychrophiles in Cold Ice", "uid": "p0000673", "west": -180.0}, {"awards": "1142083 Kyle, Philip", "bounds_geometry": "POINT(167.15334 -77.529724)", "dataset_titles": "Database of Erebus cave field seasons; Icequakes at Erebus volcano, Antarctica; Mount Erebus Observatory GPS data; Mount Erebus Seismic Data; Mount Erebus Thermodynamic model code; Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO); Seismic data used for high-resolution active-source seismic tomography", "datasets": [{"dataset_uid": "200027", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Mount Erebus Observatory GPS data", "url": "https://www.unavco.org/data/gps-gnss/data-access-methods/dai1/monument.php?mid=22083\u0026parent_link=Permanent\u0026pview=original"}, {"dataset_uid": "200033", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Icequakes at Erebus volcano, Antarctica", "url": "http://ds.iris.edu/mda/ZW/?timewindow=2007-2009http://ds.iris.edu/mda/Y4?timewindow=2008-2009http://ds.iris.edu/mda/ZO?timewindow=2011-2012"}, {"dataset_uid": "200032", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Mount Erebus Seismic Data", "url": "http://ds.iris.edu/mda/ER/"}, {"dataset_uid": "200031", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Mount Erebus Thermodynamic model code", "url": "https://github.com/kaylai/Iacovino2015_thermodynamic_model"}, {"dataset_uid": "200034", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Seismic data used for high-resolution active-source seismic tomography", "url": "http://ds.iris.edu/mda/ZW/?timewindow=2007-2009http://ds.iris.edu/mda/Y4?timewindow=2008-2009http://ds.iris.edu/ds/nodes/dmc/forms/assembled-data/?dataset_report_number=09-015"}, {"dataset_uid": "600381", "doi": "10.15784/600381", "keywords": "Antarctica; Cable Observatory; Geology/Geophysics - Other; Infrared Imagery; Intracontinental Magmatism; IntraContinental Magmatism; MEVO; Mount Erebus; Photo/video; Photo/Video; Ross Island; Solid Earth; Thermal Camera; Volcano", "people": "Oppenheimer, Clive; Kyle, Philip", "repository": "USAP-DC", "science_program": "MEVO", "title": "Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO)", "url": "https://www.usap-dc.org/view/dataset/600381"}, {"dataset_uid": "200030", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Database of Erebus cave field seasons", "url": "https://github.com/foobarbecue/troggle"}], "date_created": "Tue, 03 Sep 2013 00:00:00 GMT", "description": "Intellectual Merit: Mt. Erebus is one of only a handful of volcanoes worldwide that have lava lakes with readily observable and nearly continuous Strombolian explosive activity. Erebus is also unique in having a permanent convecting lava lake of anorthoclase phonolite magma. Over the years significant infrastructure has been established at the summit of Mt. Erebus as part of the Mount Erebus Volcano Observatory (MEVO), which serves as a natural laboratory to study a wide range of volcanic processes, especially magma degassing associated with an open convecting magma conduit. The PI proposes to continue operating MEVO for a further five years. The fundamental fundamental research objectives are: to understand diffuse flank degassing by using distributed temperature sensing and gas measurements in ice caves, to understand conduit processes, and to examine the environmental impact of volcanic emissions from Erebus on atmospheric and cryospheric environments. To examine conduit processes the PI will make simultaneous observations with video records, thermal imaging, measurements of gas emission rates and gas compositions, seismic, and infrasound data. Broader impacts: An important aspect of Erebus research is the education and training of students. Both graduate and undergraduate students will have the opportunity to work on MEVO data and deploy to the field site. In addition, this proposal will support a middle or high school science teacher for two field seasons. The PI will also continue working with various media organizations and filmmakers.", "east": 167.15334, "geometry": "POINT(167.15334 -77.529724)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e TIRS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e SPECTROMETERS \u003e FTIR SPECTROMETER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e SPECTROMETERS \u003e DOAS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e LASER RANGING \u003e MOBLAS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e PETROGRAPHIC MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e HRDI; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e TIRS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e INFRASONIC MICROPHONES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e AMS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e XRF; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-ES; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e LASER RANGING \u003e MOBLAS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e IRGA; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE CHAMBERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e SPECTROMETERS \u003e FTIR SPECTROMETER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e MICROTOMOGRAPHY; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e SIMS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Earthquakes; Vesuvius; Cosmogenic Radionuclides; Infrasonic Signals; Icequakes; Magma Shells; Phase Equilibria; Passcal; Correlation; Backscattering; Eruptive History; Degassing; Volatiles; Magma Convection; Thermodynamics; Tremors; Optech; Uv Doas; Energy Partitioning; Erebus; Cronus; Holocene; Lava Lake; Phonolite; Vagrant; Thermal Infrared Camera; Flir; USA/NSF; Mount Erebus; Active Source Seismic; GROUND-BASED OBSERVATIONS; Interferometry; Volatile Solubility; Redox State; Viscosity; Hydrogen Emission; Seismicity; Eruptions; Explosion Energy; FIELD SURVEYS; Radar Spectra; OBSERVATION BASED; Seismic Events; Strombolian Eruptions; Anorthoclase; Ice Caves; Iris; VOLCANO OBSERVATORY; Melt Inclusions; Ftir; Alkaline Volcanism; Tomography; TLS; Volcanic Gases; ANALYTICAL LAB", "locations": "Vesuvius; Cronus; Vagrant; Mount Erebus; Passcal", "north": -77.529724, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Kyle, Philip; Oppenheimer, Clive; Chaput, Julien; Jones, Laura; Fischer, Tobias", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e VOLCANO OBSERVATORY; OTHER \u003e MODELS \u003e OBSERVATION BASED; OTHER \u003e PHYSICAL MODELS \u003e ANALYTICAL LAB", "repo": "UNAVCO", "repositories": "GitHub; IRIS; UNAVCO; USAP-DC", "science_programs": "MEVO", "south": -77.529724, "title": "Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO)", "uid": "p0000383", "west": 167.15334}, {"awards": "0944764 Brook, Edward J.", "bounds_geometry": null, "dataset_titles": "Abrupt Change in Atmospheric CO2 During the Last Ice Age; High-resolution Atmospheric CO2 during 7.4-9.0 ka", "datasets": [{"dataset_uid": "609527", "doi": "10.7265/N5QF8QT5", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core; South Pole; WAISCORES", "people": "Ahn, Jinho; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "High-resolution Atmospheric CO2 during 7.4-9.0 ka", "url": "https://www.usap-dc.org/view/dataset/609527"}, {"dataset_uid": "609539", "doi": "10.7265/N5F47M23", "keywords": "Antarctica; Arctic; Byrd; Chemistry:fluid; Chemistry:Fluid; CO2; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; Siple Dome Ice Core; Taylor Dome; Taylor Dome Ice Core", "people": "Brook, Edward J.; Ahn, Jinho", "repository": "USAP-DC", "science_program": "Byrd Ice Core", "title": "Abrupt Change in Atmospheric CO2 During the Last Ice Age", "url": "https://www.usap-dc.org/view/dataset/609539"}, {"dataset_uid": "609539", "doi": "10.7265/N5F47M23", "keywords": "Antarctica; Arctic; Byrd; Chemistry:fluid; Chemistry:Fluid; CO2; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; Siple Dome Ice Core; Taylor Dome; Taylor Dome Ice Core", "people": "Brook, Edward J.; Ahn, Jinho", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Abrupt Change in Atmospheric CO2 During the Last Ice Age", "url": "https://www.usap-dc.org/view/dataset/609539"}, {"dataset_uid": "609539", "doi": "10.7265/N5F47M23", "keywords": "Antarctica; Arctic; Byrd; Chemistry:fluid; Chemistry:Fluid; CO2; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; Siple Dome Ice Core; Taylor Dome; Taylor Dome Ice Core", "people": "Ahn, Jinho; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Abrupt Change in Atmospheric CO2 During the Last Ice Age", "url": "https://www.usap-dc.org/view/dataset/609539"}], "date_created": "Thu, 08 Aug 2013 00:00:00 GMT", "description": "This award supports a project to create new, unprecedented high-resolution atmospheric carbon dioxide (CO2) records spanning intervals of abrupt climate changes during the last glacial period and the early Holocene. The proposed work will utilize high-precision methods on existing ice cores from high accumulation sites such as Siple Dome and Byrd Station, Antarctica and will improve our understanding of how fast CO2 can change naturally, how its variations are linked with climate, and, combined with a coupled climate-carbon cycle model, will clarify the role of terrestrial and oceanic processes during past abrupt changes of climate and CO2. The intellectual merit of this work is that CO2 is the most important anthropogenic greenhouse gas and understanding its past variations, its sources and sinks, and how they are linked to climate change is a major goal of the climate research community. This project will produce high quality data on centennial to multi-decadal time scales. Such high-resolution work has not been conducted before because of insufficient analytical precision, slow experimental procedures in previous studies, or lack of available samples. The proposed research will complement future high-resolution studies from WAIS Divide ice cores and will provide ice core CO2 records for the target age intervals, which are in the zone of clathrate formation in the WAIS ice cores. Clathrate hydrate is a phase composed of air and ice. CO2 analyses have historically been less precise in clathrate ice than in ?bubbly ice? such as the Siple Dome ice core that will be analyzed in the proposed project. High quality, high-resolution results from specific intervals in Siple Dome that we propose to analyze will provide important data for verifying the WAIS Divide record. The broader impacts of the work are that current models show a large uncertainty of future climate-carbon cycle interactions. The results of this proposed work will be used for testing coupled carbon cycle-climate models and may contribute to reducing this uncertainty. The project will contribute to the training of several undergraduate students and a full-time technician. Both will learn analytical techniques and the basic science involved. Minorities and female students will be highly encouraged to participate in this project. Outreach efforts will include participation in news media interviews, at a local festival celebrating art, science and technology, and giving seminar presentations in the US and foreign countries. The OSU ice core laboratory has begun a collaboration with a regional science museum and is developing ideas to build an exhibition booth to make public be aware of climate change and ice core research. All data will be archived at the National Snow and Ice Data Center and at other similar archives per the OPP data policy.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e CO2 ANALYZERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "GROUND-BASED OBSERVATIONS; CO2 Concentrations; Ice Core Gas Age; CO2 Uncertainty; LABORATORY; Ice Core Depth; Not provided; CH4 Concentrations", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "NOT APPLICABLE; NOT APPLICABLE", "persons": "Ahn, Jinho; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Atmospheric CO2 and Abrupt Climate Change", "uid": "p0000179", "west": null}, {"awards": "9725057 Mayewski, Paul", "bounds_geometry": "POLYGON((-76.1 -77.68,-53.253 -77.68,-30.406 -77.68,-7.559 -77.68,15.288 -77.68,38.135 -77.68,60.982 -77.68,83.829 -77.68,106.676 -77.68,129.523 -77.68,152.37 -77.68,152.37 -78.912,152.37 -80.144,152.37 -81.376,152.37 -82.608,152.37 -83.84,152.37 -85.072,152.37 -86.304,152.37 -87.536,152.37 -88.768,152.37 -90,129.523 -90,106.676 -90,83.829 -90,60.982 -90,38.135 -90,15.288 -90,-7.559 -90,-30.406 -90,-53.253 -90,-76.1 -90,-76.1 -88.768,-76.1 -87.536,-76.1 -86.304,-76.1 -85.072,-76.1 -83.84,-76.1 -82.608,-76.1 -81.376,-76.1 -80.144,-76.1 -78.912,-76.1 -77.68))", "dataset_titles": "US International Trans-Antarctic Scientific Expedition (US ITASE) Glaciochemical Data; US International Trans-Antarctic Scientific Expedition (US ITASE) Glaciochemical Data, Version 1", "datasets": [{"dataset_uid": "601559", "doi": null, "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; ITASE; Paleoclimate; Solid Earth; Wais Project", "people": "Dixon, Daniel A.; Mayewski, Paul A.", "repository": "USAP-DC", "science_program": "ITASE", "title": "US International Trans-Antarctic Scientific Expedition (US ITASE) Glaciochemical Data, Version 1", "url": "https://www.usap-dc.org/view/dataset/601559"}, {"dataset_uid": "609273", "doi": "10.7265/N51V5BXR", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; ITASE; Paleoclimate; Solid Earth; WAIS", "people": "Mayewski, Paul A.; Dixon, Daniel A.", "repository": "USAP-DC", "science_program": "ITASE", "title": "US International Trans-Antarctic Scientific Expedition (US ITASE) Glaciochemical Data", "url": "https://www.usap-dc.org/view/dataset/609273"}], "date_created": "Thu, 11 Jul 2013 00:00:00 GMT", "description": "9725057 Mayewski This award is for support for a Science Management Office (SMO) for the United States component of the International Trans-Antarctic Scientific Expedition (US ITASE). The broad aim of US ITASE is to develop an understanding of the last 200 years of past West Antarctic climate and environmental change. ITASE is a multidisciplinary program that integrates remote sensing, meteorology, ice coring, surface glaciology and geophysics. In addition to the formation of a science management office, this award supports a series of annual workshops to coordinate the science projects that will be involved in ITASE and the logistics base needed to undertake ground-based sampling in West Antarctica.", "east": 152.37, "geometry": "POINT(38.135 -83.84)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "US ITASE; Not provided; ITASE; GROUND STATIONS; GROUND-BASED OBSERVATIONS", "locations": null, "north": -77.68, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Dixon, Daniel A.; Mayewski, Paul A.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": -90.0, "title": "Science Management for the United States Component of the International Trans-Antarctic Expedition", "uid": "p0000221", "west": -76.1}, {"awards": "0739779 Warren, Stephen; 1142963 Warren, Stephen", "bounds_geometry": "POLYGON((157 -76,158.1 -76,159.2 -76,160.3 -76,161.4 -76,162.5 -76,163.6 -76,164.7 -76,165.8 -76,166.9 -76,168 -76,168 -76.2,168 -76.4,168 -76.6,168 -76.8,168 -77,168 -77.2,168 -77.4,168 -77.6,168 -77.8,168 -78,166.9 -78,165.8 -78,164.7 -78,163.6 -78,162.5 -78,161.4 -78,160.3 -78,159.2 -78,158.1 -78,157 -78,157 -77.8,157 -77.6,157 -77.4,157 -77.2,157 -77,157 -76.8,157 -76.6,157 -76.4,157 -76.2,157 -76))", "dataset_titles": "Ice on the Oceans of Snowball Earth Project Data", "datasets": [{"dataset_uid": "000183", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Ice on the Oceans of Snowball Earth Project Data", "url": "https://digital.lib.washington.edu/researchworks/handle/1773/37320"}], "date_created": "Wed, 10 Jul 2013 00:00:00 GMT", "description": "The climatic changes of late Precambrian time, 600-800 million years ago, included episodes of extreme glaciation, during which ice may have covered nearly the entire ocean for several million years, according to the Snowball Earth hypothesis. These episodes would hold an important place in Earth?s evolutionary history; they could have encouraged biodiversity by trapping life forms in small isolated ice-free areas, or they could have caused massive extinctions that cleared the path for new life forms to fill empty niches. What caused the Earth to become iced over, and what later caused the ice to melt? Scientific investigation of these questions will result in greater understanding of the climatic changes that the Earth can experience, and will enable better predictions of future climate. This project involves Antarctic field observations as well as laboratory studies and computer modeling. The aim of this project is not to prove or disprove the Snowball Earth hypothesis but rather to quantify processes that are important for simulating snowball events in climate models. The principal goal is to identify the types of ice that would have been present on the frozen ocean, and to determine how much sunlight they would reflect back to space. Reflection of sunlight by bright surfaces of snow and ice is what would maintain the cold climate at low latitudes. The melting of the ocean required buildup of greenhouse gases, but it was probably aided by deposition of desert dust and volcanic ash darkening the snow and ice. With so much ice on the Earth?s surface, even small differences in the amount of light that the ice absorbed or reflected could cause significant changes in climate. The properties of the ice would also determine where, and in what circumstances, photosynthetic life could have survived. Some kinds of ice that are rare on the modern Earth may have been pivotal in allowing the tropical ocean to freeze. The ocean surfaces would have included some ice types that now exist only in Antarctica: bare cold sea ice with precipitated salts, and \"blue ice\" areas of the Transantarctic Mountains that were exposed by sublimation and have not experienced melting. Field expeditions were mounted to examine these ice types, and the data analysis is underway. A third ice type, sea ice with a salt crust, is being studied in a freezer laboratory. Modeling will show how sunlight would interact with ice containing light-absorbing dust and volcanic ash. Aside from its reflection of sunlight, ice on the Snowball ocean would have been thick enough to flow under its own weight, invading all parts of the ocean. Yet evidence for the survival of photosynthetic life indicates that some regions of liquid water were maintained at the ocean surface. One possible refuge for photosynthetic organisms is a bay at the far end of a nearly enclosed tropical sea, formed by continental rifting and surrounded by desert, such as the modern Red Sea. A model of glacier flow is being developed to determine the dimensions of the channel, connecting the sea to the ocean, necessary to prevent invasion by the flowing ice yet maintain a water supply to replenish evaporation.", "east": 168.0, "geometry": "POINT(162.5 -77)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -76.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Warren, Stephen; Light, Bonnie; Campbell, Adam; Carns, Regina; Dadic, Ruzica; Mullen, Peter; Brandt, Richard; Waddington, Edwin D.", "platforms": "Not provided", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": -78.0, "title": "Ocean Surfaces on Snowball Earth", "uid": "p0000402", "west": 157.0}, {"awards": "0838810 Hulbe, Christina", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 01 Jul 2013 00:00:00 GMT", "description": "Hulbe/0838810 \u003cbr/\u003e\u003cbr/\u003eThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThis award supports a modeling study of the processes in West Antarctic grounding zones, the transition from ice resting on bedrock to ice floating on the ocean surface with an eye toward understanding the interrelated causes of rapid change in grounding line configuration and outlet flow. A combination of satellite remote sensing and numerical modeling will be used to investigate both past and ongoing patterns of change. New high-resolution surface elevation maps made from a novel combination of satellite laser altimetry and remotely observed surface shape provide a unique view of grounding zones. These data will be used to diagnose events associated with the shutdown of Kamb Ice Stream, to investigate a recent discharge event on Institute Ice Stream and to investigate ongoing change at the outlet of Whillans Ice Stream, along with other modern processes around the West Antarctic. An existing numerical model of coupled ice sheet, ice stream, and ice shelf flow will be used and improved as part of the research project. The broader impacts of the project relate to the importance of understanding the role of polar ice sheets in global sea level rise. The work will contribute to the next round of deliberations for the Intergovernmental Panel on Climate Change (IPCC). Improved views, interpretations, and insights into the physical processes that govern variability in ice sheet outlet streams will help correct the shortcomings of the last IPCC report that didn?t include the role of ice sheets in sea level rise. The PIs have a strong record of public outreach, involvement in the professional community, and student training.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "LABORATORY; Kamb Ice Stream; Grounding Line; FIELD INVESTIGATION; SATELLITES; Transition Zone; Ice Shelf Flow; Outlet Flow; Ice Sheet; Modeling; COMPUTERS; Antarctica", "locations": "Antarctica; Kamb Ice Stream", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Hulbe, Christina; Fahnestock, Mark", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Mass Transit: Controls on Grounding and Ungrounding at Marine Ice Sheet Outlets", "uid": "p0000371", "west": null}, {"awards": "0823101 Ducklow, Hugh", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG1301", "datasets": [{"dataset_uid": "002731", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1301", "url": "https://www.rvdata.us/search/cruise/LMG1301"}, {"dataset_uid": "001425", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1301"}], "date_created": "Mon, 24 Jun 2013 00:00:00 GMT", "description": "Since 1990, Palmer LTER (PAL) research has been guided by the hypothesis that variability in the polar marine ecosystem is mechanistically coupled to changes in the annual advance, retreat and spatial extent of sea ice. Since that time, the hypothesis has been modified to incorporate climate migration, i.e. the displacement of a cold, dry polar climate by a warm, moist climate regime in the northern component of the PAL region, producing fundamental changes in food web structure and elemental cycling. The observed northern changes are affecting all trophic levels and elemental cycling, and the primary mechanism of change involves match-mismatch dynamics. The proposed research builds on previous findings, with a new emphasis on process studies and modeling to elucidate the mechanistic links between teleconnections, climate change, physical oceanographic forcing and ecosystem dynamics. The proposed research will examine the hypothesis that regional warming and sea ice decline associated with historical and on-going climate migration in the northern part of the study area have altered key phenological relationships, leading to changes in species distributions, increasing trophic mismatches and changes in habitat, food availability, ecosystem dynamics and biogeochemical cycling. Through targeted process studies linked to numerical model simulations, the research also will test the hypothesis that deep cross-shelf canyons characterizing the core study region are focal areas for ecosystem processes that result in predictable, elevated food resources for top-predators. The effort includes the addition of 3 new PIs: a zooplankton ecologist with expertise in biogeochemical fluxes, a phytoplankton ecologist focusing on bio-optics and autonomous observations using gliders, and a numerical simulation modeler specializing in coupled global models of ocean circulation, plankton ecology and biogeochemical cycles. The program will add trace metal sampling and analysis, moored physical oceanographic sensors, a moored sediment trap in the south, drifting sediment traps and stable carbon (del 13C) and nitrogen (del 15N) isotope analyses. Missions lasting up to 45 days using gliders deployed before, during and after summer cruises will, along with moorings and satellite remote sensing of sea ice, ocean color, sea surface temperatures and wind fields, greatly extend the observational program in space and time. \u003cbr/\u003e\u003cbr/\u003eSince its inception, PAL has been a leader in Information Management to enable knowledge-building within and beyond the Antarctic, oceanographic and LTER communities. PAL has designed and deployed a new information infrastructure with a relational database architecture to facilitate data distribution and sharing. The Education and Outreach program capitalizes on the public\u0027s fascination with Antarctica to promote scientific literacy from kindergarten students to adult citizens concerned with climate change and environmental sustainability. Through communicating results to the public and working with scientific assessment bodies (e.g., IPCC) and Antarctic Treaty parties to protect Earth\u0027s last frontier, PAL researchers contribute to the national scientific agenda and the greater public benefit.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e PROFILERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ducklow, Hugh", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": "LTER", "south": null, "title": "Palmer, Antarctica Long Term Ecological Research Project", "uid": "p0000874", "west": null}, {"awards": "1043749 Rouse, Gregory", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP1105", "datasets": [{"dataset_uid": "002659", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1105", "url": "https://www.rvdata.us/search/cruise/NBP1105"}], "date_created": "Mon, 24 Jun 2013 00:00:00 GMT", "description": "The west Antarctic Peninsula is warming rapidly, and continuing changes in the thermal regime will likely result in severe consequences for marine fauna, including potential extinction of strongly adapted stenotherms, and invasions from neighboring faunas. Initial impacts of climate change may result in changes in connectivity among populations of the same species. These changes may will be undetectable by direct observation, but may be assessed via genetic connectivity, i.e. differences in allele or haplotype frequencies among populations can be used to infer levels of gene flow. The proposed research will explore the role that the Scotia Arc plays in connecting populations from South America to Antarctica, a corridor identified as a likely entry route for invaders into Antarctica. It also will examine the way in which cryptic species may confound our knowledge of broad-scale distributions, and in doing so, make contributions towards understanding biodiversity and testing the paradigm of circumpolarity in Antarctica. The principal investigator will to collect multi-locus genetic data across \u0027species\u0027 from a broad suite of benthic marine invertebrate phyla, from multiple locations, in order to address hypotheses regarding speciation and connectivity, to estimate demographic population changes, and to identify the underlying processes that drive observed phylogeographic patterns. Comparative phylogeography is a particularly valuable approach because it enables the identification of long-term barriers and refugia common to groups of species and is consequently highly relevant to conservation planning. Moreover, this work will form a valuable baseline for detecting future changes in connectivity. The results of the research will be disseminated through peer-reviewed publications and presentations at conferences. In addition, the project will support the interdisciplinary training of a female graduate student, two undergraduate students, and host additional summer students through the STARS program at SIO, which helps minority students prepare for graduate school. This project will integrate research and education through conducting an interdisciplinary workshop that brings together Earth Science and Biology high school teachers. This workshop aims to assist teachers derive their own curricula uniting plate tectonics, ocean history and evolution, supporting a new high school earth sciences program. Information generated by this project will also directly feed into international efforts to design a series of Marine Protected Areas (MPAs) in Antarctica.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Rouse, Gregory", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Using molecular data to test connectivity and the circumpolar paradigm for Antarctic marine invertebrates", "uid": "p0000847", "west": null}, {"awards": "0636883 Bell, Robin", "bounds_geometry": "POLYGON((20 -75,23 -75,26 -75,29 -75,32 -75,35 -75,38 -75,41 -75,44 -75,47 -75,50 -75,50 -76.5,50 -78,50 -79.5,50 -81,50 -82.5,50 -84,50 -85.5,50 -87,50 -88.5,50 -90,47 -90,44 -90,41 -90,38 -90,35 -90,32 -90,29 -90,26 -90,23 -90,20 -90,20 -88.5,20 -87,20 -85.5,20 -84,20 -82.5,20 -81,20 -79.5,20 -78,20 -76.5,20 -75))", "dataset_titles": "Data portal at Lamont for airborne data", "datasets": [{"dataset_uid": "000111", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Data portal at Lamont for airborne data", "url": "http://wonder.ldeo.columbia.edu/wordpress/"}], "date_created": "Tue, 02 Apr 2013 00:00:00 GMT", "description": "Bell/0636883\u003cbr/\u003e\u003cbr/\u003eThis award support a project to study the role that subglacial water plays in the overall stability of major ice sheets. An estimated 22,000 km3 of water is currently stored within Antarctica\u0027s subglacial lakes. Movement of this water occurs through a complex and largely inferred drainage system in both East and West Antarctica. Geomorphic evidence for the catastrophic drainage of subglacial lakes documents repeated events. These major flood events appear to have drained the largest subglacial lakes situated in the relatively stable interior of the East Antarctic ice sheet. Emerging evidence suggests there is a close connection between significant subglacial lakes and the onset of the Recovery Ice Stream one of the largest in East Antarctica. Our preliminary analysis of the Recovery Lakes region, East Antarctica suggests a direct linkage between lakes and streaming ice flow, specifically the 800 km long Recovery Ice Stream and its tributaries. Located just upslope of the Recovery Ice Stream, the Recovery Lakes Region is composed of 3 well-defined lakes and a fourth, ambiguous, \u0027lake-like\u0027 feature. While other large lakes have a localized impact on ice surface slope, the Recovery Lakes Region lakes are coincident with an abrupt regional change in the ice sheet surface slope. Satellite imagery demonstrates that the downslope margin of this lake area contains distinct flow strips and crevasses: both indicative of increasing ice velocities. The discovery of a series of large lakes coincident with the onset of rapid ice flow in East Antarctica clearly links subglacial lakes and ice sheet dynamics for the first time. The evidence linking the onset of streaming in the Recovery Drainage Ice Stream to the series of large subglacial lakes raises the fundamental question: How can subglacial lakes trigger the onset of ice streaming? We advance two possible mechanisms: (i) Subglacial lakes can produce accelerated ice flow through the drainage of lake water beneath the ice sheet downslope of the lakes. (ii) Subglacial lakes can produce accelerated ice flow accelerated ice flow by modifying the basal thermal gradient via basal accretion over the lakes so when the ice sheet regrounds basal melting dominates. To evaluate the contribution of lake water and the changing basal thermal gradient, we propose an integrated program incorporating satellite imagery analysis, a series of reconnaissance aerogeophysical profiles over the Recovery Lake Region and the installation of continuous GPS sites over the Recovery Lakes. This analysis and new data will enable us (1) to produce a velocity field over the Recovery Lakes Region, (2) to map the ice thickness changes over the lakes due to acceleration triggered thinning, basal melting and freezing, (3) determine the depth and possible the tectonic origin of the Recovery Lakes and (4) determine the stability of these lakes over time. These basic data sets will enable us to advance our understanding of how subglacial lakes trigger the onset of streaming. The intellectual merit of this project is that it will be the first systematic analysis of ice streams triggering the onset of ice streams. This work has profound implications for the modeling of ice sheet behavior in the future, the geologic record of abrupt climate changes and the longevity of subglacial lakes. The broader impacts of the project are programs that will reach students of all ages through undergraduates involved in the research, formal presentations in teacher education programs and ongoing public outreach efforts at major science museums. Subglacial Antarctic lake environments are emerging as a premier, major frontier for exploration during the IPY 2007-2009.", "east": 50.0, "geometry": "POINT(35 -82.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e AEM; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e IMAGING RADAR SYSTEMS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e LIDAR ALTIMETERS", "is_usap_dc": false, "keywords": "DHC-6; Basal Melting; Ice Stream; Ice Thickness; Velocity; Ice Stream Stability; Basal Freezing; Antarctica; Drainage; Aerogeophysical; Subglacial Lake; Flood Event", "locations": "Antarctica", "north": -75.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bell, Robin; Studinger, Michael S.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": -90.0, "title": "Subglacial Lakes and the Onset of Ice Streaming: Recovery Lakes", "uid": "p0000702", "west": 20.0}, {"awards": "9615420 Kamb, Barclay", "bounds_geometry": "POINT(-136.404633 -82.39955)", "dataset_titles": "Temperature of the West Antarctic Ice Sheet; Videos of Basal Ice in Boreholes on the Kamb Ice Stream in West Antarctica", "datasets": [{"dataset_uid": "609537", "doi": "10.7265/N5PN93J8", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Temperature", "people": "Engelhardt, Hermann", "repository": "USAP-DC", "science_program": null, "title": "Temperature of the West Antarctic Ice Sheet", "url": "https://www.usap-dc.org/view/dataset/609537"}, {"dataset_uid": "609528", "doi": "10.7265/N5028PFH", "keywords": "Antarctica; Borehole Video; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Kamb Ice Stream; Photo/video; Photo/Video", "people": "Engelhardt, Hermann", "repository": "USAP-DC", "science_program": null, "title": "Videos of Basal Ice in Boreholes on the Kamb Ice Stream in West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609528"}], "date_created": "Thu, 14 Feb 2013 00:00:00 GMT", "description": "This award is for support for a four year program to study the basal conditions of ice stream D using techniques previously applied to ice stream B. The objective is to determine whether the physical conditions and processes to be observed by borehole geophysics at the base of this large ice stream are consistent with what has been observed at ice stream B and to point to a common basal mechanism of ice streaming. This project includes a comparison between two parts of ice stream D, an upstream reach where flow velocities are modest (about 80 meters/year) and a downstream reach of high velocity (about 400 meters/year). The comparison will help to reveal what physical variable or combination of variables is mainly responsible for the streaming flow. The variables to be monitmred by borehole observation include basal water pressure, basal sliding velocity, flow properties and sedimentological characteristics of subglacial till if present, ice temperature profile including basal water transport velocity, connection time to the basal water system, basal melting rate and others.", "east": -136.404633, "geometry": "POINT(-136.404633 -82.39955)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS", "is_usap_dc": true, "keywords": "Raymond Ridge; Kamb Ice Stream; Engelhardt Ridge; Basal Ice; Unicorn; Alley Ice Stream; Borehole Video; Basal Freeze-on; Ice Stream Flow; Basal Freezing; West Antarctic Ice Sheet Instability; GROUND-BASED OBSERVATIONS; Whillans Ice Stream; Basal Debris; Simple Dome; Basal Water; Bindschadler Ice Stream; West Antarctic Ice Sheet", "locations": "Kamb Ice Stream; Alley Ice Stream; Bindschadler Ice Stream; Engelhardt Ridge; Raymond Ridge; Simple Dome; Unicorn; West Antarctic Ice Sheet; Whillans Ice Stream", "north": -82.39955, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Kamb, Barclay; Engelhardt, Hermann", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.39955, "title": "Basal Conditions of Ice Stream D and Related Borehole Studies of Antarctic Ice Stream Mechanics", "uid": "p0000181", "west": -136.404633}, {"awards": "0739444 Rice, James", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 16 Jan 2013 00:00:00 GMT", "description": "Rice 0739444\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to study the mode of formation and causes of glacial earthquakes. The paradigm for glacial flow has been that glaciers flow in a viscous manner, with major changes in the force balance occurring on the decade timescale or longer. The recent discovery of a number of even shorter timescale events has challenged this paradigm. In 2003, it was discovered that Whillans Ice Stream in West Antarctica displays stick-slip behavior on the 10-30 minute timescale, with ice stream speed increasing by a factor of 30 from already high speeds. In the past year, the minimum timescale has been pushed shorter by recognition that a class of recently discovered 50-second-long, magnitude-5 earthquakes are closely associated with changes in the force balance near the calving fronts of large outlet glaciers in both Greenland and East Antarctica. With no adequate theory existing to explain these relatively large earthquakes associated with outlet glaciers, we have begun to investigate the physical mechanisms that must be involved in allowing such a response in a system traditionally not thought capable of generating large variations in forces over timescales less than 100 seconds. The intellectual merit of the work is that large-amplitude, short-timescale variability of glaciers is an important mode of glacier dynamics that has not yet been understood from a first-principles physics perspective. The proposed research addresses this gap in understanding, tying together knowledge from numerous disciplines including glaciology, seismology and fault rupture dynamics, laboratory rock physics, granular flow, fracture mechanics, and hydrogeology. The broader impacts of the work are that there is societal as well as general scientific interest in the stability of the major ice sheets. However, without an understanding of the physical processes governing short time scale variability, it is unlikely that we will be able accurately predict the future of these ice sheets and their impact on sea level changes. The project will also contribute to the development and education of young scientists.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Rapid Glacial Motions; Not provided; Hydrogeology; Fracture Mechanics; Glacier Dynamics; Glacial Earthquakes; Granular Flow; Glacial Underflooding; Glaciology; Ice Stream Margins; Outlet Glaciers", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Rice, James; Platt, John; Suckale, Jenny; Perol, Thibaut; Tsai, Victor", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Transient and Rapid Glacial Motions, including Glacial Earthquakes", "uid": "p0000709", "west": null}, {"awards": "0738975 Baker, Ian", "bounds_geometry": null, "dataset_titles": "Siple Dome A (SDMA) Grain Orientation 640 - 790 Meters", "datasets": [{"dataset_uid": "609526", "doi": "10.7265/N53T9F5X", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Sample/collection Description; Sample/Collection Description; Siple Dome; Siple Dome Ice Core; South Pole; WAISCORES", "people": "Obbard, Rachel; Sieg, Katherine; Baker, Ian", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Siple Dome A (SDMA) Grain Orientation 640 - 790 Meters", "url": "https://www.usap-dc.org/view/dataset/609526"}], "date_created": "Mon, 26 Nov 2012 00:00:00 GMT", "description": "This award supports a project to fully characterize the microstructure in ice cores, in particular the microstructural locations of impurities, grain orientations and strain gradients. This work will complement the optical observations, electrical conductivity measurement, and precise, detailed measurements of the soluble ion and gas contents that are performed by others. Linking the concentrations of soluble ions and gases, measured to a few parts per billion, to the optically determined annual layer structure and the stable isotope data in ice cores has enabled a great deal to be established about the concentrations and depth/age distributions of particles, trace gases and impurities for several polar ice cores. Ice core studies carried out by several groups contribute immensely to our understanding of paleoclimate and, to our ability to predict future climate change. The work will build on previous measurements and technique development in this area, as well as focusing on new techniques to characterize ice cores. The work will use both scanning electron microscopy (SEM) coupled with X-ray energy dispersive spectroscopy (EDS) and confocal scanning optical microscopy coupled with Raman spectroscopy (RS) to determine the microstructural locations of impurities and correlate this information with depth/age, and impurity type and concentration for several polar ice cores. The Broader Impacts of the proposed work are that knowledge of the location of impurities coupled with the grain orientation (both c- and a-axis) and grain misorientation information will allow paleoclimatologists to better interpret ice core data and other scientists to understand and model the physical and mechanical properties of natural ice sheets. Other Broader Impacts of the work are that the work will be performed and lead to the education of a Ph.D. student. At the end of the project, as well as the knowledge gained from coursework, the graduate student will have experience in ice core specimen preparation and characterization using scanning electron microscopy, x-ray microanalysis, confocal scanning microscopy, Raman spectroscopy and ion chromatography. Results from the research will be published in refereed journals, presented at conferences, and placed on a web page.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES", "is_usap_dc": true, "keywords": "FEI Xl30 Environmental Scanning Electron Microscope - Field Emission Gun (esem - Feg); LABORATORY; Electron Backscatter Diffraction", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Baker, Ian; Obbard, Rachel; Sieg, Katherine", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Advanced Microstructural Characterization of Polar Ice Cores", "uid": "p0000178", "west": null}, {"awards": "0732946 Steffen, Konrad", "bounds_geometry": null, "dataset_titles": "Larsen C automatic weather station data 2008\u20132011; Mean surface mass balance over Larsen C ice shelf, Antarctica (1979-2014), assimilated to in situ GPR and snow height data", "datasets": [{"dataset_uid": "601056", "doi": "10.15784/601056", "keywords": "Antarctica; Antarctic Peninsula; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Larsen C Ice Shelf; Radar", "people": "McGrath, Daniel; Kuipers Munneke, Peter; Steffen, Konrad", "repository": "USAP-DC", "science_program": null, "title": "Mean surface mass balance over Larsen C ice shelf, Antarctica (1979-2014), assimilated to in situ GPR and snow height data", "url": "https://www.usap-dc.org/view/dataset/601056"}, {"dataset_uid": "601445", "doi": "10.15784/601445", "keywords": "Antarctica; Atmosphere; AWS; Foehn Winds; Ice Shelf; Larsen C Ice Shelf; Larsen Ice Shelf; Meteorology; Weather Station Data", "people": "Bayou, Nicolas; Steffen, Konrad; McGrath, Daniel", "repository": "USAP-DC", "science_program": null, "title": "Larsen C automatic weather station data 2008\u20132011", "url": "https://www.usap-dc.org/view/dataset/601445"}], "date_created": "Wed, 03 Oct 2012 00:00:00 GMT", "description": "This award supports a field experiment, with partners from Chile and the Netherlands, to determine the state of health and stability of Larsen C ice shelf in response to climate change. Significant glaciological and ecological changes are taking place in the Antarctic Peninsula in response to climate warming that is proceeding at 6 times the global average rate. Following the collapse of Larsen A ice shelf in 1995 and Larsen B in 2002, the outlet glaciers that nourished them with land ice accelerated massively, losing a disproportionate amount of ice to the ocean. Further south, the much larger Larsen C ice shelf is thinning and measurements collected over more than a decade suggest that it is doomed to break up. The intellectual merit of the project will be to contribute to the scientific knowledge of one of the Antarctic sectors where the most significant changes are taking place at present. The project is central to a cluster of International Polar Year activities in the Antarctic Peninsula. It will yield a legacy of international collaboration, instrument networking, education of young scientists, reference data and scientific analysis in a remote but globally relevant glaciological setting. The broader impacts of the project will be to address the contribution to sea level rise from Antarctica and to bring live monitoring of climate and ice dynamics in Antarctica to scientists, students, the non-specialized public, the press and the media via live web broadcasting of progress, data collection, visualization and analysis. Existing data will be combined with new measurements to assess what physical processes are controlling the weakening of the ice shelf, whether a break up is likely, and provide baseline data to quantify the consequences of a breakup. Field activities will include measurements using the Global Positioning System (GPS), installation of automatic weather stations (AWS), ground penetrating radar (GPR) measurements, collection of shallow firn cores and temperature measurements. These data will be used to characterize the dynamic response of the ice shelf to a variety of phenomena (oceanic tides, iceberg calving, ice-front retreat and rifting, time series of weather conditions, structural characteristics of the ice shelf and bottom melting regime, and the ability of firn to collect melt water and subsequently form water ponds that over-deepen and weaken the ice shelf). This effort will complement an analysis of remote sensing data, ice-shelf numerical models and control methods funded independently to provide a more comprehensive analysis of the ice shelf evolution in a changing climate.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e TEMPERATURE PROFILERS", "is_usap_dc": false, "keywords": "Climate Warming; Firn; COMPUTERS; Ice Dynamic; USAP-DC; Glaciological; Thinning; Sea Level Rise; FIELD SURVEYS; FIELD INVESTIGATION; USA/NSF; AMD; Ice Edge Retreat; LABORATORY; Climate Change; Antarctic Peninsula; Amd/Us; Melting", "locations": "Antarctic Peninsula", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Steffen, Konrad", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "IPY: Stability of Larsen C Ice Shelf in a Warming Climate", "uid": "p0000087", "west": null}, {"awards": "0739684 Hatcher, Patrick", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 26 Sep 2012 00:00:00 GMT", "description": "This award supports a project to fully develop the analytical protocols needed to exploit a relatively new technique for the analysis of soluble organic matter in ice core samples. The technique couples Electrospray ionization to high resolution Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS). Sample volume will be reduced and pre-concentration steps will be eliminated. Following method optimization a suite of ice core samples will be studied from several Antarctic and Greenland locations to address several hypothesis driven research questions. Preliminary results show that a vast record of relatively high molecular weight organic material exists in ice core samples and intriguing results from a few samples warrant further investigation. Several important questions related to developing a better understanding of the nature and paleo record of organic matter in ice cores will be addressed. These include developing a better understanding of the origin of nitrogen and sulfur isotopes in pre-industrial vs. modern samples, developing the methods to apply molecular biomarker techniques, routinely used by organic geochemists for sediment analyses, to the analysis of organic matter in ice cores, tracking the level of oxidation of homologous series of compounds and using them as a proxy for atmospheric oxidant levels in the past and determining whether or not high resolution FTICR mass spectral analysis can provide the ice core community with a robust method to analyze organic materials at the molecular level. The intellectual merit of this work is that this analytical method will provide a new understanding of the nature of organic matter in ice, possibly leading to the discovery of multitudes of molecular species indicative of global change processes whose abundances can be compared with other change proxies. The proposed studies are of an exploratory nature and potentially transformative for the field of ice core research and cryobiology. The broader impacts of these studies are that they should provide compelling evidence regarding organic matter sources, atmospheric processing and anthropogenic inputs to polar ice and how these have varied over time. The collaborative work proposed here will partner atmospheric chemistry/polar ice chemistry expertise with organic geochemistry expertise, resulting in significant contributions to both fields of study and significant advances in ice core analysis. Training of both graduate and undergraduate students will be a key component of the project and students will be involved in collaborative research using advanced analytical instrumentation, presentation of research results at national meetings, and will participate in manuscript preparation.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": false, "keywords": "Ice Core; Isotope; Organic Matter; Nitrogen; Sulfur; Not provided; LABORATORY; Mass Spectrometry; COMPUTERS; Molecular", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Hatcher, Patrick; Grannas, Amanda", "platforms": "Not provided; OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Molecular Level Characterization of Organic Matter in Ice Cores using High-resolution FTICR mass spectrometry", "uid": "p0000707", "west": null}, {"awards": "0632198 Anandakrishnan, Sridhar", "bounds_geometry": "POINT(110 -74)", "dataset_titles": "Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "datasets": [{"dataset_uid": "609619", "doi": "10.7265/N58913TN", "keywords": "Amundsen Sea; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model; Thwaites Glacier", "people": "Blankenship, Donald D.; Dupont, Todd K.; Parizek, Byron R.; Holt, John W.", "repository": "USAP-DC", "science_program": null, "title": "Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "url": "https://www.usap-dc.org/view/dataset/609619"}], "date_created": "Wed, 29 Aug 2012 00:00:00 GMT", "description": "This award supports a project to study ice sheet history and dynamics on the Thwaites Glacier and Pine Island Glacier in the Amundsen Sea sector of the West Antarctic Ice Sheet. The international collaboration that has been established with the British Antarctic Survey will enable a fuller suite of geophysical experiments with more-efficient use of people and logistics than we could achieve individually. This project is one of a number of projects to characterize the Amundsen Sea Embayment, which has been identified in numerous planning documents as perhaps the most important target for ice-dynamical research. Taken together, this \"pulse of activity\" will result in a better understanding of this important part of the global system. Field work will measure the subglacial environment of Thwaites and Pine Island Glaciers using three powerful, but relatively simple tools: reflection seismic imaging, GPS motion monitoring of the tidal forcing, and passive seismic monitoring of the seismicity associated with motion. The results of the field work will feed into ice-sheet modeling efforts that are tuned to the case of an ocean-terminating glacier and will assess the influence of these glaciers on current sea level and project into the future. The broader impacts of the project involve the inclusion of a film- and audio-professional to document the work for informal outreach (public radio and TV; museums). In addition, we will train graduate students in polar geophysical and glaciological research and in numerical modeling techniques. The ultimate goal of this project, of assessing the role of Thwaites Glacier in global sea level change, has broad societal impact in coastal regions and small islands.", "east": -110.0, "geometry": "POINT(-110 -74)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e SEISMIC REFLECTION PROFILERS", "is_usap_dc": false, "keywords": "Pine Island Glacier; Bed Reflectivity; Tidal Forcing; FIELD INVESTIGATION; Not provided; Position; Thwaites; Thickness; Amundsen Sea; LABORATORY; FIELD SURVEYS; Subglacial; Ice Dynamic; Ice Sheet Modeling", "locations": "Thwaites; Pine Island Glacier; Amundsen Sea", "north": -74.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Anandakrishnan, Sridhar", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -74.0, "title": "IPY: Flow Dynamics of the Amundsen Sea Glaciers: Thwaites and Pine Island.", "uid": "p0000699", "west": -110.0}, {"awards": "0537752 Creyts, Timothy; 0538674 Winebrenner, Dale", "bounds_geometry": null, "dataset_titles": "Millennially Averaged Accumulation Rates for Lake Vostok; Modeled Radar Attenuation Rate Profile at the Vostok 5G Ice Core Site, Antarctica", "datasets": [{"dataset_uid": "609500", "doi": "10.7265/N5F769HV", "keywords": "Accumulation Rate; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Lake Vostok", "people": "Matsuoka, Kenichi; Waddington, Edwin D.; Winebrenner, Dale; Studinger, Michael S.; Macgregor, Joseph A.", "repository": "USAP-DC", "science_program": null, "title": "Millennially Averaged Accumulation Rates for Lake Vostok", "url": "https://www.usap-dc.org/view/dataset/609500"}, {"dataset_uid": "609501", "doi": "10.7265/N59K485D", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Lake Vostok; Radar Attenuation Rate; Vostok Ice Core", "people": "Matsuoka, Kenichi; Macgregor, Joseph A.; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "Modeled Radar Attenuation Rate Profile at the Vostok 5G Ice Core Site, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609501"}], "date_created": "Thu, 09 Aug 2012 00:00:00 GMT", "description": "0538674\u003cbr/\u003eMatsuoka\u003cbr/\u003eThis award supports a project to evaluate radio-echo intensities in the available SOAR ice-penetrating radar data along grids covering Lake Vostok, and along four regional tracks from Ridge B toward the lake. The project has two objectives; first, it will examine the upper surface of the lake and reflectors hypothesized to be a boundary between the meteoric and accreted ice. They will provide crucial knowledge on the dynamic evolution of the lake. Second, this project will examine a poorly understood echo-free zone within the deep ice in central East Antarctica. This zone may consist of distorted stagnant ice, while its upper boundary may be a shear zone. The SOAR radar data provide a unique resource to examine spatiotemporal water circulation patterns that should be understood in order to select the best direct-sampling strategy to the lake. The Vostok ice core provides a unique opportunity to do this work. First, the path effects, i.e. propagation loss and birefringence, will be derived at the ice-core site using ice temperature, chemistry, and fabric data. Second, lateral variations of the propagation loss will be estimated by tracking chemistry associated with radar-detected isochronous layers, and by inferring temperatures from an ice-flow model that can replicate those layers. Ice-fabric patterns will be inferred from anisotropy in the reflectivity at about 100 radar-track cross-over sites. In terms of broader impacts, a graduate student will be trained to interpret the radar data in the light of radar theory and glaciological context of Lake Vostok and summer workshops for K-12 teachers will be provided in Seattle and New York. This project will contribute to ongoing efforts to study Lake Vostok and will complement the site selection for a North Vostok ice core, which has been proposed by Russia and France as an IPY program.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LASERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e RADAR ALTIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS", "is_usap_dc": true, "keywords": "Airborne Radar Sounding; DHC-6; Salinity; Lake Vostok; Antarctic Ice Sheet; Modeling; FIELD SURVEYS; Model Output; Accumulation Rate; MODELS; Numerical Model; Ice Sheet; Not provided; Hydrostatic; Aerogeophysical; Subglacial; Attenuation Rate; Radar; FIELD INVESTIGATION; Model; Circulation; LABORATORY", "locations": "Lake Vostok; Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Matsuoka, Kenichi; Winebrenner, Dale; Creyts, Timothy; Macgregor, Joseph A.; Studinger, Michael S.; Waddington, Edwin D.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e MODELS \u003e MODELS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Deciphering the Deep Ice and the Ice-water Interface over Lake Vostok Using Existing Radar Data", "uid": "p0000090", "west": null}, {"awards": "0636584 Creyts, Timothy", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 07 Aug 2012 00:00:00 GMT", "description": "Studinger/0636584\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to estimate the salinity of subglacial Lake Vostok, Lake Concordia and the 90 deg.E lake using existing airborne ice-penetrating radar and laser altimeter data. These lakes have been selected because of the availability of modern aerogeophysical data and because they are large enough for the floating ice to be unaffected by boundary stresses near the grounding lines. The proposed approach is based on the assumption that the ice sheet above large subglacial lakes is in hydrostatic equilibrium and the density and subsequently salinity of the lake\u0027s water can be estimated from the (linear) relationship between ice surface elevation and ice thickness of the floating ice. The goal of the proposed work is to estimate the salinity of Lake Vostok and determine spatial changes and to compare the salinity estimates of 3 large subglacial lakes in East Antarctica. The intellectual merits of the project are that this work will contribute to the knowledge of the physical and chemical processes operating within subglacial lake environments. Due to the inaccessibility of subglacial lakes numerical modeling of the water circulation is currently the only way forward to develop a conceptual understanding of the circulation and melting and freezing regimes in subglacial lakes. Numerical experiments show that the salinity of the lake\u0027s water is a crucial input parameter for the 3-D fluid dynamic models. Improved numerical models will contribute to our knowledge of water circulation in subglacial lakes, its effects on water and heat budgets, stratification, melting and freezing, and the conditions that support life in such extreme environments. The broader impacts of the project are that subglacial lakes have captured the interest of many people, scientists and laymen. The national and international press frequently reports about the research of the Principal Investigator. His Lake Vostok illustrations have been used in math and earth science text books. Lake Vostok will be used for education and outreach in the Earth2Class project. Earth2Class is a highly successful science/math/technology learning resource for K-12 students, teachers, and administrators in the New York metropolitan area. Earth2Class is created through collaboration by research scientists at the Lamont- Doherty Earth Observatory; curriculum and educational technology specialists from Teachers College, Columbia University; and classroom teachers in the New York metropolitan area.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LASERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e RADAR ALTIMETERS", "is_usap_dc": false, "keywords": "Subglacial; Hydrostatic; Not provided; LABORATORY; Aerogeophysical; Numerical Model; FIELD SURVEYS; Salinity; Circulation", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Creyts, Timothy; Studinger, Michael S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "Estimating the Salinity of Subglacial Lakes From Existing Aerogeophysical Data", "uid": "p0000704", "west": null}, {"awards": "0739743 Bay, Ryan", "bounds_geometry": "POINT(123.35 -75.1)", "dataset_titles": "Dome C optical logging data", "datasets": [{"dataset_uid": "000234", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Dome C optical logging data", "url": "http://icecube.berkeley.edu/~bay/edc99/"}], "date_created": "Wed, 27 Jun 2012 00:00:00 GMT", "description": "Bay 0739743\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to make high-resolution logs of dust and ash in the Dome C borehole using an optical dust logger. Logging at 20-50 cm/sec, in a matter of hours, mm-scale depth resolution of dust concentration and volcanic ash layers over the entire 3270 m borehole back to ~800 ka can be provided. The logger probes an area of order m2 of the horizon compared to the ~0.02 m2 core, greatly suppressing depositional noise and making the technique immune to core damage or loss. The method achieves unprecedented resolution of climate variations for matching or comparing ice core records, can detect particulate layers from explosive fallout which are invisible or missing in the core, and often reveals subtle trend changes which can elude standard core analyses. With the highly resolved dust record, it is expected to find new synchronous age markers between East Antarctica, West Antarctica and Greenland. The data could be instrumental in unifying global climate records, or resolving mysteries such as the transition from 41-kyr glacial cycles to apparent 100-kyr cycles. The project will extend previous finding, which make the most convincing case to date for a causal relationship between explosive volcanic events and abrupt climate change on millennial timescales. A search will also be made for evidence that some of the worldwide explosive fallout events that have been identified may have resulted from impacts by comets or asteroids. The investigators will evaluate the reliability of terrestrial impact crater records and the possibility that Earth impacts are considerably more frequent than is generally appreciated. Better understanding of the factors which force abrupt climate changes, the recurrence rate and triggering mechanisms of large volcanic eruptions, and the frequency of Gt to Tt-energy bolide impacts are of vital interest for civilization. The work plan for 2008-11 comprises modifying and testing of existing hardware in year one; logging field work, most likely in year two; data analysis and publication of results in year three. Because the EPICA collaborators will provide a suitable logging winch onsite, the logistical needs of this project are modest and can be accommodated by Twin Otter from McMurdo. The proposal is in the spirit of the International Polar Year (IPY) by forging an international collaboration with potential societal benefit. The project will provide interdisciplinary training to students and postdoctoral fellows from the U.S. and other countries.", "east": 123.35, "geometry": "POINT(123.35 -75.1)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS", "is_usap_dc": false, "keywords": "Ash Layer; LABORATORY; Not provided; FIELD INVESTIGATION; Climate; Antarctica; Ice Core; Bolides; Borehole; Climate Change; Paleoclimate; FIELD SURVEYS; Volcanic", "locations": "Antarctica", "north": -75.1, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bay, Ryan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": -75.1, "title": "Dust Logging at Dome C for Abrupt Climate Changes, Large Volcanic Eruptions and Bolide Impacts", "uid": "p0000717", "west": 123.35}, {"awards": "0631973 Joughin, Ian; 0632031 Das, Sarah", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 20 Jun 2012 00:00:00 GMT", "description": "Joughin 0631973\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to gather data to better understand the mass balance of the West Antarctic Ice Sheet, in the Pine Island and Thwaites region, through the combination of radar altimetry and surface-based ice-core measurements of accumulation. The intellectual merit of the project is that the results of the field work will provide information on decadal-scale average accumulation extending back through the last century and will help constrain a modeling effort to determine how coastal changes propagate inland, to allow better prediction of future change. Comparison of the basin averaged accumulation with ice discharge determined using Interferometric Synthetic Aperture Radar (InSAR) velocity data will provide improved mass-balance estimates. Study of changes in flow speed will produce a record of mass balance over the last three decades. Analysis of the satellite altimeter record in conjunction with annual accumulation estimates also will provide estimates of changes and variability in mass balance. The broader impacts of the work are that it will make a significant contribution to future IPCC estimates of sea level, which are important for projection of the impacts of increased sea level on coastal communities. The research will contribute to the graduate education of students at the Universities of Washington and Kansas and will enrich K-12 education through the direct participation of the PIs in classroom activities. Informal science education includes 4-day glacier flow demonstrations at the Polar Science Weekend held annually at the Pacific Science Center in Seattle. The project also will communicate results through Center for the Remote Sensing of Ice Sheets (CReSIS) outreach effort. All field and remotely-sensed data sets will be archived and distributed by the National Snow and Ice Data Center. This project is relevant to IPY in that the West Antarctic Ice Sheet is losing mass, in large part because of rapid thinning of the Amundsen Coast glaciers so, it will directly address the NSF IPY emphasis on \"ice sheet history and dynamics.\" The project is also international in scope.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": false, "keywords": "Not provided; FIELD INVESTIGATION; Flow Speed; Antarctic; LABORATORY; Ice Sheet Accumulation Rate; Mass Balance; Accumulation; Insar; SATELLITES; FIELD SURVEYS; Ice Core; Radar Altimetry; Ice Velocity", "locations": "Antarctic", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Joughin, Ian; Medley, Brooke; Das, Sarah", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES", "repositories": null, "science_programs": null, "south": null, "title": "IPY: Collaborative Proposal: Constraining the Mass-Balance Deficit of the Amundsen Coast\u0027s Glaciers", "uid": "p0000542", "west": null}, {"awards": "0738658 Price, P. Buford", "bounds_geometry": "POINT(112.1125 -79.4638)", "dataset_titles": "Access to data; data from one of three optical logs we made at WAIS Divide; WAIS Divide Laser Dust Logger Data", "datasets": [{"dataset_uid": "001349", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to data", "url": "http://icecube.berkeley.edu/~bay/wdc/"}, {"dataset_uid": "609540", "doi": "10.7265/N5C53HSG", "keywords": "Antarctica; Atmosphere; Chemistry:ice; Chemistry:Ice; Dust; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Laser Dust Logger; WAIS Divide Ice Core", "people": "Bay, Ryan", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Laser Dust Logger Data", "url": "https://www.usap-dc.org/view/dataset/609540"}, {"dataset_uid": "000188", "doi": "", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "data from one of three optical logs we made at WAIS Divide", "url": "http://icecube.berkeley.edu/~bay/wdc/"}], "date_created": "Tue, 19 Jun 2012 00:00:00 GMT", "description": "This award supports a project to use two new scanning fluorimeters to map microbial concentrations vs depth in the WAIS Divide ice core as portions of it become available at NICL, and selected portions of the GISP2 ice core for inter-hemispheric comparison. Ground-truth calibrations with microbes in ice show that the instruments are sensitive to a single cell and can scan the full length of a 1-meter core at 300-micron intervals in two minutes. The goals of these studies will be to exploit the discovery that microbes are transported onto ice, in clumps, several times per year and that at rare intervals (not periodically) of ~104 years, a much higher flux, sometimes lasting \u003e1 decade, reaches the ice. From variations ranging from seasonal to millennial to glacial scale in the arrival time distribution of phototrophs, methanogens, and total microbes in the Antarctic and Arctic ice, the investigators will attempt to determine oceanic and terrestrial sources of these microbes and will look for correlations of microbial bursts with dust concentration and temperature proxies. In addition the project will follow up on the discovery that the rare instances of very high microbial flux account for some of the\"gas artifacts\" in ice cores - isolated spikes of excess CH4 and N2O that have been discarded by others in previous climate studies. The intellectual merit of this project is that it will exploit scanning fluorimetry of microbes as a powerful new tool for studies ranging from meteorology to climatology to biology, especially when combined with mapping of dust, gases, and major element chemistry in ice cores. In 2010-11 the WAIS Divide borehole will be logged with the latest version of the dust logger. The log will provide mm-scale depth resolution of dust concentration and of volcanic ash layers down the entire depth of the borehole. The locations of ash layers in the ice will be determined and chemical analyses of the ash will be analyzed in order to determine provenance. By comparing data from the WAIS Divide borehole with data from other boreholes and with chemical data (obtained by others) on volcanic layers, the researchers will examine the relationship between the timing of volcanic eruptions and abrupt climate change. Results from this project with the scanning fluorimeters and the dust logger could have applications to planetary missions, borehole oceanography, limnology, meteorology, climate, volcanology, and ancient life in ice. A deeper understanding of the causes of abrupt climate change, including a causal relationship with volcanic explosivity, would enable a better understanding of the adverse effects on climate. The broader impact of the project is that it will provide training to students and post-docs from the U. S. and other countries.", "east": 112.1125, "geometry": "POINT(112.1125 -79.4638)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS", "is_usap_dc": true, "keywords": "Dust Loggers; Dust Concentration; Ice Core; West Antarctic Ice Sheet; LABORATORY; Microbial; Fluorimetry; GROUND-BASED OBSERVATIONS; Meteorology; Climatologymeteorologyatmosphere; Ice", "locations": "West Antarctic Ice Sheet", "north": -79.4638, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bay, Ryan; Price, Buford; Souney, Joseph Jr.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "PI website", "repositories": "PI website; USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.4638, "title": "Climatology, Meteorology, and Microbial Metabolism in Ice with Dust Loggers and Fluorimetry", "uid": "p0000009", "west": 112.1125}, {"awards": "1043313 Spencer, Matthew; 1043528 Alley, Richard", "bounds_geometry": "POINT(112.1166 -79.4666)", "dataset_titles": "Average Annual Layer Thickness of the WAIS Divide Ice Core from Visual Stratigraphy; C-axis Fabric from Physical Properties Samples of the WAIS Divide Ice Core; Updated (2017) bubble number-density, size, shape, and modeled paleoclimate data; WAIS Divide 580m Bubble and Grain Hybrid Data; WAIS Divide Surface and Snow-pit Data, 2009-2013", "datasets": [{"dataset_uid": "601224", "doi": "10.15784/601224", "keywords": "Antarctic; Antarctica; Bubble Number Density; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Records; NSF-ICF Microtome and Photography Stage; Paleoclimate; Physical Properties; Snow/ice; Snow/Ice; WAIS Divide Ice Core; West Antarctic Ice Sheet", "people": "Voigt, Donald E.; Fegyveresi, John; Fitzpatrick, Joan; Spencer, Matthew; Alley, Richard", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Updated (2017) bubble number-density, size, shape, and modeled paleoclimate data", "url": "https://www.usap-dc.org/view/dataset/601224"}, {"dataset_uid": "609605", "doi": "10.7265/N5W093VM", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; WAIS Divide; WAIS Divide Ice Core", "people": "Voigt, Donald E.; Alley, Richard; Fitzpatrick, Joan", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "C-axis Fabric from Physical Properties Samples of the WAIS Divide Ice Core", "url": "https://www.usap-dc.org/view/dataset/609605"}, {"dataset_uid": "601079", "doi": "10.15784/601079", "keywords": "Antarctica; Atmosphere; AWS; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Meteorology; Physical Properties; Snow Pit; Temperature; WAIS Divide; WAIS Divide Ice Core; Weatherstation", "people": "Alley, Richard; Fegyveresi, John", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Surface and Snow-pit Data, 2009-2013", "url": "https://www.usap-dc.org/view/dataset/601079"}, {"dataset_uid": "601087", "doi": "10.15784/601087", "keywords": "Air Bubbles; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Strain; Physical Ice Properties; Snow/ice; Snow/Ice; Strain", "people": "Fegyveresi, John; Alley, Richard", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide 580m Bubble and Grain Hybrid Data", "url": "https://www.usap-dc.org/view/dataset/601087"}, {"dataset_uid": "609603", "doi": "10.7265/N53J39X3", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Spencer, Matthew", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Average Annual Layer Thickness of the WAIS Divide Ice Core from Visual Stratigraphy", "url": "https://www.usap-dc.org/view/dataset/609603"}], "date_created": "Tue, 19 Jun 2012 00:00:00 GMT", "description": "1043528/Alley This award supports a project to complete the physical-properties studies of the WAIS Divide deep ice core, now being collected in West Antarctica. Ongoing work funded by NSF, under a grant that is ending, has produced visible stratigraphy dating, inspection of the core for any melt layers, volcanic horizons, flow disturbances or other features, analysis of bubble number-densities allowing reconstruction of a two-millennial cooling trend in the latter Holocene at the site, characterization of other bubble characteristics (size, etc.), density studies, characterization of snow-surface changes at the site, preliminary c-axis studies, and more. The current proposal seeks to complete this work, once the rest of the core is recovered. The intellectual merit of the proposed activity starts with quality assurance for the core, by visual detection of any evidence of flow disturbances that would disrupt the integrity of the climate record. Inspection will also reveal any melt layers, volcanic horizons, etc. Annual-layer dating will be conducted; thus far, the visible strata have not been as useful as some other indicators, but the possibility (based on experience in Greenland) that visible examination will allow detection of thinner annual layers than other techniques motivates the effort. Bubble number-density will be used to reconstruct temperature changes through the rest of the bubbly part of the core, providing important paleoclimatic data for earlier parts of the Holocene. Coordinated interpretation of c-axis fabrics, grain sizes and shapes, and bubble characteristics will be used to learn about the history of ice flow, the processes of ice flow, and the softness of the ice for additional deformation. Analysis of surface data already collected will improve interpretation of the layering of the core. It is possible that the annual-layer dating will not be sufficiently successful, and that the core will be undisturbed with no melt layers; if so, then these efforts will not yield major publications. However, success of the other efforts should produce improved understanding of the history and stability of the ice sheet, and key processes controlling these, and the quality assurance provided by the visual examination is important for the project as a whole. The broader impacts of the proposed activity include education of a PhD student and multiple undergraduates, and research opportunities for a junior faculty member at an undergraduate institution. The proposed activity will help support an especially vigorous education and outreach effort providing undergraduate instruction for over 1000 students per year, reaching thousands more citizens and many policymakers, and preparing educational materials used at many levels.", "east": 112.1166, "geometry": "POINT(112.1166 -79.4666)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e VISUAL OBSERVATIONS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ACFA; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Antarctic; Antarctica; Annual Layer Thickness; Ice Core; Visual Observations; Bubble; LABORATORY; Bubble Density; FIELD INVESTIGATION; Physical Properties; Stratigraphy; Climate Record; Annual Layers; Ice Fabric; C-axis; Model; WAIS Divide; GROUND-BASED OBSERVATIONS; FIELD SURVEYS; Melt Layers; Wais Divide-project; Not provided", "locations": "WAIS Divide; Antarctica; Antarctic", "north": -79.4666, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Spencer, Matthew; Alley, Richard; Fitzpatrick, Joan; Voigt, Donald E.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.4666, "title": "Collaborative Research: Continued Study of Physical Properties of the WAIS Divide Deep Core", "uid": "p0000027", "west": 112.1166}, {"awards": "0636767 Dunbar, Nelia; 0636740 Kreutz, Karl", "bounds_geometry": "POINT(112.11666 -79.46666)", "dataset_titles": "Microparticle, Conductivity, and Density Measurements from the WAIS Divide Deep Ice Core, Antarctica; Snowpit Chemistry - Methods Comparison, WAIS Divide, Antarctica; Snowpit evidence of the 2011 Puyehue-Cordon Caulle (Chile) eruption in West Antarctica; WAIS Divide Microparticle Concentration and Size Distribution, 0-2400 ka; WAIS Divide Snowpit Chemical and Isotope Measurements, Antarctica; WAIS Divide WDC06A Discrete ICP-MS Chemistry", "datasets": [{"dataset_uid": "609620", "doi": "10.7265/N5Q81B1X", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Trace Elements; WAIS Divide; WAIS Divide Ice Core", "people": "Kreutz, Karl; Koffman, Bess", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Snowpit Chemistry - Methods Comparison, WAIS Divide, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609620"}, {"dataset_uid": "601036", "doi": "10.15784/601036", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Intracontinental Magmatism; IntraContinental Magmatism; Snow Pit; Tephra; WAIS Divide; WAIS Divide Ice Core", "people": "Koffman, Bess; Kreutz, Karl", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Snowpit evidence of the 2011 Puyehue-Cordon Caulle (Chile) eruption in West Antarctica", "url": "https://www.usap-dc.org/view/dataset/601036"}, {"dataset_uid": "601023", "doi": "10.15784/601023", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; ICP-MS; Isotope; WAIS Divide; WAIS Divide Ice Core", "people": "Kreutz, Karl", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide WDC06A Discrete ICP-MS Chemistry", "url": "https://www.usap-dc.org/view/dataset/601023"}, {"dataset_uid": "609506", "doi": "10.7265/N5SJ1HHN", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Isotope; Microparticle Concentration; Snow/ice; Snow/Ice; WAIS Divide; WAIS Divide Ice Core", "people": "Koffman, Bess; Kreutz, Karl", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Snowpit Chemical and Isotope Measurements, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609506"}, {"dataset_uid": "609616", "doi": "10.7265/N5KK98QZ", "keywords": "Antarctica; Dust; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Particle Size; WAIS Divide; WAIS Divide Ice Core", "people": "Koffman, Bess; Kreutz, Karl", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Microparticle Concentration and Size Distribution, 0-2400 ka", "url": "https://www.usap-dc.org/view/dataset/609616"}, {"dataset_uid": "609499", "doi": "10.7265/N5K07264", "keywords": "Antarctica; Density; Electrical Conductivity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Microparticle Concentration; Physical Properties; WAIS Divide; WAIS Divide Ice Core", "people": "Kreutz, Karl; Hamilton, Gordon S.; Koffman, Bess; Breton, Daniel", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Microparticle, Conductivity, and Density Measurements from the WAIS Divide Deep Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609499"}], "date_created": "Tue, 19 Jun 2012 00:00:00 GMT", "description": "This award supports a project to perform continuous microparticle concentration and size distribution measurements (using coulter counter and state-of-the-art laser detector methods), analysis of biologically relevant trace elements associated with microparticles (Fe, Zn, Co, Cd, Cu), and tephra measurements on the WAIS Divide ice core. This initial three-year project includes analysis of ice core spanning the instrumental (~1850-present) to mid- Holocene (~5000 years BP) period, with sample resolution ranging from subannual to decadal. The intellectual merit of the project is that it will help in establishing the relationships among climate, atmospheric aerosols from terrestrial and volcanic sources, ocean biogeochemistry, and greenhouse gases on several timescales which remain a fundamental problem in paleoclimatology. The atmospheric mineral dust plays an important but uncertain role in direct radiative forcing, and the microparticle datasets produced in this project will allow us to examine changes in South Pacific aerosol loading, atmospheric dynamics, and dust source area climate. The phasing of changes in aerosol properties within Antarctica, throughout the Southern Hemisphere, and globally is unclear, largely due to the limited number of annually dated records extending into the glacial period and the lack of a\u003cbr/\u003etephra framework to correlate records. The broader impacts of the proposed research are an interdisciplinary approach to climate science problems, and will contribute to several WAIS Divide science themes as well as the broader paleoclimate and oceanographic communities. Because the research topics have a large and direct societal relevance, the project will form a centerpiece of various outreach efforts at UMaine and NMT including institution websites, public speaking, local K-12 school interaction, media interviews and news releases, and popular literature. At least one PhD student and one MS student will be directly supported by this project, including fieldwork, core processing, laboratory analysis, and data interpretation/publication. We expect that one graduate student per year will apply for a core handler/assistant driller position through the WAIS Divide Science Coordination Office, and that undergraduate student involvement will result in several Capstone experience projects (a UMaine graduation requirement). Data and ideas generated from the project will be integrated into undergraduate and graduate course curricula at both institutions.", "east": 112.11666, "geometry": "POINT(112.11666 -79.46666)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PARTICLE DETECTORS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e LOPC-PMS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e ICE CORE MELTER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PARTICLE DETECTORS", "is_usap_dc": true, "keywords": "Ice Core Dust; Tephra; Radiative Forcing; Greenhouse Gas; West Antarctica; Atmospheric Aerosols; Oxygen Isotope; Not provided; WAIS Divide; Snow Pit; Ice Core Chemistry; Microparticle; Wais Divide-project; Microparticles Size; Paleoclimate; LABORATORY; Ice Core Data; Atmospheric Dynamics; Antarctica; FIELD SURVEYS; Ice Core; Trace Elements; FIELD INVESTIGATION; Holocene; Isotope; Snow Chemistry", "locations": "Antarctica; WAIS Divide; West Antarctica", "north": -79.46666, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Koffman, Bess; Kreutz, Karl; Breton, Daniel; Dunbar, Nelia; Hamilton, Gordon S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.46666, "title": "Collaborative Research: Microparticle/tephra analysis of the WAIS Divide ice core", "uid": "p0000040", "west": 112.11666}, {"awards": "0440819 Taylor, Kendrick", "bounds_geometry": "POINT(112.1 -79.46667)", "dataset_titles": null, "datasets": null, "date_created": "Tue, 19 Jun 2012 00:00:00 GMT", "description": "This award supports a project that is part of the West Antarctic Ice Sheet Divide (WAIS Divide) program; which is a multi-disciplinary multi-institutional program to investigate the causes of natural changes in climate, the influence of the West Antarctic ice sheet on sea level, and the biology of deep ice. The WAIS Divide core will be unique among Antarctic ice cores in that it will have discernable annual layers for the last 40,000 years. A critical element of the program is to determine the age of the ice so that the climate proxies measured on the core can be interpreted in terms of age, not just depth. This project will make electrical measurements that can identify the annual layers. This information will be combined with information from other investigators to develop an annually resolved timescale over the last 40,000 years. This timescale will be the foundation on which the recent climate records are interpreted. Electrical measurements will also be used to produce two-dimensional images of the ice core stratigraphy; allowing sections of the core with abnormal stratigraphy to be identified. The broader impacts of this project include exposing a diverse group of undergraduate and graduate students to ice core research and assisting the Smithsonian National Museum of Natural History in Washington, D.C to develop a paleoclimate/ice core display.", "east": 112.1, "geometry": "POINT(112.1 -79.46667)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": false, "keywords": "Annual Layers; Time Scale; FIELD INVESTIGATION; Stratigraphy; FIELD SURVEYS; Glaciology; Electrical Measurements; Antarctic; Not provided; Ice Sheet; Ice Core; LABORATORY; Climate Proxies", "locations": "Antarctic", "north": -79.46667, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Taylor, Kendrick C.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -79.46667, "title": "Investigation of the Stratigraphy and Time Scale of the WAIS Divide Ice Core Using Electrical Methods", "uid": "p0000373", "west": 112.1}, {"awards": "0739654 Catania, Ginny; 0739372 Conway, Howard", "bounds_geometry": null, "dataset_titles": "Coastal and Terminus History of the Eastern Amundsen Sea Embayment, West Antarctica, 1972 - 2011; Ice Flow History of the Thwaites Glacier, West Antarctica", "datasets": [{"dataset_uid": "609522", "doi": "10.7265/N5CC0XNK", "keywords": "Amundsen Sea; Antarctica; Climate Change; Coastline; GIS Data; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Satellite Data Interpretation", "people": "Andrews, Alan G.; Catania, Ginny; Markowski, Michael; Macgregor, Joseph A.", "repository": "USAP-DC", "science_program": null, "title": "Coastal and Terminus History of the Eastern Amundsen Sea Embayment, West Antarctica, 1972 - 2011", "url": "https://www.usap-dc.org/view/dataset/609522"}, {"dataset_uid": "609463", "doi": "10.7265/N5RR1W6X", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Flow Lines; Thwaites Glacier", "people": "Catania, Ginny; Conway, Howard; Fudge, T. J.", "repository": "USAP-DC", "science_program": null, "title": "Ice Flow History of the Thwaites Glacier, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609463"}], "date_created": "Wed, 30 May 2012 00:00:00 GMT", "description": "Catania 0739654\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to study the Amundsen Sea drainage system and improve understanding of the impact of recent glaciological changes as an aid to predicting how this region will change in the future. The intellectual merit of the work is that the Amundsen Sea drainage system has been a recent focus for glaciological research because of rapid changes occurring there as a result of grounding line retreat. The work will focus on the regions of flow transition and will map the internal stratigraphy of the ice sheet across the Thwaites Glacier shear margins and use the age and geometry of radar-detected internal layers to interpret ice flow history. Thwaites Glacier (one of the main pathways for ice drainage in the region) has recently widened and may continue to do so in the near future. Thwaites Glacier may be particularly vulnerable to grounding line retreat because it lacks a well-defined subglacial channel. The subglacial environment exerts strong control on ice flow and flow history will be mapped in the context of bed topography and bed reflectivity. The plan is to use existing ice-penetrating radar data and coordinate with planned upcoming surveys to reduce logistical costs. The work proposed here will take three years to complete but no additional fieldwork in Antarctica is required. More detailed ground-based geophysical (radar and seismic) experiments will be needed at key locations to achieve our overall goal and the work proposed here will aid in identifying those regions. The broader impacts of the project are that it will initiate a new collaboration among radar communities within the US including those that are on the forefront of radar systems engineering and those that are actively involved in radar-derived internal layer and bed analysis. The project will also provide support for a postdoctoral researcher and a graduate student, thus giving them exposure to a variety of methodologies and scientific issues. Finally, there are plans to further develop the \"Wired Antarctica\" website designed by Ginny Catania with the help of a student-teacher. This will allow for the existing lesson plans to be updated to Texas State standards so that they can be used more broadly within state middle and high schools.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e SAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e TM; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": true, "keywords": "ERS-1; Coastal; Terminus; LABORATORY; Subglacial; Glacier; Not provided; Thwaites Glacier; Antarctica; LANDSAT; Internal Stratigraphy; West Antarctica; Internal Layers; Amundsen Sea; FIELD INVESTIGATION; FIELD SURVEYS; Glaciers; LANDSAT-5; Radar; Seismic", "locations": "Coastal; Antarctica; Thwaites Glacier; Amundsen Sea; West Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Conway, Howard; Catania, Ginny; Markowski, Michael; Macgregor, Joseph A.; Andrews, Alan G.; Fudge, T. J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e EUROPEAN REMOTE SENSING SATELLITE (ERS) \u003e ERS-1; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e LANDSAT \u003e LANDSAT; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e LANDSAT \u003e LANDSAT-5", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Ice-flow history of the Thwaites Glacier, West Antarctica", "uid": "p0000143", "west": null}, {"awards": "0739766 Brook, Edward J.", "bounds_geometry": "POINT(-112.08 -79.47)", "dataset_titles": "WAIS Divide Ice Core CO2", "datasets": [{"dataset_uid": "609651", "doi": "10.7265/N5DV1GTZ", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Brook, Edward J.; Marcott, Shaun", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core CO2", "url": "https://www.usap-dc.org/view/dataset/609651"}], "date_created": "Wed, 30 May 2012 00:00:00 GMT", "description": "Brook 0739766\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to create a 25,000-year high-resolution record of atmospheric CO2 from the WAIS Divide ice core. The site has high ice accumulation rate, relatively cold temperatures, and annual layering that should be preserved back to 40,000 years, all prerequisite for preserving a high quality, well-dated CO2 record. The new record will be used to examine relationships between Antarctic climate, Northern Hemisphere climate, and atmospheric CO2 on glacial-interglacial to centennial time scales, at unprecedented temporal resolution. The intellectual merit of the proposed work is simply that CO2 is the most important greenhouse gas that humans directly impact, and understanding the sources, sinks, and controls of atmospheric CO2 is a major goal for the global scientific community. Accurate chronology and detailed records are primary requirements for developing and testing models that explain and predict CO2 variability. The proposed work has several broader impacts. It contributes to the training of a post-doctoral researcher, who will transfer to a research faculty position during the award period and who will participate in graduate teaching and guest lecture in undergraduate courses. An undergraduate researcher will gain valuable lab training and conduct independent research. Bringing the results of\u003cbr/\u003ethe proposed work to the classroom will enrich courses taught by the PI. Outreach efforts will expose pre-college students to ice core research. The proposed work will enhance the laboratory facilities for ice core research at OSU, insuring that the capability for CO2 measurements exists for future projects. All data will be archived at the National Snow and Ice Data Center and other similar archives, per OPP policy. Highly significant results will be disseminated to the news media through OSU?s very effective News and Communications group. Carbon dioxide is the most important greenhouse gas that humans are directly changing. Understanding how CO2 and climate are linked on all time scales is necessary for predicting the future behavior of the carbon cycle and climate system, primarily to insure that the appropriate processes are represented in carbon cycle/climate models. Part of the proposed work emphasizes the relationship of CO2 and abrupt climate change. Understanding how future abrupt change might impact the carbon cycle is an important issue for society.", "east": -112.08, "geometry": "POINT(-112.08 -79.47)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Carbon Dioxide; FIELD INVESTIGATION; CO2; Wais Divide-project; Ice Core; Antarctica; Climate; Gas Chromatography; Antarctic Ice Core; LABORATORY", "locations": "Antarctica", "north": -79.47, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Marcott, Shaun; Ahn, Jinho; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.47, "title": "Atmospheric Carbon Dioxide and Climate Change: The WAIS Divide Ice Core Record", "uid": "p0000044", "west": -112.08}, {"awards": "0739732 Fleming, Thomas; 0739726 Bowring, Samuel", "bounds_geometry": "POLYGON((-180 -70,-174.3 -70,-168.6 -70,-162.9 -70,-157.2 -70,-151.5 -70,-145.8 -70,-140.1 -70,-134.4 -70,-128.7 -70,-123 -70,-123 -71.8,-123 -73.6,-123 -75.4,-123 -77.2,-123 -79,-123 -80.8,-123 -82.6,-123 -84.4,-123 -86.2,-123 -88,-128.7 -88,-134.4 -88,-140.1 -88,-145.8 -88,-151.5 -88,-157.2 -88,-162.9 -88,-168.6 -88,-174.3 -88,180 -88,176.5 -88,173 -88,169.5 -88,166 -88,162.5 -88,159 -88,155.5 -88,152 -88,148.5 -88,145 -88,145 -86.2,145 -84.4,145 -82.6,145 -80.8,145 -79,145 -77.2,145 -75.4,145 -73.6,145 -71.8,145 -70,148.5 -70,152 -70,155.5 -70,159 -70,162.5 -70,166 -70,169.5 -70,173 -70,176.5 -70,-180 -70))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 24 May 2012 00:00:00 GMT", "description": "Abstract\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eThis project uses high-precision, U-Pb dating of zircons from the Ferrar igneous intrusion of Antarctica to determine when it formed and whether it caused a major extinction event. Amongst the world?s largest intrusions, the Ferrar is also associated with breakup of Gondwana, the last supercontinent. Data from this project will show how the Ferrar and similar intrusions form and their potential to cause mass extinctions. Intrusion of the Ferrar has been tentatively linked to the Toarcian extinction event of 183 million years ago, thought to have been caused by methane released when the Ferrar intersected subterranean coal beds. The broader impacts are undergraduate, graduate and postdoctoral involvement in research, new collaborations between a research and primarily undergraduate institution, and K12 outreach.", "east": -123.0, "geometry": "POINT(-169 -79)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e IRMS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e XRF", "is_usap_dc": false, "keywords": "Ferrar Supergroup; LABORATORY", "locations": "Ferrar Supergroup", "north": -70.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e MESOZOIC \u003e JURASSIC", "persons": "Burgess, Seth; Fleming, Thomas", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -88.0, "title": "Collaborative Research: High Precision U-Pb Geochronology of the Jurassic Ferrar Large Igneous Province, Antarctica", "uid": "p0000502", "west": 145.0}, {"awards": "0758274 Parizek, Byron; 0636724 Blankenship, Donald", "bounds_geometry": "POLYGON((-110.058 -74.0548,-109.57993 -74.0548,-109.10186 -74.0548,-108.62379 -74.0548,-108.14572 -74.0548,-107.66765 -74.0548,-107.18958 -74.0548,-106.71151 -74.0548,-106.23344 -74.0548,-105.75537 -74.0548,-105.2773 -74.0548,-105.2773 -74.31383,-105.2773 -74.57286,-105.2773 -74.83189,-105.2773 -75.09092,-105.2773 -75.34995,-105.2773 -75.60898,-105.2773 -75.86801,-105.2773 -76.12704,-105.2773 -76.38607,-105.2773 -76.6451,-105.75537 -76.6451,-106.23344 -76.6451,-106.71151 -76.6451,-107.18958 -76.6451,-107.66765 -76.6451,-108.14572 -76.6451,-108.62379 -76.6451,-109.10186 -76.6451,-109.57993 -76.6451,-110.058 -76.6451,-110.058 -76.38607,-110.058 -76.12704,-110.058 -75.86801,-110.058 -75.60898,-110.058 -75.34995,-110.058 -75.09092,-110.058 -74.83189,-110.058 -74.57286,-110.058 -74.31383,-110.058 -74.0548))", "dataset_titles": "Access to data; AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment; AGASEA Ice Thickness Profile Data from the Amundsen Sea Embayment, Antarctica; Airborne Laser Altimetry of the Thwaites Glacier Catchment, West Antarctica; ICECAP Basal Interface Specularity Content Profiles: IPY and OIB; Subglacial water flow paths under Thwaites Glacier, West Antarctica; Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "datasets": [{"dataset_uid": "601371", "doi": "10.15784/601371", "keywords": "Antarctica; East Antarctica; ICECAP; Ice Penetrating Radar; Radar Echo Sounder; Radar Echo Sounding; Subglacial Hydrology", "people": "Young, Duncan A.; Roberts, Jason; Greenbaum, Jamin; Blankenship, Donald D.; Schroeder, Dustin; Siegert, Martin; van Ommen, Tas", "repository": "USAP-DC", "science_program": null, "title": "ICECAP Basal Interface Specularity Content Profiles: IPY and OIB", "url": "https://www.usap-dc.org/view/dataset/601371"}, {"dataset_uid": "609518", "doi": "10.7265/N5RJ4GC8", "keywords": "AGASEA; Airborne Radar; Antarctica; Elevation; Flow Paths; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Thwaites Glacier", "people": "Young, Duncan A.; Blankenship, Donald D.; Carter, Sasha P.", "repository": "USAP-DC", "science_program": null, "title": "Subglacial water flow paths under Thwaites Glacier, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609518"}, {"dataset_uid": "609619", "doi": "10.7265/N58913TN", "keywords": "Amundsen Sea; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model; Thwaites Glacier", "people": "Blankenship, Donald D.; Dupont, Todd K.; Parizek, Byron R.; Holt, John W.", "repository": "USAP-DC", "science_program": null, "title": "Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "url": "https://www.usap-dc.org/view/dataset/609619"}, {"dataset_uid": "000248", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Access to data", "url": "http://nsidc.org/data/netcdf/tools.html"}, {"dataset_uid": "609334", "doi": "10.7265/N5HD7SK8", "keywords": "AGASEA; Airborne Altimetry; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Thwaites Glacier", "people": "Blankenship, Donald D.; Holt, John W.; Morse, David L.; Young, Duncan A.; Kempf, Scott D.", "repository": "USAP-DC", "science_program": null, "title": "Airborne Laser Altimetry of the Thwaites Glacier Catchment, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609334"}, {"dataset_uid": "601673", "doi": "10.15784/601673", "keywords": "Antarchitecture; Antarctica; Ice Penetrating Radar; Isochron; Layers; Radar; Radioglaciology; Thwaites Glacier", "people": "Muldoon, Gail R.; Blankenship, Donald D.; Jackson, Charles; Young, Duncan A.", "repository": "USAP-DC", "science_program": null, "title": "AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment", "url": "https://www.usap-dc.org/view/dataset/601673"}, {"dataset_uid": "609517", "doi": "10.7265/N5W95730", "keywords": "AGASEA; Airborne Radar; Amundsen Sea; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness", "people": "Kempf, Scott D.; Holt, John W.; Young, Duncan A.; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": null, "title": "AGASEA Ice Thickness Profile Data from the Amundsen Sea Embayment, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609517"}, {"dataset_uid": "002536", "doi": "", "keywords": null, "people": null, "repository": "NASA", "science_program": null, "title": "Access to data", "url": "http://www.giss.nasa.gov/tools/panoply/"}], "date_created": "Tue, 15 May 2012 00:00:00 GMT", "description": "This award supports a three-year study to isolate essential physical processes affecting Thwaites Glacier (TG) in the Amundsen Sea Embayment (ASE) of West Antarctica using a suite of existing numerical models in conjunction with existing and International Polar Year (IPY)-proposed data sets. Four different models will be utilized to explore the effects of embayment geometry, ice-shelf buttressing, basal-stress distribution, surface mass balance, surface climate, and inland dynamic perturbations on the present and future dynamics of TG. This particular collection of models is ideally suited for the broad nature of this investigation, as they incorporate efficient and complementary simplifications of the stress field (shallow-ice and shelf-stream), system geometry (1-d and 2-d plan-view and flowline; depth-integrated and depth-dependent), and mass-momentum energy coupling (mechanical and thermo-mechanical). The models will be constrained and validated by data sets (including regional maps of ice thickness, surface elevation, basal topography, ice surface velocity, and potential fields) and geophysical data analyses (including increasing the spatial resolution of surface elevations, improving regional estimates of geothermal flux, and characterizing the sub-glacial interface of grounded ice as well as the grounding-zone transition between grounded and floating ice). The intellectual merit of the research focuses on several of the NSF Glaciology program\u0027s emphases, including: ice dynamics, numerical modeling, and remote sensing of ice sheets. In addition, the research directly addresses the following specific NSF objectives: \"investigation of the physics of fast glacier flow with emphasis on processes at glacier beds\"; \"investigation of ice-shelf stability\"; and \"identification and quantification of the feedback between ice dynamics and climate change\". The broader impacts of this research effort will help answer societally relevant questions of future ice sheet stability and sea-level change. The research also will aid in the early career development of two young investigators and will contribute to the education of both graduate and undergraduate students directly involved in the research, and results will be incorporated into courses and informal presentations.", "east": -105.2773, "geometry": "POINT(-107.66765 -75.34995)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e RADIO \u003e INS", "is_usap_dc": true, "keywords": "Ice Sheet Thickness; Ice Sheet Elevation; Glacier Dynamics; Ice Stream; Numerical Model; West Antarctic; Surface Elevation; Basal Rheology; Ice Surface Velocity; Embayment Geometry; Amundsen Sea; Hydrology; FIELD SURVEYS; Antarctic Ice Sheet; Glacier; Subglacial; DHC-6; West Antarctic Ice Sheet; Model Output; Surface Climate; Glaciers; Basal Topography; Grounding Zone; Model Input Data; Airborne Laser Altimeters; FIELD INVESTIGATION; Thwaites Glacier; Airborne Laser Altimetry; Diagnostic; Ice-Shelf Buttressing; Ice Sheet; Prognostic; Glacier Surface; Airborne Radar Sounding; Digital Elevation Model; Ice Dynamic; Antarctica; Altimetry; Antarctica (agasea); Bed Elevation; Basal Stress; LABORATORY", "locations": "Antarctica; Thwaites Glacier; West Antarctic Ice Sheet; Antarctic Ice Sheet; West Antarctic; Amundsen Sea", "north": -74.0548, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Carter, Sasha P.; Dupont, Todd K.; Holt, John W.; Morse, David L.; Parizek, Byron R.; Young, Duncan A.; Kempf, Scott D.; Blankenship, Donald D.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "NASA; NSIDC; USAP-DC", "science_programs": null, "south": -76.6451, "title": "Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "uid": "p0000174", "west": -110.058}, {"awards": "0538538 Sowers, Todd; 0538578 Brook, Edward J.", "bounds_geometry": null, "dataset_titles": "Late Holocene Methane Concentrations from WAIS Divide and GISP2; Methane Concentrations from the WAIS Divide Ice Core (WDC06A), 60 to 11,300 ybp; The Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program.", "datasets": [{"dataset_uid": "609586", "doi": "10.7265/N5W66HQQ", "keywords": "Antarctica; Arctic; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Mitchell, Logan E", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Late Holocene Methane Concentrations from WAIS Divide and GISP2", "url": "https://www.usap-dc.org/view/dataset/609586"}, {"dataset_uid": "609509", "doi": "10.7265/N5J1013R", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Methane; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Sowers, Todd A.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Methane Concentrations from the WAIS Divide Ice Core (WDC06A), 60 to 11,300 ybp", "url": "https://www.usap-dc.org/view/dataset/609509"}, {"dataset_uid": "001303", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "The Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program.", "url": "https://nsidc.org/data/agdc"}], "date_created": "Thu, 19 Apr 2012 00:00:00 GMT", "description": "Sowers/Brook\u003cbr/\u003e0538538\u003cbr/\u003eThis award supports a project to develop a high-resolution (every 50 yr) methane data set that will play a pivotal role in developing the timescale for the new deep ice core being drilled at the West Antarctic Ice Sheet Divide (WAIS Divde) site as well as providing a common stratigraphic framework for comparing climate records from Greenland and WAIS Divide. Certain key intervals will be measured at even higher resolution to assist in precisely defining the phasing of abrupt climate change between the northern and southern hemispheres. Concurrent analysis of a suit of samples from both the WAIS Divide and GISP2 ice cores throughout the last 110kyr is also proposed, to establish the inter-hemispheric methane gradient which will be used to identify geographic areas responsible for the climate-related methane emission changes. A large gas measurement inter-calibration of numerous laboratories, utilizing both compressed air cylinders and WAIS Divide ice core samples, will also be performed. The intellectual merit of the proposed work is that it will provide the chronological control needed to examine the timing of changes in climate proxies, and critical chronological ties to the Greenland ice core records via methane variations. In addition, the project addresses the question of what methane sources were active during the ice age and will help to answer the fundamental question of what part of the biosphere controlled past methane variations. The broader impact of the proposed work is that it will directly benefit all ice core paleoclimate research and will impact the paleoclimate studies that rely on ice core timescales for correlation purposes. The project will also support a Ph.D. student at Oregon State University who will have the opportunity to be involved in a major new ice coring effort with international elements. Undergraduates at Penn State will gain valuable laboratory experience and participate fully in the project. The proposed work will underpin the WAIS Divide chronology, which will be fundamental to all graduate student projects that involve the core. The international inter-calibration effort will strengthen ties between research institutions on four continents and will be conducted as part of the International Polar Year research agenda.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Antarctica; Ch4; West Antarctica; Wais Divide-project; GROUND-BASED OBSERVATIONS; FIELD INVESTIGATION; FIELD SURVEYS; Methane Concentration; Methane; Ice Core; WAIS Divide; Antarctic; LABORATORY", "locations": "Antarctic; WAIS Divide; Antarctica; West Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Organisms and Ecosystems; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; NOT APPLICABLE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Lee, James; Buizert, Christo; Brook, Edward J.; Mitchell, Logan E; Sowers, Todd A.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "NSIDC; USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Collaborative Research: Constructing an Ultra-high Resolution Atmospheric Methane Record for the Last 140,000 Years from WAIS Divide Core.", "uid": "p0000025", "west": null}, {"awards": "0537930 Steig, Eric; 0537661 Cuffey, Kurt; 0537593 White, James", "bounds_geometry": "POINT(-112.08 -79.47)", "dataset_titles": "Stable Isotope Lab at INSTAAR, University of Colorado; WAIS ice core isotope data #342, 347, 348, 349, 350, 351 (full data link not provided)", "datasets": [{"dataset_uid": "000140", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "WAIS ice core isotope data #342, 347, 348, 349, 350, 351 (full data link not provided)", "url": "http://www.waisdivide.unh.edu/"}, {"dataset_uid": "002561", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Stable Isotope Lab at INSTAAR, University of Colorado", "url": "http://instaar.colorado.edu/sil/about/index.php"}], "date_created": "Mon, 09 Apr 2012 00:00:00 GMT", "description": "This award supports analyses of stable isotopes of water, dD, d18O and deuterium excess in the proposed West Antarctic Ice Sheet Divide (WAIS) deep ice core. The project will produce a continuous and high-resolution reconstruction of stable isotope ratios for the new core. dD and d18O values provide estimates of temperature change at the ice core site. Deuterium excess provides estimates of ocean surface conditions, such as sea surface temperature, at the moisture source areas. This new ice core is ideally situated to address questions ranging from ice sheet stability to abrupt climate change. WAIS Divide has high enough snowfall rates to record climate changes on annual to decadal time scales. It should also have ice old enough to capture the last interglacial period in detail. The West Antarctic ice sheet is the subject of great scrutiny as our modern climate warms and sea level rises. What are the prospects for added sea level rise from ice released by this ice sheet? Understanding how this ice sheet has responded to climate change in the past, which the data collected in this project will help to assess, is critical to answering this question. The high temporal resolution available in the WAIS Divide core will provide the best available basis for inter-comparison of millennial-scale climate changes between the poles, and thus a better understanding of the spatial expression and dynamics of rapid climate change events. Finally, the location of this core in the Pacific sector of West Antarctica makes it well situated for examining the influence of the tropical Pacific on Antarctica climate, on longer timescales than are available from the instrumental climate record. Analyses will include the measurement of sub-annually resolved isotope variations in the uppermost parts of the core, measurements at annual resolution throughout the last 10,000 years and during periods of rapid climate change prior to that, and measurements at 50-year resolution throughout the entire length of the core that is collected and processed during the period of this grant. We anticipate that this will be about half of the full core expected to be drilled. In terms of broader impacts, the PIs will share the advising of two graduate students, who will make this ice core the focus of their thesis projects. It will be done in an innovative multi-campus approach designed to foster a broader educational experience. As noted above, the data and interpretations generated by this proposal will address climate change questions not only of direct and immediate scientific interest, but also of direct and immediate policy interest.", "east": -112.08, "geometry": "POINT(-112.08 -79.47)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES", "is_usap_dc": true, "keywords": "West Antarctic Ice Sheet Divide; Not provided; Ice Core; WAIS Divide; LABORATORY; FIELD SURVEYS; Isotope; FIELD INVESTIGATION; Antarctica; West Antarctica; Stable Isotope Ratios; Antarctic; Ice Sheet; Deuterium", "locations": "WAIS Divide; West Antarctica; Antarctic; Antarctica; West Antarctic Ice Sheet Divide", "north": -79.47, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY", "persons": "White, James; Steig, Eric J.; Cuffey, Kurt M.; Souney, Joseph Jr.; Vaughn, Bruce", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "Project website", "repositories": "Project website", "science_programs": null, "south": -79.47, "title": "Collaborative Research: Stable Isotopes of Ice in the WAIS Divide Deep Ice Core", "uid": "p0000294", "west": -112.08}, {"awards": "0739769 Fricker, Helen", "bounds_geometry": "POLYGON((-57.22 74.58,-55.343 74.58,-53.466 74.58,-51.589 74.58,-49.712 74.58,-47.835 74.58,-45.958 74.58,-44.081 74.58,-42.204 74.58,-40.327 74.58,-38.45 74.58,-38.45 73.822,-38.45 73.064,-38.45 72.306,-38.45 71.548,-38.45 70.79,-38.45 70.032,-38.45 69.274,-38.45 68.516,-38.45 67.758,-38.45 67,-40.327 67,-42.204 67,-44.081 67,-45.958 67,-47.835 67,-49.712 67,-51.589 67,-53.466 67,-55.343 67,-57.22 67,-57.22 67.758,-57.22 68.516,-57.22 69.274,-57.22 70.032,-57.22 70.79,-57.22 71.548,-57.22 72.306,-57.22 73.064,-57.22 73.822,-57.22 74.58))", "dataset_titles": "Amery Ice Shelf metadata (IRIS); Columbia Glacier metadata (IRIS); Greenland Ice Sheet Seismic Network metadata (IRIS)", "datasets": [{"dataset_uid": "000100", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Amery Ice Shelf metadata (IRIS)", "url": "http://www.iris.edu/mda/X9?timewindow=2004-2007"}, {"dataset_uid": "000103", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Greenland Ice Sheet Seismic Network metadata (IRIS)", "url": "http://www.iris.edu/mda/_GLISN"}, {"dataset_uid": "000101", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Columbia Glacier metadata (IRIS)", "url": "http://www.iris.edu/mda/YM?timewindow=2004-2005"}], "date_created": "Thu, 22 Mar 2012 00:00:00 GMT", "description": "This award supports a project to strengthen collaborations between the various research groups working on iceberg calving. Relatively little is known about the calving process, especially the physics that governs the initiation and propagation of fractures within the ice. This knowledge gap exists in part because of the diverse range in spatial and temporal scales associated with calving (ranging from less than one meter to over a hundred kilometers in length scale). It is becoming increasingly clear that to predict the future behavior of the Antarctic Ice Sheet and its contribution to sea level rise, it is necessary to improve our understanding of iceberg calving processes. Further challenges stem from difficulties in monitoring and quantifying short-time and spatial-scale processes associated with ice fracture, including increased fracturing events in ice shelves or outlet glaciers that may be a precursor to disintegration, retreat or increased calving rates. Coupled, these fundamental problems currently prohibit the inclusion of iceberg calving into numerical ice sheet models and hinder our ability to accurately forecast changes in sea level in response to climate change. Seismic data from four markedly different environmental regimes forms the basis of the proposed research, and researchers most familiar with the datasets will perform all analyses. Extracting the similarities and differences across the full breadth of calving processes embodies the core of the proposed work, combining and improving methods previously developed by each group. Techniques derived from solid Earth seismology, including waveform cross-correlation and clustering will be applied to each data set allowing quantitative process comparisons on a significantly higher level than previously possible. This project will derive catalogues of glaciologically produced seismic events; the events will then be located and categorized based on their location, waveform and waveform spectra both within individual environments and between regions. The intellectual merit of this work is that it will lead to a better understanding of iceberg calving and the teleconnections between seismic events and other geophysical processes around the globe. The broader impacts of this work are that it relates directly to socio-environmental impacts of global change and sea level rise. Strong collaborations will form as a result of this research, including bolstered collaborations between the glacier and ice sheet communities, as well as the glaciology and seismology communities. Outreach and public dissemination of findings will be driven by SIO\u0027s Visualization Center, and Birch Aquarium, hosting presentations devoted to the role of the cryosphere in global change. Time-lapse movies of recent changes at Columbia Glacier will be used to engage potential young scientists. A program of presentations outside the university setting to at-risk and gifted youth will be continued. This study will also involve undergraduates in analyses and interpretation and presentation of the seismic data assembled. The work will also support two junior scientists who will be supported by this project.", "east": 72.949097, "geometry": "POINT(72.8836975 -69.008701)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS", "is_usap_dc": false, "keywords": "PASSCAL; Not provided; Antarctic; SEISMOLOGICAL STATIONS; Iceberg; Seismology; Calving", "locations": "Antarctic", "north": -68.993301, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Fricker, Helen", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e PASSCAL; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS; Not provided", "repo": "IRIS", "repositories": "IRIS", "science_programs": null, "south": -69.024101, "title": "An Investigation into the Seismic Signatures Generated by Iceberg Calving and Rifting", "uid": "p0000683", "west": 72.818298}, {"awards": "0814241 Dupont, Todd", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 21 Mar 2012 00:00:00 GMT", "description": "This award supports a three-year modeling effort to understand the dynamics surrounding ice-air surface slope reversals on ice streams and ice shelves, with implications for the creation and stability of subglacial lakes. Local reversal of the ice-air surface slope may lead, through a reversal of the hydraulic gradient, to the trapping of basal and surface water, producing subglacial and supraglacial lakes, respectively. In the case of subglacial lakes, once such a sizable reservoir of pressurized water is created the potential exists for drainage, in the form of large outburst floods or as smaller, but sustained, periods of increased subglacial water flow. The research seeks to extend some initial work that has been done to include time-dependence and a wider array of parameters and geometries. The methods will involve the use of a suite of models, all of which will include longitudinal deviatoric and basal-shear stresses, with some also taking account of lateral drag and internal vertical shear. The intellectual merit of the proposed activity includes an improved understanding of the processes and parameters involved in the formation of surface-slope reversals in ice-stream/ice-shelf systems, as well as insight into the stability of subglacial lakes formed as a consequence of slope reversals. The broader impacts resulting from this activity include the provision of tools to study the dynamics of ice-stream/ice-shelf systems, an improved understanding of the physics behind outburst floods, and insights into the coupling of ice streams with their subglacial water systems. The research will support the studies of a beginning postdoctoral researcher. Results of the research will be incorporated into courses and public outreach serving anywhere from hundreds to thousands of people per year.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "LABORATORY", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Alley, Richard; Dupont, Todd K.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "Modeling the Dynamics of Surface-slope Reversals and their Role in the Formation and Stability of Subglacial Lakes", "uid": "p0000665", "west": null}, {"awards": "0636997 Waddington, Edwin", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 20 Mar 2012 00:00:00 GMT", "description": "Waddington/0636997\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to integrate three lines of glaciology research, previously treated independently. First, internal layers in ice sheets, detected by ice-penetrating radar, retain information about past spatial and temporal patterns of ice accumulation. Ice-flow modelers can recover this information, using geophysical inverse methods; however, the ages of the layers must be known, through interpolation where they intersect a well-dated ice core. \u003cbr/\u003eSecond, concentrations of methane and some other atmospheric constituents vary through time as climate changes. However, the atmosphere is always well mixed, and concentrations are similar world-wide at any one time, so gas variations from an undated core can be correlated with those in a well-dated core such as GISP2. Because air in near-surface firn mixes readily with the atmosphere above, the air that is trapped in bubbles deep in the firn is typically hundreds to thousands of years younger than that firn. Gas geochemists must calculate this age difference, called delta-age, with a firn-densification model before the ice enclosing the gas can be dated accurately. To calculate delta-age, they must know the temperature and the snow accumulation rate at the time and place where the snow fell. Third, gases can be correlated between cores only at times when the atmosphere changed, so ice-core dates must be interpolated at depths between the sparse dated points. Simplistic interpolation schemes can create undesirable artifacts in the depth-age profile. The intellectual merit of this project is that it will develop new interpolation methods that calculate layer thinning over time due to ice-flow mechanics. Accurate interpolation also requires a spatial and temporal accumulation history. These three issues are coupled through accumulation patterns and ice-core dates. This project will develop an integrated inversion procedure to solve all three problems simultaneously. The new method will incorporate ice-penetrating radar profile data and ice-core data, and will find self-consistent: spatial/temporal accumulation patterns; delta-age profiles for ice cores; and reliably interpolated depth-age profiles. The project will then: recalculate the depth-age profile at Byrd Station, Antarctica; provide a preliminary depth-age at the West Antarctic Ice Sheet (WAIS) in the initial stages of drilling, using radar layers with estimated ages traced from Byrd Station; and generate a self-consistent depth-age relationship for Taylor Dome, Antarctica over the past 20ka, where low accumulation has created uncertainty in dating, accumulation, and controversy over delta-age estimates. The broader impacts of the project are that it will support the PhD research of a female graduate student, and her continued outreach work with Making Connections, a non-profit program through the University of Washington Women\u0027s Center, which matches professional women mentors with minority high-school women interested in mathematics and science, disciplines where they are traditionally under-represented. The graduate student will also work with Girls on Ice, a ten-day glacier field program, taught by women scientist instructors, emphasizing scientific observation through immersion, leadership skills and safety awareness.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Internal Layers; LABORATORY; Ice Core; FIELD SURVEYS; Firn; FIELD INVESTIGATION; Accumulation; Glaciology; Climate Change; Ice Sheet", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Carns, Regina; Hay, Mike; Waddington, Edwin D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "Self-consistent Ice Dynamics, Accumulation, Delta-age, and Interpolation of Sparse Age Data using an Inverse Approach", "uid": "p0000376", "west": null}, {"awards": "0940650 Pettit, Erin; 0636996 Waddington, Edwin", "bounds_geometry": "POLYGON((-165 -75,-159 -75,-153 -75,-147 -75,-141 -75,-135 -75,-129 -75,-123 -75,-117 -75,-111 -75,-105 -75,-105 -76,-105 -77,-105 -78,-105 -79,-105 -80,-105 -81,-105 -82,-105 -83,-105 -84,-105 -85,-111 -85,-117 -85,-123 -85,-129 -85,-135 -85,-141 -85,-147 -85,-153 -85,-159 -85,-165 -85,-165 -84,-165 -83,-165 -82,-165 -81,-165 -80,-165 -79,-165 -78,-165 -77,-165 -76,-165 -75))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 16 Mar 2012 00:00:00 GMT", "description": "Pettit/0636795\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to constrain the accumulation rate, thickness, and temperature history for Siple Dome using a vertical velocity profile that includes the effects of an evolving fabric on deformation through time, to invert the depth-profile of fabric determined from sonic velocity measurements and grain size observed in thin sections in Siple Dome for the surface temperature and accumulation rate changes in the past, focusing on the apparent abrupt climate change events at 22ka and 15ka. The intellectual merit of the work is that it will extract past climate information from a number of physical properties of the deep ice using a coupled fabric evolution and ice-sheet flow model. The focus will be on the deep ice-age ice at Siple Dome, where the ice-core record shows puzzling signals and where modeling results imply intriguing deformation patterns. The method will also be applied to the records from Byrd Station and Taylor Dome to ultimately form a basis for future analysis of the West Antarctic Divide core. The broader impacts of the project are that it will ultimately contribute to our understanding of the effects of anisotropy on ice flow dynamics in West Antarctica. It will contribute to our understanding of the connection between ice flow and the paleoclimate record in ice cores, particularly with respect to the relationship between the chemical record and ice deformation. And it will contribute a new ice-flow model that includes the effects of anisotropy and fabric evolution. The project will also contribute to advancing the career of a new, young, female investigator and will support a couple of graduate students. Finally, the work will encouraging diversity in the physical sciences by directly helping to support the Girls on Ice a program that encourages young women to explore science and the natural world.", "east": -105.0, "geometry": "POINT(-135 -80)", "instruments": null, "is_usap_dc": false, "keywords": "LABORATORY; FIELD SURVEYS; FIELD INVESTIGATION; Vertical Velocity; COMPUTERS; Ice Core; Firn; Accumulation Rate; Siple Dome; Ice Thickness; Abrupt Climate Change; Ice Temperature; Metamorphism; Anisotropy; Antarctica", "locations": "Siple Dome; Antarctica", "north": -75.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Pettit, Erin; Waddington, Edwin D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -85.0, "title": "Collaborative Research: Anisotropy, Abrupt Climate Change, and the Deep Ice in West Antarctica", "uid": "p0000741", "west": -165.0}, {"awards": "0125172 Gordon, Arnold", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0302; Expedition data of NBP0304C; Expedition data of NBP0304D; Expedition data of NBP0402; Expedition data of NBP0408; Expedition data of NBP0501", "datasets": [{"dataset_uid": "002588", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0302", "url": "https://www.rvdata.us/search/cruise/NBP0302"}, {"dataset_uid": "002620", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0408", "url": "https://www.rvdata.us/search/cruise/NBP0408"}, {"dataset_uid": "002629", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "001692", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304D"}, {"dataset_uid": "001691", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304C"}, {"dataset_uid": "002624", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0304C", "url": "https://www.rvdata.us/search/cruise/NBP0304C"}, {"dataset_uid": "002625", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0304D", "url": "https://www.rvdata.us/search/cruise/NBP0304D"}, {"dataset_uid": "002627", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "002638", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0402", "url": "https://www.rvdata.us/search/cruise/NBP0402"}], "date_created": "Tue, 17 Jan 2012 00:00:00 GMT", "description": "This study will investigate how the Antarctic Slope Front and continental slope morphology determine the exchanges of mass, heat, and fresh water between the shelf and the deep ocean, in particular those leading to outflows of dense water into intermediate and deep layers of the adjacent basins and into the world ocean circulation \u003cbr/\u003eWhile the importance to the global ocean circulation and climate of cold water masses originating in the Antarctic is unquestioned, the processes by which these water masses enter the deep ocean circulation are not. The primary goal of this work therefore is to identify the principal physical processes that govern the transfer of shelf-modified dense water into intermediate and deep layers of the adjacent deep ocean. At the same time, it seeks to understand the compensatory poleward flow of waters from the oceanic regime. The upper continental slope has been identified as the critical gateway for the exchange of shelf and deep ocean waters. Here the topography, velocity and density fields associated with the nearly ubiquitous front must strongly influence the advective and turbulent transfer of water properties between the shelf and oceanic regimes. The study has four specific objectives: [1] Determine the mean frontal structure and the principal scales of variability, and estimate the role of the front on cross-slope exchanges and mixing of adjacent water masses; [2] Determine the influence of slope topography and bathymetry on frontal location and outflow of dense Shelf Water; [3] Establish the role of frontal instabilities, benthic boundary layer transports, tides and other oscillatory processes on cross-slope advection and fluxes; and [4] Assess the effect of diapycnal mixing, lateral mixing identified through intrusions, and nonlinearities in the equation of state on the rate of descent and the fate of outflowing, near-freezing Shelf Water.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e WATER BOTTLES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Gordon, Arnold; Cande, Steven; Visbeck, Martin; Jacobs, Stanley", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Anslope, Cross-slope Exchanges at the Antarctic Slope Front", "uid": "p0000807", "west": null}, {"awards": "9527571 Whillans, Ian", "bounds_geometry": "POLYGON((158.25 -76.66667,158.325 -76.66667,158.4 -76.66667,158.475 -76.66667,158.55 -76.66667,158.625 -76.66667,158.7 -76.66667,158.775 -76.66667,158.85 -76.66667,158.925 -76.66667,159 -76.66667,159 -76.683336,159 -76.700002,159 -76.716668,159 -76.733334,159 -76.75,159 -76.766666,159 -76.783332,159 -76.799998,159 -76.816664,159 -76.83333,158.925 -76.83333,158.85 -76.83333,158.775 -76.83333,158.7 -76.83333,158.625 -76.83333,158.55 -76.83333,158.475 -76.83333,158.4 -76.83333,158.325 -76.83333,158.25 -76.83333,158.25 -76.816664,158.25 -76.799998,158.25 -76.783332,158.25 -76.766666,158.25 -76.75,158.25 -76.733334,158.25 -76.716668,158.25 -76.700002,158.25 -76.683336,158.25 -76.66667))", "dataset_titles": "GPS Ice Flow Measurements, Allan Hills, Antarctica", "datasets": [{"dataset_uid": "609507", "doi": "10.7265/N5NS0RSX", "keywords": "Allan Hills; Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ice Flow Velocity", "people": "Hamilton, Gordon S.; Spikes, Vandy Blue; Kurbatov, Andrei V.; Spaulding, Nicole", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "GPS Ice Flow Measurements, Allan Hills, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609507"}], "date_created": "Tue, 20 Dec 2011 00:00:00 GMT", "description": "Whillans, Wilson, Goad OPP 9527571 Abstract This award supports a project to initiate Global Positioning System (GPS) measurements for rock motions in South Victoria Land and vicinity. The results will be used to test some of the leading models for ice-sheet change and tectonism, in particular, whether the continent is rebounding due to reduced ice load from East or West Antarctica and whether there is tectonic motion due to Terror Rift or uplift of the Transantarctic Mountains. A modest program to measure ice motion will be conducted as well. The motive is to test models for ice flow in the Allan Hills meteorite concentration region and to determine whether small glaciers in the Dry Valleys are thickening or thinning. Monuments will be set into rock and ice and GPS receivers used to determine their locations. Repeats in later years will determine motion. Field activities will involve close cooperation with the USGS.", "east": 159.0, "geometry": "POINT(158.625 -76.75)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "FIELD SURVEYS; LABORATORY; Not provided; Ice Movement; GPS Data; Vertical Motions; GPS; FIELD INVESTIGATION", "locations": null, "north": -76.66667, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Whillans, Ian; Spaulding, Nicole; Hamilton, Gordon S.; Spikes, Vandy Blue; Kurbatov, Andrei V.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.83333, "title": "GPS Measurements of Rock and Ice Motions in South Victoria Land", "uid": "p0000523", "west": 158.25}, {"awards": "0636898 Winckler, Gisela", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 30 Nov 2011 00:00:00 GMT", "description": "Winckler/0636898\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to study dust sources in Antarctic ice cores. Atmospheric aerosols play an important role both in global biogeochemical cycles as well as in the climate system of the Earth. Records extracted from Antarctic ice cores inform us that dust deposition from the atmosphere to the ice sheet was 15-20 times greater during glacial periods than during interglacials, which raises the possibility that dust may be a key player in climate change on glacial-interglacial timescales. By characterizing potential source areas from South America, South Africa, and Australia as well as fresh glacial flour from Patagonia, the project will determine if the interglacial dust was mobilized from a distinct geographical region (e.g., Australia) or from a more heavily weathered source region in South America. The intellectual merit of the project is that it will contribute to reconstructing climate-related changes in the rate of dust deposition, and in the provenance of the dust, it will provide critical constraints on hydrology and vegetation in the source regions, as well as on the nature of the atmospheric circulation transporting dust to the archive location. In a recent pilot study it was found that there is a dramatic glacial to Holocene change in the 4He/Ca ratio in the dust extracted from ice from Dronning Maud Land, Antarctica, indicating a shift in the source of dust transported to Antarctica. The broader impacts of the project are that Helium isotopes and calcium measurements provide a wealth of information that can then be turned into critical input for dust-climate models. Improved models, which are able to accurately reconstruct paleo dust distribution, will help us to predict changes in dust in response to future climate variability. This information will contribute to an improvement of our integrated understanding of the Earth\u0027s climate system and, in turn, will better inform policy makers of those processes and conditions most susceptible to perturbation by climate change, thereby leading to more meaningful climate-change policy. The project will support a graduate student in the dual masters Earth and Environmental Science Journalism program. The lead-PI manages the rock noble gas laboratory at Lamont. Her leadership role in this facility impacts the training of undergraduate and graduate students as well as visiting scientists.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": false, "keywords": "Deposition; LABORATORY; Dust; Climate; Not provided; Climate Change; Helium Isotopes; FIELD INVESTIGATION; Biogeochemical Cycles", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Winckler, Gisela", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "Tracing Glacial-interglacial Changes in the Dust Source to Antarctica using Helium Isotopes", "uid": "p0000265", "west": null}, {"awards": "1066348 Reusch, David", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Thu, 29 Sep 2011 00:00:00 GMT", "description": "Reusch/0636618 This award supports a three-year effort to use nonlinear techniques to improve understanding of Antarctic climate through studies of observational and forecast model data sets; improve and extend reconstructions of past Antarctic climate from ice-core data; and reconstruct data missing from the observational records, potentially into the pre-instrumental era. The intellectual merit of the proposed activity arises from the opportunity to improve understanding of the past, present and future climate of the Antarctic, a key component in the global climate system. Self-organizing maps (SOMs), an emerging, powerful nonlinear tool, will be used to classify free-atmosphere reanalysis data into archetypal patterns (SOM states). Feed-forward artificial neural networks (FF-ANNs) will then be trained to predict the preferred SOM states from ice-core data covering the instrumental era. The trained FF-ANNs will extend the reconstructions of SOM states to the full length of the ice core data, leading to long-term reconstruction of climate. Histories of surface conditions will be improved by filling data gaps in observational records using FF-ANNs and free-atmosphere reanalysis data. These records may also be extended into the pre-instrumental era using the above ice-core based reconstructions of the atmospheric circulation. The broader impacts of the project relate to activities with the Earth and Mineral Sciences Museum (co-located in the Geosciences building) which will bring project results/tools to a wider audience through development of interactive graphical visualizations/presentations for the Museum\u0027s fixed and traveling GeoWall displays. One or more undergraduates from the College will be involved in the project with an option to also present project results at a national meeting/workshop. The work will also contribute to the continuing development of an \"early career\" investigator, including the opportunity to continue building (and refining) relevant and useful skills in teaching, outreach, collaboration, etc.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "LABORATORY; Climate; Reanalyses; Model; Forecast Model; Model Output", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Reusch, David", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "Observations, Reanalyses and Ice Cores: A Synthesis of West Antarctic Climate", "uid": "p0000098", "west": null}, {"awards": "0828786 Barletta, Robert", "bounds_geometry": "POINT(38.466667 72.583336)", "dataset_titles": null, "datasets": null, "date_created": "Tue, 06 Sep 2011 00:00:00 GMT", "description": "Barletta \u003cbr/\u003e0828786\u003cbr/\u003e\u003cbr/\u003eThis award supports a Small Grant for Exploratory Research (SGER) for a project to conduct a limited scope, proof-of-concept study of the application of Raman spectroscopy to the analysis of ice cores. As a non-destructive analytical tool with high spatial resolution, Raman spectroscopy has found widespread application in situations where water is a major constituent in the sample, including marine science and the analysis of clathrates in ice-cores themselves. Raman can provide information at high enough sensitivity (ppm to ppb) to make its use as a non-destructive survey tool for ice core samples attractive. Laser-based techniques such as Raman can be used to obtain chemical information at near diffraction-limited resolution allowing particulates on the order of 1micron or less to be characterized. Preliminary work has demonstrated the selectivity of Raman spectroscopy for determining related polyatomic species (ions and compounds), and the ability to discern oxidation state from such analysis. In spite of the potential of this technique, instrumentation necessary to analyze ice core samples using micro-Raman spectroscopy with UV excitation is not readily available. Even with visible excitation, libraries of Raman spectra necessary for mixture de-convolution are not available. The proposed effort is a novel extension of Raman into the area of polar and climatic research, providing data on chemical speciation hitherto unavailable, of critical importance to the understanding of the biology present in glacial ice as well as the sources of particulate material found in ice cores. Since the availability of ice-core material at critical horizons is limited, this non-destructive technique will help to maximize the information obtained from these samples. The broader impacts of the work are that it will bring a new researcher into the field of polar ice core analysis and it has the potential to also bring a new non-destructive technique into the field. Finally, the research will take place at a predominately undergraduate institution in South Alabama with a large proportion (24% of undergraduates) of minority students. The proposed effort is high-risk because, although based upon established principles of vibrational spectroscopy, the application to the analytical problems of trace environmental analysis are unique, and the precision requirements are stringent. Moreover, this work will demonstrate the feasibility of an integrated approach to ice core analysis, while addressing specific problems in glaciology.", "east": 38.466667, "geometry": "POINT(38.466667 -72.583336)", "instruments": null, "is_usap_dc": false, "keywords": "Particulates; Spectroscopy; Antarctic; LABORATORY; Ice Core; FIELD INVESTIGATION; Not provided; Ions; Raman Spectra", "locations": "Antarctic", "north": -72.583336, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Barletta, Robert", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -72.583336, "title": "SGER - ?Raman Analysis of Ice-Core Samples", "uid": "p0000285", "west": 38.466667}, {"awards": "0440847 Raymond, Charles", "bounds_geometry": null, "dataset_titles": "GPS-Measured Ice Velocities and Strain Data from the Ross and Amundsen Sea Ice Flow Divide, West Antarctica; Polarimetric Radar Data from the Ross and Amundsen Sea Ice Flow Divide, West Antarctica", "datasets": [{"dataset_uid": "609503", "doi": "10.7265/N5222RQ8", "keywords": "Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ice Flow Velocity; Ross-Amundsen Divide; Strain", "people": "Matsuoka, Kenichi; Power, Donovan; Rasmussen, Al", "repository": "USAP-DC", "science_program": null, "title": "GPS-Measured Ice Velocities and Strain Data from the Ross and Amundsen Sea Ice Flow Divide, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609503"}, {"dataset_uid": "609496", "doi": "10.7265/N5TH8JNG", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Radar; Ross-Amundsen Divide", "people": "Power, Donovan; Fujita, Shuji; Raymond, Charles; Matsuoka, Kenichi", "repository": "USAP-DC", "science_program": null, "title": "Polarimetric Radar Data from the Ross and Amundsen Sea Ice Flow Divide, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609496"}], "date_created": "Mon, 29 Aug 2011 00:00:00 GMT", "description": "This award supports a project to investigate fabrics with ground-based radar measurements near the Ross/Amundsen Sea ice-flow divide where a deep ice core will be drilled. The alignment of crystals in ice (crystal-orientation fabric) has an important effect on ice deformation. As ice deforms, anisotropic fabrics are produced, which, in turn, influence further deformation. Measurement of ice fabric variations can help reveal the deformation history of the ice and indicate how the ice will deform in the future. Ice cores provide opportunities to determine a vertical fabric profile, but horizontal variations of fabrics remain unknown. Remote sensing with ice-penetrating radar is the only way to do that over large areas. Preliminary results show that well-established polarimetric methods can detect the degree of horizontal anisotropy of fabrics and their orientation, even when they are nearly vertical-symmetric fabrics. In conjunction with ice deformation history, our first mapping of ice fabrics will contribute to modeling ice flow near the future ice core site. The project will train a graduate student and provide research experiences for two under graduate students both in field and laboratory. The project will contribute to ongoing West Antarctic ice sheet program efforts to better understand the impact of the ice sheet on global sea level rise. This project also supports an international collaboration between US and Japanese scientists.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "GPS; FIELD SURVEYS; Antarctic; Radar; Antarctica; FIELD INVESTIGATION; Ice Sheet; Not provided; Ross-Amundsen Divide; West Antarctica; West Antarctic Ice Sheet", "locations": "Antarctica; Ross-Amundsen Divide; West Antarctica; Antarctic; West Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Matsuoka, Kenichi; Power, Donovan; Fujita, Shuji; Raymond, Charles; Rasmussen, Al", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Detection of Crystal Orientation Fabrics near the Ross/Amundsen Sea Ice-flow Divide and at the Siple Dome Ice Core Site using Polarimetric Radar Methods", "uid": "p0000024", "west": null}, {"awards": "0739598 Aydin, Murat; 0739491 Sowers, Todd", "bounds_geometry": null, "dataset_titles": "Alkanes in Firn Air Samples, Antarctica and Greenland; Methane Isotopes in South Pole Firn Air, 2008", "datasets": [{"dataset_uid": "609504", "doi": "10.7265/N5X9287C", "keywords": "Antarctica; Arctic; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Greenland; Snow/ice; Snow/Ice; South Pole; WAIS Divide", "people": "Aydin, Murat; Saltzman, Eric", "repository": "USAP-DC", "science_program": null, "title": "Alkanes in Firn Air Samples, Antarctica and Greenland", "url": "https://www.usap-dc.org/view/dataset/609504"}, {"dataset_uid": "609502", "doi": "10.7265/N55T3HFP", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Isotope; Paleoclimate; Snow/ice; Snow/Ice; South Pole", "people": "Sowers, Todd A.", "repository": "USAP-DC", "science_program": null, "title": "Methane Isotopes in South Pole Firn Air, 2008", "url": "https://www.usap-dc.org/view/dataset/609502"}], "date_created": "Thu, 18 Aug 2011 00:00:00 GMT", "description": "This award supports a project to make measurements of methane and other trace gases in firn air collected at South Pole, Antarctica. The analyses will include: methane isotopes (delta-13CH4 and delta-DCH4), light non-methane hydrocarbons (ethane, propane, and n-butane), sulfur gases (COS, CS2), and methyl halides (CH3Cl and CH3Br). The atmospheric burdens of these trace gases reflect changes in atmospheric OH, biomass burning, biogenic activity in terrestrial, oceanic, and wetland ecosystems, and industrial/agricultural activity. The goal of this project is to develop atmospheric histories for these trace gases over the last century through examination of depth profiles of these gases in South Pole firn air. The project will involve two phases: 1) a field campaign at South Pole, Antarctica to drill two firn holes and fill a total of ~200 flasks from depths reaching 120 m, 2) analysis of firn air at University of California, Irvine, Penn State University, and several other collaborating laboratories. Atmospheric histories will be inferred from the measurements using a one dimensional advective/diffusive model of firn air transport. This study will provide new information about the recent changes in atmospheric levels of these gases, providing about a 90 year long time series record that connects the earlier surface and firn air measurements to present day. The project will also explore the possibility of in- situ production of light non-methane hydrocarbons in firn air that is relevant to the interpretation of ice core records. The broader impacts of this research are that it has the potential for significant societal impact by improving our understanding of climate change and man\u0027s input to the atmosphere. The results of this work will be disseminated through the peer review process, and will contribute to environmental assessments, such as the Inter-governmental Panel on Climate Change (IPCC) Climate Assessment and the Word Meteorological Organization (WMO) Stratospheric Ozone Assessment. This research will provide educational opportunities for graduate and undergraduate students, and will contribute to a teacher training program for K-12 teachers in minority school districts.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GC-MS", "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; Isotope; Firn Air Chemistry; Firn Air Isotope Measurements; Not provided; LABORATORY; South Pole; Firn; Delta 13C; Carbon-13; Mass Spectrometer; Deuterium; Mass Spectrometry; Firn Air Samples; Carbon; Gas Chromatography; Polar Firn Air; GROUND-BASED OBSERVATIONS; Methane; Antarctica; Firn Air Isotopes; Delta Deuterium; FIELD SURVEYS; Firn Air; Chromatography; Methane Isotopes; Carbon Isotopes; Stable Isotopes", "locations": "Antarctica; South Pole", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Aydin, Murat; Saltzman, Eric; Sowers, Todd A.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Methane Isotopes, Hydrocarbons, and other Trace Gases in South Pole Firn Air", "uid": "p0000162", "west": null}, {"awards": "0636929 Bales, Roger", "bounds_geometry": null, "dataset_titles": "Measurements of Air and Snow Photochemical Species at WAIS Divide, Antarctica", "datasets": [{"dataset_uid": "609585", "doi": "10.7265/N5GX48HW", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Bales, Roger", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Measurements of Air and Snow Photochemical Species at WAIS Divide, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609585"}], "date_created": "Thu, 14 Jul 2011 00:00:00 GMT", "description": "This award supports a project to understand how recent changes in atmospheric chemistry, and historical changes as recorded in snow, firn and ice, have affected atmospheric photochemistry over Antarctica. Atmospheric, snow and firn core measurements of selected gas, meteorological and snow physical properties will be made and modeling of snow-atmosphere exchange will be carried out. The intellectual merit of the project is that it will lead to a better an understanding of the atmospheric chemistry in West Antarctica, its bi-directional linkages with the snowpack, and how it responds to regional influences. There are at least four broader impacts of this work. First is education of university students at both the graduate and undergraduate levels. One postdoctoral researcher and one graduate student will carry out much of the work, and a number of undergraduates will be involved. Second, involvement with the WAIS-Divide coring program will be used to help recruit under-represented groups as UC Merced students. As part of UC Merced\u0027s outreach efforts in the San Joaquin Valley, whose students are under-represented in the UC system, the PI and co-PI give short research talks to groups of prospective students, community college and high school educators and other groups. They will develop one such talk highlighting this project. Including high-profile research in these recruiting talks has proven to be an effective way to promote dialog, and interest students in UC Merced. Third, talks such as this also contribute to the scientific literacy of the general public. The PI and grad student will all seek opportunities to share project information with K-14 and community audiences. Fourth, results of the research will be disseminated broadly to the scientific community, and the researchers will seek additional applications for the transfer functions as tools to improve interpretation of ice-cores. This research is highly collaborative, and leverages the expertise and data from a number of other groups.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e CHEMILUMINESCENCE", "is_usap_dc": true, "keywords": "Snow; Atmospheric Chemistry; Not provided; LABORATORY; Antarctica; FIELD SURVEYS; Snow Physical Properties; Meteorology; Wais Divide-project; Firn; Atmosphere Exchange; WAIS Divide; FIELD INVESTIGATION", "locations": "Antarctica; WAIS Divide", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bales, Roger", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Atmospheric, Snow and Firn Chemistry Studies for Interpretation of WAIS-Divide Cores", "uid": "p0000041", "west": null}, {"awards": "0838722 Reiners, Peter; 0838729 Hemming, Sidney", "bounds_geometry": "POLYGON((-67.2 -58,-43.98 -58,-20.76 -58,2.46 -58,25.68 -58,48.9 -58,72.12 -58,95.34 -58,118.56 -58,141.78 -58,165 -58,165 -59.2,165 -60.4,165 -61.6,165 -62.8,165 -64,165 -65.2,165 -66.4,165 -67.6,165 -68.8,165 -70,141.78 -70,118.56 -70,95.34 -70,72.12 -70,48.9 -70,25.68 -70,2.46 -70,-20.76 -70,-43.98 -70,-67.2 -70,-67.2 -68.8,-67.2 -67.6,-67.2 -66.4,-67.2 -65.2,-67.2 -64,-67.2 -62.8,-67.2 -61.6,-67.2 -60.4,-67.2 -59.2,-67.2 -58))", "dataset_titles": "Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology", "datasets": [{"dataset_uid": "600094", "doi": "10.15784/600094", "keywords": "Antarctica; Fission Track Thermochronology; Gamburtsev Mountains; Geochronology; Marine Sediments; Solid Earth; Southern Ocean", "people": "Hemming, Sidney R.", "repository": "USAP-DC", "science_program": null, "title": "Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology", "url": "https://www.usap-dc.org/view/dataset/600094"}, {"dataset_uid": "600093", "doi": "10.15784/600093", "keywords": "Antarctica; Fission Track Thermochronology; Gamburtsev Mountains; Geochronology; Marine Sediments; NBP0101; ODP1166; ODP739; Prydz Bay; Solid Earth; Southern Ocean", "people": "Gehrels, George; Reiners, Peter; Thomson, Stuart", "repository": "USAP-DC", "science_program": null, "title": "Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology", "url": "https://www.usap-dc.org/view/dataset/600093"}], "date_created": "Sun, 05 Jun 2011 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). Much of the inventory of East Antarctic bedrock geochronology, as well as a record of its erosional history, is preserved in Cenozoic sediments around its margin. This project is to use these sediments to understand their sub-ice provenance and the erosional history of the shield by measuring ages of multiple geo- and thermochronometers on single detrital crystals and on multiple crystals in detrital clasts (U/Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar). The combination of multi-chronometer ages in single grains and clasts provides a powerful fingerprint of bedrock sources, allowing us to trace provenance in Eocene fluvial sandstones through Quaternary diamicts around the margin. Multiple thermochronometric (cooling) ages in the same grains and clasts also allows us to interpret the timing and rates of erosion from these bedrock sources. Delineating a distribution of bedrock age units, their sediment transport connections, and their erosional histories over the Cenozoic, will in turn allow us to test tectonic models bearing on: (1) the origin of the Gamburtsev Subglacial Mountains, (2) fluvial and topographic evolution, and (3) the history of glacial growth and erosion.", "east": 165.0, "geometry": "POINT(48.9 -64)", "instruments": null, "is_usap_dc": true, "keywords": "LABORATORY", "locations": null, "north": -58.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Reiners, Peter; Gehrels, George; Thompson, Stuart; Hemming, Sidney R.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "Collaborative Research: Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology", "uid": "p0000506", "west": -67.2}, {"awards": "0424589 Gogineni, S. Prasad", "bounds_geometry": "POLYGON((-137 -74,-132.1 -74,-127.2 -74,-122.3 -74,-117.4 -74,-112.5 -74,-107.6 -74,-102.7 -74,-97.8 -74,-92.9 -74,-88 -74,-88 -74.65,-88 -75.3,-88 -75.95,-88 -76.6,-88 -77.25,-88 -77.9,-88 -78.55,-88 -79.2,-88 -79.85,-88 -80.5,-92.9 -80.5,-97.8 -80.5,-102.7 -80.5,-107.6 -80.5,-112.5 -80.5,-117.4 -80.5,-122.3 -80.5,-127.2 -80.5,-132.1 -80.5,-137 -80.5,-137 -79.85,-137 -79.2,-137 -78.55,-137 -77.9,-137 -77.25,-137 -76.6,-137 -75.95,-137 -75.3,-137 -74.65,-137 -74))", "dataset_titles": "Airborne radar profiles of the Whillans, Bindschadler, and Kamb Ice Streams; Archive of data; Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau; Ku-band Radar Echograms; Radar Depth Sounder Echograms and Ice Thickness; Snow Radar Echograms", "datasets": [{"dataset_uid": "601048", "doi": "10.15784/601048", "keywords": "Airborne Radar; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ku-Band; Navigation; Radar", "people": "Leuschen, Carl; Rodriguez, Fernando; Li, Jilu; Allen, Chris; Gogineni, Prasad; Paden, John", "repository": "USAP-DC", "science_program": null, "title": "Ku-band Radar Echograms", "url": "https://www.usap-dc.org/view/dataset/601048"}, {"dataset_uid": "002497", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Archive of data", "url": "https://www.cresis.ku.edu/data/accumulation"}, {"dataset_uid": "601049", "doi": "10.15784/601049", "keywords": "Airborne Radar; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Navigation; Radar; Snow", "people": "Paden, John; Leuschen, Carl; Rodriguez, Fernando; Li, Jilu; Allen, Chris; Gogineni, Prasad", "repository": "USAP-DC", "science_program": null, "title": "Snow Radar Echograms", "url": "https://www.usap-dc.org/view/dataset/601049"}, {"dataset_uid": "600384", "doi": "10.15784/600384", "keywords": "Airborne Radar; Antarctica; Basler; Glaciers/ice Sheet; Glaciers/Ice Sheet; Kamb Ice Stream; Radar; Siple Coast; Whillans Ice Stream", "people": "Paden, John; Hale, Richard", "repository": "USAP-DC", "science_program": null, "title": "Airborne radar profiles of the Whillans, Bindschadler, and Kamb Ice Streams", "url": "https://www.usap-dc.org/view/dataset/600384"}, {"dataset_uid": "601411", "doi": "10.15784/601411", "keywords": "Antarctica; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; ICECAP; Ice Penetrating Radar; Internal Reflecting Horizons", "people": "Tozer, Carly; Ritz, Catherine; Blankenship, Donald D.; Schroeder, Dustin; Mulvaney, Robert; Roberts, Jason; Frezzotti, Massimo; Paden, John; Muldoon, Gail R.; Quartini, Enrica; Kempf, Scott D.; Ng, Gregory; Greenbaum, Jamin; Cavitte, Marie G. P; Young, Duncan A.", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau", "url": "https://www.usap-dc.org/view/dataset/601411"}, {"dataset_uid": "601047", "doi": "10.15784/601047", "keywords": "Airborne Radar; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; MCoRDS; Navigation; Radar", "people": "Rodriguez, Fernando; Leuschen, Carl; Li, Jilu; Allen, Chris; Gogineni, Prasad; Paden, John", "repository": "USAP-DC", "science_program": null, "title": "Radar Depth Sounder Echograms and Ice Thickness", "url": "https://www.usap-dc.org/view/dataset/601047"}], "date_created": "Wed, 01 Jun 2011 00:00:00 GMT", "description": "This award is for the continuation of the Center for Remote Sensing of Ice Sheets (CReSIS), an NSF Science and Technology Center (STC) established in June 2005 to study present and probable future contributions of the Greenland and Antarctic ice sheets to sea-level rise. The Center?s vision is to understand and predict the role of polar ice sheets in sea level change. In particular, the Center?s mission is to develop technologies, to conduct field investigations, to compile data to understand why many outlet glaciers and ice streams are changing rapidly, and to develop models that explain and predict ice sheet response to climate change. The Center?s mission is also to educate and train a diverse population of graduate and undergraduate students in Center-related disciplines and to encourage K-12 students to pursue careers in science, technology, engineering and mathematics (STEM-fields). The long-term goals are to perform a four-dimensional characterization (space and time) of rapidly changing ice-sheet regions, develop diagnostic and predictive ice-sheet models, and contribute to future assessments of sea level change in a warming climate. In the first five years, significant progress was made in developing, testing and optimizing innovative sensors and platforms and completing a major aircraft campaign, which included sounding the channel under Jakobshavn Isbr\u00e6. In the second five years, research will focus on the interpretation of integrated data from a suite of sensors to understand the physical processes causing changes and the subsequent development and validation of models. Information about CReSIS can be found at http://www.cresis.ku.edu.\u003cbr/\u003e\u003cbr/\u003eThe intellectual merits of the STC are the multidisciplinary research it enables its faculty, staff and students to pursue, as well as the broad education and training opportunities it provides to students at all levels. During the first phase, the Center provided scientists and engineers with a collaborative research environment and the opportunity to interact, enabling the development of high-sensitivity radars integrated with several airborne platforms and innovative seismic instruments. Also, the Center successfully collected data on ice thickness and bed conditions, key variables in the study of ice dynamics and the development of models, for three major fast-flowing glaciers in Greenland. During the second phase, the Center will collect additional data over targeted sites in areas undergoing rapid changes; process, analyze and interpret collected data; and develop advanced process-oriented and ice sheet models to predict future behavior. The Center will continue to provide a rich environment for multidisciplinary education and mentoring for undergraduate students, graduate students, and postdoctoral fellows, as well as for conducting K-12 education and public outreach. The broader impacts of the Center stem from addressing a global environmental problem with critical societal implications, providing a forum for citizens and policymakers to become informed about climate change issues, training the next generation of scientists and engineers to serve the nation, encouraging underrepresented students to pursue careers in STEM-related fields, and transferring new technologies to industry. Students involved in the Center find an intellectually stimulating atmosphere where collaboration between disciplines is the norm and exposure to a wide variety of methodologies and scientific issues enriches their educational experience. The next generation of researchers should reflect the diversity of our society; the Center will therefore continue its work with ECSU to conduct outreach and educational programs that attract minority students to careers in science and technology. The Center has also established a new partnership with ADMI that supports faculty and student exchanges at the national level and provides expanded opportunities for students and faculty to be involved in Center-related research and education activities. These, and other collaborations, will provide broader opportunities to encourage underrepresented students to pursue STEM careers. \u003cbr/\u003e\u003cbr/\u003eAs lead institution, The University of Kansas (KU) provides overall direction and management, as well as expertise in radar and remote sensing, Uninhabited Aerial Vehicles (UAVs), and modeling and interpretation of data. Five partner institutions and a DOE laboratory play critical roles in the STC. The Pennsylvania State University (PSU) continues to participate in technology development for seismic measurements, field activities, and modeling. The Center of Excellence in Remote Sensing, Education and Research (CERSER) at Elizabeth City State University (ECSU) contributes its expertise to analyzing satellite data and generating high-level data products. ECSU also brings to the Center their extensive experience in mentoring and educating traditionally under-represented students. ADMI, the Association of Computer and Information Science/Engineering Departments at Minority Institutions, expands the program?s reach to underrepresented groups at the national level. Indiana University (IU) provides world-class expertise in CI and high-performance computing to address challenges in data management, processing, distribution and archival, as well as high-performance modeling requirements. The University of Washington (UW) provides expertise in satellite observations of ice sheets and process-oriented interpretation and model development. Los Alamos National Laboratory (LANL) contributes in the area of ice sheet modeling. All partner institutions are actively involved in the analysis and interpretation of observational and numerical data sets.", "east": -88.0, "geometry": "POINT(-112.5 -77.25)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS", "is_usap_dc": true, "keywords": "Remote Sensing; Not provided; Pine Island; Ice Sheet; DHC-6; Antarctic; Thwaites Region; Antarctica; Mass Balance; Accumulation; Velocity; Insar", "locations": "Antarctica; Antarctic; Pine Island; Thwaites Region", "north": -74.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Glaciology", "paleo_time": null, "persons": "Braaten, David; Joughin, Ian; Steig, Eric J.; Das, Sarah; Paden, John; Gogineni, Prasad", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6; Not provided", "repo": "USAP-DC", "repositories": "Project website; USAP-DC", "science_programs": null, "south": -80.5, "title": "Center for Remote Sensing of Ice Sheets (CReSIS)", "uid": "p0000102", "west": -137.0}, {"awards": "0739780 Taylor, Kendrick", "bounds_geometry": "POINT(-112.117 -79.666)", "dataset_titles": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning", "datasets": [{"dataset_uid": "600142", "doi": "10.15784/600142", "keywords": "Antarctica; Atmosphere; Black Carbon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Taylor, Kendrick C.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning", "url": "https://www.usap-dc.org/view/dataset/600142"}], "date_created": "Thu, 28 Apr 2011 00:00:00 GMT", "description": "Edwards/0739780\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to develop a 2,000-year high-temporal resolution record of biomass burning from the analysis of black carbon in the WAIS Divide bedrock ice core. Pilot data for the WAIS WD05A core demonstrates that we now have the ability to reconstruct this record with minimal impact on the amount of ice available for other projects. The intellectual merit of this project is that black carbon (BC) aerosols result solely from combustion and play a critical but poorly quantified role in global climate forcing and the carbon cycle. When incorporated into snow and ice, BC increases absorption of solar radiation making seasonal snow packs, mountain glaciers, polar ice sheets, and sea ice much more vulnerable to climate warming. BC emissions in the Southern Hemisphere are dominated by biomass burning in the tropical regions of Southern Africa, South America and South Asia. Biomass burning, which results from both climate and human activities, alters the atmospheric composition of greenhouse gases, aerosols and perturbs key biogeochemical cycles. A long-term record of biomass burning is needed to aid in the interpretation of ice core gas composition and will provide important information regarding human impacts on the environment and climate before instrumental records. The broader impacts of the project are that it represents a paradigm shift in our ability to reconstruct the history of fire from ice core records and to understand its impact on atmospheric chemistry and climate over millennial time scales. This type of data is especially needed to drive global circulation model simulations of black carbon aerosols, which have been found to be an important component of global warming and which may be perturbing the hydrologic cycle. The project will also employ undergraduate students and is committed to attracting underrepresented groups to the physical sciences. The project?s outreach component will be conducted as part of the WAIS project outreach program and will reach a wide audience.", "east": -112.117, "geometry": "POINT(-112.117 -79.666)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Ice Core Chemistry; Not provided; Gas Record; Ice Core; Gas Measurement; Ice Core Gas Composition; Antarctica; LABORATORY; Bedrock Ice Core; Ice Core Gas Records; Wais Project; Greenhouse Gas; Atmospheric Chemistry; FIELD INVESTIGATION; Black Carbon; Biomass Burning; WAIS Divide; FIELD SURVEYS; West Antarctica; Methane", "locations": "Antarctica; West Antarctica; WAIS Divide", "north": -79.666, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Brook, Edward J.; McConnell, Joseph; Mitchell, Logan E; Sowers, Todd A.; Taylor, Kendrick C.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.666, "title": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning", "uid": "p0000022", "west": -112.117}, {"awards": "0529087 Ross, Robin; 0529666 Fritsen, Christian; 0528728 Vernet, Maria", "bounds_geometry": "POLYGON((-69.08 -64.8,-68.632 -64.8,-68.184 -64.8,-67.736 -64.8,-67.288 -64.8,-66.84 -64.8,-66.392 -64.8,-65.944 -64.8,-65.496 -64.8,-65.048 -64.8,-64.6 -64.8,-64.6 -65.121,-64.6 -65.442,-64.6 -65.763,-64.6 -66.084,-64.6 -66.405,-64.6 -66.726,-64.6 -67.047,-64.6 -67.368,-64.6 -67.689,-64.6 -68.01,-65.048 -68.01,-65.496 -68.01,-65.944 -68.01,-66.392 -68.01,-66.84 -68.01,-67.288 -68.01,-67.736 -68.01,-68.184 -68.01,-68.632 -68.01,-69.08 -68.01,-69.08 -67.689,-69.08 -67.368,-69.08 -67.047,-69.08 -66.726,-69.08 -66.405,-69.08 -66.084,-69.08 -65.763,-69.08 -65.442,-69.08 -65.121,-69.08 -64.8))", "dataset_titles": "Expedition data of NBP0103; The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "datasets": [{"dataset_uid": "600050", "doi": "10.15784/600050", "keywords": "Bellingshausen Sea; Cryosphere; Oceans; Photosynthetically Active Radiation (par); Sea Ice; Sea Surface; Southern Ocean; Total Integrated Exposure To PAR", "people": "Fritsen, Christian", "repository": "USAP-DC", "science_program": null, "title": "The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "url": "https://www.usap-dc.org/view/dataset/600050"}, {"dataset_uid": "600048", "doi": "10.15784/600048", "keywords": "Bellingshausen Sea; Biota; Oceans; Phytoplankton; Southern Ocean", "people": "Vernet, Maria", "repository": "USAP-DC", "science_program": null, "title": "The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "url": "https://www.usap-dc.org/view/dataset/600048"}, {"dataset_uid": "002595", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0103", "url": "https://www.rvdata.us/search/cruise/NBP0103"}, {"dataset_uid": "600049", "doi": "10.15784/600049", "keywords": "Bellingshausen Sea; Biota; Oceans; Southern Ocean", "people": "Ross, Robin Macurda; Quetin, Langdon B.", "repository": "USAP-DC", "science_program": null, "title": "The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "url": "https://www.usap-dc.org/view/dataset/600049"}], "date_created": "Sat, 02 Apr 2011 00:00:00 GMT", "description": "This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat.\u003cbr/\u003e\u003cbr/\u003eSO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. It is currently in a synthesis and modeling phase. This collaborative project is concerned with the lower trophic levels, and will be integrated with other synthesis and modeling studies that deal with grazers, predators, and other higher trophic levels.", "east": -64.6, "geometry": "POINT(-66.84 -66.405)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": true, "keywords": "R/V NBP; Not provided", "locations": null, "north": -64.8, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems; Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Fritsen, Christian; Vernet, Maria; Ross, Robin Macurda; Quetin, Langdon B.", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -68.01, "title": "Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "uid": "p0000522", "west": -69.08}, {"awards": "0732467 Domack, Eugene", "bounds_geometry": null, "dataset_titles": "Cosmogenic-Nuclide Data at ICe-D; Expedition data of LMG0903; Expedition data of NBP1001; NBP1001 cruise data; Processed CTD Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001; Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001", "datasets": [{"dataset_uid": "000142", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1001 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP1001"}, {"dataset_uid": "002651", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1001", "url": "https://www.rvdata.us/search/cruise/NBP1001"}, {"dataset_uid": "200297", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic-Nuclide Data at ICe-D", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "601346", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Current Measurements; LADCP; Larsen Ice Shelf; NBP1001; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer", "people": "Huber, Bruce; Gordon, Arnold", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601346"}, {"dataset_uid": "601345", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; CTD; CTD Data; LARISSA; Larsen Ice Shelf; NBP1001; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Temperature", "people": "Gordon, Arnold; Huber, Bruce", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Processed CTD Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601345"}, {"dataset_uid": "002715", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0903", "url": "https://www.rvdata.us/search/cruise/LMG0903"}], "date_created": "Thu, 03 Mar 2011 00:00:00 GMT", "description": "This award supports a research cruise to perform geologic studies in the area under and surrounding the former Larsen B ice shelf, on the Antarctic Peninsula. The ice shelf\u0027s disintegration in 2002 coupled with the unique marine geology of the area make it possible to understand the conditions leading to ice shelf collapse. Bellwethers of climate change that reflect both oceanographic and atmospheric conditions, ice shelves also hold back glacial flow in key areas of the polar regions. Their collapse results in glacial surging and could cause rapid rise in global sea levels. This project characterizes the Larsen ice shelf\u0027s history and conditions leading to its collapse by determining: 1) the size of the Larsen B during warmer climates and higher sea levels back to the Eemian interglacial, 125,000 years ago; 2) the configuration of the Antarctic Peninsula ice sheet during the LGM and its subsequent retreat; 3) the causes of the Larsen B\u0027s stability through the Holocene, during which other shelves have come and gone; 4) the controls on the dynamics of ice shelf margins, especially the roles of surface melting and oceanic processes, and 5) the changes in sediment flux, both biogenic and lithogenic, after large ice shelf breakup. \u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eThe broader impacts include graduate and undergraduate education through research projects and workshops; outreach to the general public through a television documentary and websites, and international collaboration with scientists from Belgium, Spain, Argentina, Canada, Germany and the UK. The work also has important societal relevance. Improving our understanding of how ice shelves behave in a warming world will improve models of sea level rise.\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eThe project is supported under NSF\u0027s International Polar Year (IPY) research emphasis area on \"Understanding Environmental Change in Polar Regions\".", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG; Larsen Ice Shelf; R/V NBP; Antarctic Peninsula; ICE SHEETS", "locations": "Antarctic Peninsula; Larsen Ice Shelf", "north": null, "nsf_funding_programs": "Antarctic Integrated System Science", "paleo_time": null, "persons": "Domack, Eugene Walter; Blanchette, Robert", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "ICE-D; R2R; USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine and Quaternary Geosciences", "uid": "p0000841", "west": null}, {"awards": "9909367 Leventer, Amy", "bounds_geometry": "POLYGON((26.27227 -42.81742,38.414467 -42.81742,50.556664 -42.81742,62.698861 -42.81742,74.841058 -42.81742,86.983255 -42.81742,99.125452 -42.81742,111.267649 -42.81742,123.409846 -42.81742,135.552043 -42.81742,147.69424 -42.81742,147.69424 -45.454494,147.69424 -48.091568,147.69424 -50.728642,147.69424 -53.365716,147.69424 -56.00279,147.69424 -58.639864,147.69424 -61.276938,147.69424 -63.914012,147.69424 -66.551086,147.69424 -69.18816,135.552043 -69.18816,123.409846 -69.18816,111.267649 -69.18816,99.125452 -69.18816,86.983255 -69.18816,74.841058 -69.18816,62.698861 -69.18816,50.556664 -69.18816,38.414467 -69.18816,26.27227 -69.18816,26.27227 -66.551086,26.27227 -63.914012,26.27227 -61.276938,26.27227 -58.639864,26.27227 -56.00279,26.27227 -53.365716,26.27227 -50.728642,26.27227 -48.091568,26.27227 -45.454494,26.27227 -42.81742))", "dataset_titles": "Diatom assemblages from Edward VIII Gulf, Kemp Coast, East Antarctica; NB0101 Expedition Data; Quantitative Diatom Assemblage Data from Iceberg Alley, Mac. Robertson Shelf, East Antarctica acquired during expedition NBP0101", "datasets": [{"dataset_uid": "601177", "doi": "10.15784/601177", "keywords": "Antarctica; Biota; Diatom; East Antarctica; Microscopy; NBP0101; Oceans; Paleoceanography; Paleoclimate; R/v Nathaniel B. Palmer; Sediment Corer", "people": "Leventer, Amy", "repository": "USAP-DC", "science_program": null, "title": "Diatom assemblages from Edward VIII Gulf, Kemp Coast, East Antarctica", "url": "https://www.usap-dc.org/view/dataset/601177"}, {"dataset_uid": "601307", "doi": null, "keywords": "Antarctica; Biota; Diatom; East Antarctica; Mac. Robertson Shelf; Marine Geoscience; Microscope; NBP0101; Paleoclimate; Piston Corer; R/v Nathaniel B. Palmer; Sediment Core; Species Abundance", "people": "Leventer, Amy", "repository": "USAP-DC", "science_program": null, "title": "Quantitative Diatom Assemblage Data from Iceberg Alley, Mac. Robertson Shelf, East Antarctica acquired during expedition NBP0101", "url": "https://www.usap-dc.org/view/dataset/601307"}, {"dataset_uid": "001879", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NB0101 Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0101"}], "date_created": "Thu, 03 Mar 2011 00:00:00 GMT", "description": "9909367 Leventer This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a multi-institutional, international (US - Australia) marine geologic and geophysical investigation of Prydz Bay and the MacRobertson Shelf, to be completed during an approximately 60-day cruise aboard the RVIB N.B. Palmer. The primary objective is to develop a record of climate and oceanographic change during the Quaternary, using sediment cores collected via kasten and jumbo piston coring. Core sites will be selected based on seismic profiling (Seabeam 2112 and Bathy2000). Recognition of the central role of the Antarctic Ice Sheet to global oceanic and atmospheric systems is based primarily on data collected along the West Antarctic margin, while similar extensive and high resolution data sets from the much more extensive East Antarctic margin are sparse. Goals of this project include (1) development of a century- to millennial-scale record of Holocene paleoenvironments, and (2) testing of hypotheses concerning the sedimentary record of previous glacial and interglacial events on the shelf, and evaluation of the timing and extent of maximum glaciation along this 500 km stretch of the East Antarctic margin. High-resolution seismic mapping and coring of sediments deposited in inner shelf depressions will be used to reconstruct Holocene paleoenvironments. In similar depositional settings in the Antarctic Peninsula and Ross Sea, sedimentary records demonstrate millennial- and century- scale variability in primary production and sea-ice extent during the Holocene, which have been linked to chronological periodicities in radiocarbon distribution, suggesting the possible role of solar variability in driving some changes in Holocene climate. Similar high-resolution Holocene records from the East Antarctic margin will be used to develop a circum-Antarctic suite of data regarding the response of southern glacial and oceanographic systems to late Quaternary climate change. In addition, these data will help us to evaluate the response of the East Antarctic margin to global warming. Initial surveys of the Prydz Channel - Amery Depression region reveal sequences deposited during previous Pleistocene interglacials. The upper Holocene and lower (undated) siliceous units can be traced over 15,000 km2 of the Prydz Channel, but more sub-bottom seismic reflection profiling in conjunction with dense coring over this region is needed to define the spatial distribution and extent of the units. Chronological work will determine the timing and duration of previous periods of glacial marine sedimentation on the East Antarctic margin during the late Pleistocene. Analyses will focus on detailed sedimentologic, geochemical, micropaleontological, and paleomagnetic techniques. This multi-parameter approach is the most effective way to extract a valuable paleoenvironmental signal in these glacial marine sediments. These results are expected to lead to a significant advance in understanding of the behavior of the Antarctic ice-sheet and ocean system in the recent geologic past. The combination of investigators, all with many years of experience working in high latitude marine settings, will provide an effective team to complete the project. University and College faculty (Principal Investigators on this project) will supervise a combination of undergraduate and post-graduate students involved in all stages of the project so that educational objectives will be met in tandem with the research goals of the project.", "east": 147.69424, "geometry": "POINT(86.983255 -56.00279)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS", "is_usap_dc": false, "keywords": "R/V NBP; USAP-DC", "locations": null, "north": -42.81742, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Leventer, Amy", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -69.18816, "title": "Quaternary Glacial History and Paleoenvironments of the East Antarctic Margin", "uid": "p0000609", "west": 26.27227}, {"awards": "0732535 Arrigo, Kevin", "bounds_geometry": "POLYGON((-130 -67,-127.1 -67,-124.2 -67,-121.3 -67,-118.4 -67,-115.5 -67,-112.6 -67,-109.7 -67,-106.8 -67,-103.9 -67,-101 -67,-101 -67.9,-101 -68.8,-101 -69.7,-101 -70.6,-101 -71.5,-101 -72.4,-101 -73.3,-101 -74.2,-101 -75.1,-101 -76,-103.9 -76,-106.8 -76,-109.7 -76,-112.6 -76,-115.5 -76,-118.4 -76,-121.3 -76,-124.2 -76,-127.1 -76,-130 -76,-130 -75.1,-130 -74.2,-130 -73.3,-130 -72.4,-130 -71.5,-130 -70.6,-130 -69.7,-130 -68.8,-130 -67.9,-130 -67))", "dataset_titles": "GEOTRACES International Data Assembly Centre Accession# NIO100280", "datasets": [{"dataset_uid": "000212", "doi": "", "keywords": null, "people": null, "repository": "GEOTRACES", "science_program": null, "title": "GEOTRACES International Data Assembly Centre Accession# NIO100280", "url": "http://www.bodc.ac.uk/geotraces/"}], "date_created": "Thu, 24 Feb 2011 00:00:00 GMT", "description": "IPY: Shedding dynamic light on iron limitation: The interplay of iron\u003cbr/\u003elimitation and dynamic irradiance in governing the phytoplankton\u003cbr/\u003edistribution in the Ross Sea\u003cbr/\u003e\u003cbr/\u003eThe Southern Ocean plays an important role in the global carbon cycle, accounting for approximately 25% of total anthropogenic CO2 uptake by the oceans, mainly via primary production. In the Ross Sea, primary production is dominated by two taxa that are distinct in location and timing. Diatoms dominate in the shallow mixed layer of the continental shelf, whereas the colony forming Phaeocystis antarctica (Prymnesiophyceae) dominate in the more deeply mixed, open regions. Significantly, both groups have vastly different nutrient utilization characteristics, and support very different marine food webs. Their responses to climate change, and the implications for carbon export, are unclear. Previous studies show that light availability and the quality of the light climate (static versus dynamic) play a major role in defining where and when the different phytoplankton taxa bloom. However, iron (Fe) limitation of the algal communities in both the sub-Arctic and the Southern Ocean is now well documented. Moreover, phytoplankton Fe demand varies as a function of irradiance. The main hypothesis of the proposed research is: The interaction between Fe limitation and dynamic irradiance governs phytoplankton distributions in the Ross Sea. Our strategy to test this hypothesis is three-fold: 1) The photoacclimation of the different phytoplankton taxa to different light conditions under Fe limitation will be investigated in experiments in the laboratory under controlled Fe conditions. 2) The photophysiological mechanisms found in these laboratory experiments will then be tested in the field on two cruises with international IPY partners. 3) Finally, data generated during the lab and field parts of the project will be used to parameterize a dynamic light component of the Coupled Ice Atmosphere and Ocean (CIAO) model of the Ross Sea. Using the improved model, we will run future climate scenarios to test the impact of climate change on the phytoplankton community structure, distribution, primary production and carbon export in the Southern Ocean. The proposed research complies with IPY theme\" Understanding Environmental change in Polar Regions\" and includes participation in an international cruise. Detailed model descriptions and all of the results generated from these studies will be made public via a DynaLiFe website. Improving the CIAO model will give us and other IPY partners the opportunity to test the ecological consequences of physiological characteristics observed in Antarctic phytoplankton under current and future climate scenarios. Outreach will include participation in Stanford\u0027s Summer Program for Professional Development for Science Teachers, Stanford\u0027s School of Earth Sciences high school internship program, and development of curriculum for local science training centers, including the Chabot Space and Science Center.", "east": -101.0, "geometry": "POINT(-115.5 -71.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -67.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Arrigo, Kevin", "platforms": "Not provided", "repo": "GEOTRACES", "repositories": "GEOTRACES", "science_programs": null, "south": -76.0, "title": "IPY: Shedding dynamic light on iron limitation: The interplay of iron limitation and dynamic irradiance in governing the phytoplankton distribution in the Ross Sea", "uid": "p0000112", "west": -130.0}, {"awards": "0538495 Albert, Mary; 0537532 Liston, Glen; 0963924 Steig, Eric; 0538416 McConnell, Joseph; 0538103 Scambos, Ted; 0538422 Hamilton, Gordon", "bounds_geometry": "POLYGON((-180 -72.01667,-161.74667 -72.01667,-143.49334 -72.01667,-125.24001 -72.01667,-106.98668 -72.01667,-88.73335 -72.01667,-70.48002 -72.01667,-52.22669 -72.01667,-33.97336 -72.01667,-15.72003 -72.01667,2.5333 -72.01667,2.5333 -73.815003,2.5333 -75.613336,2.5333 -77.411669,2.5333 -79.210002,2.5333 -81.008335,2.5333 -82.806668,2.5333 -84.605001,2.5333 -86.403334,2.5333 -88.201667,2.5333 -90,-15.72003 -90,-33.97336 -90,-52.22669 -90,-70.48002 -90,-88.73335 -90,-106.98668 -90,-125.24001 -90,-143.49334 -90,-161.74667 -90,180 -90,162.25333 -90,144.50666 -90,126.75999 -90,109.01332 -90,91.26665 -90,73.51998 -90,55.77331 -90,38.02664 -90,20.27997 -90,2.5333 -90,2.5333 -88.201667,2.5333 -86.403334,2.5333 -84.605001,2.5333 -82.806668,2.5333 -81.008335,2.5333 -79.210002,2.5333 -77.411669,2.5333 -75.613336,2.5333 -73.815003,2.5333 -72.01667,20.27997 -72.01667,38.02664 -72.01667,55.77331 -72.01667,73.51998 -72.01667,91.26665 -72.01667,109.01332 -72.01667,126.75999 -72.01667,144.50666 -72.01667,162.25333 -72.01667,-180 -72.01667))", "dataset_titles": "Ice Core Chemistry from the Norwegian-U.S. Scientific Traverse of East Antarctica, IPY 2007-2009; Norwegian-U.S. Scientific Traverse of East Antarctica; This data set contains data from the publication Steig et al., Nature Geoscience, vol. 6, pages 372\u00e2\u20ac\u201c375 (doi:10.1038/ngeo1778), which includes isotope data from the Norway-US traverse in East Antarctica.", "datasets": [{"dataset_uid": "001305", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "This data set contains data from the publication Steig et al., Nature Geoscience, vol. 6, pages 372\u00e2\u20ac\u201c375 (doi:10.1038/ngeo1778), which includes isotope data from the Norway-US traverse in East Antarctica.", "url": "http://nsidc.org/data/nsidc-0536.html"}, {"dataset_uid": "609520", "doi": "10.7265/N5H41PC9", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; East Antarctica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Chemistry from the Norwegian-U.S. Scientific Traverse of East Antarctica, IPY 2007-2009", "url": "https://www.usap-dc.org/view/dataset/609520"}, {"dataset_uid": "000112", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Norwegian-U.S. Scientific Traverse of East Antarctica", "url": "http://traverse.npolar.no/"}], "date_created": "Wed, 23 Feb 2011 00:00:00 GMT", "description": "This award supports a project of scientific investigations along two overland traverses in East Antarctica: one going from the Norwegian Troll Station (72deg. S, 2deg. E) to the United States South Pole Station (90deg. S, 0deg. E) in 2007-2008; and a return traverse starting at South Pole Station and ending at Troll Station by a different route in 2008-2009. The project will investigate climate change in East Antarctica, with the goals of understanding climate variability in Dronning Maud Land of East Antarctica on time scales of years to centuries and determining the surface and net mass balance of the ice sheet in this sector to understand its impact on sea level. The project will also investigate the impact of atmospheric and oceanic variability and human activities on the chemical composition of firn and ice in the region, and will revisit areas and sites first explored by traverses in the 1960\u0027s, for detection of possible changes and to establish benchmark datasets for future research efforts. In terms of broader impacts, the results of this study will add to understanding of climate variability in East Antarctica and its contribution to global sea level change. The project includes international exchange of graduate students between the institutions involved and international education of undergraduate students through classes taught by the PI\u0027s at UNIS in Svalbard. It involves extensive outreach to the general public both in Scandinavia and North America through the press, television, science museums, children\u0027s literature, and web sites. Active knowledge sharing and collaboration between pioneers in Antarctic glaciology from Norway and the US, with the international group of scientists and students involved in this project, provide a unique opportunity to explore the changes that half a century have made in climate proxies from East Antarctica, scientific tools, and the culture and people of science. The project is relevant to the International Polar Year (IPY) since it is a genuine collaboration between nations: the scientists involved have complementary expertise, and the logistics involved relies on assets unique to each nation. It is truly an endeavor that neither nation could accomplish alone. This project is a part of the Trans- Antarctic Scientific Traverse Expeditions Ice Divide of East Antarctica (TASTE-IDEA) which is also part of IPY.", "east": 2.5333, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PHOTOMETERS \u003e SPECTROPHOTOMETERS", "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; East Antarctic Plateau; FIXED OBSERVATION STATIONS; Glaciology; LABORATORY; FIELD SURVEYS; Permeability; Ice Core; Climate Variability; Firn; Accumulation Rate; Mass Balance; Snow; Gravity; Ice Sheet; GROUND-BASED OBSERVATIONS; Traverse; Not provided; Antarctic; Ice Core Chemistry; Antarctica; Density", "locations": "Antarctica; Antarctic; East Antarctic Plateau", "north": -72.01667, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Courville, Zoe; Bell, Eric; Liston, Glen; Scambos, Ted; Hamilton, Gordon S.; McConnell, Joseph; Albert, Mary R.; Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "NSIDC", "repositories": "NSIDC; Project website; USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Norwegian-United States IPY Scientific Traverse: Climate Variability and Glaciology in East Antarctica", "uid": "p0000095", "west": 2.5333}, {"awards": "0636705 Marchant, David; 0636731 Bender, Michael", "bounds_geometry": "POLYGON((160.48705 -77.84513,160.501913 -77.84513,160.516776 -77.84513,160.531639 -77.84513,160.546502 -77.84513,160.561365 -77.84513,160.576228 -77.84513,160.591091 -77.84513,160.605954 -77.84513,160.620817 -77.84513,160.63568 -77.84513,160.63568 -77.8515624,160.63568 -77.8579948,160.63568 -77.8644272,160.63568 -77.8708596,160.63568 -77.877292,160.63568 -77.8837244,160.63568 -77.8901568,160.63568 -77.8965892,160.63568 -77.9030216,160.63568 -77.909454,160.620817 -77.909454,160.605954 -77.909454,160.591091 -77.909454,160.576228 -77.909454,160.561365 -77.909454,160.546502 -77.909454,160.531639 -77.909454,160.516776 -77.909454,160.501913 -77.909454,160.48705 -77.909454,160.48705 -77.9030216,160.48705 -77.8965892,160.48705 -77.8901568,160.48705 -77.8837244,160.48705 -77.877292,160.48705 -77.8708596,160.48705 -77.8644272,160.48705 -77.8579948,160.48705 -77.8515624,160.48705 -77.84513))", "dataset_titles": "Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica; Measurements of Trapped Air from Mullins Valley, Dry Valleys, Antarctica", "datasets": [{"dataset_uid": "609597", "doi": "10.7265/N50R9MBM", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Dry Valleys; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; Radar Interferometer", "people": "Bender, Michael; Yau, Audrey M.", "repository": "USAP-DC", "science_program": null, "title": "Measurements of Trapped Air from Mullins Valley, Dry Valleys, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609597"}, {"dataset_uid": "600069", "doi": "10.15784/600069", "keywords": "Antarctica; Dry Valleys; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope Record; Lake Vostok; Paleoclimate", "people": "Bender, Michael", "repository": "USAP-DC", "science_program": null, "title": "Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica", "url": "https://www.usap-dc.org/view/dataset/600069"}], "date_created": "Thu, 03 Feb 2011 00:00:00 GMT", "description": "This project studies ancient ice buried in the Dry Valleys of Antarctica. The ice, which may approach ten million years in age, will be dated using argon and uranium radioisotope techniques. High-risk work, if successful it will offer the first and perhaps only samples of the Earth\u0027s atmosphere from millions of years in the past. These samples could offer critically important tests of paleoclimate records and proxies, as well as a glimpse into the characteristics of a past world much like the predicted future, warmer Earth. The broader impacts are graduate student education, and potentially contributing to society\u0027s understanding of global climate change and sea level rise.", "east": 160.63568, "geometry": "POINT(160.561365 -77.877292)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Elemental Ratios; Oxygen Isotope; Not provided; Nitrogen Isotopes; LABORATORY; Argon Isotopes; FIELD INVESTIGATION", "locations": null, "north": -77.84513, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Bender, Michael; Yau, Audrey M.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.909454, "title": "Collaborative Research: Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica", "uid": "p0000039", "west": 160.48705}, {"awards": "0619708 Simpson, David", "bounds_geometry": "POINT(180 90)", "dataset_titles": "IRIS data management center: seismic data and metadata for the engineering testing of these designs can be found under the XD network code (Polar Equipment Development) at stations PMC01, PMC02, PSP01, PSP02, and PSP03.", "datasets": [{"dataset_uid": "001460", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IRIS data management center: seismic data and metadata for the engineering testing of these designs can be found under the XD network code (Polar Equipment Development) at stations PMC01, PMC02, PSP01, PSP02, and PSP03.", "url": "http://ds.iris.edu/ds/nodes/dmc/"}], "date_created": "Mon, 20 Dec 2010 00:00:00 GMT", "description": "This project develops power and communications systems to support the operation of seismometers and GPS receivers in Antarctica throughout the polar night. In terms of intellectual merit, this system would allow a new class of geophysical questions to be approached, in areas as varied as ice sheet movement, plate tectonics, and deep earth structure. In terms of broader impacts, this project represents research infrastructure of potential use to many scientific disciplines. In addition, the results will improve society\u0027s understanding of the Antarctic ice sheet and its behavior in response to global warming.", "east": -180.0, "geometry": "POINT(-180 -90)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": false, "keywords": "IRIS-GSN; PASSCAL; SEISMOLOGICAL STATIONS; Not provided; GSN", "locations": null, "north": -90.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, Kent; Parker, Tim", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GSN; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e IRIS-GSN; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e PASSCAL; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS; Not provided", "repo": "IRIS", "repositories": "IRIS", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Development of a Power and Communication System for Remote Autonomous GPS and Seismic Stations in Antarctica", "uid": "p0000691", "west": -180.0}, {"awards": "0538479 Seibel, Brad", "bounds_geometry": "POLYGON((166 -77,166.1 -77,166.2 -77,166.3 -77,166.4 -77,166.5 -77,166.6 -77,166.7 -77,166.8 -77,166.9 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.9 -78,166.8 -78,166.7 -78,166.6 -78,166.5 -78,166.4 -78,166.3 -78,166.2 -78,166.1 -78,166 -78,166 -77.9,166 -77.8,166 -77.7,166 -77.6,166 -77.5,166 -77.4,166 -77.3,166 -77.2,166 -77.1,166 -77))", "dataset_titles": "Impacts of Elevated pCO2 on a Dominant Aragonitic Pteropod (Thecosomata) and its Specialist Predator (Gymnosomata) in the Ross Sea", "datasets": [{"dataset_uid": "600055", "doi": "10.15784/600055", "keywords": "Biota; CO2; Mcmurdo Station; Oceans; Ross Island; Sample/collection Description; Sample/Collection Description; Shell Fish; Southern Ocean", "people": "Seibel, Brad", "repository": "USAP-DC", "science_program": null, "title": "Impacts of Elevated pCO2 on a Dominant Aragonitic Pteropod (Thecosomata) and its Specialist Predator (Gymnosomata) in the Ross Sea", "url": "https://www.usap-dc.org/view/dataset/600055"}], "date_created": "Sat, 18 Dec 2010 00:00:00 GMT", "description": "Rising atmospheric carbon dioxide concentrations have resulted in greater oceanic uptake of anthropogenic carbon dioxide. Elevated partial pressure of carbon dioxide can impact marine organisms both via decreased carbonate saturation that affects calcification rates and via disturbance to acid-base (metabolic) physiology. Pteropod molluscs (Thecosomata) form shells made of aragonite, a type of calcium carbonate that is highly soluble, suggesting that these organisms may be particularly sensitive to increasing carbon dioxide and reduced carbonate ion concentration. Thecosome pteropods, which dominate the calcium carbonate export south of the Antarctic Polar Front, will be the first major group of marine calcifying organisms to experience carbonate undersaturation within parts of their present-day geographical ranges as a result of anthropogenic carbon dioxide. An unusual, co-evolved relationship between thecosomes and their specialized gymnosome predators provides a unique backdrop against which to assess the physiological and ecological importance of elevated partial pressure of carbon dioxide. Pteropods are functionally important components of the Antarctic ecosystem with potential to influence phytoplankton stocks, carbon export, and dimethyl sulfide levels that, in turn, influence global climate through ocean-atmosphere feedback loops. The research will quantify the impact of elevated carbon dioxide on a dominant aragonitic pteropod, Limacina helicina, and its specialist predator, the gymnosome Clione antarctica, in the Ross Sea through laboratory experimentation. Results will be disseminated broadly to enhance scientific understanding in this field. The project involves collaboration between researchers at a predominantly undergraduate institution with a significant enrollment of students that are typically underrepresented in the research environment (California State University San Marcos - CSUSM) and at a Ph.D.-granting institution (University of Rhode Island - URI). The program will promote education and learning through the joint education of undergraduate students and graduate students at CSUSM and URI as part of a research team, as well as through the teaching activities of the principal investigators. Dr. Keating, CSUSM professor of science education, will participate in the McMurdo fieldwork and lead the outreach opportunities for the project.", "east": 167.0, "geometry": "POINT(166.5 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Seibel, Brad", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research: Impacts of Elevated pCO2 on a Dominant Aragonitic Pteropod (Thecosomata) and its Specialist Predator (Gymnosomata) in the Ross Sea", "uid": "p0000694", "west": 166.0}, {"awards": "0636723 Helly, John; 0636543 Murray, Alison; 0636440 Long, David; 0636319 Shaw, Timothy", "bounds_geometry": "POLYGON((-55 -52,-53.5 -52,-52 -52,-50.5 -52,-49 -52,-47.5 -52,-46 -52,-44.5 -52,-43 -52,-41.5 -52,-40 -52,-40 -53.3,-40 -54.6,-40 -55.9,-40 -57.2,-40 -58.5,-40 -59.8,-40 -61.1,-40 -62.4,-40 -63.7,-40 -65,-41.5 -65,-43 -65,-44.5 -65,-46 -65,-47.5 -65,-49 -65,-50.5 -65,-52 -65,-53.5 -65,-55 -65,-55 -63.7,-55 -62.4,-55 -61.1,-55 -59.8,-55 -58.5,-55 -57.2,-55 -55.9,-55 -54.6,-55 -53.3,-55 -52))", "dataset_titles": "Antarctic Iceberg Tracking Database; Free-Drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean; Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "datasets": [{"dataset_uid": "600064", "doi": "10.15784/600064", "keywords": "Biota; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Oceans; Sea Ice; Sea Surface; Southern Ocean; Weddell Sea", "people": "Shaw, Tim; Twining, Benjamin", "repository": "USAP-DC", "science_program": null, "title": "Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "url": "https://www.usap-dc.org/view/dataset/600064"}, {"dataset_uid": "000134", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Antarctic Iceberg Tracking Database", "url": "http://www.scp.byu.edu/data/iceberg/database1.html"}, {"dataset_uid": "600067", "doi": "10.15784/600067", "keywords": "Antarctica; NBP0902; Oceans; Physical Oceanography; Southern Ocean; Weddell Sea", "people": "Helly, John", "repository": "USAP-DC", "science_program": null, "title": "Free-Drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "url": "https://www.usap-dc.org/view/dataset/600067"}, {"dataset_uid": "600065", "doi": "10.15784/600065", "keywords": "Biota; Geochemistry; NBP0902; Oceans; Physical Oceanography; Sea Ice; Southern Ocean; Weddell Sea", "people": "Murray, Alison", "repository": "USAP-DC", "science_program": null, "title": "Free-Drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "url": "https://www.usap-dc.org/view/dataset/600065"}], "date_created": "Mon, 22 Nov 2010 00:00:00 GMT", "description": "Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions:1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children\u0027s books will participate in cruises to produce an account of the expedition and a daily interactive website.", "east": -40.0, "geometry": "POINT(-47.5 -58.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -52.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Twining, Benjamin; Shaw, Tim; Long, David; Murray, Alison; Helly, John", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "PI website; USAP-DC", "science_programs": null, "south": -65.0, "title": "Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "uid": "p0000511", "west": -55.0}, {"awards": "0636730 Vernet, Maria", "bounds_geometry": "POLYGON((-55 -52,-53.5 -52,-52 -52,-50.5 -52,-49 -52,-47.5 -52,-46 -52,-44.5 -52,-43 -52,-41.5 -52,-40 -52,-40 -53.3,-40 -54.6,-40 -55.9,-40 -57.2,-40 -58.5,-40 -59.8,-40 -61.1,-40 -62.4,-40 -63.7,-40 -65,-41.5 -65,-43 -65,-44.5 -65,-46 -65,-47.5 -65,-49 -65,-50.5 -65,-52 -65,-53.5 -65,-55 -65,-55 -63.7,-55 -62.4,-55 -61.1,-55 -59.8,-55 -58.5,-55 -57.2,-55 -55.9,-55 -54.6,-55 -53.3,-55 -52))", "dataset_titles": "Free-drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "datasets": [{"dataset_uid": "600068", "doi": "10.15784/600068", "keywords": "Antarctica; Biota; Chemistry:fluid; Chemistry:Fluid; Geochemistry; NBP0902; Oceans; Physical Oceanography; Sea Surface; Southern Ocean; Weddell Sea", "people": "Vernet, Maria", "repository": "USAP-DC", "science_program": null, "title": "Free-drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "url": "https://www.usap-dc.org/view/dataset/600068"}], "date_created": "Mon, 22 Nov 2010 00:00:00 GMT", "description": "Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions:1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children\u0027s books will participate in cruises to produce an account of the expedition and a daily interactive website.", "east": -40.0, "geometry": "POINT(-47.5 -58.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -52.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Vernet, Maria", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Collaborative Reseach: Free-drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean.", "uid": "p0000532", "west": -55.0}, {"awards": "0538580 Hemming, Sidney", "bounds_geometry": "POLYGON((60 -60,72 -60,84 -60,96 -60,108 -60,120 -60,132 -60,144 -60,156 -60,168 -60,180 -60,180 -61,180 -62,180 -63,180 -64,180 -65,180 -66,180 -67,180 -68,180 -69,180 -70,168 -70,156 -70,144 -70,132 -70,120 -70,108 -70,96 -70,84 -70,72 -70,60 -70,60 -69,60 -68,60 -67,60 -66,60 -65,60 -64,60 -63,60 -62,60 -61,60 -60))", "dataset_titles": "Antarctica\u0027s Geological History Reflected in Sedimentary Radiogenic Isotopes", "datasets": [{"dataset_uid": "600056", "doi": "10.15784/600056", "keywords": "Antarctica; Chemistry:sediment; Chemistry:Sediment; Geochemistry; Geochronology; Isotope Data; Marine Sediments; Oceans; Prydz Bay; Solid Earth; Southern Ocean; Weddell Sea; Wilkes Land", "people": "Goldstein, Steven L.; Hemming, Sidney R.; van de Flierdt, Tina", "repository": "USAP-DC", "science_program": null, "title": "Antarctica\u0027s Geological History Reflected in Sedimentary Radiogenic Isotopes", "url": "https://www.usap-dc.org/view/dataset/600056"}], "date_created": "Sat, 20 Nov 2010 00:00:00 GMT", "description": "This project studies sediment from the ocean floor to understand Antarctica\u0027s geologic history. Glacially eroded from the Antarctic continent, these sediments may offer insight into the 99% Antarctica covered by ice. The work\u0027s central focus is determining crust formation ages and thermal histories for three key areas of East Antarctica--Prydz Bay, eastern Weddell Sea, and Wilkes Land--through a combination of petrography, bulk sediment geochemistry and radiogenic isotopes, as well as isotope chronology of individual mineral grains. One specific objective is characterizing the composition of the Gamburtsev Mountains through studies of Eocene fluvial sediments from Prydz Bay. In addition to furthering our understanding of the hidden terrains of Antarctica, these terrigenous sediments will also serve as a natural laboratory to evaluate the effects of continental weathering on the Hf/Nd isotope systematics of seawater. An important broader impact of the project is providing exciting research projects for graduate and postdoctoral students using state of the art techniques in geochemistry.", "east": 180.0, "geometry": "POINT(120 -65)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Van De Flierdt, Christina-Maria; Goldstein, Steven L.; Hemming, Sidney R.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "Antarctica\u0027s Geological History Reflected in Sedimentary Radiogenic Isotopes", "uid": "p0000524", "west": 60.0}, {"awards": "0337567 Jacobel, Robert", "bounds_geometry": "POLYGON((130 -78,133 -78,136 -78,139 -78,142 -78,145 -78,148 -78,151 -78,154 -78,157 -78,160 -78,160 -79.2,160 -80.4,160 -81.6,160 -82.8,160 -84,160 -85.2,160 -86.4,160 -87.6,160 -88.8,160 -90,157 -90,154 -90,151 -90,148 -90,145 -90,142 -90,139 -90,136 -90,133 -90,130 -90,130 -88.8,130 -87.6,130 -86.4,130 -85.2,130 -84,130 -82.8,130 -81.6,130 -80.4,130 -79.2,130 -78))", "dataset_titles": "Glaciological Investigations of the Bulge and Trunk of Kamb Ice Stream, West Antarctica; Radar Studies of Internal Stratigraphy and Bed Topography along the US ITASE-II Traverse", "datasets": [{"dataset_uid": "609380", "doi": "10.7265/N5ZC80SH", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Kamb Ice Stream", "people": "Jacobel, Robert", "repository": "USAP-DC", "science_program": null, "title": "Glaciological Investigations of the Bulge and Trunk of Kamb Ice Stream, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609380"}, {"dataset_uid": "609475", "doi": "10.7265/N5G73BMS", "keywords": "Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness; ITASE; South Pole; Taylor Dome", "people": "Jacobel, Robert", "repository": "USAP-DC", "science_program": "ITASE", "title": "Radar Studies of Internal Stratigraphy and Bed Topography along the US ITASE-II Traverse", "url": "https://www.usap-dc.org/view/dataset/609475"}], "date_created": "Wed, 20 Oct 2010 00:00:00 GMT", "description": "This award supports a project to test whether Kamb Ice Stream (formerly Ice Stream C (ISC)), an ice stream\u003cbr/\u003ethat is thought to have stopped ~150 years ago, may be already in the process of restarting. If yes, it will help establish what is the rate of ice stream reactivation and what mechanisms are controlling this rate. If there is no evidence for ongoing ice stream reactivation, the physical controls that are preventing it will be examined and alternative scenarios for near-future evolution of this ice stream will be explored. One such scenario is an increase in ice diversion toward the neighboring Whillans Ice Stream. Such diversion may help prevent a complete stoppage of Whillans Ice Stream,which has been slowing down for at least the last 24 years. This project will consist of two components: (1) field observations of bed properties,geometry of internal radar reflectors, as well as surface strain rates and velocity/topography changes using Ice-Penetrating Radar and differential Global Positioning System, (2) numerical modeling study of near future(~100-1000 years) evolution of Kamb Ice Stream. The field component will be focused on the bulge-to-trunk transition, which is located at the present time just downstream of the so-called camp UpC. Reactivation of Kamb Ice Stream should be reflected in a downstream migration of the bulge-trunk transition at possibly high rates (bulge migration rates of ~km/yr occur on surging mountain glaciers). The modeling\u003cbr/\u003ecomponent will be used to generate predictions regarding the near-future behavior of Kamb Ice Stream. This project will provide training opportunities for at least two undergraduate students (per year) at St. Olaf College and for one\u003cbr/\u003eundergraduate student (per year) at UCSC. This collaboration will bring together scientists from three different types of US institutions: (1) a liberal arts college (St.Olaf College), (2) a public research university (UCSC) and (3) a NASA research laboratory (JPL). The project will also help build a new glaciological research program at UCSC. Project results will be incorporated into undergraduate and graduate courses at UCSC and will be made available\u003cbr/\u003eto the general public and educators through downloadable graphics and animations posted on the research website of the UCSC PI. Field data resulting from the project will be posted in the Antarctic Glaciological Data Center for use by other investigators.", "east": 160.0, "geometry": "POINT(145 -84)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR", "is_usap_dc": true, "keywords": "Ice; Antarctic Glaciations; Radar; Antarctic Ice Sheet; Radar Echo Sounder; Ice Sheet Thickness; Ice Stream; Ice Sheet Elevation; Not provided; Radar Echo Sounding; Ice Stratigraphy; Antarctica; West Antarctic Ice Sheet; Continental Ice Sheet; Ice Cap; Antarctic; US ITASE; FIELD SURVEYS; Ice Thickness; FIELD INVESTIGATION", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; West Antarctic Ice Sheet", "north": -78.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Jacobel, Robert", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": -90.0, "title": "Collaborative Research: Is Ice Stream C Restarting? Glaciological Investigations of the \u0027Bulge\u0027 and the Trunk of Ice Stream C, West Antartica", "uid": "p0000192", "west": 130.0}, {"awards": "0820779 Mosley-Thompson, Ellen", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 06 Oct 2010 00:00:00 GMT", "description": "Mosley-Thompson\u003cbr/\u003e0820779\u003cbr/\u003e\u003cbr/\u003eThis MRI award supports the acquisition of an inductively coupled-sector field mass spectrometer (ICP-SFMS) to extract atmospheric trace element histories from ice cores and to assess contemporary water quality. The intellectual merit and the scientific motivation for acquiring this instrument arises from the urgency to document and understand both contemporary and past Earth system changes. Trace elements are exceptional tools for reconstructing past processes in the Earth?s system and as some toxic species are produced by human activities, for monitoring the global anthropogenic footprint. The ICP-SFMS allows simultaneous analysis of numerous trace and ultra-trace elements from small mass samples and will allow new proxy information to be extracted from both new and archived ice cores. The analyses will make it possible to identify sources of impurities in ice cores and other water samples from which knowledge about past atmospheric circulation patterns, anthropogenic emissions, extraterrestrial contributions and volcanic circulation patterns can be derived. The broader impacts of the work relate to the societal relevance of the science and the strong education and outreach activities of the principal investigators. Students will receive training on state-of-the-art instrumentation which will support their graduate research training.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS", "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Gabrielli, Paolo", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "MRI: Acquisition of an Inductively Coupled-sector Field Mass Spectrometer to Extract Atmospheric Trace Element Histories from Ice Cores and Assess Contemporary Water Quality", "uid": "p0000737", "west": null}, {"awards": "0538097 Anandakrishnan, Sridhar", "bounds_geometry": "POLYGON((140 -89.8,144 -89.8,148 -89.8,152 -89.8,156 -89.8,160 -89.8,164 -89.8,168 -89.8,172 -89.8,176 -89.8,180 -89.8,180 -89.82,180 -89.84,180 -89.86,180 -89.88,180 -89.9,180 -89.92,180 -89.94,180 -89.96,180 -89.98,180 -90,176 -90,172 -90,168 -90,164 -90,160 -90,156 -90,152 -90,148 -90,144 -90,140 -90,140 -89.98,140 -89.96,140 -89.94,140 -89.92,140 -89.9,140 -89.88,140 -89.86,140 -89.84,140 -89.82,140 -89.8))", "dataset_titles": "IRIS Data Management Center (DMC) holds the full resolution seismic data. Keyword: POLELAKE. Dataset ID: 10-019; seismic data. Keyword: POLELAKE. Dataset ID: 10-019", "datasets": [{"dataset_uid": "001466", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IRIS Data Management Center (DMC) holds the full resolution seismic data. Keyword: POLELAKE. Dataset ID: 10-019", "url": "http://www.iris.edu/dms/dmc"}, {"dataset_uid": "000102", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "seismic data. Keyword: POLELAKE. Dataset ID: 10-019", "url": "http://ds.iris.edu/ds/nodes/dmc/"}], "date_created": "Wed, 08 Sep 2010 00:00:00 GMT", "description": "0538097\u003cbr/\u003eAnandakrishnan\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to intensively study a subglacial Antarctic lake near the geographic South Pole using seismic and radar methods. These ground-based experiments are better suited to determine the presence of water and its thickness than are airborne methods. We hypothesize that there are two end-member explanations for this feature: either the lake is thawed, but freezing on (and likely to have been freezing on through much of the current interglacial period), or it is a frozen, relict lake for which the high basal radar reflectivity is due to intergranular water in a permafrost-like layer beneath the ice. The seismic experiment we propose is ideally suited to examine these alternatives. Intermediate cases of, e.g., a thawed saturated sedimentary base or a smooth crystalline basement layer would also be resolved by this experiment. Seismic reflections are sensitive to changes in acoustic impedance which is strongly variable with fluid content, porosity, and lithology. Water has low density relative to most rocks and low seismic velocity (and nil shear wave velocity) relative to both ice and rock. Thus, discriminating between subglacial water and subglacial rock is a task ideally suited to the seismic reflection technique. This project has significant impacts outside the directly affected fields of Antarctic glaciology and geology. The lake (either thawed or sediments with thin liquid layers around the matrix particles) will have the potential for harboring novel life forms. The experiment has the potential for expanding our information about the newest frontier in life on Earth. The collaboration between PIs in the seismic community and the marine acoustics community will foster cross-disciplinary pollination of ideas, techniques, and tools. In addition to traditional seismic techniques, new methods of data analysis that have been developed by acousticians will be applied to this problem as an independent measure of lake properties. We will train students who will have a wider view of seismology than would be possible in a traditional ocean acoustics or traditional geoscience seismology program of study.", "east": 180.0, "geometry": "POINT(160 -89.9)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e SEISMIC REFLECTION PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS", "is_usap_dc": false, "keywords": "Antarctica; South Pole; Porosity; Not provided; Seismic; Lithology; FIELD INVESTIGATION; Subglacial; Subglacial Lake; FIELD SURVEYS; LABORATORY; Fluid Content; Acoustic Impedance", "locations": "Antarctica; South Pole", "north": -89.8, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Anandakrishnan, Sridhar; Holland, Charles", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "IRIS", "repositories": "IRIS", "science_programs": null, "south": -90.0, "title": "Characterization of Lake Amundsen-Scott, S. Pole: A Ground Geophysical Program", "uid": "p0000693", "west": 140.0}, {"awards": "0635470 Detrich, H. William", "bounds_geometry": "POLYGON((-67.41667 -61.2,-66.27667 -61.2,-65.13667 -61.2,-63.99667 -61.2,-62.85667 -61.2,-61.71667 -61.2,-60.57667 -61.2,-59.43667 -61.2,-58.29667 -61.2,-57.15667 -61.2,-56.01667 -61.2,-56.01667 -61.71,-56.01667 -62.22,-56.01667 -62.73,-56.01667 -63.24,-56.01667 -63.75,-56.01667 -64.26,-56.01667 -64.77,-56.01667 -65.28,-56.01667 -65.79,-56.01667 -66.3,-57.15667 -66.3,-58.29667 -66.3,-59.43667 -66.3,-60.57667 -66.3,-61.71667 -66.3,-62.85667 -66.3,-63.99667 -66.3,-65.13667 -66.3,-66.27667 -66.3,-67.41667 -66.3,-67.41667 -65.79,-67.41667 -65.28,-67.41667 -64.77,-67.41667 -64.26,-67.41667 -63.75,-67.41667 -63.24,-67.41667 -62.73,-67.41667 -62.22,-67.41667 -61.71,-67.41667 -61.2))", "dataset_titles": "Expedition Data; Expedition data of LMG1003; Expedition data of LMG1004; Sequence data", "datasets": [{"dataset_uid": "002684", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1003", "url": "https://www.rvdata.us/search/cruise/LMG1003"}, {"dataset_uid": "002685", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1004", "url": "https://www.rvdata.us/search/cruise/LMG1004"}, {"dataset_uid": "000133", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Sequence data", "url": "http://www.ncbi.nlm.nih.gov/genbank/"}, {"dataset_uid": "001508", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0807"}, {"dataset_uid": "001509", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0806"}], "date_created": "Mon, 06 Sep 2010 00:00:00 GMT", "description": "Abstract\u003cbr/\u003e\u003cbr/\u003eSince the advent of Antarctic continental glaciation, the opening of the Drake Passage between South America and the Antarctic Peninsula, and the onset of cooling of the Southern Ocean ~38-25 million years ago, evolution of the Antarctic marine biota has been driven by the development of extreme cold temperatures. Because they live at very low and stable temperatures, Antarctic fishes of the suborder Nototheniodei are particularly attractive as models for understanding the mechanisms of biomolecular cold adaptation, or the compensatory restructuring of biochemical and physiological systems to preserve biological function in cold thermal regimes. Two interrelated and potentially co-evolved systems, the tubulins that form microtubules and the chaperonin-containing TCP1 (t-complex protein-1) complex (CCT) that assists the folding of tubulins, provide an unparalleled opportunity to elucidate these mechanisms. This research will yield new and important knowledge regarding: 1) cold adaptation of microtubule assembly and of chaperonin function; and 2) the co-evolutionary origin of tubulin-binding specificity by CCT. The first objective of this proposal is to determine the contributions of five novel amino acid substitutions found in Antarctic fish beta-tubulins to microtubule assembly at cold temperature. The second objective is to establish a chaperonin folding system in vitro using CCT purified from testis tissue of Antarctic fishes and to evaluate its thermal properties and mechanism. The third objective is to evaluate, through phylogenetically controlled contrasts, the hypothesis that CCT and its tubulin substrates from Antarctic fishes have co-evolved to function at cold temperatures. The broader impacts of this proposal include introduction of graduate and REU undergraduate students of Northeastern University to state-of-the-art biochemical, cellular, and molecular-biological research relevant to ecological and environmental issues of the Antarctic marine ecosystem. Because much of the research on the biogenesis and function of cold-adapted proteins will be performed in the field at Palmer Station, these students will gain invaluable experience in the practical considerations of expeditionary biological science. The research also will increase knowledge about molecular cold adaptation in one of the Earth\u0027s extreme environments, and hence is relevant to the formulation of refined hypotheses regarding potential extraterrestrial life on Mars or Europa. The cold-functioning chaperonin protein folding system will be of great value to the biopharmaceutical and biotechnological industries for use in folding insoluble proteins.", "east": -56.01667, "geometry": "POINT(-61.71667 -63.75)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": true, "keywords": "R/V LMG", "locations": null, "north": -61.2, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Detrich, H. William", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "NCBI GenBank; R2R", "science_programs": null, "south": -66.3, "title": "Protein Folding and Function at Cold Temperature: Co-Evolution of the Chaperonin CCT and Tubulins from Antarctic Fishes", "uid": "p0000470", "west": -67.41667}, {"awards": "0538553 Cole-Dai, Jihong", "bounds_geometry": "POINT(-112.085 -79.467)", "dataset_titles": "Major Ion Concentrations in WDC05Q and WDC06A Ice Cores (WAIS Divide)", "datasets": [{"dataset_uid": "609544", "doi": "10.7265/N54M92H3", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ion Chromatograph; WAIS Divide; WAIS Divide Ice Core", "people": "Cole-Dai, Jihong", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Major Ion Concentrations in WDC05Q and WDC06A Ice Cores (WAIS Divide)", "url": "https://www.usap-dc.org/view/dataset/609544"}], "date_created": "Wed, 25 Aug 2010 00:00:00 GMT", "description": "Cole-Dai\u003cbr/\u003e0538553\u003cbr/\u003e\u003cbr/\u003eThis award supports a project that will contribute to the US West Antarctica Ice Sheet Ice Divide ice core (WAIS Divide) project by developing new instrumentation and analytical procedures to measure concentrations of major ions (Cl-, NO3-, SO42-, Na+, K+, NH4+, Mg2+, Ca2+). A melter-based, continuous flow, multi-ion-chromatograph technique (CFA-IC) has been developed recently at South Dakota State University (SDSU). This project will further expand and improve the CFA-IC technique and instrumentation and develop procedures for routine analysis of major ions in ice cores. In addition, training of personnel (operators) to perform continuous, high resolution major ion analysis of the deep core will be accomplished through this project. The temporal resolution of the major ion measurement will be as low as 0.5 cm with the fully developed CFA-IC technique. At this resolution, it will be possible to use annual cycles of sulfate and sea-salt ion concentrations to determine annual layers in the WAIS Divide ice core. Annual layer counting using CFA-IC chemical measurements and other high resolution measurements will contribute significantly to the major WAIS Divide project objective of producing precisely (i.e., annually) dated climate records. The project will support the integration of research and education, train future scientists and promote human resource development through the participation of graduate and undergraduate students. In particular, undergraduate participation will contribute to a current REU (Research Experience for Undergraduates) chemistry site program at SDSU. Development and utilization of multi-user instrumentation will promote research collaboration and advance environmental science. NSF support for SDSU will contribute to the economic development and strengthen the infrastructure for research and education in South Dakota.", "east": -112.085, "geometry": "POINT(-112.085 -79.467)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "LABORATORY; WAIS Divide; Ice Core; West Antarctic Ice Sheet; Ion Chromatograph; GROUND-BASED OBSERVATIONS; Not provided; Major Ion; Ions", "locations": "WAIS Divide; West Antarctic Ice Sheet", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Cole-Dai, Jihong", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Major Ion Chemistry of WAIS Divide Ice Core", "uid": "p0000035", "west": -112.085}, {"awards": "0636506 Mayewski, Paul", "bounds_geometry": "POLYGON((-137.7 -75.7,-137.4 -75.7,-137.1 -75.7,-136.8 -75.7,-136.5 -75.7,-136.2 -75.7,-135.9 -75.7,-135.6 -75.7,-135.3 -75.7,-135 -75.7,-134.7 -75.7,-134.7 -75.773,-134.7 -75.846,-134.7 -75.919,-134.7 -75.992,-134.7 -76.065,-134.7 -76.138,-134.7 -76.211,-134.7 -76.284,-134.7 -76.357,-134.7 -76.43,-135 -76.43,-135.3 -76.43,-135.6 -76.43,-135.9 -76.43,-136.2 -76.43,-136.5 -76.43,-136.8 -76.43,-137.1 -76.43,-137.4 -76.43,-137.7 -76.43,-137.7 -76.357,-137.7 -76.284,-137.7 -76.211,-137.7 -76.138,-137.7 -76.065,-137.7 -75.992,-137.7 -75.919,-137.7 -75.846,-137.7 -75.773,-137.7 -75.7))", "dataset_titles": "Ion Concentrations from SPRESSO Ice Core, Antarctica; Mt. Moulton Ice Trench Mass Spectrometry Data, Antarctica", "datasets": [{"dataset_uid": "609471", "doi": "10.7265/N508638J", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; ITASE; Paleoclimate; South Pole; SPRESSO Ice Core", "people": "Mayewski, Paul A.; Korotkikh, Elena", "repository": "USAP-DC", "science_program": null, "title": "Ion Concentrations from SPRESSO Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609471"}, {"dataset_uid": "609472", "doi": "10.7265/N5VH5KSV", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Mt Moulton; Paleoclimate", "people": "Mayewski, Paul A.; Korotkikh, Elena", "repository": "USAP-DC", "science_program": null, "title": "Mt. Moulton Ice Trench Mass Spectrometry Data, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609472"}], "date_created": "Thu, 29 Jul 2010 00:00:00 GMT", "description": "This award supports a project to examine an existing ice core of opportunity from South Pole (SPRESO core) to develop a 2000+ year long climate record. SPRESO ice core will be an annually dated, sub-annually-resolved reconstruction of past climate (atmospheric circulation, temperature, precipitation rate, and atmospheric chemistry) utilizing continuous, co-registered measurements (n=45) of: major ions, trace elements, and stable isotope series, plus selected sections for microparticle size and composition. The intellectual merit of this project relates to the fact that few 2000+ year records of this quality exist in Antarctica despite increasing scientific interest in this critical time period as the framework within which to understand modern climate. The scientific impact of this ice core investigation are that it will provide an in-depth understanding of climate variability; a baseline for assessing modern climate variability in the context of human activity; and a contribution to the prediction of future climate variability. The broader impact of this work is that the proposed research addresses important questions concerning the role of Antarctica in past, present, and future global change. Results will be translated into publicly accessible information through public lectures, media appearances, and an extensive outreach activity housed in our Institute. Our ice core activities provide a major basis for curriculum in K-12 and University plus a basis for several field and laboratory based graduate theses and undergraduate student projects. The project will support one PhD student for 3 years and undergraduate salaries. The Climate Change Institute has a long history of gender and ethnically diverse student and staff involvement in research.", "east": -134.7, "geometry": "POINT(-136.2 -76.065)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Ice Core Interpretation; Ions; US ITASE; Explorations; LABORATORY; Ice Core Data; Ice Core; Ice Analysis; Ice; Not provided; Antarctic Ice Sheet; Laboratory Investigation; Field Investigations; Ice Core Chemistry; Horizontal Ice Core; Ice Chemistry; Ice Sheet", "locations": "Antarctic Ice Sheet", "north": -75.7, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Korotkikh, Elena; Kreutz, Karl; Kurbatov, Andrei V.; Mayewski, Paul A.", "platforms": "Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.43, "title": "Collaborative Proposal: 2000+ Year Detailed, Calibrated Climate Reconstruction from a South Pole Ice Core Set in an Antarctic - Global Scale Context", "uid": "p0000209", "west": -137.7}, {"awards": "0538657 Severinghaus, Jeffrey", "bounds_geometry": null, "dataset_titles": "Borehole Temperature Measurement in WDC05A in January 2008 and January 2009; d15N and d18O of air in the WAIS Divide ice core; Low-res d15N and d18O of O2 in the WAIS Divide 06A Deep Core; Ultra-High Resolution LA-ICP-MS Results: DO-21 Rapid Warming Event; WAIS Divide d18Oatm and Siple Dome/WAIS Divide composite and individual delta epsilon LAND", "datasets": [{"dataset_uid": "609635", "doi": "10.7265/N51J97PS", "keywords": "Arctic; Geochemistry; GISP; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate", "people": "Haines, Skylar; Mayewski, Paul A.; Kurbatov, Andrei V.", "repository": "USAP-DC", "science_program": null, "title": "Ultra-High Resolution LA-ICP-MS Results: DO-21 Rapid Warming Event", "url": "https://www.usap-dc.org/view/dataset/609635"}, {"dataset_uid": "601747", "doi": "10.15784/601747", "keywords": "Antarctica; Delta 15N; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Gas Records; Ice Core Records; Isotope; Nitrogen; Nitrogen Isotopes; Oxygen; Oxygen Isotope; Snow/ice; Snow/Ice; WAIS; WAIS Divide", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "d15N and d18O of air in the WAIS Divide ice core", "url": "https://www.usap-dc.org/view/dataset/601747"}, {"dataset_uid": "609637", "doi": "10.7265/N5B27S7S", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Temperature; WAIS Divide; WAIS Divide Ice Core", "people": "Severinghaus, Jeffrey P.; Orsi, Anais J.", "repository": "USAP-DC", "science_program": null, "title": "Borehole Temperature Measurement in WDC05A in January 2008 and January 2009", "url": "https://www.usap-dc.org/view/dataset/609637"}, {"dataset_uid": "609660", "doi": "10.7265/N5S46PWD", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Low-res d15N and d18O of O2 in the WAIS Divide 06A Deep Core", "url": "https://www.usap-dc.org/view/dataset/609660"}, {"dataset_uid": "601041", "doi": "10.15784/601041", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Gas; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; WAIS Divide Ice Core", "people": "Severinghaus, Jeffrey P.; Seltzer, Alan", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide d18Oatm and Siple Dome/WAIS Divide composite and individual delta epsilon LAND", "url": "https://www.usap-dc.org/view/dataset/601041"}], "date_created": "Thu, 08 Jul 2010 00:00:00 GMT", "description": "0538657\u003cbr/\u003eSeveringhaus\u003cbr/\u003eThis award supports a project to develop high-resolution (20-yr) nitrogen and oxygen isotope records on trapped gases in the WAIS Divide ice core (Antarctica), with a comparison record for chronological purposes in the GISP2 (Greenland) ice core. The main scientific objective is to provide an independent temperature-change record for the past 100,000 years in West Antarctica that is not subject to the uncertainty inherent in ice isotopes (18O and deuterium), the classical paleothermometer. Nitrogen isotopes (Delta 15N) in air bubbles in glacial ice record rapid surface temperature change because of thermal fractionation of air in the porous firn layer, and this isotopic anomaly is recorded in bubbles as the firn becomes ice. Using this gas-based temperature-change record, in combination with methane data as interpolar stratigraphic markers, the proposed work will define the precise relative timing of abrupt warming in Greenland and abrupt cooling at the WAIS Divide site during the millennial-scale climatic oscillations of Marine Isotopic Stage 3 (30-70 kyr BP) and the last glacial termination. The nitrogen isotope record also provides constraints on past firn thickness, which inform temperature and accumulation rate histories from the ice core. A search for possible solar-related cycles will be conducted with the WAIS Divide Holocene (Delta 15N.) Oxygen isotopes of O2 (Delta 18Oatm) are obtained as a byproduct of the (Delta 15N) measurement. The gas-isotopic records will enhance the value of other atmospheric gas measurements in WAIS Divide, which are expected to be of unprecedented quality. The high-resolution (Delta 18Oatm) records will provide chronological control for use by the international ice coring community and for surface glacier ice dating. Education of a graduate student, and training of a staff member in the laboratory, will contribute to the nation\u0027s human resource base. Outreach activities in the context of the International Polar Year will be enhanced. International collaboration is planned with the laboratory of LSCE, University of Paris.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e LA-ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Borehole Temperature; LABORATORY; Depth; Not provided; GROUND-BASED OBSERVATIONS; Wais Divide-project; Ice Core; WAIS Divide", "locations": "WAIS Divide", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Haines, Skylar; Mayewski, Paul A.; Orsi, Anais J.; Kurbatov, Andrei V.; Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate", "uid": "p0000036", "west": null}, {"awards": "0632346 Tulaczyk, Slawek; 0632161 Johnson, Jesse; 0632168 Hulbe, Christina; 0632325 Seals, Cheryl", "bounds_geometry": "POLYGON((-180 -50.05,-144 -50.05,-108 -50.05,-72 -50.05,-36 -50.05,0 -50.05,36 -50.05,72 -50.05,108 -50.05,144 -50.05,180 -50.05,180 -54.045,180 -58.04,180 -62.035,180 -66.03,180 -70.025,180 -74.02,180 -78.015,180 -82.01,180 -86.005,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -86.005,-180 -82.01,-180 -78.015,-180 -74.02,-180 -70.025,-180 -66.03,-180 -62.035,-180 -58.04,-180 -54.045,-180 -50.05))", "dataset_titles": "Singular Value Decomposition Analysis of Ice Sheet Model Output Fields; Wiki containing the data and provenance.", "datasets": [{"dataset_uid": "609396", "doi": "10.7265/N5K64G1S", "keywords": "Antarctica; Community Ice Sheet Model; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology", "people": "Daescu, Dacian N.; Hulbe, Christina", "repository": "USAP-DC", "science_program": null, "title": "Singular Value Decomposition Analysis of Ice Sheet Model Output Fields", "url": "https://www.usap-dc.org/view/dataset/609396"}, {"dataset_uid": "001499", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Wiki containing the data and provenance.", "url": "http://websrv.cs.umt.edu/isis/index.php/Present_Day_Antarctica"}], "date_created": "Fri, 02 Jul 2010 00:00:00 GMT", "description": "Johnson/0632161\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to create a \"Community Ice Sheet Model (CISM)\". The intellectual merit of the proposed activity is that the development of such a model will aid in advancing the science of ice sheet modeling. The model will be developed with the goal of assuring that CISM is accurate, robust, well documented, intuitive, and computationally efficient. The development process will stress principles of software design. Two complementary efforts will occur. One will involve novel predictive modeling experiments on the Amundsen Sea Embayment region of Antarctica with the goal of understanding how interactions between basal processes and ice sheet dynamics can result in abrupt reconfigurations of ice-sheets, and how those reconfigurations impact other Earth systems. New modeling physics are to include the higher order stress terms that allow proper resolution of ice stream and shelf features, and the associated numerical methods that allow higher and lower order physics to be coexist in a single model. The broader impacts of the proposed activity involve education and public outreach. The model will be elevated to a high standard in terms of user interface and design, which will allow for the production of inquiry based, polar and climate science curriculum for K-12 education. The development of a CISM itself would represent a sea change in the way that glaciological research is conducted, eliminating numerous barriers to progress in polar research such as duplicated efforts, lack of transparency in publication, lack of a cryospheric model for others to link to and reference, and a common starting point from which to begin investigation. As the appropriate interfaces are developed, a curriculum to utilize CISM in education will be developed. Students participating in this grant will be required to be involved in public outreach through various mechanisms including local and state science fairs. The model will also serve as a basis for educating \"a new generation\" of climate scientists. This project is relevant to the International Polar Year (IPY) as the research team is multi-institutional and multi-disciplinary, will bring new groups and new specialties into the realm of polar research and is part of a larger group of proposals whose research focuses on research in the Amundsen Sea Embayment Plan region of Antarctica. The project is international in scope and the nature of software development is quite international, with firm commitments from the United Kingdom and Belgium to collaborate. In addition there will be an international external advisory board that will be used to guide development, and serve as a link to other IPY activities.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "MODELS; International Polar Year; Derived Basal Temperature Evolution; Ice Sheet; Community Ice Sheet Model; Ice Sheet Model; LABORATORY; Amundsen Sea; Eismint; Modeling; Basal Temperature; Numerical Model; Antarctic Ice Sheet; Environmental Modeling; IPY; Antarctica; Model; Not provided; Ice Dynamic", "locations": "Antarctic Ice Sheet; Antarctica; Amundsen Sea", "north": -50.05, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Hulbe, Christina; Seals, Cheryl; Johnson, Jesse; Daescu, Dacian N.", "platforms": "Not provided; OTHER \u003e MODELS \u003e MODELS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "PI website; USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: IPY, The Next Generation: A Community Ice Sheet Model for Scientists and Educators With Demonstration Experiments in Amundsen Sea Embayment Region", "uid": "p0000756", "west": -180.0}, {"awards": "0839042 Caffee, Marc", "bounds_geometry": "POINT(-112.085 -79.467)", "dataset_titles": "Cosmogenic 10Be in WAIS Divide Ice core, 1190-2453 m; Cosmogenic Radionuclides in the WAIS Divide Ice Core", "datasets": [{"dataset_uid": "601466", "doi": "10.15784/601466", "keywords": "Antarctica; West Antarctic Ice Sheet", "people": "Welten, Kees; Woodruff, T. E.; Caffee, M. W.; Nishiizumi, Kunihiko", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Cosmogenic 10Be in WAIS Divide Ice core, 1190-2453 m", "url": "https://www.usap-dc.org/view/dataset/601466"}, {"dataset_uid": "600383", "doi": "10.15784/600383", "keywords": "Antarctica; Cosmogenic Radionuclides; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hydrothermal Vent; WAIS Divide; WAIS Divide Ice Core", "people": "Welten, Kees", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Cosmogenic Radionuclides in the WAIS Divide Ice Core", "url": "https://www.usap-dc.org/view/dataset/600383"}], "date_created": "Thu, 01 Jul 2010 00:00:00 GMT", "description": "Caffee/0839042 \u003cbr/\u003e\u003cbr/\u003eThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to measure the concentration of the cosmogenic radionuclide, Beryllium-10 in the deep WAIS divide ice core. Since cosmogenic radionuclides are one of the key parameters used for absolute dating of the ice core and deriving paleoaccumulation rates, it is essential that these measurements be made quickly and efficiently, and that the information is disseminated as soon as the results are available. The intellectual merit of the project is that it will allow a comparison to be made between the core from WAIS Divide and previously measured cosmogenic radionuclide records from Arctic ice cores, particularly GISP2 and GRIP This project will enable scientists to delineate those processes acting at a local level from those that produce global effects and will provide independent chronological markers to aid in the reconstruction of the WAIS Divide ice core chronology. The cosmogenic 10Be profile can also be used to investigate the possible role of solar activity on climate. The direct comparison of radionuclide concentrations with paleoclimate records in ice cores from different sites will provide more insight in the timing and magnitude of solar forcing of climate. The broader impacts of this project include: (i) the formation of a multi-disciplinary team of collaborators for the interpretation of future analyses of cosmogenic radionuclide data from the WAIS divide and other ice cores. (ii) the involvement and training of graduate and undergraduate students in the large scale project of climate research through detailed studies of ice samples. (iii) the opportunity to highlight to a wide range of lab visitors and students from local K-12 schools the importance of ice core and climate change studies.\u003cbr/\u003e\u003cbr/\u003eThis award does not involve field work in Antarctica.", "east": -112.085, "geometry": "POINT(-112.085 -79.467)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e AMS", "is_usap_dc": false, "keywords": "Ice Core; WAIS Divide; Antarctica; Not provided; Radionulides; Accelerator Mass Spectrometry; Cosmogenic", "locations": "WAIS Divide; Antarctica", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Welten, Kees; Nishiizumi, Kunihiko; Caffee, Marc; Woodruff, Thomas", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Collaborative Research: Cosmogenic Radionuclides in the Deep WAIS Divide Core", "uid": "p0000103", "west": -112.085}, {"awards": "0801392 Swanson, Brian", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Ice Nucleation by Marine Psychrophiles", "datasets": [{"dataset_uid": "600087", "doi": "10.15784/600087", "keywords": "Biota; Microbiology; Oceans; Raman Spectroscopy; Sea Ice; Sea Surface; Southern Ocean", "people": "Swanson, Brian", "repository": "USAP-DC", "science_program": null, "title": "Ice Nucleation by Marine Psychrophiles", "url": "https://www.usap-dc.org/view/dataset/600087"}], "date_created": "Sat, 26 Jun 2010 00:00:00 GMT", "description": "The primary objective of this research is to investigate polar marine psychrophilic bacteria for their potential to nucleate ice using a combination of microbiological, molecular biological and atmospheric science approaches in the laboratory. Very little is known about how psychrophiles interact and cope with ice or their adaptations to conditions of extreme cold and salinity. This work will involve a series of laboratory experiments using a novel freeze-tube technique for assaying freezing spectra which will provide quantitative information on: (i) the temperature-dependent freezing rates for heterogeneously frozen droplets containing sea-ice bacteria, (ii) the proportional occurrence of ice-nucleation activity versus anti-freeze activity among sea-ice bacterial isolates and (iii) the temperature-dependent freezing rates of bacteria with ice-nucleation activity grown at a range of temperatures and salinities. The compound(s) responsible for the observed activity will be identified, which is an essential step towards the development of an in-situ bacterial ice-nucleation detection assay that can be applied in the field to Antarctic water and cloud samples.\u003cbr/\u003e One of the goals of this work is to better understand survival and cold adaptation processes of polar marine bacteria confronted with freezing conditions in sea ice. Since sea ice strongly impacts polar, as well as the global climates, this research is of significant interest because it will also provide data for accessing the importance of bacterial ice nucleation in the formation of sea ice. These measurements of ice-nucleation rates will be the first high-resolution measurements for psychrophilic marine bacteria. Another goal is to better understand the impact of bacterial ice initiation processes in polar clouds by making high-resolution measurements of nucleation rates for cloud bacteria found over Arctic and Antarctic regions. Initial measurements indicate these bacteria nucleate ice at warmer temperatures and the effect in polar regions may be quite important, since ice can strongly impact cloud dynamics, cloud radiative properties, precipitation formation, and cloud chemistry. If these initial measurements are confirmed, the data collected here will be important for improving the understanding of polar cloud processes and models. A third goal is to better understand the molecular basis of marine bacterial ice nucleation by characterizing the ice-nucleation compound and comparing it with those of known plant-derived ice-nucleating bacteria, which are the only ice-nucleating bacteria examined in detail to date. The proposed activity will support the beginning academic career of a post-doctoral researcher and will serve as the basis for several undergraduate student laboratory projects. Results from this research will be widely published in various scientific journals and outreach venues.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Swanson, Brian", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Ice Nucleation by Marine Psychrophiles", "uid": "p0000195", "west": -180.0}, {"awards": "0538494 Meese, Debra", "bounds_geometry": null, "dataset_titles": "Microstructural Location and Composition of Impurities in Polar Ice Cores", "datasets": [{"dataset_uid": "609436", "doi": "10.7265/N5DF6P5P", "keywords": "Antarctica; Arctic; Byrd Glacier; Byrd Ice Core; Chemistry:ice; Chemistry:Ice; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Lake Vostok; Paleoclimate; Vostok Ice Core", "people": "Baker, Ian; Obbard, Rachel", "repository": "USAP-DC", "science_program": null, "title": "Microstructural Location and Composition of Impurities in Polar Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609436"}], "date_created": "Thu, 03 Jun 2010 00:00:00 GMT", "description": "0538494\u003cbr/\u003eMeese\u003cbr/\u003eThis award supports a project for physical properties research on snow pits and firn/ice cores with specific objectives that include stratigraphic analysis including determination of accumulation rates, annual layers, depth hoar, ice and wind crusts and rates of grain growth with depth. Studies of firn densification rates and how these parameters relate to the meteorology and climatology over the last 200 years of snow accumulation in Antarctica will also be investigated. The project will also determine the seasonality of accumulation by co-registration of stratigraphy and chemistry and determination of chemical species at the grain boundaries, how these may change with depth/densification (and therefore temperature), precipitation, and may affect grain growth. Fabric analyses will be made, including variation with depth, location on undulations and if any variation exists with climate/chemistry. The large spatial coverage of the US ITASE program offers the opportunity to determine how these parameters are affected by a large range of temperature, precipitation and topographic effects. The intellectual merit of the project includes the fact that ITASE is the terrestrial equivalent of a polar research vessel that provides a unique, logistically efficient, multi-dimensional (x, y, z and time) view of the atmosphere, ice sheet and their histories. Physical properties measurements/ analyses are an integral part of understanding the dynamic processes to which the accumulated snow is subjected. Recent advancements in the field along with multiple core sites provide an excellent opportunity to gain a much broader understanding of the spatial, temporal and physical variables that impact firnification and the possible resultant impact on climatic interpretation. In terms of broader impacts, the data collected by US ITASE and its international ITASE partners is available to a broad scientific community. US ITASE has an extensive program of public outreach and provides significant opportunities for many students to experience multidisciplinary Antarctic research. A graduate student, a post-doctoral fellow and at least one undergraduate would be funded by this work. Dr. Meese is also a member of the New England Science Collaborative, an organization that educates the public on climate change based on recent scientific advancements.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES", "is_usap_dc": false, "keywords": "LABORATORY; Grain Growth; FIELD SURVEYS; Accumulation Rate; Firn Core; FIELD INVESTIGATION; Chemistry; Snow Pit; Depth Hoar; Firn Density; Ice Core; Not provided; Stratigraphic Analysis; Firn; US ITASE; Annual Layers", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Meese, Deb; MEESE, DEBRA", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "The Physical Properties of the US ITASE Firn and Ice Cores from South Pole to Taylor Dome", "uid": "p0000289", "west": null}, {"awards": "0338151 Raymond, Charles", "bounds_geometry": "POINT(-112.086 -79.468)", "dataset_titles": "Englacial Layers and Attenuation Rates across the Ross and Amundsen Sea Ice-Flow Divide (WAIS Divide), West Antarctica; Surface Elevation and Ice Thickness, Western Marie Byrd Land, Antarctica", "datasets": [{"dataset_uid": "609119", "doi": "10.7265/N5BZ63ZH", "keywords": "Airborne Radar; Airplane; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marie Byrd Land", "people": "Wilson, Douglas S.; Luyendyk, Bruce P.", "repository": "USAP-DC", "science_program": null, "title": "Surface Elevation and Ice Thickness, Western Marie Byrd Land, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609119"}, {"dataset_uid": "609470", "doi": "10.7265/N5416V0W", "keywords": "Airborne Radar; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Radar; WAIS Divide", "people": "Raymond, Charles; Matsuoka, Kenichi", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Englacial Layers and Attenuation Rates across the Ross and Amundsen Sea Ice-Flow Divide (WAIS Divide), West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609470"}], "date_created": "Tue, 11 May 2010 00:00:00 GMT", "description": "This award supports an investigation of spatial variations of ice temperature and subglacial conditions using available ice-penetrating radar data around a future deep ice coring site near the Ross and Amundsen flow divide of West Antarctic Ice Sheet. Besides geometry of reflection layers the focus will be on intensities of radar echoes from within ice deeper than several hundred meters and will also examine echoes from the bed. Preliminary studies on theory and comparison with Japanese radar data from East Antarctica suggest that large spatial variations of the vertical gradient of radar echoes from within ice exist and are caused primarily by ice temperature and secondarily by crystal-orientation fabric. The hypothesis that the vertical gradient is a proxy of ice temperature will be tested. The project will utilize an existing data set from the Support Office for Aerogeophysical Research in Antarctica (SOAR) and will complement work already underway at University of Texas to analyze the radar data. The project will provide undergraduate research experience with an emphasis on computer analysis of time series and large data sets as well as development of web-based resource of results and methods and will support an international collaboration between US and Japan through discussions on the preliminary results from their study sites. Practical procedures developed through this study will be downloadable from the project\u0027s web site in the third year and will allow investigation of other ice sheets using existing radar data sets. This project will contribute to the interpretation of the future inland West Antarctic ice core and will help in the understanding of ice sheet history and climate change.", "east": -112.086, "geometry": "POINT(-112.086 -79.468)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LASERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e RADAR ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR", "is_usap_dc": true, "keywords": "SOAR; Ice Sheet Elevation; Antarctic Ice Sheet; Layers; USAP-DC; West Antarctic; FIELD INVESTIGATION; Amundsen; Ice Sheet; Airborne Laser Altimetry; Ice Surface; Not provided; Ice Penetrating Radar; Ice Sheet Thickness; Ice Extent; Ice Surface Elevation; Ice Cover; Ice Deformation; FIELD SURVEYS; Antarctica; Ground Ice; Subglacial; Reflection Layers; West Antarctic Ice Sheet; Ice Surface Temperature; LABORATORY; Amundsen Flow Divide; Radar Echo Sounding; Internal Layering; Radar Altimetry; Ice; Radar Echoes; Englacial; Crystal Orientation Fabric; Ice Thickness; Altimetry; Ice Temperature; Radar Echo Sounder; Ice Thickness Distribution", "locations": "Antarctic Ice Sheet; Antarctica; West Antarctic; Amundsen; Amundsen Flow Divide; West Antarctic Ice Sheet", "north": -79.468, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Raymond, Charles; Matsuoka, Kenichi; Luyendyk, Bruce P.; Wilson, Douglas S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.468, "title": "Glaciological Characteristics of the Ross/Amundsen Sea Ice-flow Divide Deduced by a New Analysis of Ice-penetrating Radar Data", "uid": "p0000017", "west": -112.086}, {"awards": "9983751 Veit, Richard", "bounds_geometry": "POLYGON((-70.9063 -52.3528,-67.3465 -52.3528,-63.7867 -52.3528,-60.2269 -52.3528,-56.6671 -52.3528,-53.1073 -52.3528,-49.5475 -52.3528,-45.9877 -52.3528,-42.4279 -52.3528,-38.8681 -52.3528,-35.3083 -52.3528,-35.3083 -52.65918,-35.3083 -52.96556,-35.3083 -53.27194,-35.3083 -53.57832,-35.3083 -53.8847,-35.3083 -54.19108,-35.3083 -54.49746,-35.3083 -54.80384,-35.3083 -55.11022,-35.3083 -55.4166,-38.8681 -55.4166,-42.4279 -55.4166,-45.9877 -55.4166,-49.5475 -55.4166,-53.1073 -55.4166,-56.6671 -55.4166,-60.2269 -55.4166,-63.7867 -55.4166,-67.3465 -55.4166,-70.9063 -55.4166,-70.9063 -55.11022,-70.9063 -54.80384,-70.9063 -54.49746,-70.9063 -54.19108,-70.9063 -53.8847,-70.9063 -53.57832,-70.9063 -53.27194,-70.9063 -52.96556,-70.9063 -52.65918,-70.9063 -52.3528))", "dataset_titles": "Expedition Data; Expedition data of LMG0109", "datasets": [{"dataset_uid": "002699", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0109", "url": "https://www.rvdata.us/search/cruise/LMG0109"}, {"dataset_uid": "002286", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9303"}, {"dataset_uid": "001683", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0309"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The goal of this proposal to bring two groups of undergraduate students to the Antarctic, where they will participate in the collection of data on seabird abundance and behavior. This proposal combines research on the dynamics of seabirds that feed on Antarctic krill, with the teaching of mathematical modeling of foraging behavior and spatial statistics. Students will learn a broad collection of skills through collection of data on physical and biological oceanography as part of the research project that focuses on seabirds. The research goal of this proposal is to learn how foraging seabirds in the Antarctic respond to changes in the abundance and distribution of their prey, primarily Antarctic krill. The approach will be to study bird behavior in the vicinity of krill swarms, and to contrast this behavior to that in areas lacking krill. From these comparisons, foraging models that will make predictions about the dispersion of birds under differing levels of krill abundance will be built. The long-term goal is to be able to make predictions about the impact upon seabirds of future changes in krill stocks. Field work will be conducted in the vicinity of Elephant Island in two field seasons. In each season, the insular shelf north of Elephant Island will be surveyed and the abundance, distribution and behavior of seabirds will be recorded. The primary objective will be to quantify the linkage between prey abundance and bird behavior, with the long-term goal of using information on bird behavior to index long-term changes in the prey base. The teaching goal of this proposal is twofold. First, the project will expose inner city college students to a spectacular and economically important ecosystem. Through their work on an oceanographic research vessel, students will be exposed to a broad diversity of research topics and methods, ranging from behavioral ecology to physical oceanography. Second, back at Staten Island, students will participate in the development of a mathematical biology initiative at the College of Staten Island. Here students will be encouraged to apply basic mathematical reasoning and computer modeling to a real problem - that of determining how foraging choices made by seabirds can ultimately impact their reproductive success.", "east": -35.3083, "geometry": "POINT(-53.1073 -53.8847)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V NBP; R/V LMG", "locations": null, "north": -52.3528, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Veit, Richard; Blake, Daniel", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -55.4166, "title": "CAREER: Dynamics of Predator-Prey Behavior in the Antarctic Ocean", "uid": "p0000589", "west": -70.9063}, {"awards": "0003060 Domack, Eugene", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0107", "datasets": [{"dataset_uid": "002656", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0107", "url": "https://www.rvdata.us/search/cruise/NBP0107"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports project to test and develop approaches for using thermoluminescence techniques to determine the age of Antarctic marine sediments. \u003cbr/\u003e\u003cbr/\u003eQuaternary (last 2 million yrs) marine sediments surrounding Antarctica record the waxing and waning of ice shelves and ice sheets, and also other paleoclimatic information, yet accurate chronologies of these sediments are difficult to obtain. Such chronologies provide the essential foundation for study of geological processes in the past. Within the range of radiocarbon (14C) dating (less than 30-40 thousand yrs, note - \"ka\" below means 1000 yrs) 14C dates can be inaccurate because of a variable 14C reservoir effect, and beyond 30-40 ka few methods are applicable. Photon-stimulated-luminescence sediment dating (photonic dating) of eolian and waterlain deposits in temperate latitudes spans the range from decades to hundreds of ka, but marine sediments in and around Antarctica pose special difficulty because of the potentially restricted exposure to daylight (the clock-zeroing process) of most detrital grains before deposition. This proposal will test the clock-zeroing assumption in representative Antarctic glaciomarine depositional settings, and thereby determine the potential reliability of photonic dating of Antarctic marine sediments.\u003cbr/\u003e\u003cbr/\u003eLimited luminescence dating and signal-zeroing tests using glaciomarine and marine deposits have been conducted in the northern temperate and polar latitudes, but the effects on luminescence of the different glaciomarine depositional processes have never been studied in detail. Furthermore, the depositional settings around Antarctica are almost entirely polar, with consequent specific processes operating there. For example, transport of terrigenous suspensions by neutrally buoyant \"cold-tongue\" (mid-water) plumes may be common around Antarctica, yet the effect of such transport on luminescence zeroing is unknown. Typical marine cores near Antarctica may contain an unknown fraction of detrital grains from cold-tongue and near-bottom suspensions. Thus the extent to which the polar glaciomarine depositional processes around Antarctica may limit the potential accuracy of photonic dating of marine cores is unknown (age overestimates would result if grains are not exposed to daylight before deposition).\u003cbr/\u003e\u003cbr/\u003eThis project will collect detrital grains from a variety of \"zero-age\" (modern) marine depositional settings within the Antarctic Peninsula, where representative Antarctic depositional processes have been documented and where logistics permit access. Suspensions will be collected from four fjords representing a transect from polar through subpolar conditions. Suspensions will be collected from two stations and from up to 3 depths (surface and 2 deep plumes) at each station. Sediment traps will be deployed at two of these fjord settings. As well, core-top sediments will be collected from several sites. All samples will be shielded from light and transported to Reno, Nevada, for luminescence analyses.\u003cbr/\u003e\u003cbr/\u003eSystematic study of the effectiveness of luminescence-clock-zeroing in Antarctic glaciomarine settings will determine if photonic dating can be reliable for future applications to Antarctic marine sediments. Refined sedimentological criteria for the selection of future samples for photonic dating are expected from this project. A photonic-dating capability would provide a numeric geochronometer extending well beyond the age range of 14C dating. Such a capability would permit answering a number of broader questions about the timing and extent of past glaciations near and on the Antarctic shelves.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "Palmer Deep; Hugo Island; R/V NBP", "locations": "Hugo Island", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Domack, Eugene Walter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Development of a Luminescence Dating Capability for Antarctic Glaciomarine Sediments: Tests of Signal Zeroing at the Antarctic Peninsula", "uid": "p0000845", "west": null}, {"awards": "9416989 Cande, Steven", "bounds_geometry": "POLYGON((-179.9998 -46.00095,-143.99984 -46.00095,-107.99988 -46.00095,-71.99992 -46.00095,-35.99996 -46.00095,0 -46.00095,35.99996 -46.00095,71.99992 -46.00095,107.99988 -46.00095,143.99984 -46.00095,179.9998 -46.00095,179.9998 -49.185793,179.9998 -52.370636,179.9998 -55.555479,179.9998 -58.740322,179.9998 -61.925165,179.9998 -65.110008,179.9998 -68.294851,179.9998 -71.479694,179.9998 -74.664537,179.9998 -77.84938,143.99984 -77.84938,107.99988 -77.84938,71.99992 -77.84938,35.99996 -77.84938,0 -77.84938,-35.99996 -77.84938,-71.99992 -77.84938,-107.99988 -77.84938,-143.99984 -77.84938,-179.9998 -77.84938,-179.9998 -74.664537,-179.9998 -71.479694,-179.9998 -68.294851,-179.9998 -65.110008,-179.9998 -61.925165,-179.9998 -58.740322,-179.9998 -55.555479,-179.9998 -52.370636,-179.9998 -49.185793,-179.9998 -46.00095))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002148", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9702"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9416989 Cande There is a significant misfit, ranging from 50 to 250 kms, of magnetic anomalies 13, 18, and 20 along the section of the Southeast Indian Ridge east of the Balleny fracture zone. This project will survey the critical plate boundaries and relevant magnetic anomalies in the South Tasman Sea, Emerald Basin and north of the Ross Sea embayment that will better constrain the history of the this plate motion. Data collected will be used to test the hypothesis that the Antarctic side of the ridge acted as a separate plate, attached to Marie Byrd Land, and that these anomalies indirectly indicate motion between East and West Antarctica between anomalies 24 and 13 time. Surveys will be conducted on the R/V W M Ewing in the Tasman Sea, and on the R/V N B Palmer north of the Ross Sea embayment. ***", "east": 179.9998, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -46.00095, "nsf_funding_programs": null, "paleo_time": null, "persons": "Cande, Steven", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.84938, "title": "Collaborative Research: Early Tertiary Tectonic Evolution of the Pacific-Australia-Antarctic Plate Circuit", "uid": "p0000632", "west": -179.9998}, {"awards": "0636696 DeVries, Arthur", "bounds_geometry": "POLYGON((-68.0025 -52.7599,-67.07254 -52.7599,-66.14258 -52.7599,-65.21262 -52.7599,-64.28266 -52.7599,-63.3527 -52.7599,-62.42274 -52.7599,-61.49278 -52.7599,-60.56282 -52.7599,-59.63286 -52.7599,-58.7029 -52.7599,-58.7029 -53.98242,-58.7029 -55.20494,-58.7029 -56.42746,-58.7029 -57.64998,-58.7029 -58.8725,-58.7029 -60.09502,-58.7029 -61.31754,-58.7029 -62.54006,-58.7029 -63.76258,-58.7029 -64.9851,-59.63286 -64.9851,-60.56282 -64.9851,-61.49278 -64.9851,-62.42274 -64.9851,-63.3527 -64.9851,-64.28266 -64.9851,-65.21262 -64.9851,-66.14258 -64.9851,-67.07254 -64.9851,-68.0025 -64.9851,-68.0025 -63.76258,-68.0025 -62.54006,-68.0025 -61.31754,-68.0025 -60.09502,-68.0025 -58.8725,-68.0025 -57.64998,-68.0025 -56.42746,-68.0025 -55.20494,-68.0025 -53.98242,-68.0025 -52.7599))", "dataset_titles": "Expedition Data; Expedition data of LMG0809; Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae)", "datasets": [{"dataset_uid": "601811", "doi": null, "keywords": "Antarctica; Bellingshausen Sea; Cryosphere; Southern Ocean", "people": "Biesack, Ellen; Corso, Andrew; Desvignes, Thomas; McDowell, Jan; Cheng, Chi-Hing; Steinberg, Deborah; Hilton, Eric", "repository": "USAP-DC", "science_program": "LTER", "title": "Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae)", "url": "https://www.usap-dc.org/view/dataset/601811"}, {"dataset_uid": "002728", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0809", "url": "https://www.rvdata.us/search/cruise/LMG0809"}, {"dataset_uid": "001493", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0810"}, {"dataset_uid": "001504", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0809"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Antarctic notothenioid fish evolved antifreeze (AF) proteins that prevent ice crystals that enter their body fluids from growing, and thereby avoid freezing in their icy habitats. However, even in the extreme cold Antarctic marine environment, regional gradations of severity are found. The biological correlate for environmental severity in fish is the endogenous ice load, which likely determines the tolerable limit of environmental severity for notothenioid habitation. The endogenous ice load develops from environmental ice crystals entering through body surfaces and somehow localizing to the spleen. How prone the surface tissues are to ice entry, how ice reaches the spleen, and what the fate of splenic ice is, requires elucidation. Spleen sequestration of ice raises the hypothesis that macrophages may play a role in the translocation and perhaps elimination of AF-bound ice crystals. Antifreeze glycoproteins (AFGP) act in concert with a second, recently discovered antifreeze called antifreeze potentiating protein (AFPP), necessitating an assessment of the contribution of AFPP to freezing avoidance. Recent research suggests that the exocrine pancreas and the anterior stomach, not the liver, synthesize AFGPs and secrete them into the intestine, from where they may be returned to the blood. A GI-to-blood transport is a highly unconventional path for a major plasma protein and also begs the questions, What is the source of blood AFPP?. Why are two distinct AF proteins needed and what is the chronology of their evolution? What genomic changes in the DNA are associated with the development or loss of the antifreeze trait? Experiments described in this proposal address these interrelated questions of environmental, organismal, and evolutionary physiology, and will further our understanding of novel vertebrate physiologies, the limits of environmental adaptation, and climatically driven changes in the genome. The proposed research will (1) determine the temporal and spatial heterogeneity of environmental temperature and iciness in progressively more severe fish habitats in the greater McMurdo Sound area, and in the milder Arthur Harbor at Palmer Station. The splenic ice load in fishes inhabiting these sites will be determined to correlate to environmental severity and habitability. (2) Assess the surface tissue site of ice entry and their relative barrier properties in intact fish and isolated tissues preparations (3) Assess the role of immune cells in the fate of endogenous ice, (4) determine whether the blood AFGPs are from intestinal/rectal uptake, (5) examine the contribution of AFPP to the total blood AF activity (6) evaluate the progression of genomic changes in the AFGP locus across Notothenioidei as modulated by disparate thermal environments, in four selected species through the analyses of large insert DNA BAC clones. The origin and evolution of AFPP will be examined also by analyzing BAC clones encompassing the AFPP genomic locus. The broader impacts of the proposed research include training of graduate and undergraduate students in research approaches ranging from physical field measurements to cutting edge genomics. Undergraduate research projects have lead to co-authored publications and will continue to do so. Outreach includes establishing Wiki websites on topics of Antarctic fish biology and freeze avoidance, providing advisory services to the San Francisco Science Exploratorium, and making BAC libraries available to interested polar biologists. This research theme has repeatedly received national and international science news coverage and will continue to be disseminated to the public in that manner.", "east": -58.7029, "geometry": "POINT(-63.3527 -58.8725)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": -52.7599, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Devries, Arthur", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -64.9851, "title": "Environmental, Organismal and Evolutionary Physiology of Freeze Avoidance in Antarctic Notothenioid Fishes", "uid": "p0000560", "west": -68.0025}, {"awards": "0542111 Lonsdale, Darcy; 0542456 Caron, David", "bounds_geometry": "POLYGON((-179.9999 -43.5663,-143.99993 -43.5663,-107.99996 -43.5663,-71.99999 -43.5663,-36.00002 -43.5663,-0.000050000000016 -43.5663,35.99992 -43.5663,71.99989 -43.5663,107.99986 -43.5663,143.99983 -43.5663,179.9998 -43.5663,179.9998 -46.99537,179.9998 -50.42444,179.9998 -53.85351,179.9998 -57.28258,179.9998 -60.71165,179.9998 -64.14072,179.9998 -67.56979,179.9998 -70.99886,179.9998 -74.42793,179.9998 -77.857,143.99983 -77.857,107.99986 -77.857,71.99989 -77.857,35.99992 -77.857,-0.000049999999987 -77.857,-36.00002 -77.857,-71.99999 -77.857,-107.99996 -77.857,-143.99993 -77.857,-179.9999 -77.857,-179.9999 -74.42793,-179.9999 -70.99886,-179.9999 -67.56979,-179.9999 -64.14072,-179.9999 -60.71165,-179.9999 -57.28258,-179.9999 -53.85351,-179.9999 -50.42444,-179.9999 -46.99537,-179.9999 -43.5663))", "dataset_titles": "Do Crustacean Zooplankton Play a Pivotal Role in Structuring Heterotrophic Plankton Communities in the Ross Sea?; Expedition Data; NBP0802 data; Processed CurrentMeter Data from the Ross Sea near Antarctica acquired during the Nathaniel B. Palmer expedition NBP0801", "datasets": [{"dataset_uid": "001517", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0801"}, {"dataset_uid": "000122", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP0802 data", "url": "https://www.rvdata.us/search/cruise/NBP0802"}, {"dataset_uid": "600059", "doi": "10.15784/600059", "keywords": "Antarctica; Biota; Crustacea; Oceans; Phytoplankton; Ross Sea; Southern Ocean", "people": "Lonsdale, Darcy", "repository": "USAP-DC", "science_program": null, "title": "Do Crustacean Zooplankton Play a Pivotal Role in Structuring Heterotrophic Plankton Communities in the Ross Sea?", "url": "https://www.usap-dc.org/view/dataset/600059"}, {"dataset_uid": "601344", "doi": null, "keywords": "Antarctica; Cape Adare; Mooring; NBP0801; Physical Oceanography; Ross Sea; R/v Nathaniel B. Palmer; Salinity; Southern Ocean; Temperature", "people": "Gordon, Arnold; Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Processed CurrentMeter Data from the Ross Sea near Antarctica acquired during the Nathaniel B. Palmer expedition NBP0801", "url": "https://www.usap-dc.org/view/dataset/601344"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Recent studies of marine ecosystems show conflicting evidence for trophic cascades, and in particular the relative strength of the crustacean zooplankton-phytoplankton link. The Ross Sea is a natural laboratory for investigating this apparent conflict. It is a site of seasonally high abundances of phytoplankton, characterized by regions of distinct phytoplankton taxa; the southcentral polynya is strongly dominated by the colony-forming prymnesiophyte Phaeocystis antarctica, while coastal regions of this sea are typically dominated by diatoms or flagellate species. Recent studies indicate that, while the south-central polynya exhibits a massive phytoplankton bloom, the poor food quality of P. antarctica for many crustacean zooplankton prevents direct utilization of much of this phytoplankton bloom. Rather, evidence suggests that indirect utilization of this production may be the primary mechanism by which carbon and energy become available to those higher trophic levels. Specifically, we hypothesize that nano and microzooplankton constitute an important food source for crustacean zooplankton (largely copepods and juvenile euphausiids) during the summer period in the Ross Sea where the phytoplankton assemblage is dominated by the prymnesiophyte. In turn, we also hypothesize that predation by copepods (and other Crustacea) controls and structures the species composition of these protistan assemblages. We will occupy stations in the south-central Ross Sea Polynya (RSP) and Terra Nova Bay (TNB) during austral summer to test these hypotheses. We hypothesize that the diatom species that dominate the phytoplankton assemblage in TNB constitute a direct source of nutrition to herbivorous/omnivorous zooplankton (relative to the situation in the south-central RSP). That is, the contribution of heterotrophic protists to crustacean diets will be reduced in TNB. Our research will address fundamental gaps in our knowledge of food web structure and trophic cascades, and provide better understanding of the flow of carbon and energy within the biological community of this perennially cold sea. The PIs will play active roles in public education (K-12) via curriculum development (on Antarctic biology) and teacher trainer activities in the Centers for Ocean Science Education Excellence (COSEE-West), an innovative, NSF-funded program centered at USC and UCLA.", "east": 179.9998, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": true, "keywords": "R/V NBP", "locations": null, "north": -43.5663, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Lonsdale, Darcy; Caron, Bruce", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -77.857, "title": "Collaborative Research: Do Crustacean Zooplankton Play a Pivotal Role in Structuring Heterotrophic Plankton Communities in the Ross Sea?", "uid": "p0000520", "west": -179.9999}, {"awards": "0529815 Smith, Kenneth", "bounds_geometry": "POLYGON((-68.12004 -52.65918,-65.348168 -52.65918,-62.576296 -52.65918,-59.804424 -52.65918,-57.032552 -52.65918,-54.26068 -52.65918,-51.488808 -52.65918,-48.716936 -52.65918,-45.945064 -52.65918,-43.173192 -52.65918,-40.40132 -52.65918,-40.40132 -53.972709,-40.40132 -55.286238,-40.40132 -56.599767,-40.40132 -57.913296,-40.40132 -59.226825,-40.40132 -60.540354,-40.40132 -61.853883,-40.40132 -63.167412,-40.40132 -64.480941,-40.40132 -65.79447,-43.173192 -65.79447,-45.945064 -65.79447,-48.716936 -65.79447,-51.488808 -65.79447,-54.26068 -65.79447,-57.032552 -65.79447,-59.804424 -65.79447,-62.576296 -65.79447,-65.348168 -65.79447,-68.12004 -65.79447,-68.12004 -64.480941,-68.12004 -63.167412,-68.12004 -61.853883,-68.12004 -60.540354,-68.12004 -59.226825,-68.12004 -57.913296,-68.12004 -56.599767,-68.12004 -55.286238,-68.12004 -53.972709,-68.12004 -52.65918))", "dataset_titles": "Expedition Data; Expedition data of LMG0514A", "datasets": [{"dataset_uid": "002668", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0514A", "url": "https://www.rvdata.us/search/cruise/LMG0514A"}, {"dataset_uid": "001484", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0902"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project seeks to examine the importance of icebergs to the pelagic ecosystem of the North-West Weddell Sea. Atmospheric warming has been associated with retreating glaciers and the increasing prevalence of icebergs in the Southern Ocean over the last decade. The highest concentration of icebergs occurs in the NW Weddell Sea, where they drift in a clockwise pattern to the northeast, following the contours of the Antarctic Peninsula through an area dubbed \"Iceberg Alley\". Little is known about the impact of free-drifting icebergs on the pelagic ecosystem of the Weddell Sea or on the Southern Ocean as a whole. It is hypothesized that as drifting islands, icebergs of small to intermediate size (\u003c 10 km in largest dimension) impart unique physical, chemical and biological characteristics to the surrounding water. Three general questions will be asked to address this hypothesis: 1) What are the dynamics (approximate size, abundance and spatial distribution) of free-drifting icebergs on temporal scales of days to months, based on correlation of field measurements with imagery derived from satellite sensors? 2) What is the relationship between the size of free-drifting icebergs and the structure of the associated pelagic communities? 3) What is the estimated combined impact of free-drifting icebergs in the NW Weddell Sea on the biological characteristics of the pelagic zone? This interdisciplinary study will use standard oceanographic sampling coupled with unique methodology for staging shipboard data from all types of sensors and survey methods to determine the sphere of influence for a diverse set of biological factors as a function of iceberg size. The exploratory research proposed here will provide critical data on the effects of atmospheric warming in the Antarctic Peninsula region. The recent prevalence of free drifting icebergs in the Southern Ocean should have a pronounced enrichment effect on the surrounding pelagic ecosystem, altering community dynamics. Enhanced primary production associated with these icebergs could influence the global carbon cycle since the Southern Ocean is considered a major sink for excess CO2 from the atmosphere. \u003cbr/\u003eThe proposed research will include an innovative education component through the Ocean Exploration Center (OEC), whose focus is to provide a comprehensive view of the oceans, intelligible to non-scientists and researchers alike, with direct access to state-of-the-art databases and selected websites. The OEC will allow users to access content which has been classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. The results from this iceberg project will be incorporated into the Antarctic Research division of the OEC, providing databases documenting the impact of free-drifting icebergs on the surrounding pelagic ecosystem. These data then will be extrapolated to evaluate the impact of icebergs on the ecosystem of the Weddell Sea. Graduate students, undergraduates, teachers and volunteers are an important part of the proposed field and laboratory work.", "east": -40.40132, "geometry": "POINT(-54.26068 -59.226825)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG; R/V NBP", "locations": null, "north": -52.65918, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Ken", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.79447, "title": "Free Drifting Icebergs: Influence of Floating Islands on Pelagic Ecosystems in the Weddell Sea.", "uid": "p0000551", "west": -68.12004}, {"awards": "0732995 Barbeau, David", "bounds_geometry": "POLYGON((-67.9988 -52.7596,-66.83756 -52.7596,-65.67632 -52.7596,-64.51508 -52.7596,-63.35384 -52.7596,-62.1926 -52.7596,-61.03136 -52.7596,-59.87012 -52.7596,-58.70888 -52.7596,-57.54764 -52.7596,-56.3864 -52.7596,-56.3864 -54.15258,-56.3864 -55.54556,-56.3864 -56.93854,-56.3864 -58.33152,-56.3864 -59.7245,-56.3864 -61.11748,-56.3864 -62.51046,-56.3864 -63.90344,-56.3864 -65.29642,-56.3864 -66.6894,-57.54764 -66.6894,-58.70888 -66.6894,-59.87012 -66.6894,-61.03136 -66.6894,-62.1926 -66.6894,-63.35384 -66.6894,-64.51508 -66.6894,-65.67632 -66.6894,-66.83756 -66.6894,-67.9988 -66.6894,-67.9988 -65.29642,-67.9988 -63.90344,-67.9988 -62.51046,-67.9988 -61.11748,-67.9988 -59.7245,-67.9988 -58.33152,-67.9988 -56.93854,-67.9988 -55.54556,-67.9988 -54.15258,-67.9988 -52.7596))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001520", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0717"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project studies the relationship between opening of the Drake Passage and formation of the Antarctic ice sheet. Its goal is to answer the question: What drove the transition from a greenhouse to icehouse world thirty-four million years ago? Was it changes in circulation of the Southern Ocean caused by the separation of Antarctica from South America or was it a global effect such as decreasing atmospheric CO2 content? This study constrains the events and timing through fieldwork in South America and Antarctica and new work on marine sediment cores previously collected by the Ocean Drilling Program. It also involves an extensive, multidisciplinary analytical program. Compositional analyses of sediments and their sources will be combined with (U-Th)/He, fission-track, and Ar-Ar thermochronometry to constrain uplift and motion of the continental crust bounding the Drake Passage. Radiogenic isotope studies of fossil fish teeth found in marine sediment cores will be used to trace penetration of Pacific seawater into the Atlantic. Oxygen isotope and trace metal measurements on foraminifera will provide additional information on the timing and magnitude of ice volume changes. \u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eThe broader impacts include graduate and undergraduate education; outreach to the general public through museum exhibits and presentations, and international collaboration with scientists from Argentina, Ukraine, UK and Germany.\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eThe project is supported under NSF\u0027s International Polar Year (IPY) research emphasis area on \"Understanding Environmental Change in Polar Regions\". This project is also a key component of the IPY Plates \u0026 Gates initiative (IPY Project #77), focused on determining the role of tectonic gateways in instigating polar environmental change.", "east": -56.3864, "geometry": "POINT(-62.1926 -59.7245)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": -52.7596, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "MacPhee, Ross", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -66.6894, "title": "Collaborative Research: IPY: Testing the Polar Gateway Hypothesis: An Integrated Record of Drake Passage Opening \u0026 Antarctic Glaciation", "uid": "p0000120", "west": -67.9988}, {"awards": "0338290 Kremer, Patricia; 0338090 Madin, Laurence", "bounds_geometry": "POLYGON((-69.9083 -52.7624,-68.96368 -52.7624,-68.01906 -52.7624,-67.07444 -52.7624,-66.12982 -52.7624,-65.1852 -52.7624,-64.24058 -52.7624,-63.29596 -52.7624,-62.35134 -52.7624,-61.40672 -52.7624,-60.4621 -52.7624,-60.4621 -54.01423,-60.4621 -55.26606,-60.4621 -56.51789,-60.4621 -57.76972,-60.4621 -59.02155,-60.4621 -60.27338,-60.4621 -61.52521,-60.4621 -62.77704,-60.4621 -64.02887,-60.4621 -65.2807,-61.40672 -65.2807,-62.35134 -65.2807,-63.29596 -65.2807,-64.24058 -65.2807,-65.1852 -65.2807,-66.12982 -65.2807,-67.07444 -65.2807,-68.01906 -65.2807,-68.96368 -65.2807,-69.9083 -65.2807,-69.9083 -64.02887,-69.9083 -62.77704,-69.9083 -61.52521,-69.9083 -60.27338,-69.9083 -59.02155,-69.9083 -57.76972,-69.9083 -56.51789,-69.9083 -55.26606,-69.9083 -54.01423,-69.9083 -52.7624))", "dataset_titles": "Data at U.S. JGOFS Data System; Expedition Data", "datasets": [{"dataset_uid": "000118", "doi": "", "keywords": null, "people": null, "repository": "JGOF", "science_program": null, "title": "Data at U.S. JGOFS Data System", "url": "http://usjgofs.whoi.edu/jg/dir/jgofs/"}, {"dataset_uid": "001573", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0602"}, {"dataset_uid": "001565", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0414"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Salps are planktonic grazers that have a life history, feeding biology and population dynamic strikingly different from krill, copepods or other crustacean zooplankton. Salps can occur in very dense population blooms that cover large areas and have been shown to have major impacts due to the their grazing and the production of fast-sinking fecal pellets. Although commonly acknowledged as a major component of the Southern Ocean zooplankton community, often comparable in biomass and distribution to krill, salps have received relatively little attention. Although extensive sampling has documented the seasonal abundance of salps in the Southern Ocean, there is a paucity of data on important rates that determine population growth and the role of this species in grazing and vertical flux of particulates. This proposed study will include: measurements of respiration and excretion rates for solitary and aggregate salps of all sizes; measurements of ingestion rates, including experiments to determine the size or concentration of particulates that can reduce ingestion; and determination of growth rates of solitaries and aggregates. In addition to the various rate measurements, this study will include quantitative surveys of salp horizontal and vertical distribution to determine their biomass and spatial distribution, and to allow a regional assessment of their effects. Measurements of the physical characteristics of the water column and the quantity and quality of particulate food available for the salps at each location will also be made. Satellite imagery and information on sea-ice cover will be used to test hypotheses about conditions that result in high densities of salps. Results will be used to construct a model of salp population dynamics, and both experimental and modeling results will be interpreted within the context of the physical and nutritional conditions to which the salps are exposed. This integrated approach will provide a good basis for understanding the growth dynamics of salp blooms in the Southern Ocean. Two graduate students will be trained on this project, and cruise and research experience will be provided for two undergraduate students. A portion of a website allowing students to be a virtual participant in the research will be created to strengthen students\u0027 quantitative skills. Both PI\u0027s will participate in teacher-researcher workshops, and collaboration with a regional aquarium will be developed in support of public education.", "east": -60.4621, "geometry": "POINT(-65.1852 -59.02155)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": true, "keywords": "Not provided; R/V LMG", "locations": null, "north": -52.7624, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Kremer, Patricia; Madin, Larry; Halanych, Kenneth", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "JGOF", "repositories": "JGOF; R2R", "science_programs": null, "south": -65.2807, "title": "Collaborative Research: Salpa Thompsoni in the Southern Ocean: Bioenergetics, Population Dynamics and Biogeochemical Impact", "uid": "p0000227", "west": -69.9083}, {"awards": "9910610 Daly, Kendra", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0104", "datasets": [{"dataset_uid": "002657", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}, {"dataset_uid": "002600", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Daly, Kendra", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "GLOBEC: Winter Distribution and Success of Southern Ocean Krill", "uid": "p0000816", "west": null}, {"awards": "0338101 Padman, Laurence", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0603", "datasets": [{"dataset_uid": "002614", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0603", "url": "https://www.rvdata.us/search/cruise/NBP0603"}, {"dataset_uid": "002615", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0603", "url": "https://www.rvdata.us/search/cruise/NBP0603"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The Larsen Ice Shelf is the third largest ice shelf in Antarctica and has continued a pattern of catastrophic decay since the mid 1990\u0027s. The proposed marine geologic work at the Larsen Ice Shelf builds upon our previous NSF-OPP funding and intends to test the working hypothesis that the Larsen B Ice Shelf system has been a stable component of Antarctica\u0027s glacial system since it formed during rising sea levels 10,000 years BP. This conclusion, if supported by observations from our proposed work, is an important first step in establishing the uniqueness and consequences of rapid regional warming currently taking place across the Peninsula. Our previous work in the Larsen A and B embayments has allowed us to recognize the signature of past ice shelf fluctuations and their impact on the oceanographic and biologic environments. We have also overcome many of the limitations of standard radiocarbon dating in Antarctic marine sequences by using variations in the strength of the earth\u0027s magnetic field for correlation of sediment records and by using specific organic compounds (instead of bulk sediment) for radiocarbon dating. We intend to pursue these analytical advances and extend our sediment core stratigraphy to areas uncovered by the most recent collapse of the Larsen B Ice Shelf and areas immediately adjacent to the Larsen C Ice Shelf. In addition to the core recovery program, we intend to utilize our unique access to the ice shelf front to continue our observations of the snow/ice stratigraphy, oceanographic character, and ocean floor character. Sediment traps will also be deployed in order to measure the input of debris from glaciers that are now surging in response to the ice shelf collapse. This proposal is a multi-institutional, international (USAP, Italy, and Canada) effort that combines the established expertise in a variety of disciplines and integrates the research plan into the educational efforts of primarily undergraduate institutions but including some graduate education. This is a three-year project with field seasons planned with flexibility in order to accommodate schedules for the RVIB L.M. Gould. The Antarctic Peninsula is undergoing greater warming than almost anywhere on Earth, perhaps associated with human-induced greenhouse effects. Our proposed work contributes to understanding of these changes where they are occurring first and with greatest magnitude and impact upon the environment.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Padman, Laurence; Domack, Eugene Walter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Paleohistory of the Larsen Ice Shelf: Phase II", "uid": "p0000827", "west": null}, {"awards": "0089451 Detrich, H. William", "bounds_geometry": "POLYGON((-70.907 -52.353,-69.8619 -52.353,-68.8168 -52.353,-67.7717 -52.353,-66.7266 -52.353,-65.6815 -52.353,-64.6364 -52.353,-63.5913 -52.353,-62.5462 -52.353,-61.5011 -52.353,-60.456 -52.353,-60.456 -53.64334,-60.456 -54.93368,-60.456 -56.22402,-60.456 -57.51436,-60.456 -58.8047,-60.456 -60.09504,-60.456 -61.38538,-60.456 -62.67572,-60.456 -63.96606,-60.456 -65.2564,-61.5011 -65.2564,-62.5462 -65.2564,-63.5913 -65.2564,-64.6364 -65.2564,-65.6815 -65.2564,-66.7266 -65.2564,-67.7717 -65.2564,-68.8168 -65.2564,-69.8619 -65.2564,-70.907 -65.2564,-70.907 -63.96606,-70.907 -62.67572,-70.907 -61.38538,-70.907 -60.09504,-70.907 -58.8047,-70.907 -57.51436,-70.907 -56.22402,-70.907 -54.93368,-70.907 -53.64334,-70.907 -52.353))", "dataset_titles": "Expedition Data; Expedition data of LMG0304A", "datasets": [{"dataset_uid": "002707", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0304A", "url": "https://www.rvdata.us/search/cruise/LMG0304A"}, {"dataset_uid": "001869", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0105"}, {"dataset_uid": "001704", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0304"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Abstract\u003cbr/\u003eOPP-0089451\u003cbr/\u003eP.I. William Detrich\u003cbr/\u003e\u003cbr/\u003e As the Southern Ocean cooled during the past 25 million years, the fishes of Antarctic coastal waters evolved biochemical and physiological adaptations that maintain essential cellular processes such as cytoskeletal function and gene transcription. Their microtubules, for example, assemble and function at body temperatures (-1.8 to +1 oC) well below those of homeotherms and temperate poikilotherms. The long range goals of the proposed research are to determine, at the molecular level, the adaptations that enhance the assembly of microtubules, the function of kinesin motors, and the expression of globin and tubulin genes. The specific objectives are three: 1) to determine the primary sequence changes and posttranslational modifications that contribute to the efficient polymerization of Antarctic fish tubulins at low temperatures; 2) to evaluate the biochemical adaptations required for efficient function of the brain kinesin motor of Antarctic fishes at low temperatures; and 3) to characterize the structure, organization, and promoter-driven expression of globin and tubulin genes from an Antarctic rockcod (Notothenia coriiceps) and a temperate congener (N. angustata). Brain tubulins from Antarctic fishes differ from those of temperate and warm-blooded vertebrates both in unusual primary sequence substitutions (located primarily in lateral loops and the cores of tubulin monomers) and in posttranslational C-terminal glutamylation. Potential primary sequence adaptations of the Antarctic fish tubulins will be tested directly by production of wild-type and site directed tubulin mutants for functional analysis in vitro. The capacity of mutated and wild-type fish tubulins to form \"cold-stable\" microtubules will be determined by measurement of their critical concentrations for assembly and by analysis of their dynamics by video-enhanced microscopy. Three unusual substitutions in the kinesin motor domain of Chionodraco rastrospinosus may enhance mechanochemical activity at low temperature by modifying the binding of ATP and/or the velocity of the motor. To test the functional significance of these changes, the fish residues will be converted individually, and in concert, to those found in mammalian brain kinesin. Reciprocal substitutions will be introduced into the framework of the mammalian kinesin motor domain. After production in Escherichia coli and purification, the functional performance of the mutant motor domains will be evaluated by measurement of the temperature dependence of their ATPase and motility activities. Molecular adaptation of gene expression in N. coriiceps will be analyzed using an a-globin/b-globin gene pair and an a-tubulin gene cluster. Structural features of N. coriiceps globin and tubulin gene regulatory sequences (promoters and enhancers) that support efficient expression will be assessed by transient transfection assay of promoter/luciferase reporter plasmid constructs in inducible erythrocytic and neuronal model cell systems followed by assay of luciferase reporter activity. Together, these studies should reveal the molecular adaptations of Antarctic fishes that maintain efficient cytoskeletal assembly, mechanochemical motor function, and gene expression at low temperatures. In the broadest sense, this research program should advance the molecular understanding of the poikilothermic mode of life.", "east": -60.456, "geometry": "POINT(-65.6815 -58.8047)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": -52.353, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Sidell, Bruce; Detrich, H. William", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.2564, "title": "Structure, Function, and Expression of Tubulins, Globins, and Microtubule-Dependent Motors from Cold-Adapted Antarctic Fishes", "uid": "p0000591", "west": -70.907}, {"awards": "0125562 Zachos, James", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0602A", "datasets": [{"dataset_uid": "001571", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0602A"}, {"dataset_uid": "002617", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0602A", "url": "https://www.rvdata.us/search/cruise/NBP0602A"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a demonstration project to prove the viability of shallow ship-based geological drilling while simultaneously collecting useful cores for assessing the early history of the Antarctic ice sheets. For over three decades, U.S. scientists and their international colleagues exploring the shallow shelves and seas along the margins of Antarctic have been consistently frustrated by their inability to penetrate through the over-compacted glacial diamictons encountered at shallow sub bottom depths (within the upper 10 m) over these terrains. This is particularly frustrating because advanced high resolution seismic reflection techniques clearly show in many areas the presence of older successions of Neogene and even Paleogene sequences lying just beneath this thin veneer of diamictons. Until the means are developed to recover these sequences, a detailed history of the Antarctic ice sheets, which is an essential prerequisite to understanding Cenozoic paleoclimate and future climate change on a global scale, will remain an elusive and unobtainable goal. After four years of study and evaluation with the aid of a professional engineer (and over the course of two workshops), the SHALDRIL Committee, an interested group of U.S. scientists, has identified at least two diamond-coring systems deemed suitable for use on existing ice-breaking U.S. Antarctic Research Program vessels. The goal of this project is to employ diamond-coring technology on the RV/IB Nathaniel B. Palmer in order to test out and demonstrate the feasibility of both ship-based diamond coring and down-hole logging. For this \"demonstration cruise\" coring will be attempted along a high-resolution seismic reflection profile on the continental shelf adjacent to Seymour Island, Antarctic Peninsula, an area of high scientific interest in its own right. Here the well-defined geologic section is estimated to range from Eocene to Quaternary in age, effectively spanning the \"Greenhouse-Icehouse\" transition in the evolution of Antarctic/global climate. A complete record of this transition has yet to be obtained anywhere along the Antarctic margin. Following core recovery, this project will result in correlation of the paleoclimate records from the new cores with detailed fluctuations of the ice margin recorded at higher latitudes in the eastern Ross Sea by the recently concluded, fast-ice-based Cape Roberts Project. If successful, this mobile and flexible drilling system will then be available to the broader scientific community for further research in paleoenvironmental conditions and other areas of science that are currently hindered by the present gap that exists in the US Antarctic Program\u0027s technical capability to explore the Antarctic shelves between the shore-line/fast-ice margin and the continental slope. SHALDRIL will be able to operate effectively in the \"no man\u0027s land\" that presently exists between the near shore (where the fast-ice-based Cape Roberts Project was successful) and the upper slope (where the Ocean Drilling Program\u0027s vessel JOIDES Resolution becomes most efficient). This technological breakthrough will not only allow major outstanding scientific problems of the last three decades to be addressed, but will also favorably impact many current U.S. and SCAR (ICSU Scientific Committee on Antarctic Research) Antarctic or drilling-related initiatives, such as WAIS, ANTIME, ANDRILL, ANTEC, IMAGES, PAGES, GLOCHANT (including PICE), MARGINS, ODP, and STRATAFORM.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ROCK CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, John", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Proposal: SHALDRIL - A Demonstration Drilling Cruise to the James Ross Basin", "uid": "p0000829", "west": null}, {"awards": "9814383 Domack, Eugene", "bounds_geometry": "POLYGON((-70.90625 -52.35392,-69.456459 -52.35392,-68.006668 -52.35392,-66.556877 -52.35392,-65.107086 -52.35392,-63.657295 -52.35392,-62.207504 -52.35392,-60.757713 -52.35392,-59.307922 -52.35392,-57.858131 -52.35392,-56.40834 -52.35392,-56.40834 -53.615031,-56.40834 -54.876142,-56.40834 -56.137253,-56.40834 -57.398364,-56.40834 -58.659475,-56.40834 -59.920586,-56.40834 -61.181697,-56.40834 -62.442808,-56.40834 -63.703919,-56.40834 -64.96503,-57.858131 -64.96503,-59.307922 -64.96503,-60.757713 -64.96503,-62.207504 -64.96503,-63.657295 -64.96503,-65.107086 -64.96503,-66.556877 -64.96503,-68.006668 -64.96503,-69.456459 -64.96503,-70.90625 -64.96503,-70.90625 -63.703919,-70.90625 -62.442808,-70.90625 -61.181697,-70.90625 -59.920586,-70.90625 -58.659475,-70.90625 -57.398364,-70.90625 -56.137253,-70.90625 -54.876142,-70.90625 -53.615031,-70.90625 -52.35392))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001985", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0003"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research to study the region recently occupied by the Larsen Ice Shelf in the Antarctic Peninsula. Over the last 10 years, scientists have observed a dramatic decay and disintegration of floating ice shelves along the northern end of the Antarctic Peninsula. Meteorological records and satellite observations indicate that this catastrophic decay is related to regional warming of nearly 3 degrees C in the last 50 years. While such retreat of floating ice shelves is unprecedented in historic records, current understanding of the natural variability of ice shelf systems over the last few thousand years is not understood well. This award supports a program of marine geologic research directed at filling this knowledge gap by developing an understanding of the dynamics of the northern Larsen Ice Shelf during the Holocene epoch (the last 10,000 years). The Larsen Ice Shelf is located in the NW Weddell Sea along the eastern side of the Antarctic Peninsula and is currently undergoing a rapid, catastrophic retreat as documented by satellite imagery over the past five years. While the region of the northern Antarctic Peninsula has experienced a pronounced warming trend over the last 40 years, the links between this warming and global change (i.e. greenhouse warming) are not obvious. Yet the ice shelf is clearly receding at a rate unprecedented in historic time, leaving vast areas of the seafloor uncovered and in an open marine setting. This project will collect a series of short sediment cores within the Larsen Inlet and in areas that were at one time covered by the Larsen Ice Shelf. By applying established sediment and fossil criteria to the cores we hope to demonstrate whether the Larsen Ice Shelf has experienced similar periods of retreat and subsequent advance within the last 10,000 years. Past work in various regions of the Antarctic has focused on depositional models for ice shelves that allow one to discern the timing of ice shelf retreat/advance in areas of the Ross Sea, Antarctic Peninsula, and Prydz Bay. This research will lead to a much improved understanding of the dynamics of ice shelf systems and their role in past and future climate oscillations.", "east": -56.40834, "geometry": "POINT(-63.657295 -58.659475)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.35392, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Domack, Eugene Walter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -64.96503, "title": "Paleohistory of the Larsen Ice Shelf: Evidence from the Marine Record", "uid": "p0000619", "west": -70.90625}, {"awards": "9910007 Hildebrand, John", "bounds_geometry": "POLYGON((-74.185 -52.3516,-72.6371 -52.3516,-71.0892 -52.3516,-69.5413 -52.3516,-67.9934 -52.3516,-66.4455 -52.3516,-64.8976 -52.3516,-63.3497 -52.3516,-61.8018 -52.3516,-60.2539 -52.3516,-58.706 -52.3516,-58.706 -53.94991,-58.706 -55.54822,-58.706 -57.14653,-58.706 -58.74484,-58.706 -60.34315,-58.706 -61.94146,-58.706 -63.53977,-58.706 -65.13808,-58.706 -66.73639,-58.706 -68.3347,-60.2539 -68.3347,-61.8018 -68.3347,-63.3497 -68.3347,-64.8976 -68.3347,-66.4455 -68.3347,-67.9934 -68.3347,-69.5413 -68.3347,-71.0892 -68.3347,-72.6371 -68.3347,-74.185 -68.3347,-74.185 -66.73639,-74.185 -65.13808,-74.185 -63.53977,-74.185 -61.94146,-74.185 -60.34315,-74.185 -58.74484,-74.185 -57.14653,-74.185 -55.54822,-74.185 -53.94991,-74.185 -52.3516))", "dataset_titles": "Expedition Data; Expedition data of LMG0302; Expedition data of NBP0103; Expedition data of NBP0104; Expedition data of NBP0202", "datasets": [{"dataset_uid": "002595", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0103", "url": "https://www.rvdata.us/search/cruise/NBP0103"}, {"dataset_uid": "001607", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0504"}, {"dataset_uid": "001661", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0403"}, {"dataset_uid": "001878", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0103"}, {"dataset_uid": "002657", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}, {"dataset_uid": "001814", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0201A"}, {"dataset_uid": "002705", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0302", "url": "https://www.rvdata.us/search/cruise/LMG0302"}, {"dataset_uid": "001795", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0203"}, {"dataset_uid": "002586", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0202", "url": "https://www.rvdata.us/search/cruise/NBP0202"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on determining minimum population estimates, distribution and seasonality for mysticete whales, especially blue whales. This will be accomplished using passive acoustic recorders deployed on the seafloor for a period of one to two years. The deployment of a large aperture autonomous hydrophone array in the Antarctic will incorporate the use of passive acoustics as a tool for mysticete whale detection and census. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts.", "east": -58.706, "geometry": "POINT(-66.4455 -60.34315)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V NBP; R/V LMG", "locations": null, "north": -52.3516, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Hildebrand, John; Costa, Daniel; Beardsley, Robert", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -68.3347, "title": "GLOBEC: Mysticete Whale Acoustic Census", "uid": "p0000581", "west": -74.185}, {"awards": "9317872 Cande, Steven", "bounds_geometry": "POLYGON((-179.9994 -55.16418,-143.99949 -55.16418,-107.99958 -55.16418,-71.99967 -55.16418,-35.99976 -55.16418,0.000149999999991 -55.16418,36.00006 -55.16418,71.99997 -55.16418,107.99988 -55.16418,143.99979 -55.16418,179.9997 -55.16418,179.9997 -57.429208,179.9997 -59.694236,179.9997 -61.959264,179.9997 -64.224292,179.9997 -66.48932,179.9997 -68.754348,179.9997 -71.019376,179.9997 -73.284404,179.9997 -75.549432,179.9997 -77.81446,143.99979 -77.81446,107.99988 -77.81446,71.99997 -77.81446,36.00006 -77.81446,0.000149999999991 -77.81446,-35.99976 -77.81446,-71.99967 -77.81446,-107.99958 -77.81446,-143.99949 -77.81446,-179.9994 -77.81446,-179.9994 -75.549432,-179.9994 -73.284404,-179.9994 -71.019376,-179.9994 -68.754348,-179.9994 -66.48932,-179.9994 -64.224292,-179.9994 -61.959264,-179.9994 -59.694236,-179.9994 -57.429208,-179.9994 -55.16418))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002167", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9602"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9317872 Cande This award supports a marine geophysical study of the southwest Pacific between 170 degrees E and 80 degrees W longitude. Recent marine geophysical cruises in the southwest Pacific and a high-resolution altimetric gravity field declassified Geosat data have allowed significant progress to be made towards deciphering the complex history of the rifting between the Campbell Plateau/Chatham Rise landmass and the Marie Byrd Land margin. A revised history of plate interactions explains many enigmatic features seen in the magnetic and gravity fields yet several questions remain that require new data for resolution. The marine geophysical survey proposed will: (1) elucidate plate interactions at the evolving triple junction between the Antarctic and Australian plates and the mosaic of SW Pacific plates; (2) define the boundaries and interactions of the mosaic of plates that accommodated the rapidly changing plate geometry associated with subduction of the Pacific-Phoenix ridge outboard of New Zealand, the rifting of continental and oceanic lithosphere, and hotspot activity; and (3) map the development of Pacific-Antarctic Ridge and the assembly of the several small plates into the modern day Pacific plate. This survey will help to elucidate the dynamics of plate interactions and the plate tectonic evolution of Antarctica and New Zealand. ***", "east": 179.9997, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -55.16418, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Cande, Steven", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.81446, "title": "Collaborative Research: Late Cretaceous - Early Tertiary Plate Interactions in the Southwest Pacific", "uid": "p0000638", "west": -179.9994}, {"awards": "9910263 Zhou, Meng", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0104; Expedition data of NBP0204", "datasets": [{"dataset_uid": "002585", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}, {"dataset_uid": "002587", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0204", "url": "https://www.rvdata.us/search/cruise/NBP0204"}, {"dataset_uid": "002643", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0204", "url": "https://www.rvdata.us/search/cruise/NBP0204"}, {"dataset_uid": "002657", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on juvenile and adult krill and mesozooplankton prey distribution, using acoustic techniques. Studies will be conducted and krill shrinkage and mortality rates as well as krill aggregation behavior. The results will be analyzed in coordination with components involved in physical and biological models. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Zhou, Meng", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "GLOBEC: Krill Distribution and Abundance in Winter", "uid": "p0000805", "west": null}, {"awards": "9910100 Torres, Joseph", "bounds_geometry": null, "dataset_titles": "Expedition data of LMG0104; Expedition data of LMG0203; Expedition data of NBP0204", "datasets": [{"dataset_uid": "002696", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0104", "url": "https://www.rvdata.us/search/cruise/LMG0104"}, {"dataset_uid": "002694", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0104", "url": "https://www.rvdata.us/search/cruise/LMG0104"}, {"dataset_uid": "002717", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0203", "url": "https://www.rvdata.us/search/cruise/LMG0203"}, {"dataset_uid": "002593", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0204", "url": "https://www.rvdata.us/search/cruise/NBP0204"}, {"dataset_uid": "002700", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0203", "url": "https://www.rvdata.us/search/cruise/LMG0203"}, {"dataset_uid": "002643", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0204", "url": "https://www.rvdata.us/search/cruise/NBP0204"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on krill physiology, using measures of respiration, excretion, and proximate analysis. Additionally, the distribution and abundance of fishes and squid, which are krill predators, will be investigated using acoustic and net tow methods. This research will be coordinated with components studying krill in both the water column and under the ice. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP; R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Torres, Joseph; Fraser, William", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "GLOBEC: Winter Distribution and Success of Southern Ocean Krill", "uid": "p0000812", "west": null}, {"awards": "0125624 Wilson, Terry; 0126279 Lawver, Lawrence", "bounds_geometry": "POLYGON((163.69456 -75.04911,164.525266 -75.04911,165.355972 -75.04911,166.186678 -75.04911,167.017384 -75.04911,167.84809 -75.04911,168.678796 -75.04911,169.509502 -75.04911,170.340208 -75.04911,171.170914 -75.04911,172.00162 -75.04911,172.00162 -75.3293,172.00162 -75.60949,172.00162 -75.88968,172.00162 -76.16987,172.00162 -76.45006,172.00162 -76.73025,172.00162 -77.01044,172.00162 -77.29063,172.00162 -77.57082,172.00162 -77.85101,171.170914 -77.85101,170.340208 -77.85101,169.509502 -77.85101,168.678796 -77.85101,167.84809 -77.85101,167.017384 -77.85101,166.186678 -77.85101,165.355972 -77.85101,164.525266 -77.85101,163.69456 -77.85101,163.69456 -77.57082,163.69456 -77.29063,163.69456 -77.01044,163.69456 -76.73025,163.69456 -76.45006,163.69456 -76.16987,163.69456 -75.88968,163.69456 -75.60949,163.69456 -75.3293,163.69456 -75.04911))", "dataset_titles": "Expedition Data; NBP0401 data", "datasets": [{"dataset_uid": "000106", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP0401 data", "url": "https://www.rvdata.us/search/cruise/NBP0401"}, {"dataset_uid": "001664", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0401"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a study to investigate the tectonic development of the southwestern Ross Sea region. Displacements between East and West Antarctica have long been proposed based on global plate circuits, apparent hot spot motions, interpretations of seafloor magnetic anomalies, paleomagnetism, and on geologic grounds. Such motions require plate boundaries crossing Antarctica, yet these boundaries have never been explicitly defined. This project will attempt to delineate the late Cenozoic - active boundary between East and West Antarctica along the Terror Rift in the western Ross Sea, where young structures have been identified, continuity between active extension and intracontinental structures can be established, and where accessibility via ship will allow new key data sets to be acquired. We will use multi-source marine and airborne geophysical data to map the fault patterns and volcanic structure along the eastern margin of the Terror Rift. The orientations of volcanic fissures and seamount alignments on the seafloor will be mapped using multibeam bathymetry. The volcanic alignments will show the regional extension or shear directions across the Terror Rift and the orientations of associated crustal stresses. Swath bathymetry and single channel seismic data will be used to document neotectonic fault patterns and the eastern limit of recent faulting. Delineation of neotectonic fault patterns will demonstrate whether the eastern margin of the Terror Rift forms a continuous boundary and whether the rift itself can be linked with postulated strike-slip faults in the northwestern Ross Sea. Seafloor findings from this project will be combined with fault kinematic and stress field determinations from the surrounding volcanic islands and the Transantarctic Mountains. The integrated results will test the propositions that the eastern boundary of the Terror Rift forms the limit of the major, late Cenozoic -active structures through the Ross Sea and that Terror Rift kinematics involve dextral transtension linked to the right-lateral strike-slip faulting to the north. These results will help constrain the kinematic and dynamic links between the West Antarctic rift system and Southern Ocean structures and any related motions between East and West Antarctica. In the first year, a collaborative structural analysis of existing multichannel and single channel seismic profiles and aeromagnetic data over the Terror Rift will be conducted. The location of volcanic vents or fissures and any fault scarps on the sea floor will be identified and a preliminary interpretation of the age and kinematics of deformation in the Terror Rift will be produced. Late in the second year, a one-month cruise on RVIB N.B. Palmer will carry out multibeam bathymetric and sidescan sonar mapping of selected portions of the seafloor of Terror Rift. Gravity, magnetics, seismic reflection and Bathy2000 3.5 kHz sub-bottom profile data will also be collected across the rift. In the third year, we will use these multisource data to map the orientations and forms of volcanic bodies and the extent and geometry of neotectonic faulting associated with the Terror Rift. The project will: 1) complete a map of neotectonic faults and volcanic structures in the Terror Rift; 2) interpret the structural pattern to derive the motions and stresses associated with development of the rift; 3) compare Terror Rift structures with faults and lineaments mapped in the Transantarctic Mountains to improve age constraints on the structures; and 4) integrate the late Cenozoic structural interpretations from the western Ross Sea with Southern Ocean plate boundary kinematics.", "east": 172.00162, "geometry": "POINT(167.84809 -76.45006)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": true, "keywords": "R/V NBP", "locations": null, "north": -75.04911, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Wilson, Terry", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.85101, "title": "Collaborative Research: Neotectonic Structure of Terror Rift, Western Ross Sea", "uid": "p0000111", "west": 163.69456}, {"awards": "0538516 Ackley, Stephen", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0709", "datasets": [{"dataset_uid": "002648", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0709", "url": "https://www.rvdata.us/search/cruise/NBP0709"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project is a study of the evolution of the sea ice cover, and the mass balance of ice in the Amundsen Sea and the Bellingshausen Sea in the internationally collaborative context of the International Polar Year (2007-2008). In its simplest terms, the mass balance is the net freezing and melting that occurs over an annual cycle at a given location. If the ice were stationary and were completely to melt every year, the mass balance would be zero. While non-zero balances have significance in questions of climate and environmental change, the process itself has global consequences since the seasonal freeze-melt cycle has the effect of distilling the surface water. Oceanic salt is concentrated into brine and rejected from the ice into deeper layers in the freezing process, while during melt, the newly released and relatively fresh water stabilizes the surface layers. The observation program will be carried out during a drift program of the Nathaniel B. Palmer, and through a buoy network established on the sea ice that will make year-long measurements of ice thickness, and temperature profile, large-scale deformation, and other characteristics. The project is a component of the Antarctic Sea Ice Program, endorsed internationally by the Joint Committee for IPY. Additionally, the buoys to be deployed have been endorsed as an IPY contribution to the World Climate Research Program/Scientific Committee on Antarctic Research (WCRP/SCAR) International Programme on Antarctic Buoys (IPAB). While prior survey information has been obtained in this region, seasonal and time-series measurements on sea ice mass balance are crucial data in interpreting the mechanisms of air-ice-ocean interaction. \u003cbr/\u003e The network will consist of an array of twelve buoys capable of GPS positioning. Three buoys will be equipped with thermister strings and ice and snow thickness measurement gauges, as well as a barometer. Two buoys will be equipped with meteorological sensors including wind speed and direction, atmospheric pressure, and incoming radiation. Seven additional buoys will have GPS positioning only, and will be deployed approximately 100 km from the central site. These outer buoys will be critical in capturing high frequency motion complementary to satellite-derived ice motion products. Additional buoys have been committed internationally through IPAB and will be deployed in the region as part of this program.\u003cbr/\u003e This project will complement similar projects to be carried out in the Weddell Sea by the German Antarctic Program, and around East Antarctica by the Australian Antarctic Program. The combined buoy and satellite deformation measurements, together with the mass balance measurements, will provide a comprehensive annual data set on sea ice thermodynamics and dynamics for comparison with both coupled and high-resolution sea ice models.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Ackley, Stephen", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Sea Ice Mass Balance in the Antarctic-SIMBA Drift Station", "uid": "p0000839", "west": null}, {"awards": "0196489 Daly, Kendra", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0202; Expedition data of NBP0204", "datasets": [{"dataset_uid": "002608", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0204", "url": "https://www.rvdata.us/search/cruise/NBP0204"}, {"dataset_uid": "002607", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0202", "url": "https://www.rvdata.us/search/cruise/NBP0202"}, {"dataset_uid": "002643", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0204", "url": "https://www.rvdata.us/search/cruise/NBP0204"}, {"dataset_uid": "002586", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0202", "url": "https://www.rvdata.us/search/cruise/NBP0202"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Not Available", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Daly, Kendra", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "GLOBEC: Winter Distribution and Success of Southern Ocean Krill", "uid": "p0000820", "west": null}, {"awards": "9220009 Jacobs, Stanley", "bounds_geometry": "POLYGON((-179.99 -52.3518,-143.9914 -52.3518,-107.9928 -52.3518,-71.9942 -52.3518,-35.9956 -52.3518,0.00299999999999 -52.3518,36.0016 -52.3518,72.0002 -52.3518,107.9988 -52.3518,143.9974 -52.3518,179.996 -52.3518,179.996 -54.91842,179.996 -57.48504,179.996 -60.05166,179.996 -62.61828,179.996 -65.1849,179.996 -67.75152,179.996 -70.31814,179.996 -72.88476,179.996 -75.45138,179.996 -78.018,143.9974 -78.018,107.9988 -78.018,72.0002 -78.018,36.0016 -78.018,0.00300000000001 -78.018,-35.9956 -78.018,-71.9942 -78.018,-107.9928 -78.018,-143.9914 -78.018,-179.99 -78.018,-179.99 -75.45138,-179.99 -72.88476,-179.99 -70.31814,-179.99 -67.75152,-179.99 -65.1849,-179.99 -62.61828,-179.99 -60.05166,-179.99 -57.48504,-179.99 -54.91842,-179.99 -52.3518))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002257", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9402"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project will be the first systematic oceanographic study of the continental shelves of the Amundsen and Bellings-hausen Seas, and will include temperature and salinity profiling, water sampling for ocean chemistry, and continuous precision bathymetry. Upwelling warm deep water covers the Amundsen and Bellings-hausen shelves and delivers significant amounts of heat to the sea ice and fringing ice shelves. The regional precipitation is heavy, and has historically maintained a perennial ice cover. However, within the last few years satellite images have shown that the ice has been receding dramatically, with large areas of open water persisting through the winter in sectors that earlier had been ice-covered. These anomalous ice distributions are likely to have been accompanied by altered surface water properties, and possibly changes in the deep vertical circulation. There are indications that the conditions favoring a reduction in the sea ice may migrate westward toward the Ross Sea, and may have influenced a gradual warming over recent decades on the western side of the Antarctic Peninsula. The project will make use of the R/V Nathaniel B. Palmer in two cruises; one in the late austral summer 1993-1994, and a subse- quent cruise in September and October to observe late winter conditions.", "east": 179.996, "geometry": "POINT(0.00299999999999 -65.1849)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.3518, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jacobs, Stanley", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -78.018, "title": "Oceanography of the Amundsen and Bellingshausen Seas", "uid": "p0000648", "west": -179.99}, {"awards": "9527876 Anderson, John", "bounds_geometry": "POLYGON((-179.9996 -70.29238,-143.99968 -70.29238,-107.99976 -70.29238,-71.99984 -70.29238,-35.99992 -70.29238,0 -70.29238,35.99992 -70.29238,71.99984 -70.29238,107.99976 -70.29238,143.99968 -70.29238,179.9996 -70.29238,179.9996 -71.048723,179.9996 -71.805066,179.9996 -72.561409,179.9996 -73.317752,179.9996 -74.074095,179.9996 -74.830438,179.9996 -75.586781,179.9996 -76.343124,179.9996 -77.099467,179.9996 -77.85581,143.99968 -77.85581,107.99976 -77.85581,71.99984 -77.85581,35.99992 -77.85581,0 -77.85581,-35.99992 -77.85581,-71.99984 -77.85581,-107.99976 -77.85581,-143.99968 -77.85581,-179.9996 -77.85581,-179.9996 -77.099467,-179.9996 -76.343124,-179.9996 -75.586781,-179.9996 -74.830438,-179.9996 -74.074095,-179.9996 -73.317752,-179.9996 -72.561409,-179.9996 -71.805066,-179.9996 -71.048723,-179.9996 -70.29238))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002067", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9902"}, {"dataset_uid": "002125", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9801"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Anderson OPP 9527876 Abstract This award supports continuation of a long term investigation of the continental shelf sediments that is aimed at examining the configuration of the West Antarctic Ice Sheet during the last glacial maximum, the events and mechanisms involved in its retreat, and the timing of retreat. The project involves: 1) characterizing variations in the ice sheet grounding zone in a latitudinal transect extending from Ross Sea to Bransfield Basin, 2) reconstructing conditions at the ice/bed interface prior to and after ice sheet retreat, and 3) radiometrically dating ice sheet retreat along this transect. Detailed sea floor imagery (multibeam and deep-tow side-scan sonar), high resolution seismic reflection profiles, and sediment cores will be used to map and characterize prior grounding zones. Of particular concern are features that indicate the amount and organization (channelization) of basal meltwater and the extent of bed deformation that occurred in different ice streams. The timing of ice sheet retreat provides information about the link between Northern and Southern hemisphere ice expansion, and the role of eustasy in ice sheet decoupling. This research should lead to better predictive models to determine which ice streams are most unstable and likely, therefore, to serve as Oweak linksO in the long term behavior of West Antarctic Ice Sheet.", "east": 179.9996, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -70.29238, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, John", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.85581, "title": "Mechanism and Timing of West Antarctic Ice Sheet Retreat at the End of the Last Glacial Maximum", "uid": "p0000624", "west": -179.9996}, {"awards": "9909933 Ross, Robin; 9910175 Vernet, Maria", "bounds_geometry": "POLYGON((-71.077 -57.9543,-70.015 -57.9543,-68.953 -57.9543,-67.891 -57.9543,-66.829 -57.9543,-65.767 -57.9543,-64.705 -57.9543,-63.643 -57.9543,-62.581 -57.9543,-61.519 -57.9543,-60.457 -57.9543,-60.457 -58.98629,-60.457 -60.01828,-60.457 -61.05027,-60.457 -62.08226,-60.457 -63.11425,-60.457 -64.14624,-60.457 -65.17823,-60.457 -66.21022,-60.457 -67.24221,-60.457 -68.2742,-61.519 -68.2742,-62.581 -68.2742,-63.643 -68.2742,-64.705 -68.2742,-65.767 -68.2742,-66.829 -68.2742,-67.891 -68.2742,-68.953 -68.2742,-70.015 -68.2742,-71.077 -68.2742,-71.077 -67.24221,-71.077 -66.21022,-71.077 -65.17823,-71.077 -64.14624,-71.077 -63.11425,-71.077 -62.08226,-71.077 -61.05027,-71.077 -60.01828,-71.077 -58.98629,-71.077 -57.9543))", "dataset_titles": "Expedition Data; Expedition data of LMG0205; Expedition data of NBP0104; Expedition data of NBP0202; Expedition data of NBP0204", "datasets": [{"dataset_uid": "001861", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0106"}, {"dataset_uid": "002657", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}, {"dataset_uid": "002704", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0205", "url": "https://www.rvdata.us/search/cruise/LMG0205"}, {"dataset_uid": "002586", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0202", "url": "https://www.rvdata.us/search/cruise/NBP0202"}, {"dataset_uid": "002643", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0204", "url": "https://www.rvdata.us/search/cruise/NBP0204"}, {"dataset_uid": "001856", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0105"}, {"dataset_uid": "001757", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0205"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on water-column primary production using direct experimental estimates, modeling restuls from a fast repetition rate fluorometer and modeling of primary production from both optical as well as biophysical models. This research will be coordinated with components focused on sea ice production and sea ice habitat. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts.", "east": -60.457, "geometry": "POINT(-65.767 -63.11425)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V LMG; R/V NBP", "locations": null, "north": -57.9543, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Vernet, Maria; Costa, Daniel; Ross, Robin Macurda; Smith, Raymond", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -68.2742, "title": "GLOBEC: Winter Ecology of Larval Krill: Quantifying their Interaction with the Pack Ice Habitat", "uid": "p0000605", "west": -71.077}, {"awards": "9725024 Jacobs, Stanley", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0001; Expedition data of NBP0008; Summer Oceanographic Measurements near the Mertz Polynya NBP0008", "datasets": [{"dataset_uid": "002598", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0001", "url": "https://www.rvdata.us/search/cruise/NBP0001"}, {"dataset_uid": "001885", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0008"}, {"dataset_uid": "601161", "doi": "10.15784/601161 ", "keywords": "Antarctica; CTD; CTD Data; Mertz Polynya; NBP0008; Oceans; Oxygen; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Southern Ocean; Temperature", "people": "Mortlock, R. A.; Smethie, William M; Jacobs, Stanley; Mele, Phil", "repository": "USAP-DC", "science_program": null, "title": "Summer Oceanographic Measurements near the Mertz Polynya NBP0008", "url": "https://www.usap-dc.org/view/dataset/601161"}, {"dataset_uid": "002599", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0008", "url": "https://www.rvdata.us/search/cruise/NBP0008"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "*** 9725024 Jacobs This project will study the dynamics of Circumpolar Deep Water intruding on the continental shelf of the West Antarctic coast, and the effect of this intrusion on the production of cold, dense bottom water, and melting at the base of floating glaciers and ice tongues. It will concentrate on the Amundsen Sea shelf, specifically in the region of the Pine Island Glacier, the Thwaites Glacier, and the Getz Ice Shelf. Circumpolar Deep Water (CDW) is a relatively warm water mass (warmer than +1.0 deg Celsius) which is normally confined to the outer edge of the continental shelf by an oceanic front separating this water mass from colder and saltier shelf waters. In the Amundsen Sea however, the deeper parts of the continental shelf are filled with nearly undiluted CDW, which is mixed upward, delivering significant amounts of heat to the base of the floating glacier tongues and the ice shelf. The melt rate beneath the Pine Island Glacier averages ten meters of ice per year with local annual rates reaching twenty meters. By comparison, melt rates beneath the Ross Ice Shelf are typically twenty to forty centimeters of ice per year. In addition, both the Pine Island and the Thwaites Glacier are extremely fast-moving, and have a significant effect on the regional ice mass balance of West Antarctica. This project therefore has an important connection to antarctic glaciology, particularly in assessing the combined effect of global change on the antarctic environment. The particular objectives of the project are (1) to delineate the frontal structure on the continental shelf sufficiently to define quantitatively the major routes of CDW inflow, meltwater outflow, and the westward evolution of CDW influence; (2) to use the obtained data set to validate a three-dimensional model of sub-ice ocean circulation that is currently under construction, and (3) to refine the estiamtes of in situ melting on the mass balance of the antarctic ice sheet. The observational program will be carried out from the research vessel Nathaniel B. Palmer in February and March, 1999. ***", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jacobs, Stanley", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": null, "title": "Circumpolar Deep Water and the West Antarctic Ice Sheet", "uid": "p0000815", "west": null}, {"awards": "9815961 Bengtson, John", "bounds_geometry": "POLYGON((-179.99905 -43.56728,-143.99915 -43.56728,-107.99925 -43.56728,-71.99935 -43.56728,-35.99945 -43.56728,0.000450000000001 -43.56728,36.00035 -43.56728,72.00025 -43.56728,108.00015 -43.56728,144.00005 -43.56728,179.99995 -43.56728,179.99995 -47.058498,179.99995 -50.549716,179.99995 -54.040934,179.99995 -57.532152,179.99995 -61.02337,179.99995 -64.514588,179.99995 -68.005806,179.99995 -71.497024,179.99995 -74.988242,179.99995 -78.47946,144.00005 -78.47946,108.00015 -78.47946,72.00025 -78.47946,36.00035 -78.47946,0.000450000000001 -78.47946,-35.99945 -78.47946,-71.99935 -78.47946,-107.99925 -78.47946,-143.99915 -78.47946,-179.99905 -78.47946,-179.99905 -74.988242,-179.99905 -71.497024,-179.99905 -68.005806,-179.99905 -64.514588,-179.99905 -61.02337,-179.99905 -57.532152,-179.99905 -54.040934,-179.99905 -50.549716,-179.99905 -47.058498,-179.99905 -43.56728))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001997", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9909"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9815961 BENGTSON The pack ice region surrounding Antarctica contains at least fifty percent of the world\u0027s population of seals, comprising about eighty percent of the world\u0027s total pinniped biomass. As a group, these seals are among the dominant top predators in Southern Ocean ecosystems, and the fluctuation in their abundance, growth patterns, life histories, and behavior provide a potential source of information about environmental variability integrated over a wide range of spatial and temporal scales. This proposal was developed as part of the international Antarctic Pack Ice Seals (APIS) program, which is aimed to better understand the ecological relationships between the distribution of pack ice seals and their environment. During January-February, 2000, a research cruise through the pack ice zone of the eastern Ross Sea and western Amundsen Sea will be conducted to survey and sample along six transects perpendicular to the continental shelf. Each of these transects will pass through five environmental sampling strata: continental shelf zone, Antarctic slope front, pelagic zone, the ice edge front, and the open water outside the pack ice zone. All zones but open water will be ice-covered to some degree. Surveys along each transect will gather data on bathymetry, hydrography, sea ice dynamics and characteristics, phytoplankton and ice algae stocks, prey species (e.g., fish, cephalopods and euphausiids), and seal distribution, abundance and diet. This physical and trophic approach to investigating ecological interactions among pack ice seals, prey and the physical environment will allow the interdisciplinary research team to test the hypothesis that there are measurable physical and biological features in the Southern Ocean that result in area of high biological activity by upper trophic level predators. Better insight into the interplay among pack ice seals and biological and physical features of Antarctic marine ecosystems will allow for a better prediction of fluctuation in seal population in the context of environmental change.", "east": 179.99995, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -43.56728, "nsf_funding_programs": null, "paleo_time": null, "persons": "Bengtson, John", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -78.47946, "title": "Antarctic Pack Ice Seals: Ecological Interactions with Prey and the Environment", "uid": "p0000614", "west": -179.99905}, {"awards": "9220848 Bartek, Louis", "bounds_geometry": "POLYGON((-179.9996 -52.35472,-143.99968 -52.35472,-107.99976 -52.35472,-71.99984 -52.35472,-35.99992 -52.35472,0 -52.35472,35.99992 -52.35472,71.99984 -52.35472,107.99976 -52.35472,143.99968 -52.35472,179.9996 -52.35472,179.9996 -54.916322,179.9996 -57.477924,179.9996 -60.039526,179.9996 -62.601128,179.9996 -65.16273,179.9996 -67.724332,179.9996 -70.285934,179.9996 -72.847536,179.9996 -75.409138,179.9996 -77.97074,143.99968 -77.97074,107.99976 -77.97074,71.99984 -77.97074,35.99992 -77.97074,0 -77.97074,-35.99992 -77.97074,-71.99984 -77.97074,-107.99976 -77.97074,-143.99968 -77.97074,-179.9996 -77.97074,-179.9996 -75.409138,-179.9996 -72.847536,-179.9996 -70.285934,-179.9996 -67.724332,-179.9996 -65.16273,-179.9996 -62.601128,-179.9996 -60.039526,-179.9996 -57.477924,-179.9996 -54.916322,-179.9996 -52.35472))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002245", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9407"}, {"dataset_uid": "002265", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9307"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award supports an integrated seismic, sedimentologic, and paleontologic investigation of glacio-marine stratigraphy of the Ross Sea continental shelf. The purpose of this work is to acquire seismic images and sediment cores of the glacial sediments toward a better understanding of the Cenozoic history of glaciation in the Ross Sea region. This investigation will utilize high resolution seismic profiling data to locate regions where the Pleistocene glacial till is thin or perhaps absent. Piston coring at these locations, if the till is penetrated, will provide sedimentary records of Cenozoic depositional environments and could provide important clues to fluctuations of the Antarctic Ice Sheets. The seismic profiling will provide a direct record of the grounding history of the Ross Ice Shelf during the Pleistocene and it will also allow first order correlations of Cenozoic sedimentary units that are represented by sediments recovered in the piston cores. This work will provide important proxy records of the history of both the West Antarctic Ice Sheet and the East Antarctic Ice Sheet and this, in turn, will provide important constraints to climate models.", "east": 179.9996, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.35472, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bartek, Louis", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.97074, "title": "Integrated Biostratigraphy and High Resolution Seismic Stratigraphy of the Ross Sea: Implications for Cenozoic Eustatic and Climatic Change", "uid": "p0000643", "west": -179.9996}, {"awards": "9816049 DeMaster, David", "bounds_geometry": "POLYGON((-70.90654 -52.35368,-70.220384 -52.35368,-69.534228 -52.35368,-68.848072 -52.35368,-68.161916 -52.35368,-67.47576 -52.35368,-66.789604 -52.35368,-66.103448 -52.35368,-65.417292 -52.35368,-64.731136 -52.35368,-64.04498 -52.35368,-64.04498 -53.639401,-64.04498 -54.925122,-64.04498 -56.210843,-64.04498 -57.496564,-64.04498 -58.782285,-64.04498 -60.068006,-64.04498 -61.353727,-64.04498 -62.639448,-64.04498 -63.925169,-64.04498 -65.21089,-64.731136 -65.21089,-65.417292 -65.21089,-66.103448 -65.21089,-66.789604 -65.21089,-67.47576 -65.21089,-68.161916 -65.21089,-68.848072 -65.21089,-69.534228 -65.21089,-70.220384 -65.21089,-70.90654 -65.21089,-70.90654 -63.925169,-70.90654 -62.639448,-70.90654 -61.353727,-70.90654 -60.068006,-70.90654 -58.782285,-70.90654 -57.496564,-70.90654 -56.210843,-70.90654 -54.925122,-70.90654 -53.639401,-70.90654 -52.35368))", "dataset_titles": "Expedition Data; Expedition data of LMG0003", "datasets": [{"dataset_uid": "001983", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0004"}, {"dataset_uid": "002690", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0003", "url": "https://www.rvdata.us/search/cruise/LMG0003"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "OPP98-15823 P.I. Craig Smith\u003cbr/\u003eOPP98-16049 P.I. David DeMaster\u003cbr/\u003e\u003cbr/\u003ePrimary production in Antarctic coastal waters is highly seasonal, yielding an intense pulse of biogenic particles to the continental shelf floor. This seasonal pulse may have major ramifications for carbon cycling, benthic ecology and material burial on the west Antarctic Peninsula (WAP) shelf. Thus, we propose a multii-disciplinary program to evaluate the seafloor accumulation, fate and benthic community impacts of bloom material along a transect of three stations crossing the Antarctic shelf in the Palmer LTER study area. Using a seasonal series of five cruises to our transect, we will test the following hypostheses: (1) A substantial proportion of spring/summer export production is deposited ont eh WAP shelf as phytodetritus or fecal pellets. (2) The deposited bloom production is a source of labile particulate organic carbon for benthos for an extended period of time (months). (3) Large amounts of labile bloom POC are rapidly subducted into the sediment column by the deposit-feeding and caching activities of benthos. (4) Macrobenthic detritivores sustain a rapid increase in biomass and abundance following the spring/summer particulate organic carbon pulse. To test these hypotheses, we will evaluate seabed deposition and lability of particulate organic carbon, patterns of particulate organic carbon mixing into sediments, seasonal variations in macrofaunal and megafaunal abundance, biomass and reproductive condition, and rates of particulate organic carbon and silica mineralization and accumulation in the seabed. Fluxes of biogenic materials and radionuclides into midwater particle traps will be contrasted with seabed deposition and burial rates to establish water-column and seabed preservation efficiencies for these materials. The project will substantially improve our understanding of the spring/summer production pulse on the WAP shelf and its impacts on seafloor communities and carbon cycling in Antarctic coastal systems.", "east": -64.04498, "geometry": "POINT(-67.47576 -58.782285)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP; R/V LMG", "locations": null, "north": -52.35368, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "DeMaster, David; Smith, Craig", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.21089, "title": "Collaborative Research: Bentho-Pelagic Coupling on the West Antarctic Peninsula Shelf: The Impact and Fate of Bloom Material at the Seafloor", "uid": "p0000618", "west": -70.90654}, {"awards": "0324539 Yen, Jeannette", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG0308", "datasets": [{"dataset_uid": "001686", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0308"}, {"dataset_uid": "002709", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0308", "url": "https://www.rvdata.us/search/cruise/LMG0308"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project explores the feasibility of applying fluid physical analyses to evaluate the importance of viscous forces over compensatory temperature adaptations in a polar copepod. The water of the Southern Ocean is 20 Celsius colder and nearly twice as viscous as subtropical seas, and the increased viscosity has significant implications for swimming zooplankton. In each of these warm and cold aquatic environments have evolved abundant carnivorous copepods in the family Euchaetidae. In this exploratory study, two species from the extremes of the natural temperature range (0 and 23C) will be compared to test two alternate hypotheses concerning how Antarctic plankton adapt to the low temperature-high viscosity realm of the Antarctic and to evaluate the importance of viscous forces in the evolution of plankton. How do stronger viscous forces and lower temperature affect the behavior of the Antarctic species? If the Antarctic congener is dynamically similar to its tropical relative, it will operate at the same Reynolds number (Re) as its tropical congener. Alternatively, if the adaptations of the Antarctic congener are proportional to size, they should occupy a higher Re regime, which suggests that the allometry of various processes is not constrained by having to occupy a transitional fluid regime. The experiments are designed with clearly defined outcomes regarding a number of copepod characteristics, such as swimming speed, propulsive force, and size of the sensory field. These characteristics determine not only how copepods relate to the physical world, but also structure their biological interactions. The results of this study will provide insights on major evolutionary forces affecting plankton and provide a means to evaluate the importance of the fluid physical conditions relative to compensatory measures for temperature. Fluid physical, biomechanical, and neurophysiological techniques have not been previously applied to these polar plankton. However, these approaches, if productive and feasible, will provide ways to explore the sensory ecology of polar plankton and the role of small-scale biological-physical-chemical interactions in a polar environment. Experimental evidence validating the importance of viscous effects will also justify further research using latitudinal comparisons of other congeners along a temperature gradient in the world ocean.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Yen, Jeannette", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Dynamic Similarity or Size Proportionality? Adaptations of a Polar Copepod.", "uid": "p0000867", "west": null}, {"awards": "9910096 Ribic, Christine", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0103; Expedition data of NBP0104; Expedition data of NBP0204", "datasets": [{"dataset_uid": "002602", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0103", "url": "https://www.rvdata.us/search/cruise/NBP0103"}, {"dataset_uid": "002603", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}, {"dataset_uid": "002604", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0204", "url": "https://www.rvdata.us/search/cruise/NBP0204"}, {"dataset_uid": "002595", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0103", "url": "https://www.rvdata.us/search/cruise/NBP0103"}, {"dataset_uid": "002657", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}, {"dataset_uid": "002643", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0204", "url": "https://www.rvdata.us/search/cruise/NBP0204"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on the large-scale distribution, abundance and habitat of seabirds. This will be accomplished using strip-transect surveys and spatial analysis software and models to examine the large-scale data. This research will be coordinated with seabird studies which focus on seabird diet composition and small scale foraging behavior. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ribic, Christine", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "GLOBEC: WinDSSOck: Winter Distribution and Success of Southern Ocean Krill", "uid": "p0000818", "west": null}, {"awards": "0130525 Fraser, William", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0105", "datasets": [{"dataset_uid": "002605", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0105", "url": "https://www.rvdata.us/search/cruise/NBP0105"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The potential consequence of human impact on wildlife in Antarctica has been debated for many decades. Scientists, support staff and visitors in Antarctica may have an effect on the behavior and population dynamics of marine mammals and seabirds. Since the early 1970\u0027s, shipboard tourism has expanded to the point where it is timely to address the question, using a scientific research approach. The focus of this study is to examine the potential effect of tourist activities on the Adelie Penguins (Pygoscelis adeliae) in the Antarctic Peninsula. The topic has gathered the interest and opinions of those in private industry, the scientific community, government organizations and environmental groups. A key concern is that increases in these activities may eventually overcome the ability of research to address critical issues in a timely and biologically meaningful manner. The approach to understanding how tourism might affect Adelie Penguins must involve both a study of human activity and a study of natural variability in the physical environment. The ongoing Palmer Long Term Ecological Research program focuses on the ecosystem and its components and thus addresses the issues of natural variability. This project focuses on the human dimension and continues a tourist-monitoring program begun as a pilot project near Palmer Station. This site is in a geographic location that mirrors current patterns in tourism and tourist-wildlife interactions in the western Antarctic Peninsula. It also offers a setting that provides unique opportunities for human impacts research. This includes the presence of long-term databases that document environmental variability over multiple time and space scales in both marine and terrestrial habitats, and the ability to examine potential tourist impacts as part of controlled experiments. The results of the study will have important implications to understanding interactions between climate change and ecosystem response, and for detecting, mitigating and managing the consequences of human activities such as tourism.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Fraser, William; Smith, Raymond", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Monitoring the Human Impact and Environmental Variability on Adelie Penguins at Palmer Station, Antarctica", "uid": "p0000819", "west": null}, {"awards": "9614844 Jeffries, Martin", "bounds_geometry": "POLYGON((-180 -43.56557,-144 -43.56557,-108 -43.56557,-72 -43.56557,-36 -43.56557,0 -43.56557,36 -43.56557,72 -43.56557,108 -43.56557,144 -43.56557,180 -43.56557,180 -46.996716,180 -50.427862,180 -53.859008,180 -57.290154,180 -60.7213,180 -64.152446,180 -67.583592,180 -71.014738,180 -74.445884,180 -77.87703,144 -77.87703,108 -77.87703,72 -77.87703,36 -77.87703,0 -77.87703,-36 -77.87703,-72 -77.87703,-108 -77.87703,-144 -77.87703,-180 -77.87703,-180 -74.445884,-180 -71.014738,-180 -67.583592,-180 -64.152446,-180 -60.7213,-180 -57.290154,-180 -53.859008,-180 -50.427862,-180 -46.996716,-180 -43.56557))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002110", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9803"}, {"dataset_uid": "002003", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9901"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project is a study of the effects of antarctic sea ice in the global climate system, through an examination of how the spatial distribution of ice and snow thickness and of open water is reflected in satellite-based synthetic aperture radar (SAR) imagery. The field investigations will be carried out from the RVIB Nathaniel B. Palmer in winter 1998 and summer 1999, and will produce observations of the snow and ice distribution, the crystal structure, stable isotopes, salinity and temperature structure of ice cores, and the stratigraphy, grain size, and water content of the snow cover. The SAR images from ERS-2 and RADARSAT will be acquired at the McMurdo ground station, and processed at the Alaska SAR Facility. These will provide information about the large-scale ice motion field and the small-scale ice deformation field, both of which contribute to the observed ice thickness distribution. In addition, a study of the spatial and temporal variation of the backscattered microwave energy will contribute to the development of numerical models that simulate the dynamic and thermodynamic interactions among the sea ice, ocean, and atmosphere. The surface data is vital for the extraction of environmental information from the radar data, and for the ultimate validation of interactive models.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -43.56557, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jeffries, Martin", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.87703, "title": "Dynamic/Thermodynamic Processes and Their Contribution to the Sea Ice Thickness Distribution and Radar Backscatter in the Ross Sea", "uid": "p0000628", "west": -180.0}, {"awards": "9725972 Klinkhammer, Gary", "bounds_geometry": "POLYGON((-70.90664 -52.35256,-69.221316 -52.35256,-67.535992 -52.35256,-65.850668 -52.35256,-64.165344 -52.35256,-62.48002 -52.35256,-60.794696 -52.35256,-59.109372 -52.35256,-57.424048 -52.35256,-55.738724 -52.35256,-54.0534 -52.35256,-54.0534 -53.399775,-54.0534 -54.44699,-54.0534 -55.494205,-54.0534 -56.54142,-54.0534 -57.588635,-54.0534 -58.63585,-54.0534 -59.683065,-54.0534 -60.73028,-54.0534 -61.777495,-54.0534 -62.82471,-55.738724 -62.82471,-57.424048 -62.82471,-59.109372 -62.82471,-60.794696 -62.82471,-62.48002 -62.82471,-64.165344 -62.82471,-65.850668 -62.82471,-67.535992 -62.82471,-69.221316 -62.82471,-70.90664 -62.82471,-70.90664 -61.777495,-70.90664 -60.73028,-70.90664 -59.683065,-70.90664 -58.63585,-70.90664 -57.588635,-70.90664 -56.54142,-70.90664 -55.494205,-70.90664 -54.44699,-70.90664 -53.399775,-70.90664 -52.35256))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002064", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9904"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "NSF FORM 1358 (1/94) This award, provided by the Office of Polar Programs of the National Science Foundation, supports research to investigate hydrothermal venting in Bransfield Strait, between the South Shetland Islands and the Antarctic Peninsula. Previous exploratory work in the Strait identified several sites where hot hydrothermal fluids emanate from the sea floor. These discoveries were made using an instrument package specially designed to detect and map the thermal and chemical anomalies that hydrothermal activity imparts on the overlying water column. Hydrothermal sites in the Strait range in water depth from \u003c200 to 1300 meters and occur on the volcanic outcrops that periodically protrude through the sediment cover along the strike of the rift zone. These sites are alligned with the caldera at Deception Island which has active hot springs. These are the first submarine hydrothermal sites discovered in Antarctica and as such represent unique research opportunities. This project will return to the Strait to further map and sample these areas. There are several compelling reasons to believe that further exploration of vent systems in the Bransfield will yield exciting new information: (1) Bransfield Strait is a back-arc rift system and it is likely that the vent fluids and mineral deposits associated with venting in this setting are unlike anything sampled so far from submarine vents. (2) Preliminary evidence suggests that venting in the Bransfield occurs in two different volcanic substrates: andesite and rhyolite. This situation provides a natural laboratory for investigating the effects of substrate chemistry on vent fluid composition. (3) Bransfield Strait is isolated from the system of mid-ocean ridges and has a relatively short history of rifting (approximately 4 my). So, while the region straddles the Atlantic and Pacific, vent biota in the Strait may well have a distinct genealogy. Biochemical information on vent species in the Bransfield will add to our knowledge of the dispersal of life in the deep ocean. In the past such discoveries have led to the identification of new species and the isolation of previously unknown biochemical compounds. (4) The fire and ice environments of hydrothermal sites in the Bransfield may prove to be the closest analog for primordial environments on Earth and extraterrestrial bodies. The Bransfield Strait is one of the most productive areas of the world\u0027s oceans and lies close to the Antarctic continent, far removed from the mid-ocean ridge system. The combination of organic-rich sediment and heat produced by volcanism in this back- arc setting creates a situation conducive to unusual fluids, unique vent biota, and exotic hydrothermal deposits. Collaborative awards: OPP 9725972 and OPP 9813450", "east": -54.0534, "geometry": "POINT(-62.48002 -57.588635)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.35256, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Klinkhammer, Gary", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -62.82471, "title": "Heat and Chemical Exchange During the Early Stages of Backarc Rifting in a Polar Region: Hydrothermal Activity in Bransfield Strait, Antarctica", "uid": "p0000622", "west": -70.90664}, {"awards": "0636639 MacPhee, Ross", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG0717; Expedition data of LMG0902", "datasets": [{"dataset_uid": "001520", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0717"}, {"dataset_uid": "002677", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0717", "url": "https://www.rvdata.us/search/cruise/LMG0717"}, {"dataset_uid": "002727", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0902", "url": "https://www.rvdata.us/search/cruise/LMG0902"}, {"dataset_uid": "002669", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0902", "url": "https://www.rvdata.us/search/cruise/LMG0902"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This exploratory project searches for fossils on Livingston Island in the South Shetland Islands off of the Antarctic peninsula. Strata there date from 125 to 99 million years in age, a critical time in the development of various flora and fauna. With so many unknowns in the biotic history of the Antarctic, any finds of vertebrate fossils on this little explored island will be of great significance. One key question is marsupial evolution. It is assumed that marsupials of South America and Australia transited through Antarctica, but a supporting fossil record has yet to be discovered. Related investigations on Mesozoic climate will be performed through stable isotope analysis of clay and rock samples. The broader impacts of the project include graduate student education and public outreach through a museum exhibit.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "MacPhee, Ross; DeMaster, David", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Vertebrate Paleontology of Livingston Island, South Shetlands, Antarctica", "uid": "p0000858", "west": null}, {"awards": "9614028 Dymond, Jack", "bounds_geometry": "POLYGON((-179.9993 -63.09006,-143.99946 -63.09006,-107.99962 -63.09006,-71.99978 -63.09006,-35.99994 -63.09006,-0.000100000000003 -63.09006,35.99974 -63.09006,71.99958 -63.09006,107.99942 -63.09006,143.99926 -63.09006,179.9991 -63.09006,179.9991 -64.490422,179.9991 -65.890784,179.9991 -67.291146,179.9991 -68.691508,179.9991 -70.09187,179.9991 -71.492232,179.9991 -72.892594,179.9991 -74.292956,179.9991 -75.693318,179.9991 -77.09368,143.99926 -77.09368,107.99942 -77.09368,71.99958 -77.09368,35.99974 -77.09368,-0.000100000000003 -77.09368,-35.99994 -77.09368,-71.99978 -77.09368,-107.99962 -77.09368,-143.99946 -77.09368,-179.9993 -77.09368,-179.9993 -75.693318,-179.9993 -74.292956,-179.9993 -72.892594,-179.9993 -71.492232,-179.9993 -70.09187,-179.9993 -68.691508,-179.9993 -67.291146,-179.9993 -65.890784,-179.9993 -64.490422,-179.9993 -63.09006))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002161", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9605"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "96-14028 Dymond This research project is part of the US Joint Global Ocean Flux Study (JGOFS) Southern Ocean Program aimed at (1) a better understanding of the fluxes of carbon, both organic and inorganic, in the Southern Ocean, (2) identifying the physical, ecological and biogeochemical factors and processes which regulate the magnitude and variability of these fluxes, and (3) placing these fluxes into the context of the contemporary global carbon cycle. This work is one of forty-four projects that are collaborating in the Southern Ocean Experiment, a three-year effort south of the Antarctic Polar Frontal Zone to track the flow of carbon through its organic and inorganic pathways from the air-ocean interface through the entire water column into the bottom sediment. The experiment will make use of the RVIB Nathaniel B. Palmer and the R/V Thompson. This component, a collaborative study by scientists from the Woods Hole Oceanographic Institution, Oregon State University, and the New Zealand Oceanographic Institution, concerns the export of particulate forms of carbon downward from the upper ocean. The observations will be obtained from an array of time- series sediment traps, and will be analyzed to quantify export fluxes from the Subtropical Front to the Ross Sea, over an 18- months period beginning the early austral summer of 1996. The measurement program will two annual phytoplankton blooms. The southern ocean provides a unique opportunity to investigate the processes controlling export flux in contrasting biogeochemical ocean zones demarcated by oceanic fronts. The temperature changes at the fronts coincide with gradients in nutrient concentrations and plankton ecology, resulting in a large latitudinal change in the ratio of calcium to silica taken up by the phytoplankton communities. This experiment will provide data on how the biological pump operates in the Southern Ocean and how it could potentially impact the level of atmospheric c arbon dioxide. The observed export fluxes of organic carbon, nitrogen, inorganic carbon, biogenic silica and alumina are central to the goals of the JGOFS program.", "east": 179.9991, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -63.09006, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Dymond, Jack", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.09368, "title": "Latitudinal Variations of Particle Fluxes in the Southern Ocean: A Bottom Tethered Sediment Trap Array Experiment", "uid": "p0000636", "west": -179.9993}, {"awards": "9731695 Klinkhammer, Gary", "bounds_geometry": "POLYGON((-179.9993 -43.56612,-143.99965 -43.56612,-108 -43.56612,-72.00035 -43.56612,-36.0007 -43.56612,-0.00105000000002 -43.56612,35.9986 -43.56612,71.99825 -43.56612,107.9979 -43.56612,143.99755 -43.56612,179.9972 -43.56612,179.9972 -45.894301,179.9972 -48.222482,179.9972 -50.550663,179.9972 -52.878844,179.9972 -55.207025,179.9972 -57.535206,179.9972 -59.863387,179.9972 -62.191568,179.9972 -64.519749,179.9972 -66.84793,143.99755 -66.84793,107.9979 -66.84793,71.99825 -66.84793,35.9986 -66.84793,-0.00104999999999 -66.84793,-36.0007 -66.84793,-72.00035 -66.84793,-108 -66.84793,-143.99965 -66.84793,-179.9993 -66.84793,-179.9993 -64.519749,-179.9993 -62.191568,-179.9993 -59.863387,-179.9993 -57.535206,-179.9993 -55.207025,-179.9993 -52.878844,-179.9993 -50.550663,-179.9993 -48.222482,-179.9993 -45.894301,-179.9993 -43.56612))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002227", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9507"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9731695 Klinkhammer This award supports participation of Oregon State University (OSU) researchers in an expedition of the German oceanographic research vessel POLARSTERN to the Antarctic Ocean (POLARSTERN cruise ANT-XV/2). Previous OSU researchers supported by the US Antarctic Program identified several areas of hydrothermal venting in the Bransfield Strait. This discovery has important implications to the biogeography of vent animals, the geological evolution of ore deposits, and the chemical and heat budgets of the Earth. The previous work sampled water and particles from above the vent sites at a reconnaissance level. Subsequent chemical analyses of these samples provided insight into the chemistry of fluids emanating from vents on the sea floor. The POLARSTERN cruise affords a unique opportunity to build on these discoveries in the Bransfield Strait, foster future international work in the Bransfield area, extend research on hydrothermal activity to other parts of the Antarctic Peninsula region, and develop a working relationship with a strong international group. In particular, the POLARSTERN expedition provides the opportunity for: 1) additional sampling of water and suspended particulate matter in the water column over the Bransfield hydrothermal sites this sampling would be aided by German photographic reconnaissance; 2) reconnaissance, to determine the broader geographical extent of hydrothermal activity, would be extended to the Scotia Arc and trench areas following the general theme of the German program which is fluid expulsion from the Scotia- Bransfield system; and 3) the use of unique tools available on the POLARSTERN such as a camera sled and grab bottom sampler. This work will make it possible to better define the location of hydrothermal vents and to begin to quantify the amount of water being expelled by this hydrothermal activity. If vents can be precisely located, the bottom photography holds the promise of revealing possible biologic al communities associated with these submarine hot springs.", "east": 179.9972, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -43.56612, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Klinkhammer, Gary", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -66.84793, "title": "SGER Proposal: Rare Research Opportunity to Study Geotectonic Fluids in Bransfield Strait and Scotia Arc, Antarctica", "uid": "p0000640", "west": -179.9993}, {"awards": "9910102 Padman, Laurence", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0104; Expedition data of NBP0202; Expedition data of NBP0204", "datasets": [{"dataset_uid": "002657", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}, {"dataset_uid": "002597", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0204", "url": "https://www.rvdata.us/search/cruise/NBP0204"}, {"dataset_uid": "002606", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}, {"dataset_uid": "002643", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0204", "url": "https://www.rvdata.us/search/cruise/NBP0204"}, {"dataset_uid": "002586", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0202", "url": "https://www.rvdata.us/search/cruise/NBP0202"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project is a contribution to a coordinated attempt to understand the interactions of biological and physical dynamics by developing relationships among the evolution of the antarctic winter ice and snow cover, biological habitat variability, and the seasonal progression of marine ecological processes. The work will be carried out in the context of the Southern Ocean Experiment of the Global Ocean Ecosystem Dynamics Study (Globec), a large, multi-investigator study of the winter survival strategy of krill under the antarctic sea ice in the vicinity of Marguerite Bay on the western side of the Antarctic Peninsula. There are several aspects to this project: One is the collection, analysis, and archiving of Acoustic Doppler Current Profiler (ADCP), and Conductivity-Temperature-Depth (CTD) data in order to characterize mesoscale circulation features and the regional hydrography. Another is to develop an accurate and fully validated model of tidal currents in Marguerite Bay. A third is to provide a data set of small-scale processes such as shear instabilities, tidal stirring, mesoscale eddies, and double diffusion, that are required for the effective parameterization of the vertical diffusivities of heat, salt, and nutrients. The results of this project will provide a unified data set that satisfies the data requirement of the coordinated chemical and biological studies which will link water column and sea ice processes with the biology of krill and its predators. The results further will help to link these winter observations to similar observations made in summer and elsewhere around Antarctic in the international context of the Globec program. The overall objective is to develop a comprehensive ecosystem model that will test our understanding of the system, determine its sensitivities, and to provide an organizing mechanism for integrating the Southern Ocean Globec observations. ***", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Padman, Laurence", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Mesoscale Circulation, Tides and Mixing on the Western Antarctic Peninsula Shelf: A Component of WINDSSOCK (ESR proposal #99-48)", "uid": "p0000806", "west": null}, {"awards": "0636773 DeMaster, David; 0636806 Smith, Craig", "bounds_geometry": "POLYGON((-71.2358 -52.7603,-69.75336 -52.7603,-68.27092 -52.7603,-66.78848 -52.7603,-65.30604 -52.7603,-63.8236 -52.7603,-62.34116 -52.7603,-60.85872 -52.7603,-59.37628 -52.7603,-57.89384 -52.7603,-56.4114 -52.7603,-56.4114 -54.29969,-56.4114 -55.83908,-56.4114 -57.37847,-56.4114 -58.91786,-56.4114 -60.45725,-56.4114 -61.99664,-56.4114 -63.53603,-56.4114 -65.07542,-56.4114 -66.61481,-56.4114 -68.1542,-57.89384 -68.1542,-59.37628 -68.1542,-60.85872 -68.1542,-62.34116 -68.1542,-63.8236 -68.1542,-65.30604 -68.1542,-66.78848 -68.1542,-68.27092 -68.1542,-69.75336 -68.1542,-71.2358 -68.1542,-71.2358 -66.61481,-71.2358 -65.07542,-71.2358 -63.53603,-71.2358 -61.99664,-71.2358 -60.45725,-71.2358 -58.91786,-71.2358 -57.37847,-71.2358 -55.83908,-71.2358 -54.29969,-71.2358 -52.7603))", "dataset_titles": "Expedition Data; Expedition data of LMG0802; Expedition data of LMG0902; Expedition Data of LMG0902; Expedition data of NBP0808; Labile Organic Carbon distributions on the West Antarctic Peninsula Shelf; Species List, Species Abundance, and Sediment Geochemistry processed data acquired during Laurence M. Gould expedition LMG0802", "datasets": [{"dataset_uid": "601303", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Biota; Box Corer; Chlorophyll Concentration; LMG0802; Marcofauna; Megafauna; Oceans; R/v Laurence M. Gould; Seafloor Sampling; Species Abundance", "people": "Smith, Craig; DeMaster, David", "repository": "USAP-DC", "science_program": null, "title": "Species List, Species Abundance, and Sediment Geochemistry processed data acquired during Laurence M. Gould expedition LMG0802", "url": "https://www.usap-dc.org/view/dataset/601303"}, {"dataset_uid": "002669", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0902", "url": "https://www.rvdata.us/search/cruise/LMG0902"}, {"dataset_uid": "001513", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0802"}, {"dataset_uid": "002611", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0808", "url": "https://www.rvdata.us/search/cruise/NBP0808"}, {"dataset_uid": "002727", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0902", "url": "https://www.rvdata.us/search/cruise/LMG0902"}, {"dataset_uid": "002726", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0802", "url": "https://www.rvdata.us/search/cruise/LMG0802"}, {"dataset_uid": "002725", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0802", "url": "https://www.rvdata.us/search/cruise/LMG0802"}, {"dataset_uid": "601319", "doi": "10.15784/601319", "keywords": "Antarctica; Antarctic Peninsula; Biota; Bioturbation Coefficients; Diagenesis; Labile Organic Carbon; LOC Mean Residence Times; Marguerite Bay; Oceans; Organic Carbon Degradation Rates; Sediment Core", "people": "Taylor, Richard; Smith, Craig; Isla, Enrique; Thomas, Carrie; DeMaster, David", "repository": "USAP-DC", "science_program": null, "title": "Labile Organic Carbon distributions on the West Antarctic Peninsula Shelf", "url": "https://www.usap-dc.org/view/dataset/601319"}, {"dataset_uid": "001486", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of LMG0902", "url": "https://www.rvdata.us/search/cruise/LMG0902"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The Antarctic Peninsula region exhibits one of the largest warming trends in the world. Climate change in this region will reduce the duration of winter sea-ice cover, altering both the pelagic ecosystem and bentho-pelagic coupling. We postulate that shelf benthic ecosystems are highly suitable for tracking climate change because they act as \"low-pass\" filters, removing high-frequency seasonal noise and responding to longer-term trends in pelagic ecosystem structure and export production. We propose to conduct a 3-year study of bentho-pelagic coupling along a latitudinal climate gradient on the Antarctic Peninsula to explore the potential impacts of climate change (e.g., reduction in sea-ice duration) on Antarctic shelf ecosystems. We will conduct three cruises during summer and winter regimes along a 5- station transect from Smith Island to Marguerite Bay, evaluating a broad range of benthic ecological and biogeochemical processes. Specifically, we will examine the feeding strategies of benthic deposit feeders along this climatic gradient to elucidate the potential response of this major trophic group to climatic warming. In addition, we will (1) quantify carbon and nitrogen cycling and burial at the seafloor and (2) document changes in megafaunal, macrofaunal, and microbial community structure along this latitudinal gradient. We expect to develop predictive insights into the response of Antarctic shelf ecosystems to some of the effects of climate warming (e.g., a reduction in winter sea-ice duration). The proposed research will considerably broaden the ecological and carbon-flux measurements made as parts of the Palmer Station LTER and GLOBEC programs by providing a complementary benthic component. This project also will promote science education from the 9th grade to graduate-student levels. We will partner with the NSF-sponsored Southeastern Center for Ocean Science Education Excellence to reach students of all races in all areas of NC, SC and GA. The project will also benefit students at the post secondary level by supporting three graduate and two undergraduate students. During each of the three field excursions, NCSU and UH students will travel to Chile and Antarctica to participate in scientific research. Lastly, all three PIs will incorporate material from this project into their undergraduate and graduate courses.", "east": -56.4114, "geometry": "POINT(-63.8236 -60.45725)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS", "is_usap_dc": false, "keywords": "LMG0802; R/V LMG; AMD; Amd/Us; LMG0902; USA/NSF; NBP0808; USAP-DC; R/V NBP", "locations": null, "north": -52.7603, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "DeMaster, David; Smith, Craig", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -68.1542, "title": "Collaborative Research: Benthic Faunal Feeding Dynamics on the Antarctic Shelf and the Effects of Global Climate Change on Bentho-Pelagic Coupling", "uid": "p0000552", "west": -71.2358}, {"awards": "0125922 Anderson, John", "bounds_geometry": "POLYGON((-69.84264 -52.35215,-68.086508 -52.35215,-66.330376 -52.35215,-64.574244 -52.35215,-62.818112 -52.35215,-61.06198 -52.35215,-59.305848 -52.35215,-57.549716 -52.35215,-55.793584 -52.35215,-54.037452 -52.35215,-52.28132 -52.35215,-52.28132 -53.546701,-52.28132 -54.741252,-52.28132 -55.935803,-52.28132 -57.130354,-52.28132 -58.324905,-52.28132 -59.519456,-52.28132 -60.714007,-52.28132 -61.908558,-52.28132 -63.103109,-52.28132 -64.29766,-54.037452 -64.29766,-55.793584 -64.29766,-57.549716 -64.29766,-59.305848 -64.29766,-61.06198 -64.29766,-62.818112 -64.29766,-64.574244 -64.29766,-66.330376 -64.29766,-68.086508 -64.29766,-69.84264 -64.29766,-69.84264 -63.103109,-69.84264 -61.908558,-69.84264 -60.714007,-69.84264 -59.519456,-69.84264 -58.324905,-69.84264 -57.130354,-69.84264 -55.935803,-69.84264 -54.741252,-69.84264 -53.546701,-69.84264 -52.35215))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001602", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0502"}, {"dataset_uid": "001571", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0602A"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a demonstration project to prove the viability of shallow ship-based geological drilling while simultaneously collecting useful cores for assessing the early history of the Antarctic ice sheets. For over three decades, U.S. scientists and their international colleagues exploring the shallow shelves and seas along the margins of Antarctic have been consistently frustrated by their inability to penetrate through the over-compacted glacial diamictons encountered at shallow sub bottom depths (within the upper 10 m) over these terrains. This is particularly frustrating because advanced high resolution seismic reflection techniques clearly show in many areas the presence of older successions of Neogene and even Paleogene sequences lying just beneath this thin veneer of diamictons. Until the means are developed to recover these sequences, a detailed history of the Antarctic ice sheets, which is an essential prerequisite to understanding Cenozoic paleoclimate and future climate change on a global scale, will remain an elusive and unobtainable goal. After four years of study and evaluation with the aid of a professional engineer (and over the course of two workshops), the SHALDRIL Committee, an interested group of U.S. scientists, has identified at least two diamond-coring systems deemed suitable for use on existing ice-breaking U.S. Antarctic Research Program vessels. The goal of this project is to employ diamond-coring technology on the RV/IB Nathaniel B. Palmer in order to test out and demonstrate the feasibility of both ship-based diamond coring and down-hole logging. For this \"demonstration cruise\" coring will be attempted along a high-resolution seismic reflection profile on the continental shelf adjacent to Seymour Island, Antarctic Peninsula, an area of high scientific interest in its own right. Here the well-defined geologic section is estimated to range from Eocene to Quaternary in age, effectively spanning the \"Greenhouse-Icehouse\" transition in the evolution of Antarctic/global climate. A complete record of this transition has yet to be obtained anywhere along the Antarctic margin. Following core recovery, this project will result in correlation of the paleoclimate records from the new cores with detailed fluctuations of the ice margin recorded at higher latitudes in the eastern Ross Sea by the recently concluded, fast-ice-based Cape Roberts Project. If successful, this mobile and flexible drilling system will then be available to the broader scientific community for further research in paleoenvironmental conditions and other areas of science that are currently hindered by the present gap that exists in the US Antarctic Program\u0027s technical capability to explore the Antarctic shelves between the shore-line/fast-ice margin and the continental slope. SHALDRIL will be able to operate effectively in the \"no man\u0027s land\" that presently exists between the near shore (where the fast-ice-based Cape Roberts Project was successful) and the upper slope (where the Ocean Drilling Program\u0027s vessel JOIDES Resolution becomes most efficient). This technological breakthrough will not only allow major outstanding scientific problems of the last three decades to be addressed, but will also favorably impact many current U.S. and SCAR (ICSU Scientific Committee on Antarctic Research) Antarctic or drilling-related initiatives, such as WAIS, ANTIME, ANDRILL, ANTEC, IMAGES, PAGES, GLOCHANT (including PICE), MARGINS, ODP, and STRATAFORM.", "east": -52.28132, "geometry": "POINT(-61.06198 -58.324905)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ROCK CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.35215, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, John; Wellner, Julia", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -64.29766, "title": "Collaborative Research: SHALDRIL - A Demonstration Drilling Cruise to the James Ross Basin", "uid": "p0000571", "west": -69.84264}, {"awards": "0125890 Sidell, Bruce", "bounds_geometry": "POLYGON((-68.1413 -52.6755,-67.47503 -52.6755,-66.80876 -52.6755,-66.14249 -52.6755,-65.47622 -52.6755,-64.80995 -52.6755,-64.14368 -52.6755,-63.47741 -52.6755,-62.81114 -52.6755,-62.14487 -52.6755,-61.4786 -52.6755,-61.4786 -53.8957,-61.4786 -55.1159,-61.4786 -56.3361,-61.4786 -57.5563,-61.4786 -58.7765,-61.4786 -59.9967,-61.4786 -61.2169,-61.4786 -62.4371,-61.4786 -63.6573,-61.4786 -64.8775,-62.14487 -64.8775,-62.81114 -64.8775,-63.47741 -64.8775,-64.14368 -64.8775,-64.80995 -64.8775,-65.47622 -64.8775,-66.14249 -64.8775,-66.80876 -64.8775,-67.47503 -64.8775,-68.1413 -64.8775,-68.1413 -63.6573,-68.1413 -62.4371,-68.1413 -61.2169,-68.1413 -59.9967,-68.1413 -58.7765,-68.1413 -57.5563,-68.1413 -56.3361,-68.1413 -55.1159,-68.1413 -53.8957,-68.1413 -52.6755))", "dataset_titles": "Expedition Data; Expedition data of LMG0304; Expedition data of LMG0304A", "datasets": [{"dataset_uid": "002706", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0304", "url": "https://www.rvdata.us/search/cruise/LMG0304"}, {"dataset_uid": "001704", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0304"}, {"dataset_uid": "001596", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0506"}, {"dataset_uid": "001597", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0505"}, {"dataset_uid": "002708", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0304A", "url": "https://www.rvdata.us/search/cruise/LMG0304A"}, {"dataset_uid": "002707", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0304A", "url": "https://www.rvdata.us/search/cruise/LMG0304A"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Notothenioid fishes that dominate the fish fauna surrounding Antarctica have been evolving for 10-14 million years at a nearly constant body temperature of ~0C throughout their life histories. As a result, this group of animals is uniquely suited to studies aimed at understanding and identifying features of physiology and biochemistry that result from the process of evolution at cold body temperature. This project has three major objectives aimed at examining adaptations for life in cold environments: \u003cbr/\u003e\u003cbr/\u003e1. Identify the amino acid substitutions in the fatty acid-binding pocket of fatty acyl CoA synthetase (FACS) that explain its substrate specificity. Fatty acids are a major fuel of energy metabolism in Antarctic fishes. FACS catalyzes the condensation of CoASH and fatty acids to fatty acyl CoA esters, a step required for subsequent metabolism of these important compounds. This research may permit us to resolve the specific amino acid substitutions that explain both substrate specificity and preservation of catalytic rate of notothenioid FACS at cold physiological temperatures.\u003cbr/\u003e\u003cbr/\u003e2. Produce a rigorous biochemical and biophysical characterization of the intracellular calcium-binding protein, parvalbumin, from white axial musculature of Antarctic fishes. Parvalbumin plays a pivotal role in facilitating the relaxation phase of fast-contracting muscles and is a likely site of strong selective pressure. Preliminary data strongly indicate that the protein from Antarctic fishes has been modified to ensure function at cold temperature. A suite of physical techniques will be used to determine dissociation constants of Antarctic fish parvalbumins for calcium and magnesium and unidirectional rate constants of ion-dissociation from the protein. Full-length cDNA clones for Antarctic fish parvalbumin(s) will permit deduction of primary amino acid sequence These data will yield insight into structural elements that permit the protein from notothenioid fishes to function at very cold body temperature.\u003cbr/\u003e\u003cbr/\u003e3. Conduct a broad survey of the pattern of cardiac myoglobin expression in the Suborder Notothenoidei. Previous work has indicated a variable pattern of presence or absence of the intracellular oxygen-binding protein, myoglobin (Mb), in hearts of one family of Antarctic notothenioid fishes (Channichthyidae; icefishes). Because Mb is of physiological value in species that express the protein, the observed pattern of interspecific expression has been attributed to unusually low niche competition in the Southern Ocean. This leads to the prediction that similar loss of cardiac Mb should be observed in other notothenioid taxa. This part of the project will survey for the presence and absence of cardiac Mb in as many notothenioid species as possible and, if Mb-lacking species are detected, will extend analyses to determine the mechanism(s) responsible for loss of its expression using molecular biological techniques.", "east": -61.4786, "geometry": "POINT(-64.80995 -58.7765)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": -52.6755, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Sidell, Bruce; Detrich, H. William", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -64.8775, "title": "Cold Body Temperature as an Evolutionary Shaping force in the Physiology of Antarctic Fishes", "uid": "p0000241", "west": -68.1413}, {"awards": "0087401 Smith, Walker", "bounds_geometry": null, "dataset_titles": "Current Meter Data from the Ross Sea acquired with a Mooring deployed in December 2005 and recovered during the Nathaniel B. Palmer expedition NBP0601A (2006); Expedition data of NBP0301B; Expedition data of NBP0305A; Expedition data of NBP0501; Expedition data of NBP0601A; Fluorometer Data acquired on Moorings deployed the Ross Sea and recovered during the Nathaniel B. Palmer expedition NBP0601A (2006); Processed Fluid Chemistry Data from the Ross Sea acquired during the Nathaniel B. Palmer expedition NBP0601A", "datasets": [{"dataset_uid": "002627", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "601339", "doi": null, "keywords": "Antarctica; Current Meter; Mooring; NBP0601A; Oceans; Physical Oceanography; Ross Sea; Southern Ocean", "people": "Asper, Vernon; Smith, Walker", "repository": "USAP-DC", "science_program": null, "title": "Current Meter Data from the Ross Sea acquired with a Mooring deployed in December 2005 and recovered during the Nathaniel B. Palmer expedition NBP0601A (2006)", "url": "https://www.usap-dc.org/view/dataset/601339"}, {"dataset_uid": "002623", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0601A", "url": "https://www.rvdata.us/search/cruise/NBP0601A"}, {"dataset_uid": "601333", "doi": null, "keywords": "Antarctica; Flourometer; Mooring; NBP0601A; Ross Sea; Southern Ocean", "people": "Asper, Vernon; Smith, Walker", "repository": "USAP-DC", "science_program": null, "title": "Fluorometer Data acquired on Moorings deployed the Ross Sea and recovered during the Nathaniel B. Palmer expedition NBP0601A (2006)", "url": "https://www.usap-dc.org/view/dataset/601333"}, {"dataset_uid": "002622", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "002621", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0305A", "url": "https://www.rvdata.us/search/cruise/NBP0305A"}, {"dataset_uid": "002583", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0301B", "url": "https://www.rvdata.us/search/cruise/NBP0301B"}, {"dataset_uid": "601341", "doi": null, "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Fluid Chemistry Data; Mooring; NBP0601A; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Seawater Measurements; Southern Ocean", "people": "Smith, Walker; Asper, Vernon", "repository": "USAP-DC", "science_program": null, "title": "Processed Fluid Chemistry Data from the Ross Sea acquired during the Nathaniel B. Palmer expedition NBP0601A", "url": "https://www.usap-dc.org/view/dataset/601341"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "During the past few decades of oceanographic research, it has been recognized that significant variations in biogeochemical processes occur among years. Interannual variations in the Southern Ocean are known to occur in ice extent and concentration, in the composition of herbivore communities, and in bird and marine mammal distributions and reproductive success. However, little is known about the interannual variations in production of phytoplankton or the role that these variations play in the food web. This project will collect time series data on the seasonal production of phytoplankton in the southern Ross Sea, Antarctica. Furthermore, it will assess the interannual variations of the production of the two major functional groups of the system, diatoms and Phaeocystis Antarctica, a colonial haptophyte. The Ross Sea provides a unique setting for this type of investigation for a number of reasons. For example, a de facto time-series has already been initiated in the Ross Sea through the concentration of a number of programs in the past ten years. It also is well known that the species diversity is reduced relative to other systems and its seasonal production is as great as anywhere in the Antarctic. Most importantly, seasonal production of both the total phytoplankton community (as well as its two functional groups) can be estimated from late summer nutrient profiles. The project will involve short cruises on the US Coast Guard ice breakers in the southern Ross Sea that will allow the collection of water column nutrient and particulate after data at specific locations in the late summer of each of five years. Additionally, two moorings with in situ nitrate analyzers moored at fifteen will be deployed, thus collecting for the first time in the in the Antarctic a time-series of euphotic zone nutrient concentrations over the entire growing season. All nutrient data will be used to calculate seasonal production for each year in the southern Ross Sea and compared to previously collected information, thereby providing an assessment of interannual variations in net community production. Particulate matter data will allow us to estimate the amount of export from the surface layer by late summer, and therefore calculate the interannual variability of this ecosystem process. Interannual variations of seasonal production (and of the major taxa of producers) are a potentially significant feature in the growth and survival of higher trophic levels within the food web of the Ross Sea. They are also important in order to understand the natural variability in biogeochemical processes of the region. Because polar regions such as the Ross Sea are predicted to be impacted by future climate change, biological changes are also anticipated. Placing these changes in the context of natural variability is an essential element of understanding and predicting such alterations. This research thus seeks to quantify the natural variability of an Antarctic coastal system, and ultimately understand its causes and impacts on food webs and biogeochemical cycles of the Ross Sea.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "Ross Sea; AMD; USAP-DC; Amd/Us; USA/NSF; R/V NBP", "locations": "Ross Sea", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Walker; Gordon, Arnold", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": null, "title": "Interannual Variability in the Antarctic-Ross Sea (IVARS): Nutrients and Seasonal Production", "uid": "p0000803", "west": null}, {"awards": "0127037 Neale, Patrick; 0741411 Hutchins, David; 0338097 DiTullio, Giacomo; 0338157 Smith, Walker; 0338350 Dunbar, Robert", "bounds_geometry": "POLYGON((173.31833 -46.5719,173.757539 -46.5719,174.196748 -46.5719,174.635957 -46.5719,175.075166 -46.5719,175.514375 -46.5719,175.953584 -46.5719,176.392793 -46.5719,176.832002 -46.5719,177.271211 -46.5719,177.71042 -46.5719,177.71042 -48.759516,177.71042 -50.947132,177.71042 -53.134748,177.71042 -55.322364,177.71042 -57.50998,177.71042 -59.697596,177.71042 -61.885212,177.71042 -64.072828,177.71042 -66.260444,177.71042 -68.44806,177.271211 -68.44806,176.832002 -68.44806,176.392793 -68.44806,175.953584 -68.44806,175.514375 -68.44806,175.075166 -68.44806,174.635957 -68.44806,174.196748 -68.44806,173.757539 -68.44806,173.31833 -68.44806,173.31833 -66.260444,173.31833 -64.072828,173.31833 -61.885212,173.31833 -59.697596,173.31833 -57.50998,173.31833 -55.322364,173.31833 -53.134748,173.31833 -50.947132,173.31833 -48.759516,173.31833 -46.5719))", "dataset_titles": "Expedition Data; Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea; Processed Fluid Chemistry Data from the Ross Sea acquired during the Nathaniel B. Palmer expedition NBP0601", "datasets": [{"dataset_uid": "601340", "doi": null, "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Fluid Chemistry Data; Geochemistry; NBP0601; Niskin Bottle; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Southern Ocean; Water Measurements", "people": "Smith, Walker; DiTullio, Giacomo", "repository": "USAP-DC", "science_program": null, "title": "Processed Fluid Chemistry Data from the Ross Sea acquired during the Nathaniel B. Palmer expedition NBP0601", "url": "https://www.usap-dc.org/view/dataset/601340"}, {"dataset_uid": "001580", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0601"}, {"dataset_uid": "001687", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0305"}, {"dataset_uid": "001545", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0608"}, {"dataset_uid": "001584", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0508"}, {"dataset_uid": "600036", "doi": "10.15784/600036", "keywords": "Biota; Chemistry:fluid; Chemistry:Fluid; Diatom; Oceans; Phytoplankton; Ross Sea; Southern Ocean", "people": "DiTullio, Giacomo", "repository": "USAP-DC", "science_program": null, "title": "Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea", "url": "https://www.usap-dc.org/view/dataset/600036"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The objectives of this proposal are to investigate the controls on the large-scale distribution and production of the two major bloom-forming phytoplankton taxa in the Southern Ocean, diatoms and Phaeocystis Antarctica. These two groups, through their involvement in the biogeochemical cycles of carbon, sulfur and nutrient elements, may have played important roles in the climate variations of the late Quaternary, and they also may be key players in future environmental change. A current paradigm is that irradiance and iron availability drive phytoplankton dynamics in the Southern Ocean. Recent work, however, suggests that carbon dioxide (CO2) concentrations may also be important in structuring algal assemblages, due to species-specific differences in the physiology. This proposal examines the interactive effects of iron, light and CO2 on the physiology, ecology and relative dominance of Phaeocystis and diatoms in the Southern Ocean. The Ross Sea is an ideal system in which to investigate the environmental factors that regulate the distribution and production of these two algal groups, since it is characterized by seasonal blooms of both P. Antarctica and diatoms that are typically separated in both space and time. This study will take the form of an interdisciplinary investigation that includes a field survey and statistical analysis of algal assemblage composition, iron, mixed layer depth, and CO2 levels in the southern Ross Sea, coupled with shipboard experiments to examine the response of diatom and P. Antarctica assemblages to high and low levels of iron, light and CO2 during spring and summer. \u003cbr/\u003eThis project will provide information on some of the major factors controlling the production and distribution of the two major bloom forming phytoplankton in the Southern Ocean and the related biogeochemical cycling of carbon, sulfur and nutrient elements. The results may ultimately advance the ability to predict how the Southern Ocean will be affected by and possibly modulate future climate change. This project will also make significant educational contributions at several levels, including the planned research involvement of graduate and undergraduate students, postdoctoral associates, a student teacher, and community outreach and educational activities. A number of activities are planned to interface the project with K-12 education. Presentations will be made at local schools to discuss the research and events of the research cruise. During the cruise there will be daily interactive email contact with elementary classrooms. Established websites will be used to allow students to learn about the ongoing research, and to allow researchers to communicate with students through text and downloaded images.", "east": 177.71042, "geometry": "POINT(175.514375 -57.50998)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FRRF; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FRRF", "is_usap_dc": true, "keywords": "B-15J; OCEAN PLATFORMS; FIELD SURVEYS; R/V NBP", "locations": "B-15J", "north": -46.5719, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ditullio, Giacomo; Smith, Walker; Dryer, Jennifer; Neale, Patrick", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; WATER-BASED PLATFORMS \u003e FIXED PLATFORMS \u003e SURFACE \u003e OCEAN PLATFORMS; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -68.44806, "title": "Collaborative Research: Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea", "uid": "p0000540", "west": 173.31833}, {"awards": "0338346 Cande, Steven; 0338317 Stock, Joann", "bounds_geometry": "POLYGON((-179.9987 71.33822,-143.998893 71.33822,-107.999086 71.33822,-71.999279 71.33822,-35.999472 71.33822,0.000334999999978 71.33822,36.000142 71.33822,71.999949 71.33822,107.999756 71.33822,143.999563 71.33822,179.99937 71.33822,179.99937 59.8431,179.99937 48.34798,179.99937 36.85286,179.99937 25.35774,179.99937 13.86262,179.99937 2.3675,179.99937 -9.12762,179.99937 -20.62274,179.99937 -32.11786,179.99937 -43.61298,143.999563 -43.61298,107.999756 -43.61298,71.999949 -43.61298,36.000142 -43.61298,0.000335000000007 -43.61298,-35.999472 -43.61298,-71.999279 -43.61298,-107.999086 -43.61298,-143.998893 -43.61298,-179.9987 -43.61298,-179.9987 -32.11786,-179.9987 -20.62274,-179.9987 -9.12762,-179.9987 2.3675,-179.9987 13.86262,-179.9987 25.35774,-179.9987 36.85286,-179.9987 48.34798,-179.9987 59.8431,-179.9987 71.33822))", "dataset_titles": "Expedition Data; Expedition data of NBP0501", "datasets": [{"dataset_uid": "001652", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0406"}, {"dataset_uid": "001690", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304B"}, {"dataset_uid": "001587", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0507"}, {"dataset_uid": "001561", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0607A"}, {"dataset_uid": "001691", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304C"}, {"dataset_uid": "001512", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0804"}, {"dataset_uid": "001609", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0501B"}, {"dataset_uid": "002627", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "001692", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304D"}, {"dataset_uid": "001557", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0607C"}, {"dataset_uid": "001577", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0602"}, {"dataset_uid": "001660", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0403"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project will utilize the R/VIB Nathaniel B. Palmer\u0027s transit cruises to collect marine geophysical data on targets-of-opportunity in the southern oceans. Because the Palmer generally traverses regions only sparsely surveyed with geophysical instruments, this project represents a cost-effective way to collect important new data. The work\u0027s focus is expanding our knowledge of plate motion histories for the Antarctic and surrounding plates. The ultimate goals are improving global plate reconstructions and gaining new insight into general plate kinematics and dynamics and lithospheric rheology. Only slight deviations from the straight routes are required, and we expect to operate on one cruise per year over the three years of the project. The first cruise from New Zealand to Chile will survey a flow line of Pacific-Antarctic plate motion along the Menard fracture zone, which crosses the East Pacific Rise at ~50 S latitude. Swath bathymetry, gravity, magnetics, and a small amount of seismic reflection profiling will be collected to determine the exact trace of the fracture zone and its relationship to the associated gravity anomaly seen in shipboard and satellite radar altimetry data. These observations are critical for precise plate reconstructions, and will provide GPS-navigated locations of a major fracture zone near the northern end of the Pacific-Antarctic boundary. These data will be used in combination with similar data from the Pitman fracture zone at the southwestern end of the plate boundary and magnetic anomalies from previous cruises near the Menard fracture zone to improve high-precision plate reconstructions and evaluate the limits of internal deformation of the Pacific and Antarctic plates. The science plan for cruises in following years will be designed once transit schedules are set. In terms of broader impacts, we plan to teach an on-board marine geophysics class to graduate and undergraduate students on two cruises. The class consists of daily classroom lectures about the instruments and data; several hours per day of watch standing and data processing; and work by each student on an independent research project. We expect to accommodate 15 students per class, including participants from primarily undergraduate institutions with high minority enrollments.", "east": 179.99937, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e WATER BOTTLES", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": 71.33822, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Croon, Marcel; Stock, Joann; Miller, Alisa; Cande, Steven; Gordon, Arnold", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -43.61298, "title": "Collaborative Research: Collection of Marine Geophysical Data on Transits of the Nathaniel B. Palmer", "uid": "p0000121", "west": -179.9987}, {"awards": "9909374 Fairbanks, Richard", "bounds_geometry": "POLYGON((140.21983 -45.80239,141.197867 -45.80239,142.175904 -45.80239,143.153941 -45.80239,144.131978 -45.80239,145.110015 -45.80239,146.088052 -45.80239,147.066089 -45.80239,148.044126 -45.80239,149.022163 -45.80239,150.0002 -45.80239,150.0002 -47.983436,150.0002 -50.164482,150.0002 -52.345528,150.0002 -54.526574,150.0002 -56.70762,150.0002 -58.888666,150.0002 -61.069712,150.0002 -63.250758,150.0002 -65.431804,150.0002 -67.61285,149.022163 -67.61285,148.044126 -67.61285,147.066089 -67.61285,146.088052 -67.61285,145.110015 -67.61285,144.131978 -67.61285,143.153941 -67.61285,142.175904 -67.61285,141.197867 -67.61285,140.21983 -67.61285,140.21983 -65.431804,140.21983 -63.250758,140.21983 -61.069712,140.21983 -58.888666,140.21983 -56.70762,140.21983 -54.526574,140.21983 -52.345528,140.21983 -50.164482,140.21983 -47.983436,140.21983 -45.80239))", "dataset_titles": "Expedition Data; Summer Oceanographic Measurements near the Mertz Polynya NBP0008", "datasets": [{"dataset_uid": "601161", "doi": "10.15784/601161 ", "keywords": "Antarctica; CTD; CTD Data; Mertz Polynya; NBP0008; Oceans; Oxygen; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Southern Ocean; Temperature", "people": "Mortlock, R. A.; Smethie, William M; Jacobs, Stanley; Mele, Phil", "repository": "USAP-DC", "science_program": null, "title": "Summer Oceanographic Measurements near the Mertz Polynya NBP0008", "url": "https://www.usap-dc.org/view/dataset/601161"}, {"dataset_uid": "001885", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0008"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9909374 Fairbanks This study will investigate how the formation of dense water masses on the antarctic continental shelves is affected by the periodic flushing by relatively warm circumpolar deep water, and whether the intrusion of warm water cna enhance the rate of formation of dense antarctic water. The study involves the observation of water mass modification processes on the continental shelf off the Adelie Coast in East Antarctica, near a quasi-permanent area of open water in the vicinity of the Mertz and Ninnis Glacier tongues - the so-called Mertz polynya. Antarctic coastal polynyas, formed by strong offshore winds, are often referred to as major sea ice and salt \"factories\" because the newly formed ice is blown seaward, allowing more ice to be formed along the coast, and because the freezing process increases the salinity of the continental shelf water. The thin ice, or even open water, implies significant heat losses from the ocean to the atmosphere, which also increases the density of the shelf water. The shelf water sinks, fills any depressions in the bottom, and is gravitationally driven down the continental slope. An additional process is identified for this study and is expected to be at work in this area: the intrusion of relatively warm water onto the continental shelf, overriding the shelf water and essentially shutting down the densification processes. The study will make use of the RVIB Nathaniel B. Palmer to obtain a closely spaced array of hydrographic stations over the continental shelf and slope along the George V Coast in the austral summer. The dat obtained here will complement a similar winter study by the Australian National Antarctic Program. ***", "east": 150.0002, "geometry": "POINT(145.110015 -56.70762)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -45.80239, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Fairbanks, Richard; Jacobs, Stanley", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -67.61285, "title": "Shelf and Bottom Water Formation Near East Antarctic Polynyas and Glaciers", "uid": "p0000612", "west": 140.21983}, {"awards": "0636474 Rathburn, Anthony", "bounds_geometry": "POLYGON((-64.919 -60.1023,-63.70316 -60.1023,-62.48732 -60.1023,-61.27148 -60.1023,-60.05564 -60.1023,-58.8398 -60.1023,-57.62396 -60.1023,-56.40812 -60.1023,-55.19228 -60.1023,-53.97644 -60.1023,-52.7606 -60.1023,-52.7606 -60.89191,-52.7606 -61.68152,-52.7606 -62.47113,-52.7606 -63.26074,-52.7606 -64.05035,-52.7606 -64.83996,-52.7606 -65.62957,-52.7606 -66.41918,-52.7606 -67.20879,-52.7606 -67.9984,-53.97644 -67.9984,-55.19228 -67.9984,-56.40812 -67.9984,-57.62396 -67.9984,-58.8398 -67.9984,-60.05564 -67.9984,-61.27148 -67.9984,-62.48732 -67.9984,-63.70316 -67.9984,-64.919 -67.9984,-64.919 -67.20879,-64.919 -66.41918,-64.919 -65.62957,-64.919 -64.83996,-64.919 -64.05035,-64.919 -63.26074,-64.919 -62.47113,-64.919 -61.68152,-64.919 -60.89191,-64.919 -60.1023))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001511", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0804"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project studies seasonal variation in the abundance and shell composition of foraminifera from the northern Gerlache-southern Bransfield Straits region of the Western Antarctic Peninsula. Its goal is to improve interpretation of microfaunal and geochemical proxies for reconstruction of ancient ocean currents, climate, and ecologies. Since seasonal variation may greatly affect interpretation, this project focuses on the Antarctic region, where intense seasonality should generate a more obvious signal than at the less extreme mid-latitudes. The results should allow a better understanding of the coupling to seasonal productivity, as well as improve regional reconstructions.\u003cbr/\u003eThe broader impacts are graduate, undergraduate, and postdoctoral student education; as well as outreach to both the English and Spanish-speaking public. The work will also improve society\u0027s understanding of past climate change as an analogue to the future.", "east": -52.7606, "geometry": "POINT(-58.8398 -64.05035)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": -60.1023, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ishman, Scott", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -67.9984, "title": "Collaborative Research: Testing the Impact of Seasonality on Benthic Foraminifers as Paleoenvironmental Proxies.", "uid": "p0000113", "west": -64.919}, {"awards": "9908828 Aronson, Richard", "bounds_geometry": "POLYGON((-70.906 -52.350166,-69.4494 -52.350166,-67.9928 -52.350166,-66.5362 -52.350166,-65.0796 -52.350166,-63.623 -52.350166,-62.1664 -52.350166,-60.7098 -52.350166,-59.2532 -52.350166,-57.7966 -52.350166,-56.34 -52.350166,-56.34 -53.6028324,-56.34 -54.8554988,-56.34 -56.1081652,-56.34 -57.3608316,-56.34 -58.613498,-56.34 -59.8661644,-56.34 -61.1188308,-56.34 -62.3714972,-56.34 -63.6241636,-56.34 -64.87683,-57.7966 -64.87683,-59.2532 -64.87683,-60.7098 -64.87683,-62.1664 -64.87683,-63.623 -64.87683,-65.0796 -64.87683,-66.5362 -64.87683,-67.9928 -64.87683,-69.4494 -64.87683,-70.906 -64.87683,-70.906 -63.6241636,-70.906 -62.3714972,-70.906 -61.1188308,-70.906 -59.8661644,-70.906 -58.613498,-70.906 -57.3608316,-70.906 -56.1081652,-70.906 -54.8554988,-70.906 -53.6028324,-70.906 -52.350166))", "dataset_titles": "Expedition Data; Expedition data of NBP0107", "datasets": [{"dataset_uid": "001962", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0011"}, {"dataset_uid": "002656", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0107", "url": "https://www.rvdata.us/search/cruise/NBP0107"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9908828 Aronson This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a paleoecological and paleoenvironmental study of Seymour Island. Global climate change late in the Eocene epoch had an important influence in Antarctica. This was the beginning of the transition from a cool-temperate climate in Antarctica to the polar climate that exists there today. The cooling trend strongly influenced the structure of shallow-water, Antarctic marine communities, and these effects are still evident in the peculiar ecological relationships among species living in modern Antarctic communities. Cooling late in the Eocene reduced the abundance of fish and crabs, which in turn reduced skeleton-crushing predation on invertebrates. Reduced predation allowed dense populations of ophiuroids (brittlestars) and crinoids (sea lilies) to appear in shallow-water settings at the end of the Eocene. These low-predation communities appear as dense fossil echinoderm assemblages in the upper portion of the late Eocene La Meseta Formation on Seymour Island, off the Antarctic Peninsula. Today, dense ophiuroid and crinoid populations are common in shallow-water habitats in Antarctica but generally have been eliminated by predators from similar habitats at temperate and tropical latitudes; their persistence in Antarctica to this day is an important ecological legacy of climatic cooling in the Eocene. Although the influence of declining predation on Antarctic ophiuroids and crinoids is now well documented, the effects of cooling on the more abundant mollusks have not been investigated. This study will examine the evolutionary ecology of gastropods (snails) and bivalves (clams) in the late Eocene. A series of hypotheses will be tested in the La Meseta Formation, based on the predicted responses of mollusks to declining temperature and changing levels of predation. The shapes of gastropod shells, the activities of gastropods that prey on other mollusks by drilling holes in their shells, and the effects of predation on the thickness of mollusk shells should have changed significantly through late Eocene time. First, defensive features of gastropod shells, such as spines and ribbing, should decline as temperature and, therefore, the activity of skeleton-crushing predators declined. Second, drilling of bivalve prey by predatory gastropods should increase with time since the drillers should themselves have been subject to lower predation pressure as temperature declined. Drilled shells, therefore, should become more common through time. Third, patterns in the thickness of shells through time will make it possible to separate the direct, physiological effects of declining temperature (shells are more difficult to produce at cooler temperatures, and so should be thinner) from the indirect effects of temperature on evolving biological interactions (increased drilling predation should result in thicker shells). Seymour Island contains the only fossil outcrops readily accessible in Antarctica from this crucial period in Earth history. The La Meseta Formation on Seymour Island thus provides a unique opportunity to learn how climate change affected Antarctic marine communities. In practical terms, global climate change will probably increase upwelling over the next few decades to centuries in some temperate coastal regions. Recent ecological evidence suggests that the resultant lowering of sea temperatures could lower predation in those areas. Understanding the response of the La Meseta faunas to global cooling in the late Eocene will provide direct insight into the rapidly changing structure of modern benthic communities.", "east": -56.34, "geometry": "POINT(-63.623 -58.613498)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP; Hugo Island; R/V LMG; Palmer Deep", "locations": "Hugo Island", "north": -52.350166, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Aronson, Richard; Domack, Eugene Walter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -64.87683, "title": "Global Climate Change and the Evolutionary Ecology of Antarctic Mollusks in the Late Eocene", "uid": "p0000617", "west": -70.906}, {"awards": "0440687 Costa, Daniel", "bounds_geometry": "POLYGON((-68.2775 -52.7602,-67.59761 -52.7602,-66.91772 -52.7602,-66.23783 -52.7602,-65.55794 -52.7602,-64.87805 -52.7602,-64.19816 -52.7602,-63.51827 -52.7602,-62.83838 -52.7602,-62.15849 -52.7602,-61.4786 -52.7602,-61.4786 -54.24701,-61.4786 -55.73382,-61.4786 -57.22063,-61.4786 -58.70744,-61.4786 -60.19425,-61.4786 -61.68106,-61.4786 -63.16787,-61.4786 -64.65468,-61.4786 -66.14149,-61.4786 -67.6283,-62.15849 -67.6283,-62.83838 -67.6283,-63.51827 -67.6283,-64.19816 -67.6283,-64.87805 -67.6283,-65.55794 -67.6283,-66.23783 -67.6283,-66.91772 -67.6283,-67.59761 -67.6283,-68.2775 -67.6283,-68.2775 -66.14149,-68.2775 -64.65468,-68.2775 -63.16787,-68.2775 -61.68106,-68.2775 -60.19425,-68.2775 -58.70744,-68.2775 -57.22063,-68.2775 -55.73382,-68.2775 -54.24701,-68.2775 -52.7602))", "dataset_titles": "Expedition Data; Expedition data of LMG0706; Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection", "datasets": [{"dataset_uid": "001534", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0705"}, {"dataset_uid": "002713", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0706", "url": "https://www.rvdata.us/search/cruise/LMG0706"}, {"dataset_uid": "002714", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0706", "url": "https://www.rvdata.us/search/cruise/LMG0706"}, {"dataset_uid": "600044", "doi": "10.15784/600044", "keywords": "Bellingshausen Sea; Biota; Oceans; Seals; Southern Ocean", "people": "Klinck, John M.; Goebel, Michael; Hofmann, Eileen; Costa, Daniel; Crocker, Daniel", "repository": "USAP-DC", "science_program": null, "title": "Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection", "url": "https://www.usap-dc.org/view/dataset/600044"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "As long-lived animals, marine mammals must be capable of accommodating broad variations in food resources over large spatial and temporal scales. While this is true of all marine mammals, variation in the physical and biological environmental is particularly profound in the Southern Ocean. A basic understanding of the foraging behavior and habitat utilization of pelagic predators requires knowledge of this spatial and temporal variation, coupled with information of how they respond to these changes. Current understanding of these associations is primarily limited to population level studies where animal abundance has been correlated with oceanography. Although these studies are informative, they cannot provide insights into the strategies employed by individual animals nor can they provide insights into the spatial or temporal course of these interactions. \u003cbr/\u003e\u003cbr/\u003eRecent technological advances in instrumentation make it possible to extend an understanding beyond the simple linkage of prey and predator distributions with environmental features. The key to understanding the processes that lead to high predator abundance is the identification of the specific foraging behaviors associated with different features of the water column. This study will accomplish these objectives by combining accurate positional data, measures of diving and foraging behavior, animal-derived water-column temperature and salinity data, and available oceanographic data. This project will examine the foraging behavior and habitat utilization of two species of contrasting foraging ecology, the southern elephant seal, Mirounga leonina, and the crabeater seal, Lobodon carcinophagus in the Western Antarctic Peninsula, a region of strong environmental gradients. Although these two species are phylogenetically related, they utilize substantially different but adjacent habitat types. Southern elephant seals are predominantly pelagic, moving throughout the southern ocean, venturing occasionally into the seasonal pack ice whereas crabeater seals range throughout the seasonal pack ice, venturing occasionally into open water. The relationship of specific foraging behaviors and animal movement patterns to oceanographic and bathymetric features develop and test models of the importance of these features in defining habitat use will be determined along with a comparison of how individuals of each species respond to annual variability in the marine environment. The physical oceanography of the Southern Ocean is inherently complex as are the biological processes that are intrinsically linked to oceanographic processes. Significant resources are currently being directed toward developing mathematical models of physical oceanographic processes with the goals of better understanding the role that the Southern Ocean plays in global climate processes, predicting the responses of ocean and global scale processes to climate change, and understanding the linkages between physical and biological oceanographic processes. These efforts have been limited by the scarcity of oceanographic data in the region, especially at high latitudes in the winter months. This study will provide new and significant oceanographic data on temperature and salinity profiles in to further the understanding of the dynamics of the upper water column of west Antarctic Peninsula continental shelf waters. Outreach activities include website development and an association with a marine education program at the Monterrey Bay Aquarium Research Institute.", "east": -61.4786, "geometry": "POINT(-64.87805 -60.19425)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": true, "keywords": "Not provided; R/V LMG", "locations": null, "north": -52.7602, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Costa, Daniel; Hofmann, Eileen; Goebel, Michael; Crocker, Daniel; Sidell, Bruce; Klinck, John M.", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -67.6283, "title": "Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection", "uid": "p0000082", "west": -68.2775}, {"awards": "0126340 Cande, Steven", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0304B; Expedition data of NBP0304C; Expedition data of NBP0304D; Expedition data of NBP0403; Expedition data of NBP0406; Expedition data of NBP0501; Expedition data of NBP0501B", "datasets": [{"dataset_uid": "002634", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0304C", "url": "https://www.rvdata.us/search/cruise/NBP0304C"}, {"dataset_uid": "001692", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304D"}, {"dataset_uid": "002627", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "002612", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0406", "url": "https://www.rvdata.us/search/cruise/NBP0406"}, {"dataset_uid": "001609", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0501B"}, {"dataset_uid": "002613", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0406", "url": "https://www.rvdata.us/search/cruise/NBP0406"}, {"dataset_uid": "002626", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0403", "url": "https://www.rvdata.us/search/cruise/NBP0403"}, {"dataset_uid": "001690", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304B"}, {"dataset_uid": "001691", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304C"}, {"dataset_uid": "002630", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501B", "url": "https://www.rvdata.us/search/cruise/NBP0501B"}, {"dataset_uid": "002635", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0304D", "url": "https://www.rvdata.us/search/cruise/NBP0304D"}, {"dataset_uid": "002632", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0304B", "url": "https://www.rvdata.us/search/cruise/NBP0304B"}, {"dataset_uid": "001660", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0403"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a project to make use of ship-repositioning transit cruises to gather geophysical information relating to plate tectonics of the Southern Ocean and to support student training activities. Well-constrained Cenozoic plate reconstructions of the circum-Antarctic region are critical for examining a number of problems of global geophysical importance. These problems include, e.g., relating the plate kinematics to its geological consequences in various plate circuits (Pacific-North America, Australia-Pacific); a dynamical understanding of what drives plate tectonics (which requires well-constrained kinematic information in order to distinguish between different geodynamic hypotheses); and an understanding of the rheology of the plates themselves, including the amount of internal deformation they can support, and the conditions leading to the formation of new plate boundaries through breakup of existing plates. By obtaining better constraints on the motion of the Antarctica plate with respect to these other plates, and by better quantifying the internal deformation within Antarctica (between East and West Antarctica), contributions will be made to solving these other fundamental problems.\u003cbr/\u003e\u003cbr/\u003eIn this project, existing data will be analyzed to address several specific issues related to plate motions involving the Antarctic plate. First, work will be done on four-plate solutions of Australia-Pacific-West Antarctica-East Antarctica motion, in order to most tightly constrain the rotation parameters for separation between East and West Antarctica for the time period from about 45 to 28 Ma (Adare Basin spreading system). This will be done by imposing closure on the four-plate circuit and using relevant marine geophysical data from all four of the boundaries. The uncertainties in the resulting rotation parameters will be determined based on the uncertainties in the data points. These uncertainties can then be propagated in the plate circuit for use in addressing the various global geodynamic problems mentioned above. Second, rotation parameters for Pacific-West Antarctica during Tertiary time will be determined using recently acquired well-navigated Palmer transit data and any additional data that can be acquired during the course of this project. These parameters and their uncertainties will be used in assessments of plate rigidity and included in the plate circuit studies.\u003cbr/\u003e\u003cbr/\u003eIn the framework of this project, new collection of marine geophysical data will be accomplished on a very flexible schedule. This will be done by collecting underway gravity, magnetics, and swath bathymetric data on Palmer transit cruises of geological importance. This has been successfully done on eight previous Palmer cruises since 1997, the most recent four of which were funded under a collaborative OPP grant to CalTech and Scripps which is now expiring. On one of the suitable transits, a formal class in marine geophysics will be conducted that will afford an opportunity to 12 or more graduate and undergraduate students, from CalTech and Scripps as well as other institutions. In this way, educational activities will be integrated with the usual scientific data collection objectives of the research project.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e WATER BOTTLES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Cande, Steven; Gordon, Arnold; Miller, Alisa", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Improved Cenozoic Plate Reconstructions of the Circum-Antarctic Region", "uid": "p0000825", "west": null}, {"awards": "9910098 Fritsen, Christian", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG0106; Expedition data of LMG0205; Expedition data of NBP0104; Expedition data of NBP0204", "datasets": [{"dataset_uid": "002702", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0205", "url": "https://www.rvdata.us/search/cruise/LMG0205"}, {"dataset_uid": "002695", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0106", "url": "https://www.rvdata.us/search/cruise/LMG0106"}, {"dataset_uid": "002657", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}, {"dataset_uid": "002643", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0204", "url": "https://www.rvdata.us/search/cruise/NBP0204"}, {"dataset_uid": "001757", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0205"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on the distribution and activities of sea ice microbial communities. This will be accomplished using an integrated combination of sampling (vertical profiles, horizontal surveys, and under-ice surveys) and observational protocols. Experiments will be designed to estimate microbial activity within the sea ice and at the ice-seawater interface. The research will be coordinated with components studying the water column productivity and the sea ice habitat. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V LMG; R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Fritsen, Christian; Costa, Daniel", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "GLOBEC: Sea Ice Microbial Communities", "uid": "p0000834", "west": null}, {"awards": "0230069 Naveen, Ron", "bounds_geometry": "POLYGON((-68.0489 -52.7302,-66.96539 -52.7302,-65.88188 -52.7302,-64.79837 -52.7302,-63.71486 -52.7302,-62.63135 -52.7302,-61.54784 -52.7302,-60.46433 -52.7302,-59.38082 -52.7302,-58.29731 -52.7302,-57.2138 -52.7302,-57.2138 -53.97453,-57.2138 -55.21886,-57.2138 -56.46319,-57.2138 -57.70752,-57.2138 -58.95185,-57.2138 -60.19618,-57.2138 -61.44051,-57.2138 -62.68484,-57.2138 -63.92917,-57.2138 -65.1735,-58.29731 -65.1735,-59.38082 -65.1735,-60.46433 -65.1735,-61.54784 -65.1735,-62.63135 -65.1735,-63.71486 -65.1735,-64.79837 -65.1735,-65.88188 -65.1735,-66.96539 -65.1735,-68.0489 -65.1735,-68.0489 -63.92917,-68.0489 -62.68484,-68.0489 -61.44051,-68.0489 -60.19618,-68.0489 -58.95185,-68.0489 -57.70752,-68.0489 -56.46319,-68.0489 -55.21886,-68.0489 -53.97453,-68.0489 -52.7302))", "dataset_titles": "Expedition Data; Expedition data of LMG0413A; Expedition data of LMG0514; Expedition data of LMG0611; Long-term Data Collection at Select Antarctic Peninsula Visitor Sites", "datasets": [{"dataset_uid": "001686", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0308"}, {"dataset_uid": "001626", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0413A"}, {"dataset_uid": "002679", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0413A", "url": "https://www.rvdata.us/search/cruise/LMG0413A"}, {"dataset_uid": "002681", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0611", "url": "https://www.rvdata.us/search/cruise/LMG0611"}, {"dataset_uid": "002680", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0514", "url": "https://www.rvdata.us/search/cruise/LMG0514"}, {"dataset_uid": "001547", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0611B"}, {"dataset_uid": "600032", "doi": "10.15784/600032", "keywords": "Antarctica; Biota; Penguin; Petermann Island", "people": "Naveen, Ronald", "repository": "USAP-DC", "science_program": null, "title": "Long-term Data Collection at Select Antarctic Peninsula Visitor Sites", "url": "https://www.usap-dc.org/view/dataset/600032"}, {"dataset_uid": "001585", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0514"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The Antarctic Site Inventory Project has collected biological data and site-descriptive information in the Antarctic Peninsula region since 1994. This research effort has provided data on those sites which are visited by tourists on shipboard expeditions in the region. The aim is to obtain data on the population status of several key species of Antarctic seabirds, which might be affected by the cumulative impact resulting from visits to the sites. This project will continue the effort by focusing on two heavily-visited Antarctic Peninsula sites: Paulet Island, in the northwestern Weddell Sea and Petermann Island, in the Lemaire Channel near Anvers Island. These sites were selected because both rank among the ten most visited sites in Antarctica each year in terms of numbers of visitors and zodiac landings; both are diverse in species composition, and both are sensitive to potential environmental disruptions from visitors. These data collected focus on two important biological parameters for penguins and blue-eyed shags: (1) breeding population size (number of occupied nests) and (2) breeding success (number of chicks per occupied nests). A long-term data program will be supported, with studies at the two sites over a five-year period. The main focus will be at Petermann Island, selected for intensive study due to its visitor status and location in the region near Palmer Station. This will allow for comparative data with the Palmer Long Term Ecological Research program. Demographic data will be collected in accordance with Standard Methods established by the Convention for the Conservation of Antarctic Marine Living Resources Ecosystem Monitoring Program and thus will be comparable with similar data sets being collected by other international Antarctic Treaty nation research programs. While separating human-induced change from change resulting from a combination of environmental factors will be difficult, this work will provide a first step to identify potential impacts. These long-term data sets will contribute to a better understanding of biological processes in the entire region and will contribute valuable information to be used by the Antarctic Treaty Parties as they address issues in environmental stewardship in Antarctica.", "east": -57.2138, "geometry": "POINT(-62.63135 -58.95185)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": true, "keywords": "R/V LMG; FIELD SURVEYS", "locations": null, "north": -52.7302, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Yen, Jeannette; Naveen, Ronald; Leger, Dave", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -65.1735, "title": "Long-term Data Collection at Select Antarctic Peninsula Visitor Sites", "uid": "p0000122", "west": -68.0489}, {"awards": "9726180 Dorman, LeRoy", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP9905", "datasets": [{"dataset_uid": "002581", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP9905", "url": "https://www.rvdata.us/search/cruise/NBP9905"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Office of Polar Programs of the National Science Foundation, supports research to investigate the seismicity and tectonics of the South Shetland Arc and the Bransfield Strait. This region presents an intriguing and unique tectonic setting, with slowing of subduction, cessation of island arc volcanism, as well as the apparent onset of backarc rifting occurring within the last four million years. This project will carry out a 5-month deployment of 14 ocean bottom seismographs (OBSs) to complement and extend a deployment of 6 broadband land seismic stations that were successfully installed during early 1997. The OBSs include 2 instruments with broadband sensors, and all have flowmeters for measuring and sampling hydrothermal fluids. The OBSs will be used to examine many of the characteristics of the Shetland- Bransfield tectonic system, including: --- The existence and depth of penetration of a Shetland Slab: The existence of a downgoing Shetland slab will be determined from earthquake locations and from seismic tomography. The maximum depth of earthquake activity and the depth of the slab velocity anomaly will constrain the current configuration of the slab, and may help clarify the relationship between the subducting slab and the cessation of arc volcanism. -- Shallow Shetland trench seismicity?: No teleseismic shallow thrust faulting seismicity has been observed along the South Shetland Trench from available seismic information. Using the OBS data, the level of small earthquake activity along the shallow thrust zone will be determined and compared to other regions undergoing slow subduction of young oceanic lithosphere, such as Cascadia, which also generally shows very low levels of thrust zone seismicity. -- Mode of deformation along the Bransfield Rift: The Bransfield backarc has an active rift in the center, but there is considerable evidence for off-rift faulting. There is a long-standing controversy about whet her back-arc extension occurs along discrete rift zones, or is more diffuse geographically. This project will accurately locate small earthquakes to better determine whether Bransfield extension is discrete or diffuse. -- Identification of volcanism and hydrothermal activity: Seismic records will be used to identify the locations of active seafloor volcanism along the Bransfield rift. Flowmeters attached to the OBSs will record and sample the fluid flux out of the sediments. -- Upper mantle structure of the Bransfield - evidence for partial melting?: Other backarc basins show very slow upper mantle seismic velocities and high seismic attenuation, characteristics due to the presence of partially molten material. This project will use seismic tomography to resolve the upper mantle structure of the Bransfield backarc, allowing comparison with other backarc regions and placing constraints on the existence of partially molten material and the importance of partial melting as a mantle process in this region. Collaborative awards: OPP 9725679 and OPP 9726180", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Wiens, Douglas", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Study of the Structure and Tectonics of the South Shetland Trench and Bransfield Backarc Using Ocean Bottom Seismographs", "uid": "p0000801", "west": null}, {"awards": "0234163 Beardsley, Robert", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0103; Expedition data of NBP0104", "datasets": [{"dataset_uid": "002657", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}, {"dataset_uid": "002595", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0103", "url": "https://www.rvdata.us/search/cruise/NBP0103"}, {"dataset_uid": "002596", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project will complete construction of a high-quality digital bathymetry database for the Southern Ocean component of the Global Ocean Ecosystem Dynamics GLOBEC) program. Existing along-track and swath bathymetry data collected in Marguerite Bay and in the West Antarctic Peninsula shelf study, have been assembled and merged with new SeaBeam and along-track data collected during cruises of the research vessels R/V Palmer and R/V Gould in 2001 and 2002. New bathymetry data has also been obtained from other US, British, and Russian sources to extend the program database. Once the final R/V Palmer and R/V Gould cruises are completed and other data added, the program database will be closed, edited, documented and made publicly available for use by international GLOBEC investigators and by the broader geophysics community. These results will be developed in conjunction with, and will become part of a planned circum-antarctic high resolution bathymetry database.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Beardsley, Robert", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Digital Bathymetry Database for the U.S. Southern Ocean GLOBEC Program", "uid": "p0000814", "west": null}, {"awards": "0650034 Smith, Kenneth", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0806; Expedition data of NBP0902", "datasets": [{"dataset_uid": "001484", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0902"}, {"dataset_uid": "002649", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0806", "url": "https://www.rvdata.us/search/cruise/NBP0806"}, {"dataset_uid": "002650", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0902", "url": "https://www.rvdata.us/search/cruise/NBP0902"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project seeks to examine the importance of icebergs to the pelagic ecosystem of the North-West Weddell Sea. Atmospheric warming has been associated with retreating glaciers and the increasing prevalence of icebergs in the Southern Ocean over the last decade. The highest concentration of icebergs occurs in the NW Weddell Sea, where they drift in a clockwise pattern to the northeast, following the contours of the Antarctic Peninsula through an area dubbed \"Iceberg Alley\". Little is known about the impact of free-drifting icebergs on the pelagic ecosystem of the Weddell Sea or on the Southern Ocean as a whole. It is hypothesized that as drifting islands, icebergs of small to intermediate size (\u003c 10 km in largest dimension) impart unique physical, chemical and biological characteristics to the surrounding water. Three general questions will be asked to address this hypothesis: 1) What are the dynamics (approximate size, abundance and spatial distribution) of free-drifting icebergs on temporal scales of days to months, based on correlation of field measurements with imagery derived from satellite sensors? 2) What is the relationship between the size of free-drifting icebergs and the structure of the associated pelagic communities? 3) What is the estimated combined impact of free-drifting icebergs in the NW Weddell Sea on the biological characteristics of the pelagic zone? This interdisciplinary study will use standard oceanographic sampling coupled with unique methodology for staging shipboard data from all types of sensors and survey methods to determine the sphere of influence for a diverse set of biological factors as a function of iceberg size. The exploratory research proposed here will provide critical data on the effects of atmospheric warming in the Antarctic Peninsula region. The recent prevalence of free drifting icebergs in the Southern Ocean should have a pronounced enrichment effect on the surrounding pelagic ecosystem, altering community dynamics. Enhanced primary production associated with these icebergs could influence the global carbon cycle since the Southern Ocean is considered a major sink for excess CO2 from the atmosphere. \u003cbr/\u003eThe proposed research will include an innovative education component through the Ocean Exploration Center (OEC), whose focus is to provide a comprehensive view of the oceans, intelligible to non-scientists and researchers alike, with direct access to state-of-the-art databases and selected websites. The OEC will allow users to access content which has been classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. The results from this iceberg project will be incorporated into the Antarctic Research division of the OEC, providing databases documenting the impact of free-drifting icebergs on the surrounding pelagic ecosystem. These data then will be extrapolated to evaluate the impact of icebergs on the ecosystem of the Weddell Sea. Graduate students, undergraduates, teachers and volunteers are an important part of the proposed field and laboratory work.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Ken", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Free Drifting Icebergs: Influence of Floating Islands on Pelagic Ecosystems in the Weddell Sea.", "uid": "p0000840", "west": null}, {"awards": "9815823 Smith, Craig", "bounds_geometry": "POLYGON((-70.90683 -52.35533,-69.8661302 -52.35533,-68.8254304 -52.35533,-67.7847306 -52.35533,-66.7440308 -52.35533,-65.703331 -52.35533,-64.6626312 -52.35533,-63.6219314 -52.35533,-62.5812316 -52.35533,-61.5405318 -52.35533,-60.499832 -52.35533,-60.499832 -53.818664,-60.499832 -55.281998,-60.499832 -56.745332,-60.499832 -58.208666,-60.499832 -59.672,-60.499832 -61.135334,-60.499832 -62.598668,-60.499832 -64.062002,-60.499832 -65.525336,-60.499832 -66.98867,-61.5405318 -66.98867,-62.5812316 -66.98867,-63.6219314 -66.98867,-64.6626312 -66.98867,-65.703331 -66.98867,-66.7440308 -66.98867,-67.7847306 -66.98867,-68.8254304 -66.98867,-69.8661302 -66.98867,-70.90683 -66.98867,-70.90683 -65.525336,-70.90683 -64.062002,-70.90683 -62.598668,-70.90683 -61.135334,-70.90683 -59.672,-70.90683 -58.208666,-70.90683 -56.745332,-70.90683 -55.281998,-70.90683 -53.818664,-70.90683 -52.35533))", "dataset_titles": "Expedition Data; Expedition data of LMG0009", "datasets": [{"dataset_uid": "002689", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0009", "url": "https://www.rvdata.us/search/cruise/LMG0009"}, {"dataset_uid": "001880", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0102"}, {"dataset_uid": "001983", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0004"}, {"dataset_uid": "001811", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0009"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "OPP98-15823 P.I. Craig Smith OPP98-16049 P.I. David DeMaster Primary production in Antarctic coastal waters is highly seasonal, yielding an intense pulse of biogenic particles to the continental shelf floor. This seasonal pulse may have major ramifications for carbon cycling, benthic ecology and material burial on the west Antarctic Peninsula (WAP) shelf. Thus, we propose a multii-disciplinary program to evaluate the seafloor accumulation, fate and benthic community impacts of bloom material along a transect of three stations crossing the Antarctic shelf in the Palmer LTER study area. Using a seasonal series of five cruises to our transect, we will test the following hypostheses: (1) A substantial proportion of spring/summer export production is deposited ont eh WAP shelf as phytodetritus or fecal pellets. (2) The deposited bloom production is a source of labile particulate organic carbon for benthos for an extended period of time (months). (3) Large amounts of labile bloom POC are rapidly subducted into the sediment column by the deposit-feeding and caching activities of benthos. (4) Macrobenthic detritivores sustain a rapid increase in biomass and abundance following the spring/summer particulate organic carbon pulse. To test these hypotheses, we will evaluate seabed deposition and lability of particulate organic carbon, patterns of particulate organic carbon mixing into sediments, seasonal variations in macrofaunal and megafaunal abundance, biomass and reproductive condition, and rates of particulate organic carbon and silica mineralization and accumulation in the seabed. Fluxes of biogenic materials and radionuclides into midwater particle traps will be contrasted with seabed deposition and burial rates to establish water-column and seabed preservation efficiencies for these materials. The project will substantially improve our understanding of the spring/summer production pulse on the WAP shelf and its impacts on seafloor communities and carbon cycling in Antarctic coastal systems.", "east": -60.499832, "geometry": "POINT(-65.703331 -59.672)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP; R/V LMG", "locations": null, "north": -52.35533, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Craig", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": "LTER", "south": -66.98867, "title": "Bentho-Pelagic Coupling on the West Antarctic Peninsula Shelf: The Impact and Fate of Bloom Material at the Seafloor", "uid": "p0000610", "west": -70.90683}, {"awards": "9419605 Dunbar, Robert; 9896356 Dunbar, Robert", "bounds_geometry": "POLYGON((-180 -43.56493,-144.00001 -43.56493,-108.00002 -43.56493,-72.00003 -43.56493,-36.00004 -43.56493,-0.000049999999987 -43.56493,35.99994 -43.56493,71.99993 -43.56493,107.99992 -43.56493,143.99991 -43.56493,179.9999 -43.56493,179.9999 -47.023783,179.9999 -50.482636,179.9999 -53.941489,179.9999 -57.400342,179.9999 -60.859195,179.9999 -64.318048,179.9999 -67.776901,179.9999 -71.235754,179.9999 -74.694607,179.9999 -78.15346,143.99991 -78.15346,107.99992 -78.15346,71.99993 -78.15346,35.99994 -78.15346,-0.000050000000016 -78.15346,-36.00004 -78.15346,-72.00003 -78.15346,-108.00002 -78.15346,-144.00001 -78.15346,-180 -78.15346,-180 -74.694607,-180 -71.235754,-180 -67.776901,-180 -64.318048,-180 -60.859195,-180 -57.400342,-180 -53.941489,-180 -50.482636,-180 -47.023783,-180 -43.56493))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002132", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9709"}, {"dataset_uid": "002094", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9807"}, {"dataset_uid": "002154", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9606"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project is an interdisciplinary study, titled Research on Ocean-Atmosphere Variability and Ecosystem Response in the Ross Sea (ROAVERRS), of atmospheric forcing, ocean hydrography, sea ice dynamics, primary productivity, and pelagic-benthic coupling in the southwestern Ross Sea, Antarctica. The primary goal is to examine how changes in aspects of the polar climate system, in this case wind and temperature, combine to influence marine productivity on a large antarctic continental shelf. In the Ross Sea, katabatic winds and mesocyclones influence the spatial and temporal distribution of sea ice as well as the upper ocean mixed layer depth, and thus control primary production within the sea ice as well as in the open water system. The structure, standing stock and productivity of bottom- dwelling biological communities are also linked to meteorological processes through interseasonal and interannual variations in horizontal and vertical fluxes of organic carbon produced in the upper ocean. Linkages among the atmospheric, oceanic, and biological systems will be investigated during a three-year field study of the southwestern Ross Sea ecosystem. Direct measurements will include regional wind and air temperatures derived from automatic weather stations; ice cover, ice movement, and sea surface temperatures derived from a variety of satellite-based sensors; hydrographic characteristics of the upper ocean and primary productivity in the ice and in the water derived from research cruises and satellite studies; vertical flux of organic material and water movement derived from oceanographic moorings containing sediment traps and current meters, and the abundance, distribution, and respiration rates of biological communities on the sea floor, derived from box cores, benthic photographs and shipboard incubations. Based on archived meteorological data, it is expected that the atmospheric variability during the study period will be such that changes in airflow pat terns and their influence on oceanographic and biological patterns can be monitored, and their direct and indirect linkages that are the focus of the research can be deduced. Results from this study will contribute to our knowledge of atmospheric and oceanic forcing of marine ecosystems, and lead to a better understanding of marine ecosystem response to climatic variations. ***", "east": 179.9999, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -43.56493, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Dunbar, Robert", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -78.15346, "title": "Research on Ocean-Atmosphere Variability and Ecosystem Response in the Ross Sea (ROAVERRS)", "uid": "p0000635", "west": -180.0}, {"awards": "0125526 Wise, Sherwood", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0602A", "datasets": [{"dataset_uid": "002616", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0602A", "url": "https://www.rvdata.us/search/cruise/NBP0602A"}, {"dataset_uid": "001571", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0602A"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a demonstration project to prove the viability of shallow ship-based geological drilling while simultaneously collecting useful cores for assessing the early history of the Antarctic ice sheets. For over three decades, U.S. scientists and their international colleagues exploring the shallow shelves and seas along the margins of Antarctic have been consistently frustrated by their inability to penetrate through the over-compacted glacial diamictons encountered at shallow sub bottom depths (within the upper 10 m) over these terrains. This is particularly frustrating because advanced high resolution seismic reflection techniques clearly show in many areas the presence of older successions of Neogene and even Paleogene sequences lying just beneath this thin veneer of diamictons. Until the means are developed to recover these sequences, a detailed history of the Antarctic ice sheets, which is an essential prerequisite to understanding Cenozoic paleoclimate and future climate change on a global scale, will remain an elusive and unobtainable goal. After four years of study and evaluation with the aid of a professional engineer (and over the course of two workshops), the SHALDRIL Committee, an interested group of U.S. scientists, has identified at least two diamond-coring systems deemed suitable for use on existing ice-breaking U.S. Antarctic Research Program vessels. The goal of this project is to employ diamond-coring technology on the RV/IB Nathaniel B. Palmer in order to test out and demonstrate the feasibility of both ship-based diamond coring and down-hole logging. For this \"demonstration cruise\" coring will be attempted along a high-resolution seismic reflection profile on the continental shelf adjacent to Seymour Island, Antarctic Peninsula, an area of high scientific interest in its own right. Here the well-defined geologic section is estimated to range from Eocene to Quaternary in age, effectively spanning the \"Greenhouse-Icehouse\" transition in the evolution of Antarctic/global climate. A complete record of this transition has yet to be obtained anywhere along the Antarctic margin. Following core recovery, this project will result in correlation of the paleoclimate records from the new cores with detailed fluctuations of the ice margin recorded at higher latitudes in the eastern Ross Sea by the recently concluded, fast-ice-based Cape Roberts Project. If successful, this mobile and flexible drilling system will then be available to the broader scientific community for further research in paleoenvironmental conditions and other areas of science that are currently hindered by the present gap that exists in the US Antarctic Program\u0027s technical capability to explore the Antarctic shelves between the shore-line/fast-ice margin and the continental slope. SHALDRIL will be able to operate effectively in the \"no man\u0027s land\" that presently exists between the near shore (where the fast-ice-based Cape Roberts Project was successful) and the upper slope (where the Ocean Drilling Program\u0027s vessel JOIDES Resolution becomes most efficient). This technological breakthrough will not only allow major outstanding scientific problems of the last three decades to be addressed, but will also favorably impact many current U.S. and SCAR (ICSU Scientific Committee on Antarctic Research) Antarctic or drilling-related initiatives, such as WAIS, ANTIME, ANDRILL, ANTEC, IMAGES, PAGES, GLOCHANT (including PICE), MARGINS, ODP, and STRATAFORM.This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a demonstration project to prove the viability of shallow ship-based geological drilling while simultaneously collecting useful cores for assessing the early history of the Antarctic ice sheets. For over three decades, U.S. scientists and their international colleagues exploring the shallow shelves and seas along the margins of Antarctic have been consistently frustrated by their inability to penetrate through the over-compacted glacial diamictons encountered at shallow sub bottom depths (within the upper 10 m) over these terrains. This is particularly frustrating because advanced high resolution seismic reflection techniques clearly show in many areas the presence of older successions of Neogene and even Paleogene sequences lying just beneath this thin veneer of diamictons. Until the means are developed to recover these sequences, a detailed history of the Antarctic ice sheets, which is an essential prerequisite to understanding Cenozoic paleoclimate and future climate change on a global scale, will remain an elusive and unobtainable goal. After four years of study and evaluation with the aid of a professional engineer (and over the course of two workshops), the SHALDRIL Committee, an interested group of U.S. scientists, has identified at least two diamond-coring systems deemed suitable for use on existing ice-breaking U.S. Antarctic Research Program vessels. The goal of this project is to employ diamond-coring technology on the RV/IB Nathaniel B. Palmer in order to test out and demonstrate the feasibility of both ship-based diamond coring and down-hole logging. For this \"demonstration cruise\" coring will be attempted along a high-resolution seismic reflection profile on the continental shelf adjacent to Seymour Island, Antarctic Peninsula, an area of high scientific interest in its own right. Here the well-defined geologic section is estimated to range from Eocene to Quaternary in age, effectively spanning the \"Greenhouse-Icehouse\" transition in the evolution of Antarctic/global climate. A complete record of this transition has yet to be obtained anywhere along the Antarctic margin. Following core recovery, this project will result in correlation of the paleoclimate records from the new cores with detailed fluctuations of the ice margin recorded at higher latitudes in the eastern Ross Sea by the recently concluded, fast-ice-based Cape Roberts Project. If successful, this mobile and flexible drilling system will then be available to the broader scientific community for further research in paleoenvironmental conditions and other areas of science that are currently hindered by the present gap that exists in the US Antarctic Program\u0027s technical capability to explore the Antarctic shelves between the shore-line/fast-ice margin and the continental slope. SHALDRIL will be able to operate effectively in the \"no man\u0027s land\" that presently exists between the near shore (where the fast-ice-based Cape Roberts Project was successful) and the upper slope (where the Ocean Drilling Program\u0027s vessel JOIDES Resolution becomes most efficient). This technological breakthrough will not only allow major outstanding scientific problems of the last three decades to be addressed, but will also favorably impact many current U.S. and SCAR (ICSU Scientific Committee on Antarctic Research) Antarctic or drilling-related initiatives, such as WAIS, ANTIME, ANDRILL, ANTEC, IMAGES, PAGES, GLOCHANT (including PICE), MARGINS, ODP, and STRATAFORM.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ROCK CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, John", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Proposal: SHALDRIL - A Demonstration Drilling Cruise to the James Ross Basin", "uid": "p0000828", "west": null}, {"awards": "0444134 Mitchell, B. Gregory", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0606", "datasets": [{"dataset_uid": "002646", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0606", "url": "https://www.rvdata.us/search/cruise/NBP0606"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The Shackleton Fracture Zone (SFZ) in Drake Passage of the Southern Ocean defines a boundary between low and high phytoplankton waters. Low chlorophyll water flowing through the southern Drake Passage emerges as high chlorophyll water to the east, and recent evidence indicates that the Southern Antarctic Circumpolar Current Front (SACCF) is steered south of the SFZ onto the Antarctic Peninsula shelf where mixing between the water types occurs. The mixed water is then advected off-shelf with elevated iron and phytoplankton biomass. The SFZ is therefore an ideal natural laboratory to improve the understanding of plankton community responses to natural iron fertilization, and how these processes influence export of organic carbon to the ocean interior. The bathymetry of the region is hypothesized to influence mesoscale circulation and transport of iron, leading to the observed patterns in phytoplankton biomass. The position of the Antarctic Circumpolar Current (ACC) is further hypothesized to influence the magnitude of the flow of ACC water onto the peninsula shelf, mediating the amount of iron transported into the Scotia Sea. To address these hypotheses, a research cruise will be conducted near the SFZ and to the east in the southern Scotia Sea. A mesoscale station grid for vertical profiles, water sampling, and bottle incubation enrichment experiments will complement rapid surface surveys of chemical, plankton, and hydrographic properties. Distributions of manganese, aluminum and radium isotopes will be determined to trace iron sources and estimate mixing rates. Phytoplankton and bacterial physiological states (including responses to iron enrichment) and the structure of the plankton communities will be studied. The primary goal is to better understand how plankton productivity, community structure and export production in the Southern Ocean are affected by the coupling between bathymetry, mesoscale circulation, and distributions of limiting nutrients. The proposed work represents an interdisciplinary approach to address the fundamental physical, chemical and biological processes that contribute to the abrupt transition in chl-a which occurs near the SFZ. Given recent indications that the Southern Ocean is warming, it is important to advance the understanding of conditions that regulate the present ecosystem structure in order to predict the effects of climate variability. This project will promote training and learning across a broad spectrum of groups. Funds are included to support postdocs, graduate students, and undergraduates. In addition, this project will contribute to the development of content for the Polar Science Station website, which has been a resource since 2001 for instructors and students in adult education, home schooling, tribal schools, corrections education, family literacy programs, and the general public.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Mitchell, B.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Plankton Community Structure and Iron Distribution in the Southern Drake Passage and Scotia Sea", "uid": "p0000837", "west": null}, {"awards": "9910093 Powell, Thomas", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0104", "datasets": [{"dataset_uid": "002657", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}, {"dataset_uid": "002584", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project is a contribution to a coordinated attempt to understand the interactions of biological and physical dynamics by developing relationships among the evolution of the antarctic winter ice and snow cover, biological habitat variability, and the seasonal progression of marine ecological processes. The work will be carried out in the context of the Southern Ocean Experiment of the Global Ocean Ecosystem Dynamics Study (Globec), a large, multi-investigator study of the winter survival strategy of krill under the antarctic sea ice in the vicinity of Marguerite Bay on the western side of the Antarctic Peninsula. The objective of this project is to make a quantitative assessment of the small scale temperature and salinity structure of the oceanic surface layer in order to study the effect of stratification and turbulence on the biochemical and biological processes under the winter sea ice. The water masses on the continental shelf off Marguerite Bay consist of inflowing Upper Circumpolar Deep Water, which is relatively warm, salty, oxygen-poor, and nutrient-rich. In winter atmospheric processes cool and freshen this water, and recharge it with oxygen to produce Antarctic Surface Water which is diffused seaward, and supports both a sea ice cover and a productive krill-based food web. The modification processes work through mixing associated with shear instabilities of the internal wave field, double diffusion of salt and heat, and mixing driven by surface stress and convection. These processes will be quantified with two microstructure profilers, capable of resolving the small but crucial vertical variations that drive these processes. ***", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Powell, Thomas", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: WinDSSOcK: Winter Distribution and Success of Southern Ocean Krill", "uid": "p0000804", "west": null}, {"awards": "9814579 Stock, Joann; 9815283 Cande, Steven", "bounds_geometry": "POLYGON((-57.56218 -33.87102,-49.979095 -33.87102,-42.39601 -33.87102,-34.812925 -33.87102,-27.22984 -33.87102,-19.646755 -33.87102,-12.06367 -33.87102,-4.480585 -33.87102,3.1025 -33.87102,10.685585 -33.87102,18.26867 -33.87102,18.26867 -35.4505,18.26867 -37.02998,18.26867 -38.60946,18.26867 -40.18894,18.26867 -41.76842,18.26867 -43.3479,18.26867 -44.92738,18.26867 -46.50686,18.26867 -48.08634,18.26867 -49.66582,10.685585 -49.66582,3.1025 -49.66582,-4.480585 -49.66582,-12.06367 -49.66582,-19.646755 -49.66582,-27.22984 -49.66582,-34.812925 -49.66582,-42.39601 -49.66582,-49.979095 -49.66582,-57.56218 -49.66582,-57.56218 -48.08634,-57.56218 -46.50686,-57.56218 -44.92738,-57.56218 -43.3479,-57.56218 -41.76842,-57.56218 -40.18894,-57.56218 -38.60946,-57.56218 -37.02998,-57.56218 -35.4505,-57.56218 -33.87102))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001742", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0209"}, {"dataset_uid": "001873", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0102"}, {"dataset_uid": "001699", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304"}, {"dataset_uid": "001746", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0207"}, {"dataset_uid": "001963", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0007B"}, {"dataset_uid": "002042", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9908"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided jointly by the Antarctic Geology and Geophysics Program of the Office of Polar Programs and the Marine Geology and Geophysics Program of the Division of Ocean Sciences, supports research to develop improved plate rotation models for the Southwest Pacific region (between the Pacific, Antarctic, and Australian plates, and the continental fragments of New Zealand, West Antarctica, Iselin Bank, East Antarctica, and Australia). The improved rotation parameters will be used to address tectonic problems related to motion between East and West Antarctica, and in particular, the questions of relative drift between major hotspot groups and the controversy regarding a possible missing plate boundary in this region. Previous work has documented NNW-striking mid-Tertiary seafloor spreading magnetic anomalies between East and West Antarctica, representing about 150 km of opening of the Adare Trough, north of the Ross Sea. This is not enough motion to resolve the apparent discrepancy between the plate motions and motions inferred from assuming hotspot fixity. Because this motion between East and West Antarctica corresponds to a very small rotation, it points to the need for determination of finite rotations describing motions of the various plates here with a high degree of accuracy, particularly for older times. This is now possible with the datasets that will be used in this project. The work will be accomplished by integrating existing data with analysis and interpretation of other data sets recently made available by Japanese and Italian scientists from their cruises in the region. It will be further augmented by acquisition of new marine geophysical data on selected transits of the R/VIB Nathaniel B. Palmer. Specific objectives of the project include the following: 1) improve the rotation model for mid-Tertiary extension between East and West Antarctica by including the plate boundary between the Pacific and Australia plates directly when calculating Australia-West Antarctica motion, 2) improve the reconstructions for the Late Cretaceous and Early Tertiary times by including new constraints on several boundaries not previously used in the reconstructions, 3) address the implications of new rotation models for the question of the fixity of global hotspots, 4) re-examine the geophysical data from the Western Ross Sea embayment in light of a model for substantial mid-Cenozoic extension.", "east": 18.26867, "geometry": "POINT(-19.646755 -41.76842)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -33.87102, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Cande, Steven; Stock, Joann", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -49.66582, "title": "Collaborative Research: Late Cretaceous and Cenozoic Reconstructions of the Southwest Pacific", "uid": "p0000590", "west": -57.56218}, {"awards": "0538148 Huber, Bruce", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0801; Processed CurrentMeter Data from the Adare Basin near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1101 ; Processed CurrentMeter Data from the Ross Sea near Antarctica acquired during the Nathaniel B. Palmer expedition NBP0801", "datasets": [{"dataset_uid": "601344", "doi": null, "keywords": "Antarctica; Cape Adare; Mooring; NBP0801; Physical Oceanography; Ross Sea; R/v Nathaniel B. Palmer; Salinity; Southern Ocean; Temperature", "people": "Gordon, Arnold; Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Processed CurrentMeter Data from the Ross Sea near Antarctica acquired during the Nathaniel B. Palmer expedition NBP0801", "url": "https://www.usap-dc.org/view/dataset/601344"}, {"dataset_uid": "601343", "doi": null, "keywords": "Antarctica; Mooring; NBP1101; Ross Sea; Salinity; Southern Ocean; Temperature", "people": "Huber, Bruce; Gordon, Arnold", "repository": "USAP-DC", "science_program": null, "title": "Processed CurrentMeter Data from the Adare Basin near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1101 ", "url": "https://www.usap-dc.org/view/dataset/601343"}, {"dataset_uid": "002647", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0801", "url": "https://www.rvdata.us/search/cruise/NBP0801"}, {"dataset_uid": "001517", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0801"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "An array of moorings will be deployed and maintained east of Cape Adare, Antarctica, at the northwestern corner of the Ross Sea to observe the properties of Antarctic Bottom Water (AABW) exiting the Ross Sea. This location has been identified from recent studies as an ideal place to make such measurements. Antarctic Bottom Water has the highest density of the major global water masses, and fills the deepest parts of the world\u0027s oceans. Because it obtains many of its characteristics during its contact with the atmosphere and with glacial ice along the continental margins of Antarctica, it is expected that changes in newly-formed AABW may represent an effective indicator for abrupt climate change. The heterogeneous nature of the source regions around Antarctica complicates the observation of newly-formed AABW properties. The two most important source regions for AABW are within the Weddell and the Ross Seas, with additional sources drawn from the east Antarctic margins. In the northwestern Weddell Sea, several programs have been undertaken in the last decade to monitor the long term variability of Weddell Sea Deep and Bottom Water, precursors of AABW originating from the Weddell Sea, however no such systematic efforts have yet been undertaken to make longterm measurements of outflow from the Ross Sea. The proposed study will significantly improve our knowledge of the long term variability in the outflow of deep and bottom water from the Ross Sea, and will provide the beginnings of a long-term monitoring effort which ultimately will allow detection of changes in the ocean in the context of global climate change. When joined with similar efforts ongoing in the Weddell Sea, long-term behavior and possible coupling of these two important sources of the ocean\u0027s deepest water mass can be examined in detail.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Caron, Bruce", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": null, "title": "Cape Adare Long-term Mooring (CALM)", "uid": "p0000838", "west": null}, {"awards": "9528807 Gordon, Arnold", "bounds_geometry": "POLYGON((-69.58631 -52.35405,-66.572039 -52.35405,-63.557768 -52.35405,-60.543497 -52.35405,-57.529226 -52.35405,-54.514955 -52.35405,-51.500684 -52.35405,-48.486413 -52.35405,-45.472142 -52.35405,-42.457871 -52.35405,-39.4436 -52.35405,-39.4436 -53.54563,-39.4436 -54.73721,-39.4436 -55.92879,-39.4436 -57.12037,-39.4436 -58.31195,-39.4436 -59.50353,-39.4436 -60.69511,-39.4436 -61.88669,-39.4436 -63.07827,-39.4436 -64.26985,-42.457871 -64.26985,-45.472142 -64.26985,-48.486413 -64.26985,-51.500684 -64.26985,-54.514955 -64.26985,-57.529226 -64.26985,-60.543497 -64.26985,-63.557768 -64.26985,-66.572039 -64.26985,-69.58631 -64.26985,-69.58631 -63.07827,-69.58631 -61.88669,-69.58631 -60.69511,-69.58631 -59.50353,-69.58631 -58.31195,-69.58631 -57.12037,-69.58631 -55.92879,-69.58631 -54.73721,-69.58631 -53.54563,-69.58631 -52.35405))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002142", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9705"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9528807 Gordon The proposed project is part of a multi-institutional integrated study of the outflow of newly formed bottom water from the Weddell Sea and its dispersion into the South Atlantic Ocean. It builds upon earlier successful studies of the inflow of intermediate water masses into the Eastern Weddell Sea, their modification within the Weddell Gyre, and their interaction with bottom water formation processes in the western Weddell Sea. The study is called Deep Ocean Ventilation Through Antarctic Intermediate Layers (DOVETAIL) and includes six components involving hydrographic measurements, natural tracer experiments, and modeling studies. The study will be centered east of the Drake Passage where water masses from the Weddell Sea and the Scotia Sea come together in the Weddell-Scotia Confluence, and will be carried out in cooperation with the national antarctic programs of Germany and Spain. This particular component concerns observations of the temperature and salinity structure, as well as the chemical nature of the water column in the confluence region. The study has four related objectives. The first is to assess the quantity and the physical and chemical characteristics of Weddell Sea source waters for the confluence. The second is to describe the dominant processes associated with spreading and sinking of dense antarctic waters within the Weddell-Scotia Confluence. The third is to estimate the ventilation rate of the world ocean, and the fourth is to estimate seasonal fluctuations in the regional ocean transport and hydrographic structure and to assess the likely influence of seasonal to interannual variability on rates of ventilation by Weddell Sea waters. Ventilation of the deep ocean -- the rising of sub-surface water masses to the surface to be recharged with atmospheric gases and to give up heat to the atmosphere -- is a uniquely antarctic phenomenon that has significant consequences for global change by affecting the g lobal reservoir of carbon dioxide, and by modulating the amount and extent of seasonal sea ice in the southern hemisphere. This component will make systematic observations of the temperature salinity structure of the water and undertake an extensive sampling program for other chemical studies. The purpose is to identify the individual water masses and to relate their temperature and salinity characteristics to the modification processes within the Weddell Sea. ***", "east": -39.4436, "geometry": "POINT(-54.514955 -58.31195)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.35405, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Gordon, Arnold", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -64.26985, "title": "Deep Ocean Ventilation Through Antarctic Intermediate Layers (DOVETAIL)", "uid": "p0000630", "west": -69.58631}, {"awards": "9505596 Fraser, William", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP9906", "datasets": [{"dataset_uid": "002594", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP9906", "url": "https://www.rvdata.us/search/cruise/NBP9906"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Not Available", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Raymond", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Changes in Adelie Penguin Populations at Palmer Station: TheEffects of Human Disturbance and Long-Term Environmental Change", "uid": "p0000813", "west": null}, {"awards": "0094078 Bart, Philip", "bounds_geometry": "POLYGON((-179.99992 -72.00044,-143.999984 -72.00044,-108.000048 -72.00044,-72.000112 -72.00044,-36.000176 -72.00044,-0.000239999999991 -72.00044,35.999696 -72.00044,71.999632 -72.00044,107.999568 -72.00044,143.999504 -72.00044,179.99944 -72.00044,179.99944 -72.574101,179.99944 -73.147762,179.99944 -73.721423,179.99944 -74.295084,179.99944 -74.868745,179.99944 -75.442406,179.99944 -76.016067,179.99944 -76.589728,179.99944 -77.163389,179.99944 -77.73705,143.999504 -77.73705,107.999568 -77.73705,71.999632 -77.73705,35.999696 -77.73705,-0.000240000000019 -77.73705,-36.000176 -77.73705,-72.000112 -77.73705,-108.000048 -77.73705,-143.999984 -77.73705,-179.99992 -77.73705,-179.99992 -77.163389,-179.99992 -76.589728,-179.99992 -76.016067,-179.99992 -75.442406,-179.99992 -74.868745,-179.99992 -74.295084,-179.99992 -73.721423,-179.99992 -73.147762,-179.99992 -72.574101,-179.99992 -72.00044))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001648", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0301A"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "PROPOSAL NO.: 0094078\u003cbr/\u003ePRINCIPAL INVESTIGATOR: Bart, Philip\u003cbr/\u003eINSTITUTION NAME: Louisiana State University \u0026 Agricultural and Mechanical College\u003cbr/\u003eTITLE: CAREER: Relative frequency and phase of extreme expansions of the Antarctic Ice Sheets during the late Neogene\u003cbr/\u003eNSF RECEIVED DATE: 07/27/2000\u003cbr/\u003e\u003cbr/\u003ePROJECT SUMMARY\u003cbr/\u003e\u003cbr/\u003eExpansions and contractions of the Antarctic Ice Sheets (AISs) have undoubtedly had a profound influence on Earth\u0027s climate and global sea-level. However, rather than being a single entity, the Antarctic cryosphere consists of three primary elements: 1) the East Antarctic Ice Sheet (EAIS); 2) the West Antarctic Ice Sheet (WAIS); and 3) the Antarctic Peninsula Ice Cap (APIC). The distinguishing characteristics include significant differences in: 1) ice volume; 2) substratum elevation; 3) ice-surface elevation; and 4) location with respect to latitude. Various lines of evidence indicate that the AISs have undergone significant fluctuations in the past and that fluctuations will continue to occur in the future. The exact nature of the fluctuations has been the subject of many lively debates. According to one line of reasoning, the land-based EAIS has been relatively stable, experiencing only minor fluctuations since forming in the middle Miocene, whereas the marine-based WAIS has been dynamic, waxing and waning frequently since the late Miocene. According to an alternate hypothesis, the ice sheets advanced and retreated synchronously. These two views are incompatible. \u003cbr/\u003e\u003cbr/\u003eThe first objective of this proposal is to compare the long-term past behavior of the WAIS to that of the EAIS and APIC. The fluctuations of the AISs involve many aspects (the frequency of changes, the overall magnitude of ice-volume change, etc.), and the activities proposed here specifically concern the frequency and phase of extreme advances of the ice sheet to the continental shelf. The project will build upon previous seismic-stratigraphic investigations of the continental shelves. These studies have clarified many issues concerning the minimum frequency of extreme expansions for the individual ice sheets, but some important questions remain. During the course of the project, the following questions will be evaluated.\u003cbr/\u003e\u003cbr/\u003eQuestion 1) Were extreme advances of the EAIS and WAIS across the shelf of a similar frequency and coeval? This evaluation is possible because the western Ross Sea continental shelf (Northern Basin) receives drainage from the EAIS, and the eastern Ross Sea (Eastern Basin) receives drainage from the WAIS. Quantitative analyses of the extreme advances from these two areas have been conducted by Alonso et al. (1992) and Bart et al. (2000), respectively. However, the existing single-channel seismic grids are incomplete and can not be used to determine the stratigraphic correlations from Northern Basin to Eastern Basin. It is proposed that high-resolution seismic data (~2000 kms) be acquired to address this issue.\u003cbr/\u003e\u003cbr/\u003eQuestion 2) Were extreme advances of the APIC across the shelf as frequent as inferred by Bart and Anderson (1995)? Bart and Anderson (1995) inferred that the APIC advanced across the continental shelf at least 30 times since the middle Miocene. This is significant because it suggests that the advances of the small APIC were an order of magnitude more frequent than the advances of the EAIS and WAIS. Others contest the Bart and Anderson (1995) glacial-unconformity interpretation of seismic reflections, and argue that the advances of the APIC were far fewer (i.e., Larter et al., 1997). The recent drilling on the Antarctic Peninsula outer continental shelf has sampled some but not all of the glacial units, but the sediment recovery was poor, and thus, the glacial history interpretation is still ambiguous. The existing high-resolution seismic grids from the Antarctic Peninsula contain only one regional strike line on the outer continental shelf. This is inadequate to address the controversy of the glacial-unconformity interpretation and the regional correlation of the recent ODP results. It is proposed that high-resolution seismic data (~1000 kms) be acquired in a forthcoming (January 2002) cruise to the Antarctic Peninsula to address these issues.\u003cbr/\u003e\u003cbr/\u003eThe second objective of this project is 1) to expand the PI\u0027s effort to integrate his ongoing and the proposed experiments into a graduate-level course at LSU, and 2) to develop a pilot outreach program with a Baton Rouge public high school. The Louisiana Department of Education has adopted scientific standards that apply to all sciences. These standards reflect what 9th through 12th grade-level students should be able to do and know. The PI will target one of these standards, the Science As Inquiry Standard 1 Benchmark. The PI will endeavor to share with the students the excitement of conducting scientific research as a way to encourage the students to pursue earth science as a field of study at the university level.", "east": 179.99944, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -72.00044, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bart, Philip", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.73705, "title": "PECASE: Relative frequency and phase of extreme expansions of the Antarctic Ice Sheets during the late Neogene", "uid": "p0000593", "west": -179.99992}, {"awards": "0635531 Ishman, Scott", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG0804; Expedition data of LMG0808", "datasets": [{"dataset_uid": "001511", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0804"}, {"dataset_uid": "002674", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0808", "url": "https://www.rvdata.us/search/cruise/LMG0808"}, {"dataset_uid": "002673", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0804", "url": "https://www.rvdata.us/search/cruise/LMG0804"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project studies seasonal variation in the abundance and shell composition of foraminifera from the northern Gerlache-southern Bransfield Straits region of the Western Antarctic Peninsula. Its goal is to improve interpretation of microfaunal and geochemical proxies for reconstruction of ancient ocean currents, climate, and ecologies. Since seasonal variation may greatly affect interpretation, this project focuses on the Antarctic region, where intense seasonality should generate a more obvious signal than at the less extreme mid-latitudes. The results should allow a better understanding of the coupling to seasonal productivity, as well as improve regional reconstructions.\u003cbr/\u003eThe broader impacts are graduate, undergraduate, and postdoctoral student education; as well as outreach to both the English and Spanish-speaking public. The work will also improve society\u0027s understanding of past climate change as an analogue to the future.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ishman, Scott", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Testing the Impact of Seasonality on Benthic Foraminifers as Paleoenvironmental Proxies.", "uid": "p0000856", "west": null}, {"awards": "9317588 Lawver, Lawrence", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP9507", "datasets": [{"dataset_uid": "002227", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9507"}, {"dataset_uid": "002590", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP9507", "url": "https://www.rvdata.us/search/cruise/NBP9507"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award supports a marine geophysical investigation of the Bransfield Strait and the Shackleton Fracture Zone and environs in the Scotia Sea in an effort to understand the neotectonic evolution of the region. Multibeam swath mapping and sidescan sonar mapping will be used along with multichannel seismic imaging. The main goal of this proposal is to collect multibeam and sidescan sonar data to map the structural character and tectonic fabric of the evolving plate boundary in Southwest Scotia Sea, Shackleton Fracture Zone, and Bransfield Strait. Follow up multichannel seismic surveys will be done in the Southwest Scotia Sea. The secondary goal is to use sidescan sonar reflectivity images to generate detailed structural maps of the seafloor of these regions and to integrate the new data with existing seismic reflection, Geosat gravity, Hydrosweep and Seabeam bathymetric data. Once the base maps are produced they can be used by other researchers to help interpret multichannel and single channel seismic reflection records. The neotectonic evolution of the Antarctic Peninsula and Scotia Sea is extremely complex. Understanding the recent evolution of the Drake-Scotia-Antarctic-South America plate intersections will provide important information as to how major plate boundaries reorganize after demise of a long-lived spreading center and the consequential reduction in the number of plates. The plate reorganization probably resulted in the uplift of the Shackleton Ridge which may have effected the sedimentary patterns in both the Scotia Sea and possibly the Weddell Sea. If the break of the Shackleton transform fault can be traced with multibeam and sidescan sonar as it intersects the southern end of South America then the orientation and geometry of the faults, fractures and deformation as the transform fault intersects the South American continent will help to interpret the structures in that complex region. Bransfield Strait is presently undergoing extensi on based on high heat flow, active volcanoes and inferences from seismic reflection work. Seismic refraction indicates thick crust similar to the East African Rift or passive volcanic margins of continents. In contrast, analysis of isotopes and rare earth elements of the recent volcanics shows seemingly no continental contamination. The active extension in Bransfield Strait must be related to the plate reorganization but it is unclear exactly what tectonic processes are occurring. Besides elucidating the tectonic fabric of Bransfield Strait, the multibeam and sidescan sonar survey will identify potential dredge targets and DSRV Alvin dive sites.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Klinkhammer, Gary", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Neotectonic Evolution of Antarctic Peninsula/Scotia Sea Region: Multi-Beam, Sidescan Sonar, Seismic, Magnetics and Gravity Studies", "uid": "p0000809", "west": null}, {"awards": "9018742 Bell, Robin", "bounds_geometry": "POLYGON((-138.35619 -52.35083,-130.546489 -52.35083,-122.736788 -52.35083,-114.927087 -52.35083,-107.117386 -52.35083,-99.307685 -52.35083,-91.497984 -52.35083,-83.688283 -52.35083,-75.878582 -52.35083,-68.068881 -52.35083,-60.25918 -52.35083,-60.25918 -54.178043,-60.25918 -56.005256,-60.25918 -57.832469,-60.25918 -59.659682,-60.25918 -61.486895,-60.25918 -63.314108,-60.25918 -65.141321,-60.25918 -66.968534,-60.25918 -68.795747,-60.25918 -70.62296,-68.068881 -70.62296,-75.878582 -70.62296,-83.688283 -70.62296,-91.497984 -70.62296,-99.307685 -70.62296,-107.117386 -70.62296,-114.927087 -70.62296,-122.736788 -70.62296,-130.546489 -70.62296,-138.35619 -70.62296,-138.35619 -68.795747,-138.35619 -66.968534,-138.35619 -65.141321,-138.35619 -63.314108,-138.35619 -61.486895,-138.35619 -59.659682,-138.35619 -57.832469,-138.35619 -56.005256,-138.35619 -54.178043,-138.35619 -52.35083))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002296", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9208"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award supports an investigation of the early seafloor spreading history of the Marie Byrd Land Margin, Antarctica. This effort will carefully map the magnetic lineations, the gravity anomalies, the topography and, where possible, the seismically determined depth to basement. The study will integrate the tectonic lineations determined from the gravity, bathymetry and seismic information with the magnetic anomalies to construct a new seafloor spreading history of the Marie Byrd Land Margin. The analysis of these new data sets and the resultant seafloor spreading history will be used to address the following questions: (1) Did the early opening of the Pacific-Antarctic Ridge involve an additional plate, the Bellingshausen Plate, or did the ridge undergo very asymmetric, non-orthogonal spreading? (2) With a better refined opening history for the Pacific Antarctic Ridge, what are the implications for relative motions between the tectonic blocks which compromise West Antarctica and for the structure and evolution of the Marie Byrd Land Margin? (3) Can the global plate circuit solution be enhanced by refining the early Tertiary history of Pacific-Antarctic seafloor spreading?", "east": -60.25918, "geometry": "POINT(-99.307685 -61.486895)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.35083, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bell, Robin; Raymond, Carol", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -70.62296, "title": "The Marie Byrd Land Margin: Early Seafloor Spreading History", "uid": "p0000653", "west": -138.35619}, {"awards": "9896290 Smith, Walker; 9530382 Smith, Walker; 9530398 Anderson, Robert", "bounds_geometry": "POLYGON((-179.9999 -43.5646,-143.99993 -43.5646,-107.99996 -43.5646,-71.99999 -43.5646,-36.00002 -43.5646,-0.000050000000016 -43.5646,35.99992 -43.5646,71.99989 -43.5646,107.99986 -43.5646,143.99983 -43.5646,179.9998 -43.5646,179.9998 -47.013473,179.9998 -50.462346,179.9998 -53.911219,179.9998 -57.360092,179.9998 -60.808965,179.9998 -64.257838,179.9998 -67.706711,179.9998 -71.155584,179.9998 -74.604457,179.9998 -78.05333,143.99983 -78.05333,107.99986 -78.05333,71.99989 -78.05333,35.99992 -78.05333,-0.000049999999987 -78.05333,-36.00002 -78.05333,-71.99999 -78.05333,-107.99996 -78.05333,-143.99993 -78.05333,-179.9999 -78.05333,-179.9999 -74.604457,-179.9999 -71.155584,-179.9999 -67.706711,-179.9999 -64.257838,-179.9999 -60.808965,-179.9999 -57.360092,-179.9999 -53.911219,-179.9999 -50.462346,-179.9999 -47.013473,-179.9999 -43.5646))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002164", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9604"}, {"dataset_uid": "001874", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9802"}, {"dataset_uid": "002138", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9708"}, {"dataset_uid": "002162", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9604A"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "95-30398 Anderson This research project is part of the US Joint Global Ocean Flux Study (JGOFS) Southern Ocean Program aimed at (1) a better understanding of the fluxes of carbon, both organic and inorganic, in the Southern Ocean, (2) identifying the physical, ecological and biogeochemical factors and processes which regulate the magnitude and variability of these fluxes, and (3) placing these fluxes into the context of the contemporary global carbon cycle. The overall objectives of JGOFS are to determine and understand processes controlling the time-varying fluxes of carbon and associated biogenic elements, and to predict the response of marine biogeochemical processes to climate change. The Southern Ocean is critical in the global carbon cycle, as judged by its size and the physical processes which occur in it (e.g., deep and intermediate water formation), but its present quantitative role is uncertain. JGOFS objectives for the Southern Ocean study are as follows: 1) to constrain the fluxes of carbon (organic and inorganic) and to place these fluxes in the context of the contemporary carbon cycle; 2) to identify the factors and processes which regulate the magnitude and variability of primary productivity and the fate of biogenic matter; 3) to determine the response of the Southern Ocean to natural climate perturbations; and 4) to predict the response of the Southern Ocean to climate change. In order to successfully address these objectives, a large field program has been designed to provide various investigators the opportunity to test specific hypotheses which relate to these broadly-defined objectives. We expect the field test to begin in September 1996, and last through March 1998 using two ships, the R.V. Palmer, and the R.V. Thompson. As most of the investigators will use hydrographic and nutrient data from these cruises, this proposal requests funds for the support of the analysis of nutrient concentrations during these thirteen crui ses. A team of oceanographic experts from a variety of institutions has been assembled to complete these analyses; furthermore, the data will be scrutinized for errors and provided in a timely fashion to all PI\u0027s in the project, as well as to the relevant oceanographic data storage facilities. The hydrography and coring groups have been put together using the successful model for the Arabian Sea JGOFS study, and in conjunction with the nutrient data (supported under a separate proposal), will form a large portion of the Southern Ocean JGOFS database which both field investigators and modelers will use to clarify the role of the Southern Ocean in the global carbon cycle.", "east": 179.9998, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -43.5646, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Anderson, Robert; Smith, Walker; Honjo, Susumu", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -78.05333, "title": "Management and Scientific Service in Support of the U.S. JGOFS Southern Ocean Process Study: Hydrography, Coring and Site Survey", "uid": "p0000629", "west": -179.9999}, {"awards": "9317379 Foster, Theodore", "bounds_geometry": "POLYGON((143.4953 -43.56287,146.46757 -43.56287,149.43984 -43.56287,152.41211 -43.56287,155.38438 -43.56287,158.35665 -43.56287,161.32892 -43.56287,164.30119 -43.56287,167.27346 -43.56287,170.24573 -43.56287,173.218 -43.56287,173.218 -46.238515,173.218 -48.91416,173.218 -51.589805,173.218 -54.26545,173.218 -56.941095,173.218 -59.61674,173.218 -62.292385,173.218 -64.96803,173.218 -67.643675,173.218 -70.31932,170.24573 -70.31932,167.27346 -70.31932,164.30119 -70.31932,161.32892 -70.31932,158.35665 -70.31932,155.38438 -70.31932,152.41211 -70.31932,149.43984 -70.31932,146.46757 -70.31932,143.4953 -70.31932,143.4953 -67.643675,143.4953 -64.96803,143.4953 -62.292385,143.4953 -59.61674,143.4953 -56.941095,143.4953 -54.26545,143.4953 -51.589805,143.4953 -48.91416,143.4953 -46.238515,143.4953 -43.56287))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002240", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9502"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9317379 Foster This project is study of the deep and bottom water formation processes of the antarctic continental shelf off Wilkes Land between 145 deg E longitude and 160 deg E longitude. The project is to be carried out jointly with an Australian oceanographic project. Preliminary work in 1985 has shown that hydrographic sections in this area are quite similar to those of known deep water formation regions in the southern Weddell Sea. This project will include the year-long deployment of six current meter moorings, and tracer studies (oxygen, carbon dioxide, chlorofluorocarbons, stable isotopes, and nutrients) to test whether shelf waves and tides are the principal mechanism for mixing shelf water with the off-shore intermediate water. Two oceanographic cruises are planned for this work: a cruise of the RVIB Nathaniel B. Palmer in February 1995, and a cruise of the Australian ship R/V Aurora Australis in February 1996. ***", "east": 173.218, "geometry": "POINT(158.35665 -56.941095)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -43.56287, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Foster, Theodore; Foster, Ted", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -70.31932, "title": "Deep Water Formation off the Eastern Wilkes Land Coast of Antarctica", "uid": "p0000645", "west": 143.4953}, {"awards": "0344275 Trivelpiece, Wayne", "bounds_geometry": null, "dataset_titles": "Expedition data of LMG0412", "datasets": [{"dataset_uid": "002683", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0412", "url": "https://www.rvdata.us/search/cruise/LMG0412"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Seabird research conducted at Admiralty Bay, King George Island in the Antarctic Peninsula region has documented annual variability in the life history parameters of the population biology of three related penguin species: the Adelie, the gentoo and the chinstrap (Pygoscelis adeliae, P. papua and P. antarctica, respectively). This long-term study has collected twenty-five years of data on the three related species, including survival and recruitment, population size and breeding success, and diets and foraging ecology. The current project will extend the research linking penguin demography and foraging ecology to variability in the Antarctic marine ecosystem. A major focus of this work will be on the Adelie and gentoo penguin population biology data and the distribution and trophic interactions among the three Pygoscelis species during the breeding season and the non-breeding, winter period. Recent results have provided the first detailed data on the wintering distributions of Adelie and chinstrap penguins in the Antarctic Peninsula region, through the use of satellite tags and time-depth recorders to examine the post-fledging foraging. Specific topics of research include an examination of the size and sex composition of krill captured by penguins feeding chicks and krill collected concurrently by net hauls in the adjacent marine environment and the length-frequency distribution of krill collected from penguin diet samples. The over winter survival of penguin breeding adults and the recruitment of young (two to four year old) pre-breeding penguins to their natal colony will be compared to the extent of sea ice in the winter prior to the breeding season. These variables are expected to be positively correlated for the Adelie but negatively correlated to the chinstrap penguin. Detailed studies of the adult gentoo penguins, which do not disperse widely from the natal colony, will be conducted using satellite tags. The data collected in this study will improve an understanding of the structure and function of the Antarctic through research on the impact of environmental variation on the structure of upper trophic level predators such as the Pygoscelis penguins.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": null, "paleo_time": null, "persons": "Trivelpiece, Wayne", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Foraging Behavior and Demography of Pygoscelis Penguins", "uid": "p0000860", "west": null}, {"awards": "0132032 Detrich, H. William", "bounds_geometry": "POLYGON((-68.84315 -42.87167,-61.576321 -42.87167,-54.309492 -42.87167,-47.042663 -42.87167,-39.775834 -42.87167,-32.509005 -42.87167,-25.242176 -42.87167,-17.975347 -42.87167,-10.708518 -42.87167,-3.441689 -42.87167,3.82514 -42.87167,3.82514 -44.482708,3.82514 -46.093746,3.82514 -47.704784,3.82514 -49.315822,3.82514 -50.92686,3.82514 -52.537898,3.82514 -54.148936,3.82514 -55.759974,3.82514 -57.371012,3.82514 -58.98205,-3.441689 -58.98205,-10.708518 -58.98205,-17.975347 -58.98205,-25.242176 -58.98205,-32.509005 -58.98205,-39.775834 -58.98205,-47.042663 -58.98205,-54.309492 -58.98205,-61.576321 -58.98205,-68.84315 -58.98205,-68.84315 -57.371012,-68.84315 -55.759974,-68.84315 -54.148936,-68.84315 -52.537898,-68.84315 -50.92686,-68.84315 -49.315822,-68.84315 -47.704784,-68.84315 -46.093746,-68.84315 -44.482708,-68.84315 -42.87167))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001655", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0404"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Notothenioid fish are a major group of fish in the Southern Ocean. The ancestral notothenioid fish stock of Antarctica probably arose as a sluggish, bottom-dwelling perciform species that evolved some 40-60 million years ago in the then temperate shelf waters of the Antarctic continent. The grounding of the ice sheet on the continental shelf and changing trophic conditions may have eliminated the taxonomically diverse late Eocene fauna and initiated the original diversification of notothenioids. On the High Antarctic shelf, notothenioids today dominate the ichthyofauna in terms of species diversity, abundance and biomass, the latter two at levels of 90-95%. Since the International Geophysical Year of 1957-58, fish biologists from the Antarctic Treaty nations have made impressive progress in understanding the notothenioid ichthyofauna of the cold Antarctic marine ecosystem. However, integration of this work into the broader marine context has been limited, largely due to lack of access to, and analysis of, specimens of Sub-Antarctic notothenioid fishes. Sub-Antarctic fishes of the notothenioid suborder are critical for a complete understanding of the evolution, population dynamics, eco-physiology, and eco-biochemistry of their Antarctic relatives. This project will support an international, collaborative research cruise to collect and study fish indigenous to sub-antarctic habitats. The topics included in the research plans of the international team of researchers includes Systematics and Evolutionary Studies; Life History Strategies and Population Dynamics; Physiological, Biochemical, and Molecular Biological Investigations of Major Organ and Tissue Systems; Genomic Resources for the Sub-Antarctic Notothenioids; and Ecological Studies of Transitional Benthic Invertebrates. In a world that is experiencing changes in global climate, the loss of biological diversity, and the depletion of marine fisheries, the Antarctic, Sub-Antarctic, and their biota offer compelling natural laboratories for understanding the evolutionary impacts of these processes. The proposed work will contribute to development of a baseline understanding of these sensitive ecosystems, one against which future changes in species distribution and survival may be evaluated judiciously.", "east": 3.82514, "geometry": "POINT(-32.509005 -50.92686)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -42.87167, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Detrich, H. William", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -58.98205, "title": "International Collaborative Expedition to Collect and Study Fish Indigenous to Sub-Antarctic Habitats", "uid": "p0000584", "west": -68.84315}, {"awards": "0440775 Jacobs, Stanley", "bounds_geometry": null, "dataset_titles": "Amundsen Sea Continental Shelf Mooring Data (2006-2007); Expedition data of NBP0702; NBP0702 surface sediment sample information and images", "datasets": [{"dataset_uid": "002645", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0702", "url": "https://www.rvdata.us/search/cruise/NBP0702"}, {"dataset_uid": "601809", "doi": "10.15784/601809", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Mooring; Ocean Currents; Pressure; Salinity; Temperature", "people": "Giulivi, Claudia F.; Jacobs, Stanley", "repository": "USAP-DC", "science_program": null, "title": "Amundsen Sea Continental Shelf Mooring Data (2006-2007)", "url": "https://www.usap-dc.org/view/dataset/601809"}, {"dataset_uid": "601473", "doi": "10.15784/601473", "keywords": "Amundsen Sea; Antarctica; Marine Geoscience; Marine Sediments; NBP0702; Photo; R/v Nathaniel B. Palmer; Seafloor Sampling; Sediment Description; Smith-Mcintyre Grab", "people": "Jacobs, Stanley; Leventer, Amy", "repository": "USAP-DC", "science_program": null, "title": "NBP0702 surface sediment sample information and images", "url": "https://www.usap-dc.org/view/dataset/601473"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This collaborative study between Columbia University and the Southampton Oceanography Centre will investigate the dynamics of warm water intrusions under antarctic floating ice shelves. The study will focus on the Amundsen Sea and Pine Island Glacier, and will document how this water gains access to the continental shelf, transports heat into the ice shelf cavities via deep, glacially-scoured troughs, and rises beneath the ice to drive basal melting. The resulting seawater-meltwater mixtures upwell near the ice fronts, contributing to the formation of atypical coastal polynyas with strong geochemical signatures. Multidecadal freshening downstream is consistent with thinning ice shelves, which may be triggering changes inland, increasing the flow of grounded ice into the sea. This work will be carried out in combination with parallel modeling, remote sensing and data based projects, in an effort to narrow uncertainties about the response of West Antarctic Ice Sheet to climate change. Using state-of-the-art facilities and instruments, this work will enhance knowledge of water mass production and modification, and the understanding of interactions between the ocean circulation, sea floor and ice shelves. The data and findings will be reported to publicly accessible archives and submitted for publication in the scientific literature. The information obtained should prove invaluable for the development and validation of general circulation models, needed to predict the future role of the Antarctic Ice Sheet in sea level change.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "AMD; Amd/Us; R/V NBP; NSF/USA; Amundsen Sea; USAP-DC", "locations": "Amundsen Sea", "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jacobs, Stanley", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": null, "title": "The Amundsen Continental Shelf and the Antarctic Ice Sheet", "uid": "p0000836", "west": null}, {"awards": "9814692 Kellogg, Thomas", "bounds_geometry": "POLYGON((-179.99342 -58.74225,-143.994734 -58.74225,-107.996048 -58.74225,-71.997362 -58.74225,-35.998676 -58.74225,0.000010000000003 -58.74225,35.998696 -58.74225,71.997382 -58.74225,107.996068 -58.74225,143.994754 -58.74225,179.99344 -58.74225,179.99344 -60.716231,179.99344 -62.690212,179.99344 -64.664193,179.99344 -66.638174,179.99344 -68.612155,179.99344 -70.586136,179.99344 -72.560117,179.99344 -74.534098,179.99344 -76.508079,179.99344 -78.48206,143.994754 -78.48206,107.996068 -78.48206,71.997382 -78.48206,35.998696 -78.48206,0.000010000000003 -78.48206,-35.998676 -78.48206,-71.997362 -78.48206,-107.996048 -78.48206,-143.994734 -78.48206,-179.99342 -78.48206,-179.99342 -76.508079,-179.99342 -74.534098,-179.99342 -72.560117,-179.99342 -70.586136,-179.99342 -68.612155,-179.99342 -66.638174,-179.99342 -64.664193,-179.99342 -62.690212,-179.99342 -60.716231,-179.99342 -58.74225))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001992", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0001"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a marine geological investigation of the Amundsen Sea region toward a better understanding of the deglaciation history of the West Antarctic Ice Sheet (WAIS). The WAIS may be inherently unstable because it is the last marine-based ice sheet in the world. Unlike other embayments in West Antarctica, major ice streams draining into the Amundsen Sea from the interior of the WAIS lack buttressing ice shelves. Mass balance data for the distal portions of these ice streams (Pine Island and Thwaites glaciers) appear to be in balance or may be becoming negative. Because both ice streams have beds that slope downward toward the center of the ice sheet, grounding-line recession resulting from either continued thinning or sea-level rise could trigger irreversible grounding-line retreat, leading to ice-sheet disintegration and consequent global sea-level rise. The limited marine geological and geophysical data available from the Amundsen Sea suggest that grounded ice or an ice shelf occupied the inner Amundsen Sea embayment until perhaps as recently as 1000 to 2000 years ago, and this ice may have retreated rapidly in historic time. This project, a study of the marine geology and geophysics of the Amundsen Sea continental shelf from 100 degrees W to 130 degrees W, is designed to address the Amundsen Sea part of WAIS Science Plan Priority Goal H2: \"What is the deglaciation history in the eastern Ross, the Bellingshausen and Amundsen Seas?\" This project will examine bathymetric data of the Amundsen Sea continental shelf to determine the positions of former ice-steam channels, and to aid in choosing sites for sediment coring. Single-channel seismic reflection studies will be conducted in order to determine sediment-thickness patterns, to aid in choice of coring sites, and to locate and identify morphologic features indicative of former grounded ice (e.g., moraines, scours, flutes, striations, till wedges and deltas, etc.). Coring will be concentrated along former ice flow-lines. Core samples will be analyzed in the laboratory for sedimentology, to determine whether of not basal tills are present (indicating former grounded ice and its former extent), and for calcareous and siliceous microfossils. The chronology of grounding-line and ice-shelf retreat from a presumed Last Glacial Maximum position near the shelf break will be established using accelerator mass spectrometry (AMS) carbon-14 dates of acid-insoluble particulate organic carbon. This project will share ship time in the Amundsen Sea with a physical oceanographic project. Marine geologic data and samples collected will be integrated with findings of other investigators toward developing a comprehensive interpretation of the history of the WAIS.", "east": 179.99344, "geometry": "POINT(0.000010000000003 -68.612155)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -58.74225, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kellogg, Thomas; Jacobs, Stanley", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -78.48206, "title": "Glacial History of the Amundsen Sea Shelf", "uid": "p0000620", "west": -179.99342}, {"awards": "9019247 Lawver, Lawrence", "bounds_geometry": "POLYGON((-70.9123 -52.3523,-68.4947 -52.3523,-66.0771 -52.3523,-63.6595 -52.3523,-61.2419 -52.3523,-58.8243 -52.3523,-56.4067 -52.3523,-53.9891 -52.3523,-51.5715 -52.3523,-49.1539 -52.3523,-46.7363 -52.3523,-46.7363 -53.791011,-46.7363 -55.229722,-46.7363 -56.668433,-46.7363 -58.107144,-46.7363 -59.545855,-46.7363 -60.984566,-46.7363 -62.423277,-46.7363 -63.861988,-46.7363 -65.300699,-46.7363 -66.73941,-49.1539 -66.73941,-51.5715 -66.73941,-53.9891 -66.73941,-56.4067 -66.73941,-58.8243 -66.73941,-61.2419 -66.73941,-63.6595 -66.73941,-66.0771 -66.73941,-68.4947 -66.73941,-70.9123 -66.73941,-70.9123 -65.300699,-70.9123 -63.861988,-70.9123 -62.423277,-70.9123 -60.984566,-70.9123 -59.545855,-70.9123 -58.107144,-70.9123 -56.668433,-70.9123 -55.229722,-70.9123 -53.791011,-70.9123 -52.3523))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002294", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9301"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Major progress has been made with respect to our understanding of the tectonic evolution of the Antarctic Plate. Paleomagnetic data, marine magnetic anomaly identifications, Geosat-derived tectonic lineations, heat flow derived seafloor ages and mathematical solutions for plate motions around triple junctions have all contributed to a better model for the tectonic evolution of the circum- Antarctic region. Even so, major problems still exist with respect to the Mesozoic to Recent tectonic evolution of the Antarctic continental margin which can be tackled using heat flow measurements. This award supports the study of a tectonic problem that heat flow can address, the determination of the age of the Powell Basin at the end of the West Antarctic Peninsula and its relationship to the opening of Drake\u0027s Passage. Specifically, heat flow measurement will be used to study the age and mode of crustal extension of the Powell Basin, where standard age determination fails and heat flow is the only method that can be used to date its opening.", "east": -46.7363, "geometry": "POINT(-58.8243 -59.545855)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.3523, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Lawver, Lawrence", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -66.73941, "title": "Antarctic Marine Heat Flow", "uid": "p0000652", "west": -70.9123}, {"awards": "0337159 McPhee, Miles", "bounds_geometry": "POLYGON((-64.71659 -53.00174,-57.631677 -53.00174,-50.546764 -53.00174,-43.461851 -53.00174,-36.376938 -53.00174,-29.292025 -53.00174,-22.207112 -53.00174,-15.122199 -53.00174,-8.037286 -53.00174,-0.952373 -53.00174,6.13254 -53.00174,6.13254 -54.292069,6.13254 -55.582398,6.13254 -56.872727,6.13254 -58.163056,6.13254 -59.453385,6.13254 -60.743714,6.13254 -62.034043,6.13254 -63.324372,6.13254 -64.614701,6.13254 -65.90503,-0.952373 -65.90503,-8.037286 -65.90503,-15.122199 -65.90503,-22.207112 -65.90503,-29.292025 -65.90503,-36.376938 -65.90503,-43.461851 -65.90503,-50.546764 -65.90503,-57.631677 -65.90503,-64.71659 -65.90503,-64.71659 -64.614701,-64.71659 -63.324372,-64.71659 -62.034043,-64.71659 -60.743714,-64.71659 -59.453385,-64.71659 -58.163056,-64.71659 -56.872727,-64.71659 -55.582398,-64.71659 -54.292069,-64.71659 -53.00174))", "dataset_titles": "Expedition Data; Processed ADCP Sonar and CTD Data from the Maud Rise acquired during the Nathaniel B. Palmer expedition NBP0506", "datasets": [{"dataset_uid": "601342", "doi": null, "keywords": "ADCP Acoustic Doppler Current Profiler; Antarctica; CTD; Maud Rise; NBP0506; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Southern Ocean; Temperature; Turbulance; Weddell Sea", "people": "McPhee, Miles G.", "repository": "USAP-DC", "science_program": null, "title": "Processed ADCP Sonar and CTD Data from the Maud Rise acquired during the Nathaniel B. Palmer expedition NBP0506", "url": "https://www.usap-dc.org/view/dataset/601342"}, {"dataset_uid": "001590", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0506"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project is an investigation into one mechanism by which deep ocean convection can evolve from stable initial conditions, to the extent that it becomes well enough established to bring warm water to the surface and melt an existing ice cover in late, or possibly even mid-winter. The specific study will investigate how the non-linear dependence of seawater density on temperature and salinity (the equation of state) can enhance vertical convection under typical antarctic conditions. When layers of seawater with similar densities but strong contrasts in temperature and salinity interact, there are a number of possible non-linear instabilities that can convert existing potential energy to turbulent energy. In the Weddell Sea, a cold surface mixed layer is often separated from the underlying warm, more saline water by a thin, weak pycnocline, making the water column particularly susceptible to an instability associated with thermobaricity (the pressure dependence of the thermal expansion coefficient). The project is a collaboration between New York University, Earth and Space Research, the University of Washington, the Naval Postgraduate School, and McPhee Research Company.\u003cbr/\u003eThe work has strong practical applications in contributing to the explanation for the existence of the Weddell Polynya, a 300,000 square kilometer area of open water within the seasonal sea ice of the Weddell Sea, from approximately 1975 to 1979. It has not recurred since, although indications of much smaller and less persistent areas of open water do occur in the vicinity of the Maud Rise seamount. \u003cbr/\u003e The experimental component will be carried out on board the RVIB Nathaniel B. Palmer between July and September, 2005.", "east": 6.13254, "geometry": "POINT(-29.292025 -59.453385)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -53.00174, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "McPhee, Miles G.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -65.90503, "title": "Collaborative Research: The Maud Rise Nonlinear Equation of State Study (MaudNESS)", "uid": "p0000579", "west": -64.71659}, {"awards": "0636787 Robinson, Laura", "bounds_geometry": "POLYGON((-69.13317 -52.716503,-65.8622114 -52.716503,-62.5912528 -52.716503,-59.3202942 -52.716503,-56.0493356 -52.716503,-52.778377 -52.716503,-49.5074184 -52.716503,-46.2364598 -52.716503,-42.9655012 -52.716503,-39.6945426 -52.716503,-36.423584 -52.716503,-36.423584 -53.5798407,-36.423584 -54.4431784,-36.423584 -55.3065161,-36.423584 -56.1698538,-36.423584 -57.0331915,-36.423584 -57.8965292,-36.423584 -58.7598669,-36.423584 -59.6232046,-36.423584 -60.4865423,-36.423584 -61.34988,-39.6945426 -61.34988,-42.9655012 -61.34988,-46.2364598 -61.34988,-49.5074184 -61.34988,-52.778377 -61.34988,-56.0493356 -61.34988,-59.3202942 -61.34988,-62.5912528 -61.34988,-65.8622114 -61.34988,-69.13317 -61.34988,-69.13317 -60.4865423,-69.13317 -59.6232046,-69.13317 -58.7598669,-69.13317 -57.8965292,-69.13317 -57.0331915,-69.13317 -56.1698538,-69.13317 -55.3065161,-69.13317 -54.4431784,-69.13317 -53.5798407,-69.13317 -52.716503))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001510", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0805"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project uses radiocarbon in deep-sea corals to understand the Southern Ocean\u0027s role in modulating global climate. A key site of deep-water formation, the Southern Ocean is critical to exchange of heat and carbon between the deep-ocean and atmosphere. Changes in it may be linked to low atmospheric CO2 during the last glacial maximum through increased biologic carbon draw down or decreased air-sea CO2 exchange. Testing these hypotheses is challenging because of the scarcity of suitable records of the Southern Ocean\u0027s biogeochemistry and circulation. The aragonitic skeletons of deep-sea corals may offer insight because they are well suited for radiocarbon analyses-reflective of the 14C content of the past water column--while also allowing for timing of events through U-series age measurements. Overall, these measurements will put new constraints on the extent of air-sea gas exchange, polar water-column stratification, and the flux of Southern-sourced deep water to the rest of the world\u0027s oceans. As a part of this work, new sections of the Drake Passage sea floor will be mapped and imaged, along with the present and past distributions of deep-sea corals and their habitats. \u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eA significant broader impact of this work is characterizing the functioning of what may be a key control of atmospheric CO2 content, which could prove important for fully understanding the impacts of continued CO2 emissions and developing mitigation strategies. As well, the work will characterize deep marine ecologies that are poorly understood, but increasingly exploited as fisheries resources.", "east": -36.423584, "geometry": "POINT(-52.778377 -57.0331915)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.716503, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Dalziel, Ian W.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -61.34988, "title": "Glacial Radiocarbon Constraints from Drake Passage Deep-Sea Corals", "uid": "p0000528", "west": -69.13317}, {"awards": "0088143 Luyendyk, Bruce; 0087392 Bartek, Louis", "bounds_geometry": "POLYGON((-179.99786 -75.91667,-143.99852 -75.91667,-107.99918 -75.91667,-71.99984 -75.91667,-36.0005 -75.91667,-0.00115999999997 -75.91667,35.99818 -75.91667,71.99752 -75.91667,107.99686 -75.91667,143.9962 -75.91667,179.99554 -75.91667,179.99554 -76.183531,179.99554 -76.450392,179.99554 -76.717253,179.99554 -76.984114,179.99554 -77.250975,179.99554 -77.517836,179.99554 -77.784697,179.99554 -78.051558,179.99554 -78.318419,179.99554 -78.58528,143.9962 -78.58528,107.99686 -78.58528,71.99752 -78.58528,35.99818 -78.58528,-0.00116000000003 -78.58528,-36.0005 -78.58528,-71.99984 -78.58528,-107.99918 -78.58528,-143.99852 -78.58528,-179.99786 -78.58528,-179.99786 -78.318419,-179.99786 -78.051558,-179.99786 -77.784697,-179.99786 -77.517836,-179.99786 -77.250975,-179.99786 -76.984114,-179.99786 -76.717253,-179.99786 -76.450392,-179.99786 -76.183531,-179.99786 -75.91667))", "dataset_titles": "Expedition Data; NBP0301 data; NBP0306 data", "datasets": [{"dataset_uid": "000105", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP0306 data", "url": "https://www.rvdata.us/search/cruise/NBP0306"}, {"dataset_uid": "001724", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0301"}, {"dataset_uid": "001668", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0306"}, {"dataset_uid": "000104", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP0301 data", "url": "https://www.rvdata.us/search/cruise/NBP0301"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Luyendyk et.al.: OPP 0088143\u003cbr/\u003eBartek: OPP 0087392\u003cbr/\u003eDiebold: OPP 0087983\u003cbr/\u003e\u003cbr/\u003eThis award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research program in marine geology and geophysics in the southern central and eastern Ross Sea. The project will conduct sites surveys for drilling from the Ross Ice Shelf into the seafloor beneath it. Many of the outstanding problems concerning the evolution of the East and West Antarctic Ice Sheets, Antarctic climate, global sea level, and the tectonic history of the West Antarctic Rift System can be addressed by drilling into the seafloor of the Ross Sea. Climate data for Cretaceous and Early Cenozoic time are lacking for this sector of Antarctica. Climate questions include: Was there any ice in Late Cretaceous time? What was the Antarctic climate during the Paleocene-Eocene global warming? When was the Cenozoic onset of Antarctic glaciation, when did glaciers reach the coast and when did they advance out onto the margin? Was the Ross Sea shelf non-marine in Late Cretaceous time; when did it become marine? Tectonic questions include: What was the timing of the Cretaceous extension in the Ross Sea rift; where was it located? What is the basement composition and structure? Where are the time and space limits of the effects of Adare Trough spreading? Another drilling objective is to sample and date the sedimentary section bounding the mapped RSU6 unconformity in the Eastern Basin and Central Trough to resolve questions about its age and regional extent. Deep Sea Drilling Project (DSDP) Leg 28 completed sampling at four drill sites in the early 1970\u0027s but had low recovery and did not sample the Early Cenozoic. Other drilling has been restricted to the McMurdo Sound area of the western Ross Sea and results can be correlated into the Victoria Land Basin but not eastward across basement highs. Further, Early Cenozoic and Cretaceous rocks have not been sampled. A new opportunity is developing to drill from the Ross Ice Shelf. This is a successor program to the Cape Roberts Drilling Project. One overriding difficulty is the need for site surveys at drilling locations under the ice shelf. This project will overcome this impediment by conducting marine geophysical drill site surveys at the front of the Ross Ice Shelf in the Central Trough and Eastern Basin. The surveys will be conducted a kilometer or two north of the ice shelf front where recent calving events have resulted in a southerly position of the ice shelf edge. In several years the northward advance of the ice shelf will override the surveyed locations and drilling could be accomplished. Systems to be used include swath bathymetry, gravity, magnetics, chirp sonar, high resolution seismic profiling, and 48 fold seismics. Cores will be collected to obtain samples for geotechnical properties, to study sub-ice shelf modern sedimentary processes, and at locations where deeper section is exposed.\u003cbr/\u003e\u003cbr/\u003eThis survey will include long profiles and detailed grids over potential drill sites. Survey lines will be tied to existing geophysical profiles and DSDP 270. A recent event that makes this plan timely is the calving of giant iceberg B-15 (in March, 2000) and others from the ice front in the eastern Ross Sea. This new calving event and one in 1987 have exposed 16,000 square kilometers of seafloor that had been covered by ice shelf for decades and is not explored. Newly exposed territory can now be mapped by modern geophysical methods. This project will map geological structure and stratigraphy below unconformity RSU6 farther south and east, study the place of Roosevelt Island in the Ross Sea rifting history, and determine subsidence history during Late Cenozoic time (post RSU6) in the far south and east. Finally the project will observe present day sedimentary processes beneath the ice shelf in the newly exposed areas.", "east": 179.99554, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": true, "keywords": "R/V NBP", "locations": null, "north": -75.91667, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Bartek, Louis; Luyendyk, Bruce P.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -78.58528, "title": "Collaborative Research: Antarctic Cretaceous-Cenozoic Climate, Glaciation, and Tectonics: Site surveys for drilling from the edge of the Ross Ice Shelf", "uid": "p0000425", "west": -179.99786}, {"awards": "0523166 Hofmann, Eileen", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0103", "datasets": [{"dataset_uid": "002601", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0103", "url": "https://www.rvdata.us/search/cruise/NBP0103"}, {"dataset_uid": "002595", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0103", "url": "https://www.rvdata.us/search/cruise/NBP0103"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The objective of the proposed work is to provide for the operation of a Planning Office for the synthesis and modeling phase of the Southern Ocean Global Ocean Ecosystems Dynamics (SO-Globec) program. The office will ensure that synthesis and integration activities that are developed as part of SO-Globec are coordinated with those undertaken by the international and U.S. Globec programs through: 1) organization of special sessions at meetings, 2) preparation of dedicated publications focused on program results, 3) maintenance of a project web site, 4) development of program outreach efforts, and 5) ensuring coordination with International Globec and other national and international programs and organizations. The office will consist of one faculty member and one program specialist.\u003cbr/\u003e\u003cbr/\u003eSO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. Extensive studies describing the ecology and physiology of important species at all trophic levels contributed to the ecosystem approach which is the essence of SO-Globec. The Planning Office will provide a central focal point for ensuring that the results from SO-Globec are made available to the broader scientific community and to the general public, and that the results will be incorporated into the planning of future Southern Ocean programs.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Hofmann, Eileen", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "U.S. SO GLOBEC Synthesis and Modeling: Southern Ocean GLOBEC (SO GLOBEC) Planning Office", "uid": "p0000817", "west": null}, {"awards": "9814622 Wiens, Douglas", "bounds_geometry": "POLYGON((-70.90604 -52.35474,-69.307306 -52.35474,-67.708572 -52.35474,-66.109838 -52.35474,-64.511104 -52.35474,-62.91237 -52.35474,-61.313636 -52.35474,-59.714902 -52.35474,-58.116168 -52.35474,-56.517434 -52.35474,-54.9187 -52.35474,-54.9187 -53.658393,-54.9187 -54.962046,-54.9187 -56.265699,-54.9187 -57.569352,-54.9187 -58.873005,-54.9187 -60.176658,-54.9187 -61.480311,-54.9187 -62.783964,-54.9187 -64.087617,-54.9187 -65.39127,-56.517434 -65.39127,-58.116168 -65.39127,-59.714902 -65.39127,-61.313636 -65.39127,-62.91237 -65.39127,-64.511104 -65.39127,-66.109838 -65.39127,-67.708572 -65.39127,-69.307306 -65.39127,-70.90604 -65.39127,-70.90604 -64.087617,-70.90604 -62.783964,-70.90604 -61.480311,-70.90604 -60.176658,-70.90604 -58.873005,-70.90604 -57.569352,-70.90604 -56.265699,-70.90604 -54.962046,-70.90604 -53.658393,-70.90604 -52.35474))", "dataset_titles": "Expedition Data; Expedition data of LMG0003A", "datasets": [{"dataset_uid": "002059", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9905"}, {"dataset_uid": "002688", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0003A", "url": "https://www.rvdata.us/search/cruise/LMG0003A"}, {"dataset_uid": "001854", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0106"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided jointly by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research to transform three temporary seismometers in the Antarctic Peninsula into semi-permanent stations and to continue basic research using these data. During 1997 and 1998, a network of 11 broadband seismographs in the Antarctic Peninsula region and southernmost Chilean Patagonia were installed and maintained. Data return from this project has been excellent and interesting initial results have been produced. The continued operation of these instruments over a longer time period would be highly beneficial because the number of larger magnitude regional earthquakes is small and so a longer time is needed to acquire data. However, instruments from this project are borrowed from the IRIS-PASSCAL instrument pool and must be returned to PASSCAL in April, 1999. This award provides funds to convert three stations at permanent Chilean bases in the Antarctic to permanent stations, and to continue the seismological investigation of the region for a period of four years. As part of this project, a fourth station, in Chilean Patagonia, will continue to be operated using Washington University equipment. The funding of this project will enable continued collaboration between Washington University and the Universidad de Chile in the operation of these stations, and the data will be forwarded to the IRIS data center as well as to other international seismological collaborators. Mutual data exchanges with other national groups with Antarctic seismology research programs will provide access to broadband data from a variety of other proprietary broadband stations in the region. The data will be used to study the seismicity and upper mantle velocity structure of several complicated tectonic regions in the area, including the South Shetland subduction zone, the Bransfield backarc rift, and diffuse plate boundaries in Patagonia, Drake Passage, and along the South Scotia Ridge. In particular, the operation of these stations over a longer time period will allow a better understanding of the seismicity of the South Shetland Trench, an unusual subduction zone showing very slow subduction of young lithosphere. These seismometers will also be used to record airgun shots during a geophysical cruise in the Bransfield Strait that is being planned by the University of Texas for April, 2000. These data will provide important constraints on the crustal structure beneath the stations, and the improved structural models will enable implementation of more precise earthquake location procedures in support of a seismological understanding of the region.", "east": -54.9187, "geometry": "POINT(-62.91237 -58.873005)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V LMG; R/V NBP", "locations": null, "north": -52.35474, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Wiens, Douglas; Visbeck, Martin", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.39127, "title": "Acquisition and Operation of Broadband Seismograph Equipment at Chilean Bases in the Antarctic Peninsula Region", "uid": "p0000604", "west": -70.90604}, {"awards": "9119683 Anderson, John", "bounds_geometry": "POLYGON((-179.999 -72.1543,-143.9991 -72.1543,-107.9992 -72.1543,-71.9993 -72.1543,-35.9994 -72.1543,0.000500000000017 -72.1543,36.0004 -72.1543,72.0003 -72.1543,108.0002 -72.1543,144.0001 -72.1543,180 -72.1543,180 -72.72384,180 -73.29338,180 -73.86292,180 -74.43246,180 -75.002,180 -75.57154,180 -76.14108,180 -76.71062,180 -77.28016,180 -77.8497,144.0001 -77.8497,108.0002 -77.8497,72.0003 -77.8497,36.0004 -77.8497,0.000499999999988 -77.8497,-35.9994 -77.8497,-71.9993 -77.8497,-107.9992 -77.8497,-143.9991 -77.8497,-179.999 -77.8497,-179.999 -77.28016,-179.999 -76.71062,-179.999 -76.14108,-179.999 -75.57154,-179.999 -75.002,-179.999 -74.43246,-179.999 -73.86292,-179.999 -73.29338,-179.999 -72.72384,-179.999 -72.1543))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002241", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9501"}, {"dataset_uid": "002258", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9401"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Marine geological and geophysical studies of the Ross Sea and Weddell Sea continental shelves provide evidence that the ice sheet grounded near the shelf edge in these areas during the late Wisconsinan, and that the retreat of the ice sheet to its present position was rapid and probably episodic. This Award supports a project which will establish the most recent (late Wisconsin- Holocene) history of ice sheet advance and retreat in Ross Sea. The objectives include: 1) reconstruction the late Wisconsin paleodrainage regime, including ice stream divides; 2) reconstruction of former grounding zone positions; 3) constraint of the timing of ice sheet retreat from the shelf; and 4) acquisition of geophysical, sedimentological, and paleontological data which may provide indicators the environmental factors that may have influenced to ice sheet retreat. This is a joint effort between Rice University, the University of Colorado, and Hamilton College. The project involves experts in a wide variety of fields, and will interface with glaciologists, physical oceanographers and climatologists who will address the problem of ice sheet stability and the record of climatic and glaciological change.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -72.1543, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, John", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.8497, "title": "Geologic Record of Late Wisconsinan/Holocene Ice Sheet Advance and Retreat from Ross Sea", "uid": "p0000641", "west": -179.999}, {"awards": "9614201 Gowing, Marcia", "bounds_geometry": "POLYGON((-180 -43.56536,-144 -43.56536,-108 -43.56536,-72 -43.56536,-36 -43.56536,0 -43.56536,36 -43.56536,72 -43.56536,108 -43.56536,144 -43.56536,180 -43.56536,180 -46.976149,180 -50.386938,180 -53.797727,180 -57.208516,180 -60.619305,180 -64.030094,180 -67.440883,180 -70.851672,180 -74.262461,180 -77.67325,144 -77.67325,108 -77.67325,72 -77.67325,36 -77.67325,0 -77.67325,-36 -77.67325,-72 -77.67325,-108 -77.67325,-144 -77.67325,-180 -77.67325,-180 -74.262461,-180 -70.851672,-180 -67.440883,-180 -64.030094,-180 -60.619305,-180 -57.208516,-180 -53.797727,-180 -50.386938,-180 -46.976149,-180 -43.56536))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002110", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9803"}, {"dataset_uid": "002003", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9901"}, {"dataset_uid": "002193", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9508"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9614201 Costa Sea ice forms an extensive habitat in the Southern Ocean. Reports dating from the earliest explorations of Antarctica have described high concentrations of algae associated with sea-ice, suggesting that the ice must be an important site of production and biological activity. The magnitude and importance of ice-based production is difficult to estimate largely because the spatial and temporal distributions of ice communities have been examined in only a few regions, and the processes controlling production and community development in ice are still superficially understood. This study will examine sea ice communities in the Ross Sea region of Antarctica in conjunction with a studies of ice physics and remote sensing. The specific objectives of the study are: 1) to relate the overall distribution of ice communities in the Ross Sea to specific habitats that are formed as the result of ice formation and growth processes; 2) to study the initial formation of sea ice to document the incorporation and survival of organisms, in particular to examine winter populations within \"snow-ice\" layers to determine if there is a seed population established at the time of surface flooding; 3) to sample summer communities to determine the extent that highly productive \"snow-ice\" and \"freeboard\" communities develop in the deep water regions of the Ross Sea; 4) and to collect basic data on the biota, activity, and general physical and chemical characteristics of the ice assemblages, so that this study contributes to the general understanding of the ecology of the ice biota in pack ice regions.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -43.56536, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Gowing, Marcia; Garrison, David; Jeffries, Martin", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.67325, "title": "Ecological Studies of Sea Ice Communities in the Ross Sea, Antarctica", "uid": "p0000633", "west": -180.0}, {"awards": "0125480 Manley, Patricia", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0602A", "datasets": [{"dataset_uid": "001571", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0602A"}, {"dataset_uid": "002618", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0602A", "url": "https://www.rvdata.us/search/cruise/NBP0602A"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a demonstration project to prove the viability of shallow ship-based geological drilling while simultaneously collecting useful cores for assessing the early history of the Antarctic ice sheets. For over three decades, U.S. scientists and their international colleagues exploring the shallow shelves and seas along the margins of Antarctic have been consistently frustrated by their inability to penetrate through the over-compacted glacial diamictons encountered at shallow sub bottom depths (within the upper 10 m) over these terrains. This is particularly frustrating because advanced high resolution seismic reflection techniques clearly show in many areas the presence of older successions of Neogene and even Paleogene sequences lying just beneath this thin veneer of diamictons. Until the means are developed to recover these sequences, a detailed history of the Antarctic ice sheets, which is an essential prerequisite to understanding Cenozoic paleoclimate and future climate change on a global scale, will remain an elusive and unobtainable goal. After four years of study and evaluation with the aid of a professional engineer (and over the course of two workshops), the SHALDRIL Committee, an interested group of U.S. scientists, has identified at least two diamond-coring systems deemed suitable for use on existing ice-breaking U.S. Antarctic Research Program vessels. The goal of this project is to employ diamond-coring technology on the RV/IB Nathaniel B. Palmer in order to test out and demonstrate the feasibility of both ship-based diamond coring and down-hole logging. For this \"demonstration cruise\" coring will be attempted along a high-resolution seismic reflection profile on the continental shelf adjacent to Seymour Island, Antarctic Peninsula, an area of high scientific interest in its own right. Here the well-defined geologic section is estimated to range from Eocene to Quaternary in age, effectively spanning the \"Greenhouse-Icehouse\" transition in the evolution of Antarctic/global climate. A complete record of this transition has yet to be obtained anywhere along the Antarctic margin. Following core recovery, this project will result in correlation of the paleoclimate records from the new cores with detailed fluctuations of the ice margin recorded at higher latitudes in the eastern Ross Sea by the recently concluded, fast-ice-based Cape Roberts Project. If successful, this mobile and flexible drilling system will then be available to the broader scientific community for further research in paleoenvironmental conditions and other areas of science that are currently hindered by the present gap that exists in the US Antarctic Program\u0027s technical capability to explore the Antarctic shelves between the shore-line/fast-ice margin and the continental slope. SHALDRIL will be able to operate effectively in the \"no man\u0027s land\" that presently exists between the near shore (where the fast-ice-based Cape Roberts Project was successful) and the upper slope (where the Ocean Drilling Program\u0027s vessel JOIDES Resolution becomes most efficient). This technological breakthrough will not only allow major outstanding scientific problems of the last three decades to be addressed, but will also favorably impact many current U.S. and SCAR (ICSU Scientific Committee on Antarctic Research) Antarctic or drilling-related initiatives, such as WAIS, ANTIME, ANDRILL, ANTEC, IMAGES, PAGES, GLOCHANT (including PICE), MARGINS, ODP, and STRATAFORM.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ROCK CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, John", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: SHALDRIL - A Demonstration Drilling Cruise to the James Ross Basin", "uid": "p0000830", "west": null}, {"awards": "9316710 Bartek, Louis", "bounds_geometry": "POLYGON((-179.9993 -75.77948,-143.99945 -75.77948,-107.9996 -75.77948,-71.99975 -75.77948,-35.9999 -75.77948,-0.000049999999987 -75.77948,35.9998 -75.77948,71.99965 -75.77948,107.9995 -75.77948,143.99935 -75.77948,179.9992 -75.77948,179.9992 -76.012273,179.9992 -76.245066,179.9992 -76.477859,179.9992 -76.710652,179.9992 -76.943445,179.9992 -77.176238,179.9992 -77.409031,179.9992 -77.641824,179.9992 -77.874617,179.9992 -78.10741,143.99935 -78.10741,107.9995 -78.10741,71.99965 -78.10741,35.9998 -78.10741,-0.000050000000016 -78.10741,-35.9999 -78.10741,-71.99975 -78.10741,-107.9996 -78.10741,-143.99945 -78.10741,-179.9993 -78.10741,-179.9993 -77.874617,-179.9993 -77.641824,-179.9993 -77.409031,-179.9993 -77.176238,-179.9993 -76.943445,-179.9993 -76.710652,-179.9993 -76.477859,-179.9993 -76.245066,-179.9993 -76.012273,-179.9993 -75.77948))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002168", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9601"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award supports a collaborative marine geological and geophysical project between the University of California, Santa Barbara, and the University of Alabama to study the glacial and tectonic history of the eastern Ross Sea and the Marie Byrd Land margin of West Antarctica. The goals of the project are (1) to conduct seismic imaging and piston coring to begin unraveling the history of the West Antarctic ice Sheet as recorded in the recent sediments of the continental shelf of the region, and (2) to acquire seismic images of the acoustic basement beneath the Cenozoic glacial deposits toward an understanding of the relationship between rift structure of the continental crust and Cenozoic glacial deposits of the region. This research will result in bathymetric, structural, sediment isopach, gravity and magnetic maps of the eastern Ross Sea and the Marie Byrd Land margin. This information will be integrated into an interpretation of the major glacial and structural features of the region. This project will result in a better understanding of the glacio-marine stratigraphy and glacial history of the eastern Ross Sea and Marie Byrd Land margin and, consequently, it will represent a significant contribution to the goals of the West Antarctic Ice Sheet initiative.", "east": 179.9992, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -75.77948, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bartek, Louis; Luyendyk, Bruce P.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -78.10741, "title": "Collaborative Research: Glacial Marine Stratigraphy in the Eastern Ross Sea and Western Marie Byrd Land, and Shallow Structure of the West Antarctic Rift", "uid": "p0000639", "west": -179.9993}, {"awards": "9316767 Jeffries, Martin", "bounds_geometry": "POLYGON((-180 -43.56571,-144 -43.56571,-108 -43.56571,-72 -43.56571,-36 -43.56571,0 -43.56571,36 -43.56571,72 -43.56571,108 -43.56571,144 -43.56571,180 -43.56571,180 -46.304308,180 -49.042906,180 -51.781504,180 -54.520102,180 -57.2587,180 -59.997298,180 -62.735896,180 -65.474494,180 -68.213092,180 -70.95169,144 -70.95169,108 -70.95169,72 -70.95169,36 -70.95169,0 -70.95169,-36 -70.95169,-72 -70.95169,-108 -70.95169,-144 -70.95169,-180 -70.95169,-180 -68.213092,-180 -65.474494,-180 -62.735896,-180 -59.997298,-180 -57.2587,-180 -54.520102,-180 -51.781504,-180 -49.042906,-180 -46.304308,-180 -43.56571))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002231", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9505"}, {"dataset_uid": "002234", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9503"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The goal of this investigation is to understand the role of snow in sea ice development processes and air-ice-ocean heat exchange interactions in the seasonal and perennial sea ice zones of the Ross Sea, the Amundsen Sea, and the Bellingshausen Sea. Observations and measurements of the characteristics of sea ice and snow will be combined with numerical models of sea-ice flooding and the entrainment of snow into the ice cover in order to gain an understanding of the sea-ice heat and mass balance, and to quantify the energy exchange within the antarctic sea-ice cover. The snow measurement program, using the RVIB Nathaniel B. Palmer, will include depth, grain size and morphology, density, temperature, thermal conductivity, water content, and stable isotope ratio. The ice measurement program will include thickness, salinity, temperature, density, brine content, and included gas volume, as well as such structural properties as the fraction of frazil, platelet, and congelation ice in the seasonal antarctic pack ice. Differences in ice types are the result of differences in the environment in which the ice forms: frazil ice is formed in supercooled sea water, normally through wind or wave-induced turbulence, while platelet and congelation ice is formed under quiescent conditions. The fraction of frazil ice is an important variable in the energy budget of the upper ocean, and contributes significantly to the stabilization of the surface layers. The numerical models will involve the thermodynamics of phase changes from liquid water to ice, along with the resulting energy transfer, brine expulsion, and the modulating effect of a snow cover. The results are expected to have broad relevance and application to understanding the effects of sea-ice processes in global change, and atmospheric, oceanographic, and remote sensing investigations of the Southern Ocean.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -43.56571, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jeffries, Martin", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -70.95169, "title": "The Role of Snow in Antarctic Sea Ice Development and Ocean-Atmosphere Energy Exchange", "uid": "p0000642", "west": -180.0}, {"awards": "0126334 Stock, Joann", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0304B; Expedition data of NBP0304C; Expedition data of NBP0304D; Expedition data of NBP0403; Expedition data of NBP0406; Expedition data of NBP0501; Expedition data of NBP0501B", "datasets": [{"dataset_uid": "002636", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0304C", "url": "https://www.rvdata.us/search/cruise/NBP0304C"}, {"dataset_uid": "002612", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0406", "url": "https://www.rvdata.us/search/cruise/NBP0406"}, {"dataset_uid": "001692", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304D"}, {"dataset_uid": "001691", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304C"}, {"dataset_uid": "001690", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304B"}, {"dataset_uid": "002627", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "001660", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0403"}, {"dataset_uid": "001609", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0501B"}, {"dataset_uid": "002628", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "002631", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501B", "url": "https://www.rvdata.us/search/cruise/NBP0501B"}, {"dataset_uid": "002633", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0304B", "url": "https://www.rvdata.us/search/cruise/NBP0304B"}, {"dataset_uid": "002637", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0304D", "url": "https://www.rvdata.us/search/cruise/NBP0304D"}, {"dataset_uid": "002639", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0403", "url": "https://www.rvdata.us/search/cruise/NBP0403"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a project to make use of ship-repositioning transit cruises to gather geophysical information relating to plate tectonics of the Southern Ocean and to support student training activities. Well-constrained Cenozoic plate reconstructions of the circum-Antarctic region are critical for examining a number of problems of global geophysical importance. These problems include, e.g., relating the plate kinematics to its geological consequences in various plate circuits (Pacific-North America, Australia-Pacific); a dynamical understanding of what drives plate tectonics (which requires well-constrained kinematic information in order to distinguish between different geodynamic hypotheses); and an understanding of the rheology of the plates themselves, including the amount of internal deformation they can support, and the conditions leading to the formation of new plate boundaries through breakup of existing plates. By obtaining better constraints on the motion of the Antarctica plate with respect to these other plates, and by better quantifying the internal deformation within Antarctica (between East and West Antarctica), contributions will be made to solving these other fundamental problems.\u003cbr/\u003e\u003cbr/\u003eIn this project, existing data will be analyzed to address several specific issues related to plate motions involving the Antarctic plate. First, work will be done on four-plate solutions of Australia-Pacific-West Antarctica-East Antarctica motion, in order to most tightly constrain the rotation parameters for separation between East and West Antarctica for the time period from about 45 to 28 Ma (Adare Basin spreading system). This will be done by imposing closure on the four-plate circuit and using relevant marine geophysical data from all four of the boundaries. The uncertainties in the resulting rotation parameters will be determined based on the uncertainties in the data points. These uncertainties can then be propagated in the plate circuit for use in addressing the various global geodynamic problems mentioned above. Second, rotation parameters for Pacific-West Antarctica during Tertiary time will be determined using recently acquired well-navigated Palmer transit data and any additional data that can be acquired during the course of this project. These parameters and their uncertainties will be used in assessments of plate rigidity and included in the plate circuit studies.\u003cbr/\u003e\u003cbr/\u003eIn the framework of this project, new collection of marine geophysical data will be accomplished on a very flexible schedule. This will be done by collecting underway gravity, magnetics, and swath bathymetric data on Palmer transit cruises of geological importance. This has been successfully done on eight previous Palmer cruises since 1997, the most recent four of which were funded under a collaborative OPP grant to CalTech and Scripps which is now expiring. On one of the suitable transits, a formal class in marine geophysics will be conducted that will afford an opportunity to 12 or more graduate and undergraduate students, from CalTech and Scripps as well as other institutions. In this way, educational activities will be integrated with the usual scientific data collection objectives of the research project.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Cande, Steven", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Improved Cenozoic Plate Reconstructions of the Circum-Antarctic Region", "uid": "p0000824", "west": null}, {"awards": "0125818 Gargett, Ann", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0508", "datasets": [{"dataset_uid": "001584", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0508"}, {"dataset_uid": "002610", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0508", "url": "https://www.rvdata.us/search/cruise/NBP0508"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Ultraviolet radiation influences the dynamics of plankton processes in the near-surface waters of most aquatic ecosystems. In particular, the Southern Ocean is affected in the austral spring period when biologically damaging ultraviolet radiation is enhanced by ozone depletion. While progress has been made in estimating the quantitative impact of ultraviolet radiation on bacteria and phytoplankton in the Southern Ocean, some important issues remain to be resolved. Little is known about responses in systems dominated by the colonial haptophyte Phaeocystis antarctica, which dominates spring blooms in a polyna that develops in the southern Ross Sea. The Ross Sea is also of interest because of the occurrence of open water at a far southerly location in the spring, well within the ozone hole, and continuous daylight, with implications for the regulation of DNA repair. A number of studies suggest that vertical mixing can significant modify the impact of ultraviolet radiation in the Southern Ocean and elsewhere. However, there are limited measurements of turbulence intensity in the surface layer and measurements have not been integrated with parallel studies of ultraviolet radiation effects on phytoplankton and bacterioplankton. To address these issues, this collaborative study will focus on vertical mixing and the impact of ultraviolet radiation in the Ross Sea. The spectral and temporal responses of phytoplankton and bacterioplankton to ultraviolet radiation will be characterized in both laboratory and solar incubations. These will lead to the definition of biological weighting functions and response models capable of predicting the depth and time distribution of ultraviolet radiation impacts on photosynthesis, bacterial incorporation and DNA damage in the surface layer. Diel sampling will measure depth-dependent profiles of DNA damage, bacterial incorporation, photosynthesis and fluorescence parameters over a 24 h cycle. Sampling will include stations with contrasting wind-driven mixing and stratification as the polyna develops. The program of vertical mixing measurements is optimized for the typical springtime Ross Sea situation in which turbulence of intermediate intensity is insufficient to mix the upper layer thoroughly in the presence of stabilizing influences like solar heating and/or surface freshwater input from melting ice. Fine-scale vertical density profiles will be measured with a free-fall CTD unit and the profiles will be used to directly estimate large-eddy scales by determining Thorpe scales. Eddy scales and estimated turbulent diffusivities will be directly related to surface layer effects, and used to generate lagrangian depth-time trajectories in models of ultraviolet radiation responses in the surface mixed layer. The proposed research will be the first in-depth study of ultraviolet radiation effects in the Ross Sea and provide a valuable comparison with previous work in the Weddell-Scotia Confluence and Palmer Station regions. It will also enhance the understanding of vertical mixing processes, trophic interactions and biogeochemical cycling in the Ross Sea.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V NBP; B-15J", "locations": "B-15J", "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Neale, Patrick", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Interactive effects of UV and vertical mixing on phytoplankton and bacterioplankton in the Ross Sea", "uid": "p0000822", "west": null}, {"awards": "9908856 Blake, Daniel", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG0309", "datasets": [{"dataset_uid": "001683", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0309"}, {"dataset_uid": "002675", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0309", "url": "https://www.rvdata.us/search/cruise/LMG0309"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9908856 Blake This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a paleoecological and paleoenvironmental study of Seymour Island. Global climate change late in the Eocene epoch had an important influence in Antarctica. This was the beginning of the transition from a cool-temperate climate in Antarctica to the polar climate that exists there today. The cooling trend strongly influenced the structure of shallow-water, Antarctic marine communities, and these effects are still evident in the peculiar ecological relationships among species living in modern Antarctic communities. Cooling late in the Eocene reduced the abundance of fish and crabs, which in turn reduced skeleton-crushing predation on invertebrates. Reduced predation allowed dense populations of ophiuroids (brittlestars) and crinoids (sea lilies) to appear in shallow-water settings at the end of the Eocene. These low-predation communities appear as dense fossil echinoderm assemblages in the upper portion of the late Eocene La Meseta Formation on Seymour Island, off the Antarctic Peninsula. Today, dense ophiuroid and crinoid populations are common in shallow-water habitats in Antarctica but generally have been eliminated by predators from similar habitats at temperate and tropical latitudes; their persistence in Antarctica to this day is an important ecological legacy of climatic cooling in the Eocene. Although the influence of declining predation on Antarctic ophiuroids and crinoids is now well documented, the effects of cooling on the more abundant mollusks have not been investigated. This study will examine the evolutionary ecology of gastropods (snails) and bivalves (clams) in the late Eocene. A series of hypotheses will be tested in the La Meseta Formation, based on the predicted responses of mollusks to declining temperature and changing levels of predation. The shapes of gastropod shells, the activities of gastropods that prey on other mollusks by drilling holes in their shells, and the effects of predation on the thickness of mollusk shells should have changed significantly through late Eocene time. First, defensive features of gastropod shells, such as spines and ribbing, should decline as temperature and, therefore, the activity of skeleton-crushing predators declined. Second, drilling of bivalve prey by predatory gastropods should increase with time since the drillers should themselves have been subject to lower predation pressure as temperature declined. Drilled shells, therefore, should become more common through time. Third, patterns in the thickness of shells through time will make it possible to separate the direct, physiological effects of declining temperature (shells are more difficult to produce at cooler temperatures, and so should be thinner) from the indirect effects of temperature on evolving biological interactions (increased drilling predation should result in thicker shells). Seymour Island contains the only fossil outcrops readily accessible in Antarctica from this crucial period in Earth history. The La Meseta Formation on Seymour Island thus provides a unique opportunity to learn how climate change affected Antarctic marine communities. In practical terms, global climate change will probably increase upwelling over the next few decades to centuries in some temperate coastal regions. Recent ecological evidence suggests that the resultant lowering of sea temperatures could lower predation in those areas. Understanding the response of the La Meseta faunas to global cooling in the late Eocene will provide direct insight into the rapidly changing structure of modern benthic communities.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Blake, Daniel", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Global Climate Change and the Evolutionary Ecology of Antarctic Mollusks in the Late Eocene.", "uid": "p0000857", "west": null}, {"awards": "9011927 Ross, Robin; 9632763 Smith, Raymond", "bounds_geometry": "POLYGON((-79.68459 -52.36474,-77.851019 -52.36474,-76.017448 -52.36474,-74.183877 -52.36474,-72.350306 -52.36474,-70.516735 -52.36474,-68.683164 -52.36474,-66.849593 -52.36474,-65.016022 -52.36474,-63.182451 -52.36474,-61.34888 -52.36474,-61.34888 -54.071087,-61.34888 -55.777434,-61.34888 -57.483781,-61.34888 -59.190128,-61.34888 -60.896475,-61.34888 -62.602822,-61.34888 -64.309169,-61.34888 -66.015516,-61.34888 -67.721863,-61.34888 -69.42821,-63.182451 -69.42821,-65.016022 -69.42821,-66.849593 -69.42821,-68.683164 -69.42821,-70.516735 -69.42821,-72.350306 -69.42821,-74.183877 -69.42821,-76.017448 -69.42821,-77.851019 -69.42821,-79.68459 -69.42821,-79.68459 -67.721863,-79.68459 -66.015516,-79.68459 -64.309169,-79.68459 -62.602822,-79.68459 -60.896475,-79.68459 -59.190128,-79.68459 -57.483781,-79.68459 -55.777434,-79.68459 -54.071087,-79.68459 -52.36474))", "dataset_titles": "Expedition Data; Expedition data of NBP0105", "datasets": [{"dataset_uid": "002045", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9906"}, {"dataset_uid": "001578", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0601"}, {"dataset_uid": "002605", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0105", "url": "https://www.rvdata.us/search/cruise/NBP0105"}, {"dataset_uid": "002292", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9302"}, {"dataset_uid": "001817", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0201"}, {"dataset_uid": "001613", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0501"}, {"dataset_uid": "001665", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0401"}, {"dataset_uid": "001488", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0901"}, {"dataset_uid": "001998", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0001"}, {"dataset_uid": "001884", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0101"}, {"dataset_uid": "001649", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0301"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The annual advance and retreat of pack ice may be the major physical determinant of spatial and temporal changes in the structure and function of antarctic marine communities. Interannual cycles and/or trends in the annual extent of pack ice may also have significant effects on all levels of the food web, from total annual primary production to breeding success in seabirds. Historical records indicate a six to eight year cycle in the maximum extent of pack ice in the winter. During this decade, winters were colder in 1980 and 1981, and again in 1986 and 1987. Winter-over survival in Adelie penguins varied on the same cycle, higher in winters with heavy pack ice. This Long Term Ecological Research (LTER) project will define ecological processes linking the extent of annual pack ice with the biological dynamics of different trophic levels within antarctic marine communities. The general focus is on interannual variability in representative populations from the antarctic marine food web and on mechanistic linkages that control the observed variability in order to develop broader generalizations applicable to other large marine environments. To achieve these objectives, data from several spatial and temporal scales, including remote sensing, a field approach that includes an annual monitoring program, a series of process-oriented research cruises, and a modeling effort to provide linkages on multiple spatial and temporal scales between biological and environmental components of the ecosystem will be employed.", "east": -61.34888, "geometry": "POINT(-70.516735 -60.896475)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V LMG; R/V NBP", "locations": null, "north": -52.36474, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Raymond; Ross, Robin Macurda; Fraser, William; Martinson, Douglas; Ducklow, Hugh", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": "LTER", "south": -69.42821, "title": "Long-Term Ecological Research on the Antarctic Marine Ecosystem: An Ice-Dominated Environment", "uid": "p0000236", "west": -79.68459}, {"awards": "0440959 Cande, Steven", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0701", "datasets": [{"dataset_uid": "002644", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0701", "url": "https://www.rvdata.us/search/cruise/NBP0701"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This work will perform a marine geophysical survey of sea floor spreading off Cape Adare, Antarctica. Magnetic, gravity, swath bathymetry and multi-channel seismic data will be acquired from the southern end of the Adare Basin to the northern parts of the Northern Basin and Central Trough in the Ross Embayment. Previous surveys documented 170 km of regional extension between forty-three and twenty-six million years ago, which resulted in some seafloor spreading in the Adare Basin. However, the relationship of Adare Basin spreading to the overall extension and the southward continental basins of the Ross Embayment has not been established. This relationship is critical to understanding the tectonic evolution of East and West Antarctica and linking Pacific plate motions to the rest of the world. The study will also offer unique insight into rifting processes by studying the transition of rifting between oceanic and continental lithosphere. In terms of broader impacts, this project will support two graduate students and field research experience for undergraduates. The project also involves cooperation between scientists from the US, Australia, New Zealand and Japan.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ROCK CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Cande, Steven", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: The Connection Between Mid-Cenozoic Seafloor Spreading and the Western Ross Sea Embayment", "uid": "p0000835", "west": null}, {"awards": "9814041 Austin, Jr., James", "bounds_geometry": "POLYGON((-70.90616 -52.35281,-69.390587 -52.35281,-67.875014 -52.35281,-66.359441 -52.35281,-64.843868 -52.35281,-63.328295 -52.35281,-61.812722 -52.35281,-60.297149 -52.35281,-58.781576 -52.35281,-57.266003 -52.35281,-55.75043 -52.35281,-55.75043 -53.463301,-55.75043 -54.573792,-55.75043 -55.684283,-55.75043 -56.794774,-55.75043 -57.905265,-55.75043 -59.015756,-55.75043 -60.126247,-55.75043 -61.236738,-55.75043 -62.347229,-55.75043 -63.45772,-57.266003 -63.45772,-58.781576 -63.45772,-60.297149 -63.45772,-61.812722 -63.45772,-63.328295 -63.45772,-64.843868 -63.45772,-66.359441 -63.45772,-67.875014 -63.45772,-69.390587 -63.45772,-70.90616 -63.45772,-70.90616 -62.347229,-70.90616 -61.236738,-70.90616 -60.126247,-70.90616 -59.015756,-70.90616 -57.905265,-70.90616 -56.794774,-70.90616 -55.684283,-70.90616 -54.573792,-70.90616 -53.463301,-70.90616 -52.35281))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001810", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0007A"}, {"dataset_uid": "001987", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0002"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research to study the deep crustal structure of the Bransfield Strait region. Bransfield Strait, in the northern Antarctic Peninsula, is one of a small number of modern basins that may be critical for understanding ancient mountain-building processes. The Strait is an actively-extending marginal basin in the far southeast Pacific, between the Antarctic Peninsula and the South Shetland Islands, an inactive volcanic arc. Widespread crustal extension, accompanied by volcanism along the Strait\u0027s axis, may be associated with slow underthrusting of oceanic crust at the South Shetland Trench; similar \"back-arc\" extension occurred along the entire Pacific margin (now western South America/West Antarctica) of the supercontinent known as Gondwanaland during the Jurassic-Early Cretaceous. Mid-Cretaceous deformation of these basins some 100 million years ago initiated uplift of the Andes. By understanding the deep structure and evolution of Bransfield rift, it should be possible to evaluate the crustal precursor to the Andes, and thereby understand more fully the early evolution of this globally important mountain chain. Years of international earth sciences research in Bransfield Strait has produced consensus on important aspects of its geologic environment: (1) It is probably a young (probably ~4 million years old) rift in preexisting Antarctic Peninsula crust; continued stretching of this crust results in complex fault patterns and associated volcanism. The volcanism, high heat flow, and mapped crustal trends are all consistent with the basin\u0027s continuing evolution as a rift; (2) The volcanism, which is recent and continuing, occurs along a \"neovolcanic\" zone centralized along the basin\u0027s axis. Multichannel seismic data collected aboard R/V Maurice Ewing in 1991 illustrate the following basin-wide characteristics of Bransfield Strait - a) widespread extension and faulting, b) the rise of crustal diapirs or domes associated with flower-shaped normal-fault structures, and c) a complicated system of fault-bounded segments across strike. The geophysical evidence also suggests NE-to-SW propagation of the rift, with initial crustal inflation/doming followed by deflation/subsidence, volcanism, and extension along normal faults. Although Bransfield Strait exhibits geophysical and geologic evidence for extension and volcanism, continental crust fragmentation does not appear to have gone to completion in this \"back-arc\" basin and ocean crust is not yet being generated. Instead, Bransfield rift lies near the critical transition from intracontinental rifting to seafloor-spreading. The basin\u0027s asymmetry, and seismic evidence for shallow intracrustal detachment faulting, suggest that it may be near one end-member of the spectrum of models proposed for continental break-up. Therefore, this basin is a \"natural lab\" for studying diverse processes involved in forming continental margins. Understanding Bransfield rift\u0027s deep crustal structure is the key to resolving its stage of evolution, and should also provide a starting point for models of Andean mountain-building. This work will define the deep structure by collecting and analyzing high-quality, high-density ocean bottom seismometer (OBS) profiles both along and across the Strait\u0027s strike. Scientific objectives are as follows: (1) to develop a detailed seismic velocity model for this rift; (2) to calibrate velocity structure and crustal thickness changes associated with presumed NE-to-SW rift propagation, as deduced from the multichannel seismic interpretations; (3) to document the degree to which deep velocity structure corresponds to along- and across-strike crustal segmentation; and (4) to assess structural relationships between the South Shetland Islands \"arc\" and Bransfield rift. The proposed OBS data, integrated with interpretations of both Ewing profiles and those from other high-quality geophysical coverage in Bransfield Strait, will complement ongoing deep seismic analysis of Antarctic Peninsula crust to the southwest and additional OBS monitoring for deep earthquakes, in order to understand the complex plate tectonic evolution of this region.", "east": -55.75043, "geometry": "POINT(-63.328295 -57.905265)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.35281, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Austin, James; Austin, James Jr.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -63.45772, "title": "The Young Marginal Basin as a Key to Understanding the Rift-Drift Transition and Andean Orogenesis: OBS Refraction Profiling for Crustal Structure in Bransfield Strait", "uid": "p0000615", "west": -70.90616}, {"awards": "0338371 Hallet, Bernard; 0338137 Anderson, John", "bounds_geometry": "POLYGON((-74.59492 -45.98986,-74.072309 -45.98986,-73.549698 -45.98986,-73.027087 -45.98986,-72.504476 -45.98986,-71.981865 -45.98986,-71.459254 -45.98986,-70.936643 -45.98986,-70.414032 -45.98986,-69.891421 -45.98986,-69.36881 -45.98986,-69.36881 -46.835236,-69.36881 -47.680612,-69.36881 -48.525988,-69.36881 -49.371364,-69.36881 -50.21674,-69.36881 -51.062116,-69.36881 -51.907492,-69.36881 -52.752868,-69.36881 -53.598244,-69.36881 -54.44362,-69.891421 -54.44362,-70.414032 -54.44362,-70.936643 -54.44362,-71.459254 -54.44362,-71.981865 -54.44362,-72.504476 -54.44362,-73.027087 -54.44362,-73.549698 -54.44362,-74.072309 -54.44362,-74.59492 -54.44362,-74.59492 -53.598244,-74.59492 -52.752868,-74.59492 -51.907492,-74.59492 -51.062116,-74.59492 -50.21674,-74.59492 -49.371364,-74.59492 -48.525988,-74.59492 -47.680612,-74.59492 -46.835236,-74.59492 -45.98986))", "dataset_titles": "Expedition data of NBP0505; Expedition data of NBP0703; NBP0505 CTD data; NBP0505 sediment core locations", "datasets": [{"dataset_uid": "601362", "doi": "10.15784/601362", "keywords": "Chile; Fjord; Marine Geoscience; NBP0505; R/v Nathaniel B. Palmer; Sample/collection Description; Sample/Collection Description; Sediment Core; Sediment Corer; Station List", "people": "Anderson, John; Wellner, Julia", "repository": "USAP-DC", "science_program": null, "title": "NBP0505 sediment core locations", "url": "https://www.usap-dc.org/view/dataset/601362"}, {"dataset_uid": "601363", "doi": "10.15784/601363", "keywords": "Chile; CTD; CTD Data; Depth; Fjord; NBP0505; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Temperature", "people": "Wellner, Julia; Anderson, John", "repository": "USAP-DC", "science_program": null, "title": "NBP0505 CTD data", "url": "https://www.usap-dc.org/view/dataset/601363"}, {"dataset_uid": "002609", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0505", "url": "https://www.rvdata.us/search/cruise/NBP0505"}, {"dataset_uid": "002642", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0703", "url": "https://www.rvdata.us/search/cruise/NBP0703"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project examines the role of glacier dynamics in glacial sediment yields. The results will shed light on how glacial erosion influences both orogenic processes and produces sediments that accumulate in basins, rich archives of climate variability. Our hypothesis is that erosion rates are a function of sliding speed, and should diminish sharply as the glacier\u0027s basal temperatures drop below the melting point. To test this hypothesis, we will determine sediment accumulation rates from seismic studies of fjord sediments for six tidewater glaciers that range from fast-moving temperate glaciers in Patagonia to slow-moving polar glaciers on the Antarctic Peninsula. Two key themes are addressed for each glacier system: 1) sediment yields and erosion rates by determining accumulation rates within the fjords using seismic profiles and core data, and 2) dynamic properties and basin characteristics of each glacier in order to seek an empirical relationship between glacial erosion rates and ice dynamics. The work is based in Patagonia and the Antarctic Peninsula, ideal natural laboratories for these purposes because the large latitudinal range provides a large range of precipitation and thermal regimes over relatively homogeneous lithologies and tectonic settings. Prior studies of these regions noted significant decreases in glaciomarine sediment accumulations in the fjords to the south. As well, the fjords constitute accessible and nearly perfect natural sediment traps.\u003cbr/\u003e\u003cbr/\u003eThe broader impacts of this study include inter-disciplinary collaboration with Chilean glaciologists and marine geologists, support for one postdoctoral and three doctoral students, inclusion of undergraduates in research, and outreach to under-represented groups in Earth sciences and K-12 educators. The results of the project will also contribute to a better understanding of the linkages between climate and evolution of all high mountain ranges.", "east": -69.36881, "geometry": "POINT(-71.981865 -50.21674)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e WATER BOTTLES; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP; Penguin Glacier", "locations": null, "north": -45.98986, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, John; Hallet, Bernard; Wellner, Julia", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -54.44362, "title": "Collaborative Research: Controls on Sediment Yields from Tidewater Glaciers from Patagonia to Antarctica", "uid": "p0000821", "west": -74.59492}, {"awards": "9615342 Neale, Patrick", "bounds_geometry": null, "dataset_titles": "Expedition data of LMG9809", "datasets": [{"dataset_uid": "002720", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG9809", "url": "https://www.rvdata.us/search/cruise/LMG9809"}, {"dataset_uid": "002719", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG9809", "url": "https://www.rvdata.us/search/cruise/LMG9809"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Neale 9615342 Increases in ultraviolet-B radiation (UV-B, 280-320) associated with the Antarctic ozone hole have been shown to inhibit the photosynthesis of phytoplankton, but the overall effect on water column production is still a matter of debate and continued investigation. Investigations have also revealed that even at \"normal\" levels of Antarctic stratospheric ozone, UV-B and UV-A (320-400 nm) appear to have strong effects on water column production. The role of UV in the ecology of phytoplankton primary production has probably been underappreciated in the past and could be particularly important to the estimation of primary production in the presence of vertical mixing. This research focuses on quantifying UV effects on photosynthesis of Antarctic phytoplankton by defining biological weighting functions for UV-inhibition. In the past, techniques were developed to describe photosynthesis as a function of UV and visible irradiance using laboratory cultures. Further experimentation with natural assemblages from McMurdo Station in Antarctica showed that biological weighting functions are strongly related to light history. Most recently, measurements in the open waters of the Southern Ocean confirmed that there is substantial variability in the susceptibility of phytoplankton assemblages to UV. It was also discovered that inhibition of photosynthesis in Antarctic phytoplankton got progressively worse on the time scale of hours, with no evidence of recovery. Even under benign conditions, losses of photosynthetic capability persisted unchanged for several hours. This was in contrast with laboratory cultures and some natural assemblages which quickly attained a steady- state rate of photosynthesis during exposure to UV, reflecting a balance between damage and recovery processes. Slow reversal of UV-induced damage has profound consequences for water-column photosynthesis, especially during vertical mixing. Results to date have been used to model th e influence of UV, ozone depletion and vertical mixing on photosynthesis in Antarctic waters. Data indicate that normal levels of UV can have a significant impact on natural phytoplankton and that the effects can be exacerbated by ozone depletion as well as vertical mixing. Critical questions remain poorly resolved, however, and these are the focus of the present proposal. New theoretical and experimental approaches will be used to investigate UV responses in both the open waters of the Weddell-Scotia confluence and coastal waters near Palmer Station. In particular, measurements will be made of the kinetics of UV inhibition and recovery on time scales ranging from minutes to days. Variability in biological weighting functions between will be calculated for pelagic and coastal phytoplankton in the Southern Ocean. The results will provide absolute estimates of photosynthesis under in situ, as well as under altered, UV irradiance; broaden the range of assemblages for which biological weighting functions have been determined; and clarify how kinetics of inhibition and recovery should be represented in mixed layer models.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Mopper, Kenneth; Neale, Patrick", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "New Approaches to Measuring and Understanding the Effects of Ultraviolet Radiation on Photosynthesis by Antarctic Phytoplankton", "uid": "p0000871", "west": null}, {"awards": "0739483 Nowacek, Douglas", "bounds_geometry": "POLYGON((-68.0013 -52.7592,-67.34925 -52.7592,-66.6972 -52.7592,-66.04515 -52.7592,-65.3931 -52.7592,-64.74105 -52.7592,-64.089 -52.7592,-63.43695 -52.7592,-62.7849 -52.7592,-62.13285 -52.7592,-61.4808 -52.7592,-61.4808 -53.99669,-61.4808 -55.23418,-61.4808 -56.47167,-61.4808 -57.70916,-61.4808 -58.94665,-61.4808 -60.18414,-61.4808 -61.42163,-61.4808 -62.65912,-61.4808 -63.89661,-61.4808 -65.1341,-62.13285 -65.1341,-62.7849 -65.1341,-63.43695 -65.1341,-64.089 -65.1341,-64.74105 -65.1341,-65.3931 -65.1341,-66.04515 -65.1341,-66.6972 -65.1341,-67.34925 -65.1341,-68.0013 -65.1341,-68.0013 -63.89661,-68.0013 -62.65912,-68.0013 -61.42163,-68.0013 -60.18414,-68.0013 -58.94665,-68.0013 -57.70916,-68.0013 -56.47167,-68.0013 -55.23418,-68.0013 -53.99669,-68.0013 -52.7592))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001483", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0905"}, {"dataset_uid": "001467", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1003"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The krill surplus hypothesis argues that the near-extirpation of baleen whales from Antarctic waters during much the twentieth century led to significant changes in the availability of krill for other predators. Over the past decade, however, overall krill abundance has decreased by over an order of magnitude around the Antarctic Peninsula, in part due to physical forces, including the duration and extent of winter sea ice cover. Krill predators are vulnerable to variability in prey and have been shown to alter their demography in response to changes in prey availability This research will use novel tagging technology combined with traditional fisheries acoustics methods to quantify the prey consumed by a poorly understood yet ecologically integral and recovering krill predator in the Antarctic, the humpback whale (Megaptera novaeangliae). It also will use a combination of advanced non-invasive tag technology to study whale behavior concurrent with hydro-acoustic techniques to map krill aggregations. The project will (1) provide direct and quantitative estimates of krill consumption rates by humpback whales and incorporate these into models for the management of krill stocks and the conservation of the Antarctic marine ecosystem; (2) provide information integral to understanding predator-prey ecology and trophic dynamics, i.e., if/how baleen whales affect the distribution and behavior of krill and/or other krill predators; (3) add significantly to the knowledge of the diving behavior and foraging ecology of baleen whales in the Antarctic; and (4) develop new geospatial tools for the construction of multi-trophic level models that account for physical as well as biological data. \u003cbr/\u003e\u003cbr/\u003eBroader Impacts: Whales are assumed to be a major predator on Antarctic krill, yet there is little understanding of how whales utilize this resource. This knowledge is critical to addressing both bottom-up and top-down questions, e.g., how climate change may affect whales or how whales may affect falling krill abundances. This program will integrate research and education by providing opportunities for undergraduate and graduate students as well as postdoctoral researchers at Duke University, the Florida State University and the University of Massachusetts at Boston. This project will also seek to integrate interactive learning through real time, seasonal and curriculum development in collaboration with the National Geographic Society as well as at the participating universities and local schools in those communities.", "east": -61.4808, "geometry": "POINT(-64.74105 -58.94665)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "R/V NBP; R/V LMG", "locations": null, "north": -52.7592, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Nowacek, Douglas", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.1341, "title": "Collaborative Research: The Ecological Role of a Poorly Studied Antarctic Krill Predator: The Humpback Whale, Megaptera Novaeangliae", "uid": "p0000529", "west": -68.0013}, {"awards": "0338164 Sedwick, Peter", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0601", "datasets": [{"dataset_uid": "001580", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0601"}, {"dataset_uid": "002619", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0601", "url": "https://www.rvdata.us/search/cruise/NBP0601"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The objectives of this proposal are to investigate the controls on the large-scale distribution and production of the two major bloom-forming phytoplankton taxa in the Southern Ocean, diatoms and Phaeocystis Antarctica. These two groups, through their involvement in the biogeochemical cycles of carbon, sulfur and nutrient elements, may have played important roles in the climate variations of the late Quaternary, and they also may be key players in future environmental change. A current paradigm is that irradiance and iron availability drive phytoplankton dynamics in the Southern Ocean. Recent work, however, suggests that carbon dioxide (CO2) concentrations may also be important in structuring algal assemblages, due to species-specific differences in the physiology. This proposal examines the interactive effects of iron, light and CO2 on the physiology, ecology and relative dominance of Phaeocystis and diatoms in the Southern Ocean. The Ross Sea is an ideal system in which to investigate the environmental factors that regulate the distribution and production of these two algal groups, since it is characterized by seasonal blooms of both P. Antarctica and diatoms that are typically separated in both space and time. This study will take the form of an interdisciplinary investigation that includes a field survey and statistical analysis of algal assemblage composition, iron, mixed layer depth, and CO2 levels in the southern Ross Sea, coupled with shipboard experiments to examine the response of diatom and P. Antarctica assemblages to high and low levels of iron, light and CO2 during spring and summer. \u003cbr/\u003eThis project will provide information on some of the major factors controlling the production and distribution of the two major bloom forming phytoplankton in the Southern Ocean and the related biogeochemical cycling of carbon, sulfur and nutrient elements. The results may ultimately advance the ability to predict how the Southern Ocean will be affected by and possibly modulate future climate change. This project will also make significant educational contributions at several levels, including the planned research involvement of graduate and undergraduate students, postdoctoral associates, a student teacher, and community outreach and educational activities. A number of activities are planned to interface the project with K-12 education. Presentations will be made at local schools to discuss the research and events of the research cruise. During the cruise there will be daily interactive email contact with elementary classrooms. Established websites will be used to allow students to learn about the ongoing research, and to allow researchers to communicate with students through text and downloaded images.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e WATER BOTTLES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ditullio, Giacomo", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Interactive Effects of Iron, Light and CO2 on Phytoplankton Community Dynamics in the Ross Sea", "uid": "p0000831", "west": null}, {"awards": "0338248 Takahashi, Taro", "bounds_geometry": "POLYGON((-68.0051 -52.7573,-67.35191 -52.7573,-66.69872 -52.7573,-66.04553 -52.7573,-65.39234 -52.7573,-64.73915 -52.7573,-64.08596 -52.7573,-63.43277 -52.7573,-62.77958 -52.7573,-62.12639 -52.7573,-61.4732 -52.7573,-61.4732 -53.96927,-61.4732 -55.18124,-61.4732 -56.39321,-61.4732 -57.60518,-61.4732 -58.81715,-61.4732 -60.02912,-61.4732 -61.24109,-61.4732 -62.45306,-61.4732 -63.66503,-61.4732 -64.877,-62.12639 -64.877,-62.77958 -64.877,-63.43277 -64.877,-64.08596 -64.877,-64.73915 -64.877,-65.39234 -64.877,-66.04553 -64.877,-66.69872 -64.877,-67.35191 -64.877,-68.0051 -64.877,-68.0051 -63.66503,-68.0051 -62.45306,-68.0051 -61.24109,-68.0051 -60.02912,-68.0051 -58.81715,-68.0051 -57.60518,-68.0051 -56.39321,-68.0051 -55.18124,-68.0051 -53.96927,-68.0051 -52.7573))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001572", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0603"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This proposal is for the continuation and expansion of an underway program on the R/V Laurence M. Gould to measure dissolved carbon dioxide gas (pCO2) along with occasional total carbon dioxide (TCO2) in surface waters on transects of Drake Passage. The added observations include dissolved oxygen, as well as nutrient and carbon-13. The proposed work is similar to the underway measurement program made aboard R/V Nathaniel B. Palmer, and complements similar surface temperature and current data.\u003cbr/\u003eThe Southern Ocean is an important component of the global carbon budget. Low surface temperatures with consequently low vertical stability, ice formation, and high winds produce a very active environment for the exchange of gaseous carbon dioxide between the atmospheric and oceanic reservoirs. The Drake Passage is the narrowest point through which the Antarctic Circumpolar Current and its associated fronts must pass, and is the most efficient location for the measurement of latitudinal gradients of gas exchange. The generated time series will contribute towards two scientific goals: the quantification of the spatial and temporal variability and trends of surface carbon dioxide, oxygen, nutrients and C-13, and an understanding of the dominant processes that contribute to the observed variability.", "east": -61.4732, "geometry": "POINT(-64.73915 -58.81715)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": -52.7573, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Takahashi, Taro", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -64.877, "title": "Collaborative Research: Processes Driving Spatial and Temporal Variability of Surface pCO2 in the Drake Passage", "uid": "p0000572", "west": -68.0051}, {"awards": "9418153 Domack, Eugene", "bounds_geometry": "POLYGON((-70.90663 -52.3574,-69.956557 -52.3574,-69.006484 -52.3574,-68.056411 -52.3574,-67.106338 -52.3574,-66.156265 -52.3574,-65.206192 -52.3574,-64.256119 -52.3574,-63.306046 -52.3574,-62.355973 -52.3574,-61.4059 -52.3574,-61.4059 -53.843373,-61.4059 -55.329346,-61.4059 -56.815319,-61.4059 -58.301292,-61.4059 -59.787265,-61.4059 -61.273238,-61.4059 -62.759211,-61.4059 -64.245184,-61.4059 -65.731157,-61.4059 -67.21713,-62.355973 -67.21713,-63.306046 -67.21713,-64.256119 -67.21713,-65.206192 -67.21713,-66.156265 -67.21713,-67.106338 -67.21713,-68.056411 -67.21713,-69.006484 -67.21713,-69.956557 -67.21713,-70.90663 -67.21713,-70.90663 -65.731157,-70.90663 -64.245184,-70.90663 -62.759211,-70.90663 -61.273238,-70.90663 -59.787265,-70.90663 -58.301292,-70.90663 -56.815319,-70.90663 -55.329346,-70.90663 -53.843373,-70.90663 -52.3574))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002066", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9903"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9418153 This award supports a program aimed at providing research experiences to a broad range of undergraduate students. The program sill allow for active participation by undergraduate students in ongoing marine geologic research in Antarctica. Students will be recruited from institutions across the United States and will participate in a preparatory seminar on Antarctic science prior to the field season. This program will integrate undergraduate participation with existing marine geology and geophysics projects aboard either of the two United States Antarctic Program research vessels, the RV Polar Duke and the RVIB Nathaniel B. Palmer. Research topics will be related to the stratigraphy and/or evolution of the Antarctic continental margin, topics of increasing importance to both Antarctic and global geology. Students will have a full year following their field experience to conduct follow-up research via a senior thesis. This program is intended to provide better educational experiences to promising undergraduate students and to stimulate those students to pursue advanced degrees in geology and geophysics. ***", "east": -61.4059, "geometry": "POINT(-66.156265 -59.787265)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.3574, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Domack, Eugene Walter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -67.21713, "title": "Undergraduate Research Initiative: Antarctic Marine Geology and Geophysics", "uid": "p0000623", "west": -70.90663}, {"awards": "0338109 Brachfeld, Stefanie", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0603", "datasets": [{"dataset_uid": "002614", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0603", "url": "https://www.rvdata.us/search/cruise/NBP0603"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The Larsen Ice Shelf is the third largest ice shelf in Antarctica and has continued a pattern of catastrophic decay since the mid 1990\u0027s. The proposed marine geologic work at the Larsen Ice Shelf builds upon our previous NSF-OPP funding and intends to test the working hypothesis that the Larsen B Ice Shelf system has been a stable component of Antarctica\u0027s glacial system since it formed during rising sea levels 10,000 years BP. This conclusion, if supported by observations from our proposed work, is an important first step in establishing the uniqueness and consequences of rapid regional warming currently taking place across the Peninsula. Our previous work in the Larsen A and B embayments has allowed us to recognize the signature of past ice shelf fluctuations and their impact on the oceanographic and biologic environments. We have also overcome many of the limitations of standard radiocarbon dating in Antarctic marine sequences by using variations in the strength of the earth\u0027s magnetic field for correlation of sediment records and by using specific organic compounds (instead of bulk sediment) for radiocarbon dating. We intend to pursue these analytical advances and extend our sediment core stratigraphy to areas uncovered by the most recent collapse of the Larsen B Ice Shelf and areas immediately adjacent to the Larsen C Ice Shelf. In addition to the core recovery program, we intend to utilize our unique access to the ice shelf front to continue our observations of the snow/ice stratigraphy, oceanographic character, and ocean floor character. Sediment traps will also be deployed in order to measure the input of debris from glaciers that are now surging in response to the ice shelf collapse. This proposal is a multi-institutional, international (USAP, Italy, and Canada) effort that combines the established expertise in a variety of disciplines and integrates the research plan into the educational efforts of primarily undergraduate institutions but including some graduate education. This is a three-year project with field seasons planned with flexibility in order to accommodate schedules for the RVIB L.M. Gould. The Antarctic Peninsula is undergoing greater warming than almost anywhere on Earth, perhaps associated with human-induced greenhouse effects. Our proposed work contributes to understanding of these changes where they are occurring first and with greatest magnitude and impact upon the environment.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Brachfeld, Stefanie; Domack, Eugene Walter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Paleohistory of the Larsen Ice Shelf: Phase II", "uid": "p0000826", "west": null}, {"awards": "0636975 Sweeney, Colm", "bounds_geometry": null, "dataset_titles": "Expedition data of LMG0909", "datasets": [{"dataset_uid": "002721", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0909", "url": "https://www.rvdata.us/search/cruise/LMG0909"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The proposed project will expand the suite of observations and lengthen the existing time series of underway surface dissolved carbon dioxide (pCO2) measurements transects across the Drake Passage on the R/VIB L.M. Gould. The additional observations include oxygen, nutrients and total CO2 (TCO2) concentrations, and the 13C to 12C ratio of TCO2. The continued and expanded time series will contribute towards two main scientific goals: the quantification of the spatial and temporal variability and the trends of surface carbon dioxide species in four major water mass regimes in the Drake Passage, and the understanding of the dominant processes and changes in those processes that contribute to the variability in surface pCO2 and the resulting air-sea flux of CO2 in the Drake Passage. The expanded program will also include the analysis of the 14C/12C of TCO2 and the specific study of the observations on one short wintertime cruise, with the objective of testing the hypothesis that the dissolved carbon dioxide in surface waters of the Drake Passage is determined by the degree of winter mixing. This is of special significance in light of two scenarios that may be affecting the ventilation of Southern Ocean deep water now and in the future: a decrease in water column stratification with the observations of higher zonal winds, or an increase in stratification due to higher precipitation and warming from climate change. If winter mixing determines the mean annual pCO2 in the Drake Passage, the increasing trend in atmospheric pCO2 should have little effect on sea surface pCO2.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Sweeney, Colm; Sweeney, Colm", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Surface pCO2 and the effects of Winter Time Overturning in the Drake Passage", "uid": "p0000872", "west": null}, {"awards": "0837988 Steig, Eric", "bounds_geometry": "POLYGON((-180 -65,-144 -65,-108 -65,-72 -65,-36 -65,0 -65,36 -65,72 -65,108 -65,144 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.5,-180 -85,-180 -82.5,-180 -80,-180 -77.5,-180 -75,-180 -72.5,-180 -70,-180 -67.5,-180 -65))", "dataset_titles": "West Antarctica Ice Core and Climate Model Data", "datasets": [{"dataset_uid": "609536", "doi": "10.7265/N5QJ7F8B", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Paleoclimate; WAIS Divide", "people": "Steig, Eric J.", "repository": "USAP-DC", "science_program": null, "title": "West Antarctica Ice Core and Climate Model Data", "url": "https://www.usap-dc.org/view/dataset/609536"}], "date_created": "Fri, 30 Apr 2010 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). \u003cbr/\u003e\u003cbr/\u003eThis award supports a project to reconstruct the past physical and chemical climate of Antarctica, with an emphasis on the region surrounding the Ross Sea Embayment, using \u003e60 ice cores collected in this region by US ITASE and by Australian, Brazilian, Chilean, and New Zealand ITASE teams. The ice core records are annually resolved and exceptionally well dated, and will provide, through the analyses of stable isotopes, major soluble ions and for some trace elements, instrumentally calibrated proxies for past temperature, precipitation, atmospheric circulation, chemistry of the atmosphere, sea ice extent, and volcanic activity. These records will be used to understand the role of solar, volcanic, and human forcing on Antarctic climate and to investigate the character of recent abrupt climate change over Antarctica in the context of broader Southern Hemisphere and global climate variability. The intellectual merit of the project is that ITASE has resulted in an array of ice core records, increasing the spatial resolution of observations of recent Antarctic climate variability by more than an order of magnitude and provides the basis for assessment of past and current change and establishes a framework for monitoring of future climate change in the Southern Hemisphere. This comes at a critical time as global record warming and other impacts are noted in the Southern Ocean, the Antarctic Peninsula, and on the Antarctic ice sheet. The broader impacts of the project are that Post-doctoral and graduate students involved in the project will benefit from exposure to observational and modeling approaches to climate change research and working meetings to be held at the two collaborating institutions plus other prominent climate change institutions. The results are of prime interest to the public and the media Websites hosted by the two collaborating institutions contain climate change position papers, scientific exchanges concerning current climate change issues, and scientific contribution series.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Deuterium Isotopes; Deuterium Excess; Not provided; GROUND-BASED OBSERVATIONS; Wais Divide-project", "locations": null, "north": -65.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Antarctic Climate Reconstruction Utilizing the US ITASE Ice Core Array (2009- 2012)", "uid": "p0000180", "west": -180.0}, {"awards": "0538639 Waddington, Edwin", "bounds_geometry": "POLYGON((-112.1 -79.4,-112.09 -79.4,-112.08 -79.4,-112.07 -79.4,-112.06 -79.4,-112.05 -79.4,-112.04 -79.4,-112.03 -79.4,-112.02 -79.4,-112.01 -79.4,-112 -79.4,-112 -79.41,-112 -79.42,-112 -79.43,-112 -79.44,-112 -79.45,-112 -79.46,-112 -79.47,-112 -79.48,-112 -79.49,-112 -79.5,-112.01 -79.5,-112.02 -79.5,-112.03 -79.5,-112.04 -79.5,-112.05 -79.5,-112.06 -79.5,-112.07 -79.5,-112.08 -79.5,-112.09 -79.5,-112.1 -79.5,-112.1 -79.49,-112.1 -79.48,-112.1 -79.47,-112.1 -79.46,-112.1 -79.45,-112.1 -79.44,-112.1 -79.43,-112.1 -79.42,-112.1 -79.41,-112.1 -79.4))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 01 Apr 2010 00:00:00 GMT", "description": "0538639\u003cbr/\u003eWaddington\u003cbr/\u003eThis award supports a project to study the patterns of accumulation variation and microstructural properties near the WAIS Divide ice core site in a 2.5 km array of 20 m boreholes. Borehole Optical Stratigraphy (BOS) is a novel optical measurement system that detects annual-scale layers in firn that result from changes in firn microstructure, giving annual-scale records of how accumulation varied spatially over the last 40-50 years. Data from borehole optical stratigraphy can eventually be calibrated against other data on the microstructural parameters of firn to calibrate BOS\u0027s sensitivity to density, pore-volume, and pore-shape variations, and to show by proxy how these parameters vary in space across the survey area. Statistical analysis of layer-thickness and layer-brightness data will enable prediction of: 1) interannual accumulation variability, 2) variability in layer-thickness at decadal scales due to changing spatial patterns in accumulation and 3) variability in microstructure-driven metamorphism due to changing spatial patterns of microstructure. With these statistics in hand, a scientist measuring climatic shifts found in the WAIS Divide ice core will be able to determine the fraction by which signals they measure exceed the signal due to background accumulation variations. As an added benefit, while still in the field, we will determine a preliminary depth-age scale for the firn by optical layer-counting, to the depth of the deepest air-filled firn hole available. This will be a valuable result for core-drilling operations and for preliminary data-analysis on the core. In terms of broader impacts, this project will advance education by training a post-doctoral student in field techniques. The P.I. and the post-doctoral researcher will participate in an undergraduate seminar called \"What is Scientific Research?\", incorporating progress and results from this project. They will also communicate about their progress and field experience with a middle-school science and math class.", "east": -112.0, "geometry": "POINT(-112.05 -79.45)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS", "is_usap_dc": false, "keywords": "Spatial Variability; FIELD INVESTIGATION; Not provided; LABORATORY; Stratigraphy; Borehole Optical Stratigraphy; Optical Layer-Counting; Microstructure; Firn; Depth-Age-Model; Optical; WAIS Divide; FIELD SURVEYS; Accumulation", "locations": "WAIS Divide", "north": -79.4, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Fudge, T. J.; Waddington, Edwin D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -79.5, "title": "Spatial Variability in Firn Properties from Borehole Optical Stratigraphy at the Inland WAIS Core Site", "uid": "p0000237", "west": -112.1}, {"awards": "0335330 Waddington, Edwin", "bounds_geometry": "POLYGON((-60 83,-55.8 83,-51.6 83,-47.4 83,-43.2 83,-39 83,-34.8 83,-30.6 83,-26.4 83,-22.2 83,-18 83,-18 80.5,-18 78,-18 75.5,-18 73,-18 70.5,-18 68,-18 65.5,-18 63,-18 60.5,-18 58,-22.2 58,-26.4 58,-30.6 58,-34.8 58,-39 58,-43.2 58,-47.4 58,-51.6 58,-55.8 58,-60 58,-60 60.5,-60 63,-60 65.5,-60 68,-60 70.5,-60 73,-60 75.5,-60 78,-60 80.5,-60 83))", "dataset_titles": "Borehole Optical Stratigraphy Modeling, Antarctica", "datasets": [{"dataset_uid": "609468", "doi": "10.7265/N5H70CR5", "keywords": "Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Modeling Code", "people": "Waddington, Edwin D.; Fudge, T. J.; Hawley, Robert L.; Smith, Ben", "repository": "USAP-DC", "science_program": null, "title": "Borehole Optical Stratigraphy Modeling, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609468"}], "date_created": "Thu, 01 Apr 2010 00:00:00 GMT", "description": "This award supports a study of the physical nature and environmental origin of optical features (light and dark zones) observed by video in boreholes in polar ice. These features appear to include an annual signal, as well as longer period signals. Borehole logs exist from a previous project, and in this lab-based project the interpretation of these logs will be improved. The origin of the features is of broad interest to the ice-core community. If some components relate to changes in the depositional environment beyond seasonality, important climatic cycles may be seen. If some components relate to post-depositional reworking, insights will be gained into the physical processes that change snow and firn, and the implications for interpretation of the chemical record in terms of paleoclimate. In order to exploit these features to best advantage in future ice-core and climate-change research, the two principal objectives of this project are to determine what physically causes the optical differences that we see and to determine the environmental processes that give rise to these physical differences. In the laboratory at NICL the conditions of a log of a borehole wall will be re-created as closely as possible by running the borehole video camera along sections of ice core, making an optical log of light reflected from the core. Combinations of physical variables that are correlated with optical features will be identified. A radiative-transfer model will be used to aid in the interpretation of these measurements, and to determine the optimum configuration for an improved future logging tool. An attempt will be made to determine the origin of the features. Two broad possibilities exist: 1) temporal changes in the depositional environment, and 2) post-depositional reworking. This project represents an important step toward a new way of learning about paleoclimate with borehole optical methods. Broader impacts include enhancing the infrastructure for research and education, since this instrument will complement high-resolution continuous-melter chemistry techniques and provide a rapid way to log physical variables using optical features as a proxy for climate signals. Since no core is required for this method, it can be used in rapidly drilled access holes or where core quality is poor. This project will support a graduate student who will carry out this project under the direction of the Principal Investigator. K-12 education will be enhanced through an ongoing collaboration with a science and math teacher from a local middle school. International collaboration will be expanded through work on this project with colleagues at the Norwegian Polar Institute and broad dissemination of results will occur through a project website for the general public.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS", "is_usap_dc": true, "keywords": "Ice; Stratigraphy; Optical; Glaciers; Polar Ice; Ice Microphysics; Snow; Firn; Climate Change; LABORATORY; Snow Stratigraphy; Borehole", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Smith, Ben; Waddington, Edwin D.; Hawley, Robert L.; Fudge, T. J.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Borehole Optical Stratigraphy: Ice Microphysics, Climate Change, and the Optical Properties of Firn", "uid": "p0000016", "west": -180.0}, {"awards": "9980379 Baker, Ian", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 15 Feb 2010 00:00:00 GMT", "description": "This award is for support for three years of funding to study the effects of impurities on the flow of poly- crystalline ice. It has been known for thirty years that both hydrofluoric acid (HF) and hydrochloric acid (HCl) dramatically decrease the strength of ice and recent work by the author\u0027s group has shown that sulfuric acid (H2SO4) produces a similar reduction in strength. However, these data are for single crystals at strain rates and stresses that far exceed those found in glaciers and ice sheets, and often at concentrations that far exceed those in natural ice. Therefore, it is not known how impurities found in nature affect the flow of polycrystalline ice at slow strain rates. In this research, the effects of nitric acid and sulfuric acid (which are naturally occurring impurities in ice) on the microstructure (dislocation structure, grain boundary structure and location of the acids) and creep of polycrystalline ice (at a range of temperatures and stresses) will be determined. The ice\u0027s response to creep deformation will be studied using a combination of x-ray topography, optical microscopy and scanning electron microscopy. X-ray microanalysis in an environmental scanning electron microscope will be used to study the location of impurities. The structure and creep behavior of the acid-doped ice will be compared with those of both high-purity laboratory-grown ice and ice from Byrd Station, Antarctica. The end-result of this project will be to elucidate the effects of naturally-occurring acid impurities on the mechanical properties of polycrystalline ice under conditions relevant to the deformation of glaciers and ice sheets, including and understanding of how impurities affect the underlying deformation mechanisms.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PARTICLE DETECTORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES", "is_usap_dc": true, "keywords": "Ice Core Data; Ice Core; Microstructure; Ice Sheet; Ice Core Chemistry; Antarctic Ice Sheet; LABORATORY", "locations": "Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Baker, Ian; Obbard, Rachel", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "The Effects of Impurities on the Flow of Polycrystalline Ice", "uid": "p0000015", "west": null}, {"awards": "0440817 Taylor, Kendrick", "bounds_geometry": null, "dataset_titles": "WAIS Divide Ice Core Images, Antarctica", "datasets": [{"dataset_uid": "609375", "doi": "10.7265/N5348H8T", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Optical Images; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "McGwire, Kenneth C.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core Images, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609375"}], "date_created": "Wed, 10 Feb 2010 00:00:00 GMT", "description": "This award supports the coordination of an interdisciplinary and multi institutional deep ice coring program in West Antarctica. The program will develop interrelated climate, ice dynamics, and biologic records focused on understanding interactions of global earth systems. The records will have a year-by-year chronology for the most recent 40,000 years. Lower temporal resolution records will extend to 100,000 years before present. The intellectual activity of this project includes enhancing our understanding of the natural mechanisms that cause climate change. The study site was selected to obtain the best possible material, available from anywhere, to determine the role of greenhouse gas in the last series of major climate changes. The project will study the how natural changes in greenhouse gas concentrations influence climate. The influence of sea ice and atmospheric circulation on climate changes will also be investigated. Other topics that will be investigated include the influence of the West Antarctic ice sheet on changes in sea level and the biology deep in the ice sheet. The broader impacts of this project include developing information required by other science communities to improve predictions of future climate change. The \u003cbr/\u003eproject will use mass media to explain climate, glaciology, and biology issues to a broad audience. The next generation of ice core investigators will be trained and there will be an emphasis on exposing a diverse group of students to climate, glaciology and biology research.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS", "is_usap_dc": true, "keywords": "FIELD SURVEYS; Antarctica; Not provided; Ice Core Data; West Antarctica; LABORATORY; Ice Core; FIELD INVESTIGATION", "locations": "Antarctica; West Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "McGwire, Kenneth C.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Investigation of Climate, Ice Dynamics and Biology using a Deep Ice Core from the West Antarctic Ice Sheet Ice Divide", "uid": "p0000182", "west": null}, {"awards": "0338008 Wemple, Beverley", "bounds_geometry": null, "dataset_titles": "Laboratory Studies of Isotopic Exchange in Snow; Snow Accumulation and Snow Melt in a Mixed Northern Hardwood-Conifer Forest", "datasets": [{"dataset_uid": "609441", "doi": "10.7265/N54X55R2", "keywords": "Snow/ice; Snow/Ice", "people": "Wemple, Beverley C.", "repository": "USAP-DC", "science_program": null, "title": "Snow Accumulation and Snow Melt in a Mixed Northern Hardwood-Conifer Forest", "url": "https://www.usap-dc.org/view/dataset/609441"}, {"dataset_uid": "609445", "doi": "10.7265/N51834DX", "keywords": "Atmosphere; Chemistry:ice; Chemistry:Ice; Snow/ice; Snow/Ice; Snow Sublimation Rate", "people": "Neumann, Thomas A.", "repository": "USAP-DC", "science_program": null, "title": "Laboratory Studies of Isotopic Exchange in Snow", "url": "https://www.usap-dc.org/view/dataset/609445"}], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "This award supports a project to develop a quantitative understanding of the processes active in isotopic exchange between snow/firn and water vapor, which is of paramount importance to ice core interpretation. Carefully controlled laboratory studies will be conducted at a variety of temperatures to empirically measure the mass transfer coefficient (the rate at which water moves from the solid to the vapor phase) for sublimating snow and to determine the time scale for isotopic equilibration between water vapor and ice. In addition the isotopic fractionation coefficient for vapor derived from sublimating ice will be determined and the results will be used to update existing models of mass transfer and isotopic evolution in firn. It is well known that water vapor moves through firn due to diffusion, free convection and forced convection. Although vapor movement through variably-saturated firn due to these processes has been modeled, because of a lack of laboratory data the mass transfer coefficient had to be estimated. Field studies have documented the magnitudes of post-depositional changes, but field studies do not permit rigorous analysis of the relative importance of the many processes which are likely to act in natural snow packs. The results of these laboratory investigations will be broadly applicable to a number of studies and will allow for improvement of existing physically-based models of post-depositional isotopic change, isotopic diffusion in firn, and vapor motion in firn. A major component of this project will be the design and fabrication of the necessary, novel experimental apparatus, which will be facilitated by existing technical expertise, cold room facilities, and laboratory equipment at CRREL. This project is a necessary step toward a quantitative understanding of the isotopic effects of water vapor movement in firn. The proposed work has broader impacts in several different areas. The modeling results will be applicable to a wide range of studies of water in the polar environment, including studies of wind-blown or drifting snow. The proposed collaborative study will partially support a Dartmouth graduate student for three years. This project will also provide support for a young first-time NSF investigator at the University of Vermont. Undergraduate students from Dartmouth will be involved in the research through the Women in Science Project and undergraduate students at the University of Vermont will be supported through the Research Experiences for Undergraduates program. The principal investigators and graduate student will continue their tradition of k-12 school outreach by giving science lessons and talks in local schools each year. Research results will be disseminated through scientific conferences, journal publications, and institutional seminars.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e SNOW TUBE; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HYGROMETERS \u003e HYGROMETERS", "is_usap_dc": true, "keywords": "Snow Accumulation; Snow Chemistry; Snow Melt; Snowfall; Snow Water Equivalent; LABORATORY; Seasonal Snow Cover; Not provided; Snow; Sublimation Rate; FIELD SURVEYS; FIELD INVESTIGATION", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Neumann, Thomas A.; Wemple, Beverley C.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Laboratory Studies of Isotopic Exchange in Snow and Firn", "uid": "p0000132", "west": null}, {"awards": "0520523 Brook, Edward J.", "bounds_geometry": null, "dataset_titles": "Methane Measurements from the GISP2 and Siple Dome Ice Cores", "datasets": [{"dataset_uid": "609440", "doi": "10.7265/N58P5XFZ", "keywords": "Antarctica; Arctic; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Methane Measurements from the GISP2 and Siple Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609440"}], "date_created": "Wed, 09 Dec 2009 00:00:00 GMT", "description": "Not Available", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Methane; Greenland Ice Cap; Ice Core Data; Siple Dome; Not provided; Ice Core Gas Records; DRILLING PLATFORMS; LABORATORY; Ice Core; Ice Core Chemistry; Antarctica; Greenland Ice Sheet Project 2", "locations": "Antarctica; Greenland Ice Cap; Siple Dome", "north": null, "nsf_funding_programs": "Arctic Natural Sciences", "paleo_time": null, "persons": "Brook, Edward J.", "platforms": "Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; WATER-BASED PLATFORMS \u003e FIXED PLATFORMS \u003e SURFACE \u003e DRILLING PLATFORMS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Collaborative Research: New insights into the Holocene methane budget from dual isotope systematics and a high resolution record of the interpolar gradient", "uid": "p0000131", "west": null}, {"awards": "0437887 Sidell, Bruce", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis; Expedition Data; Expedition data of LMG0705; Expedition data of LMG0706", "datasets": [{"dataset_uid": "001534", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0705"}, {"dataset_uid": "002712", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0705", "url": "https://www.rvdata.us/search/cruise/LMG0705"}, {"dataset_uid": "002713", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0706", "url": "https://www.rvdata.us/search/cruise/LMG0706"}, {"dataset_uid": "600039", "doi": "10.15784/600039", "keywords": "Biota; Oceans; Pot; Sample/collection Description; Sample/Collection Description; Southern Ocean; Trawl", "people": "Sidell, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis", "url": "https://www.usap-dc.org/view/dataset/600039"}], "date_created": "Sun, 06 Dec 2009 00:00:00 GMT", "description": "The polar ocean presently surrounding Antarctica is the coldest, most thermally stable marine environment on earth. Because oxygen solubility in seawater is inversely proportional to temperature, the cold Antarctic seas are an exceptionally oxygen-rich aquatic habitat. Eight families of a single perciform suborder, the Notothenioidei, dominate the present fish fauna surrounding Antarctica. Notothenioids account for approximately 35% of fish species and 90% of fish biomass south of the Antarctic Polar Front. Radiation of closely related notothenioid species thus has occurred rapidly and under a very unusual set of conditions: relative oceanographic isolation from other faunas due to circumpolar currents and deep ocean trenches surrounding the continent, chronically, severely cold water temperatures, very high oxygen availability, very low levels of niche competition in a Southern Ocean depauperate of species subsequent to a dramatic crash in species diversity of fishes that occurred sometime between the mid-Tertiary and present. These features make Antarctic notothenioid fishes an uniquely attractive group for the study of physiological and biochemical adaptations to cold body temperature. \u003cbr/\u003eFew distinctive features of Antarctic fishes are as unique as the pattern of expression of oxygen-binding proteins in one notothenioid family, the Channichthyidae (Antarctic icefishes). All channichthyid icefishes lack the circulating oxygen-binding protein, hemoglobin (Hb); the intracellular oxygen-binding protein, myoglobin (Mb) is not uniformly expressed in species of this family. Both proteins are normally considered essential for adequate delivery of oxygen to aerobically poised tissues of animals. To compensate for the absence of Hb, icefishes have developed large hearts, rapidly circulate a large blood volume and possess elaborate vasculature of larger lumenal diameter than is seen in red-blooded fishes. Loss of Mb expression in oxidative muscles correlates with dramatic elevation in density of mitochondria within the cell, although each individual organelle is less densely packed with respiratory proteins. \u003cbr/\u003eWithin the framework of oxygen movement, the adaptive significance of greater vascular density and mitochondrial populations is understandable but mechanisms underlying development of these characteristics remain unknown. The answer may lie in another major function of both Hb and Mb, degradation of the ubiquitous bioactive compound, nitric oxide (NO). The research will test the hypothesis that loss of hemoprotein expression in icefishes has resulted in an increase in levels of NO that mediate modification of vascular systems and expansion of mitochondrial populations in oxidative tissues. The objectives of the proposal are to quantify the vascular density of retinas in +Hb and -Hb notothenioid species, to characterize NOS isoforms and catalytic activity in retina and cardiac muscle of Antarctic notothenioid fishes, to evaluate level of expression of downstream factors implicated in angiogenesis (in retinal tissue) and mitochondrial biogenesis (in cardiac muscle), and to determine whether inhibition of NOS in vivo results in regression of angiogenic and mitochondrial biogenic responses in icefishes. Broader impacts range from basic biology, through training of young scientists, to enhanced understanding of clinically relevant biomedical processes.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS", "is_usap_dc": true, "keywords": "R/V LMG; Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Sidell, Bruce", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis.", "uid": "p0000527", "west": -180.0}, {"awards": "0631328 Zamzow, Jill", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 10 Nov 2009 00:00:00 GMT", "description": "The applicant will use this Polar Postdoctoral Fellowship to study top-down effects on community structure (habitat choice and behavior of amphipods, the dominant mesograzers) in macroalgal communities in the vicinity of Palmer Station, Antarctica, where amphipods are not only extremely abundant, but their distributions are very different on palatable vs. unpalatable macroalgae. Pilot studies have suggested that these differences in community structure may be driven by algal chemistry and predation. The effects of algal chemistry on amphipod habitat choice, both in the presence and absence of predators will be tested experimentally, as will the question of whether amphipod host-alga choice results in any reduction of predation risk. Mesograzers in general, and amphipods in particular, are an essential trophic link in marine systems worldwide, and in particular, are a critical component of antarctic near-shore ecosystems. However despite their high abundance and species richness, little is known of their functional ecology or trophodynamics, and little research has investigated the trophic dynamics, behavior, or ecology of these organisms. This project will work out the basic biology of the system, by examining amphipod distributions on Himantothallus (a brown macroalga) and in the stomach contents of Notothenia coriiceps (a small cod-like antarctic fish) and determining whether prey selectivity of amphipod species is occurring. A series of laboratory experiments will investigate the influence(s) of predators, algal chemistry, and thallus structure on amphipod behavior and habitat choice, and test the predation risk associated with amphipod host-alga choice.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": null, "paleo_time": null, "persons": "Zamzow, Jill", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -90.0, "title": "PostDoctoral Research Fellowship", "uid": "p0000206", "west": -180.0}, {"awards": "0196105 Steig, Eric", "bounds_geometry": null, "dataset_titles": "US ITASE Stable Isotope Data, Antarctica", "datasets": [{"dataset_uid": "609425", "doi": "10.7265/N5NZ85MD", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; ITASE; Paleoclimate; WAIS", "people": "Steig, Eric J.", "repository": "USAP-DC", "science_program": "ITASE", "title": "US ITASE Stable Isotope Data, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609425"}], "date_created": "Thu, 01 Oct 2009 00:00:00 GMT", "description": "Not Available", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e AMS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e LIDAR/LASER SPECTROMETERS \u003e PALMS", "is_usap_dc": true, "keywords": "Isotope; Depth; Ice Core Gas Records; Ice Core; Ice Core Data; Ice Core Chemistry; LABORATORY; Firn Isotopes; FIELD SURVEYS; Deuterium; Ice Age; Oxygen Isotope; Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": null, "title": "Stable Isotope Studies at West Antarctic ITASE Sites", "uid": "p0000013", "west": null}, {"awards": "0229403 Tauxe, Lisa", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Paleomagnetism and40Ar/39Ar ages from volcanics extruded during the Matuyama and Brunhes Chrons near McMurdo Sound, Antarctica", "datasets": [{"dataset_uid": "000116", "doi": "", "keywords": null, "people": null, "repository": "EarthRef", "science_program": null, "title": "Paleomagnetism and40Ar/39Ar ages from volcanics extruded during the Matuyama and Brunhes Chrons near McMurdo Sound, Antarctica", "url": "http://dx.doi.org/10.7288/V4/MAGIC/12395"}], "date_created": "Tue, 01 Sep 2009 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate Earth\u0027s magnetic field over the past 5 million years in order to test models of Earth\u0027s geomagnetic dynamo. Paleomagnetic data (directions of ancient geomagnetic fields obtained from rocks) play an important role in a variety of geophysical studies of the Earth, including plate tectonic reconstructions, magnetostratigraphy, and studies of the behavior of the ancient geomagnetic field (which is called paleo-geomagnetism). Over the past four decades the key assumption in many paleomagnetic studies has been that the average direction of the paleomagnetic field corresponds to one that would have been produced by a geocentric axial dipole (GAD) (analogous to a bar magnet at the center of the Earth), and that paleoinclinations (the dip of magnetic directions from rocks) provide data of sufficient accuracy to enable their use in plate reconstructions. A recent re-examination of the fundamental data underlying models of the time averaged field has shown that the most glaring deficiency in the existing data base is a dearth of high quality data, including paleointensity information, from high latitudes. This project will undertake a sampling and laboratory program on suitable sites from the Mt. Erebus Volcanic Province (Antarctica) that will produce the quality data from high southern latitudes that are essential to an enhanced understanding of the time averaged field and its long term variations.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Tauxe, Lisa; Staudigel, Hubertus; Constable, Catherine; Koppers, Anthony", "platforms": "Not provided", "repo": "EarthRef", "repositories": "EarthRef", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Geomagnetic Field as Recorded in the Mt Erebus Volcanic Province: Key to Field Structure at High Southern Latitudes", "uid": "p0000228", "west": -180.0}, {"awards": "0086645 Fountain, Andrew", "bounds_geometry": "POLYGON((161.04 -77.3,161.239 -77.3,161.438 -77.3,161.637 -77.3,161.836 -77.3,162.035 -77.3,162.234 -77.3,162.433 -77.3,162.632 -77.3,162.831 -77.3,163.03 -77.3,163.03 -77.378,163.03 -77.456,163.03 -77.534,163.03 -77.612,163.03 -77.69,163.03 -77.768,163.03 -77.846,163.03 -77.924,163.03 -78.002,163.03 -78.08,162.831 -78.08,162.632 -78.08,162.433 -78.08,162.234 -78.08,162.035 -78.08,161.836 -78.08,161.637 -78.08,161.438 -78.08,161.239 -78.08,161.04 -78.08,161.04 -78.002,161.04 -77.924,161.04 -77.846,161.04 -77.768,161.04 -77.69,161.04 -77.612,161.04 -77.534,161.04 -77.456,161.04 -77.378,161.04 -77.3))", "dataset_titles": "McMurdo Dry Valleys Long-Term Ecological Research (MCM LTER) Core Glacier Mass Balance Data, Antarctica", "datasets": [{"dataset_uid": "609421", "doi": "", "keywords": "Antarctica; Dry Valleys; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; LTER; LTER Mcmurdo Dry Valleys", "people": "Basagic, Hassan; Nylen, Thomas; Lyons, W. Berry; Langevin, Paul; Fountain, Andrew", "repository": "USAP-DC", "science_program": null, "title": "McMurdo Dry Valleys Long-Term Ecological Research (MCM LTER) Core Glacier Mass Balance Data, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609421"}], "date_created": "Mon, 31 Aug 2009 00:00:00 GMT", "description": "0086645\u003cbr/\u003eFountain\u003cbr/\u003e\u003cbr/\u003eThis award supports a Small Grant for Exploratory Research (SGER) to study glaciological change in the McMurdo Dry Valleys, Antarctica under the category of \"application of new expertise or new approaches to established research topics\". The purpose of the project is to assess the application of classified imagery to the study of the magnitude and rate of change of glacier extent and lake area as an indicator of climate change. Because the rate of change of both glacier extent and lake area is small compared to the resolution of unclassified imagery, the increased resolution of classified imagery is clearly needed. Access to classified imagery with 1 meter or better resolution will provide a baseline measurement against which future changes can be compared. Maximum use will be made of archived imagery but if necessary, one request will be made for new imagery to supplement the existing archive. This work will support on-going field measurements which are part of the Long-Term Ecological Research (LTER) site in the McMurdo Dry Valleys but which are limited by logistic constraints to only a few measurements during limited times of the year. If successful, the information gained in this project will enable researchers to better direct their efforts to identify the important physical processes controlling the changes in the valleys. The information acquired in conducting this project will be made available to the public, using appropriate security procedures to declassify the data. The \"exploratory\" and \"high risk\" nature of the proposed work and its \"potential\" to make an important \"impact\" on the field of Antarctic glacier studies are all reasons that this work is appropriate to support as an SGER.", "east": 163.03, "geometry": "POINT(162.035 -77.69)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SNOW DENSITY CUTTER", "is_usap_dc": true, "keywords": "Glacier Surface; Antarctic; LABORATORY; Byrd Polar Research Center; FIELD INVESTIGATION; FIELD SURVEYS; Antarctica; Not provided; Glacier; Mass Balance; Snow Density; Ice Core; Taylor Glacier", "locations": "Antarctic; Antarctica; Taylor Glacier", "north": -77.3, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Nylen, Thomas; Basagic, Hassan; Langevin, Paul; Lyons, W. Berry; Fountain, Andrew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.08, "title": "SGER Proposal:Glaciological change in the McMurdo Dry Valleys, Antarctica", "uid": "p0000541", "west": 161.04}, {"awards": "0125794 Price, P. Buford", "bounds_geometry": null, "dataset_titles": "Optical Logging for Dust and Microbes in Boreholes in Glacial Ice", "datasets": [{"dataset_uid": "609403", "doi": "10.7265/N59P2ZKB", "keywords": "Antarctica; Dust; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Microbiology; Optical Backscatter", "people": "Bay, Ryan", "repository": "USAP-DC", "science_program": null, "title": "Optical Logging for Dust and Microbes in Boreholes in Glacial Ice", "url": "https://www.usap-dc.org/view/dataset/609403"}], "date_created": "Wed, 29 Jul 2009 00:00:00 GMT", "description": "0125794\u003cbr/\u003ePrice\u003cbr/\u003e\u003cbr/\u003eThis award supports research in climatology, geosciences, and life in extreme environments to be carried out with a newly developed optical borehole logger. The logger fits into a fluid-filled borehole in glacial ice. It emits light at 370 nm in a horizontal plane in order to probe optical properties of particles embedded in the ice out to several meters from the borehole. After leaving the borehole, the light is partially absorbed and scattered by dust, biomolecules, or microbes. A fraction of the light is scattered back into the borehole and is detected by a system of seven phototubes, each of which collects light with high efficiency in a separate wavelength band. One of them collects light that scatters off of dust and air bubbles without wavelength shift, and serves as a dust logger. The other six are covered with notch filters that measure six different wavelength bands and measure the shape of the fluorescence spectrum of microbes and biomolecules. Thus, the same instrument serves as both a dust logger and a microbe logger. Applications include: 1) Precise chronologies and long-period solar variability. With a resolution of 1 to 2 cm for both GISP2 and Siple Dome, the logger will record annual dust maxima and evaluate claims of modulations of dust concentration with periods ranging from 11 yrs (the solar cycle) to 2300 yrs; 2) Volcanism and age-depth markers. Dozens of volcanic ash bands will be detectable and will serve as primary age-depth markers for other boreholes; 3) Microorganisms and biomolecules. The vertical distribution of living, dormant, and dead microbes can be logged, and searches for archaea and aeolian polyaromatic hydrocarbons can be made. The logging experiments will be carried out at Siple Dome and Dome C in Antarctica and at GISP2 and GRIP in Greenland.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS", "is_usap_dc": true, "keywords": "Ice Core Data; Not provided; Climate Research; Climate; FIELD INVESTIGATION; Climate Change; FIELD SURVEYS; LABORATORY; Paleoclimate; Ice Core; Volcanic", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology; Arctic Natural Sciences", "paleo_time": null, "persons": "Bay, Ryan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Optical Logging for Dust and Microbes in Boreholes in Glacial Ice", "uid": "p0000156", "west": null}, {"awards": "0440975 Severinghaus, Jeffrey", "bounds_geometry": "POINT(-119.533333 -80.016667)", "dataset_titles": "Nitrogen and Oxygen Gas Isotopes in the Siple Dome and Byrd Ice Cores, Antarctica", "datasets": [{"dataset_uid": "609407", "doi": "10.7265/N55X26V0", "keywords": "Antarctica; Arctic; Atmosphere; Byrd Glacier; Byrd Ice Core; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Nitrogen and Oxygen Gas Isotopes in the Siple Dome and Byrd Ice Cores, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609407"}], "date_created": "Fri, 17 Jul 2009 00:00:00 GMT", "description": "The award supports the development of high-resolution nitrogen and oxygen isotope records on trapped gases in the Byrd and Siple Dome ice cores, and the Holocene part of the GISP2 ice core. The primary scientific goals of this work are to understand the enigmatic d15N anomalies seen thus far in the Siple Dome record at 15.3 ka and 35 ka, and to find other events that may occur in both cores. At these events, d15N of trapped air approaches zero, implying little or no gravitational fractionation of gases in the firn layer at the time of formation of the ice. These events may represent times of low accumulation rate and arid meteorological conditions, and thus may contain valuable information about the climatic history of West Antarctica. Alternatively, they may stem from crevassing and thus may reveal ice-dynamical processes. Finding the events in the Byrd core, which is located 500 km from Siple Dome, would place powerful constraints on their origin and significance. A second major goal is to explore the puzzling absence of the abrupt warming event at 22 ka (seen at Siple Dome) in the nearby Byrd 18O/16O record in the ice (d18Oice), and search for a possible correlative signal in Byrd d15N. A third goal takes advantage of the fact that precise measurements of the oxygen isotopic composition of atmospheric O2 (d18Oatm) are obtained as a byproduct of the d15N measurement. The proposed gas-isotopic measurements will underpin an integrated suite of West Antarctic climate and atmospheric gas records, which will ultimately include the WAIS Divide core. These records will help separate regional from global climate signals, and may place constraints on the cause of abrupt climate change. Education of two graduate students, and training of two staff members in the laboratory, contribute to the nation\u0027s human resource base. Education and outreach will be an important component of the project.", "east": -119.533333, "geometry": "POINT(-119.533333 -80.016667)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Antarctica; Firn Air Isotopes; Not provided; Nitrogen Isotopes; LABORATORY; Firn Isotopes; Paleoclimate; FIELD SURVEYS; Ice Core; Oxygen Isotope; FIELD INVESTIGATION; Siple Dome", "locations": "Antarctica; Siple Dome", "north": -80.016667, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -80.016667, "title": "Nitrogen and oxygen gas isotopes in the Siple Dome and Byrd ice cores", "uid": "p0000450", "west": -119.533333}, {"awards": "0122520 Gogineni, S. Prasad", "bounds_geometry": "POLYGON((-110 -62,-105 -62,-100 -62,-95 -62,-90 -62,-85 -62,-80 -62,-75 -62,-70 -62,-65 -62,-60 -62,-60 -63.5,-60 -65,-60 -66.5,-60 -68,-60 -69.5,-60 -71,-60 -72.5,-60 -74,-60 -75.5,-60 -77,-65 -77,-70 -77,-75 -77,-80 -77,-85 -77,-90 -77,-95 -77,-100 -77,-105 -77,-110 -77,-110 -75.5,-110 -74,-110 -72.5,-110 -71,-110 -69.5,-110 -68,-110 -66.5,-110 -65,-110 -63.5,-110 -62))", "dataset_titles": "Antarctic Radar Echograms and Derived Ice Thickness Data from CReSIS", "datasets": [{"dataset_uid": "609414", "doi": "", "keywords": "Airborne Radar; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Radar", "people": "Gogineni, Prasad", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Radar Echograms and Derived Ice Thickness Data from CReSIS", "url": "https://www.usap-dc.org/view/dataset/609414"}], "date_created": "Wed, 01 Jul 2009 00:00:00 GMT", "description": "0122520\u003cbr/\u003eGogineni\u003cbr/\u003e\u003cbr/\u003eSea level has been rising over the last century. Although the immediate impact of sea level rise may be less severe than other effects of global climate change, the long-term consequences can be much more devastating since nearly 60% of the world population lives in coastal regions. Scientists have postulated that excess water is being released from polar ice sheets due to long-term, global climate change, but there are insufficient data to confirm these theories. Understanding the interactions between the ice sheets, oceans and atmosphere is essential to quantifying the role of ice sheets in sea level rise. Toward that end, this research project involves the innovative application of information technology in the development and deployment of intelligent radar sensors for measuring key glaciological parameters. \u003cbr/\u003e\u003cbr/\u003eRadar instrumentation will consist of a synthetic aperture radar (SAR) that can operate in bistatic or monostatic mode. One important application of the SAR will be in the determination of basal conditions, particularly the presence and distribution of basal water. Basal water lubricates the ice/bed interface, enhancing flow, and increasing the amount of ice discharged into the ocean. Another application of the SAR will be to measure ice thickness and map internal layers in both shallow and deep ice. Information on near-surface internal layers will be used to estimate the average, recent accumulation rate, while the deeper layers provide a history of past accumulation and flow rates. A tracked vehicle and an automated snowmobile will be used to test and demonstrate the utility of an intelligent radar in glaciological investigations.\u003cbr/\u003e\u003cbr/\u003eThe system will be developed to collect, process and analyze data in real time and in conjunction with a priori information derived from archived sources. The combined real time and archived information will be used onboard the vehicles to select and generate an optimum sensor configuration. This project thus involves innovative research in intelligent systems, sounding radars and ice sheet modeling. In addition it has a very strong public outreach and education program, which include near-real-time image broadcasts via the world wide web", "east": -60.0, "geometry": "POINT(-85 -69.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e AIRSAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e IMAGING RADAR SYSTEMS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e SAR", "is_usap_dc": true, "keywords": "Radar Echo Sounding; Not provided; FIELD SURVEYS; Airborne Radar Sounding; Radar Echo Sounder; Antarctic Ice Sheet; LABORATORY; Antarctica; Ice Sheet Thickness; Antarctic; Ice Sheet; Synthetic Aperture Radar Imagery; Radar Altimetry; Ice Sheet Elevation; FIELD INVESTIGATION; Radar", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet", "north": -62.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Gogineni, Prasad", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "ITR/SI+AP: A Mobile Sensor Web for Polar Ice Sheet Measurements", "uid": "p0000583", "west": -110.0}, {"awards": "0739712 Staudigel, Hubertus", "bounds_geometry": "POLYGON((167.04 -77.51,167.067 -77.51,167.094 -77.51,167.121 -77.51,167.148 -77.51,167.175 -77.51,167.202 -77.51,167.229 -77.51,167.256 -77.51,167.283 -77.51,167.31 -77.51,167.31 -77.513,167.31 -77.516,167.31 -77.519,167.31 -77.522,167.31 -77.525,167.31 -77.528,167.31 -77.531,167.31 -77.534,167.31 -77.537,167.31 -77.54,167.283 -77.54,167.256 -77.54,167.229 -77.54,167.202 -77.54,167.175 -77.54,167.148 -77.54,167.121 -77.54,167.094 -77.54,167.067 -77.54,167.04 -77.54,167.04 -77.537,167.04 -77.534,167.04 -77.531,167.04 -77.528,167.04 -77.525,167.04 -77.522,167.04 -77.519,167.04 -77.516,167.04 -77.513,167.04 -77.51))", "dataset_titles": "Metagenome from fumarole sediments sampled from Warren Cave, Antarctica", "datasets": [{"dataset_uid": "000213", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Metagenome from fumarole sediments sampled from Warren Cave, Antarctica", "url": "http://www.ncbi.nlm.nih.gov/bioproject/PRJNA255918"}], "date_created": "Mon, 22 Jun 2009 00:00:00 GMT", "description": "This project studies the microbial processes that alter volcanic glass, which is critical to understanding the earliest life on earth. To understand the environmental controls on these processes, this project uses the extreme environments of the McMurdo region of Antarctica as a natural laboratory. Volcanic glass substrates are placed in hydrothermal systems, lakes, and other areas for two to four years to identify colonizing microbial consortia and the chemical processes of microbe-glass interaction. Recovered experiments are analyzed to explore the role of eukaryotic and prokaryotic organisms, and the relevance of autotrophs during colonization and biofilm formation using microscopic, molecular and culture techniques. \u003cbr/\u003e\u003cbr/\u003eThe broader impacts include graduate and undergraduate student participation in research and K-12 outreach and teacher training.", "east": 167.31, "geometry": "POINT(167.175 -77.525)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.51, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Staudigel, Hubertus", "platforms": "Not provided", "repo": "NCBI GenBank", "repositories": "NCBI GenBank", "science_programs": null, "south": -77.54, "title": "Collaborative Research: Microbially Mediated Alteration of Volcanic Glass using McMurdo Extreme Environments as Natural Laboratories", "uid": "p0000545", "west": 167.04}, {"awards": "9221598 Mopper, Kenneth", "bounds_geometry": null, "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002282", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9306"}], "date_created": "Fri, 19 Jun 2009 00:00:00 GMT", "description": "Decreases in stratospheric ozone over the Antarctic result in an increase in the ultraviolet radiation flux in the euphotic zone of the ocean. This increase may lead to cellular damage in aquatic organisms resulting in photo-inhibition and decreased productivity. Cellular damage can occur either intracellularly, or externally at the cell surface from biomolecular reactions with externally-generated reactive transient species. Extracellular damage will depend to a large degree on the photochemistry of the seawater surrounding the cell. To date, little is known about the photochemistry of the unique Antarctic waters. This project integrates a field and laboratory approach to obtain baseline information regarding the marine photochemistry of the euphotic zone in Antarctica waters as related to changes in ultraviolet radiation levels. In situ photochemical production rates and steady state concentrations of a suite of reactive species and dissolved organic matter degradation products as well as downwelling ultraviolet radiation will be measured. Additionally, flux by in situ chemical actinometry, action spectra for photochemical production of various reactive species and dissolved organic matter degradation products, and fluorescence and absorbance properties of dissolved organic matter will be determined. This information will serve as a basis for understanding and predicting the effects of ultraviolet radiation-induced marine photochemical processes on the productivity and ecology in the euphotic zone of the Antarctic Ocean.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Mopper, Kenneth; Neale, Patrick", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Photochemistry of Antarctic Waters in Repsonse to Changing Ultraviolet Radiation Fluxes", "uid": "p0000649", "west": null}, {"awards": "0538195 Marone, Chris", "bounds_geometry": "POLYGON((-147.75896 -61.77943,-147.758362 -61.77943,-147.757764 -61.77943,-147.757166 -61.77943,-147.756568 -61.77943,-147.75597 -61.77943,-147.755372 -61.77943,-147.754774 -61.77943,-147.754176 -61.77943,-147.753578 -61.77943,-147.75298 -61.77943,-147.75298 -61.779665,-147.75298 -61.7799,-147.75298 -61.780135,-147.75298 -61.78037,-147.75298 -61.780605,-147.75298 -61.78084,-147.75298 -61.781075,-147.75298 -61.78131,-147.75298 -61.781545,-147.75298 -61.78178,-147.753578 -61.78178,-147.754176 -61.78178,-147.754774 -61.78178,-147.755372 -61.78178,-147.75597 -61.78178,-147.756568 -61.78178,-147.757166 -61.78178,-147.757764 -61.78178,-147.758362 -61.78178,-147.75896 -61.78178,-147.75896 -61.781545,-147.75896 -61.78131,-147.75896 -61.781075,-147.75896 -61.78084,-147.75896 -61.780605,-147.75896 -61.78037,-147.75896 -61.780135,-147.75896 -61.7799,-147.75896 -61.779665,-147.75896 -61.77943))", "dataset_titles": "Laboratory Study of Stick-Slip Behavior and Deformation Mechanics of Subglacial Till", "datasets": [{"dataset_uid": "609460", "doi": "10.7265/N5WH2MX7", "keywords": "Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Shear Stress; Solid Earth; Strain", "people": "Marone, Chris; Anandakrishnan, Sridhar", "repository": "USAP-DC", "science_program": null, "title": "Laboratory Study of Stick-Slip Behavior and Deformation Mechanics of Subglacial Till", "url": "https://www.usap-dc.org/view/dataset/609460"}, {"dataset_uid": "600054", "doi": "10.15784/600054", "keywords": "Antarctica; Glacial Till; Glaciers/ice Sheet; Glaciers/Ice Sheet; Lab Experiment; Marine Sediments; Physical Properties; Solid Earth", "people": "Marone, Chris; Anandakrishnan, Sridhar", "repository": "USAP-DC", "science_program": null, "title": "Laboratory Study of Stick-Slip Behavior and Deformation Mechanics of Subglacial Till", "url": "https://www.usap-dc.org/view/dataset/600054"}], "date_created": "Thu, 18 Jun 2009 00:00:00 GMT", "description": "0538195\u003cbr/\u003eMarone\u003cbr/\u003eThis award supports a project to conduct laboratory experiments and numerical modeling to determine the constitutive properties of subglacial till under dynamic stressing and to test the hypothesis that granular properties of till are sufficient, when coupled elastically to a large ice stream, to reproduce the field observations of triggered slip and subglacial seismicity. Testing will be carried out in a servo-controlled biaxial shear device under controlled temperature and stress conditions, which will allow both sliding and microstructural processes to be studied in detail. The main focus of the work will be on laboratory measurements. In addition, we will construct continuum models to evaluate whether our results can predict complex ice sheet motions and observed characteristics of subglacial seismicity. In terms of broader impacts, the proposed work will encourage interactions between the rock-mechanics and glaciology communities and will bring together members of different scientific backgrounds and vocabularies, but similar problems and data. The project will train undergraduate and graduate students at Penn State University and the scientists involved plan to give presentations to grade school classes, scout groups, and at community open houses. Results will be presented at professional meetings and will be published in a timely manner. The work will result in a better understanding of glacial motion and the physics of earthquake slip, which is essential for understanding ice sheet dynamics and earthquake hazard.", "east": -147.75298, "geometry": "POINT(-147.75597 -61.780605)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE TRANSDUCERS", "is_usap_dc": true, "keywords": "Subglacial Observations; Laboratory Investigation; LABORATORY; Subglacial", "locations": null, "north": -61.77943, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Marone, Chris; Anandakrishnan, Sridhar", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -61.78178, "title": "Laboratory Study of Stick-Slip Behavior and Deformation Mechanics of Subglacial Till", "uid": "p0000554", "west": -147.75896}, {"awards": "0636269 Harpp, Karen", "bounds_geometry": "POLYGON((161.55 -77.50314,161.5883 -77.50314,161.6266 -77.50314,161.66490000000002 -77.50314,161.7032 -77.50314,161.7415 -77.50314,161.7798 -77.50314,161.8181 -77.50314,161.8564 -77.50314,161.8947 -77.50314,161.933 -77.50314,161.933 -77.507124,161.933 -77.51110800000001,161.933 -77.515092,161.933 -77.519076,161.933 -77.52306,161.933 -77.527044,161.933 -77.531028,161.933 -77.535012,161.933 -77.538996,161.933 -77.54298,161.8947 -77.54298,161.8564 -77.54298,161.8181 -77.54298,161.7798 -77.54298,161.7415 -77.54298,161.7032 -77.54298,161.66490000000002 -77.54298,161.6266 -77.54298,161.5883 -77.54298,161.55 -77.54298,161.55 -77.538996,161.55 -77.535012,161.55 -77.531028,161.55 -77.527044,161.55 -77.52306,161.55 -77.519076,161.55 -77.515092,161.55 -77.51110800000001,161.55 -77.507124,161.55 -77.50314))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 03 Jun 2009 00:00:00 GMT", "description": "This project is a field and laboratory based investigation of the Vanda dike swarm in the Dry Valleys of Antarctica. These dikes crosscut Cambro-Ordovician granitoid plutons produced during the Ross Orogeny, and mark the transition between the cessation of subduction and the onset of extensional magmatism. Many dying convergent plate margins convert to extensional magmatism, and the Dry Valleys provide a magnificent opportunity to examine the shallow roots of a plate that experienced this transition. Because of their exceptional exposure, bimodal felsic and mafic compositions, and complex field relations, the Vanda dikes have the potential to reveal insights into this important phase of Antarctic tectonic history. \u003cbr/\u003eThe broader impacts include collaboration between a primarily undergraduate and two research institutions, and support for undergraduate participation in an exciting, field-based research project.", "east": 161.933, "geometry": "POINT(161.7415 -77.52306)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.50314, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Harpp, Karen", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -77.54298, "title": "Collaborative Research, RUI: The Transition from Subduction to Extensional Magmatism in the Dry Valleys of Antarctica", "uid": "p0000546", "west": 161.55}, {"awards": "9814810 Bales, Roger", "bounds_geometry": "POLYGON((-124 -76,-120 -76,-116 -76,-112 -76,-108 -76,-104 -76,-100 -76,-96 -76,-92 -76,-88 -76,-84 -76,-84 -77.4,-84 -78.8,-84 -80.2,-84 -81.6,-84 -83,-84 -84.4,-84 -85.8,-84 -87.2,-84 -88.6,-84 -90,-88 -90,-92 -90,-96 -90,-100 -90,-104 -90,-108 -90,-112 -90,-116 -90,-120 -90,-124 -90,-124 -88.6,-124 -87.2,-124 -85.8,-124 -84.4,-124 -83,-124 -81.6,-124 -80.2,-124 -78.8,-124 -77.4,-124 -76))", "dataset_titles": "Atmospheric Mixing Ratios of Hydroperoxides above the West Antarctic Ice Sheet; Twenty-Three Century-scale Ice Core Records of Hydrogen Peroxide (H2O2) from West Antarctica", "datasets": [{"dataset_uid": "609392", "doi": "10.7265/N5TM7826", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; WAIS", "people": "Frey, Markus; Bales, Roger; McConnell, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Twenty-Three Century-scale Ice Core Records of Hydrogen Peroxide (H2O2) from West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609392"}, {"dataset_uid": "609394", "doi": "10.7265/N5PZ56RS", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; ITASE; WAIS", "people": "Bales, Roger; Frey, Markus; McConnell, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Atmospheric Mixing Ratios of Hydroperoxides above the West Antarctic Ice Sheet", "url": "https://www.usap-dc.org/view/dataset/609394"}], "date_created": "Mon, 01 Jun 2009 00:00:00 GMT", "description": "This award supports a project to improve understanding of atmospheric photochemistry over West Antarctica, as recorded in snow, firn and ice. Atmospheric and firn sampling will be undertaken as part of the U.S. International Trans-Antarctic Scientific Expedition (US ITASE) traverses. Measurements of hydrogen peroxide (H2O2) and formaldehyde (HCHO) will be made on these samples and a recently developed, physically based atmosphere-to-snow transfer model will be used to relate photochemical model estimates of these components to the concentrations of these parameters in the atmosphere and snow. The efficiency of atmosphere-to-snow transfer and the preservation of these components is strongly related to the rate and timing of snow accumulation. This information will be obtained by analyzing the concentration of seasonally dependent species such as hydrogen peroxide, nitric acid and stable isotopes of oxygen. Collection of samples along the US ITASE traverses will allow sampling at a wide variety of locations, reflecting both a number of different depositional environments and covering much of the West Antarctic region.", "east": -84.0, "geometry": "POINT(-104 -83)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUORESCENCE SPECTROSCOPY; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS SENSORS", "is_usap_dc": true, "keywords": "Ice Core; Ice Core Chemistry; FIELD INVESTIGATION; FIELD SURVEYS; Antarctica; West Antarctica; Antarctic; LABORATORY; Ice Core Gas Records; Not provided; Ice Core Data; Polar Firn Air; Hydrogen Peroxide; West Antarctic Ice Sheet; Shallow Firn Air; US ITASE; Antarctic Ice Sheet; Snow Chemistry", "locations": "Antarctica; West Antarctica; Antarctic; Antarctic Ice Sheet; West Antarctic Ice Sheet", "north": -76.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Bales, Roger; Frey, Markus; McConnell, Joseph", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Hydrogen Peroxide, Formaldehyde, and Sub-Annual Snow Accumulation in West Antarctica: Participation in West Antarctic Traverse", "uid": "p0000253", "west": -124.0}, {"awards": "0739702 Head, James", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 14 May 2009 00:00:00 GMT", "description": "Abstract\u003cbr/\u003e\u003cbr/\u003eThis project uses Aster and Hyperion remote sensing data combined with field observations and laboratory analysis to map soils in the McMurdo Dry Valleys of Antarctica. The goal is to use mineral abundances, compositions, and spatial heterogeneities to investigate the connections between microclimate and surface characteristics. The valleys are one of the most unique landscapes on earth. The outcomes will be relevant to understanding their geologic, biologic, and climactic history, and offer insight into the Martian landscape. The main broader impacts are graduate education and curriculum development involving K12 teachers.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Wyatt, Michael", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -90.0, "title": "Orbital Spectral Mapping of Surface Compositions in the Antarctic Dry Valleys: Regional Distributions of Secondary Mineral-Phases as Climate Indicators", "uid": "p0000549", "west": -180.0}, {"awards": "0440478 Tang, Kam", "bounds_geometry": "POINT(166.66267 -77.85067)", "dataset_titles": "Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial Forms of Phaeocystis Antarctica", "datasets": [{"dataset_uid": "600043", "doi": "10.15784/600043", "keywords": "Biota; McMurdo Sound; Oceans; Phytoplankton; Ross Sea; Southern Ocean; Zooplankton", "people": "Tang, Kam; Smith, Walker", "repository": "USAP-DC", "science_program": null, "title": "Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial Forms of Phaeocystis Antarctica", "url": "https://www.usap-dc.org/view/dataset/600043"}], "date_created": "Mon, 04 May 2009 00:00:00 GMT", "description": "Phaeocystis Antarctica is a widely distributed phytoplankton that forms dense blooms and aggregates in the Southern Ocean. This phytoplankton and plays important roles in polar ecology and biogeochemistry, in part because it is a dominant primary producer, a main component of organic matter vertical fluxes, and the principal producer of volatile organic sulfur in the region. Yet P. Antarctica is also one of the lesser known species in terms of its physiology, life history and trophic relationships with other organisms; furthermore, information collected on other Phaeocystis species and from different locations may not be applicable to P. Antarctica in the Ross Sea. P. Antarctica occurs mainly as two morphotypes: solitary cells and mucilaginous colonies, which differ significantly in size, architecture and chemical composition. Relative dominance between solitary cells and colonies determines not only the size spectrum of the population, but also its carbon dynamics, nutrient uptake and utilization. Conventional thinking of the planktonic trophic processes is also challenged by the fact that colony formation could effectively alter the predator-prey interactions and interspecific competition. However, the factors that regulate the differences between solitary and colonial forms of P. Antarctica are not well-understood. The research objective of this proposal is therefore to address these over-arching questions:\u003cbr/\u003eo Do P. Antarctica solitary cells and colonies differ in growth, composition and\u003cbr/\u003ephotosynthetic rates?\u003cbr/\u003eo How do nutrients and grazers affect colony development and size distribution of P. \u003cbr/\u003eAntarctica?\u003cbr/\u003eo How do nutrients and grazers act synergistically to affect the long-term population\u003cbr/\u003edynamics of P. Antarctica? Experiments will be conducted in the McMurdo station with natural P. Antarctica assemblages and co-occurring grazers. Laboratory experiments will be conducted to study size-specific growth and photosynthetic rates of P. Antarctica, size-specific grazing mortality due to microzooplankton and mesozooplankton, the effects of macronutrients on the (nitrogen compounds) relative dominance of solitary cells and colonies, and the effects of micronutrient (Fe) and grazing related chemical signals on P. Antarctica colony development. Because this species is of critical importance in the Southern Ocean, and because this research will provide critical information on factors that regulate the role of P.Antarctica in food webs and biogeochemical cycles, a major gap in knowledge will be addressed. This project will train two marine science PhD students. The investigators will also collaborate with the School of Education and a marine science museum to communicate polar science to a broader audience.", "east": 166.66267, "geometry": "POINT(166.66267 -77.85067)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.85067, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Tang, Kam; Smith, Walker", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.85067, "title": "Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial forms of Phaeocystis antarctica", "uid": "p0000214", "west": 166.66267}, {"awards": "0636850 Dalziel, Ian", "bounds_geometry": "POLYGON((-70 -52,-66.5 -52,-63 -52,-59.5 -52,-56 -52,-52.5 -52,-49 -52,-45.5 -52,-42 -52,-38.5 -52,-35 -52,-35 -53,-35 -54,-35 -55,-35 -56,-35 -57,-35 -58,-35 -59,-35 -60,-35 -61,-35 -62,-38.5 -62,-42 -62,-45.5 -62,-49 -62,-52.5 -62,-56 -62,-59.5 -62,-63 -62,-66.5 -62,-70 -62,-70 -61,-70 -60,-70 -59,-70 -58,-70 -57,-70 -56,-70 -55,-70 -54,-70 -53,-70 -52))", "dataset_titles": "Expedition Data; NBP0805", "datasets": [{"dataset_uid": "001510", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0805"}, {"dataset_uid": "000139", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP0805", "url": "https://www.rvdata.us/search/cruise/NBP0805"}], "date_created": "Wed, 15 Apr 2009 00:00:00 GMT", "description": "This project studies the opening of the Drake Passage between South America and Antarctica through a combined marine geophysical survey and geochemical study of dredged ocean floor basalts. Dating the passage\u0027s opening is key to understanding the formation of the circum-Antarctic current, which plays a major role in worldwide ocean circulation, and whose formation is connected with growth of the Antarctic ice sheet. Dredge samples will undergo various geochemical studies to determine their age and constrain mantle flow beneath the region. \u003cbr/\u003e\u003cbr/\u003eBroader impacts include support for graduate education, as well as undergraduate and K12 teacher involvement in a research cruise. The project also involves international collaboration with the UK and is part of IPY Project #77: Plates\u0026Gates, which aims to reconstruct the geologic history of polar ocean basins and gateways for computer simulations of climate change. See http://www.ipy.org/index.php?/ipy/detail/plates_gates/ for more information.", "east": -35.0, "geometry": "POINT(-52.5 -57)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": true, "keywords": "R/V NBP; Not provided", "locations": null, "north": -52.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Lawver, Lawrence; Dalziel, Ian W.", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -62.0, "title": "Central Scotia Seafloor and the Drake Passage Deep Ocean Current Gateway", "uid": "p0000208", "west": -70.0}, {"awards": "0228842 Grew, Edward", "bounds_geometry": "POLYGON((76 -69.3,76.05 -69.3,76.1 -69.3,76.15 -69.3,76.2 -69.3,76.25 -69.3,76.3 -69.3,76.35 -69.3,76.4 -69.3,76.45 -69.3,76.5 -69.3,76.5 -69.32,76.5 -69.34,76.5 -69.36,76.5 -69.38,76.5 -69.4,76.5 -69.42,76.5 -69.44,76.5 -69.46,76.5 -69.48,76.5 -69.5,76.45 -69.5,76.4 -69.5,76.35 -69.5,76.3 -69.5,76.25 -69.5,76.2 -69.5,76.15 -69.5,76.1 -69.5,76.05 -69.5,76 -69.5,76 -69.48,76 -69.46,76 -69.44,76 -69.42,76 -69.4,76 -69.38,76 -69.36,76 -69.34,76 -69.32,76 -69.3))", "dataset_titles": "Boron in Antarctic granulite-facies rocks: under what conditions is boron retained in the middle crust?", "datasets": [{"dataset_uid": "600030", "doi": "10.15784/600030", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Geochronology; Solid Earth", "people": "Grew, Edward", "repository": "USAP-DC", "science_program": null, "title": "Boron in Antarctic granulite-facies rocks: under what conditions is boron retained in the middle crust?", "url": "https://www.usap-dc.org/view/dataset/600030"}], "date_created": "Tue, 10 Mar 2009 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the role and fate of Boron in high-grade metamorphic rocks of the Larsemann Hills region of Antarctica. Trace elements provide valuable information on the changes sedimentary rocks undergo as temperature and pressure increase during burial. One such element, boron, is particularly sensitive to increasing temperature because of its affinity for aqueous fluids, which are lost as rocks are buried. Boron contents of unmetamorphosed pelitic sediments range from 20 to over 200 parts per million, but rarely exceed 5 parts per million in rocks subjected to conditions of the middle and lower crust, that is, temperatures of 700 degrees C or more in the granulite-facies, which is characterized by very low water activities at pressures of 5 to 10 kbar (18-35 km burial). Devolatization reactions with loss of aqueous fluid and partial melting with removal of melt have been cited as primary causes for boron depletion under granulite-facies conditions. Despite the pervasiveness of both these processes, rocks rich in boron are locally found in the granulite-facies, that is, there are mechanisms for retaining boron during the metamorphic process. The Larsemann Hills, Prydz Bay, Antarctica, are a prime example. More than 20 lenses and layered bodies containing four borosilicate mineral species crop out over a 50 square kilometer area, which thus would be well suited for research on boron-rich granulite-facies metamorphic rocks. \u003cbr/\u003e\u003cbr/\u003eWhile most investigators have focused on the causes for loss of boron, this work will investigate how boron is retained during high-grade metamorphism. Field observations and mapping in the Larsemann Hills, chemical analyses of minerals and their host rocks, and microprobe age dating will be used to identify possible precursors and deduce how the precursor materials recrystallized into borosilicate rocks under granulite-facies conditions. The working hypothesis is that high initial boron content facilitates retention of boron during metamorphism because above a certain threshold boron content, a mechanism \"kicks in\" that facilitates retention of boron in metamorphosed rocks. For example, in a rock with large amounts of the borosilicate tourmaline, such as stratabound tourmalinite, the breakdown of tourmaline to melt could result in the formation of prismatine and grandidierite, two borosilicates found in the Larsemann Hills. This situation is rarely observed in rocks with modest boron content, in which breakdown of tourmaline releases boron into partial melts, which in turn remove boron when they leave the system. Stratabound tourmalinite is associated with manganese-rich quartzite, phosphorus-rich rocks and sulfide concentrations that could be diagnostic for recognizing a tourmalinite protolith in a highly metamorphosed complex where sedimentary features have been destroyed by deformation. Because partial melting plays an important role in the fate of boron during metamorphism, our field and laboratory research will focus on the relationship between the borosilicate units, granite pegmatites and other granitic intrusives. The results of our study will provide information on cycling of boron at deeper levels in the Earth\u0027s crust and on possible sources of boron for granites originating from deep-seated rocks.\u003cbr/\u003e\u003cbr/\u003eAn undergraduate student will participate in the electron microprobe age-dating of monazite and xenotime as part of a senior project, thereby integrating the proposed research into the educational mission of the University of Maine. In response to a proposal for fieldwork, the Australian Antarctic Division, which maintains Davis station near the Larsemann Hills, has indicated that they will support the Antarctic fieldwork.", "east": 76.5, "geometry": "POINT(76.25 -69.4)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION", "locations": null, "north": -69.3, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Grew, Edward", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -69.5, "title": "Boron in Antarctic granulite-facies rocks: under what conditions is boron retained in the middle crust?", "uid": "p0000431", "west": 76.0}, {"awards": "9911617 Blankenship, Donald; 9319379 Blankenship, Donald", "bounds_geometry": null, "dataset_titles": "Antarctic Aerogeophysics Data; Antarctic Subglacial Lake Classification Inventory; RBG - Robb Glacier Survey; SOAR-Lake Vostok Survey airborne radar data; SOAR-Lake Vostok Survey bed elevation data; SOAR-Lake Vostok Survey Gravity data; SOAR-Lake Vostok Survey ice thickness data; SOAR-Lake Vostok survey magnetic anomaly data; SOAR-Lake Vostok Survey surface elevation data", "datasets": [{"dataset_uid": "601295", "doi": "10.1594/IEDA/306563", "keywords": "Airborne Gravity; Airplane; Antarctica; East Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Lake Vostok; Potential Field; Solid Earth", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey Gravity data", "url": "https://www.usap-dc.org/view/dataset/601295"}, {"dataset_uid": "601296", "doi": " 10.1594/IEDA/306564", "keywords": "Airborne Magnetic; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Lake Vostok; Magnetic; Magnetic Anomaly; Magnetometer; Potential Field; SOAR; Solid Earth", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok survey magnetic anomaly data", "url": "https://www.usap-dc.org/view/dataset/601296"}, {"dataset_uid": "601300", "doi": "10.1594/IEDA/306568", "keywords": "Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Lake Vostok; Navigation; Radar; SOAR; Subglacial Lakes", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey airborne radar data", "url": "https://www.usap-dc.org/view/dataset/601300"}, {"dataset_uid": "601604", "doi": "10.15784/601604", "keywords": "Airborne Radar; Antarctica; Bed Elevation; Geophysics; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Surface Elevation; Ice Thickness; Robb Glacier; Transantarctic Mountains", "people": "Bell, Robin; Buck, W. Roger; Young, Duncan A.; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": null, "title": "RBG - Robb Glacier Survey", "url": "https://www.usap-dc.org/view/dataset/601604"}, {"dataset_uid": "601297", "doi": "10.1594/IEDA/306567", "keywords": "Airborne Laser Altimeters; Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Sheet; Ice Stratigraphy; Ice Thickness; Ice Thickness Distribution; Lake Vostok; Radar; Radar Altimetry; Radar Echo Sounder; SOAR; Subglacial Lake", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey ice thickness data", "url": "https://www.usap-dc.org/view/dataset/601297"}, {"dataset_uid": "601298", "doi": "10.1594/IEDA/306566", "keywords": "Airborne Altimetry; Airborne Laser Altimeters; Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Ice Sheet Elevation; Ice Surface; Lake Vostok; Radar Echo Sounder; SOAR; Surface Elevation", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey surface elevation data", "url": "https://www.usap-dc.org/view/dataset/601298"}, {"dataset_uid": "609240", "doi": "", "keywords": "Airborne Radar; Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Navigation; Potential Field; SOAR; Solid Earth", "people": "Morse, David L.; Blankenship, Donald D.; Holt, John W.; Dalziel, Ian W.", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Aerogeophysics Data", "url": "https://www.usap-dc.org/view/dataset/609240"}, {"dataset_uid": "601299", "doi": "10.1594/IEDA/306565", "keywords": "Airborne Laser Altimeters; Airborne Laser Altimetry; Airborne Radar; Airplane; Antarctica; Bed Elevation; Bedrock Elevation; Digital Elevation Model; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Lake Vostok; Radar; Radar Echo Sounder; SOAR", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey bed elevation data", "url": "https://www.usap-dc.org/view/dataset/601299"}, {"dataset_uid": "609336", "doi": "10.7265/N5CN71VX", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Subglacial Lake", "people": "Holt, John W.; Carter, Sasha P.; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Subglacial Lake Classification Inventory", "url": "https://www.usap-dc.org/view/dataset/609336"}], "date_created": "Fri, 06 Feb 2009 00:00:00 GMT", "description": "9911617 Blankenship This award, provided jointly by the Antarctic Geology and Geophysics Program, the Antarctic Glaciology Program, and the Polar Research Support Section of the Office of Polar Programs, provides funds for continuation of the Support Office for Aerogeophysical Research (SOAR). From July 1994 to July 2000, SOAR served as a facility to accomplish aerogeophysical research in Antarctica under an agreement between the University of Texas at Austin and the National Science Foundation\u0027s Office of Polar Programs (NSF/OPP). SOAR operated and maintained an aerogeophysical instrument package that consists of an ice-penetrating radar sounder, a laser altimeter, a gravimeter and a magnetometer that are tightly integrated with each other as well as with the aircraft\u0027s avionics and power packages. An array of aircraft and ground-based GPS receivers supported kinematic differential positioning using carrier-phase observations. SOAR activities included: developing aerogeophysical research projects with NSF/OPP investigators; upgrading of the aerogeophysical instrumentation package to accommodate new science projects and advances in technology; fielding this instrument package to accomplish SOAR-developed projects; and management, reduction, and analysis of the acquired aerogeophysical data. In pursuit of 9 NSF-OPP funded aerogeophysical research projects (involving 14 investigators from 9 institutions), SOAR carried out six field campaigns over a six-year period and accomplished approximately 200,000 line kilometers of aerogeophysical surveying over both East and West Antarctica in 377 flights. This award supports SOAR to undertake a one year and 8 month program of aerogeophysical activities that are consistent with continuing U.S. support for geophysical research in Antarctica. - SOAR will conduct an aerogeophysical campaign during the 200/01 austral summer to accomplish surveys for two SOAR-developed projects: \"Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Studies\" (Co-PI\u0027s Bell and Studinger, LDEO); and \"Collaborative Research: Seismic Investigation of the Deep Continental Structure Across the East-West Antarctic Boundary\" (Co-PI\u0027s Weins, Washington U. and Anandakrishnan, U. Alabama). After configuration and testing of the survey aircraft in McMurdo, SOAR will conduct survey flights from an NSF-supported base adjacent to the Russian Station above Lake Vostok and briefly occupy one or two remote bases on the East Antarctic ice sheet. - SOAR will reduce these aerogeophysical data and produce profiles and maps of surface elevation, bed elevation, gravity and magnetic field intensity. These results will be provided to the respective project investigators within nine months of conclusion of field activities. We will also submit a technical manuscript that describes these results to a refereed scientific journal and distribute these results to appropriate national geophysical data centers within approximately 24 months of completion of field activities. - SOAR will standardize all previously reduced SOAR data products and transfer them to the appropriate national geophysical data centers by the end of this grant. - SOAR will convene a workshop to establish a community consensus for future U.S. Antarctic aerogeophysical research. This workshop will be co-convened by Ian Dalziel and Richard Alley and will take place during the spring of 2001. - SOAR will upgrade the existing SOAR in-field quality control procedures to serve as a web-based interface for efficient browsing of many low-level SOAR data streams. - SOAR will repair and/or refurbish equipment that was used during the 2000/01 field campaign. Support for SOAR is essential for accomplishing major geophysical investigations in Antarctica. Following data interpretation by the science teams, these data will provide valuable insights to the structure and evolution of the Antarctic continent.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e IMAGING RADAR SYSTEMS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LIDAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e PROTON MAGNETOMETER", "is_usap_dc": true, "keywords": "Ice Sheet; Ice Sheet Elevation; Surface Winds; Snow Temperature; Atmospheric Pressure; Antarctic; West Antarctic Ice Sheet; Surface Temperature Measurements; FIELD INVESTIGATION; Surface Wind Speed Measurements; Subglacial Topography; Atmospheric Humidity Measurements; Not provided; Aerogeophysics; FIELD SURVEYS; GROUND STATIONS; Antarctica; SOAR; Snow Temperature Measurements; West Antarctica; Antarctic Ice Sheet; East Antarctic Plateau", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; West Antarctica; West Antarctic Ice Sheet; East Antarctic Plateau", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Carter, Sasha P.; Holt, John W.; Blankenship, Donald D.; Morse, David L.; Dalziel, Ian W.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR)", "uid": "p0000125", "west": null}, {"awards": "0440759 Sowers, Todd; 0440498 White, James; 0440602 Saltzman, Eric; 0440509 Battle, Mark; 0440701 Severinghaus, Jeffrey; 0440615 Brook, Edward J.", "bounds_geometry": "POINT(-112.085 -79.467)", "dataset_titles": "Gases in Firn Air and Shallow Ice at the WAIS Drilling Site, Antarctica; Ice Core Air Carbonyl Sulfide Measurements - SPRESSO Ice Core; Methane Isotopes from the WAIS Divide Ice Core; Surface Temperature Reconstruction from Borehole Temperature Measurement in WDC05A; WAIS ice core Methane Data, Carbon Dioxide Data", "datasets": [{"dataset_uid": "609493", "doi": "10.7265/N5319SV3", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Sowers, Todd A.; McConnell, Joseph; Brook, Edward J.; Mitchell, Logan E; Taylor, Kendrick C.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS ice core Methane Data, Carbon Dioxide Data", "url": "https://www.usap-dc.org/view/dataset/609493"}, {"dataset_uid": "609435", "doi": "10.7265/N5J67DW0", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Methane; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Sowers, Todd A.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Methane Isotopes from the WAIS Divide Ice Core", "url": "https://www.usap-dc.org/view/dataset/609435"}, {"dataset_uid": "609638", "doi": "10.7265/N56971HF", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Temperature; WAIS Divide; WAIS Divide Ice Core", "people": "Orsi, Anais J.; Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Surface Temperature Reconstruction from Borehole Temperature Measurement in WDC05A", "url": "https://www.usap-dc.org/view/dataset/609638"}, {"dataset_uid": "609412", "doi": "10.7265/N5251G40", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice; WAIS Divide; WAIS Divide Ice Core", "people": "Saltzman, Eric", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Gases in Firn Air and Shallow Ice at the WAIS Drilling Site, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609412"}, {"dataset_uid": "601357", "doi": "10.15784/601357", "keywords": "Antarctica; Atmospheric Gases; Gas Measurement; Ice Core; Ice Core Gas Records; Trace Gases", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Air Carbonyl Sulfide Measurements - SPRESSO Ice Core", "url": "https://www.usap-dc.org/view/dataset/601357"}], "date_created": "Tue, 03 Feb 2009 00:00:00 GMT", "description": "This award supports a project to measure the elemental and isotopic composition of firn air and occluded air in shallow boreholes and ice cores from the WAIS Divide site, the location of a deep ice-coring program planned for 2006-07 and subsequent seasons. The three primary objectives are: 1) to establish the nature of firn air movement and trapping at the site to aid interpretations of gas data from the deep core; 2) to expand the suite of atmospheric trace gas species that can be measured in ice and replicate existing records of other species; and 3) to inter-calibrate all collaborating labs to insure that compositional and isotopic data sets are inter-comparable. The program will be initiated with a shallow drilling program during the 05/06 field season which will recover two 300+m cores and firn air samples. The ice core and firn air will provide more than 700 years of atmospheric history that will be used to address a number of important questions related to atmospheric change over this time period. The research team consists of six US laboratories that also plan to participate in the deep core program. This collaborative research program has a number of advantages. First, the scientists will be able to coordinate sample allocation a priori to maximize the resolution and overlap of records of interrelated species. Second, sample registration will be exact, allowing direct comparison of all records. Third, a coherent data set will be produced at the same time and all PI.s will participate in interpreting and publishing the results. This will insure that the best possible understanding of gas records at the WAIS Divide site will be achieved, and that all work necessary to interpret the deep core is conducted in a timely fashion. The collaborative structure created by the proposal will encourage sharing of techniques, equipment, and ideas between the laboratories. The research will identify impacts of various industrial/agricultural activities and help to distinguish them from natural variations, and will include species for which there are no long records of anthropogenic impact. The work will also help to predict future atmospheric loadings. The project will contribute to training scientists at several levels, including seven undergraduates, two graduate students and one post doctoral fellow.", "east": -112.085, "geometry": "POINT(-112.085 -79.467)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GC-MS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e SPECTROMETERS \u003e SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e FLASKS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS", "is_usap_dc": true, "keywords": "Ice Core Chemistry; WAIS Divide; Firn; LABORATORY; Ice Core; Firn Air Isotope Measurements; Shallow Firn Air; FIELD INVESTIGATION; Ice Core Gas Records; GROUND-BASED OBSERVATIONS; Firn Isotopes; Wais Divide-project; Gas Data; Polar Firn Air; Not provided; Trace Gas Species; Trapped Gases; West Antarctic Ice Sheet; Deep Core; Ice Sheet; Gas; Firn Air Isotopes; FIELD SURVEYS; Air Samples; Atmospheric Gases; Isotope; Cores; Atmosphere; Ice Core Data; Surface Temperatures; Firn Air; Borehole; Antarctica", "locations": "West Antarctic Ice Sheet; Antarctica; WAIS Divide", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Battle, Mark; Mischler, John; Saltzman, Eric; Aydin, Murat; White, James; Brook, Edward J.; Orsi, Anais J.; Severinghaus, Jeffrey P.; Sowers, Todd A.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site", "uid": "p0000368", "west": -112.085}, {"awards": "0230276 Ward, Bess", "bounds_geometry": "POLYGON((162 -77.2,162.16 -77.2,162.32 -77.2,162.48 -77.2,162.64 -77.2,162.8 -77.2,162.96 -77.2,163.12 -77.2,163.28 -77.2,163.44 -77.2,163.6 -77.2,163.6 -77.26,163.6 -77.32,163.6 -77.38,163.6 -77.44,163.6 -77.5,163.6 -77.56,163.6 -77.62,163.6 -77.68,163.6 -77.74,163.6 -77.8,163.44 -77.8,163.28 -77.8,163.12 -77.8,162.96 -77.8,162.8 -77.8,162.64 -77.8,162.48 -77.8,162.32 -77.8,162.16 -77.8,162 -77.8,162 -77.74,162 -77.68,162 -77.62,162 -77.56,162 -77.5,162 -77.44,162 -77.38,162 -77.32,162 -77.26,162 -77.2))", "dataset_titles": "What Limits Denitrification and Bacterial Growth in Lake Bonney, Taylor Valley, Antarctica?", "datasets": [{"dataset_uid": "600033", "doi": "10.15784/600033", "keywords": "Antarctica; Biota; CTD Data; Dry Valleys; Lake Bonney; Lake Vanda; Microbiology; Taylor Valley", "people": "Ward, Bess", "repository": "USAP-DC", "science_program": null, "title": "What Limits Denitrification and Bacterial Growth in Lake Bonney, Taylor Valley, Antarctica?", "url": "https://www.usap-dc.org/view/dataset/600033"}], "date_created": "Sun, 18 Jan 2009 00:00:00 GMT", "description": "Denitrification is the main process by which fixed nitrogen is lost from ecosystems and the regulation of this process may directly affect primary production and carbon cycling over short and long time scales. Previous investigations of the role of bioactive metals in regulating denitrification in bacteria from permanently ice-covered Lake Bonney in the Taylor Valley of East Antarctica indicated that denitrifying bacteria can be negatively affected by metals such as copper, iron, cadmium, lead, chromium, nickel, silver and zinc; and that there is a distinct difference in denitrifying activity between the east and west lobes of the lake. Low iron concentrations were found to exacerbate the potential toxicity of the other metals, while silver has the potential to specifically inhibit denitrification because of its ability to interfere with copper binding in redox proteins, such as nitrite reductase and nitrous oxide reductase. High silver concentrations might prevent the functioning of nitrous oxide reductase in the same way that simple copper limitation does, thereby causing the buildup of nitrous oxide and resulting in a nonfunctional nitrogen cycle. Other factors, such as oxygen concentration, are likely also to affect bacterial activity in Lake Bonney. This project will investigate silver toxicity, general metal toxicity and oxygen concentration to determine their effect on denitrification in the lake by using a suite of \"sentinel\" strains of denitrifying bacteria (isolated from the lake) incubated in Lake Bonney water and subjected to various treatments. The physiological responses of these strains to changes in metal and oxygen concentration will be quantified by flow cytometric detection of single cell molecular probes whose sensitivity and interpretation have been optimized for the sentinel strains. Understanding the relationships between metals and denitrification is expected to enhance our understanding of not only Lake Bonney\u0027s unusual nitrogen cycle, but more generally, of the potential role of metals in the regulation of microbial nitrogen transformations.\u003cbr/\u003e\u003cbr/\u003eThe broader impacts of this work include not only a better understanding of regional biogeochemistry and global perspectives on these processes; but also the training of graduate students and a substantial outreach effort for school children.", "east": 163.6, "geometry": "POINT(162.8 -77.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD", "is_usap_dc": true, "keywords": "FIELD SURVEYS", "locations": null, "north": -77.2, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ward, Bess", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.8, "title": "Collaborative Research: What Limits Denitrification and Bacterial Growth in Lake Bonney, Taylor Valley, Antarctica?", "uid": "p0000223", "west": 162.0}, {"awards": "0444040 Zhou, Meng; 0443403 Measures, Christopher; 0230445 Measures, Christopher", "bounds_geometry": "POLYGON((-63 -60.3,-62 -60.3,-61 -60.3,-60 -60.3,-59 -60.3,-58 -60.3,-57 -60.3,-56 -60.3,-55 -60.3,-54 -60.3,-53 -60.3,-53 -60.77,-53 -61.24,-53 -61.71,-53 -62.18,-53 -62.65,-53 -63.12,-53 -63.59,-53 -64.06,-53 -64.53,-53 -65,-54 -65,-55 -65,-56 -65,-57 -65,-58 -65,-59 -65,-60 -65,-61 -65,-62 -65,-63 -65,-63 -64.53,-63 -64.06,-63 -63.59,-63 -63.12,-63 -62.65,-63 -62.18,-63 -61.71,-63 -61.24,-63 -60.77,-63 -60.3))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001663", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0402"}], "date_created": "Mon, 12 Jan 2009 00:00:00 GMT", "description": "The Shackleton Fracture Zone (SFZ) in the Drake Passage defines a boundary between low and high phytoplankton waters. West of Drake Passage, Southern Ocean waters south of the Polar Front and north of the Antarctic continent shelf have very low satellite-derived surface chlorophyll concentrations. Chlorophyll and mesoscale eddy kinetic energy are higher east of SFZ compared to values west of the ridge. In situ data from a 10-year survey of the region as part of the National Marine Fisheries Service\u0027s Antarctic Marine Living Resources program confirm the existence of a strong hydrographic and chlorophyll gradient in the region. An interdisciplinary team of scientists hypothesizes that bathymetry, including the 2000 m deep SFZ, influences mesoscale circulation and transport of iron leading to the observed phytoplankton patterns. To address this\u003cbr/\u003ehypothesis, the team proposes to examine phytoplankton and bacterial physiological states (including responses to iron enrichment) and structure of the plankton communities from virus to zooplankton, the concentration and distribution of Fe, Mn, and Al, and mesoscale flow patterns near the SFZ. Relationships between iron concentrations and phytoplankton characteristics will be examined in the context of the mesoscale transport of trace nutrients to determine how much of the observed variability in phytoplankton biomass can be attributed to iron supply, and to determine the most important sources of iron to pelagic waters east of the Drake Passage. The goal is to better understand how plankton productivity and community structure in the Southern Ocean are affected by the coupling between bathymetry, mesoscale circulation, and limiting nutrient distributions.\u003cbr/\u003e\u003cbr/\u003eThe research program includes rapid surface surveys of chemical, plankton, and hydrographic properties complemented by a mesoscale station grid for vertical profiles, water sampling, and bottle incubation enrichment experiments. Distributions of manganese and aluminum will be determined to help distinguish aeolian, continental shelf and upwelling sources of iron. The physiological state of the phytoplankton will be monitored by active fluorescence methods sensitive to the effects of iron limitation. Mass concentrations of pigment, carbon and nitrogen will be obtained by analysis of filtered samples, cell size distributions by flow cytometry, and species identification by microscopy. Primary production and photosynthesis parameters (absorption, quantum yields, variable fluorescence) will be measured on depth profiles, during surface surveys and on bulk samples from enrichment experiments. Viruses and bacteria will be examined for abundances, and bacterial production will be assessed in terms of whether it is limited by either iron or organic carbon sources. The proposed work will improve our understanding of processes controlling distributions of iron and the response of plankton communities in the Southern Ocean. This proposal also includes an outreach component comprised of Research Experiences for Undergraduates (REU), Teachers Experiencing the Antarctic and Arctic (TEA), and the creation of an educational website and K-12 curricular modules based on the project.", "east": -53.0, "geometry": "POINT(-58 -62.65)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": true, "keywords": "R/V LMG", "locations": null, "north": -60.3, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Measures, Christopher; Selph, Karen; Zhou, Meng", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.0, "title": "Collaborative Research: Plankton Community Structure and Iron Distribution in the Southern Drake Passage", "uid": "p0000585", "west": -63.0}, {"awards": "0538266 Castillo, Paterno", "bounds_geometry": "POLYGON((171.82 -69.84,171.987 -69.84,172.154 -69.84,172.321 -69.84,172.488 -69.84,172.655 -69.84,172.822 -69.84,172.989 -69.84,173.156 -69.84,173.323 -69.84,173.49 -69.84,173.49 -70.007,173.49 -70.174,173.49 -70.341,173.49 -70.508,173.49 -70.675,173.49 -70.842,173.49 -71.009,173.49 -71.176,173.49 -71.343,173.49 -71.51,173.323 -71.51,173.156 -71.51,172.989 -71.51,172.822 -71.51,172.655 -71.51,172.488 -71.51,172.321 -71.51,172.154 -71.51,171.987 -71.51,171.82 -71.51,171.82 -71.343,171.82 -71.176,171.82 -71.009,171.82 -70.842,171.82 -70.675,171.82 -70.508,171.82 -70.341,171.82 -70.174,171.82 -70.007,171.82 -69.84))", "dataset_titles": "Samples collected during NBP0701 cruise in the Ross Sea", "datasets": [{"dataset_uid": "000135", "doi": "", "keywords": null, "people": null, "repository": "EarthChem", "science_program": null, "title": "Samples collected during NBP0701 cruise in the Ross Sea", "url": "http://dx.doi.org/10.1594/IEDA/100055"}], "date_created": "Tue, 30 Dec 2008 00:00:00 GMT", "description": "This award supports the study of lava samples from seamounts in the Cape Adare region of the western Ross Sea. Volcanism in this area is poorly understood, and the geochemistry of these lavas may offer new insight into regional geodynamics and global mantle geochemistry. Because the Cape Adare seamounts are located on oceanic lithosphere, they may be free of the contamination that affects lavas erupted through continental areas. This one-year investigation will gather data on samples collected on a cruise to this region in 2007. It will determine seamount ages, characterize their mantle sources, assess models for their origin, and judge the potential for more detailed study. In terms of broader impacts, this project will involve graduate and undergraduate students in an exciting field expedition, followed by laboratory work using cutting-edge techniques for geochemical analyses.", "east": 173.49, "geometry": "POINT(172.655 -70.675)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -69.84, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Castillo, Paterno; Cande, Steven", "platforms": "Not provided", "repo": "EarthChem", "repositories": "EarthChem", "science_programs": null, "south": -71.51, "title": "Collaborative Research: Constraining the Petrogenesis and Mantle Source of Adare Basin Seamount Lavas", "uid": "p0000222", "west": 171.82}, {"awards": "0126057 Brook, Edward J.; 0512971 Brook, Edward J.", "bounds_geometry": null, "dataset_titles": "Antarctic and Greenland Climate Change Comparison; GISP2 (B and D Core) Methane Concentrations; GISP2 (D Core) Helium Isotopes from Interplanetary Dust; GISP2 (D Core) Methane Concentration Data; Siple Dome Methane Record", "datasets": [{"dataset_uid": "609125", "doi": "", "keywords": "Arctic; Chemistry:fluid; Chemistry:Fluid; Chemistry:ice; Chemistry:Ice; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenland; Ice Core Records; Methane; Paleoclimate", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "GISP2 (B and D Core) Methane Concentrations", "url": "https://www.usap-dc.org/view/dataset/609125"}, {"dataset_uid": "609361", "doi": "", "keywords": "Antarctica; Arctic; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Lake Vostok; Paleoclimate; Vostok Ice Core", "people": "Brook, Edward J.; Kurz, Mark D.", "repository": "USAP-DC", "science_program": null, "title": "GISP2 (D Core) Helium Isotopes from Interplanetary Dust", "url": "https://www.usap-dc.org/view/dataset/609361"}, {"dataset_uid": "609253", "doi": "", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Vostok Ice Core", "people": "Brook, Edward J.; Stauffer, Bernhard; Blunier, Thomas; Chappellaz, Jerome", "repository": "USAP-DC", "science_program": null, "title": "Antarctic and Greenland Climate Change Comparison", "url": "https://www.usap-dc.org/view/dataset/609253"}, {"dataset_uid": "609124", "doi": "10.7265/N5KH0K8R", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Siple Dome Methane Record", "url": "https://www.usap-dc.org/view/dataset/609124"}, {"dataset_uid": "609360", "doi": "", "keywords": "Antarctica; Arctic; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Methane; Paleoclimate; Taylor Dome", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "GISP2 (D Core) Methane Concentration Data", "url": "https://www.usap-dc.org/view/dataset/609360"}], "date_created": "Tue, 16 Dec 2008 00:00:00 GMT", "description": "This award supports work on trapped gases in Antarctic and other ice cores for paleoenvironmental and chronological purposes. The project will complete a ~ 100,000 year, high-resolution record of atmospheric methane from the Siple Dome ice core and use these data to construct a precise chronology for climate events recorded by the Siple Dome record. In addition, the resolution of the GISP2 (Greenland) ice core record will be increased in some critical intervals to help with the Siple Dome chronology and that of future ice cores. Finally, an upgrade to the analytical capabilities of the laboratory, including increasing precision and throughput and decreasing sample size needed for ice core methane measurements will be an important goal of this work. The proposed work will contribute to the understanding of the timing of rapid climate change in the Northern and Southern hemispheres during the last glacial period, the evolution of the global methane budget in the late Quaternary, and the late Quaternary climate history of Antarctica. It will also improve our ability to generate methane records for future ice coring projects, and inform and enrich the educational and outreach activities of our laboratory.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Isotope; Siple Coast; WAISCORES; GROUND-BASED OBSERVATIONS; Interplanetary Dust; FIELD SURVEYS; Not provided; Ice Sheet; Snow; GROUND STATIONS; Gas Measurement; Ice Core; Siple; Antarctica; Methane; Glaciology; Stratigraphy; Siple Dome", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Glaciology; Antarctic Organisms and Ecosystems; Antarctic Glaciology", "paleo_time": null, "persons": "Blunier, Thomas; Chappellaz, Jerome; Stauffer, Bernhard; Kurz, Mark D.; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change", "uid": "p0000034", "west": null}, {"awards": "0636953 Saltzman, Eric", "bounds_geometry": "POINT(-148.82 -81.66)", "dataset_titles": "Carbonyl Sulfide Measurements in the Taylor Dome M3C1 Ice Core; Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core; Methyl Bromide Measurements in the Taylor Dome M3C1 Ice Core; Methyl Chloride Measurements from the Siple Dome A Deep Core, Antarctica; Methyl Chloride Measurements in the Taylor Dome M3C1 Ice Core", "datasets": [{"dataset_uid": "609598", "doi": "10.7265/N5X0650D", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Taylor Dome; Taylor Dome Ice Core", "people": "Aydin, Murat; Saltzman, Eric", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Methyl Bromide Measurements in the Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/609598"}, {"dataset_uid": "609356", "doi": "10.7265/N56W9807", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Saltzman, Eric; Williams, Margaret; Aydin, Murat", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Methyl Chloride Measurements from the Siple Dome A Deep Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609356"}, {"dataset_uid": "609600", "doi": "10.7265/N5PG1PPB", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Taylor Dome; Taylor Dome Ice Core", "people": "Aydin, Murat; Saltzman, Eric", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Methyl Chloride Measurements in the Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/609600"}, {"dataset_uid": "601361", "doi": "10.15784/601361", "keywords": "Antarctica; Carbonyl Sulfide; Trace Gases", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/601361"}, {"dataset_uid": "609599", "doi": "10.7265/N5S75D8P", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Taylor Dome; Taylor Dome Ice Core", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Carbonyl Sulfide Measurements in the Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/609599"}], "date_created": "Wed, 22 Oct 2008 00:00:00 GMT", "description": "Saltzman/0636953\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to measure methyl chloride, methyl bromide, and carbonyl sulfide in air extracted from Antarctic ice cores. Previous measurements in firn air and shallow ice cores suggest that the ice archive contains paleo-atmospheric signals for these gases. The goal of this study is to extend these records throughout the Holocene and into the last Glacial period to examine the behavior of these trace gases over longer time scales and a wider range of climatic conditions. These studies are exploratory, and both the stability of these trace gases and the extent to which they may be impacted by in situ processes will be assessed. This project will involve sampling and analyzing archived ice core samples from the Siple Dome, Taylor Dome, Byrd, and Vostok ice cores. The ice core samples will be analyzed by dry extraction, with gas chromatography/mass spectrometry with isotope dilution. The ice core measurements will generate new information about the range of natural variability of these trace gases in the atmosphere. The intellectual merit of this project is that this work will provide an improved basis for assessing the impact of anthropogenic activities on biogeochemical cycles, and new insight into the climatic sensitivity of the biogeochemical processes controlling atmospheric composition. The broader impact of this project is that there is a strong societal interest in understanding how man\u0027s activities impact the atmosphere, and how atmospheric chemistry may be altered by future climate change. The results of this study will contribute to the development of scenarios used for future projections of stratospheric ozone and climate change. In terms of human development, this project will support the doctoral dissertation of a graduate student in Earth System Science, and undergraduate research on polar ice core chemistry. This project will also contribute to the development of an Earth Sciences teacher training curriculum for high school teachers in the Orange County school system in collaboration with an established, NSF-sponsored Math and Science Partnership program (FOCUS).", "east": -148.82, "geometry": "POINT(-148.82 -81.66)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Antarctica; Methyl Bromide; Antarctic; Ice Core Gas Records; Ice Core Data; Carbonyl Sulfide; Methyl Chloride; Antarctic Ice Sheet; Siple Dome; Trace Gases; Ice Core Chemistry; Biogeochemical; Atmospheric Chemistry; West Antarctic Ice Sheet; LABORATORY; Ice Core; West Antarctica", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; Siple Dome; West Antarctica; West Antarctic Ice Sheet", "north": -81.66, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Saltzman, Eric; Aydin, Murat; Williams, Margaret", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core; Siple Dome Ice Core", "south": -81.66, "title": "Methyl Chloride, Methyl Bromide, and Carbonyl Sulfide in Deep Antarctic Ice Cores", "uid": "p0000042", "west": -148.82}, {"awards": "0228052 Kreutz, Karl", "bounds_geometry": "POLYGON((161.0434 -77.3002,161.241645 -77.3002,161.43989 -77.3002,161.638135 -77.3002,161.83638 -77.3002,162.034625 -77.3002,162.23287 -77.3002,162.431115 -77.3002,162.62936 -77.3002,162.827605 -77.3002,163.02585 -77.3002,163.02585 -77.3784846,163.02585 -77.4567692,163.02585 -77.5350538,163.02585 -77.6133384,163.02585 -77.691623,163.02585 -77.7699076,163.02585 -77.8481922,163.02585 -77.9264768,163.02585 -78.0047614,163.02585 -78.083046,162.827605 -78.083046,162.62936 -78.083046,162.431115 -78.083046,162.23287 -78.083046,162.034625 -78.083046,161.83638 -78.083046,161.638135 -78.083046,161.43989 -78.083046,161.241645 -78.083046,161.0434 -78.083046,161.0434 -78.0047614,161.0434 -77.9264768,161.0434 -77.8481922,161.0434 -77.7699076,161.0434 -77.691623,161.0434 -77.6133384,161.0434 -77.5350538,161.0434 -77.4567692,161.0434 -77.3784846,161.0434 -77.3002))", "dataset_titles": "Late Holocene Climate Variability, Dry Valleys, Antarctica", "datasets": [{"dataset_uid": "609399", "doi": "10.7265/N5FF3Q92", "keywords": "Antarctica; Borehole Temperature; Chemistry:ice; Chemistry:Ice; Dry Valleys; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Mass Balance; Paleoclimate; Physical Properties", "people": "Mayewski, Paul A.; Kreutz, Karl", "repository": "USAP-DC", "science_program": null, "title": "Late Holocene Climate Variability, Dry Valleys, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609399"}], "date_created": "Tue, 21 Oct 2008 00:00:00 GMT", "description": "This award supports a project to collect and develop high-resolution ice core records from the Dry Valleys region of Antarctica, and provide interpretations of interannual to decadal-scale climate variability during the last 2000 years (late Holocene). The project will test hypotheses related to ocean/atmosphere teleconnections (e.g., El Nino Southern Oscillation, Antarctic Oscillation) that may be responsible for major late Holocene climate events such as the Little Ice Age in the Southern Hemisphere. Conceptual and quantitative models of these processes in the Dry Valleys during the late Holocene are critical for understanding recent climate changes, and represent the main scientific merit of the project. We plan to collect intermediate-length ice cores (100-200m) at four sites along transects in Taylor Valley and Wright Valley, and analyze each core at high resolution for stable isotopes (d18O, dD), major ions (Na+, Mg2+, Ca2+, K+, NH4+, Cl-, NO3-, SO42-, MSA), and trace elements (Al, Fe, S, Sr, B). A suite of statistical techniques will be applied to the multivariate glaciochemical dataset to identify chemical associations and to calibrate the time-series records with available instrumental data. Broader impacts of the project include: 1) contributions to several ongoing interdisciplinary Antarctic research programs; 2) graduate and undergraduate student involvement in field, laboratory, and data interpretation activities; 3) use of project data and ideas in several UMaine courses and outreach activities; and 4) data dissemination through peer-reviewed publications, UMaine and other paleoclimate data archive websites, and presentations at national and international meetings.", "east": 163.02585, "geometry": "POINT(162.034625 -77.691623)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MC-ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HUMIDITY SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS", "is_usap_dc": true, "keywords": "Holocene; Climate Research; AWS Climate Data; Paleoclimate; Climate Variation; Dry Valleys; Wright Valley; Little Ice Age; Stable Isotopes; Glaciochemical; Ice Core; FIELD INVESTIGATION; Enso; Antarctic Oscillation; Climate; GPS; El Nino-Southern Oscillation; LABORATORY; Not provided; Climate Change; Ice Core Records; Antarctica; Taylor Valley; FIELD SURVEYS; Variability", "locations": "Antarctica; Dry Valleys; Taylor Valley; Wright Valley", "north": -77.3002, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Kreutz, Karl; Arcone, Steven; Mayewski, Paul A.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.083046, "title": "Dry Valleys Late Holocene Climate Variability", "uid": "p0000155", "west": 161.0434}, {"awards": "0440670 Hulbe, Christina; 0440636 Fahnestock, Mark", "bounds_geometry": "POLYGON((-180 -70,-175 -70,-170 -70,-165 -70,-160 -70,-155 -70,-150 -70,-145 -70,-140 -70,-135 -70,-130 -70,-130 -71.6,-130 -73.2,-130 -74.8,-130 -76.4,-130 -78,-130 -79.6,-130 -81.2,-130 -82.8,-130 -84.4,-130 -86,-135 -86,-140 -86,-145 -86,-150 -86,-155 -86,-160 -86,-165 -86,-170 -86,-175 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -84.4,180 -82.8,180 -81.2,180 -79.6,180 -78,180 -76.4,180 -74.8,180 -73.2,180 -71.6,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,-180 -70))", "dataset_titles": "MOA-derived Structural Feature Map of the Ronne Ice Shelf; MOA-derived Structural Feature Map of the Ross Ice Shelf; Using Fracture Patterns and Ice Thickness to Study the History and Dynamics of Grounding Line Migration and Shutdown of Kamb and Whillans Ice Streams", "datasets": [{"dataset_uid": "609497", "doi": "10.7265/N5PR7SXR", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; MOA; MODIS; Ronne Ice Shelf", "people": "Ledoux, Christine; Hulbe, Christina", "repository": "USAP-DC", "science_program": null, "title": "MOA-derived Structural Feature Map of the Ronne Ice Shelf", "url": "https://www.usap-dc.org/view/dataset/609497"}, {"dataset_uid": "601432", "doi": "10.15784/601432", "keywords": "Antarctica", "people": "Ledoux, Christine; Hulbe, Christina; Forbes, Martin", "repository": "USAP-DC", "science_program": null, "title": "MOA-derived Structural Feature Map of the Ross Ice Shelf", "url": "https://www.usap-dc.org/view/dataset/601432"}, {"dataset_uid": "600024", "doi": "", "keywords": null, "people": "Fahnestock, Mark", "repository": "USAP-DC", "science_program": null, "title": "Using Fracture Patterns and Ice Thickness to Study the History and Dynamics of Grounding Line Migration and Shutdown of Kamb and Whillans Ice Streams", "url": "https://www.usap-dc.org/view/dataset/600024"}], "date_created": "Thu, 25 Sep 2008 00:00:00 GMT", "description": "This award supports a three year project to develop the tools required to interpret complex patterns of flow features on the Ross Ice Shelf, which record the discharge history the ice streams flowing east off of the West Antarctic Ice Sheet. This work builds on previous research that used flow features visible in satellite image mosaics and numerical models of ice shelf flow to detect changes in grounding zone dynamics and redirection of ice stream outlets over hundreds of years. Recently observed changes on Whillans Ice Stream fit within this framework. The pattern of redirection is driven by the influence of rapid downstream thinning on the basal thermal gradient in the ice and associated \"sticky spot\" (ice rise) formation. In pursuing this work, the investigators recognized other records of discharge variation on the shelf that can be used to build a more complete history and understanding of ice-stream discharge variability. The intellectual merit of the proposed work lies in the fact that these records, including fracture patterns and spatial variation in ice thickness, when understood in the proper context, will yield quantitative information about the timing and dynamics of ice stream slowdowns, grounding line retreat, and the relative history of discharge between the ice streams. New tools will help further constrain this history. The laser altimeter on NASA\u0027s IceSAT has improved our knowledge of the surface elevation of Antarctic ice. IceSAT surface elevations provide a high-resolution map of ice-shelf thickness that, along with provenance maps from ice-shelf image mosaics, will be used to estimate the volumes of ice involved in past ice-stream discharge events (slowdowns, redirections, and so on). This project will develop new numerical models for fracture propagation; these will allow past variations in ice-shelf stress state to be investigated. Together, the dynamic and volume-flux histories will provide a powerful set of observations for understanding past variations in ice stream discharge and the underlying physical processes. The broader impacts of this project center on how it contributes to the ability to estimate West Antarctic contributions to global sea level rise and to answer outstanding questions about the causes of millennial and longer-scale evolution of ice streams. This work will provide a history of the most complex record of ice discharge known. In addition to the incorporation of this research into graduate student advising and normal teaching duties, the investigators are involved in other avenues of civic engagement and education. Outreach to high school students and the community at large is promoted on an annual basis by the investigators at both institutions. New outreach projects at Portland State University are developed with the assistance of researchers with expertise in student learning and achievement in science and mathematics. The collaborative research team includes two glaciologists with experience in the pairing of high resolution satellite imagery and a variety of ice-flow models and a geologist whose focus is the mechanics of rock deformation.", "east": -130.0, "geometry": "POINT(-155 -78)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e MODIS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e MODIS", "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; Fracture Patterns; Ross Ice Shelf; West Antarctic Ice Sheet; Not provided; Antarctica; TERRA; Ice Sheet; Ice Rise; LABORATORY; Ice-Stream Discharge; West Antarctica; Fracture Propagation; SATELLITES; Ice Stream Motion; Grounding Line; Ice Movement; Ice Stream; Whillans Ice Stream; Ice Stream Outlets; Basal Temperature Gradient; Numerical Model; Ice Thickness; Flow Features; Kamb Ice Stream; Antarctic Ice Sheet; Satellite Image Mosaics; Icesat; Grounding Line Migration; ICESAT", "locations": "Kamb Ice Stream; Whillans Ice Stream; Antarctica; Ross Ice Shelf; West Antarctic Ice Sheet; Antarctic Ice Sheet; West Antarctica", "north": -70.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Hulbe, Christina; Ledoux, Christine; Fahnestock, Mark", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e ICE, CLOUD AND LAND ELEVATION SATELLITE (ICESAT) \u003e ICESAT; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e TERRA", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -86.0, "title": "Collaborative Research: Using Fracture Patterns and Ice Thickness to Study the History and Dynamics of Grounding Line Migration and Shutdown of Kamb and Whillans Ice Streams", "uid": "p0000096", "west": 180.0}, {"awards": "0229546 MacAyeal, Douglas", "bounds_geometry": "POINT(-178 -78)", "dataset_titles": "collection of nascent rift images and description of station deployment; Continuous GPS (static) Data from the Ross Ice Shelf, Antarctica; Giant Icebergs of the Ross Sea, in situ Drift and Weather Measurements, Antarctica; Iceberg Firn Temperatures, Antarctica; Iceberg Harmonic Tremor, Seismometer Data, Antarctica; Iceberg Satellite imagery from stations and ice shelves (full data link not provided); Iceberg Tiltmeter Measurements, Antarctica; Ice Shelf Rift Time-Lapse Photography, Antarctica; Incorporated Research Institutions for Seismology; Nascent Iceberg Webcam Images available during the deployment period; Ross Ice Shelf Firn Temperature, Antarctica; The files contain a short header (number of data samples, sample rate, start time, stop time, channel title)The time series data then follow the header above.; This site mirrors the NSIDC website archive.", "datasets": [{"dataset_uid": "609352", "doi": "10.7265/N5M61H55", "keywords": "Glaciology; Iceberg; Oceans; Ross Ice Shelf; Sea Ice; Snow/ice; Snow/Ice; Southern Ocean; Temperature", "people": "MacAyeal, Douglas; Sergienko, Olga; Thom, Jonathan", "repository": "USAP-DC", "science_program": null, "title": "Iceberg Firn Temperatures, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609352"}, {"dataset_uid": "609350", "doi": "10.7265/N5VM496K", "keywords": "AWS; Glaciology; GPS; Iceberg; Meteorology; Oceans; Ross Sea; Sea Ice; Southern Ocean; Weatherstation", "people": "Bassis, Jeremy; Aster, Richard; Okal, Emile; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Giant Icebergs of the Ross Sea, in situ Drift and Weather Measurements, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609350"}, {"dataset_uid": "609351", "doi": "10.7265/N5QV3JGV", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Photo/video; Photo/Video; Ross Ice Shelf", "people": "Brunt, Kelly; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Ice Shelf Rift Time-Lapse Photography, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609351"}, {"dataset_uid": "609347", "doi": "10.7265/N57W694M", "keywords": "Antarctica; Geodesy; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ross Ice Shelf; Southern Ocean", "people": "Brunt, Kelly; MacAyeal, Douglas; King, Matthew", "repository": "USAP-DC", "science_program": null, "title": "Continuous GPS (static) Data from the Ross Ice Shelf, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609347"}, {"dataset_uid": "001684", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "This site mirrors the NSIDC website archive.", "url": "http://uwamrc.ssec.wisc.edu/"}, {"dataset_uid": "609353", "doi": "10.7265/N5GF0RFF", "keywords": "Glaciology; Iceberg; Oceans; Ross Ice Shelf; Sea Ice; Southern Ocean; Tiltmeter", "people": "Kim, Young-Jin; MacAyeal, Douglas; Bliss, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Iceberg Tiltmeter Measurements, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609353"}, {"dataset_uid": "609354", "doi": "10.7265/N5BP00Q3", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ross Ice Shelf; Snow/ice; Snow/Ice; Temperature", "people": "Scambos, Ted; Sergienko, Olga; Muto, Atsu; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Ross Ice Shelf Firn Temperature, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609354"}, {"dataset_uid": "002568", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Iceberg Satellite imagery from stations and ice shelves (full data link not provided)", "url": "http://amrc.ssec.wisc.edu/"}, {"dataset_uid": "001598", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "The files contain a short header (number of data samples, sample rate, start time, stop time, channel title)The time series data then follow the header above.", "url": "http://nsidc.org"}, {"dataset_uid": "002504", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Nascent Iceberg Webcam Images available during the deployment period", "url": "https://amrc.ssec.wisc.edu/data/iceberg.html"}, {"dataset_uid": "001639", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "collection of nascent rift images and description of station deployment", "url": "http://thistle.org/nascent/index.shtml"}, {"dataset_uid": "609349", "doi": "10.7265/N5445JD6", "keywords": "Geology/Geophysics - Other; Glaciology; Iceberg; Oceans; Ross Sea; Sea Ice; Seismometer; Southern Ocean", "people": "Bassis, Jeremy; Aster, Richard; Okal, Emile; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Iceberg Harmonic Tremor, Seismometer Data, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609349"}, {"dataset_uid": "001685", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Incorporated Research Institutions for Seismology", "url": "http://www.iris.edu/data/sources.htm"}], "date_created": "Fri, 19 Sep 2008 00:00:00 GMT", "description": "This award supports the study of the drift and break-up of Earth\u0027s largest icebergs, which were recently released into the Ross Sea of Antarctica as a result of calving from the Ross Ice Shelf. The scientific goals of the study are to determine the physics of iceberg motion within the dynamic context of ocean currents, winds, and sea ice, which determine the forces that drive iceberg motion, and the relationship between the iceberg and geographically and topographically determined pinning points on which the iceberg can ground. In addition, the processes by which icebergs influence the local environments (e.g., sea ice conditions near Antarctica, access to penguin rookeries, air-sea heat exchange and upwelling at iceberg margins, nutrient fluxes) will be studied. The processes by which icebergs generate globally far-reaching ocean acoustic signals that are detected within the global seismic (earthquake) sensing networks will also be studied. A featured element of the scientific research activity will be a field effort to deploy automatic weather stations, seismometer arrays and GPS-tracking stations on several of the largest icebergs presently adrift, or about to be adrift, in the Ross Sea. Data generated and relayed via satellite to home institutions in the Midwest will motivate theoretical analysis and computer simulation; and will be archived on an \"iceberg\" website (http://amrc.ssec.wisc.edu/amrc/iceberg.html) for access by scientists and the general public. At the most broad level, the study is justified by the fact that icebergs released by the Antarctic ice sheet represent the largest movements of fresh water within the natural environment (e.g., several of the icebergs to be studied, B15, C19 and others calved since 2000 CE, represent over 6000 cubic kilometers of fresh water-an amount roughly equivalent to 100 years of the flow of the Nile River). A better understanding of the impact of iceberg drift through the environment, and particularly the impact on ocean stratification and mixing, is essential to the understanding of the abrupt global climate changes witnessed by proxy during the ice age and of concern under conditions of future greenhouse warming. On a more specific level, the study will generate a knowledge base useful for the better management of Antarctic logistical resources (e.g., the shipping lanes to McMurdo Station) that can occasionally be influenced by adverse effects icebergs have on sea ice conditions.", "east": -178.0, "geometry": "POINT(-178 -78)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HUMIDITY SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e MMS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e TEMPERATURE LOGGERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e TEMPERATURE PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS", "is_usap_dc": true, "keywords": "SEISMOLOGICAL STATIONS; Pressure; AWS; Velocity Measurements; Firn Temperature Measurements; Ice Velocity; Seismology; Ice Sheet Elevation; Harmonic Tremor; Ice Shelf Temperature; Wind Speed; Iceberg; Ice Surface Elevation; Non-Volcanic Tremor; Not provided; Antarctic; Iceberg Tremor; Solar Radiation; Antarctic Ice Sheet; Ross Ice Shelf; Elevation; GPS; Temperature Profiles; Ice Shelf Rift Camera; GROUND STATIONS; Latitude; GROUND-BASED OBSERVATIONS; Ice Shelf Weather; FIELD INVESTIGATION; ARWS; Surface Elevation; Ice Shelf Flow; Antarctica; FIELD SURVEYS; Camera; Seismometer; Iceberg Weather (aws); Ice Movement; Photo; Wind Direction; Iceberg Snow Accumulation; Tremor And Slow Slip Events; AWS Climate Data; Location; Iceberg Drift; Iceberg Collisions; Iceberg Tilt; Atmospheric Pressure; Iceberg Seismicity; Firn Temperature", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; Ross Ice Shelf", "north": -78.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Okal, Emile; Aster, Richard; Bassis, Jeremy; Kim, Young-Jin; Bliss, Andrew; Sergienko, Olga; Thom, Jonathan; Scambos, Ted; Muto, Atsu; Brunt, Kelly; King, Matthew; Parker, Tim; Okal, Marianne; Cathles, Mac; MacAyeal, Douglas", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e ARWS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS; Not provided; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "AMRDC; IRIS; NSIDC; Project website; USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research of Earth\u0027s Largest Icebergs", "uid": "p0000117", "west": -178.0}, {"awards": "0536870 Rogers, Scott", "bounds_geometry": "POINT(-106.8 -72.4667)", "dataset_titles": "Comprehensive Biological Study of Vostok Accretion Ice", "datasets": [{"dataset_uid": "600052", "doi": "10.15784/600052", "keywords": "Antarctica; Biota; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hydrothermal Vent; Lake Vostok; Microbes; Subglacial Lake", "people": "Rogers, Scott O.", "repository": "USAP-DC", "science_program": null, "title": "Comprehensive Biological Study of Vostok Accretion Ice", "url": "https://www.usap-dc.org/view/dataset/600052"}], "date_created": "Tue, 02 Sep 2008 00:00:00 GMT", "description": "The large subglacial Lake Vostok in Antarctica is unique ecological site with a novel microbial biota. The temperatures, pressures and lack of light all select for organisms that may not exist anywhere else on Earth. The accretion ice (lake water frozen to the bottom of the lower surface of the glacier) has preserved microbial samples from each region of Lake Vostok as the glacier passes over and into the lake. Thus, without contaminating the lake with microorganisms from the surface, microbes originating from the lake can be collected, transported to the laboratory and studied. Two of the deepest ice cores sections in this project are part of the international allocation. The will be shared between four researchers (Sergey Bulat from Russia, Jean-Robert Petit and Daniel Prieur from France, Scott Rogers from USA). The United States team will study, isolate, and characterize bacteria, fungi, and viruses that have been sampled from the lake through the process of ice accretion to the lower surface of 3500+m thick glacier overriding the lake. The project will involve a suite of methods, including molecular, morphological, and cultural. This includes observation and description by fluorescence, light, and electron microscopy, isolation on thirteen separate cultural media, polymerase chain reaction amplification, DNA sequencing, and phylogenetic analyses. Eleven accretion ice core sections, as well as two glacial ice core sections. As well as two glacial ice core sections will be studied. The accretion ice core sections, as well as two glacial ice core sections will be studied. The accretion ice core sections represent all of the major regions of the lake that have been sampled by the accretion process in the vicinity of the Vostok 5G ice core. The broader impacts of the work relate to the impact the results will have on the filed. These long=isolated lakes, deep below the Antarctic ice sheet may contain novel uniquely adapted organisms. Glacial ice contains an enormous diversity of entrapped microbes, some of which may be metabolically active in the ice. The microbes from Lake Vostok are of special interest, since they are adapted to cold, dark, and high pressure. Thus, their enzyme systems and biochemical pathways may be significantly different from those in the microbes that are the subject of current studies. As such, these organisms may form compounds that may have useful applications. Also, study of the accretion ice, and eventually the water, from Lake Vostok will provide a basis for the study of other subglacial lakes. Additionally, study of the microbes in the accretion ice will be useful to those planning to study analogous systems on ice-covered planets and moons.", "east": -106.8, "geometry": "POINT(-106.8 -72.4667)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -72.4667, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Rogers, Scott O.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -72.4667, "title": "Comprehensive Biological Study of Vostok Accretion Ice", "uid": "p0000566", "west": -106.8}, {"awards": "0124049 Berger, Glenn", "bounds_geometry": "POLYGON((161.4 -77.5,161.6 -77.5,161.8 -77.5,162 -77.5,162.20000000000002 -77.5,162.4 -77.5,162.6 -77.5,162.8 -77.5,163 -77.5,163.20000000000002 -77.5,163.4 -77.5,163.4 -77.52,163.4 -77.54,163.4 -77.56,163.4 -77.58,163.4 -77.6,163.4 -77.62,163.4 -77.64,163.4 -77.66,163.4 -77.68,163.4 -77.7,163.20000000000002 -77.7,163 -77.7,162.8 -77.7,162.6 -77.7,162.4 -77.7,162.20000000000002 -77.7,162 -77.7,161.8 -77.7,161.6 -77.7,161.4 -77.7,161.4 -77.68,161.4 -77.66,161.4 -77.64,161.4 -77.62,161.4 -77.6,161.4 -77.58,161.4 -77.56,161.4 -77.54,161.4 -77.52,161.4 -77.5))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 25 Aug 2008 00:00:00 GMT", "description": "0124049\u003cbr/\u003eBerger\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to add to the understanding of what drives glacial cycles. Most researchers agree that Milankovitch seasonal forcing paces the ice ages but how these insolation changes are leveraged into abrupt global climate change remains unknown. A current popular view is that the climate of Antarctica and the Southern Ocean leads that of the rest of the world by a couple thousand years at Termination I and by even greater margins during previous terminations. This project will integrate the geomorphological record of glacial history with a series of cores taken from the lake bottoms in the Dry Valleys of the McMurdo Sound region of Antarctica. Using a modified Livingstone corer, transects of long cores will be obtained from Lakes Fryxell, Bonney, Joyce, and Vanda. A multiparameter approach will be employed which is designed to extract the greatest possible amount of former water-level, glaciological, and paleoenvironmental data from Dry Valleys lakes. Estimates of hydrologic changes will come from different proxies, including grain size, stratigraphy, evaporite mineralogy, stable isotope and trace element chemistry, and diatom assemblage analysis. The chronology, necessary to integrate the cores with the geomorphological record, as well as for comparisons with Antarctic ice-core and glacial records, will come from Uranium-Thorium, Uranium-Helium, and Carbon-14 dating of carbonates, as well as luminescence sediment dating. Evaluation of the link between lake-level and climate will come from hydrological and energy-balance modelling. Combination of the more continuous lake-core sequences with the spatially extensive geomorphological record will result in an integrated Antarctic lake-level and paleoclimate dataset that extends back at least 30,000 years. This record will be compared to Dry Valleys glacier records and to the Antarctic ice cores to address questions of regional climate variability, and then to other Southern Hemisphere and Northern Hemisphere records to assess interhemispheric synchrony or asynchrony of climate change.", "east": 163.4, "geometry": "POINT(162.4 -77.6)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LASERS", "is_usap_dc": false, "keywords": "Stratigraphy; Climate Variability; Shoreline Deposits; Dry Valleys; Antarctic Lake-level; Luminescence Geochronology; Grain Size; Paleoclimate; Antarctica; LABORATORY; Lake Cores", "locations": "Dry Valleys; Antarctica", "north": -77.5, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Berger, Glenn; Hall, Brenda; Doran, Peter", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -77.7, "title": "Collaborative Research: Millennial Scale Fluctuations of Dry Valleys Lakes: Implications for Regional Climate Variability and the Interhemispheric (a)Synchrony of Climate Change", "uid": "p0000219", "west": 161.4}, {"awards": "0338295 Tulaczyk, Slawek", "bounds_geometry": "POLYGON((-139 -82,-138.2 -82,-137.4 -82,-136.6 -82,-135.8 -82,-135 -82,-134.2 -82,-133.4 -82,-132.6 -82,-131.8 -82,-131 -82,-131 -82.08,-131 -82.16,-131 -82.24,-131 -82.32,-131 -82.4,-131 -82.48,-131 -82.56,-131 -82.64,-131 -82.72,-131 -82.8,-131.8 -82.8,-132.6 -82.8,-133.4 -82.8,-134.2 -82.8,-135 -82.8,-135.8 -82.8,-136.6 -82.8,-137.4 -82.8,-138.2 -82.8,-139 -82.8,-139 -82.72,-139 -82.64,-139 -82.56,-139 -82.48,-139 -82.4,-139 -82.32,-139 -82.24,-139 -82.16,-139 -82.08,-139 -82))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 04 Aug 2008 00:00:00 GMT", "description": "This award supports a project to test whether Kamb Ice Stream (formerly Ice Stream C (ISC)), an ice stream\u003cbr/\u003ethat is thought to have stopped ~150 years ago, may be already in the process of restarting. If yes, it will help establish what is the rate of ice stream reactivation and what mechanisms are controlling this rate. If there is no evidence for ongoing ice stream reactivation, the physical controls that are preventing it will be examined and alternative scenarios for near-future evolution of this ice stream will be explored. One such scenario is an increase in ice diversion toward the neighboring Whillans Ice Stream. Such diversion may help prevent a complete stoppage of Whillans Ice Stream,which has been slowing down for at least the last 24 years. This project will consist of two components: (1) field observations of bed properties,geometry of internal radar reflectors, as well as surface strain rates and velocity/topography changes using Ice-Penetrating Radar and differential Global Positioning System, (2) numerical modeling study of near future(~100-1000 years) evolution of Kamb Ice Stream. The field component will be focused on the bulge-to-trunk transition, which is located at the present time just downstream of the so-called camp UpC. Reactivation of Kamb Ice Stream should be reflected in a downstream migration of the bulge-trunk transition at possibly high rates (bulge migration rates of ~km/yr occur on surging mountain glaciers). The modeling\u003cbr/\u003ecomponent will be used to generate predictions regarding the near-future behavior of Kamb Ice Stream. This project will provide training opportunities for at least two undergraduate students (per year) at St. Olaf College and for one\u003cbr/\u003eundergraduate student (per year) at UCSC. This collaboration will bring together scientists from three different types of US institutions: (1) a liberal arts college (St.Olaf College), (2) a public research university (UCSC) and (3) a NASA research laboratory (JPL). The project will also help build a new glaciological research program at UCSC. Project results will be incorporated into undergraduate and graduate courses at UCSC and will be made available\u003cbr/\u003eto the general public and educators through downloadable graphics and animations posted on the research website of the UCSC PI. Field data resulting from the project will be posted in the Antarctic Glaciological Data Center for use by other investigators.", "east": -131.0, "geometry": "POINT(-135 -82.4)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": false, "keywords": "Topography; GPS; Kamb Ice Stream; Ice Stream; FIELD SURVEYS; FIELD INVESTIGATION; Not provided; Ice Penetrating Radar; Ice Stream C; Velocity; Surface Strain Rates; Antarctic", "locations": "Antarctic; Kamb Ice Stream; Ice Stream C", "north": -82.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Tulaczyk, Slawek; Joughin, Ian", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repositories": null, "science_programs": null, "south": -82.8, "title": "Collaborative Research: Is Kamb Ice Stream Restarting? Glaciological Investigations of the Bulge-Trunk Transition on Kamb Ice Stream, West Antarctica", "uid": "p0000238", "west": -139.0}, {"awards": "0233823 Fountain, Andrew; 0230338 Hallet, Bernard", "bounds_geometry": "POLYGON((162.132 -77.73,162.1495 -77.73,162.167 -77.73,162.1845 -77.73,162.202 -77.73,162.2195 -77.73,162.237 -77.73,162.2545 -77.73,162.272 -77.73,162.2895 -77.73,162.307 -77.73,162.307 -77.7303,162.307 -77.7306,162.307 -77.7309,162.307 -77.7312,162.307 -77.7315,162.307 -77.7318,162.307 -77.7321,162.307 -77.7324,162.307 -77.7327,162.307 -77.733,162.2895 -77.733,162.272 -77.733,162.2545 -77.733,162.237 -77.733,162.2195 -77.733,162.202 -77.733,162.1845 -77.733,162.167 -77.733,162.1495 -77.733,162.132 -77.733,162.132 -77.7327,162.132 -77.7324,162.132 -77.7321,162.132 -77.7318,162.132 -77.7315,162.132 -77.7312,162.132 -77.7309,162.132 -77.7306,162.132 -77.7303,162.132 -77.73))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 02 Jul 2008 00:00:00 GMT", "description": "This award supports a comprehensive study of land-based polar ice cliffs. Through field measurements, modeling, and remote sensing, the physics underlying the formation of ice cliffs at the margin of Taylor Glacier in the McMurdo Dry Valleys will be investigated. At three sites, measurements of ice deformation and temperature fields near the cliff face will be combined with existing energy balance data to quantify ice-cliff evolution over one full seasonal cycle. In addition, a small seismic network will monitor local \"ice quakes\" associated with calving events. Numerical modeling, validated by the field data, will enable determination of the sensitivity of ice cliff evolution to environmental variables. There are both local and global motivations for studying the ice cliffs of Taylor Glacier. On a global scale, this work will provide insight into the fundamental processes of calving and glacier terminus A better grasp of ice cliff processes will also improve boundary conditions required for predicting glaciers\u0027 response to climate change. Locally, the Taylor Glacier is an important component of the McMurdo Dry Valleys landscape and the results of this study will aid in defining ecologically-important sources of glacial meltwater and will lead to a better understanding of moraine formation at polar ice cliffs. This study will help launch the career of a female scientist, will support one graduate student, and provide experiential learning experiences for two undergraduates. The post-doctoral researcher will also use this research in the curriculum of a wilderness science experiential education program for high school girls.", "east": 162.307, "geometry": "POINT(162.2195 -77.7315)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOCOUPLES \u003e THERMOCOUPLES; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e SURVEYING TOOLS", "is_usap_dc": false, "keywords": "SEISMOLOGICAL STATIONS; Ice Quakes; Ice Cliffs; Not provided; Taylor Glacier; FIELD SURVEYS; Remote Sensing; GROUND-BASED OBSERVATIONS; Modeling; Ice Deformation; Glacial Meltwater; FIELD INVESTIGATION; McMurdo Dry Valleys", "locations": "McMurdo Dry Valleys; Taylor Glacier", "north": -77.73, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Pettit, Erin; Hallet, Bernard; Fountain, Andrew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS; Not provided", "repositories": null, "science_programs": null, "south": -77.733, "title": "Collaborative Research: Mechanics of Dry-Land Calving of Ice Cliffs", "uid": "p0000721", "west": 162.132}, {"awards": "0338218 Halanych, Kenneth; 0338087 Scheltema, Rudolf", "bounds_geometry": "POLYGON((-70 -55,-68 -55,-66 -55,-64 -55,-62 -55,-60 -55,-58 -55,-56 -55,-54 -55,-52 -55,-50 -55,-50 -56,-50 -57,-50 -58,-50 -59,-50 -60,-50 -61,-50 -62,-50 -63,-50 -64,-50 -65,-52 -65,-54 -65,-56 -65,-58 -65,-60 -65,-62 -65,-64 -65,-66 -65,-68 -65,-70 -65,-70 -64,-70 -63,-70 -62,-70 -61,-70 -60,-70 -59,-70 -58,-70 -57,-70 -56,-70 -55))", "dataset_titles": "Expedition Data; Expedition data of LMG0414; Expedition data of LMG0605; Relevance of Planktonic Larval Dispersal to Endemism and Biogeography of Antarctic Benthic Invertebrates", "datasets": [{"dataset_uid": "600035", "doi": "10.15784/600035", "keywords": "Antarctica; Biota; Oceans; R/v Laurence M. Gould; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Scheltema, Rudolf", "repository": "USAP-DC", "science_program": null, "title": "Relevance of Planktonic Larval Dispersal to Endemism and Biogeography of Antarctic Benthic Invertebrates", "url": "https://www.usap-dc.org/view/dataset/600035"}, {"dataset_uid": "001565", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0414"}, {"dataset_uid": "002682", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0605", "url": "https://www.rvdata.us/search/cruise/LMG0605"}, {"dataset_uid": "002711", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0414", "url": "https://www.rvdata.us/search/cruise/LMG0414"}], "date_created": "Wed, 18 Jun 2008 00:00:00 GMT", "description": "Because of extreme isolation of the Antarctic continent since the Early Oligocene, one expects a unique invertebrate benthic fauna with a high degree of endemism. Yet some invertebrate taxa that constitute important ecological components of sedimentary benthic communities include more than 40 percent non-endemic species (e.g., benthic polychaetes). To account for non-endemic species, intermittent genetic exchange must occur between Antarctic and other (e.g. South American) populations. The most likely mechanism for such gene flow, at least for in-faunal and mobile macrobenthos, is dispersal of planktonic larvae across the sub- Antarctic and Antarctic polar fronts. To test for larval dispersal as a mechanism of maintaining genetic continuity across polar fronts, the scientists propose to (1) take plankton samples along transects across Drake passage during both the austral summer and winter seasons while concurrently collecting the appropriate hydrographic data. Such data will help elucidate the hydrographic mechanisms that allow dispersal across Drake Passage. Using a molecular phylogenetic approach, they will (2) compare seemingly identical adult forms from Antarctic and South America continents to identify genetic breaks, historical gene flow, and control for the presence of cryptic species. (3) Similar molecular tools will be used to relate planktonic larvae to their adult forms. Through this procedure, they propose to link the larval forms respectively to their Antarctic or South America origins. The proposed work builds on previous research that provides the basis for this effort to develop a synthetic understanding of historical gene flow and present day dispersal mechanism in South American/Drake Passage/Antarctic Peninsular region. Furthermore, this work represents one of the first attempts to examine recent gene flow in Antarctic benthic invertebrates. Graduate students and a postdoctoral fellow will be trained during this research.", "east": -50.0, "geometry": "POINT(-60 -60)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": true, "keywords": "EU735823-EU735850; R/V LMG; FIELD SURVEYS; Genbank Ef565745-Ef565820; Not provided", "locations": null, "north": -55.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Scheltema, Rudolf; Halanych, Kenneth", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -65.0, "title": "Collaborative Research: Relevance of Planktonic Larval Dispersal to Endemism and Biogeography of Antarctic Benthic Invertebrates", "uid": "p0000189", "west": -70.0}, {"awards": "0127022 Jeffrey, Wade", "bounds_geometry": "POLYGON((-177.639 -43.5676,-143.1091 -43.5676,-108.5792 -43.5676,-74.0493 -43.5676,-39.5194 -43.5676,-4.9895 -43.5676,29.5404 -43.5676,64.0703 -43.5676,98.6002 -43.5676,133.1301 -43.5676,167.66 -43.5676,167.66 -46.99877,167.66 -50.42994,167.66 -53.86111,167.66 -57.29228,167.66 -60.72345,167.66 -64.15462,167.66 -67.58579,167.66 -71.01696,167.66 -74.44813,167.66 -77.8793,133.1301 -77.8793,98.6002 -77.8793,64.0703 -77.8793,29.5404 -77.8793,-4.9895 -77.8793,-39.5194 -77.8793,-74.0493 -77.8793,-108.5792 -77.8793,-143.1091 -77.8793,-177.639 -77.8793,-177.639 -74.44813,-177.639 -71.01696,-177.639 -67.58579,-177.639 -64.15462,-177.639 -60.72345,-177.639 -57.29228,-177.639 -53.86111,-177.639 -50.42994,-177.639 -46.99877,-177.639 -43.5676))", "dataset_titles": "Expedition Data; Ross Sea microbial biomass and production", "datasets": [{"dataset_uid": "600029", "doi": "10.15784/600029", "keywords": "Biota; Chemistry:fluid; Chemistry:Fluid; CTD Data; Microbiology; Oceans; Phytoplankton; Ross Sea; Southern Ocean", "people": "Jeffrey, Wade H.", "repository": "USAP-DC", "science_program": null, "title": "Ross Sea microbial biomass and production", "url": "https://www.usap-dc.org/view/dataset/600029"}, {"dataset_uid": "001584", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0508"}, {"dataset_uid": "001690", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304B"}], "date_created": "Thu, 12 Jun 2008 00:00:00 GMT", "description": "Ultraviolet radiation influences the dynamics of plankton processes in the near-surface waters of most aquatic ecosystems. In particular, the Southern Ocean is affected in the austral spring period when biologically damaging ultraviolet radiation is enhanced by ozone depletion. While progress has been made in estimating the quantitative impact of ultraviolet radiation on bacteria and phytoplankton in the Southern Ocean, some important issues remain to be resolved. Little is known about responses in systems dominated by the colonial haptophyte Phaeocystis antarctica, which dominates spring blooms in a polyna that develops in the southern Ross Sea. The Ross Sea is also of interest because of the occurrence of open water at a far southerly location in the spring, well within the ozone hole, and continuous daylight, with implications for the regulation of DNA repair. A number of studies suggest that vertical mixing can significant modify the impact of ultraviolet radiation in the Southern Ocean and elsewhere. However, there are limited measurements of turbulence intensity in the surface layer and measurements have not been integrated with parallel studies of ultraviolet radiation effects on phytoplankton and bacterioplankton. To address these issues, this collaborative study will focus on vertical mixing and the impact of ultraviolet radiation in the Ross Sea. The spectral and temporal responses of phytoplankton and bacterioplankton to ultraviolet radiation will be characterized in both laboratory and solar incubations. These will lead to the definition of biological weighting functions and response models capable of predicting the depth and time distribution of ultraviolet radiation impacts on photosynthesis, bacterial incorporation and DNA damage in the surface layer. Diel sampling will measure depth-dependent profiles of DNA damage, bacterial incorporation, photosynthesis and fluorescence parameters over a 24 h cycle. Sampling will include stations with contrasting wind-driven mixing and stratification as the polyna develops. The program of vertical mixing measurements is optimized for the typical springtime Ross Sea situation in which turbulence of intermediate intensity is insufficient to mix the upper layer thoroughly in the presence of stabilizing influences like solar heating and/or surface freshwater input from melting ice. Fine-scale vertical density profiles will be measured with a free-fall CTD unit and the profiles will be used to directly estimate large-eddy scales by determining Thorpe scales. Eddy scales and estimated turbulent diffusivities will be directly related to surface layer effects, and used to generate lagrangian depth-time trajectories in models of ultraviolet radiation responses in the surface mixed layer. The proposed research will be the first in-depth study of ultraviolet radiation effects in the Ross Sea and provide a valuable comparison with previous work in the Weddell-Scotia Confluence and Palmer Station regions. It will also enhance the understanding of vertical mixing processes, trophic interactions and biogeochemical cycling in the Ross Sea.", "east": 167.66, "geometry": "POINT(-4.9895 -60.72345)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e WATER BOTTLES; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUORESCENCE MICROSCOPY; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e GO-FLO BOTTLES", "is_usap_dc": true, "keywords": "R/V NBP; B-15J", "locations": "B-15J", "north": -43.5676, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Jeffrey, Wade H.; Neale, Patrick", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -77.8793, "title": "Collaborative Proposal: Interactive Effects of UV Radiation and Vertical Mixing on Phytoplankton and Bacterial Productivity of Ross See Phaeocystis Blooms", "uid": "p0000578", "west": -177.639}, {"awards": "0338142 Domack, Eugene; 0338220 Ishman, Scott; 0338163 Leventer, Amy", "bounds_geometry": "POLYGON((-63 -62,-62.3 -62,-61.6 -62,-60.9 -62,-60.2 -62,-59.5 -62,-58.8 -62,-58.1 -62,-57.4 -62,-56.7 -62,-56 -62,-56 -62.5,-56 -63,-56 -63.5,-56 -64,-56 -64.5,-56 -65,-56 -65.5,-56 -66,-56 -66.5,-56 -67,-56.7 -67,-57.4 -67,-58.1 -67,-58.8 -67,-59.5 -67,-60.2 -67,-60.9 -67,-61.6 -67,-62.3 -67,-63 -67,-63 -66.5,-63 -66,-63 -65.5,-63 -65,-63 -64.5,-63 -64,-63 -63.5,-63 -63,-63 -62.5,-63 -62))", "dataset_titles": "Expedition Data; Expedition data of LMG0404; NBP0603 - Expedition Data; NBP0603 - Paleohistory of the Larsen Ice Shelf System", "datasets": [{"dataset_uid": "000236", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP0603 - Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0603"}, {"dataset_uid": "001610", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0502"}, {"dataset_uid": "002710", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0404", "url": "https://www.rvdata.us/search/cruise/LMG0404"}, {"dataset_uid": "600027", "doi": "10.15784/600027", "keywords": "ADCP Acoustic Doppler Current Profiler; Antarctic Peninsula; Biota; Diatom; Electromagnetic Data; Flask Glacier; Foehn Winds; Larsen Ice Shelf; Marine Sediments; NBP0603; Oceans; Physical Ice Properties; R/v Nathaniel B. Palmer; Scar Inlet; Southern Ocean", "people": "Domack, Eugene Walter", "repository": "USAP-DC", "science_program": null, "title": "NBP0603 - Paleohistory of the Larsen Ice Shelf System", "url": "https://www.usap-dc.org/view/dataset/600027"}], "date_created": "Wed, 11 Jun 2008 00:00:00 GMT", "description": "The Larsen Ice Shelf is the third largest ice shelf in Antarctica and has continued a pattern of catastrophic decay since the mid 1990\u0027s. The proposed marine geologic work at the Larsen Ice Shelf builds upon our previous NSF-OPP funding and intends to test the working hypothesis that the Larsen B Ice Shelf system has been a stable component of Antarctica\u0027s glacial system since it formed during rising sea levels 10,000 years BP. This conclusion, if supported by observations from our proposed work, is an important first step in establishing the uniqueness and consequences of rapid regional warming currently taking place across the Peninsula. Our previous work in the Larsen A and B embayments has allowed us to recognize the signature of past ice shelf fluctuations and their impact on the oceanographic and biologic environments. We have also overcome many of the limitations of standard radiocarbon dating in Antarctic marine sequences by using variations in the strength of the earth\u0027s magnetic field for correlation of sediment records and by using specific organic compounds (instead of bulk sediment) for radiocarbon dating. We intend to pursue these analytical advances and extend our sediment core stratigraphy to areas uncovered by the most recent collapse of the Larsen B Ice Shelf and areas immediately adjacent to the Larsen C Ice Shelf. In addition to the core recovery program, we intend to utilize our unique access to the ice shelf front to continue our observations of the snow/ice stratigraphy, oceanographic character, and ocean floor character. Sediment traps will also be deployed in order to measure the input of debris from glaciers that are now surging in response to the ice shelf collapse. This proposal is a multi-institutional, international (USAP, Italy, and Canada) effort that combines the established expertise in a variety of disciplines and integrates the research plan into the educational efforts of primarily undergraduate institutions but including some graduate education. This is a three-year project with field seasons planned with flexibility in order to accommodate schedules for the RVIB L.M. Gould. The Antarctic Peninsula is undergoing greater warming than almost anywhere on Earth, perhaps associated with human-induced greenhouse effects. Our proposed work contributes to understanding of these changes where they are occurring first and with greatest magnitude and impact upon the environment.", "east": -56.0, "geometry": "POINT(-59.5 -64.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": true, "keywords": "R/V LMG; R/V NBP; Not provided", "locations": null, "north": -62.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Ishman, Scott; Leventer, Amy; Domack, Eugene Walter", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -67.0, "title": "Collaborative Research: Paleohistory of the Larsen Ice Shelf System: Phase II", "uid": "p0000215", "west": -63.0}, {"awards": "0440609 Price, P. Buford", "bounds_geometry": "POINT(-112.06556 -79.469444)", "dataset_titles": null, "datasets": null, "date_created": "Tue, 03 Jun 2008 00:00:00 GMT", "description": "This award supports a project to use three downhole instruments - an optical logger; a\u003cbr/\u003eminiaturized biospectral logger at 420 nm (miniBSL-420); and an Acoustic TeleViewer (ATV) - to log a 350-m borehole at the WAIS Divide drill site. In addition, miniBSL-224 (at 224 nm) and miniBSL-420 will scan ice core sections at NICL to look for abrupt climate changes, volcanic ash, microbial concentrations, and correlations among them. Using the optical logger and ATV to log bubble number densities vs depth in a WAIS Divide borehole, we will detect annual layers, from which we can establish the age vs depth relation to the bottom of the borehole that will be available during the three-year grant period. With the same instruments we will search for long-period modulation of bubble and dust concentrations in order to provide definitive evidence for or against an effect of long-period variability of the sun or solar wind on climate. We will detect and accurately date ash layers in a WAIS Divide borehole. We will match them with ash layers that we previously detected in the Siple Dome borehole, and also match them with sulfate and ash layers found by others at Vostok, Dome Fuji, Dome C, and GISP2. The expected new data will allow us to extend our recent study which showed that the Antarctic record of volcanism correlates with abrupt climate change at a 95% to \u003e99.8% significance level and that the volcanic signatures at bipolar locations match at better than 3 sigma during the interval 2 to 45 kiloyears. The results to be obtained during this grant period will position us to extend an accurate age vs depth relation and volcano-climate correlations to earlier than 150 kiloyears ago in the future WAIS Divide borehole to be drilled to bedrock. Using the miniBSLs to identify biomolecules via their fluorescence, we will log a 350-m borehole at WAIS Divide, and we will scan selected lengths of ice core at NICL. Among the biomolecules the miniBSLs can identify will be chlorophyll, which will provide the first map of aerobic microbes in ice, and F420, which will provide the first map of methanogens in ice. We will collaborate with others in relating results from WAIS Divide and NICL ice cores to broader topics in climatology, volcanology, and microbial ecology. We will continue to give broad training to undergraduate and graduate students, to attract underrepresented minorities to science, engineering, and math, and to educate the press and college teachers. A deeper understanding of the causes of abrupt climate change, including a causal relationship with strong volcanic eruptions, can enable us to understand and mitigate adverse effects on climate.", "east": -112.06556, "geometry": "POINT(-112.06556 -79.469444)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUORESCENCE SPECTROSCOPY; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS", "is_usap_dc": false, "keywords": "Volcanic Ash; Dust Concentration; Antarctica; FIELD INVESTIGATION; Liquid Veins In Ice; Optical Logger; Borehole; Ash Layer; FIELD SURVEYS; Microbial Metabolism; Climate; Biospectral Logger; Not provided; Protein Fluorescence; Gas Artifacts; Aerosol Fluorescence; Volcanism; WAIS Divide; Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.469444, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bay, Ryan; Price, Buford", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repositories": null, "science_programs": null, "south": -79.469444, "title": "Climatology, Volcanism, and Microbial Life in Ice with Downhole Loggers", "uid": "p0000746", "west": -112.06556}, {"awards": "0440447 Spencer, Matthew; 0917509 Spencer, Matthew", "bounds_geometry": "POINT(-148.81 -81.65)", "dataset_titles": "Firn depth and bubble density for Siple Ice Core and other sites", "datasets": [{"dataset_uid": "601746", "doi": "10.15784/601746", "keywords": "Antarctica; Density; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Data; Ice Core Records; Siple Dome; Snow/ice; Snow/Ice", "people": "Spencer, Matthew", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Firn depth and bubble density for Siple Ice Core and other sites", "url": "https://www.usap-dc.org/view/dataset/601746"}], "date_created": "Mon, 19 May 2008 00:00:00 GMT", "description": "This award supports a two-year collaborative effort to more fully understand the climatic history and physical properties of the Siple Dome, Antarctica deep ice core, to develop a new paleoclimatic technique based on bubble number-density, and to improve the U.S. capability to analyze ice-core physical properties rapidly and accurately. The Siple Dome ice core from West Antarctica is yielding important paleoclimatic insights, but has proven more difficult than some cores to interpret owing to the large iceflow effects on the paleoclimatic record. Paleoclimatic indicators that do not rely on iceflow corrections thus would be of value. The bubble number-density offers one such indicator, because it preserves information on mean temperature and accumulation rate during the transformation of firn to ice. We will focus on thin-section characteristics that are important to ice flow and the interpretation of the ice-core history, such as c-axis fabrics, and will use indicators that we have been developing, such as the correlation between grain elongation and the c-axis orientation, to gain additional information. To achieve this quickly and accurately, and to prepare for future projects, we propose to upgrade the automatic caxis- fabric analyzer that Wilen has built and housed at the National Ice Core Laboratory. The intellectual merit of the proposed activity includes improved estimates of paleoclimatic conditions in an important region, improved understanding of a new paleoclimatic research tool, greater understanding of ice flow and of linkages to physical properties, and a better instrument for further U.S. research in ice-core physical properties at the National Ice Core Laboratory. The broader impacts resulting from the proposed activity include providing better understanding of abrupt climate change and of ice flow, which eventually should help policy-makers, as well as an improved U.S. capability to analyze ice cores. The proposed research will assist the studies of two promising young scientists. Results of the research will be incorporated into courses and public outreach reaching at least hundreds or thousands of people per year.", "east": -148.81, "geometry": "POINT(-148.81 -81.65)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided; Ice Core; Ice Flow; Bubble Number Density; LABORATORY; Thin Sections; Paleoclimate; FIELD INVESTIGATION; Fabric; Siple Dome; Climate; Antarctica; Antarctic; FIELD SURVEYS", "locations": "Siple Dome; Antarctica; Antarctic", "north": -81.65, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Spencer, Matthew; Wilen, Larry", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -81.65, "title": "Collaborative Research: Combined Physical Property Measurements at Siple Dome", "uid": "p0000658", "west": -148.81}, {"awards": "0232000 Cailliet, Gregor", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 10 Mar 2008 00:00:00 GMT", "description": "Recent years have seen the re-establishment of large-scale marine resource utilization by humans in the Antarctic. In contrast to early sealing and whaling activity, the modern impact is directed on krill and finfish populations, most notably of the Patagonian toothfish (Dissostichus eleginoides), but also its congenor the Antarctic toothfish (Dissostichus mawsoni) in the Ross Sea. Toothfish are a valuable resource and are likely to continue to command a high price in world markets. However, extensive illegal fishing has lead to considerable concern that Patagonian toothfish populations are being over-harvested. In other parts of the world, over-harvesting of larger, commercially valuable species has led to fishing down of marine food webs, leaving impoverished, less valuable ecosystems. The goal of the Convention for the Conservation of Antarctic Marine Living Resources, part of the Antarctic Treaty System, is to allow harvest while avoiding disruptions to the Antarctic ecosystem. To achieve this, the sustainable management of the fishery depends on reliable age data. Age data allow population age structure to be modeled, so that growth, mortality and recruitment rates can be estimated and used to understand population dynamics. Age data provides the basis to determine the life history pattern of a species, to model population dynamics, and to determine which age classes are vulnerable to over-exploitation under a particular set of environmental conditions. Current age and growth information for toothfish is based on age determination methodologies which are not validated and depend on the specific laboratory and principal investigator. Recently, the Commission of the Conservation of Antarctic Marine Living Resources has endorsed three preparation methodologies using otoliths and a common set of criteria for estimating age from otolith micro-structure. The CCAMLR Otolith Network has also been initiated as a medium for exchanging samples to ensure that age estimates are comparable between readers and laboratories. However, considerable work is needed to ensure that age estimates generated by the three methodologies are accurate. One technique that has been successful is radiometric age determination, which uses the disequilibria of lead-210 and radium-226 in otoliths as a natural chronometer. This proposal brings together an international collaboration to examine population age structure for both toothfish species, in an experimental design built around radiometric validation tests of age data generated by all three preparation methodologies. To integrate the validation component within an Antarctic-wide effort to examine toothfish population age structure, sub-samples for validation work will be drawn from sample sets taken for population age studies by research teams working in Australia, New Zealand, the United Kingdom and France, as well as the United States. Scientists at Moss Landing Marine Laboratories will use radiometric age determination to independently age otoliths from Patagonian and Antarctic toothfishes. Scientists at Old Dominion University will use a system already established for aging to generate validated age data, allowing growth, mortality, and longevity to be estimated by geographic areas. The project will provide validated otolith sample sets that can be used as a foundation for a unified and validated age estimation system for the toothfishes. This study will provide information which will be disseminated to the public, policy-makers and the international community. The project will provide opportunities for under-represented students at both universities.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ALPHA-SPECTROMETERS", "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Andrews, Alan G.; ANDREWS, ALLEN", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Radiometric Age Validation of the Patagonian and Antarctic Toothfishes (Dissostichus Eleginoides and D. Mawsoni)", "uid": "p0000738", "west": null}, {"awards": "0542293 Winckler, Gisela", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 17 Dec 2007 00:00:00 GMT", "description": "This Small Grant for Exploratory Research supports development of an innovative dating technique for application to ancient, relict ice bodies buried in the Western Dry Valleys of Antarctica. Dating of surrounding sediments and volcanic ashes indicates that these ice bodies may be up to six million years in age, offering the oldest direct atmospheric and climate records available. This SGER is a proof of concept to develop a new dating technique using beryllium (10Be) of cosmogenic origin from the atmosphere and extraterrestrial helium (3He) contained in interplanetary dust particles. Both tracers are deposited to the Earth\u0027s surface and likely incorporated into the ice matrix at constant rates. Radioactive decay of 10Be versus the stable extraterrestrial 3He signal may offer way to directly measure the age of the ice.\u003cbr/\u003e\u003cbr/\u003eThe broader impacts of this work are development of a new analytical technique that may improve society\u0027s understanding of the potential for global climate change from the perspective of the deep time record.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": false, "keywords": "Cosmogenic Radionuclides; Old Ice; Idp; FIELD INVESTIGATION", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Winckler, Gisela", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": null, "title": "Direct Dating of Old Ice by Extraterrestrial Helium-3 and Atmospheric Beryllium-10 - A Proof of Concept", "uid": "p0000127", "west": null}, {"awards": "0338244 Schaefer, Joerg", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 10 Dec 2007 00:00:00 GMT", "description": "This project will determine the age, origin, and climatic significance of buried ice found in the western Dry Valleys of Antarctica. Previous studies indicate that this ice may be over a million years in age, making it by far the oldest ice yet discovered on Earth. An alternative view is that this ice is represents recently frozen groundwater. To distinguish between these hypotheses and characterize the ice, we are undertaking an interdisciplinary research program focused on: 1) understanding the surface processes that permit ice preservation; and 2) testing the efficacy of cosmogenic nuclides and 40Ar/39Ar analyses in dating both tills and volcanic ash associated with the ice. Our plan calls for the analysis of a minimum of six cosmogenic depth profiles to determine if and how cryoturbation reworks sublimation tills and assess the average rate of ice sublimation for three debris-covered glaciers. We will model through finite- element analyses at least three buried glaciers and compare flow rates with those based on radiometric dating of surface deposits. Ten ice cores will also be collected for measurement of d18O, dD, ice fabric, ice texture, total gas content/composition. Better understanding of surface processes above buried ice will permit researchers to gain access to a record of atmospheric and climate change that could well cover intervals that predate Quaternary time. The work may also add valuable insight into Martian history. In terms of broader impacts, we have recruited three female PhD students and developed interdisciplinary collaborations among geochemists at Columbia University, planetary geologists at Brown University, geomorphologists at Boston University, and numerical modelers at the University of Maine.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": false, "keywords": "FIELD INVESTIGATION", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY", "persons": "Schaefer, Joerg", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Age, Origin and Climatic Significance of Buried Ice in the Western Dry Valleys, Antarctica", "uid": "p0000255", "west": null}, {"awards": "0337891 Brook, Edward J.", "bounds_geometry": "POINT(158 -77.666667)", "dataset_titles": "Atmospheric CO2 and Climate: Byrd Ice Core, Antarctica; Atmospheric CO2 and Climate: Taylor Dome Ice Core, Antarctica", "datasets": [{"dataset_uid": "609314", "doi": "10.7265/N58W3B80", "keywords": "Antarctica; Atmosphere; Byrd Glacier; Byrd Ice Core; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate", "people": "Brook, Edward J.; Ahn, Jinho", "repository": "USAP-DC", "science_program": "Byrd Ice Core", "title": "Atmospheric CO2 and Climate: Byrd Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609314"}, {"dataset_uid": "609315", "doi": "10.7265/N5542KJK", "keywords": "Antarctica; Atmosphere; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Taylor Dome; Taylor Dome Ice Core", "people": "Brook, Edward J.; Ahn, Jinho", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Atmospheric CO2 and Climate: Taylor Dome Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609315"}], "date_created": "Mon, 05 Nov 2007 00:00:00 GMT", "description": "This award supports the development of a new laboratory capability in the U.S. to measure CO2 in ice cores and investigate millennial-scale changes in CO2 during the last glacial period using samples from the Byrd and Siple Dome ice cores. Both cores have precise relative chronologies based on correlation of methane and the isotopic composition of atmospheric oxygen with counterpart records from Greenland ice cores. The proposed work will therefore allow comparison of the timing of CO2 change, Antarctic temperature change, and Greenland temperature change on common time scales. Such comparisons are vital for evaluating models that explain changes in atmospheric CO2. The techniques being developed will also be available for future projects, specifically the proposed Inland WAIS ice core, for which a highly detailed CO2 record is a major objective, and studies greenhouse and other atmospheric gases and their isotopic composition for which dry extraction is necessary (stable isotopes in CO2, for example). There are many broad impacts of the proposed work. Ice core greenhouse gas records are central contributions of paleoclimatology to research and policy-making concerning global change. The proposed work will enhance those contributions by improving our understanding of the natural cycling of the most important greenhouse gas. It will contribute to the training of a postdoctoral researcher, who will be an integral part of an established research group and benefit from the diverse paleoclimate and geochemistry community at OSU. The PI teaches major and non-major undergraduate and graduate courses on climate and global change. The proposed work will enrich those courses and the courses will provide an opportunity for the postdoctoral researcher to participate in teaching by giving guest lectures. The PI also participates in a summer climate workshop for high school teachers at Washington State University and the proposed work will enrich that contribution. The extraction device that is built and the expertise gained in using it will be resources for the ice core community and available for future projects. Data will be made available through established national data center and the equipment designs will also be made available to other researchers.", "east": 158.0, "geometry": "POINT(158 -77.666667)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Ice Core; Climate Change; CO2; Atmospheric Chemistry; Atmospheric CO2; LABORATORY; Not provided; Ice Core Data; Climate; Ice Core Chemistry; Atmospheric Gases; Ice Core Gas Records; GROUND STATIONS; Climate Research", "locations": null, "north": -77.666667, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Ahn, Jinho; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": -77.666667, "title": "Developing Dry Extraction of Ice Core Gases and Application to Millennial-Scale Variability in Atmospheric CO2", "uid": "p0000268", "west": 158.0}, {"awards": "9909665 Berger, Glenn", "bounds_geometry": "POLYGON((-67.25 -62,-66.025 -62,-64.8 -62,-63.575 -62,-62.35 -62,-61.125 -62,-59.9 -62,-58.675 -62,-57.45 -62,-56.225 -62,-55 -62,-55 -62.525,-55 -63.05,-55 -63.575,-55 -64.1,-55 -64.625,-55 -65.15,-55 -65.675,-55 -66.2,-55 -66.725,-55 -67.25,-56.225 -67.25,-57.45 -67.25,-58.675 -67.25,-59.9 -67.25,-61.125 -67.25,-62.35 -67.25,-63.575 -67.25,-64.8 -67.25,-66.025 -67.25,-67.25 -67.25,-67.25 -66.725,-67.25 -66.2,-67.25 -65.675,-67.25 -65.15,-67.25 -64.625,-67.25 -64.1,-67.25 -63.575,-67.25 -63.05,-67.25 -62.525,-67.25 -62))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001707", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0303"}, {"dataset_uid": "001818", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0107"}], "date_created": "Wed, 10 Oct 2007 00:00:00 GMT", "description": "9909665 Berger This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports project to test and develop approaches for using thermoluminescence techniques to determine the age of Antarctic marine sediments. Quaternary (last 2 million yrs) marine sediments surrounding Antarctica record the waxing and waning of ice shelves and ice sheets, and also other paleoclimatic information, yet accurate chronologies of these sediments are difficult to obtain. Such chronologies provide the essential foundation for study of geological processes in the past. Within the range of radiocarbon (14C) dating (less than 30-40 thousand yrs, note - \"ka\" below means 1000 yrs) 14C dates can be inaccurate because of a variable 14C reservoir effect, and beyond 30-40 ka few methods are applicable. Photon-stimulated-luminescence sediment dating (photonic dating) of eolian and waterlain deposits in temperate latitudes spans the range from decades to hundreds of ka, but marine sediments in and around Antarctica pose special difficulty because of the potentially restricted exposure to daylight (the clock-zeroing process) of most detrital grains before deposition. This proposal will test the clock-zeroing assumption in representative Antarctic glaciomarine depositional settings, and thereby determine the potential reliability of photonic dating of Antarctic marine sediments. Limited luminescence dating and signal-zeroing tests using glaciomarine and marine deposits have been conducted in the northern temperate and polar latitudes, but the effects on luminescence of the different glaciomarine depositional processes have never been studied in detail. Furthermore, the depositional settings around Antarctica are almost entirely polar, with consequent specific processes operating there. For example, transport of terrigenous suspensions by neutrally buoyant \"cold-tongue\" (mid-water) plumes may be common around Antarctica, yet the effect of such transport on luminescence zeroing is unknown. Typical marine cores near Antarctica may contain an unknown fraction of detrital grains from cold-tongue and near-bottom suspensions. Thus the extent to which the polar glaciomarine depositional processes around Antarctica may limit the potential accuracy of photonic dating of marine cores is unknown (age overestimates would result if grains are not exposed to daylight before deposition). This project will collect detrital grains from a variety of \"zero-age\" (modern) marine depositional settings within the Antarctic Peninsula, where representative Antarctic depositional processes have been documented and where logistics permit access. Suspensions will be collected from four fjords representing a transect from polar through subpolar conditions. Suspensions will be collected from two stations and from up to 3 depths (surface and 2 deep plumes) at each station. Sediment traps will be deployed at two of these fjord settings. As well, core-top sediments will be collected from several sites. All samples will be shielded from light and transported to Reno, Nevada, for luminescence analyses. Systematic study of the effectiveness of luminescence-clock-zeroing in Antarctic glaciomarine settings will determine if photonic dating can be reliable for future applications to Antarctic marine sediments. Refined sedimentological criteria for the selection of future samples for photonic dating are expected from this project. A photonic-dating capability would provide a numeric geochronometer extending well beyond the age range of 14C dating. Such a capability would permit answering a number of broader questions about the timing and extent of past glaciations near and on the Antarctic shelves.", "east": -55.0, "geometry": "POINT(-61.125 -64.625)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS", "is_usap_dc": false, "keywords": "R/V LMG; Not provided; Luminescence; Hugo Island; Geochronology; R/V NBP; Palmer Deep", "locations": "Hugo Island", "north": -62.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Berger, Glenn; Domack, Eugene Walter", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -67.25, "title": "Collaborative Research: Development of a Luminescence Dating Capability for Antarctic Glaciomarine Sediments: Tests of Signal Zeroing at the Antarctic Pennisula", "uid": "p0000592", "west": -67.25}, {"awards": "0540915 Scambos, Ted", "bounds_geometry": "POLYGON((-57.9857 -48.444,-55.95557 -48.444,-53.92544 -48.444,-51.89531 -48.444,-49.86518 -48.444,-47.83505 -48.444,-45.80492 -48.444,-43.77479 -48.444,-41.74466 -48.444,-39.71453 -48.444,-37.6844 -48.444,-37.6844 -50.12802,-37.6844 -51.81204,-37.6844 -53.49606,-37.6844 -55.18008,-37.6844 -56.8641,-37.6844 -58.54812,-37.6844 -60.23214,-37.6844 -61.91616,-37.6844 -63.60018,-37.6844 -65.2842,-39.71453 -65.2842,-41.74466 -65.2842,-43.77479 -65.2842,-45.80492 -65.2842,-47.83505 -65.2842,-49.86518 -65.2842,-51.89531 -65.2842,-53.92544 -65.2842,-55.95557 -65.2842,-57.9857 -65.2842,-57.9857 -63.60018,-57.9857 -61.91616,-57.9857 -60.23214,-57.9857 -58.54812,-57.9857 -56.8641,-57.9857 -55.18008,-57.9857 -53.49606,-57.9857 -51.81204,-57.9857 -50.12802,-57.9857 -48.444))", "dataset_titles": "Atlas of the Cryosphere - View dynamic maps of snow, sea ice, glaciers, ice sheets, permafrost, and more.; Climate, Drift, and Image Data from Antarctic Icebergs A22A and UK211, 2006-2007; MODIS Mosaic of Antarctica (MOA)", "datasets": [{"dataset_uid": "000189", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Atlas of the Cryosphere - View dynamic maps of snow, sea ice, glaciers, ice sheets, permafrost, and more.", "url": "http://nsidc.org/MMS/atlas/cryosphere_atlas_north.html"}, {"dataset_uid": "000190", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "MODIS Mosaic of Antarctica (MOA)", "url": "http://nsidc.org/data/nsidc-0280.html"}, {"dataset_uid": "609466", "doi": "10.7265/N5N014GW", "keywords": "Ablation; Atmosphere; Glaciology; GPS; Meteorology; Oceans; Photo/video; Photo/Video; Sea Ice; Southern Ocean; Temperature", "people": "Thom, Jonathan; Scambos, Ted; Yermolin, Yevgeny; Bohlander, Jennifer; Bauer, Rob", "repository": "USAP-DC", "science_program": null, "title": "Climate, Drift, and Image Data from Antarctic Icebergs A22A and UK211, 2006-2007", "url": "https://www.usap-dc.org/view/dataset/609466"}], "date_created": "Thu, 16 Aug 2007 00:00:00 GMT", "description": "This award supports a small grant for exploratory research to study the processes that contribute to the melting and break-up of tabular polar icebergs as they drift north. This work will enable the participation of a group of U.S. scientists in this international project which is collaborative with the Instituto Antartico Argentino. The field team will place weather instruments, firn sensors, and a video camera on the iceberg to measure the processes that affect it as it drifts north. In contrast to icebergs in other sectors of Antarctica, icebergs in the northwestern Weddell Sea drift northward along relatively predictable paths, and reach climate and ocean conditions that lead to break-up within a few years. The timing of this study is critical due to the anticipated presence of iceberg A43A, which broke off the Ronne Ice Shelf in February 2000 and which is expected to be accessible from Marambio Station in early 2006. It has recently been recognized that the end stages of break-up of these icebergs can imitate the rapid disintegrations due to melt ponding and surface fracturing observed for the Larsen A and Larsen B ice shelves. However, in some cases, basal melting may play a significant role in shelf break-up. Resolving the processes (surface ponding/ fracturing versus basal melt) and observing other processes of iceberg drift and break up in-situ are of high scientific interest. An understanding of the mechanisms that lead to the distintegration of icebergs as they drift north may enable scientists to use icebergs as proxies for understanding the processes that could cause ice shelves to disintegrate in a warming climate. A broader impact would thus be an ability to predict ice shelf disintegration in a warming world. Glacier mass balance and ice shelf stability are of critical importance to sea level change, which also has broader societal relevance.", "east": -37.6844, "geometry": "POINT(-47.83505 -56.8641)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ICE AUGERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SNOW DENSITY CUTTER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e MODIS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e MMS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS", "is_usap_dc": true, "keywords": "Air Temperature; Weddell Sea; Edge-Wasting; Ice Shelf Meltwater; TERRA; Antarctic; GPS; Iceberg; Ice Breakup; South Atlantic Ocean; AQUA; Tabular; Photo; Not provided; Icetrek; HELICOPTER; Antarctica", "locations": "Antarctic; Weddell Sea; Antarctica; South Atlantic Ocean", "north": -48.444, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Scambos, Ted; Bohlander, Jennifer; Bauer, Rob; Yermolin, Yevgeny; Thom, Jonathan", "platforms": "AIR-BASED PLATFORMS \u003e ROTORCRAFT/HELICOPTER \u003e HELICOPTER; Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e AQUA; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e TERRA; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "NSIDC", "repositories": "NSIDC; USAP-DC", "science_programs": null, "south": -65.2842, "title": "Investigating Iceberg Evolution During Drift and Break-Up: A Proxy for Climate-Related Changes in Antarctic Ice Shelves", "uid": "p0000003", "west": -57.9857}, {"awards": "0603729 Mukasa, Samuel", "bounds_geometry": "POLYGON((161.2 -77.5029,161.26 -77.5029,161.32 -77.5029,161.38 -77.5029,161.44 -77.5029,161.5 -77.5029,161.56 -77.5029,161.62 -77.5029,161.68 -77.5029,161.74 -77.5029,161.8 -77.5029,161.8 -77.52511,161.8 -77.54732,161.8 -77.56953,161.8 -77.59174,161.8 -77.61395,161.8 -77.63616,161.8 -77.65837,161.8 -77.68058,161.8 -77.70279,161.8 -77.725,161.74 -77.725,161.68 -77.725,161.62 -77.725,161.56 -77.725,161.5 -77.725,161.44 -77.725,161.38 -77.725,161.32 -77.725,161.26 -77.725,161.2 -77.725,161.2 -77.70279,161.2 -77.68058,161.2 -77.65837,161.2 -77.63616,161.2 -77.61395,161.2 -77.59174,161.2 -77.56953,161.2 -77.54732,161.2 -77.52511,161.2 -77.5029))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 02 Aug 2007 00:00:00 GMT", "description": "This Small Grant for Exploratory Research supports measurement of PGE abundances and Hf, Nd, Sr and Pb isotopic ratios of the Basement Sill and Dais Intrusion lobe of the Ferrar Magmatic Province, Antarctica. This province played a key role in the breakup of Gondwanaland. Models to be tested are magma production by plume activity versus decompression melting in a fossil subduction zone. The PGE data will also be used to evaluate the behavior of volatiles during magma crystallization, which other evidence indicates may have reached saturation. The samples to be studied were collected during the NSF-sponsored, Magmatic Field Laboratory Workshop held in Antarctica in 2005. This study\u0027s results will be compliled with complementary data from other attendees to develop a new multidisciplinary model of Ferrar magmatism.\u003cbr/\u003e\u003cbr/\u003eThe broader impacts fo this work include international collaboration and informal science education through public outreach to K12 students.", "east": 161.8, "geometry": "POINT(161.5 -77.61395)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS", "is_usap_dc": false, "keywords": "Magma Crystallization; Ferrar Magmatic Province; Dais Intrusion Lobe; Basement Sill; Antarctic; HELICOPTER; Ferrar Magmatism; Antarctica", "locations": "Basement Sill; Ferrar Magmatic Province; Antarctica; Antarctic", "north": -77.5029, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Mukasa, Samuel", "platforms": "AIR-BASED PLATFORMS \u003e ROTORCRAFT/HELICOPTER \u003e HELICOPTER", "repositories": null, "science_programs": null, "south": -77.725, "title": "SGER: Basement Sill, Antarctica: Constraints from its PGE Abundance Patterns and Isotopic Compositions on Magma Source Characteristics and Crystallization Processes", "uid": "p0000278", "west": 161.2}, {"awards": "0337948 Bromwich, David", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Access to data", "datasets": [{"dataset_uid": "001778", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to data", "url": "http://polarmet.mps.ohio-state.edu/PolarMet/ant_hindcast.html"}], "date_created": "Thu, 02 Aug 2007 00:00:00 GMT", "description": "This award supports a comprehensive investigation of the spatial and temporal characteristics of the surface mass balance of the Antarctic ice sheet and the governing mechanisms that affect it. A mesoscale atmospheric model, adapted for Antarctic conditions (Polar MM5), will be used in conjunction with the newly available reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) to resolve the surface mass balance of Antarctica at a time resolution of 3 hours and a spatial resolution of 60 km from 1957 to 2001. Polar MM5 will be upgraded to account for key processes in the simulation, including explicit consideration of blowing snow transport and sublimation as well as surface melting/runoff. The proposed 45-y hindcast of all Antarctic surface mass balance components with a limited area model has not previously been attempted and will provide a dataset of unprecedented scope to complement existing ice core measurements of recent climate, especially those collected by the International Transantarctic Scientific Expedition (ITASE). The trends and variability in space and time over 4.5 decades will be resolved and the impact of the dominant modes of atmospheric variability (Antarctic Oscillation, El Nino-Southern Oscillation, etc.) will be isolated. Hypotheses concerning the Antarctic surface mass balance response to climate change will be tested. The research will provide a sound basis for evaluating the impact of future climate change on Antarctic surface mass balance and its contribution to global sea level change as well as providing an important perspective for the interpretation of Antarctic ice core records. The broader impacts include the education of a Ph.D. student, the development of material for use in university classes, and construction of an interactive educational webpage on Antarctic surface mass balance.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e MMS", "is_usap_dc": false, "keywords": "El Nino-Southern Oscillation; ITASE; Atmospheric Model; Enso; Not provided; Antarctic Oscillation; Mesoscale; Antarctic; Polar Mm5; Climate", "locations": "Antarctic", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bromwich, David; Monaghan, Andrew", "platforms": "Not provided", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": -90.0, "title": "A 45-Y Hindcast of Antarctic Surface Mass Balance Using Polar MM5", "uid": "p0000722", "west": -180.0}, {"awards": "9526556 Sowers, Todd", "bounds_geometry": "POINT(-148.3023 -81.403)", "dataset_titles": "Carbon-13 Isotopic Composition of Atmospheric Methane in Firn Air, South Pole and Siple Dome, Antarctica", "datasets": [{"dataset_uid": "609310", "doi": "10.7265/N5ST7MR2", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Siple Dome; Snow/ice; Snow/Ice; South Pole", "people": "Sowers, Todd A.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Carbon-13 Isotopic Composition of Atmospheric Methane in Firn Air, South Pole and Siple Dome, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609310"}], "date_created": "Mon, 09 Jul 2007 00:00:00 GMT", "description": "This award is for support for a program to reconstruct records of the isotopic composition of paleoatmospheric methane and nitrous oxide covering the last 200,000 years. High resolution measurements of the carbon-13 isotopic composition of methane from shallow ice cores will help to determine the relative contributions of biogenic (wetlands, rice fields and ruminants) and abiogenic (biomass burning and natural gas) methane emissions which have caused the concentrations of this gas to increase at an exponential rate during the anthropogenic period. Isotopic data on methane and nitrous oxide over glacial/interglacial timescales will help determine the underlying cause of the large concentration variations that are known to occur. This project will make use of a new generation mass spectrometer which is capable of generating precise isotopic information on nanomolar quantities of methane and nitrous oxide, which means that samples can be 1000 times smaller than those needed for a standard isotope ratio instrument. The primary objective of the work is to further our understanding of the biogeochemical cycles of these two greenhouse gases throughout the anthropogenic period as well as over glacial interglacial timescales.", "east": -148.3023, "geometry": "POINT(-148.3023 -81.403)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Ice Core; Firn Air Isotope Measurements; Ice Core Chemistry; Firn Isotopes; Stable Isotopes; Methane; Carbon; Paleoclimate; LABORATORY; Siple Dome; Antarctica; Ice Core Data; Firn Air Isotopes; Antarctic Ice Sheet", "locations": "Antarctica; Antarctic Ice Sheet; Siple Dome", "north": -81.403, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Sowers, Todd A.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.403, "title": "Constructing Paleoatmospheric Records of the Isotopic Composition of Methane and Nitrous Oxide", "uid": "p0000611", "west": -148.3023}, {"awards": "0230149 McGwire, Kenneth", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 04 Jun 2007 00:00:00 GMT", "description": "This award supports the development of novel methods for digital image analysis of glacial ice cores that are stored at the National Ice Core Laboratory (NICL) in Denver, Colorado. Ice cores are a critical source of information on how Earth has changed over time, since indicators of local climate (snow accumulation, temperature), regional characteristics (wind-blown materials such as sea salt, dust and pollen), global processes (e.g., CO2, methane), and even extraterrestrial influences (cosmogenic isotopes) are stored in the ice on a common time scale. This project will develop a high-resolution optical scanning system for laboratory curation of ice core images, internet-based search and retrieval capabilities, a digital image analysis system specifically for ice core studies, and methods to integrate ice core image analysis with other dating methods. These tools will be developed and tested in conjunction with scientific investigations of NICL holdings. Optical scanning and analysis tools will improve understanding of the historical development of the ice collected from a particular location and will help to resolve challenges such as ice that has lost stratigraphic order through flow processes. \u003cbr/\u003eBy providing permanent online digital archives of ice core images, this project will greatly improve the documentation and availability of ice core data while reducing time and costs for subsequent scientific investigations. Using the internet, ice core scientists will be able to determine the appropriateness of specific NICL holdings for various scientific studies. By optically scanning ice cores as they are processed at NICL, any researcher will be able to examine an ice core in similar detail to the few investigators who were fortunate enough to observe it before modifications from sampling and storage. Re-examination of cores could be done decades later by anyone at any location, which is not possible now because only the interpretation of the original observer is recorded. Integration of digital image data into ice core analysis will speed discovery, allow collaborative interpretation, and enhance consistency of analysis to improve ice core dating, identification of melt layers, location of flow disturbances, and more. The equipment will be housed at NICL and will be available to the broad community, improving scientific infrastructure.\u003cbr/\u003eThis work will also have numerous broader impacts. Ice core science addresses fundamental questions of human interest related to global warming, abrupt climate change, biogeochemical cycling, and more. The principal investigators broadly disseminate their scientific findings through numerous outlets, ranging from meeting with government officials, chairing and serving on NRC panels, writing popular books and articles, publishing in scientific literature, teaching classes, talking to civic groups, and appearing on radio and television. The results from ice core analyses have directly informed policymakers and will continue to do so. Thus, by improving ice core science, this projectl will benefit society.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e VISUAL OBSERVATIONS", "is_usap_dc": false, "keywords": "Image; Ice Core; Not provided; Scanner; Stratigraphy", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "McGwire, Kenneth C.", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Digital Optical Imaging of Ice Cores for Curation and Scientific Applications", "uid": "p0000735", "west": null}, {"awards": "0125610 Waddington, Edwin", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 30 Apr 2007 00:00:00 GMT", "description": "0125610\u003cbr/\u003eWaddington\u003cbr/\u003e\u003cbr/\u003eThis award provides three years of funding to study the transition from slow inland flow to fast ice stream flow by making use of a suite of geophysical measurements that have been made near the onset region of ice stream D in West Antarctica. These data provide a unique opportunity to develop and validate glaciological models of the controlling processes in ice stream onset zones. Important processes to quantify are motion at the bed and deformation in the ice. Previous analyses indicate that the controlling resistive forces shift from the bed to the sides during the transition from slow inland flow to fast, streaming flow. Model sensitivity analyses will be used to investigate the relative importance of feedbacks between basal processes and ice deformation in the transition from inland to ice stream flow. Model experiments will determine what factors control the location of the onset of streaming flow, and how that location might migrate when conditions at the bed, or along the flow direction, changes over time. The overall goal of this work is to improve understanding of the evolution of the WAIS drainage system. This study is a first step towards understanding the physics that govern the transition from slow inland flow to fast streaming flow.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": false, "keywords": "FIXED OBSERVATION STATIONS", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Price, Stephen", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS", "repositories": null, "science_programs": null, "south": null, "title": "Model Investigations of the Transition from Inland to Ice Stream Flow", "uid": "p0000759", "west": null}, {"awards": "0337838 Fricker, Helen", "bounds_geometry": "POINT(71 -69.75)", "dataset_titles": "Access to data", "datasets": [{"dataset_uid": "001537", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Access to data", "url": "http://www.iris.edu/data/data.htm"}], "date_created": "Fri, 27 Apr 2007 00:00:00 GMT", "description": "This award supports a comprehensive study of rift growth on the Amery Ice Shelf (AIS), East Antarctica, using a combination of in situ and remote sensing data with numerical modeling. On the AIS there is an opportunity to examine an active rift system, which is a combination of two longitudinal-to-flow rifts, which originated at the ice shelf front in the suture zones between merging flowbands, and two transverse-to-flow rifts, which formed at the tip of the western longitudinal rift around 1996. Work in progress indicates that these two transverse rifts do not propagate independently of each other, but somehow grow more or less synchronously. The longest of these rifts-the eastern one-grows at an average rate of about 8m per day. When it meets the eastern longitudinal rift, an event that is expected to occur during the funding period (mid-2006), an iceberg (~30 x 30 km) will calve. Based on observations collected over the past half century, there is reason to believe that such a calving event may be a part of a repetitive sequence. In the proposed project, the expansion and propagation of both transverse rifts will be studied using a network of GPS and seismometers deployed around the tip of each transverse rift. Once the iceberg has calved, the effects its calving has on the dynamics of the ice shelf and the activation of previously inactive rifts will also be studied. Insofar as the rate of calving activity is a proxy for local and regional climate conditions, a broader impact of the proposed work is directly related to the socio-environmental topics of climate and sea-level change. The subject of iceberg calving has a history of sparking a great deal of interest from the media and the public alike, especially since the recent large calving events from the Ross and Ronne ice shelves and the remarkably sudden break-up of the Larsen Ice Shelf. The work will involve at least one graduate student, and will involve a partnership with a local charter high school. Field work, instrument deployments, and data collection and analysis will be conducted in close collaboration with the Australian Antarctic Division and the University of Tasmania, which has been a crucial component of research conducted to date. This project will also make use of the Scripps Institution of Oceanography Visualization Center as a means to display results to faculty and researchers of the University of California, San Diego, undergraduate and graduate students, to school children and their teachers, and ultimately to the visiting public.", "east": 71.0, "geometry": "POINT(71 -69.75)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS", "is_usap_dc": false, "keywords": "Not provided; Geodesy; Seismic", "locations": null, "north": -69.75, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Fricker, Helen; Minster, Jean-Bernard", "platforms": "Not provided", "repo": "IRIS", "repositories": "IRIS", "science_programs": null, "south": -69.75, "title": "Monitoring an Active Rift System at the Front of Amery Ice Shelf, East Antarctica", "uid": "p0000668", "west": 71.0}, {"awards": "0229573 Mayewski, Paul", "bounds_geometry": null, "dataset_titles": "Antarctic Mean Annual Temperature Map", "datasets": [{"dataset_uid": "609318", "doi": "10.7265/N51C1TTV", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Temperature", "people": "Dixon, Daniel A.", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Mean Annual Temperature Map", "url": "https://www.usap-dc.org/view/dataset/609318"}], "date_created": "Wed, 04 Apr 2007 00:00:00 GMT", "description": "This award supports a science management office for a pilot ice-core drilling and analysis program to test the feasibility of obtaining well-dated, high-resolution isotope and chemistry records from East Antarctica. Shallow ice cores will be obtained from two locations: 1) ~100 km from South Pole towards the Pole of Inaccessibility, as an extension of the Byrd Station-to-South Pole ITASE traverse [International Trans Antarctic Scientific Expedition]; 2) at Taylor Dome, near the original deep coring site, and (3) possibly at AGO 3 and AGO 4 as part of a logistics traverse to these sites. All of the cores collected will be sampled at very high resolution (~1/2 cm) and analyzed for major ions. Results from this calibration work, along with those from another project that is analyzing stable isotopes will be used to help plan a program of larger scope, with the objective of mapping the spatial expression of climate variability in East Antarctica. Funds are also provided to organize a community workshop for coordination of the second phase of US ITASE and for one workshop per year for two years dedicated to writing and preparation of scientific papers from phase one of US ITASE. In addition, route selection activities for the follow-on traverse activities in East Antarctica will be conducted using satellite image mapping. A summary document will be produced and made available to the community to help with planning of related field programs (e.g. deep ice radar, firn radar profiling, atmospheric chemistry, ice coring, snow surface properties for satellite observations, ice surface elevation and mass balance).", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOCOUPLES \u003e THERMOCOUPLES; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS", "is_usap_dc": true, "keywords": "Antarctic Ice Sheet; West Antarctica; FIELD INVESTIGATION; West Antarctic Ice Sheet; Antarctic; Temperature; East Antarctic Plateau; FIELD SURVEYS; Antarctica; Not provided", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; West Antarctica; West Antarctic Ice Sheet; East Antarctic Plateau", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Dixon, Daniel A.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "A Science Management Office for the U. S. Component of the International Trans Antarctic Expedition (US ITASE SMO)A Collaborative Pgrm of Research from S. Pole to N. Victoria Land", "uid": "p0000199", "west": null}, {"awards": "0538475 Bart, Philip", "bounds_geometry": "POLYGON((-180 -75,-178 -75,-176 -75,-174 -75,-172 -75,-170 -75,-168 -75,-166 -75,-164 -75,-162 -75,-160 -75,-160 -75.3,-160 -75.6,-160 -75.9,-160 -76.2,-160 -76.5,-160 -76.8,-160 -77.1,-160 -77.4,-160 -77.7,-160 -78,-162 -78,-164 -78,-166 -78,-168 -78,-170 -78,-172 -78,-174 -78,-176 -78,-178 -78,-180 -78,-180 -77.7,-180 -77.4,-180 -77.1,-180 -76.8,-180 -76.5,-180 -76.2,-180 -75.9,-180 -75.6,-180 -75.3,-180 -75))", "dataset_titles": "NBP0802 and NBP0803 Sediment samples (full data link not provided); NBP0802 data; NBP0803 data", "datasets": [{"dataset_uid": "000138", "doi": "", "keywords": null, "people": null, "repository": "AMGRF", "science_program": null, "title": "NBP0802 and NBP0803 Sediment samples (full data link not provided)", "url": "http://www.arf.fsu.edu/"}, {"dataset_uid": "000123", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP0803 data", "url": "https://www.rvdata.us/search/cruise/NBP0803"}, {"dataset_uid": "000122", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP0802 data", "url": "https://www.rvdata.us/search/cruise/NBP0802"}], "date_created": "Thu, 29 Mar 2007 00:00:00 GMT", "description": "This project determines the recent history of the West Antarctic Ice Sheet (WAIS) through a multidisciplinary study of the seabed in the Ross Sea of Antarctica. WAIS is perhaps the world\u0027s most critical ice sheet to sea level rise dut to near-future global warming. its history has been a key focus for the past decade, but there are significant questions as to whether WAIS was stable during the last glacial maximum--about 20,000 years ago--or undergoing advance and retreat. This project studies grounding zone translantions in Eastern Basin to constrain WAIS movements using a multidisciplinary approach that integrates multibeam bathymetry, seismic stratigraphy, sedimentology, diatom biostratigraphy, radiocarbon dating, 10Be concentration analyses, and numerical modeling.\u003cbr/\u003e\u003cbr/\u003eThe broader impacts include improving society\u0027s understanding of sea level rise linked to global warming; postdoctoral, graduate, and undergraduate education; and expanding the participation of groups underrepresented in Earth sciences through links with LSU\u0027s Geoscience Alliance to Encourage Minority Participation.", "east": -160.0, "geometry": "POINT(-170 -76.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e SEISMIC REFLECTION PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e WATERGUNS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES", "is_usap_dc": true, "keywords": "Ross Sea; R/V NBP; Ice Sheet; Last Glacial Maximum; Seismic Stratigraphy", "locations": "Ross Sea", "north": -75.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY", "persons": "Bart, Philip; Tomkin, Jonathan", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "AMGRF", "repositories": "AMGRF; R2R", "science_programs": null, "south": -78.0, "title": "WAIS grounding-zone migrations in Eastern Basin, Ross Sea and the LGM dilemma: New strategies to resolve the style and timing of outer continental shelf grounding events", "uid": "p0000539", "west": -180.0}, {"awards": "0003844 Case, Judd", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG0309", "datasets": [{"dataset_uid": "001683", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0309"}, {"dataset_uid": "002676", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0309", "url": "https://www.rvdata.us/search/cruise/LMG0309"}], "date_created": "Wed, 28 Mar 2007 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research project between the Saint Mary\u0027s College of California, the South Dakota School of Mines and technology, and the Argentine Antarctic Institute (Instituto Antartico Argentino or IAA) to investigate the Late Mesozoic vertebrate paleontology of the James Ross Basin in the Antarctic Peninsula region. The Campanian through the Maastrichtian ages (80 to 65 million years ago) is an important time interval concerning vertebrate biogeography (i.e. dispersals and separations due to moving landmasses) and evolution between Antarctica and other Southern Hemisphere continents (including India, i.e. Gondwana). Moreover, the dispersal of terrestrial vertebrates (i.e. dinosaurs and marsupial mammals) from North America to Antarctica and beyond (e.g. Australia) via Patagonia and the Antarctic Peninsula, as well as the dispersal of modern birds from Antarctica northward are important unresolved questions in paleontology. These dispersal events include vertebrates not only in the terrestrial realms, but also in marine settings. Both widely distributed and localized marine reptile species have been identified in Antarctica, creating questions concerning their dispersal in conjunction with the terrestrial animals.\u003cbr/\u003e\u003cbr/\u003eThe Antarctic Peninsula and Patagonia represent the western-most portion of the Weddellian Paleobiogeographic Province, a region that extends from Patagonia through the Antarctic Peninsula and western Antarctica to Australia and New Zealand. Within this province lie the dispersal routes for interchanges of vertebrates between South America and: 1) Madagascar and India, and 2) Australia. As the result of previous work by the principal investigators, it is postulated that an isthmus between more northern South America and the Antarctic craton has served to bring typical North American dinosaurs, such as hadrosaurs (duck-billed dinosaurs) and presumably marsupials traveling overland, while marine reptiles swam along coastal waters, to Antarctica in the latest Cretaceous. Finally, this region has served as the cradle for the evolution, if not the origin, for groups of modern birds, and evolution of a suite of typical southern hemisphere plants.\u003cbr/\u003e\u003cbr/\u003eIn order to confirm and expand upon these hypotheses, investigations into the latest Cretaceous deposits of the James Ross Basin, Antarctica Peninsula must be continued. The Cape Lamb and Sandwich Bluff geological units, of the Lopez de Bertodano Formation in the James Ross Basin along the eastern Antarctic Peninsula, exhibit a mixture of marine and terrestrial deposits. The following vertebrates have been recovered from these sedimentary deposits during previous field seasons: plesiosaur and mosasaur marine reptiles; plant eating dinosaurs; a meat eating dinosaur; and a variety of modern bird groups, including shorebirds, wading birds and lagoonal birds.\u003cbr/\u003e\u003cbr/\u003eThis project will undertake new fieldwork to recover new specimens in order to test biogeographic and evolutionary hypotheses concerning Late Cretaceous vertebrates in Gondwana. Fieldwork is planned in January 2002 and 2003 to explore the eastern slopes of Cape Lamb, Sandwich Bluff and False Island Point on Vega Island, and the Santa Marta Cove area of James Ross Island.\u003cbr/\u003e\u003cbr/\u003eThis research will result in important new insights about the evolution and geographic dispersal of several vertebrate species. The results are important to understanding the development and evolution of life on Earth.\u003cbr/\u003e\u003cbr/\u003eThis is a collaborative research project with Argentinean scientists from the IAA and it continues a productive collaboration that began in 1995. In addition, collaboration with vertebrate paleontologists from the Museo de La Plata, both in the field and at our respective institutions in Argentina and in the United States, will continue.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "Not provided; R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e MESOZOIC \u003e CRETACEOUS", "persons": "Case, Judd; Blake, Daniel", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Evolution and Biogeography of Late Cretaceous Vertebrates from the James Ross Basin, Antarctic Peninsula", "uid": "p0000129", "west": null}, {"awards": "0230288 Anastasio, Cort", "bounds_geometry": "POLYGON((123.30014 -75.093445,123.307404 -75.093445,123.314668 -75.093445,123.321932 -75.093445,123.329196 -75.093445,123.33646 -75.093445,123.343724 -75.093445,123.350988 -75.093445,123.358252 -75.093445,123.365516 -75.093445,123.37278 -75.093445,123.37278 -75.0952669,123.37278 -75.0970888,123.37278 -75.0989107,123.37278 -75.1007326,123.37278 -75.1025545,123.37278 -75.1043764,123.37278 -75.1061983,123.37278 -75.1080202,123.37278 -75.1098421,123.37278 -75.111664,123.365516 -75.111664,123.358252 -75.111664,123.350988 -75.111664,123.343724 -75.111664,123.33646 -75.111664,123.329196 -75.111664,123.321932 -75.111664,123.314668 -75.111664,123.307404 -75.111664,123.30014 -75.111664,123.30014 -75.1098421,123.30014 -75.1080202,123.30014 -75.1061983,123.30014 -75.1043764,123.30014 -75.1025545,123.30014 -75.1007326,123.30014 -75.0989107,123.30014 -75.0970888,123.30014 -75.0952669,123.30014 -75.093445))", "dataset_titles": "Light Absorption Coefficients for Soluble Species in Snow, Dome C, Antarctica", "datasets": [{"dataset_uid": "609519", "doi": "10.7265/N5MS3QP0", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Dome C Ice Core; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Physical Properties; Snow/ice; Snow/Ice", "people": "Robles, Tony; Anastasio, Cort", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Light Absorption Coefficients for Soluble Species in Snow, Dome C, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609519"}], "date_created": "Wed, 07 Mar 2007 00:00:00 GMT", "description": "Photochemical reactions in snow can have important effects on the chemistry and composition of the snowpack as well as the overlying atmosphere. For example, recent measurements in the Antarctic and Arctic have revealed that sunlit snow releases a number of important pollutants to the atmosphere. Our ability to understand and model this chemistry is currently limited, in part because we lack fundamental photochemical information for a number of important chemical species in snow. This award supports research that will help fill this gap by characterizing the low-temperature photochemistry of three of these key species: nitrite (NO2-), nitrous acid (HNO2), and hydrogen peroxide (HOOH). We will measure quantum yields for these reactions on ice using a sensitive technique that we recently developed during a study of nitrate (NO3-) photochemistry. In addition to this basic research, we will also measure the rates of formation of hydroxyl radical (OH), nitrogen oxides (NOx), and HOOH in illuminated Antarctic snow samples. These measurements will be important inputs for future models, and will allow us to test whether known species (e.g., NO3-, NO2- and HNO2) are responsible for most of snowpack reactivity (e.g., OH formation). Overall, results from this award will significantly improve our ability to understand snowpack chemistry, and the resulting effects on the atmosphere, both in the Antarctic as well as in the many other regions with permanent or seasonal snow. These results will also strengthen efforts to use ice core records to monitor global change. In addition to these impacts, this award will help train students and a postdoctoral fellow, and results from this work will be integrated into two classes in order to expose students to some of the important issues facing polar regions.", "east": 123.37278, "geometry": "POINT(123.33646 -75.1025545)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PHOTOMETERS \u003e SPECTROPHOTOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e HPLC; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Snow Chemistry; Antarctica; Snowpack Chemistry; Snow Samples; Hydrogen Peroxide; Snow Properties; Pollutants; Chemistry; Light Absorption; Antarctic; Chemical Species; Snow; East Antarctica; Organic Compounds; Photochemistry; LABORATORY", "locations": "Antarctica; East Antarctica; Antarctic", "north": -75.093445, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Anastasio, Cort; Robles, Tony", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Dome C Ice Core", "south": -75.111664, "title": "Laboratory Studies of Photochemistry in Antarctic Snow and Ice", "uid": "p0000175", "west": 123.30014}, {"awards": "9615502 Harrison, William", "bounds_geometry": "POINT(-148.822 -81.655)", "dataset_titles": "Vertical Strain at Siple Dome, Antarctica, 1999-2002", "datasets": [{"dataset_uid": "609214", "doi": "10.7265/N5HH6H00", "keywords": "Antarctica; Geodesy; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Siple Dome; Siple Dome Ice Core; Strain; WAISCORES", "people": "Harrison, William; Elsberg, Daniel; Zumberge, Mark; Pettit, Erin; Waddington, Edwin D.; Morack, James", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Vertical Strain at Siple Dome, Antarctica, 1999-2002", "url": "https://www.usap-dc.org/view/dataset/609214"}], "date_created": "Thu, 22 Feb 2007 00:00:00 GMT", "description": "This award is for support for a three year project to measure the vertical strain rate as a function of depth at two sites on Siple Dome Antarctica. Ice flow near a divide such as Siple Dome is unique in that it is predominantly vertical. As a consequence, the component of ice deformation in the vertical direction, the \"vertical strain rate\" is dominant. Its measurement is therefore important for the calibration of dynamic models of ice flow. Two different, relatively new, high resolution systems for its measurement in hot water drilled holes will be employed. The ice flow model resulting from the measurements and flow law determination will be used to interpret the shapes of radar internal layering in terms of the dynamic history and accumulation patterns of Siple Dome over the past 10,000 years. The resulting improved model will also be applied to the interpretation of annual layers thicknesses (to produce annual accumulation rates) and borehole temperatures from the ice core to be drilled at Siple Dome during the 1997/98 field season. The results should permit an improved analysis of the ice core, relative to what was possible at recent coring sites in central Greenland. This is a collaborative project between the University of Alaska, the University of California, San Diego and the University of Washington.", "east": -148.822, "geometry": "POINT(-148.822 -81.655)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e GAUGES \u003e STRAIN GAUGE WHEATSTONE BRIDGE", "is_usap_dc": true, "keywords": "Ice Core Data; GROUND-BASED OBSERVATIONS; Antarctica; USAP-DC; Ice Core; Ice Analysis; Ice Flow; Ice Deformation; Antarctic Ice Sheet; West Antarctic Ice Sheet; Vertical Strain Rate; Ice Sheet; Glaciology; West Antarctica; Ice; Ice Movement", "locations": "Antarctica; Antarctic Ice Sheet; West Antarctica; West Antarctic Ice Sheet", "north": -81.655, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Harrison, William; Morack, James; Pettit, Erin; Zumberge, Mark; Elsberg, Daniel; Waddington, Edwin D.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.655, "title": "Ice Dynamics, the Flow Law, and Vertical Strain at Siple Dome", "uid": "p0000601", "west": -148.822}, {"awards": "0126194 Harder, Susan", "bounds_geometry": null, "dataset_titles": "Access to data", "datasets": [{"dataset_uid": "001336", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Access to data", "url": "http://nsidc.org/data/agdc_investigators.html"}], "date_created": "Tue, 20 Feb 2007 00:00:00 GMT", "description": "This award supports a two-year project to continue work developing the techniques to make carbon monoxide (CO) measurements in ice core samples. Carbon monoxide is an important atmospheric chemical constituent as it is a primary sink for hydroxyl radical (OH) (and therefore influences the oxidizing capacity of the atmosphere) and because the concentrations of three major greenhouses gases , carbon dioxide (CO2), methane (CH4) and ozone (O3) are directly tied to the concentration of CO. In light of recent anthropogenic increases in the emissions of CO, CO2, CH4 and NOx, it is desirable to understand this complex chemical system and the changes in the greenhouse forcing resulting from perturbation. Because it is difficult to test the accuracy of models for past and future conditions for which no direct atmospheric measurements of trace gas concentrations are available these measurements must be obtained in other ways. Polar ice cores provide a means to make these measurements. Further work is necessary to refine the analytical technique and additional measurements are necessary to investigate the accuracy of these results and to establish the nature of temporal trends in CO. It is anticipated that the CO record, combined with existing or new data for CO2, CH4 , N2O and other paleoclimate variables, will provide further constraints on model studies of the effect of changing atmospheric chemistry on greenhouse forcing.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Harder, Susan", "platforms": "Not provided", "repo": "NSIDC", "repositories": "NSIDC", "science_programs": null, "south": null, "title": "Ice Core Records of Atmospheric Carbon Monoxide", "uid": "p0000706", "west": null}, {"awards": "0125579 Cuffey, Kurt; 0126202 Blankenship, Donald", "bounds_geometry": "POLYGON((160 -77.6,160.25 -77.6,160.5 -77.6,160.75 -77.6,161 -77.6,161.25 -77.6,161.5 -77.6,161.75 -77.6,162 -77.6,162.25 -77.6,162.5 -77.6,162.5 -77.63,162.5 -77.66,162.5 -77.69,162.5 -77.72,162.5 -77.75,162.5 -77.78,162.5 -77.81,162.5 -77.84,162.5 -77.87,162.5 -77.9,162.25 -77.9,162 -77.9,161.75 -77.9,161.5 -77.9,161.25 -77.9,161 -77.9,160.75 -77.9,160.5 -77.9,160.25 -77.9,160 -77.9,160 -77.87,160 -77.84,160 -77.81,160 -77.78,160 -77.75,160 -77.72,160 -77.69,160 -77.66,160 -77.63,160 -77.6))", "dataset_titles": "Ablation Rates of Taylor Glacier, Antarctica; Stable Isotopes of Ice on the Surface of Taylor Glacier, Antarctica; Surface Velocities of Taylor Glacier, Antarctica", "datasets": [{"dataset_uid": "609324", "doi": "10.7265/N5RV0KM7", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Velocity; Taylor Glacier", "people": "Kavanaugh, Jeffrey; Cuffey, Kurt M.; Bliss, Andrew; Aciego, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Surface Velocities of Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609324"}, {"dataset_uid": "609326", "doi": "10.7265/N5N29TW8", "keywords": "Ablation Poles; Ablation Rates; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Taylor Glacier", "people": "Cuffey, Kurt M.; Kavanaugh, Jeffrey; Bliss, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Ablation Rates of Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609326"}, {"dataset_uid": "609323", "doi": "10.7265/N5WM1BBZ", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Isotope; Taylor Glacier", "people": "Cuffey, Kurt M.; Bliss, Andrew; Kavanaugh, Jeffrey; Aciego, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Stable Isotopes of Ice on the Surface of Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609323"}], "date_created": "Tue, 13 Feb 2007 00:00:00 GMT", "description": "This award supports a project to significantly improve our understanding of how Taylor Glacier flows and responds to climate changes. Taylor Glacier drains the Taylor Dome region of the East Antarctic Ice Sheet and terminates in Taylor Valley, one of the Dry Valleys of Victoria Land. It provides a crucial and unique link between two intensively studied Antarctic environments: the Taylor Dome, from which a 130 kyr ice core paleoclimate record has recently been extracted, and the Dry Valleys, a pivotal Long-Term Ecological Research (LTER) site and a focus of research on geomorphology and glacial geology. The proposed work will thus make an important contribution to ongoing efforts to exploit the Taylor Dome - Dry Valleys system to build a uniquely comprehensive view of regional long-term environmental changes. The proposed work has two complementary components: field research and numerical modelling. Two field seasons will be used to measure velocity, surface strain rate, mass balance, ice thickness, glacier bed reflectance, and subglacial topography, along a nearly complete longitudinal transect of the Taylor Glacier, and along select cross-valley transects. This information will be used to constrain numerical models of ice and heat flow for the Taylor Dome - Taylor Glacier system. These calibrated models will be used to analyze the time-dependent response of the Taylor Glacier to climate changes. The synthesis of results will be aimed to improve understanding of the glacial geomorphology of Taylor Valley, and to illuminate impacts on the Taylor Valley lakes ecosystem. The project will have a major role in furthering the careers of a doctoral-level graduate student and a post-doctoral researcher.", "east": 162.5, "geometry": "POINT(161.25 -77.75)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Glacier; Glacier Surface; Glacier Surface Ablation; Ice Velocity; Velocity Measurements; Taylor Glacier; Isotope; GPS; Ice Sheet Elevation; Not provided; FIELD INVESTIGATION; Ice Surface Elevation; Ablation; Oxygen Isotope; Elevation; Deuterium; GROUND-BASED OBSERVATIONS; Glacier Surface Ablation Rate; Surface Elevation", "locations": "Taylor Glacier", "north": -77.6, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Bliss, Andrew; Kavanaugh, Jeffrey; Aciego, Sarah; Cuffey, Kurt M.; Morse, David L.; Blankenship, Donald D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Collaborative Research: Dynamics and Climatic Response of the Taylor Glacier System", "uid": "p0000084", "west": 160.0}, {"awards": "0126270 Doran, Peter", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 05 Feb 2007 00:00:00 GMT", "description": "Polar Programs, provides funds for a study of sediment cores from the McMurdo Dry Valley lakes. The Dry Valley lakes have a long history of fluctuating levels reflecting regional climate change. The history of lake level fluctuations is generally known from the LGM to early Holocene through 14C dates of buried organic matter in paleolake deposits. However, the youngest paleolake deposits available are between 8000 to 9000 14C yr BP, suggesting that lake levels were at or below current levels for much of the Holocene. Thus, any information about the lake history and climate controls for the Holocene is largely contained in bottom sediments. This project will attempt to extract paleoclimatic information from sediment cores for a series of closed-basin dry valley lakes under study by the McMurdo LTER site. This work involves multiple approaches to dating the sediments and use of several climate proxy approaches to extract century to millennial scale chronologies from Antarctic lacustrine deposits. This research uses knowledge on lake processes gained over the past eight years by the LTER to calibrate climate proxies from lake sediments. Proxies for lake depth and ice thickness, which are largely controlled by summer climate, are the focus of this work. This study focuses on four key questions: 1. How sensitively do dry valley lake sediments record Holocene environmental and climate variability? 2. What is the paleoclimatic variability in the dry valleys on a century and millennial scale throughout the Holocene? Especially, is the 1200 yr evaporative event unique, or are there other such events in the record? 3. Does a mid-Holocene (7000 to 5000 yr BP) climate shift occur in the dry valleys as documented elsewhere in the polar regions? 4. Is there evidence, in the dry valley lake record of the 1500 yr Holocene periodicities recently recognized in the Taylor Dome record? Core collection will be performed with LTER support using a state-of-the-art percussion/piston corer system that has been used successfully to retrieve long cores (10 to 20 m) from other remote polar locations. Analyses to be done include algal pigments, biogenic silica, basic geochemistry, organic and inorganic carbon and nitrogen content, stable isotopes of carbon, nitrogen, and oxygen, carbonate phases, salt content and mineralogy, and grain size. In addition this project will pursue a multi-chronometer approach to assess the age of the core through optically-stimulated luminescence, 226Ra/230Th , 230Th/234U, and 14C techniques. New experimentation with U-series techniques will be performed to allow for greater precision in the dry valley lake sediments. Compound specific isotopes and lipid biomarkers , which are powerful tools for inferring past lake conditions, will also be assessed. Combined, these analyses will provide a new century to millennial scale continuous record of the Holocene climate change in the Ross Sea region.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS", "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY", "persons": "Doran, Peter", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Paleoclimate Inferred from Lake Sediment Cores in Taylor Valley, Antarctica", "uid": "p0000092", "west": null}, {"awards": "0229917 Becker, Luann", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 24 Jan 2007 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports an interdisciplinary study of fluvial sediments in Antarctica for evidence of what caused the greatest of all mass extinctions in the history of life at the Permian-Triassic boundary. This boundary was, until recently, difficult to locate and thought to be unequivocally disconformable in Antarctica. New studies, particularly of carbon isotopic chemostratigraphy and of paleosols and root traces as paleoecosystem indicators, together with improved fossil plant, reptile and pollen biostratigraphy, now suggest that the precise location of the boundary might be identified and have led to local discovery of iridium anomalies, shocked quartz, and fullerenes with extraterrestrial noble gases. These anomalies are associated with a distinctive claystone breccia bed, similar to strata known in South Africa and Australia, and taken as evidence of deforestation. There is already much evidence from Antarctica and elsewhere that the mass extinction on land was abrupt and synchronous with extinction in the ocean. The problem now is what led to such death and destruction. Carbon isotopic values are so low in these and other Permian-Triassic boundary sections that there was likely to have been some role for catastrophic destabilization of methane clathrates. Getting the modeled amount of methane out of likely reservoirs would require such catastrophic events as bolide impact, flood-basalt eruption or continental-shelf collapse, which have all independently been implicated in the mass extinction and for which there is independent evidence. Teasing apart these various hypotheses requires careful re-examination of beds that appear to represent the Permian-Triassic boundary, and search for more informative sequences, as was the case for the Cretaceous-Tertiary boundary. This collaborative research on geochemistry and petrography of boundary beds and paleosols (by Retallack), on carbon isotopic variation through the boundary interval (by Jahren), and on fullerenes, iridium and helium (by Becker) is designed to test these ideas about the Permian-Triassic boundary in Antarctica and to shed light on processes which contributed to this largest of mass extinctions on Earth. Fieldwork for this research will be conducted in the central Transantarctic Mountains and in Southern Victoria Land with an initial objective of examining the stratigraphic sequences for continuity across the boundary. Stratigraphic continuity is a critical element that must exist for the work to be successful. If fieldwork indicates sufficiently continuous sections, the full analytical program will follow fieldwork.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e PROBES; SOLAR/SPACE OBSERVING INSTRUMENTS \u003e PARTICLE DETECTORS \u003e SEM", "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Becker, Luann", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Permian-Triassic Mass Extinction in Antarctica", "uid": "p0000718", "west": null}, {"awards": "9526566 Bindschadler, Robert", "bounds_geometry": null, "dataset_titles": "Decadal-Length Composite West Antarctic Air Temperature Records", "datasets": [{"dataset_uid": "609097", "doi": "10.7265/N55D8PS0", "keywords": "Antarctica; Atmosphere; Automated Weather Station; Meteorology; Temperature; West Antarctica", "people": "Stearns, Charles R.; Shuman, Christopher A.", "repository": "USAP-DC", "science_program": null, "title": "Decadal-Length Composite West Antarctic Air Temperature Records", "url": "https://www.usap-dc.org/view/dataset/609097"}], "date_created": "Tue, 28 Nov 2006 00:00:00 GMT", "description": "This award is for support for a research program involving the use of passive microwave data to validate key paleoclimate indicators used in glaciologic research. The specific contributions of this research are: 1) to define the timing and spatial extent of hoar complexes, which may serve as visible, annual stratigraphic markers in ice cores, through a combination of satellite passive microwave data and field observations; and 2) to monitor temperature trends at the site with calibrated passive microwave brightness temperatures and to correlate these trends to proxy temperatures provided by oxygen and hydrogen stable isotope ratio profiles from snow pits and/or ice cores. The work will take place at Siple Dome, Antarctica as part of the field activities associated with the ice core drilling program there.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e SMMR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e SSM/I", "is_usap_dc": true, "keywords": "West Antarctica; Near-Surface Air Temperatures; Surface Temperatures; Special Sensor Microwave/imager; Passive Microwave Brightness Temperatures; Scanning Multichannel Microwave Radiometer; SSM/I; SSMR; AWS Byrd Station; NIMBUS-7; Emissivity Modeling; Antarctica; West Antarctic Ice Sheet; Not provided; DMSP; AWS Siple; Automated Weather Station; AWS Lynn; AWS Lettau; AWS", "locations": "Antarctica; West Antarctica; West Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bindschadler, Robert; Shuman, Christopher A.; Stearns, Charles R.", "platforms": "Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e DEFENSE METEOROLOGICAL SATELLITE PROGRAM (DMSP) \u003e DMSP; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e NIMBUS \u003e NIMBUS-7", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Passive Microwave Remote Sensing for Paleoclimate Indicators at Siple Dome, Antarctica", "uid": "p0000191", "west": null}, {"awards": "0230378 Kanagaratnam, Pannirselvam", "bounds_geometry": "POLYGON((-112.224 -79.3385,-112.1245 -79.3385,-112.025 -79.3385,-111.9255 -79.3385,-111.826 -79.3385,-111.7265 -79.3385,-111.627 -79.3385,-111.5275 -79.3385,-111.428 -79.3385,-111.3285 -79.3385,-111.229 -79.3385,-111.229 -79.35475,-111.229 -79.371,-111.229 -79.38725,-111.229 -79.4035,-111.229 -79.41975,-111.229 -79.436,-111.229 -79.45225,-111.229 -79.4685,-111.229 -79.48475,-111.229 -79.501,-111.3285 -79.501,-111.428 -79.501,-111.5275 -79.501,-111.627 -79.501,-111.7265 -79.501,-111.826 -79.501,-111.9255 -79.501,-112.025 -79.501,-112.1245 -79.501,-112.224 -79.501,-112.224 -79.48475,-112.224 -79.4685,-112.224 -79.45225,-112.224 -79.436,-112.224 -79.41975,-112.224 -79.4035,-112.224 -79.38725,-112.224 -79.371,-112.224 -79.35475,-112.224 -79.3385))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 18 Oct 2006 00:00:00 GMT", "description": "This award supports a project to build and test a 12-18 GHz radar system with a plane wave antenna. This is a wideband radar operating over a frequency range of 12 to 18 GHz to detect near-surface internal firn layers of the ice sheet with better than 10 cm resolution to a depth of approximately 7 m. These measurements will allow determination of spatially continuous snow accumulation rate in the firn, which would be useful along a traverse and is of critical importance to the validation of CryoSat and ICESAT satellite missions aimed at assessing the current state of mass balance of the polar ice sheets. The antenna system planned for the radar is relatively compact, and will be located on the sledge carrying the radar systems. The broad scientific focus of this project will be to investigate important glacial processes relevant to ice sheet mass balance. The new radar will allow the characterization (with high depth resolution) of the spatial variability of snow accumulation rate along a traverse route for interpreting data from CryoSat and ICESAT missions. As part of this project, we will institute a strong outreach program involving K-12 education and a minority institution of higher education. We currently work closely with the Advanced Learning Technology Program (ALTec) at the University of Kansas to develop interactive, resource-based lessons for use on-line by students of all grade levels, and we will develop new resources related to this project. We currently have an active research and education collaboration with faculty and undergraduate students at neighboring Haskell Indian Nations University, in Lawrence, Kansas, and we will expand our collaboration to include this project.", "east": -111.229, "geometry": "POINT(-111.7265 -79.41975)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": false, "keywords": "Firn; Cryosat; Plane Wave Antenna; Glacial Processes; GROUND-BASED OBSERVATIONS; Not provided; Icesat; FIELD INVESTIGATION; Radar; LABORATORY; Snow Accumulation; Mass Balance; FIELD SURVEYS", "locations": null, "north": -79.3385, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Kanagaratnam, Pannirselvam; Braaten, David; Bauer, Rob", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -79.501, "title": "High Resolution Ice Thickness and Plane Wave Mapping of Near-Surface Layers", "uid": "p0000731", "west": -112.224}, {"awards": "0230452 Severinghaus, Jeffrey", "bounds_geometry": "POINT(124.5 -80.78)", "dataset_titles": "Antarctic megadunes", "datasets": [{"dataset_uid": "000191", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Antarctic megadunes", "url": "http://nsidc.org/antarctica/megadunes/"}], "date_created": "Wed, 27 Sep 2006 00:00:00 GMT", "description": "This award supports a study of the chemical composition of air in the snow layer (firn) in a region of \"megadunes\" near Vostok station, Antarctica. It will test the hypothesis that a deep \"convective zone\" of vigorous wind-driven mixing can prevent gas fractionation in the upper one-third of the polar firn layer. In the megadunes, ultralow snow accumulation rates lead to structural changes (large grains, pipes, and cracks) that make the permeability of firn to air movement orders of magnitude higher than normal. The unknown thickness of the convective zone has hampered the interpretation of ice core 15N/14N and 40Ar/36Ar ratios as indicators of past firn thickness, which is a key constraint on the climatically important variables of temperature, accumulation rate, and gas age-ice age difference. Studying this \"extreme end-member\" example will better define the role of the convective zone in gas reconstructions. This study will pump air from a profile of ~20 depths in the firn, to definitively test for the presence of a convective zone based on the fit of observed 15 N/14N and 40Ar/36Ar to a molecular- and eddy-diffusion model. Permeability measurements on the core and 2-D air flow modeling (in collaboration with M. Albert) will permit a more physically realistic interpretation of the isotope data and will relate mixing vigor to air velocities. A new proxy indicator of convective zone thickness will be tested on firn and ice core bubble air, based on the principle that isotopes of slow-diffusing heavy noble gases (Kr, Xe) should be more affected by convection than isotopes of fast-diffusing N2 . These tools will be applied to a test of the hypothesis that the megadunes and a deep convective zone existed at the Vostok site during glacial periods, which would explain the anomalously low 15N/14N and 40Ar/36Ar in the Vostok ice core glacial periods. The broader impacts of this work include 1) clarification of phase relationships of greenhouse gases and temperature in ice core records, with implications for understanding of past and future climates, 2) education of one graduate student, and 3) building of collaborative relationships with five investigators.", "east": 124.5, "geometry": "POINT(124.5 -80.78)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e FLASKS", "is_usap_dc": false, "keywords": "Antarctica; Methane; Carbon-14; Permeability; CO2; Firn Core; FIELD SURVEYS; Deuterium Excess; GROUND-BASED OBSERVATIONS; LABORATORY; Isotope; Ice Core Density; Firn Air; Megadunes; Ice Core; Not provided; FIELD INVESTIGATION", "locations": "Antarctica", "north": -80.78, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bauer, Rob; Albert, Mary R.; Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "NSIDC", "repositories": "NSIDC", "science_programs": null, "south": -80.78, "title": "How Thick Is the Convective Zone: A Study of Firn Air in the Megadunes Near Vostok, Antarctica", "uid": "p0000097", "west": 124.5}, {"awards": "0230190 Goldsby, David", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 14 Aug 2006 00:00:00 GMT", "description": "This award supports a project to conduct laboratory experiments to investigate textures formed in ice during superplastic flow. Superplastic flow has recently been discovered in the laboratory and can be considered a new flow mechanism for ice. A simple extrapolation of these new data for superplastic flow from laboratory to natural conditions suggests that glaciers and ice sheets flow via this mechanism. Furthermore, several grain-scale features in ice (e.g., crystal shape) produced during superplastic flow in the laboratory are remarkably similar to those observed in glaciers and ice sheets. Despite this exciting discovery, however, important questions remain before we can apply with full confidence these new flow data in mathematical models of glacier and ice sheet flow. The textures seen in laboratory studies will be compared with those observed in field studies of glaciers and ice sheets. These comparisons, coupled with comparisons of the new superplastic flow data from the laboratory with flow measurements from field studies, will provide a powerful method for further assessing the importance of superplastic flow in nature and thereby improve our understanding of glacier and ice sheet dynamics and global climate change. Experiments will be conducted by the PI and an undergraduate research assistant. Experimental results will be published in relevant refereed journals, presented at glaciology meetings and incorporated into coursework.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": false, "keywords": "LABORATORY", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Goldsby, David", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "A Laboratory Study of Texture Development During Grain Size Sensitive Creep of Ice, with Applications to the Flow of Glaciers and Ice Sheets", "uid": "p0000288", "west": null}, {"awards": "0338363 Thiemens, Mark; 0337933 Cole-Dai, Jihong", "bounds_geometry": null, "dataset_titles": "Major Ion Concentrations in 2004 South Pole Ice Core", "datasets": [{"dataset_uid": "609542", "doi": "10.7265/N5HX19N8", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ion Chromatograph; South Pole", "people": "Cole-Dai, Jihong", "repository": "USAP-DC", "science_program": null, "title": "Major Ion Concentrations in 2004 South Pole Ice Core", "url": "https://www.usap-dc.org/view/dataset/609542"}], "date_created": "Fri, 11 Aug 2006 00:00:00 GMT", "description": "This award supports a collaborative study between South Dakota State University (SDSU) and University of California, San Diego (UCSD) to investigate the oxygen and sulfur isotope composition of sulfates from a number of large volcanic eruptions in the past 1000 years. The project aims to drill a number of shallow ice cores at South Pole and return them to SDSU and UCSD lab for chemical and isotope analysis. Preliminary results from measurements of isotopes in sulfate samples from several volcanic eruptions in Antarctic snow and ice indicate that isotopic composition of volcanic sulfate contains abundant valuable information on atmospheric chemical and dynamic processes that have not been previously investigated. One tentative conclusion is that mass-independently fractionated sulfur isotopes reveal that atmospheric photolysis of sulfur compounds occurs at longer UV wavelengths than those in the Archean atmosphere, possibly reflecting the atmospheric ozone and/or oxygen concentration. This suggests that isotopic composition of atmospheric sulfate may be used to understand the role of UV radiation in sulfur dioxide conversion in the atmosphere and to track the evolution (i.e., oxygenation) of the atmosphere and the origin of life on Earth. Other major research objectives include understanding what impact massive volcanic eruptions have on the oxidative capacity of the atmosphere, what oxidants and mechanisms are involved in the oxidation or conversion of volcanic sulfur dioxide to sulfate in the stratosphere and what isotopic criteria may be used to differentiate ice core signals of stratospheric eruptions from those of tropospheric eruptions. By providing educational and research opportunities to graduate and undergraduate students at both SDSU and UCSD, the proposed project will promote the integration of research and education and contribute to human resource development in science and engineering. The project will contribute to a proposed REU chemistry site program at SDSU. This collaboration will utilize the complementary strengths of both labs and promote exchange between the two institutions. International collaboration will enhance scientific cooperation between France and US.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Not provided; Ion Chromatograph; Ions; LABORATORY; GROUND-BASED OBSERVATIONS", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Cole-Dai, Jihong", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Investigating Atmospheric Chemistry and Dynamics through Oxygen and Sulfur Isotopes in Volcanic Sulfate from South Pole Ice Cores", "uid": "p0000031", "west": null}, {"awards": "0230316 White, James; 0230021 Sowers, Todd; 0230348 Dunbar, Nelia", "bounds_geometry": "POINT(135.1333 -76.05)", "dataset_titles": "Mount Moulton Isotopes and Other Ice Core Data", "datasets": [{"dataset_uid": "609640", "doi": "10.7265/N5FT8J0N", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Epica Dome C; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Lake Vostok; Mount Moulton; Paleoclimate; Talos Dome; Taylor Dome", "people": "Steig, Eric J.; White, James; Popp, Trevor", "repository": "USAP-DC", "science_program": null, "title": "Mount Moulton Isotopes and Other Ice Core Data", "url": "https://www.usap-dc.org/view/dataset/609640"}], "date_created": "Tue, 01 Aug 2006 00:00:00 GMT", "description": "The summit crater of Mt. Moulton, in West Antarctica, contains a 600-m thick horizontally-exposed section of ice with intercalated tephra layers from nearby Mt Berlin. Argon-40/Argon-39 dating of the thick, near-source tephra indicates that the age of the horizontal ice section ranges between 15,000 and 492,000 years. Thus, the Mt Moulton site offers an unparalleled repository of ancient West Antarctic snow and trapped air that can be used to investigate West Antarctic climate over much of the past 500,000 years. The planar nature and consistent dips of the tephra layers suggests that, although the ice section has thinned, it is otherwise undeformed. The Mt. Moulton site was visited during the 1999/2000 field season, at which time a horizontal ice core representing approximately 400 meters of ice was collected, ranging in age from 15,000 to older than 480,000 years. In addition to this horizontal core, samples of ice at a range of depths were collected in order to test the quality of the climate record in the ice. Forty tephra layers intercalated in the ice were also collected in order to provide chronology for the ice section. The results of this first effort are extremely encouraging. Based on the d?18 O of ice, for example, there is clearly a useable record of past climate at Mt. Moulton extending back beyond 140,000 years. There is work to do, however, to realize the full potential of this horizontal ice core. The elemental and isotopic composition of trapped gases suggest some contamination with modern air, for example. As gas cross-dating of ice cores is the current standard by which climate records are intercompared, we need to understand why and how the gas record is compromised before adding Moulton to our arsenal of ice core paleoclimate records. This award supports a collaborative effort between three institutions with following objectives: 1) to evaluate more thoroughly the integrity of the climatic record through shallow drilling of the blue ice area, as well as the snow field upslope from the blue ice; 2) to improve the radioisotopic dating of specific tephra layers; 3) to obtain baseline information about modern snowfall deposition, mean annual temperature, and wind pumping around the summit of Mt. Moulton; and 4) to study how firn densification differs when surface accumulation changes from net accumulation to net ablation.", "east": 135.1333, "geometry": "POINT(135.1333 -76.05)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES", "is_usap_dc": true, "keywords": "LABORATORY; Climate; Argon-40; 40Ar; Argon-39; FIELD SURVEYS; Chronology; Ice Core Gas Age; Gas Record; Ice Core; FIELD INVESTIGATION; Tephra; Mount Moulton; Not provided; Caldera; 39Ar; Stratigraphy; Ice Core Depth", "locations": "Mount Moulton", "north": -76.05, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "White, James; Popp, Trevor; Dunbar, Nelia; Sowers, Todd A.; Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.05, "title": "Collaborative Research: Refining a 500-kry Climate Record From the Moulton Blue Ice Field in West Antarctica", "uid": "p0000755", "west": 135.1333}, {"awards": "0126343 Nishiizumi, Kunihiko", "bounds_geometry": "POINT(-148.812 -81.6588)", "dataset_titles": "Cosmogenic Radionuclides in the Siple Dome A Ice Core", "datasets": [{"dataset_uid": "609307", "doi": "10.7265/N5XK8CGS", "keywords": "Antarctica; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Nishiizumi, Kunihiko; Finkel, R. C.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Cosmogenic Radionuclides in the Siple Dome A Ice Core", "url": "https://www.usap-dc.org/view/dataset/609307"}], "date_created": "Mon, 12 Jun 2006 00:00:00 GMT", "description": "This award supports a three-year renewal project to complete measurement of cosmogenic nuclides in the Siple Dome ice core as part of the West Antarctic ice core program. The investigators will continue to measure profiles of Beryllium-10 (half-life = 1.5x10 6 years) and Chlorine-36 (half-life = 3.0x10 5 years) in the entire ice core which spans the time period from the present to about 100 kyr. It will be particularly instructive to compare the Antarctic record with the detailed Arctic record that was measured by these investigators as part of the GISP2 project. This comparison will help separate global from local effects at the different drill sites. Cosmogenic radionuclides in polar ice cores have been used to study the long-term variations in several important geophysical variables, including solar activity, geomagnetic field strength, atmospheric circulation, snow accumulation rates, and others. The time series of nuclide concentrations resulting from this work will be applied to several problem areas: perfecting the ice core chronology, deducing the history of solar activity, deducing the history of variations in the geomagnetic field, and studying the possible role of solar variations on climate. Comparison of Beryllium-10 and Chlorine-36 profiles in different cores will allow us to improve the ice core chronology and directly compare ice cores from different regions of the globe. Additional comparison with the Carbon-14 record will allow correlation of the ice core paleoenvironment record to other, Carbon-14 dated, paleoclimate records.", "east": -148.812, "geometry": "POINT(-148.812 -81.6588)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e AMS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Ice Core Chemistry; Antarctica; Ice Core; Cosmogenic Radionuclides; Chlorine-36; GROUND STATIONS; Beryllium-10; Siple Dome; West Antarctica", "locations": "Antarctica; Siple Dome; West Antarctica", "north": -81.6588, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Finkel, R. C.; Nishiizumi, Kunihiko", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.6588, "title": "Cosmogenic Radionuclides in the Siple Dome Ice Core", "uid": "p0000358", "west": -148.812}, {"awards": "0196441 Hamilton, Gordon", "bounds_geometry": null, "dataset_titles": "The Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program.; US ITASE International Trans-Antarctic Scientific Expedition", "datasets": [{"dataset_uid": "000109", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "US ITASE International Trans-Antarctic Scientific Expedition", "url": "http://www2.umaine.edu/USITASE/"}, {"dataset_uid": "000586", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "The Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program.", "url": "https://nsidc.org/data/agdc"}], "date_created": "Thu, 30 Mar 2006 00:00:00 GMT", "description": "Not Available", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": false, "keywords": "Transantarctic Mountains; Not provided; US ITASE; Snow Accumulation; Mass Balance; Transantarctic; Outlet Glaciers; Antarctica; FIELD INVESTIGATION; FIELD SURVEYS", "locations": "Antarctica; Transantarctic Mountains", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Hamilton, Gordon S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repo": "Project website", "repositories": "NSIDC; Project website", "science_programs": null, "south": null, "title": "Mass Balance and Accumulation Rate Along US ITASE Routes", "uid": "p0000727", "west": null}, {"awards": "0229245 Hamilton, Gordon", "bounds_geometry": "POINT(135 -76)", "dataset_titles": null, "datasets": null, "date_created": "Thu, 30 Mar 2006 00:00:00 GMT", "description": "A \u0027horizontal ice core\u0027 was collected at the Mount Moulton blue ice field in West Antarctica and preliminary analyses of the sample material suggests that a ~500 kyr climate record is preserved in the ice at this site. This award will contribute to the understanding of the Mt Moulton record by assessing the potential for ice-flow induced deformation of the stratigraphic profile. In addition, this award builds on the recognition of blue ice areas as archives of long climate records by conducting reconnaissance studies for a potential horizontal ice core location at the Allan Hills in East Antarctica. The objectives of this project are to contribute to the glaciological understanding of blue ice areas in Antarctica. Ice flow conditions at the Mt Moulton blue ice field will be studied to assess the possibility that the stratigraphic record has been deformed and reconnaissance of a potential horizontal ice core site in the Allan Hills blue ice field will also be accomplished. Short field programs will be undertaken at each location to collect relevant measurements of ice flow and subglacial topography, and to conduct sampling of material that will enable the preservation of the stratigraphic sequences to be assessed.", "east": 135.0, "geometry": "POINT(135 -76)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e ACOUSTIC RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": false, "keywords": "Mount Moulton; Not provided; Subglacial Topography; FIELD INVESTIGATION; Ice Flow; West Antarctica; FIELD SURVEYS; Stratigraphy; Horizontal Ice Core; GROUND-BASED OBSERVATIONS; Blue Ice; Radar", "locations": "Mount Moulton; West Antarctica", "north": -76.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bauer, Rob; Hamilton, Gordon S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided", "repositories": null, "science_programs": null, "south": -76.0, "title": "Glaciology of Blue Ice Areas in Antarctica", "uid": "p0000248", "west": 135.0}, {"awards": "0230448 Severinghaus, Jeffrey; 0230260 Bender, Michael", "bounds_geometry": "POLYGON((-75.34 86.6,-68.742 86.6,-62.144 86.6,-55.546 86.6,-48.948 86.6,-42.35 86.6,-35.752 86.6,-29.154 86.6,-22.556 86.6,-15.958 86.6,-9.36 86.6,-9.36 83.618,-9.36 80.636,-9.36 77.654,-9.36 74.672,-9.36 71.69,-9.36 68.708,-9.36 65.726,-9.36 62.744,-9.36 59.762,-9.36 56.78,-15.958 56.78,-22.556 56.78,-29.154 56.78,-35.752 56.78,-42.35 56.78,-48.948 56.78,-55.546 56.78,-62.144 56.78,-68.742 56.78,-75.34 56.78,-75.34 59.762,-75.34 62.744,-75.34 65.726,-75.34 68.708,-75.34 71.69,-75.34 74.672,-75.34 77.654,-75.34 80.636,-75.34 83.618,-75.34 86.6))", "dataset_titles": "Firn Air Inert Gas and Oxygen Observations from Siple Dome, 1996, and the South Pole, 2001; Trapped Gas Composition and Chronology of the Vostok Ice Core", "datasets": [{"dataset_uid": "609311", "doi": "10.7265/N5P26W12", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Lake Vostok; Paleoclimate; Vostok; Vostok Ice Core", "people": "Bender, Michael; Suwa, Makoto", "repository": "USAP-DC", "science_program": null, "title": "Trapped Gas Composition and Chronology of the Vostok Ice Core", "url": "https://www.usap-dc.org/view/dataset/609311"}, {"dataset_uid": "609290", "doi": "10.7265/N5FJ2DQC", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciology; Paleoclimate; Siple Dome; Snow/ice; Snow/Ice; South Pole", "people": "Bender, Michael; Battle, Mark; Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Firn Air Inert Gas and Oxygen Observations from Siple Dome, 1996, and the South Pole, 2001", "url": "https://www.usap-dc.org/view/dataset/609290"}], "date_created": "Wed, 18 Jan 2006 00:00:00 GMT", "description": "High latitude deep ice cores contain fundamental records of polar temperatures, atmospheric dust loads (and continental aridity), greenhouse gas concentrations, the status of the biosphere, and other essential properties of past environments. An accurate chronology for these records is needed if their significance is to be fully realized. The dating challenge has stimulated efforts at orbital tuning. In this approach, one varies a timescale, within allowable limits, to optimize the match between a paleoenvironmental property and a curve of insolation through time. The ideal property would vary with time due to direct insolation forcing. It would be unaffected by complex climate feedbacks and teleconnections, and it would give a clean record with high signal/noise ratio. It is argued strongly that the O2/N2 ratio of ice core trapped gases is such a property, and evidence is presented that this property, whose atmospheric ratio is nearly constant, is tied to local summertime insolation. This award will support a project to analyze the O2/N2 ratios at 1 kyr intervals from ~ 115-400 ka in the Vostok ice core. Ancillary measurements will be made of Ar/N2, and Ne/N2 and heavy noble gas ratios, in order to understand bubble close-off fractionation and its manifestation in the Vostok trapped gas record. O2/N2 variations will be matched with summertime insolation at Vostok to achieve a high-accuracy chronology for the Vostok core. The Vostok and other correlatable climate records will then be reexamined to improve our understanding of the dynamics of Pleistocene climate change.", "east": 106.8, "geometry": "POINT(106.8 -72.4667)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e FLASKS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Paleoclimate; Siple Dome; Ice Age; Shallow Firn Air; Firn Air Isotope Measurements; Polar Firn Air; Ice Sample Gas Integrity; Oxygen Isotope; Noble Gas; Ice Core Gas Records; Atmospheric Gases; Trapped Gases; Not provided; LABORATORY; Vostok; Firn Air Isotopes; Thermal Fractionation; Ice Core Chemistry; Trapped Air Bubbles; Ice Core; Antarctica; South Pole; Ice Core Data; GROUND-BASED OBSERVATIONS; Gas Age; Firn Isotopes", "locations": "Antarctica; Vostok; Siple Dome; South Pole", "north": -72.4667, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Battle, Mark; Bender, Michael; Suwa, Makoto; Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -72.4667, "title": "Collaborative Research: Trapped Gas Composition and the Chronology of the Vostok Ice Core", "uid": "p0000257", "west": 106.8}, {"awards": "0401116 Twickler, Mark", "bounds_geometry": "POLYGON((-75.34 86.6,-68.742 86.6,-62.144 86.6,-55.546 86.6,-48.948 86.6,-42.35 86.6,-35.752 86.6,-29.154 86.6,-22.556 86.6,-15.958 86.6,-9.36 86.6,-9.36 83.618,-9.36 80.636,-9.36 77.654,-9.36 74.672,-9.36 71.69,-9.36 68.708,-9.36 65.726,-9.36 62.744,-9.36 59.762,-9.36 56.78,-15.958 56.78,-22.556 56.78,-29.154 56.78,-35.752 56.78,-42.35 56.78,-48.948 56.78,-55.546 56.78,-62.144 56.78,-68.742 56.78,-75.34 56.78,-75.34 59.762,-75.34 62.744,-75.34 65.726,-75.34 68.708,-75.34 71.69,-75.34 74.672,-75.34 77.654,-75.34 80.636,-75.34 83.618,-75.34 86.6))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 13 Jan 2006 00:00:00 GMT", "description": "This award will support a workshop whose aim is to provide a forum for discussion of an international ice core initiative and to examine how such an initiative might work. This workshop will bring together members of the international ice core community to discuss what new large ice core projects are needed to address leading unanswered science questions, technical obstacles to initiating these projects, benefits and difficulties of international collaboration on such projects, and how these collaborations might be facilitated. The very positive response of numerous international ice core scientists consulted about this idea shows that the need for such an initiative is widely recognized. Ice cores have already revolutionized our view of the Earth System, providing, for example, the first evidence that abrupt climate changes have occurred, and showing that greenhouse gases and climate have been tightly linked over the last 400,000 years. Ice cores provide records at high resolution, with particularly good proxies for climate and atmospheric parameters. The challenge that ice core projects present is that they require large concentrations of resources and expertise (both in drilling and in science) that are generally beyond the capacity of any one nation. Maintaining a critical mass of knowledge between projects is also difficult. One way to avoid these problems is to expand international cooperation on ice core drilling projects, so that expertise and resources can be pooled and applied to the most exciting new projects. The broader impacts of this workshop include the societal relevance of ice core science and the fact that the data and interpretations derived from new ice cores will give policymakers the information necessary to make better decisions on the how the earth is responding to climate change. In addition, by improving ice core sciences through international partnerships more students will be able to become involved in an exciting and growing area of climate research.", "east": -9.36, "geometry": "POINT(-42.35 71.69)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": false, "keywords": "Ice Drill; Arctic; Ice Core; Climate Record; Gas; Antarctic; Climate; Chemistry; Not provided; Time Scale", "locations": "Antarctic; Arctic", "north": 86.6, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Twickler, Mark", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": 56.78, "title": "Workshop for International Partnerships in Ice Core Sciences; March 13-16, 2004; Sterling, VA", "uid": "p0000100", "west": -75.34}, {"awards": "0125570 Scambos, Ted; 0125276 Albert, Mary", "bounds_geometry": null, "dataset_titles": "Access AGDC data online by navigating to Data Sets. Data sets are arranged by Principal Investigators. Access data that are combined into multiple data sets, or compiled products.; AWS Data: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation; GPR and GPS Data: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation; Snow and Firn Permeability: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation; The Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program.", "datasets": [{"dataset_uid": "609282", "doi": "10.7265/N5Q23X5F", "keywords": "Antarctica; East Antarctic Plateau; Glaciology; GPR; GPS; Navigation; Paleoclimate; Snow/ice; Snow/Ice", "people": "Scambos, Ted; Bauer, Rob", "repository": "USAP-DC", "science_program": null, "title": "GPR and GPS Data: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation", "url": "https://www.usap-dc.org/view/dataset/609282"}, {"dataset_uid": "609283", "doi": "10.7265/N5K935F3", "keywords": "Antarctica; Atmosphere; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Meteorology; Snow/ice; Snow/Ice", "people": "Bauer, Rob; Fahnestock, Mark; Scambos, Ted; Haran, Terry", "repository": "USAP-DC", "science_program": null, "title": "AWS Data: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "url": "https://www.usap-dc.org/view/dataset/609283"}, {"dataset_uid": "001669", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Access AGDC data online by navigating to Data Sets. Data sets are arranged by Principal Investigators. Access data that are combined into multiple data sets, or compiled products.", "url": "http://nsidc.org/data/agdc_investigators.html"}, {"dataset_uid": "609299", "doi": "10.7265/N5639MPD", "keywords": "Antarctica; East Antarctic Plateau; Glaciology; Physical Properties; Snow/ice; Snow/Ice", "people": "Albert, Mary R.; Courville, Zoe; Cathles, Mac", "repository": "USAP-DC", "science_program": null, "title": "Snow and Firn Permeability: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation", "url": "https://www.usap-dc.org/view/dataset/609299"}, {"dataset_uid": "001343", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "The Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program.", "url": "https://nsidc.org/data/agdc/"}], "date_created": "Wed, 04 Jan 2006 00:00:00 GMT", "description": "This award supports a program of field surveys of an area within the large, well-developed megadune field southeast of Vostok station. The objectives are to determine the physical characteristics of the firn across the dunes, including typical climate indicators such as stable isotopes and major chemical species, and to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. Field study will consist of surface snowpit and shallow core sampling, ground penetrating radar (GPR) profiling, GPS topographic and ice motion surveys, AWS installation, accumulation/ ablation measurements, subsurface temperature, and firn permeability studies. Field work in two successive seasons is proposed. Continent-wide remote sensing studies of the dunes will be continued, using the new group of instruments that are now, or will shortly be available (e.g., MODIS, MISR, GLAS, AMSR). The earlier study of topographic, passive microwave, and SAR characteristics will be extended, with the intent of determining the relationships of dune amplitude and wavelength to climate parameters, and further development of models of dune formation. Diffusion, ventilation, and vapor transport processes within the dune firn will be modeled as well. A robust program of outreach is planned and reporting to inform both the public and scientists of the fundamental in-situ and remote sensing characteristics of these uniquely Antarctic features will be an important part of the work. Because of their extreme nature, their broad extent, and their potential impact on the climate record, it is important to improve our current understanding of these. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on past terrestrial climate, or to processes active on other planets. Megadunes are likely to represent an end-member in firn diagenesis, and as such, may have much to teach us about the processes involved.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ICE AUGERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e SNOWPACK TEMPERATURE PROBE; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e PERMEAMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e SAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e AIR PERMEAMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e RADIO \u003e ARGOS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e WIND PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e DENSIOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e GAUGES \u003e BALANCE", "is_usap_dc": true, "keywords": "Internal Layering; ICESAT; Vapor-Redeposition; Antarctic; Wind Speed; FIELD INVESTIGATION; Surface Morphology; Antarctica; GROUND-BASED OBSERVATIONS; ARWS; Polar Firn Air; Microstructure; Gas Diffusivity; WEATHER STATIONS; Surface Temperatures; RADARSAT-2; Ice Core; Wind Direction; AWS; Ice Sheet; Snow Pit; Dunefields; Climate Record; Megadunes; GROUND STATIONS; METEOROLOGICAL STATIONS; Antarctic Ice Sheet; Density; Atmospheric Pressure; Firn Permeability; FIELD SURVEYS; Radar; Permeability; Field Survey; Firn Temperature Measurements; Snow Megadunes; Thermal Conductivity; LANDSAT; Firn; Ice Core Interpretation; East Antarctic Plateau; Not provided; Surface Winds; Sublimation; Snow Density; Ice Climate Record; Glaciology; Snow Permeability; Air Temperature; Paleoenvironment; Automated Weather Station", "locations": "Antarctica; Antarctic Ice Sheet; Antarctic; East Antarctic Plateau", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Courville, Zoe; Cathles, Mac; Scambos, Ted; Bauer, Rob; Fahnestock, Mark; Haran, Terry; Shuman, Christopher A.; Albert, Mary R.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e ARWS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e METEOROLOGICAL STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e WEATHER STATIONS; Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e ICE, CLOUD AND LAND ELEVATION SATELLITE (ICESAT) \u003e ICESAT; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e LANDSAT \u003e LANDSAT; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e RADARSAT \u003e RADARSAT-2", "repo": "USAP-DC", "repositories": "NSIDC; USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "uid": "p0000587", "west": null}, {"awards": "0125761 Thiemens, Mark", "bounds_geometry": null, "dataset_titles": "Atmospheric Nitrate Isotopic Analysis at Amundsen-Scott South Pole Station, A Twenty-Five Year Record", "datasets": [{"dataset_uid": "609281", "doi": "10.7265/N5TT4NWF", "keywords": "Aerosol; Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; NBP1502; Snow/ice; Snow/Ice; South Pole Station", "people": "Thiemens, Mark H.; Savarino, Joel", "repository": "USAP-DC", "science_program": null, "title": "Atmospheric Nitrate Isotopic Analysis at Amundsen-Scott South Pole Station, A Twenty-Five Year Record", "url": "https://www.usap-dc.org/view/dataset/609281"}], "date_created": "Tue, 27 Dec 2005 00:00:00 GMT", "description": "This award supports a detailed laboratory analysis of the mass-independent isotopic composition of processes associated with atmospheric nitrate trapped in the snow pack at the South Pole. The project will specifically test if the oxygen isotopes 16O, 17O, 18O of nitrate can be used to probe the denitrification of the Antarctic stratosphere. Despite decades of research, there are several important issues in Antarctic atmospheric science, which are presently inadequately resolved. This includes quantification over time of the sources of nitrate aerosols. Today, little is known about the past denitrification of the stratosphere in high latitude regions. This lack of knowledge significantly limits our ability to understand the chemical state of ancient atmospheres and therefore evaluate present and past-coupled climate/atmosphere models. The role of nitrogen in environmental degradation is well known. This issue will also be addressed in this proposal. Atmospheric aerosols have now been shown to possess a mass-independent oxygen isotopic content. The proposed research will investigate the stable oxygen isotope ratios of nitrate in Antarctica both collected in real time and from the snow. Two periods of time will be covered. Full year nitrate aerosol collections, with week resolution time horizons, will be performed at the South Pole. Weekly aerosol collections will help us to identify any seasonal trend of the oxygen-17 excess anomaly, and eventually link this anomaly to the denitrification of the Antarctic stratosphere. This data set will also be used to test our assumption that the oxygen isotopic anomaly of nitrate is mainly formed in the stratosphere and is well preserved in the snow pack. If true, we will for the first time resolve an atmospheric signal extracted from a nitrate profile. The snow pit will allow us to see any trend in the data on a multiple decade timescale.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Snow; GROUND STATIONS; Ion Chemistry; South Pole; Not provided; Aerosol; Oxygen Isotope; GROUND-BASED OBSERVATIONS; Snow Pit; Antarctica; Admundsen-Scott Station", "locations": "Antarctica; South Pole", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Savarino, Joel; Thiemens, Mark H.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "South Pole Atmospheric Nitrate Isotopic Analysis (SPANIA)", "uid": "p0000242", "west": null}, {"awards": "0338359 Saltzman, Eric", "bounds_geometry": "POINT(-148.81 -81.65)", "dataset_titles": "Analysis of Siple Dome Ice Core: Carbonyl Sulfide (COS), Methyl Chloride (CH3Cl), and Methyl Bromide (CH3Br); Antarctic Ice Cores: Methyl Chloride and Methyl Bromide; Ice Core Air Carbonyl Sulfide Measurements - SPRESSO Ice Core; Methane and Carbonyl Sulfide Analysis of Siple Dome Ice Core Subsamples", "datasets": [{"dataset_uid": "609279", "doi": "10.7265/N53B5X3G", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Aydin, Murat; Saltzman, Eric", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Analysis of Siple Dome Ice Core: Carbonyl Sulfide (COS), Methyl Chloride (CH3Cl), and Methyl Bromide (CH3Br)", "url": "https://www.usap-dc.org/view/dataset/609279"}, {"dataset_uid": "609131", "doi": "10.7265/N5P848VP", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Methane and Carbonyl Sulfide Analysis of Siple Dome Ice Core Subsamples", "url": "https://www.usap-dc.org/view/dataset/609131"}, {"dataset_uid": "601357", "doi": "10.15784/601357", "keywords": "Antarctica; Atmospheric Gases; Gas Measurement; Ice Core; Ice Core Gas Records; Trace Gases", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Air Carbonyl Sulfide Measurements - SPRESSO Ice Core", "url": "https://www.usap-dc.org/view/dataset/601357"}, {"dataset_uid": "609313", "doi": "10.7265/N5DN430Q", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; ITASE; Paleoclimate; Siple Dome Ice Core; South Pole; SPRESSO; SPRESSO Ice Core", "people": "Williams, Margaret; Tatum, Cheryl; Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Ice Cores: Methyl Chloride and Methyl Bromide", "url": "https://www.usap-dc.org/view/dataset/609313"}], "date_created": "Wed, 16 Nov 2005 00:00:00 GMT", "description": "This award supports the analysis, in Antarctic ice cores, of the ozone depleting substances methyl bromide (CH3Br) and methyl chloride (CH3Cl), and the sulfur-containing gas, carbonyl sulfide (OCS). The broad scientific goal is to assess the level and variability of these gases in the preindustrial atmosphere. This information will allow testing of current models for sources and sinks of these gases from the atmosphere, and to indirectly assess the impact of anthropogenic activities on their biogeochemical cycles. Longer-term records will shed light on the climatic sensitivity of the atmospheric burden of these gases, and ultimately on the biogeochemical processes controlling them. These gases are present in ice at parts per trillion levels, and the current database consists entirely of a small number of measurements made in from a shallow ice core from Siple Dome, Antarctica. This project will involve studies of ice core samples from three Antarctic sites: Siple Station, Siple Dome, and South Pole. The sampling strategy is designed to accomplish several objectives: 1) to verify the atmospheric mixing ratios previously observed in shallow Siple Dome ice for OCS, CH3Br, and CH3Cl at sites with very different accumulation rates and surface temperatures; 2) to obtain a well-dated, high resolution record from a high accumulation rate site (Siple Station), that can provide overlap in mean gas age with Antarctic firn air samples; 3) explore Holocene variability in trace gas mixing ratios; and 4) to make the first measurements of these trace gases in Antarctic glacial ice. In terms of broader impact on society, this research will help to provide a stronger scientific basis for policy decisions regulating the production and use of ozone-depleting and climate-active gases. Specifically, the methyl bromide results will contribute to the current debate on the impact of recent regulation (via the Montreal Protocol and its Amendments) on atmospheric levels. Determination of pre-industrial atmospheric variability of ozone-depleting substances will help place more realistic constraints on scenarios used for future projections of stratospheric ozone and its climatic impacts. This research will involve the participation of both graduate and undergraduate students.", "east": -148.81, "geometry": "POINT(-148.81 -81.65)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Ice Core Gas Records; Carbonyl Sulfide; Siple Coast; Chloride; Trapped Gases; Snow; Ice Core Chemistry; Chromatography; Siple; GROUND STATIONS; Atmospheric Gases; Ozone Depletion; AWS Siple; Ice Sheet; Ice Core Data; Antarctica; Glaciology; West Antarctica; Atmospheric Chemistry; Ice Core; Stratigraphy; LABORATORY; Methane; Mass Spectrometer; GROUND-BASED OBSERVATIONS; WAISCORES; Msa; Mass Spectrometry; Not provided; Siple Dome; Gas Measurement", "locations": "Antarctica; Siple Coast; Siple Dome; West Antarctica; Siple", "north": -81.65, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Saltzman, Eric; Aydin, Murat; Williams, Margaret; Tatum, Cheryl", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.65, "title": "Methyl chloride and methyl bromide in Antarctic ice cores", "uid": "p0000032", "west": -148.81}, {"awards": "9814574 Jacobel, Robert", "bounds_geometry": "POLYGON((-120 -80,-115.6 -80,-111.2 -80,-106.8 -80,-102.4 -80,-98 -80,-93.6 -80,-89.2 -80,-84.8 -80,-80.4 -80,-76 -80,-76 -81,-76 -82,-76 -83,-76 -84,-76 -85,-76 -86,-76 -87,-76 -88,-76 -89,-76 -90,-80.4 -90,-84.8 -90,-89.2 -90,-93.6 -90,-98 -90,-102.4 -90,-106.8 -90,-111.2 -90,-115.6 -90,-120 -90,-120 -89,-120 -88,-120 -87,-120 -86,-120 -85,-120 -84,-120 -83,-120 -82,-120 -81,-120 -80))", "dataset_titles": "Ice Thickness and Internal Layer Depth Along the 2001 and 2002 US ITASE Traverses", "datasets": [{"dataset_uid": "609264", "doi": "10.7265/N5R20Z9T", "keywords": "Airborne Radar; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; ITASE; WAIS", "people": "Welch, Brian; Jacobel, Robert", "repository": "USAP-DC", "science_program": "ITASE", "title": "Ice Thickness and Internal Layer Depth Along the 2001 and 2002 US ITASE Traverses", "url": "https://www.usap-dc.org/view/dataset/609264"}], "date_created": "Fri, 08 Apr 2005 00:00:00 GMT", "description": "This award supports a program of radar studies of internal stratigraphy and bedrock topography along the traverses for the U.S. component of the International Trans-Antarctic Scientific Expedition (US ITASE). The radar will provide information immediately available in the field on ice thickness and internal layer structure to help in the selection of core sites as the traverse proceeds. These data will also be useful in siting deeper millennial scale cores planned at less frequent intervals along the traverse, and in the selection of the location for the deep inland core planned for the future. In addition to continuous coverage along the traverse route, more detailed studies on a grid surrounding each of the core locations will be made to better characterize accumulation and bedrock topography in each area. This proposal is complimentary to the one submitted by the Cold Regions Research and Engineering Laboratory (CRREL), which proposes a high frequency radar to examine the shallower portion of the record down to approximately 60 meters, including the presence of near-surface crevasses. The radar proposed herein is most sensitive at depths below 60 meters and can depict deep bedrock and internal layers to a substantial fraction of the ice thickness.", "east": -76.0, "geometry": "POINT(-98 -85)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS", "is_usap_dc": true, "keywords": "US ITASE; Traverses; West Antarctica; Radar Echo Sounder; GROUND-BASED OBSERVATIONS; Radar Echo Sounding; Antarctica; Depth; Ice Thickness; Radar", "locations": "Antarctica; West Antarctica", "north": -80.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Jacobel, Robert; Welch, Brian", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": -90.0, "title": "Radar Studies of Internal Stratigraphy and Bedrock Topography along the US ITASE Traverse", "uid": "p0000595", "west": -120.0}, {"awards": "0086997 Truffer, Martin", "bounds_geometry": null, "dataset_titles": "Margin Migration Rates and Dynamics: Siple Coast Ice Streams", "datasets": [{"dataset_uid": "609263", "doi": "10.7265/N50K26HH", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Siple Coast", "people": "Truffer, Martin; Echelmeyer, Keith A.", "repository": "USAP-DC", "science_program": null, "title": "Margin Migration Rates and Dynamics: Siple Coast Ice Streams", "url": "https://www.usap-dc.org/view/dataset/609263"}], "date_created": "Thu, 17 Mar 2005 00:00:00 GMT", "description": "0086997\u003cbr/\u003eTruffer\u003cbr/\u003e\u003cbr/\u003eThis award supports a two year project to investigate the dynamics of the marginal zone of the Siple Coast ice streams using existing velocity and temperature profiles. The flow and stress fields will be modeled using finite element methods and a thermo-mechanical model will be used to investigate the coupling of the flow and temperature fields. Direct comparison of these models with the observed velocity profiles will lead to estimates of the structure of the margins and the softening of the marginal ice. The distribution of basal and marginal shear stress will be investigated, leading to an estimate of the relative roles of the bed and the margins in the overall force balance of the ice streams.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e SURVEYING TOOLS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e THEODOLITE", "is_usap_dc": true, "keywords": "GROUND-BASED OBSERVATIONS; Ice Movement; Siple Dome; Ice Stream; USAP-DC; Ice Velocity", "locations": "Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Truffer, Martin; Echelmeyer, Keith A.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Margin Migration Rates and Margin Dynamics of the Siple Coast Ice Streams", "uid": "p0000144", "west": null}, {"awards": "9714687 Brook, Edward J.", "bounds_geometry": null, "dataset_titles": "Byrd Ice Core Microparticle and Chemistry Data", "datasets": [{"dataset_uid": "609247", "doi": "", "keywords": "Antarctica; Byrd; Byrd Ice Core; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate", "people": "Blunier, Thomas; Brook, Edward J.; Thompson, Lonnie G.; Fluckiger, Jacqueline", "repository": "USAP-DC", "science_program": "Byrd Ice Core", "title": "Byrd Ice Core Microparticle and Chemistry Data", "url": "https://www.usap-dc.org/view/dataset/609247"}], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "This award is for support for a program to make high resolution studies of variations in the concentration of methane, the oxygenisotope composition of paleoatmospheric oxygen, and the total gas content of deep Antarctic ice cores. Studies of the concentration and isotopic composition of air in the firn of the Antarctic ice sheet will also be continued. One objective of this work is to use the methane concentration and oxygen-isotope composition of oxygen of air in ice as time-stratigraphic markers for the precise intercorrelation of Greenland and Antarctic ice cores as well as the correlation of ice cores to other climatic records. A second objective is to use variations in the concentration and interhemispheric gradient of methane measured in Greenland and Antarctic ice cores to deduce changes in continental climates and biogeochemistry on which the atmospheric methane distribution depends. A third objective is to use data on the variability of total gas content in the Siple Dome ice core to reconstruct aspects of the glacial history of West Antarctica during the last glacial maximum. The fourth objective is to participate in collaborative studies of firn air chemistry at Vostok, Siple Dome, and South Pole which will yield much new information about gas trapping in ice as well as the concentration history and isotopic composition of greenhouse gases, oxygen, trace biogenic gases and trace anthropogenic gases during the last 100 years.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "GROUND STATIONS", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Blunier, Thomas; Fluckiger, Jacqueline; Thompson, Lonnie G.; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Studies of Trapped Gases in Firn and Ice from Antarctic Deep Ice Cores", "uid": "p0000168", "west": null}, {"awards": "9316564 Mayewski, Paul", "bounds_geometry": null, "dataset_titles": "Ross Ice Drainage System (RIDS) Glaciochemical Analysis; Siple Dome Ice Core Chemistry and Ion Data", "datasets": [{"dataset_uid": "609266", "doi": "10.7265/N5M906KG", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice; Snow Pit", "people": "Kreutz, Karl; Mayewski, Paul A.; Twickler, Mark; Whitlow, Sallie; Meeker, Loren D.", "repository": "USAP-DC", "science_program": null, "title": "Ross Ice Drainage System (RIDS) Glaciochemical Analysis", "url": "https://www.usap-dc.org/view/dataset/609266"}, {"dataset_uid": "609251", "doi": "", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Severinghaus, Jeffrey P.; Dunbar, Nelia; Mayewski, Paul A.; Kreutz, Karl; Brook, Edward J.; Blunier, Thomas", "repository": "NCEI", "science_program": "Siple Dome Ice Core", "title": "Siple Dome Ice Core Chemistry and Ion Data", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/2461"}], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "9316564 Mayewski This award is for support for a three year program to provide a high resolution record of the Antarctic climate through the acquisition, analysis, and interpretation of records of atmospheric chemical deposition taken from three ice cores located at sites within or immediately adjacent to the Ross Ice Drainage System (RIDS). These cores include one from Taylor Dome, and two from West Antarctic locations identified as potential deep drilling sites for the WAISCORES program. Collection of the two West Antarctic cores is intended to be a lightweight dry-drilling operation to depths of ~ 200 m, which will provide records of \u003e 2 kyr. Glaciochemical analyses will focus on the major cations and anions found in the antarctic atmosphere, plus methanesulfonic acid and selected measurements of the hydrogen ion, aluminum, iron, and silica. These analyses, and companion stable isotope and particle measurements to be carried out by other investigators require \u003c 7% by volume of each core, leaving \u003e 90% for other investigators and storage at the U.S. National Ice Core Laboratory. These records are intended to solve a variety of scientific objectives while also providing spatial sampling and reconnaissance for future U.S. efforts in West Antarctica. ***", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Magnesium; GROUND STATIONS; Nitrate; Methane Sulfonic Acid; Sodium; Ice Core Chemistry; Ammonium (NH4); Sulfate; Ice Core; Chloride; Potassium (k); Calcium (ca)", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Kreutz, Karl; Twickler, Mark; Whitlow, Sallie; Blunier, Thomas; Dunbar, Nelia; Brook, Edward J.; Mayewski, Paul A.; Meeker, Loren D.; Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "NCEI; USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Ross Ice Drainage System (RIDS) Late Holocene Climate Variability", "uid": "p0000145", "west": null}, {"awards": "8411018 Frisic, David", "bounds_geometry": null, "dataset_titles": "Dominion Range Ice Core Beta Profiles, Chemistry, and Density Data; Newall Glacier Ice Core and Snow Pit Beta Profiles, Chemistry, and Stratigraphy; Newall Glacier Snow Pit and Ice Core, 1987 to 1989", "datasets": [{"dataset_uid": "609088", "doi": "10.7265/N5JM27JP", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Newall Glacier; Paleoclimate; Snow/ice; Snow/Ice", "people": "Mayewski, Paul A.; Whitlow, Sallie", "repository": "USAP-DC", "science_program": null, "title": "Newall Glacier Snow Pit and Ice Core, 1987 to 1989", "url": "https://www.usap-dc.org/view/dataset/609088"}, {"dataset_uid": "609249", "doi": "", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Newall Glacier; Paleoclimate; Physical Properties; Snow/ice; Snow/Ice; Statigraphy", "people": "Mayewski, Paul A.; Welch, Kathy A.", "repository": "USAP-DC", "science_program": null, "title": "Newall Glacier Ice Core and Snow Pit Beta Profiles, Chemistry, and Stratigraphy", "url": "https://www.usap-dc.org/view/dataset/609249"}, {"dataset_uid": "609248", "doi": "", "keywords": "Antarctica; Beta Profiles; Chemistry:ice; Chemistry:Ice; Density; Dominion Range; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Physical Properties", "people": "Mayewski, Paul A.; Watson, M. Scott; Saltzman, Eric; Sowers, Todd A.; Grootes, Pieter; Meese, Deb; Gow, Tony", "repository": "USAP-DC", "science_program": null, "title": "Dominion Range Ice Core Beta Profiles, Chemistry, and Density Data", "url": "https://www.usap-dc.org/view/dataset/609248"}], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "Not available", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "GROUND STATIONS", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Frisic, David; Meese, Deb; Gow, Tony; Saltzman, Eric; Mayewski, Paul A.; Sowers, Todd A.; Welch, Kathy A.; Grootes, Pieter; Watson, M. Scott; Grootes, Peiter", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Characterization of Climatic Events for the Last 2 x 103y through the Retrieval of Ice Cores from the Transantarctic Mountains, Antarctica", "uid": "p0000169", "west": null}, {"awards": "9017827 Lal, Devendra", "bounds_geometry": null, "dataset_titles": "Dome C Ice Core Chemistry and Depth and Age Scale Data", "datasets": [{"dataset_uid": "609243", "doi": "", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Depth-Age-Model; Dome C Ice Core; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate", "people": "Lal, Devendra; Lorius, Claude", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Dome C Ice Core Chemistry and Depth and Age Scale Data", "url": "https://www.usap-dc.org/view/dataset/609243"}], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "This award is for support of a study to establish a quantitative nuclear method for determination of Antarctic ablation and accumulation rates and to provide correction factors for the carbon 14 ages of ice samples dated using trapped carbon 14. Recent studies have established the presence of cosmogenic in-situ produced carbon 14 in polar ice. In conjunction with estimated carbon 14 production rates, measured concentrations of carbon 14 per gram of ice yield, ablation rates which are in good agreement with the values determined from stake measurements. Similar studies to determine accumulation rates have been tested and the estimates are consistent with previous studies. This study will expand the preliminary work done to date in order to improve the 14CO and 14CO2 vacuum extraction techniques, by lowering blank levels and by obtaining more complete separation of 14CO and 14CO2.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "GROUND STATIONS", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Lal, Devendra; Lorius, Claude; Lal, Devendra", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Dome C Ice Core", "south": null, "title": "Nuclear Studies of Accumulating and Ablation Ice Using Cosmogenic 14c", "uid": "p0000152", "west": null}, {"awards": "0087235 Grew, Edward", "bounds_geometry": "POLYGON((42 -64,43.2 -64,44.4 -64,45.6 -64,46.8 -64,48 -64,49.2 -64,50.4 -64,51.6 -64,52.8 -64,54 -64,54 -64.4,54 -64.8,54 -65.2,54 -65.6,54 -66,54 -66.4,54 -66.8,54 -67.2,54 -67.6,54 -68,52.8 -68,51.6 -68,50.4 -68,49.2 -68,48 -68,46.8 -68,45.6 -68,44.4 -68,43.2 -68,42 -68,42 -67.6,42 -67.2,42 -66.8,42 -66.4,42 -66,42 -65.6,42 -65.2,42 -64.8,42 -64.4,42 -64))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 09 Aug 2004 00:00:00 GMT", "description": "0087235\u003cbr/\u003eGrew\u003cbr/\u003e\u003cbr/\u003eThis award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the role of beryllium in lower crustal partial melting events. The formation of granitic liquids by partial melting deep in the Earth\u0027s crust is one of the major topics of research in igneous and metamorphic petrology today. One aspect of this sphere of research is the beginning of the process, specifically, the geochemical interaction between melts and source rocks before the melt has left the source area. One example of anatexis in metamorphic rocks affected by conditions found deep in the Earth\u0027s crust is pegmatite in the Archean ultrahigh temperature granulite-facies Napier Complex of Enderby Land, East Antarctica. Peak conditions for this granulite-facies metamorphism are estimated to have reached nearly 1100 Degrees Celsius and 11 kilobar, that is, conditions in the Earth\u0027s lower crust in Archean time. The proposed research is a study of the Napier Complex pegmatites with an emphasis on the minerals and geochemistry of beryllium. This element, which is estimated to constitute 3 ppm of the Earth\u0027s upper crust, is very rarely found in any significant concentrations in metamorphic rocks subjected to conditions of the Earth\u0027s lower crust. Structural, geochronological, and mineralogical studies will be carried out to test the hypothesis that the beryllium pegmatites resulted from anatexis of their metapelitic host rocks during the ultrahigh-temperature metamorphic event in the late Archean. Host rocks will be analyzed for major and trace elements. Minerals will be analyzed by the electron microprobe for major constituents including fluorine and by the ion microprobe for lithium, beryllium and boron. The analytical data will be used to determine how beryllium and other trace constituents were extracted from host rocks under ultrahigh-temperature conditions and subsequently concentrated in the granitic melt, eventually to crystallize out in a pegmatite as beryllian sapphirine and khmaralite, minerals not found in pegmatites elsewhere. Mineral compositions and assemblages will be used to determine the evolution and conditions of crystallization and recrystallization of the pegmatites and their host rocks during metamorphic episodes following the ultrahigh-temperature event. Monazite will be analyzed for lead, thorium and uranium to date the ages of these events. Because fluorine is instrumental in mobilizing beryllium, an undergraduate student will study the magnesium fluorphosphate wagnerite in the pegmatites in order to estimate fluorine activity in the melt as part of a senior project. The results of the present project will provide important insights on the melting process in general and on the geochemical behavior of beryllium in particular under the high temperatures and low water activities characteristic of the Earth\u0027s lower crust.", "east": 54.0, "geometry": "POINT(48 -66)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ION MICROPROBES", "is_usap_dc": false, "keywords": "Metamorphism; Li; Be; Pegmatitic Leucosomes; Partial Melting; Lithium; Granulites; Napier Complex; Boron; Beryllium; Mineralogy; Not provided; Continental Crust", "locations": "Napier Complex", "north": -64.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Grew, Edward", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -68.0, "title": "Beryllium in Antarctic Ultrahigh-Temperature Granulite-Facies Rocks and its Role in Partial Melting of the Lower Continental Crust", "uid": "p0000370", "west": 42.0}, {"awards": "0126286 McConnell, Joseph", "bounds_geometry": "POLYGON((-180 -62.83,-144 -62.83,-108 -62.83,-72 -62.83,-36 -62.83,0 -62.83,36 -62.83,72 -62.83,108 -62.83,144 -62.83,180 -62.83,180 -65.547,180 -68.264,180 -70.981,180 -73.698,180 -76.415,180 -79.132,180 -81.849,180 -84.566,180 -87.283,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.283,-180 -84.566,-180 -81.849,-180 -79.132,-180 -76.415,-180 -73.698,-180 -70.981,-180 -68.264,-180 -65.547,-180 -62.83))", "dataset_titles": "Siple Shallow Core Density Data", "datasets": [{"dataset_uid": "609129", "doi": "10.7265/N52F7KCD", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Lamorey, Gregg W.", "repository": "USAP-DC", "science_program": null, "title": "Siple Shallow Core Density Data", "url": "https://www.usap-dc.org/view/dataset/609129"}], "date_created": "Mon, 19 Apr 2004 00:00:00 GMT", "description": "This award provides one year of support to use newly developed technology in which an ice-core melter is coupled with both an Inductively Coupled Plasma - Mass Spectrometer (ICP-MS) and a traditional Continuous Flow Analysis (CFA) system, to measure a continuous time series of chemical and trace element deposition on the Siple Dome ice core from West Antarctica. A coupled ice-core melter, ICP-MS, and CFA system will be used to measure concentrations of a number of elements, isotopes and chemical species at very high depth resolution (~2-cm) in the top 54 m of the Siple Dome A-core. Pilot data from analyses of ~6 m from the nearby but much lower accumulation J-core site at Siple Dome, together with more extensive results from Summit, Greenland, indicate that it will be possible to obtain exactly co-registered, high-quality records of at least 12 seasonally varying elements (sodium, magnesium, aluminum, potassium, calcium, iron, manganese, rubidium, strontium, zirconium, barium, lead) and three other chemical species and ions (ammonium, nitrate, calcium ion) with this system. Under this proposed research, we will also add continuous measurements of sulfate to our system. Because more than sufficient core from Siple Dome for these depths is archived at the National Ice Core Laboratory, the proposed research will require no fieldwork. The continuous, very high-resolution, ~350-y record of these elemental tracers will enhance the value of previous chemical and isotopic measurements that have been made on the Siple Dome core and will be particularly valuable for comparisons between ice-core proxies and modern instrumental data related to El Nino-Southern Oscillation (ENSO) as well as for validation of model simulations of atmospheric circulation. These data, and the expertise gained through this research, will be invaluable when this novel chemical analysis technology is eventually applied to deep ice-core records for the study of rapid climate-change events.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "WAISCORES; Siple Coast; Glaciology; Not provided; GROUND-BASED OBSERVATIONS; Ice Core; Siple; Antarctica; Density; Snow; Ice Sheet; Siple Dome; Shallow Core; GROUND STATIONS; Stratigraphy", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": -62.83, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Lamorey, Gregg W.; McConnell, Joseph", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -90.0, "title": "Continuous High Resolution Ice-Core Chemistry using ICP-MS at Siple Dome", "uid": "p0000159", "west": -180.0}, {"awards": "0087151 Cole-Dai, Jihong", "bounds_geometry": null, "dataset_titles": "Sulfate-Based Volcanic Record from South Pole Ice Core", "datasets": [{"dataset_uid": "609215", "doi": "10.7265/N5CR5R88", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Solid Earth; South Pole", "people": "Cole-Dai, Jihong", "repository": "USAP-DC", "science_program": null, "title": "Sulfate-Based Volcanic Record from South Pole Ice Core", "url": "https://www.usap-dc.org/view/dataset/609215"}], "date_created": "Fri, 09 Apr 2004 00:00:00 GMT", "description": "This award supports a two year project to analyze shallow (~150 m) ice cores from South Pole in order to construct an annually resolved, sulfate-based volcanic record covering the last 1400 years. Two shallow ice cores will be recovered at the South Pole during the 00/01 field season and will be used for this work. Volcanic records from polar ice cores provide valuable information for studies of the connection between volcanism and climate. The new records are expected to be continuous and to cover at least the last 1400 years. The information from these records will verify the volcanic events found in the few existing Antarctic records and resolve discrepancies in the timing and magnitude of major explosive eruptions \u003cbr/\u003edetermined from those earlier records. In order to achieve the objectives of the proposed research, funds are provided to assist with the construction of an analytical laboratory for ice core and environmental \u003cbr/\u003echemistry research.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Ice Core; Snow Chemistry; West Antarctica; GROUND-BASED OBSERVATIONS; Antarctica; Ice Core Gas Records; Ion Chemistry; Ice Core Data", "locations": "West Antarctica; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Cole-Dai, Jihong", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "A Sulfate-based Volcanic Record from South Pole Ice Cores", "uid": "p0000167", "west": null}, {"awards": "9615333 Saltzman, Eric", "bounds_geometry": "POINT(-148.8 -81.7)", "dataset_titles": "Biogenic Sulfur in the Siple Dome Ice Core", "datasets": [{"dataset_uid": "609201", "doi": "10.7265/N5S180F1", "keywords": "Antarctica; Biota; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Saltzman, Eric; Dioumaeva, Irina; Finley, Brandon", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Biogenic Sulfur in the Siple Dome Ice Core", "url": "https://www.usap-dc.org/view/dataset/609201"}], "date_created": "Tue, 09 Mar 2004 00:00:00 GMT", "description": "This award is for support for four years of funding for a program of biogenic sulfur measurements on the Siple Dome ice core. Biogenic sulfur is a major aerosol-forming constituent of the atmosphere and has potentially important links to the earth\u0027s radiation budget. Previous work on the Vostok ice core has demonstrated a remarkable climate-related variability in biogenic sulfur, suggesting that the sulfur cycle may act to stabilize climate (keep the glacial atmosphere cool and the interglacial atmosphere warm) in the Southern Hemisphere. In this study, methane-sulfonate (MSA) will be measured on the Siple Dome ice core as part of the West Antarctic ice sheet program (WAIS). Siple Dome is located in a region which is strongly impacted by the incursion of marine air onto the Antarctic plateau. Because of its proximity to the coast and meteorological setting, it is expected that variability in high-latitude marine biogenic sulfur emissions should dominate the MSA record at this site. In addition to the deep ice core record, samples from shallow cores will also be analyzed to provide information about regional variability and decadal-to-centennial scale variability in the deposition of sulfur-containing aerosols from high latitude source regions over the past 200 years.", "east": -148.8, "geometry": "POINT(-148.8 -81.7)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "FIELD SURVEYS; Siple Dome; GROUND-BASED OBSERVATIONS; Biogenic Sulfur; FIELD INVESTIGATION; Not provided; LABORATORY; Methane Sulfonate", "locations": "Siple Dome", "north": -81.7, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Saltzman, Eric; Dioumaeva, Irina; Finley, Brandon", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.7, "title": "Biogenic Sulfur in the Siple Dome Ice Core", "uid": "p0000251", "west": -148.8}, {"awards": "9980691 Wahlen, Martin", "bounds_geometry": null, "dataset_titles": "Atmospheric CO2 Trapped in the Ice Core from Siple Dome, Antarctica", "datasets": [{"dataset_uid": "609202", "doi": "10.7265/N5N877Q9", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; CO2; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Wahlen, Martin; Ahn, Jinho; Deck, Bruce", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Atmospheric CO2 Trapped in the Ice Core from Siple Dome, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609202"}], "date_created": "Thu, 11 Dec 2003 00:00:00 GMT", "description": "9980691 Wahlen This award is for support for three years of funding to reconstruct the atmospheric carbon dioxide (CO2) and carbon-13 isotope (d13C) concentration in ice cores from Antarctica over several climatic periods. Samples from the Holocene, the Last Glacial Maximum (LGM)-Holocene transition and glacial stadial/interstadial episodes will be examined. Samples from the Siple Dome ice core drilled in 1998/99 will be made, in addition to measurements from the Taylor Dome and Vostok ice cores. The major objectives are to investigate the phase relationships between variations in the concentration of atmospheric CO2, its carbon isotope composition, and temperature changes (indicated by 18dO and dD of the ice) during deglaciations as well as across rapid climate change events (e.g. Dansgaard-Oeschger events). This will help to determine systematic changes in the global carbon cycle during and between different climatic periods, and to ascertain if the widely spread northern hemisphere temperature stadial/interstadial events produced a global atmospheric carbon dioxide signal. Proven experimental techniques will be used.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "FIELD SURVEYS; Siple Dome; Ice Core; USAP-DC; Carbon Dioxide", "locations": "Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Wahlen, Martin; Ahn, Jinho; Deck, Bruce", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "CO2 and Delta 13CO2 in Antarctic Ice Cores", "uid": "p0000166", "west": null}, {"awards": "9420648 Waddington, Edwin", "bounds_geometry": null, "dataset_titles": "Siple Dome Ice Core Age-Depth Scales", "datasets": [{"dataset_uid": "609130", "doi": "10.7265/N5T151KD", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Nereson, Nadine A.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Siple Dome Ice Core Age-Depth Scales", "url": "https://www.usap-dc.org/view/dataset/609130"}], "date_created": "Tue, 09 Sep 2003 00:00:00 GMT", "description": "This award is for support for a three year program to investigate the response of ice domes, such as Siple Dome in West Antarctica, to changing boundary conditions, for example as arising from fluctuations in thickness or position of bounding ice streams. A range of models will be used, from simple one-dimensional analytical models to coupled dynamic-thermodynamic flow models, to investigate the response of the ice dome to boundary forcing, and the record that boundary forcing can leave in the ice core record. Using radar, temperature, and ice core data from the currently funded field programs on Siple Dome, and ice flux and thickness values from the map view model as boundary conditions, a flow line across Siple Dome will be studied and possible ranges of time scales, the likely origin of ice near the bed, and the basal temperature conditions that exist now and existed in the past will be determined.The response of internal stratigraphy patterns to climate and dynamic forcing effects will be investigated and observed internal layers from ice cores will be used to infer the forcing history.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Ice Sheet; Snow; Not provided; Stratigraphy; Shallow Core; Siple Coast; Antarctica; Ice Core; Siple Dome; Glaciology; Density; Siple; WAISCORES; GROUND STATIONS; GROUND-BASED OBSERVATIONS", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Nereson, Nadine A.; Waddington, Edwin D.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Ice Modelling Study of Siple Dome: WAIS Ice Dynamics, WAISCORES Paleoclimate and Ice Stream/Ice Dome Interactions", "uid": "p0000058", "west": null}, {"awards": "9419128 Stearns, Charles", "bounds_geometry": null, "dataset_titles": "Three-Hourly Antarctic Automatic Weather Station Data, 1980-2000", "datasets": [{"dataset_uid": "609111", "doi": "", "keywords": "Antarctica; Atmosphere; AWS; Weatherstation", "people": "Keller, Linda M.; Weidner, George A.; Lazzara, Matthew; Stearns, Charles R.", "repository": "USAP-DC", "science_program": null, "title": "Three-Hourly Antarctic Automatic Weather Station Data, 1980-2000", "url": "https://www.usap-dc.org/view/dataset/609111"}], "date_created": "Mon, 18 Aug 2003 00:00:00 GMT", "description": "9419128 Stearns This is a project to maintain and augment as necessary, the network of nearly fifty automatic weather stations established on the Antarctic continent and on several surrounding islands. These weather stations measure surface wind, pressure, temperature, humidity, and in some instances other atmospheric variables, such as snow accumulation and incident solar radiation, and report these via satellite to a number of ground stations. The data are used for operational weather forecasting in support of the United States Antarctic program, for climatological records, and for research purposes. The AWS network, which began as a small-scale program in 1980, has been extremely reliable and has proven indispensable for both forecasting and research purposes. ***", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e BAROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HUMIDITY SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS", "is_usap_dc": true, "keywords": "Surface Temperature Measurements; USAP-DC; Atmospheric Pressure; Automated Weather Station; Surface Winds; Near-Surface Air Temperatures; Surface Wind Speed Measurements; Atmospheric Humidity Measurements; AWS; Not provided; Snow Temperature; Surface Temperatures; Antarctica; Snow Temperature Measurements", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew; Stearns, Charles R.; Weidner, George A.; Keller, Linda M.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Continuation for the Antarctic Automatic Weather Station Climate Program 1995-1998", "uid": "p0000151", "west": null}, {"awards": "9526979 White, James", "bounds_geometry": null, "dataset_titles": "Siple Dome Core Date from Measurement of the d18O of Paleoatmospheric Oxygen", "datasets": [{"dataset_uid": "609123", "doi": "10.7265/N5TX3C95", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "White, James; Bender, Michael", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Siple Dome Core Date from Measurement of the d18O of Paleoatmospheric Oxygen", "url": "https://www.usap-dc.org/view/dataset/609123"}], "date_created": "Mon, 16 Jun 2003 00:00:00 GMT", "description": "This award is for support for a program to measure the stable isotope (deuterium to hydrogen and oxygen-18 to oxygen-16) concentrations of ice cores retrieved from Siple Dome as part of the West Antarctic ice sheet program. In addition, the deuterium excess of samples from the Taylor Dome ice core will be determined. This project will approach the question of rapid climate change using ice cores to determine the history of temperature changes, moisture source changes, and elevational changes in the West Antarctic ice sheet. Results from ice cores taken to date in the interior of Antarctica (East and West) are surprisingly lacking in indications of abrupt climate changes, such as those that have been observed in the GISP2 ice core from Summit, Greenland. This work will address the question of whether rapid climate changes, which are known to have occurred in other parts of the southern hemi-sphere, may have also occurred in the coastal regions of West Antarctica. There is some indication from existing records of isotopes in ice cores that the West Antarctic ice sheet may have flushed ice in the past (as evidenced by large changes in elevation of the ice sheet).", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Antarctica; LABORATORY; WAISCORES; GROUND STATIONS; Siple Coast; Glaciology; Snow; D18O; Isotope; Thermometry; Ice Sheet; Siple; Accumulation; Ice Core; Siple Dome; Stratigraphy; Densification; GROUND-BASED OBSERVATIONS; Not provided", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "White, James; Bender, Michael", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Isotopic Measurements on the WAIS/Siple Dome Ice Cores", "uid": "p0000063", "west": null}, {"awards": "9615347 Conway, Howard", "bounds_geometry": null, "dataset_titles": "Roosevelt Island Bedrock and Surface Elevations; Roosevelt Island Ice Core Density and Beta Count Data", "datasets": [{"dataset_uid": "609139", "doi": "10.7265/N55718ZW", "keywords": "Antarctica; Beta Count; Density; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; Roosevelt Island", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Ice Core Density and Beta Count Data", "url": "https://www.usap-dc.org/view/dataset/609139"}, {"dataset_uid": "609140", "doi": "10.7265/N51J97NB", "keywords": "Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Roosevelt Island; Solid Earth", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Bedrock and Surface Elevations", "url": "https://www.usap-dc.org/view/dataset/609140"}], "date_created": "Fri, 23 May 2003 00:00:00 GMT", "description": "This award is for two years of support to perform radar investigations across former shear margins at Roosevelt Island and Ice Stream C in order to measure changes in the configuration and continuity of internal layers and the bed. The broad goal of these investigations is to gain an understanding of ice stream flow and the timing and mechanisms of ice stream shutdown. A high-resolution short-pulse radar system will be used for detailed examination of the uppermost hundred meters of the firn and ice, and a monopulse sounding-radar system will be used to image the rest of the ice column (including internal layers) and the bed. Changes in the shape and continuity of layers will be used to interpret mechanisms and modes of ice stream flow including the possible migration of stagnation fronts and rates of shut-down. Variations in bed reflectivity will be used to deduce basal hydrology conditions across lineations. Accumulation rates deduced from snow pits and shallow cores will be used to estimate near-surface depth-age profiles. Improved understanding of ice stream history opens the possibility of linking changes in the West Antarctic ice sheet with the geologic evidence from Northern Victoria Land and the ocean record of the retreat of the grounding line in the Ross Sea.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e RA; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Radioactive Decay; Radar Echo Sounder; Antarctica; Radar Altimetry; Densification; Bedrock Elevation; Ice Sheet Elevation; Satellite Radar Data; GROUND-BASED OBSERVATIONS; Radar; Ice Core; Snow Stratigraphy; Terrain Elevation; Antarctic Ice Sheet; Stable Isotopes; Ice Surface Elevation; Surface Elevation; Glaciology; Snow Densification; Ice Core Data; GROUND STATIONS; Not provided; Altimetry; Antarctic; Ice Core Stratigraphy; Ice Stratigraphy", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Conway, Howard", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Radar Investigations of Former Shear Margins: Roosevelt Island and Ice Stream C", "uid": "p0000164", "west": null}, {"awards": "9615554 Fitzpatrick, Joan", "bounds_geometry": null, "dataset_titles": "Digital Images of Thin Sections from Siple Dome; Digital Imaging for Siple Dome Ice Core Analysis, Antarctica", "datasets": [{"dataset_uid": "609127", "doi": "10.7265/N59Z92T4", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Photo/video; Photo/Video; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Fitzpatrick, Joan", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Digital Images of Thin Sections from Siple Dome", "url": "https://www.usap-dc.org/view/dataset/609127"}, {"dataset_uid": "609413", "doi": "10.7265/N5XG9P2G", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Photo/video; Photo/Video; Siple Dome; Siple Dome Ice Core", "people": "Alley, Richard; Spencer, Matthew; Fitzpatrick, Joan", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Digital Imaging for Siple Dome Ice Core Analysis, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609413"}], "date_created": "Wed, 14 May 2003 00:00:00 GMT", "description": "This award is for support for two years to develop the technology and methodology for digitizing the photographs and analyzing the thin sections from ice cores. In addition, the application of digital technology for whole-core stratigraphy, using digital photography, image enhancement and image processing will be investigated. The thin section analysis will be piloted with samples already in hand from the Taylor Dome ice core. If successful, these techniques will be applied to samples from the Siple Dome ice core, in cooperation with Principal Investigators already funded to retrieve and examine these sections. The original digital images with all original data annotation files will be distributed to Siple Dome principal investigators for their use in the interpretation of their own data. All software and hardware acquired for this project will become part of the permanent equipment inventory at the U.S. National Ice Core Laboratory and will be available for use by clients at the facility.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Antarctica; Glaciology; Ice Sheet; Siple; Ice Core; Stratigraphy; GROUND STATIONS; Siple Dome; WAISCORES; Trapped Air Bubbles; Photo; Snow; Density; Volcanic Deposits; Not provided; Ice Core Data; GROUND-BASED OBSERVATIONS; Siple Coast; Chemical Composition", "locations": "Siple Dome; Antarctica; Siple; Siple Coast", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Fitzpatrick, Joan; Alley, Richard; Spencer, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Digital Imaging for Ice Core Analysis", "uid": "p0000011", "west": null}, {"awards": "9527262 Gow, Anthony", "bounds_geometry": null, "dataset_titles": "Physical and Structural Properties of the Siple Dome Ice Cores", "datasets": [{"dataset_uid": "609128", "doi": "10.7265/N5668B34", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Photo/video; Photo/Video; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Meese, Deb; Gow, Tony", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Physical and Structural Properties of the Siple Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609128"}], "date_created": "Wed, 14 May 2003 00:00:00 GMT", "description": "This award is for support for a program to investigate the visual stratigraphy, index physical properties, relaxation characteristics and crystalline structure of ice cores from Siple Dome, West Antarctica. This investigation will include measurements of a time-priority nature that must be initiated at the drill site on freshly-drilled cores. This will be especially true of cores from the brittle ice zone, which is expected to comprise a significant fraction of the ice core. The brittle zone includes ice in which relaxation , resulting from the release of confining pressure is maximized and leads to significant changes in the mechanical condition of the core that must be considered in relation to the processing and analysis of ice samples for entrapped gas and chemical studies. This relaxation will be monitored via precision density measurements made initially at the drill site and repeated at intervals back in the U.S. Other studies will include measurement of the annual layering in the core to as great a depth as visual stratigraphy can be deciphered, crystal size measurements as a function of depth and age, c-axis fabric studies, and analysis of the physical properties of any debris-bearing basal ice and its relationship to the underlying bedrock. Only through careful documentation and analysis of these key properties can we hope to accurately assess the dynamic state of the ice and the age-depth relationships essential to deciphering the paleoclimate record at this location.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Siple Dome; Antarctica; Stratigraphy; Ice Sheet; GROUND-BASED OBSERVATIONS; Density; Siple; Chemical Composition; Volcanic Deposits; Siple Coast; WAISCORES; Not provided; GROUND STATIONS; Pico; Ice Core; Tephra; Fabric; Glaciology; Snow", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Gow, Tony; Meese, Deb", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Physical and Structural Properties of the Siple Dome Core", "uid": "p0000064", "west": null}, {"awards": "9526420 Taylor, Kendrick", "bounds_geometry": null, "dataset_titles": "Siple Dome Cores Electrical Measurement Data", "datasets": [{"dataset_uid": "609133", "doi": "10.7265/N5DR2SDN", "keywords": "Antarctica; Electrical Conductivity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Taylor, Kendrick C.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Siple Dome Cores Electrical Measurement Data", "url": "https://www.usap-dc.org/view/dataset/609133"}], "date_created": "Thu, 08 May 2003 00:00:00 GMT", "description": "This award is for support for the measurement of electrical and optical properties of the Siple Dome ice core. The electrical methods can be used to determine the concentration of the hydrogen ions and the concentration of a weighted sum of all ions. The electrical measurements can resolve features as small as 1 cm. The albedo of the core is also measured with a laser system that can resolve features as small as 0.5 cm. The high spatial resolution of these methods makes them ideal for resolving narrow features in the core, which can be missed in larger composite samples. The measurements will be particularly useful for assisting to date the core and to identify short duration features in the record, such as volcanic eruptions. These measurements will also provide useful information for assessing the temporal variability of Holocene accumulation rate and atmospheric circulation.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Densification; Siple Dome; Glaciology; Snow; Thermometry; WAISCORES; Electrical; Isotope; GROUND STATIONS; GROUND-BASED OBSERVATIONS; Not provided; Ice Sheet; Siple Coast; Ice Core; Siple; Antarctica", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Taylor, Kendrick C.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Electrical and Optical Measurements on the Siple Dome Ice Core", "uid": "p0000163", "west": null}, {"awards": "9526572 Bales, Roger", "bounds_geometry": null, "dataset_titles": "Snow-atmosphere Transfer Function for Reversibly Deposited Chemical Species in West Antarctica", "datasets": [{"dataset_uid": "609122", "doi": "10.7265/N5ZP441W", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Snow/ice; Snow/Ice; WAISCORES", "people": "Bales, Roger; McConnell, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Snow-atmosphere Transfer Function for Reversibly Deposited Chemical Species in West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609122"}], "date_created": "Thu, 11 Jul 2002 00:00:00 GMT", "description": "This award is for support for a program of measurements to improve our understanding of the relationship between formaldehyde (HCHO) and hydrogen peroxide (H2O2) in the atmosphere and the concentrations of the same species in Antarctic snow, firn and ice. This work aims to relate changes in concentrations in the snow, firn and ice to corresponding changes in tropospheric chemistry. Atmospheric and firn sampling for formaldehyde and hydrogen peroxide at one or more of the WAIS ice core drilling sites will be undertaken and controlled laboratory studies to estimate thermodynamic and rate parameters will be performed. In addition, this work will involve modeling of atmosphere-snow exchange processes to infer the \"transfer function\" for reactive species at the sites and atmospheric photochemical modeling to relate changes in concentrations of formaldehyde and hydrogen peroxide in snow, firn and ice to atmospheric oxidation capacity. This work will contribute to a better understanding of the relationship between atmospheric concentrations of various species and those same species measured in snow and ice samples.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Siple Dome; Antarctica; Isotope; WAISCORES; GROUND-BASED OBSERVATIONS; GROUND STATIONS; Snow; Glaciology; LABORATORY; Siple; Siple Coast; Thermometry; Hydrogen Peroxide; Ice Sheet", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bales, Roger; McConnell, Joseph", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Snow-Atmosphere Transfer Function for Reversibly Deposited Chemical Species in West Antarctica", "uid": "p0000060", "west": null}, {"awards": "9615167 Dunbar, Nelia; 9527373 Dunbar, Nelia", "bounds_geometry": null, "dataset_titles": "Blue Ice Tephra II - Brimstone Peak; Blue Ice Tephra II - Mt. DeWitt; Tephra in Siple and Taylor Dome Ice Cores; Volcanic Records in the Siple and Taylor Dome Ice Cores", "datasets": [{"dataset_uid": "609110", "doi": "10.7265/N50P0WXF", "keywords": "Antarctica; Backscattered Electron Images; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Siple Dome Ice Core; Taylor Dome Ice Core; WAIS", "people": "Dunbar, Nelia", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Tephra in Siple and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609110"}, {"dataset_uid": "609126", "doi": "10.7265/N5FQ9TJG", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome Ice Core; Taylor Dome Ice Core; Tephra; WAIS; WAISCORES", "people": "Zielinski, Gregory; Dunbar, Nelia", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Volcanic Records in the Siple and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609126"}, {"dataset_uid": "609126", "doi": "10.7265/N5FQ9TJG", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome Ice Core; Taylor Dome Ice Core; Tephra; WAIS; WAISCORES", "people": "Zielinski, Gregory; Dunbar, Nelia", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Volcanic Records in the Siple and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609126"}, {"dataset_uid": "609114", "doi": "10.7265/N5MG7MDK", "keywords": "Antarctica; Blue Ice; Brimstone Peak; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Petrography; Tephra", "people": "Dunbar, Nelia", "repository": "USAP-DC", "science_program": null, "title": "Blue Ice Tephra II - Brimstone Peak", "url": "https://www.usap-dc.org/view/dataset/609114"}, {"dataset_uid": "609115", "doi": "10.7265/N5GQ6VPV", "keywords": "Antarctica; Blue Ice; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Mount Dewitt; Petrography; Tephra", "people": "Dunbar, Nelia", "repository": "USAP-DC", "science_program": null, "title": "Blue Ice Tephra II - Mt. DeWitt", "url": "https://www.usap-dc.org/view/dataset/609115"}, {"dataset_uid": "609110", "doi": "10.7265/N50P0WXF", "keywords": "Antarctica; Backscattered Electron Images; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Siple Dome Ice Core; Taylor Dome Ice Core; WAIS", "people": "Dunbar, Nelia", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Tephra in Siple and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609110"}], "date_created": "Sat, 01 Jun 2002 00:00:00 GMT", "description": "Dunbar/Kyle OPP 9527373 Zielinski OPP 9527824 Abstract The Antarctic ice sheets are ideal places to preserve a record the volcanic ash (tephra) layers and chemical aerosol signatures of volcanic eruptions. This record, which is present both in areas of bare blue ice, as well as in deep ice cores, consists of a combination of local eruptions, as well as eruptions from more distant volcanic sources from which glassy shards can be chemically fingerprinted and related to a source volcano. Field work carried out during the 1994/1995 Antarctic field season in the Allan Hills area of Antarctica, and subsequent microbeam chemical analysis and 40Ar/39Ar dating has shown that tephra layers in deep Antarctic ice preserve a coherent, systematic stratigraphy, and can be successfully mapped, dated, chemically fingerprinted and tied to source volcanoes. The combination of chemical fingerprinting of glass shards, and chemical analysis of volcanic aerosols associated with ash layers will allow establishment of a high-resolution chronology of local and distant volcanism that can help understand patterns of significant explosive volcanisms and atmospheric loading and climactic effects associated with volcanic eruptions. Correlation of individual tephra layers, or sets of layers, in blue ice areas, which have been identified in many places the Transantarctic Mountains, will allow the geometry of ice flow in these areas to be better understood and will provide a useful basis for interpreting ice core records.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES", "is_usap_dc": true, "keywords": "USAP-DC; Siple Coast; Sulfur Dioxide; Siple Dome; Taylor Dome; Chlorine; WAISCORES; Ice Core; Tephra; Geochemistry; Volcanic Deposits; GROUND STATIONS; Brimstone Peak; GROUND-BASED OBSERVATIONS; Magnesium Oxide; Glaciology; Mount Dewitt; Silicon Dioxide; Glass Shards; Ice Sheet; Siple; Nickel Oxide; Potassium Dioxide; Not provided; Manganese Oxide; Volcanic; Snow; Nitrogen; Iron Oxide; Titanium Dioxide; Stratigraphy; Antarctica", "locations": "Antarctica; Siple; Siple Coast; Siple Dome; Taylor Dome; Brimstone Peak; Mount Dewitt", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Dunbar, Nelia; Zielinski, Gregory", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": null, "title": "Collaborative Research: Volcanic Record in Antarctic Ice: Implications for Climatic and Eruptive History and Ice Sheet Dynamics of the South Polar Region", "uid": "p0000065", "west": null}, {"awards": "9615292 Wahlen, Martin", "bounds_geometry": null, "dataset_titles": "Carbon-Isotopic Composition of Atmospheric CO2 since the Last Glacial Maximum; Taylor Dome Ice Core Chemistry, Ion, and Isotope Data", "datasets": [{"dataset_uid": "609246", "doi": "", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Paleoclimate; Taylor Dome; Taylor Dome Ice Core", "people": "Brook, Edward J.; Indermuhle, A.; Steig, Eric J.; Mayewski, Paul A.; Smith, Jesse; Sowers, Todd A.", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Taylor Dome Ice Core Chemistry, Ion, and Isotope Data", "url": "https://www.usap-dc.org/view/dataset/609246"}, {"dataset_uid": "609108", "doi": "10.7265/N54F1NN5", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Taylor Dome; Taylor Dome Ice Core", "people": "Wahlen, Martin", "repository": "USAP-DC", "science_program": null, "title": "Carbon-Isotopic Composition of Atmospheric CO2 since the Last Glacial Maximum", "url": "https://www.usap-dc.org/view/dataset/609108"}], "date_created": "Tue, 01 Jan 2002 00:00:00 GMT", "description": "This award is for support of a program to reconstruct the record of atmospheric carbon dioxide (and the carbon-13 isotopes of carbon dioxide) over several intervals, including the Last Glacial Maximum-Holocene transition, interstadial episodes, the mid-Holocene, the last 1000 years and the penultimate glacial period, using ice from the Taylor Dome and Vostok ice cores. The major objective of this study is to investigate the phase relationship between variations of the greenhouse gases occluded in the ice cores and temperature changes (indicated by oxygen and deuterium isotopes) during the last deglaciation. In addition, the concentration of atmospheric carbon dioxide over the past 1000 years and during the mid-Holocene will be determined in these cores.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "USAP-DC; Ice Core; GROUND-BASED OBSERVATIONS; Carbon; Trapped Gases; Glaciology; GROUND STATIONS; Taylor Dome; Carbon Dioxide; Isotope; Antarctica; Nitrogen", "locations": "Antarctica; Taylor Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Steig, Eric J.; Wahlen, Martin; Smith, Jesse; Brook, Edward J.; Indermuhle, A.; Mayewski, Paul A.; Sowers, Todd A.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": null, "title": "Carbon Dioxide and Carbon Isotopes in the Taylor Dome and Vostok Ice Cores", "uid": "p0000153", "west": null}, {"awards": "9316715 Taylor, Susan", "bounds_geometry": null, "dataset_titles": "Micrometeorites from the South Pole Water Well", "datasets": [{"dataset_uid": "609113", "doi": "10.7265/N5R49NQK", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Cosmos; Geochemistry; Meteorite; Scanning Electron Microscope (SEM) Images; South Pole", "people": "Taylor, Susan", "repository": "USAP-DC", "science_program": null, "title": "Micrometeorites from the South Pole Water Well", "url": "https://www.usap-dc.org/view/dataset/609113"}], "date_created": "Tue, 01 Jan 2002 00:00:00 GMT", "description": "9316715 Taylor This award is for support to collect micrometeorites from the bottom of the new water well at South Pole Station, Antarctica. The large volume of firn and ice being melted provides the concentrating mechanism needed to collect large numbers of micrometeorites that occur in low concentrations in the ice. The first task of the project is to design a collection system to retrieve the micrometeorites from the bottom of the water well. The collector must be reliable, easy to operate, must collect all particles larger than 10 mm and should not contaminate the well\u0027s water quality. Following successful design and deployment of the collector, recovered particles will be catalogued and distributed to interested researchers. ***", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e GRABBERS/TRAPS/COLLECTORS \u003e SEDIMENT TRAPS", "is_usap_dc": true, "keywords": "USAP-DC; Micrometeorites; SEM/EMAX; GROUND-BASED OBSERVATIONS; South Pole Water Well; Glass Spherules", "locations": "South Pole Water Well", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Taylor, Susan", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Retrieval and Analysis of Extraterrestrial Particles from the Water Well at the South Pole Station, Antarctica", "uid": "p0000057", "west": null}, {"awards": "9222121 Dalziel, Ian", "bounds_geometry": null, "dataset_titles": "Concentration and Isotopic Composition of O2 and N2 in Trapped Gases of the Vostok Ice Core", "datasets": [{"dataset_uid": "609107", "doi": "10.7265/N5862DCW", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciology; Ice Core Records; Lake Vostok; Paleoclimate; UPLC-Q-TOF; Vostok Ice Core", "people": "Bender, Michael", "repository": "USAP-DC", "science_program": null, "title": "Concentration and Isotopic Composition of O2 and N2 in Trapped Gases of the Vostok Ice Core", "url": "https://www.usap-dc.org/view/dataset/609107"}], "date_created": "Tue, 01 Jan 2002 00:00:00 GMT", "description": "This award supports an in situ and short traverse seismic reflection/refraction and magnetotelluric experiment in West Antarctica. This collaborative experiment involves four awards at four institutions. The four-fold purpose is 1) to investigate part of the Byrd Subglacial Basin, 2) to test techniques for this work that could be done in a long traverse, 3) to determine the viability of the magnetotelluric method on a thick (electrically resistive) ice sheet, and 4) to evaluate the relative merits of refraction with wide reflection versus reflection with narrow refraction seismic studies in imaging the lithosphere. The geophysical techniques that will be employed are capable of imaging the ice sheet, the continental lithosphere, and the upper mantle, as well as determining physical properties of parts of the lithosphere and mantle. Investigations of outcrop geology over the last thirty years in West Antarctica and the Transantarctic Mountains have lead to recent interpretations that the crust is made up of many different lithospheric blocks. Seismic reflection work is the only way to image the crust in detail and the refraction work is the only way to determine physical properties of the layers and blocks defined by the reflection work. The magnetotelluric work is scientifically risky because it may not yield useful information when used over the electrically resistive ice sheet; however, if it works it has the potential to image molten rock in the crust and upper mantle. In a continental rift region such as West Antarctica, the presence of melt in the lithosphere is likely and, if documented, has very important ramifications to ice sheet dynamics. Research work supported by this award is expected to provide constraints to models of a range of crustal processes from models of ice sheet dynamics to tectonic and kinematic models of lithospheric thinning and rifting.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Isotope; Vostok; USAP-DC; Antarctica; Trapped Gases; Ice Core; Glaciology; Nitrogen; GROUND STATIONS", "locations": "Antarctica; Vostok", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bender, Michael; Dalziel, Ian W.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Seismic Traverse of the Byrd Subglacial Basin-Field Test", "uid": "p0000150", "west": null}, {"awards": "9526601 Albert, Mary", "bounds_geometry": null, "dataset_titles": "Snow and Firn Temperature and Permeability Measurements from Siple Dome, Antarctica", "datasets": [{"dataset_uid": "609100", "doi": "10.7265/N5S46PVZ", "keywords": "Antarctica; Glaciology; Permeability; Siple Dome; Siple Dome Ice Core; Snow/ice; Snow/Ice; Temperature", "people": "Albert, Mary R.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Snow and Firn Temperature and Permeability Measurements from Siple Dome, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609100"}], "date_created": "Sat, 01 Dec 2001 00:00:00 GMT", "description": "This award supports a project to examine the physical processes that affect the manner in which heat, vapor and chemical species in air are incorporated into snow and polar firn. The processes include advection, diffusion, and the effects of solar radiation penetration into the snow. An understanding of these processes is important because they control the rate at which reactive and non-reactive chemical species in the atmosphere become incorporated into the snow, firn, and polar ice, and thus will affect interpretation of polar ice core data. Currently, the interpretation of polar ice core data assumes that diffusion controls the rate at which chemical species are incorporated into firn. This project will determine whether ventilation, or advection of the species by air movement in the firn, and radiation penetration processes have a significant effect. Field studies at the two West Antarctic ice sheet deep drilling sites will be conducted to determine the spatial and temporal extent for key parameters, and boundary conditions needed to model the advection, conduction, and radiation transmission/absorption processes. An existing multidimensional numerical model is being expanded to simulate the processes and to serve as the basis for ongoing and future work in transport and distribution of reactive chemical species.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e PERMEAMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS", "is_usap_dc": true, "keywords": "Glaciology; Antarctica; Snow Permeability; Firn Permeability; USAP-DC; GROUND-BASED OBSERVATIONS; Not provided; GROUND STATIONS; Snow Properties; Snow Temperature; Siple Dome; Firn Temperature", "locations": "Antarctica; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Albert, Mary R.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Near-Surface Processes Affecting Gas Exchange: West Antarctic Ice Sheet", "uid": "p0000061", "west": null}, {"awards": "9725305 Severinghaus, Jeffrey", "bounds_geometry": null, "dataset_titles": "Firn Air Isotope and Temperature Measurements from Siple Dome and South Pole", "datasets": [{"dataset_uid": "609098", "doi": "10.7265/N51N7Z2P", "keywords": "Antarctica; Atmosphere; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciology; Isotope; Paleoclimate; Siple Dome; Snow/ice; Snow/Ice; South Pole; Temperature", "people": "Grachev, Alexi; Battle, Mark; Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Firn Air Isotope and Temperature Measurements from Siple Dome and South Pole", "url": "https://www.usap-dc.org/view/dataset/609098"}], "date_created": "Mon, 01 Jan 2001 00:00:00 GMT", "description": "9725305 Severinghaus This award supports a project to develop and apply a new technique for quantifying temperature changes in the past based on the thermodynamic principle of thermal diffusion, in which gas mixtures in a temperature gradient become fractionated. Air in polar firn is fractionated by temperature gradients induced by abrupt climate change, and a record of this air is preserved in bubbles in the ice. The magnitude of the abrupt temperature change, the precise relative timing, and an estimate of the absolute temperature change can be determined. By providing a gas-phase stratigraphic marker of temperature change, the phasing of methane (with decadal precision) and hence widespread climate change (relative to local polar temperature changes) can be determined (across five abrupt warming events during the last glacial period).", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e FLASKS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS", "is_usap_dc": true, "keywords": "Isotopic History; GROUND STATIONS; Thermal Diffusion; Firn Temperature Measurements; Not provided; Oxygen Isotope; Trapped Air Bubbles; Shallow Firn Air; Firn Air Isotope Measurements; Seasonal Temperature Gradients; Mass Spectrometry; GROUND-BASED OBSERVATIONS; Thermal Fractionation; Polar Firn Air; Isotopic Anomalies; Xenon; Atmospheric Gases; Argon Isotopes; Siple Dome; Krypton; Nitrogen Isotopes; Seasonal Temperature Changes; Antarctica; Ice Core Gas Records; Firn Air Isotopes; Mass Spectrometer; South Pole; Firn Isotopes; Borehole", "locations": "Antarctica; Siple Dome; South Pole", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Battle, Mark; Grachev, Alexi; Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Thermal Fractionation of Firn Air and the Ice Core Record of Abrupt Interstadial Climate Change", "uid": "p0000160", "west": null}, {"awards": "9526374 Alley, Richard", "bounds_geometry": null, "dataset_titles": "Visible Stratigraphic Dating, Siple Dome and Upstream C Cores", "datasets": [{"dataset_uid": "609121", "doi": "10.7265/N53F4MHS", "keywords": "Antarctica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Sample/collection Description; Sample/Collection Description; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Alley, Richard", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Visible Stratigraphic Dating, Siple Dome and Upstream C Cores", "url": "https://www.usap-dc.org/view/dataset/609121"}], "date_created": "Wed, 01 Jan 1997 00:00:00 GMT", "description": "This award is for support for a program of physical and visible studies on the shallow and deep ice cores to be retrieved from Siple Dome, West Antarctica. Visible examination of ice cores has proven to be a powerful technique for dating and paleoclimatic interpretation. Recent examination of a shallow core from Siple Dome indicates that annual-layer dating is possible and that visible examination will contribute significantly to the dating effort at Siple Dome. Once ages are obtained, distances between layers provide snow accumulation after correction for density variations and ice flow thinning. Thin- section examination of the core will contribute to understanding the visible stratigraphy, and will reveal c-axis fabrics which are related to past ice deformation. The results of this study should include a better understanding of rapid climate change in the Antarctic and should contribute to knowledge of the stability of the West Antarctic ice sheet.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Ice Core; GROUND-BASED OBSERVATIONS; Siple; Ice Sheet; Isotope; Stratigraphy; GROUND STATIONS; Accumulation; Siple Dome; WAISCORES; Densification; Antarctica; Siple Coast; Thermometry; Snow; Not provided; Bubble; Glaciology", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Alley, Richard", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Physical Properties of the Siple Dome Deep Ice Core", "uid": "p0000059", "west": null}, {"awards": "0838834 Lazzara, Matthew", "bounds_geometry": "POLYGON((-180 -62.83,-144 -62.83,-108 -62.83,-72 -62.83,-36 -62.83,0 -62.83,36 -62.83,72 -62.83,108 -62.83,144 -62.83,180 -62.83,180 -65.547,180 -68.264,180 -70.981,180 -73.698,180 -76.415,180 -79.132,180 -81.849,180 -84.566,180 -87.283,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.283,-180 -84.566,-180 -81.849,-180 -79.132,-180 -76.415,-180 -73.698,-180 -70.981,-180 -68.264,-180 -65.547,-180 -62.83))", "dataset_titles": "Access all real-time datasets; Access Antarctic Composite Images.; Access Antarctic Synoptic and METAR Observations.; Access McMurdo Radiosonde Observations; Access South Pole Radiosonde Observations; Archived METAR observational data; We have observations from three ships near Antarctica, the R/V Polar Duke the R/V Nathaniel B. Palmer and the R/V Laurence M. Gould. Data from 23 August 1993 are available via ftp and the files are updated with the most recent observations every 7-10 days as we receive the information. The AMRC has been archiving general ship and buoy observational data for the Antarctic and surrounding regions since 2 December 1998.", "datasets": [{"dataset_uid": "001285", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Antarctic Composite Images.", "url": "http://amrc.ssec.wisc.edu/data/view-data.php?action=list\u0026amp;amp;product=satellite/composite"}, {"dataset_uid": "001288", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access South Pole Radiosonde Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/southpole/radiosonde/"}, {"dataset_uid": "001289", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access McMurdo Radiosonde Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/mcmurdo/radiosonde/"}, {"dataset_uid": "001290", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "We have observations from three ships near Antarctica, the R/V Polar Duke the R/V Nathaniel B. Palmer and the R/V Laurence M. Gould. Data from 23 August 1993 are available via ftp and the files are updated with the most recent observations every 7-10 days as we receive the information. The AMRC has been archiving general ship and buoy observational data for the Antarctic and surrounding regions since 2 December 1998.", "url": "ftp://amrc.ssec.wisc.edu/pub/shipobs/"}, {"dataset_uid": "001299", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Antarctic Synoptic and METAR Observations.", "url": "ftp://amrc.ssec.wisc.edu/"}, {"dataset_uid": "001300", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access all real-time datasets", "url": "http://amrc.ssec.wisc.edu/"}, {"dataset_uid": "001382", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Antarctic Synoptic and METAR Observations.", "url": "ftp://amrc.ssec.wisc.edu"}, {"dataset_uid": "001386", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Archived METAR observational data", "url": "ftp://amrc.ssec.wisc.edu/archive/"}], "date_created": "Thu, 01 Jan 1970 00:00:00 GMT", "description": "Abstract\u003cbr/\u003e\u003cbr/\u003eThe Antarctic Meteorological Research Center (AMRC), located at the University of Wisconsin, Madison, serves several communities by maintaining and extending the stewardship of meteorological data pertinent to the Antarctic continent, its surrounding islands, ice sheets and ice margins and the adjacent Southern Ocean. This data will continue to be made freely available to interested researchers and the general public. Activities of particular interest for the current award include the development of an enhanced data portal to provide improved data and analysis tools to the research community, and to continue to add to the evolution of the Antarctic-Internet Data Distribution system, which is meant to overcome the costly and generally low bandwidth internet connectivity to and from the Antarctic continent. Operational forecasting for logistical activities in the Antarctic, as well as active Antarctic meteorological research programs, are clearly in need of a dependable, steady flow of meteorological observations, model output, and related data in what must be a collaborative environment in order to overcome the otherwise distributed nature of Antarctic meteorological and climatological observations.\u003cbr/\u003e\u003cbr/\u003eAMRC interaction with the public through answering e-mail questions, giving informal public lectures and presentations to K-12 education institutions through visits to schools will help to raise science literacy with regards to meteorology and of the Antarctic and polar regions. \u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\"This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\"", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e AVHRR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e GOES I-M IMAGER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e OLS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e VISSR; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e BAROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e WET BULB THERMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADIOSONDES; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e AMSU-A; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e AVHRR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e HIRS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e HIRS/2; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e MSU; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e TOVS", "is_usap_dc": false, "keywords": "Shortwave Composite Satellite Images; Radiosonde Data; Antarctic; Noaa Hrpt Raw Data; Synoptic Data; Water Vapor Composite Satellite Images; SATELLITES; Satellite Imagery; Infrared Imagery; NOAA POES; Visible Composite Satellite Images; BUOYS; Antarctica; Ship/buoy Data; FIXED OBSERVATION STATIONS; Longwave Composite Satellite Images; Not provided; COASTAL STATIONS; Metar Weather Observations", "locations": "Antarctic; Antarctica", "north": -62.83, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew; Costanza, Carol", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e COASTAL STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e POLAR ORBITING ENVIRONMENTAL SATELLITES (POES) \u003e NOAA POES; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED \u003e BUOYS", "repo": "AMRDC", "repositories": "AMRDC", "science_programs": null, "south": -90.0, "title": "Antarctic Meteorological Research Center (2009-2011)", "uid": "p0000264", "west": -180.0}, {"awards": "0636873 Lazzara, Matthew", "bounds_geometry": "POLYGON((-71 85,-65.8 85,-60.6 85,-55.4 85,-50.2 85,-45 85,-39.8 85,-34.6 85,-29.4 85,-24.2 85,-19 85,-19 82.5,-19 80,-19 77.5,-19 75,-19 72.5,-19 70,-19 67.5,-19 65,-19 62.5,-19 60,-24.2 60,-29.4 60,-34.6 60,-39.8 60,-45 60,-50.2 60,-55.4 60,-60.6 60,-65.8 60,-71 60,-71 62.5,-71 65,-71 67.5,-71 70,-71 72.5,-71 75,-71 77.5,-71 80,-71 82.5,-71 85))", "dataset_titles": "Access data.", "datasets": [{"dataset_uid": "001302", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access data.", "url": "ftp://amrc.ssec.wisc.edu"}], "date_created": "Thu, 01 Jan 1970 00:00:00 GMT", "description": "This is a three-year project to maintain and augment as necessary, the network of approximately fifty automatic weather stations established on the antarctic continent and on several surrounding islands. These weather stations measure surface wind, pressure, temperature, humidity, and in some instances other atmospheric variables, such as snow accumulation and incident solar radiation, and report these via satellite to a number of ground stations. The data are used for operational weather forecasting in support of the United States Antarctic program, for global forecasting through the WMO Global Telecommunications System, for climatological records, and for research purposes. The AWS network, which began as a small-scale program in 1980, has been extremely reliable and has proven indispensable for both forecasting and research purposes.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e GAUGES \u003e ADG; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e BAROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HUMIDITY SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e SNOWPACK TEMPERATURE PROBE; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e RADIO \u003e ARGOS", "is_usap_dc": false, "keywords": "Automated Weather Station; FIXED OBSERVATION STATIONS; Antarctica; AWS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew; Costanza, Carol", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS", "repo": "AMRDC", "repositories": "AMRDC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Antarctic Automatic Weather Station Program: 2007-2010", "uid": "p0000284", "west": -180.0}, {"awards": "9527329 Kyle, Philip", "bounds_geometry": "POLYGON((-180 -65,-175.5 -65,-171 -65,-166.5 -65,-162 -65,-157.5 -65,-153 -65,-148.5 -65,-144 -65,-139.5 -65,-135 -65,-135 -66.5,-135 -68,-135 -69.5,-135 -71,-135 -72.5,-135 -74,-135 -75.5,-135 -77,-135 -78.5,-135 -80,-139.5 -80,-144 -80,-148.5 -80,-153 -80,-157.5 -80,-162 -80,-166.5 -80,-171 -80,-175.5 -80,180 -80,177 -80,174 -80,171 -80,168 -80,165 -80,162 -80,159 -80,156 -80,153 -80,150 -80,150 -78.5,150 -77,150 -75.5,150 -74,150 -72.5,150 -71,150 -69.5,150 -68,150 -66.5,150 -65,153 -65,156 -65,159 -65,162 -65,165 -65,168 -65,171 -65,174 -65,177 -65,-180 -65))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 01 Jan 1970 00:00:00 GMT", "description": "Kyle OPP 9527329 Abstract The Cape Roberts Project is an international drilling project to obtain a series of cores from the sedimentary strata beneath the sea floor off Cape Roberts in the Ross Sea. The project is a joint venture by scientists from the national Antarctic programs of Germany, Italy, New Zealand, the United Kingdom., Australia, and the United States. Drilling will continuously core a composite section of sediments over 1500 m thick which is expected to represent parts of the time period between 30 and more than 100 million years ago. The principle objectives of this component of the project will be to examine the record of igneous material in the drill core and provide high precision 40Ar/39Ar dates from tephra (volcanic ash) layers, disseminated ash, feldspars and epiclastic volcanic detrital grains to constrain depositional age and provenance of the sediments in the cores. This project will contribute to general geologic logging of the core and will characterize any igneous material using electron microprobe, x-ray fluorescence (XRF) and instrumental neutron activation analysis (INAA) analyses. The presence of alkalic volcanic detritus from the Cenozoic McMurdo Volcanics will constrain the initiation of this phase of volcanism and improve our understanding of the relationship between volcanism and tectonism. The influx of sediments eroded from Jurassic Kirkpatrick Basalts and Ferrar Dolerites will be used to time the unroofing and rates of uplift of the Transantarctic Mountains. Geochemical analyses of core samples will examine the geochemistry and provenance of the sediments.", "east": -135.0, "geometry": "POINT(-172.5 -72.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ROCK CORERS", "is_usap_dc": false, "keywords": "Radiometric Dating; Radiometric Ages; Argon-Argon Dates; Geochronology; 40Ar/39Ar; Tephra; Geochemistry; Cape Roberts Project; Geology; Not provided", "locations": null, "north": -65.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kyle, Philip; Krissek, Lawrence", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -80.0, "title": "The Cape Roberts Project: Volcanic Record, Geochemistry and 40Ar/39Ar Chronology", "uid": "p0000050", "west": 150.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
The Results Map and the Results Table
The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
As the map is panned or zoomed, the highlighted rows in the table will update.
If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page.
The bounds for the project(s)/dataset(s) selected will be displayed in red.
The selected result(s) will be highlighted in red and brought to the top of the table.
The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds
and highlight the centroid on the Results Map.
Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other
search criteria already selected.
After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
Clicking Clear in the map will clear any drawn polygon.
Clicking Search in the map, or Search on the form will have the same effect.
The returned results will be any projects/datasets with bounds that intersect the polygon.
Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Voluminous outpourings of iron-rich molten rock (magma), which can initiate from deep within the earth, occur regularly throughout geologic time. Understanding volcanic eruptions requires knowledge of the magmatic plumbing systems and magma chambers that feed eruptions. While many magma chambers are typically emplaced in the shallow subsurface of the earth, only rarely are the entirety of the solidified remnants of these chambers later exposed at the surface of the earth for study. One such magma chamber, the Dufek Intrusion, exists in Antarctica. The Dufek Intrusion is part of the Ferrar magmatic event, which was triggered by the separation or rifting of South America, Africa and Antarctic continents approximately 182 million years ago. The research objectives focus on analyzing existing samples to understand the thermal and chemical evolution of the magma in the Dufek Intrusion magma chamber and deciphering whether the exposed sections are part of the same magma chamber or represent two separate magma chambers. Results from this study may result in the research community questioning the assumption that small intrusions crystallized faster than larger layered intrusions such as the Dufek Intrusion. This project supports multiple early career researchers and provides laboratory training for undergraduate students. Preliminary high-precision U-Pb ages from zircon throughout the Dufek Intrusion show that rocks thought to represent the lowermost section of stratigraphy (the Dufek Massif) are younger than the rocks thought to represent the uppermost section (the Forrestal Range). This study tests whether the zircon ages represent a cooling profile of a single large layered intrusion, or whether the Dufek Massif and Forrestal Range are two separate smaller intrusions. Crystallization temperatures of the cumulus phases (plagioclase and clinopyroxene) and the zircons, as well as cooling rates from the cumulus phases will be obtained to test the cooling profile hypothesis. The research team will construct thermal models of emplacement and cooling to compare with the laboratory analyses. In order to test the two intrusions hypothesis, the team will analyze zircon Hf isotopic compositions and whole rock Sr, Nd, Pb isotopes from samples of the two intrusions to determine whether they are similar and therefore genetically related. Results will provide important constraints on the duration of magmatism associated with continental breakup and present a coherent picture of the construction of (possibly) one of the largest magmatic intrusions exposed on earth today. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Ecosystems worldwide are threatened by anthropogenic changes in climate. Lakes are widely regarded as sentinels of climate change and, among these, polar lakes are the most sensitive. Beneath meters of permanent ice and liquid water, many Antarctic lakes contain complex microbial communities that are already being transformed by climate change. The structurally complex spatial patterns that these microbes create provide the opportunity to pursue research questions about spatial ecology that cannot be addressed elsewhere. This project focuses on research that will advance understanding of the spatial structure of benthic communities in Antarctic lakes, their relationships with environmental conditions, and predictions for likely changes in the future. This project will also advance methods in integrating the morphology and spatial patterning of modern microbial communities in relationship to their biophysical and biochemical environments. The quantitative framework being developed has potential to refine understanding of controls on microbial community patterning and thus interpretation of both the effects of climate change and ancient fossil microbial communities in the geologic record. Such understanding will address key questions about Earth’s evolutionary and environmental history and future. Lake Vanda in the McMurdo Dry Valleys, Antarctic, has modern microbial pinnacles covering its lake floor. Using existing datasets on spatial structure of benthic communities from 37 sites on the floor of Lake Vanda, the project team will apply recent theories from Spatial Ecology to investigate the mechanisms that give rise to spatial patterns of pinnacles formed by benthic microbes. The work addresses two questions: (1) What are the morphological and spatial patterns of pinnacles and how do they vary over developmental stages, along environment gradients, and from 2013 to 2023? And (2) what mechanisms give rise to the geometry of individual pinnacles and their spatial distribution? Lake Vanda provides an exceptional opportunity to address these questions. It features well characterized gradients in sedimentation, nutrients, irradiance, transport mechanism, and colonization history. Benthic communities at different locations in the lake manifest distinct spatial patterns, as they experience distinct conditions. Lake level has increased >10 m in the past few decades, creating additional opportunities for a “natural experiment” on pattern development by comparing relatively newly flooded substrates (pinnacles of 1 to 15 years old) with deeper, well-developed mats (> 70 years old). Since microbial communities respond to environmental change rapidly, analyses can characterize changes in patterns in pinnacle spatial data collected 9 years apart (Dec 2013 and Jan 2023), providing the opportunity to directly assess responses of spatially self-organized ecosystems to environmental change. As such, Lake Vanda is a natural laboratory that allows research (1) to effectively sort out mechanisms of pattern formation affecting benthic microbial communities residing there; and (2) to test the theory of spatial self-organization: mechanisms of pattern formation and responses to perturbations, applicable to ecosystems worldwide. Research questions will be addressed by integrating existing datasets, spatial pattern analyses, Bayesian statistical models, and process-based numerical models. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
One of the fundamental processes in plate tectonics is the rifting or separating of continental crust creating new seafloors which can widen and ultimately form new ocean basins, the latter is a process known as seafloor spreading. The Bransfield Strait, separating the West Antarctic Peninsula from the South Shetland Islands, formed and is presently widening as a result of the separation of continental crust. What is unique is that the system appears to be approaching the transition to seafloor spreading making this an ideal site to study the transitional process. Previous seafloor mapping and field surveys provide the regional structure of the basin; however, there exists a paucity of regional seismic studies documenting the tectonic and volcanic activity in the basin as a result of the rifting. This would be the first local-scale study of the seismicity and structure of the volcanoes in the center of the basin where crustal separation is most active. The new seismic data will enable scientists to compare current patterns of crustal separation and volcanism at the Bransfield Strait to other well-studied seafloor spreading centers. This collaborative international project, led by the Spanish and involving scientists from the U.S., Germany and other European countries, will monitor seismicity for one year on land and on the seafloor. An active seismic study conducted by the Spanish will image fault and volcanic structures that can be related to the distribution of earthquakes. Back-arc basins are found in subduction settings and form in two stages, an initial interval of continental rifting that transitions to a later stage of seafloor spreading. Studying the transitional process is important for understanding the dynamics and evolution of subduction zones, and in locations where back-arc rifting breaks continental crust, it is relevant to understanding the formation of passive continental margins. The Central Bransfield Basin is unusual in that the South Shetland Islands have lacked recent arc volcanism and it appears subduction is ceasing, but this system has broad significant because it appears to be nearing the transition from rifting to seafloor spreading. This award will support the U.S. component of an international initiative led by the Spanish Polar Committee to conduct a study of the seismicity and volcanic structure of the Central Bransfield Basin. The objective is to characterize the distribution of active extension across the basin and determine whether the volcanic structure and deformation of the rift are consistent with a back-arc basin that is transitioning from rifting to seafloor spreading. The U.S. component of the experiment will contribute a network of six hydroacoustic moorings to monitor regional seismicity and 15 short-period seismometers to study the distribution of tectonic and volcanic seismicity on Orca volcano, one of the most active volcanoes in the basin. An active seismic study across closely spaced multichannel seismic lines across the rift will provide the data necessary to link earthquakes with fault structures enabling a tomography study of Orca volcano and provide insight into how the volcano's structure relates to rifting. This research will constrain the distribution of active rifting across the Central Bransfield Basin and determine whether the patterns of faulting and the structure of volcanic portion of the rift are consistent with a diffuse zone of rifting or a single spreading center that is transitioning to the production of oceanic crust. The Bransfield Basin is an ideal site for a comparative study of seismic and hydroacoustic earthquake locations that will improve the understanding of the generation and propagation of T-wave signals and contribute to efforts to compare the result of T-wave studies with data from traditional solid-earth seismic studies. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Goodge, John; Kylander-Clark, Andrew; Bell, Elizabeth; Pecha, Mark
No dataset link provided
Non-Technical Abstract This project will examine ancient Antarctic rocks to understand the continent’s early history, including how Antarctica was once connected to other continents. By studying rock samples from the Nimrod Complex, the project will gather data on the age and makeup of these rocks, showing how Antarctica's crust formed and changed over time. This work will not only expand scientific knowledge about Earth's history but also provide valuable training for college students at multiple universities, helping to grow a diverse community of researchers who can tackle big questions in Earth science. Technical Abstract This project seeks to unravel the origin, evolution, and geological significance of the Nimrod Complex in Antarctica’s East Antarctic craton through detailed age and isotopic analysis of its igneous and metamorphic rocks. Using U-Pb zircon geochronology along with O-isotope, Hf-isotope, and trace element analyses, we will construct a comprehensive petrochronological profile of these Mesoarchean to Paleoproterozoic rocks to reveal their magmatic sources, metamorphic history, and role in the broader tectonic framework. The project aims to trace sediment sources and tectonic influences across sedimentary units spanning the Paleoproterozoic to lower Paleozoic eras, adding crucial data to supercontinent reconstructions (Columbia, Rodinia, and Gondwana) and Antarctic tectonic models. Broader impacts include collaborations between universities to develop a diverse STEM workforce, inter-laboratory partnerships, and a robust isotopic dataset that will contribute to models of Antarctic crustal evolution and its implications for ice sheet stability. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Surface and upper-ocean processes in the Antarctic Circumpolar Current (ACC) play an important role in ocean heat transport, air-sea gas fluxes (such as pCO2) and in sea-ice formation. The net of these in turn modulate global climate, sea level rise and global circulation. This project continues the field development of a surface autonomous vehicle (https://www.liquid-robotics.com/wave-glider/overview/ ) to better measure and study these processes in the remote Southern Ocean, where continuous data is otherwise very difficult to obtain. Mobile autonomous surface vehicles, powered by sunlight and wave action provide a very cost effective manner of solving the problem of obtaining unattended observational coverage in the remote Southern Ocean. The project will support ongoing education and outreach efforts by the PIs including school presentations, visits to science centers and the development of educational materials. The WaveGlider has an established track record of navigating successful spatial surveys and positioned time series measurements in otherwise inhospitable waters and sea-states. The study includes the addition of some new measurement capabilities such as an (upper mixed) layer profiling CTD winch, a high frequency acoustic Doppler turbulence system, and a biogeochemical chlorophyll fluorescence sensor. This augmented instrumentation package will be used for a set of Austral summer season experiments observing ocean-shelf exchange along with frontal air-sea interactions in the vicinity of the West Antarctic Peninsula. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Non-technical description Marine invertebrates often have mutually beneficial partnerships with microorganisms that biosynthesize compounds with nutritive or defensive functions and are integral for survival. Additionally, these “natural products” often have bioactive properties with human health applications fighting infection or different types of cancer. This project focuses on the ascidian (“sea squirt”) Synoicum adareanum, found in the Anvers Island region of the Antarctic Peninsula, and was recently discovered to contain high levels of a natural product, palmerolide A (palA) in its tissues. The microorganism that produces palA is a new bacterial species, Candidatus Synoicihabitans palmerolidicus, found in a persistent partnership with the sea squirt. There is still much to be learned about the fundamental properties of this sea squirt-microbe-palA system including the geographical range of the animal-microbe partnership, its chemical and microbiome complexity and diversity, and the biological effect of palA in the sea squirt. To address these questions, this multidisciplinary research team will investigate the sea squirt-microbiome partnership in the Antarctic Peninsula and McMurdo Sound regions of the Ross Sea using a state-of-the-art strategy that will advance our understanding of the structural and functional features of the sea squirt and microbiome in detail, and reveal the roles that the palA natural product plays in the host ecology in its native Antarctic seafloor habitat. The project will broaden diversity and provide new opportunities for early career students and postdoctoral researchers to participate in field and laboratory-based research that builds an integrative understanding of Antarctic marine biology, ecology, physiology and chemistry. In addition, advancing the understanding of palA and its biological properties may be of future benefit to biomedicine and human health. Technical description Marine invertebrates and their associated microbiomes can produce bioactive natural products; in fact, >600 such compounds have been identified in species from polar waters. Although such compounds are typically hypothesized to serve ecological roles in host survival through deterring predation, fouling, and microbial infection, in most cases neither the producing organism nor the genome-encoded biosynthetic enzymes are known. This project will study an emerging biosynthetic system from a polar ascidian-microbe association that produces palA, a natural product with bioactivity against the proton-pumping enzyme V-type H+-ATPase (VHA). The objectives include: (i) Determining the microbiome composition, metabolome complexity, palA levels, and mitochondrial DNA sequence of S. adareanum morphotypes at sites in the Antarctic Peninsula and in McMurdo Sound, (ii) Characterizing the Synoicum microbiome using a multi-omics strategy, and (iii) Assessing the potential for co-occurrence of Ca. S. palmerolidicus-palA-VHA in host tissues, and (iv) exploring the role of palA in modulating VHA activity in vivo and its effects on ascidian-microbe ecophysiology. Through a coupled study of palA-producing and non-producing S. adareanum specimens, structural and functional features of the ascidian microbiome metagenome will be characterized to better understand the relationship between predicted secondary metabolite pathways and whether they are expressed in situ using a paired metatranscriptome sequencing and secondary metabolite detection strategy. Combined with tissue co-localization results, functional ecophysiological assays aim to determine the roles that the natural product plays in the host ecology in its native Antarctic seafloor habitat. The contributions of the project will inform this intimate host-microbial association in which the ascidian host bioaccumulates VHA-inhibiting palA, yet its geo-spatial distribution, cellular localization, ecological and physiological role(s) are not known. In addition to elucidating the ecophysiological roles of palA in their native ascidian-microbe association, the results will contribute to the success of translational science, which aligns with NSF’s interests in promoting basic research that leads to advances in Biotechnology and Bioeconomy. The project will also broaden diversity and provide new opportunities for early career students and postdoctoral researchers to participate in field and laboratory-based research that builds an integrative understanding of Antarctic marine biology, ecology, physiology and chemistry. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Antarctic marine invertebrates exhibit extraordinarily slow rates of development. This phenomenon has arisen repeatedly in independent Antarctic lineages, including sea urchins, sea stars, brachiopods, and ribbon worms. Despite these observations, little is known about the molecular mechanisms responsible for slow developmental rates in Antarctic marine invertebrates. This proposal is developing the Antarctic sea urchin, Sterechinus neumayeri, as a model invertebrate organism to evaluate cold water organismal adaptation and development. Urchins collected from McMurdo Sound are being studied in carefully controlled laboratory experiments. This work is specifically identifying the gene regulatory network components responsible for regulating developmental timing in S. neumayeri and, more generally, which gene regulatory network elements evolved during adaption to the extreme environment of the Southern Ocean. The lab-based work is focusing in two specific areas: 1) Identify unique gene regulatory network components of S. neumayeri that evolved during its developmental adaptation to the Southern Ocean, and 2) Analyze spatial expression and functions of key genes in the early S. neumayeri gene regulatory networks controlling specification and patterning of territories along the early anterior-posterior axis. A comparative analysis of better studied urchins from warmer regions will be used to inform this work. This effort is relevant to several fields of biology ranging from polar biology, developmental biology, evolution, and genomics while explicitly tying genotype to phenotype. Broader impacts: The proposal included three early career investigators who are new to Antarctic research programs working alongside a well-established Antarctic investigator. The team has developed an ambitious program for science and technology training in computer coding and biology targeted for underrepresented students. They also have developed web-based bioinformatics training blog, “2-bitbio”, which aims to decrease the ‘barrier to entry’ into the field of bioinformatics. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The polar oceans act as a central thermostat that helps set the Earth’s temperature and governs our climate. Rapid changes are currently ongoing in the polar regions in response to interactions between the air, ocean, and sea-ice. Despite their importance, air-sea interactions at high latitudes remain poorly understood, in great part due to the observational challenges inherent to this extreme and remote environment. The overarching objective of this project is to develop and test a new generation of autonomous ocean platforms specifically designed to withstand the harsh polar environment, to enable improved understanding and quantification of fine-scale air-sea fluxes in these key regions of the globe. Doing so will enable the research community to advance observational capabilities of under-sampled high-latitude oceans while being respectful of the environment and local communities. Compared to research vessels, our wave-propelled platforms (”Wave Gliders”) produce a very low acoustic footprint, minimizing behavioral impact to marine mammals such as whales and seals, who are highly affected by underwater noise pollution generated by classical research vessels. Researchers will develop and test advanced capabilities added to existing, off-the-shelf platforms to operate in the extreme conditions of the high latitude oceans in order to understand how the ocean transfers heat and momentum to the atmosphere at fine scales. To accomplish this goal, instrumented Wave Gliders will first be upgraded with state-of-the-art technology for propulsion, energy generation and storage, anti-icing, and a scientific payload capable of operating for long durations in polar oceans. This new technology will be implemented and tested in the Air-Sea Interaction Laboratory and the recently completed SOARS facility at the Scripps Institution of Oceanography, UC San Diego. This facility is capable of developing a polar wave glider, as it can incorporate sea ice and freezing sea spray similar to real world conditions. The validation of the instrumented autonomous vehicles will be conducted during multiple short deployments, initially off La Jolla, CA with a final deployment in the Southern Ocean in polar conditions. Students from local robotics programs will participate in both the development and testing of the polar wave glider. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The ozone hole that develops over the Antarctic continent every spring is one of the features attributed to human activity, in particular production of the CFC (chlorofluorocarbons in refrigerants) released to the atmosphere. In spite of the CFC ban from the Montreal Protocol established in the year 1987, the recovery has been slower than predicted. Bromocarbons, known to produce the stratospheric ozone depletion, have recently been estimated to contribute to the pool of bromines in the lower atmosphere. What is the origin of the bromocarbons in Antarctic sea ice? Is this an additional source of chemicals creating the ozone hole? This project will test if bromocarbons in sea ice are produced and degraded by microalgae and bacteria found in sea ice, in snow and the interface between the two. The project will collect a suite of chemical and biological measurements of sea ice and snow to determine bromocarbon concentrations, microbial activity associated with them, and intra-cellular genes and proteins involved in bromocarbon metabolism. This project benefits NSF’s goals of expanding fundamental knowledge of Antarctic systems, biota, and processes, and improving the understanding of interactions among the Antarctic systems, cryosphere and organisms. The work will be carried out at McMurdo Station in late austral spring, including sampling of snow and ice that will be concentrated in the laboratory, and 24-hour experiments to measure algal and bacterial activity. Genes controlling synthesis of enzymes involved in bromocarbon metabolism are of interest in biotechnology and bioremediation, including products that repair damaged skin from UltraViolet Radiation. The project will train undergraduate students on chemical and biological techniques. The Principal Investigators will be involved in the Pacific Science Center in Seattle with ~10,000 visitors per weekend where they will develop a project-specific exhibit. The microbial processes in snow and ice associated with bromocarbon synthesis and degradation have not been studied in Antarctica during winter and spring. This study will inform about microbial activity in relation to the release of bromocarbons compounds from the snow and ice surfaces, compounds known to degrade stratospheric ozone. The estimation of chemical bromocarbons will be combined with metagenomics and metaproteomics approaches for understanding the potential role of microbes in snow and sea ice. The environmental, chemical and biological data will be synthesized with multivariate analysis and significant differences between sites and experimental treatments with ANOVA. A collaborator from the University of Goteborg in Sweden will collaborate on bromocarbon analyses. The study will also address “saline snow” a new environment not previously studied for microbial life. In addition, this is the first study of meta-proteomics in snow and ice. The Principal Investigators expect their results will help inform ozone hole recovery in the 21st century. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The objective of this project is to understand why the nitrous oxide (N2O) content of the atmosphere was lower during the last ice age (about 20,000-100,000 years ago) than in the subsequent warm period (10,000 years ago to present) and why it fluctuated during climate changes within the ice age. Nitrous oxide is a greenhouse gas that contributes to modern global warming. It is thought that modern warming will in turn cause increases in natural sources of nitrous oxide from bacteria in soils and the ocean, creating a "positive feedback." However, the amount these sources will increase is uncertain because the different ways that nitrous oxide are produced, and how sensitive they are to warmer climate, are not well known. This project will measure a unique property of the nitrous oxide molecule in very large ancient air samples from a glacier in Antarctica. This method can distinguish between different microbial processes that produce nitrous oxide but it has not been applied yet to the time periods in question. The data will provide information about how natural climate changes affect nitrous oxide production. This, in turn, will be useful for predicting future changes and for understanding why the Earth's climate shifts from ice ages to warm periods and back again. Ice-core records of greenhouse gas isotopic composition are useful for determining past changes in natural source and sink strengths and for understanding how natural emissions are linked to climate change. This project will develop two records of the intramolecular site preference of Nitrogen-15 in N2O. One record spans the last deglaciation (10,000-21,000 years ago) when atmospheric N2O concentration rose by 30 percent, and the other record spans millennial-scale climate changes during the last ice age when N2O varied by smaller amounts (Heinrich Stadial 4 and Dansgaard Oeschger 8, 35,000-41,000 years ago). The records will be used to understand what changes in the nitrogen cycle caused atmospheric N2O concentration to vary and what mechanisms link the N2O emissions to climate change. Ideally, studying the two different time periods will isolate the millennial climate responses entangled with the full deglacial sequence, creating a clearer picture of how N2O biogeochemistry responds to climate change. This work will also allow exploration of an isotopic tracer for in situ production of N2O that contaminates the atmospheric signal in particularly dusty ice. The project will use a unique, well-dated suite of ice samples from Taylor Glacier, Antarctica and continuous flow isotope ratio mass spectrometry on a custom gas extraction line operated in the Oregon State University laboratory. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Phytoplankton are microscopic single-celled plants that grow at the sun-lit surface of the ocean. In the Southern Ocean around Antarctica, phytoplankton live in sub-optimal conditions because the amount of iron in seawater is insufficient for growth. Moreover, the chemical composition of Southern Ocean phytoplankton is distinct from that in other ocean regions, with a higher proportion of phosphorus relative to other elements, a characteristic that ultimately influences the distribution of nutrients ocean-wide. The researchers hypothesize that the high phosphorus composition of phytoplankton in the Southern Ocean is caused by their low iron content. Specifically, they postulate that a phosphorus-rich molecule, phytic acid, is synthesized by phytoplankton in order to assist in the storage of iron in designated cellular compartments, such as vacuoles. Recent observations show that some phytoplankton can absorb phytic acid, suggesting that it may be produced by certain species. Phytic acid is pervasive in soils, wherein it aids absorption of iron via plant roots and could similarly help phytoplankton in the Southern Ocean acquire iron via the cell membranes. This project benefits the National Science Foundation's goals of improving understanding of interactions between the Southern Ocean and the global ocean, of expanding fundamental knowledge of Antarctic biota and associated processes by focusing on phytoplankton species unique to the Antarctic. As part of this project, the Department of Marine Sciences from the College of Liberal Arts and Sciences at the University of Connecticut will sponsor the recruitment, relocation and mentorship of a graduate student under-represented in the sciences. This project aims to determine whether the unusual elemental composition of phytoplankton at the Southern Ocean is a result of anemia. The work will query whether inositol hexakisphosphate (phytic acid) aids Antarctic phytoplankton acquire and store iron, resulting in an elevated fraction of cellular phosphorus relative to other elements. The researchers, including a graduate student, will conduct laboratory culture experiments with phytoplankton strains isolated from the Southern Ocean. They will grow cells in iron- deficient versus iron-replete media to see if their phosphorus content is higher in iron-deficient conditions. They will test whether cells grown with sufficient phosphorus acquire more iron, allowing them to grow better in iron-deficient conditions than cells deriving from phosphorus-poor conditions. They will also query whether cells grown in iron-deficient conditions achieve faster growth rates in the presence of phytic acid. Results will inform the design of CRISPR mutants with which to investigate phosphorus and iron co-metabolism in Antarctic marine phytoplankton. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
General Description: This project is intended to reveal the magma source regions, staging areas, and eruptive pathways within the active volcano Mount Erebus. This volcano is an end-member type known as phonolitic, which refers to the lava composition, and is almost purely carbon-dioxide-bearing and occurs in continental rift settings. It is in contrast to the better known water-bearing volcanoes which occur at plate boundary settings (such as Mount St Helens or Mount Fuji). Phonolitic volcanic eruptions elsewhere such as Tamboro or Vesuvius have caused more than 50,000 eruption related fatalities. Phonolites are also associated with rare earth element deposits, giving them economic interest. To illuminate the inner workings of Mount Erebus, we will cover the volcano with a dense network of geophysical probes based on magnetotelluric (MT) measurements. MT makes use of naturally occurring electromagnetic (EM) waves generated mainly by the sun as sources to provide images of the electrical conductivity structure of the Earth's interior. Conductivity is sensitive to the presence of fluids and melts in the Earth and so is well suited to understanding volcanic processes. The project is a cooperative effort between scientists from the United States, New Zealand, Japan and Canada. It implements new technology developed by the lead investigator and associates that allows such measurements to be taken on snow-covered terrains. This has applicability for frozen environments generally, such as resource exploration in the Arctic. The project supports a new post-doctoral researcher, and leverages imaging and measurement methods developed through support by other agencies and interfaced with commercial platforms. Technical Description: The investigators propose to test magmatic evolution models for Mount Erebus volcano, Antarctica, using the magnetotelluric (MT) method. The phonolite lava flow compositions on Mount Erebus are uncommon, but provide a window into the range of upper mantle source compositions and melt differentiation paths. Explosive phonolite eruptions have been known worldwide for devastating eruptions such as Tambora and Vesuvius, and commonly host rare earth element deposits. In the MT method, temporal variations in the Earth's natural electromagnetic (EM) field are used as source fields to probe the electrical resistivity structure in the depth range of 1 to 100 kilometers. This effort will consist of approximately 100 MT sites, with some concentration in the summit area. Field acquisition will take place over two field seasons. The main goals are to 1) confirm the existence and the geometry of the uppermost magma chamber thought to reside at 5-10 kilometer depths; 2) attempt to identify, in the deeper resistivity structure, the magma staging area near the crust-mantle boundary; 3) image the steep, crustal-scale, near-vertical conduit carrying magma from the mantle; 4) infer the physical and chemical state from geophysical properties of a CO2-dominated mafic shield volcano; and 5) constrain the relationships between structural and magmatic/ hydrothermal activity related to the Terror Rift. Tomographic imaging of the interior resistivity will be performed using a new inversion platform developed at Utah, based on the deformable edge finite element method, that is the best available for accommodating the steep topography of the study area. The project is an international cooperation between University of Utah, GNS Science Wellington New Zealand (G. Hill, Co-I), and Tokyo Institute of Technology Japan (Y. Ogawa, Co-I), plus participation by University of Alberta (M. Unsworth) and Missouri State University (K. Mickus). Instrument deployments will be made exclusively by helicopter. The project implements new technology that allows MT measurements to be taken on snow-covered terrains. The project supports a new post-doctoral researcher, and leverages imaging and measurement methods developed through support by other agencies and interfaced with commercial platforms.
Satellite observations of Earth’s surface gravity and elevation changes indicate rapid melting of ice sheets in recent decades in northern Antarctica Peninsula and Amundsen Sea Embayment of West Antarctica. This rapid melting may lead to significant global sea level rise which is a major societal concern. Measurements from the Global Positioning System (GPS) show rapid land uplift in these regions as the ice sheets melt. When an ice sheet melts, the melt water flows to oceans, causing global sea level to rise. However, the sea level change at a given geographic location is also influenced by two other factors associated with the ice melting process: 1) the vertical motion of the land and 2) gravitational attraction. The vertical motion of the land is caused by the change of pressure force on the surface of the solid Earth. For example, the removal of ice mass reduces the pressure force on the land, leading to uplift of the land below the ice sheet, while the addition of water in oceans increases the pressure force on the seafloor, causing it to subside. The sea level always follows the equipotential surface of the gravity which changes as the mass on the Earth’s surface (e.g., the ice and water) or/and in its interiors (e.g., at the crust-mantle boundary) is redistributed. Additionally, the vertical motion of the land below an ice sheet has important effects on the evolution and stability of the ice sheet and may determine whether the ice sheet will rapidly collapse or gradually stabilize. The main goal of this project is to build an accurate and efficient computer model to study the displacement and deformation of the Antarctic crust and mantle in response to recent ice melting. The project will significantly improve existing and publicly available computer code, CitcomSVE. The horizontal and vertical components of the Earth’s surface displacement depends on mantle viscosity and elastic properties of the Earth. Although seismic imaging studies demonstrate that the Antarctica mantle is heterogeneous, most studies on the ice-melting induced deformation in Antarctica have assumed that mantle viscosity and elastic properties only vary with the depth due to computational limitations. In this project, the new computational method in CitcomSVE avoids such assumptions and makes it possible to include realistic 3-D mantle viscosity and elastic properties in computing the Antarctica crustal and mantle displacement. This project will interpret the GPS measurements of the surface displacements in northern Antarctica Peninsula and Amundsen Sea Embayment of West Antarctica and use the observations to place constraints on mantle viscosity and deformation mechanisms. The project will also seek to predict the future land displacement Antarctica, which will lead to a better understand of Antarctica ice sheets. Finally, the project has direct implications for the study of global sea level change and the dynamics of the Greenland ice sheet. Technical Description Glacial isostatic adjustment (GIA) is important for understanding not only fundamental science questions including mantle viscosity, mantle convection and lithospheric deformation but also societally important questions of global sea-level change, polar ice melting, climate change, and groundwater hydrology. Studies of rock deformation in laboratory experiments, post-seismic deformation, and mantle dynamics indicate that mantle viscosity is temperature- and stress-dependent. Although the effects of stress-dependent (i.e., non-Newtonian) viscosity and transient creep rheology on GIA process have been studied, observational evidence remains elusive. There has been significant ice mass loss in recent decades in northern Antarctica Peninsula (NAP) and Amundsen Sea Embayment (ASE) of West Antarctica. The ice mass loss has caused rapid bedrock uplift as measured by GPS techniques which require surprisingly small upper mantle viscosity of ~1018 Pas. The rapid uplifts may have important feedback effects on ongoing ice melting because of their influence on grounding line migration, and the inferred small viscosity may have implications for mantle rheology and deformation on decadal time scales. The main objective of the project is to test hypotheses that the GPS observations in NAP and ASE regions are controlled by 3-D non-Newtonian or/and transient creep viscosity by developing new GIA modeling capability based on finite element package CitcomSVE. The project will carry out the following three tasks: Task 1 is to build GIA models for the NAP and ASE regions to examine the effects of 3-D temperature-dependent mantle viscosity on the surface displacements and to test hypothesis that the 3-D mantle viscosity improves the fit to the GPS observations. Task 2 is to test the hypothesis that non-Newtonian or/and transient creep rheology controls GIA process on decadal time scales by computing GIA models and comparing model predictions with GPS observations for the NAP and ASE regions. Task 3 is to implement transient creep (i.e., Burgers model) rheology into finite element package CitcomSVE for modeling the GIA process on global and regional scales and to make the package publicly available to the scientific community. The project will develop the first numerical GIA model with Burgers transient rheology and use the models to examine the effects of 3-D temperature-dependent viscosity, non-Newtonian viscosity and transient rheology on GIA-induced surface displacements in Antarctica. The project will model the unique GPS observations of unusually large displacement rates in the NAP and ASE regions to place constraints on mantle rheology and to distinguish between 3-D temperature-dependent, non-Newtonian and transient mantle viscosity. The project will expand the capability of the publicly available software package CitcomSVE for modeling viscoelastic deformation and tidal deformation on global and regional scales. The project will advance our understanding in lithospheric deformation and mantle rheology on decadal time scales, which helps predict grounding line migration and understand ice sheet stability in West Antarctica. The project will strengthen the open science practice by improving the publicly available code CitcomSVE at github. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The fastest-changing regions of the Antarctic and Greenland Ice Sheets that contribute most to sea-level rise are underlain by soft sediments that facilitate glacier motion. Glacier ice can infiltrate several meters into these sediments, depending on the temperature and water pressure at the base of the glacier. To understand how ice infiltration into subglacial sediments affects glacier slip, the team will conduct laboratory experiments under relevant temperature and pressure conditions and compare the results to state-of-the-art mathematical models. Through an undergraduate research exchange between University of Wisconsin-Madison, Dartmouth College, and the College of Menominee Nation, Native American students will work on laboratory experiments in one summer and mathematical theory in the following summer. Ice-sediment interactions are a central component of ice-sheet and landform-development models. Limited process understanding poses a key uncertainty for ice-sheet models that are used to forecast sea-level rise. This uncertainty underscores the importance of developing experimentally validated, theoretically robust descriptions of processes at the ice-sediment interface. To achieve this, the team aims to build on long-established theoretical, experimental, and field investigations that have elucidated the central role of premelting and surface-energy effects in controlling the dynamics of frost heave in soils. Project members will theoretically describe and experimentally test the role of premelting at the basal ice-sediment interface. The experiments are designed to provide quantitative insight into the impact of ice infiltration into sediments on glacier sliding, erosion, and subglacial landform evolution. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The seaward motion of ice sheets and glaciers is primarily controlled by basal sliding at the base of the ice sheet and internal viscous flow within the ice mass. The latter of these — viscous flow — is dependent on various factors, including temperature, stress, grain size, and the alignment of ice crystals during flow to produce a "crystal orientation fabric" (COF). Historically, ice flow has been modeled using an equation, termed “Glen’s law”, that describes ice-flow rate as a function of temperature and stress. Glen’s law was constrained under relatively high-stress conditions and is often attributed to the motion of crystal defects within ice grains. More recently, however, grain boundary sliding (GBS) has been invoked as the rate-controlling process under low-stress, “superplastic” conditions. The grain boundary sliding hypothesis is contentious because GBS is not thought to produce a COF, whereas geophysical measurements and polar ice cores demonstrate strong COFs in polar ice masses. However, very few COF measurements have been conducted on ice samples subjected to superplastic flow conditions in the laboratory. This project would measure the evolution of ice COF across the transition from superplastic to Glen-type creep. Results will be used to interrogate the role of superplastic GBS creep within polar ice masses, and thereby provide constraints on polar ice discharge models. Polycrystalline ice samples with grain sizes ranging from 5 µm to 1000 µm will be fabricated and deformed in a laboratory, using a 1-atm cryogenic axial-torsion apparatus. Experiments will be conducted at temperatures of -30°C to -10°C, and at a constant uniaxial strain rate. Under these conditions, 5% to 99.99% of strain should be accommodated by superplastic, GBS-limited creep, depending on the sample grain size. The deformed samples will then be imaged using cryogenic electron backscatter diffraction (cryo-EBSD) and high-angular-resolution electron backscatter diffraction (HR-EBSD) to quantify COF, grain size, grain shape, and crystal defect (dislocation) densities, among other microstructural properties. These measurements will be used to decipher the rate-controlling mechanisms operating within different thermomechanical regimes, and resolve a long-standing debate over whether superplastic creep can produce a COF in ice. In addition to the polycrystal experiments, ice bicrystals will be fabricated and deformed to investigate the micromechanical behavior of individual grain boundaries under superplastic conditions. Ultimately, these results will be used to provide a microstructural toolbox for identifying superplastic creep using geophysical (e.g., seismic, radar) and glaciological (e.g., ice core) observations. This project will support one graduate student, one or more undergraduate summer students, and an early-career researcher. In addition, this project will support a workshop aimed at bringing together experimentalists, glaciologists, and ice modelers to facilitate cross-disciplinary knowledge sharing and collaborative problem solving. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Sea ice in Antarctic coastal waters shape ecosystems, both in the surface waters and at the bottom of the ocean, environments that depend on algae living in sea ice for their productivity. With high variability in sea ice formation and melt between years and as a response to climate change, it is of importance to obtain better understanding of the interaction of sea ice with algae, as well as provide better data for global climate models. This project will accomplish those goals by measuring phytoplankton growth and cellular properties in sea ice with experiments performed using an ice tank. Laboratory experiments will be based on previous observations in the Antarctic Peninsula coastal waters, providing realistic conditions to emulate. The scientific importance of the proposed work aligns with the National Science Foundation goals to understand the biological and chemical properties of sea ice bio-geo-chemistry and its feedbacks with seasonal sea ice dynamics and climate. The finding from this project will be of interest to a broad scientific community, including oceanographers, biologists, chemists, and ecosystem and ocean modelers. To address the scarcity of data on sea ice microbes that limits our ability to predict future Antarctic climate with accuracy, the principal investigator will develop an Antarctic Science Minor in order to train future scientists with an environmental perspective and prepare the future US workforce with a strong scientific background on Earth and Biological Sciences. There is a paucity of data to understand the processes underlying observed patters in sea ice quality and their interaction with the sea-ice microbial community. This project will provide a mechanistic understanding of primary production and physiology of sympagic algae over the seasonal cycle of formation and melt of Antarctic sea ice. Although sea ice is central to the Antarctic coastal ecosystems, little is known of how they affect, and are in turn affected, by sea-ice algae. This project concentrates on first-year sea ice, forming and melting each year, creating unique and very dynamic habitats. The study will be structured by 4 main objectives: 1) how different algal species adapt to the seasonal changes in sea ice conditions, 2) how different methods to measure primary production (carbon dioxide drawdown, oxygen production and variable fluorescence) relate in sea ice and differ from sea water measurements, 3) how sympagic algae influence the physical structure of sea ice, 4) how sympagic algae contribute to organic matter cycling during ice melt. Due to expected changes in sea ice due to climate change, this study is uniquely positioned to provide needed data on short-term and seasonal processes. Results from this study will be useful to refine models of algal production in Antarctic and Arctic ecosystems, data not available to date as sea ice and its biogeochemistry are often poorly represented in earth system models. This project will also provide education for graduate and undergraduate students as well as material to develop class curriculum for middle-school students. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part 1: On frequent crossings of the Drake Passage on the US Antarctic vessel ARSV Laurence M. Gould, a range of underway measurements are taken. These data represent one of the few repeat year around shipboard measurements in the Southern Ocean. With close to two decades of data now available, the primary science objectives of this proposal are to continue to analyze the Drake Passage time series. Part 2: Some of the analyses are (1) describe and relate the seasonal and long-term ocean energy distribution to wind, buoyancy and topographic forcing and sinks, and (2) describe and relate seasonal and long-term changes in the ACC fronts, water masses and upwelling to biogeochemical and climate variability. High-resolution, near-repeat Expendable Bathythermograph (XBT) and Acoustic Doppler Current Profiler (ADCP) transect sampling in Drake Passage is thus used to study modes of variability in ocean temperature, salinity, currents and backscatter in the Antarctic Circumpolar Current (ACC) on seasonal to interannual time frames, and on space scales from current cores to eddies. This project is a continuation of the longstanding support for collecting the ADCP and other underway data on USAP vessels, such as the ASRV Laurence M Gould This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Earth's atmosphere is a highly oxidizing medium. The abundance of oxidants such as ozone in the atmosphere strongly influences the concentrations of pollutants and greenhouse gases, with implications for human health and welfare. Because oxidants are not preserved in geological archives, knowledge of how oxidants have varied in the past under changing climate conditions is extremely limited. This award will measure a proxy for oxidant concentrations in a West Antarctic ice core over several major climate transitions over the past 50,000 years. These measurements will complement similar measurements from a Greenland ice core, which showed significant changes in atmospheric oxidants over major climate transitions covering this same time period. The addition of measurements from Antarctica will allow researchers to examine if the oxidant changes suggested by the Greenland ice core record are regional or global in scale. Knowledge of how oxidants vary naturally with climate will better inform predictions of the composition of the future atmosphere under a warming climate. This award will support measurements of the isotopic composition of nitrate in a West Antarctic ice core as a proxy for oxidant concentrations in the past atmosphere. The nitrogen isotopes of nitrate provide information on the degree of preservation of nitrate in the ice core record, and thus aid in the interpretation of the observed variability in the observed nitrate concentrations and oxygen isotopes in ice core records. By providing information about the spatial scale of oxidant changes over abrupt climate change events during the last glacial period, this project may also improve our understanding of mechanisms driving these abrupt events. Insight from this project will prove valuable for forecasting the response of stratospheric circulation to climate change, which has large implications for climate feedbacks and tropospheric composition. In addition, the information gleaned from this project on the mechanisms and feedbacks during abrupt climate change events will help determine the likelihood of such rapid events occurring in the future, which would have dramatic impacts on humankind. This award will provide training for one graduate and one undergraduate student, and will support the development of a hands-on activity related to rapid climate change to be used at the annual Polar Science Weekend at the Pacific Science Center in Seattle, WA.
Siddoway, Christine; Thomson, Stuart; Teyssier, Christian
No project link provided
in progress
No project link provided
in progress
Sediment records off the coast of Marie Byrd Land (MBL), Antarctica suggest frequent and dramatic changes in the size of the West Antarctic Ice Sheet (WAIS) over short (tens of thousands of years) and long (millions of years) time frames in the past. WAIS currently overrides much of MBL and covers the rugged and scoured bedrock landscape. The ice sheet carved narrow linear troughs that reach depths of two to three thousand meters below sea level as outlet glaciers flowed from the interior of the continent to the oceans. As a result, large volumes of fragmented continental bedrock were carried out to the seabed. The glaciers cut downward into a region of crystalline rocks (i.e. granite) whose temperature change as a function of rock depth happens to be significant. This strong geothermal gradient in the bedrock is favorable for determining when the bedrock experienced rapid exhumation or "uncovering". Analyzing the chemistry of minerals (zircon and apatite) within the eroded rocks will provide information about the rate and timing of the glacier removal of bedrock from the Antarctic continent. The research addresses the following questions: When did the land become high enough for a large ice sheet to form? What was the regional pre-glacial topography? Under what climate conditions, and at what point in the growth of an ice sheet, did glaciers begin to cut sharply into bedrock to form the narrow troughs that flow seaward? The research will lead to greater understanding of past Antarctic ice sheet fluctuations and identify precise timing of glacial incision. These results will refine ice sheet history and aid the international societal response to contemporary ice sheet change and its global consequences. The project will contribute to the training of two graduate and two undergraduate students in STEM. The objective is to clarify the onset of WAIS glacier incision and assess the evolution of Cenozoic paleo-topography. Low-temperature (T) thermochronology and Pecube 3-D thermo-kinematic modeling will be applied to date and characterize episodes of glacial erosional incision. Single-grain double- and triple-dating of zircon and apatite will reveal the detailed crustal thermal evolution of the region enabling the research team to determine the comparative topographic influences on glaciation versus bedrock uplift induced by Eocene to present tectonism/magmatism. High-T mineral thermochronometers across Marie Byrd Land (MBL) record rapid extension-related cooling at ~100 Ma from temperatures of >800 degrees C to ≤ 300 degrees C. This signature forms a reference horizon, or paleogeotherm, through which the Cenozoic landscape history using low-T thermochronometers can be explored. MBL's elevated geothermal gradient, sustained during the Cenozoic, created favorable conditions for sensitive apatite and zircon low-T thermochronometers to record bedrock cooling related to glacial incision. Students will be trained to use state-of-the-art analytical facilities in Arizona and Minnesota, expanding the geo- and thermochronologic history of MBL from bedrock samples and offshore sedimentary deposits. The temperature and time data they acquire will provide constraints on paleotopography, isostasy, and the thermal evolution of MBL that will be modeled in 3D using Pecube model simulations. Within hot crust, less incision is required to expose bedrock containing the distinct thermochronometric profile; a prediction that will be tested with inverse Pecube 3-D models of the thermal field through which bedrock and detrital samples cooled. Using results from Pecube, the ICI-Hot team will examine time-varying topography formed in response to changes in erosion rates, topographic relief, geothermal gradient and/or flexural isostatic rigidity. These effects are manifestations of dynamic processes in the WAIS, including ice sheet loading, ice volume fluctuations, relative motion upon crustal faults, and magmatism-related elevation increase across the MBL dome. The project makes use of pre-existing sample collections housed at the US Polar Rock Repository, IODP's Gulf Coast Core Repository, and the Antarctic Marine Geology Research Facility. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Glacial ice cores serve as a museum back in time, providing detailed records of past climatic conditions. In addition to chronological records such as temperature, chemistry and gas composition, ice provides a unique environment for preserving microbes and other biological materials through time. These microbes provide invaluable insight into the physiological capabilities necessary for survival in the Earth’s cryosphere and other icy planetary bodies, yet little is known about them. This award supports fundamental research into the activity of microbes in ice, and directly supports major research priorities regarding Antarctic biota identified in the 2015 National Academies of Sciences, Engineering, and Medicine report, A Strategic Vision for NSF Investments in Antarctic and Southern Ocean Research. The broader impacts of this work are that it will be relevant to researchers across paleoclimate and biological fields. It will support two early career researchers, a graduate and an undergraduate student who will conduct laboratory analyses, participate in outreach activities, publish papers in scientific journals and present at conferences. This work will use previously collected ice cores to investigate englacial microbial activity from the Holocene back to the Last Glacial Maximum from the blue ice area of Taylor Glacier, Antarctica. The proposal identified making significant contributions to 1) investing how Antarctic organisms evolve and adapt to changing environment, 2) understanding how microbes alter the preservation of paleorecord-relevant gas and trace element information in ice cores, and 3) identifying microbial life in cores and their activity in relation to dust depositional events. Two recently developed complementary techniques (bio-orthogonal noncanonical amino acid tagging and deuterium isotope probing) in combination with Raman Confocal Microspectroscopy will be used to assess and quantify microbial activity in ice. During phase one of the project, these methods will be optimized using deaccessioned ice cores available at the National Science Foundation’s Ice Core Facility. In phase two, ice cores in a time series from the Taylor Glacier will be analyzed for geochemistry and microbial activity. Research results will provide a comprehensive view of englacial microbial communities, including their metabolic diversity and activity, and the effect of geochemical parameters on microbial assemblages from different climate periods. Given the dearth of information available on englacial microbial communities, the results of this research will be of particular significance. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Ice cores are a vital source of information about past climate. Research that utilizes ice cores benefits from an undamaged ice-core record. There is often a zone within ice sheets where the ice is brittle upon extraction in a core. Brittle-ice behavior occurs when the rapid decompression of the core as it is being extracted from the ice-sheet results in extensive fracturing. Ice from this zone can compromise the undamaged record. This project seeks to improve our understanding of the mechanisms involved in brittle-ice behavior and onset, with the goal of helping to guide field-site operations, core handling preparation, and planned laboratory measurement techniques for future ice-coring projects, including the upcoming work at Hercules Dome. This project requires no field work, as it will use existing observations and existing ice cores to gain an understanding of brittle ice. This is a high-risk and timely proposal that is early-concept and exploratory in nature, making it appropriate for the EAGER solicitation. The project will support an early-career researcher and provide training for a master’s student who is a woman. And, finally, the project will develop educational and outreach materials for graduate and undergraduate courses and elementary schools. This project will examine and catalog brittle ice from several existing ice-core samples to specifically assess various ice physical properties affecting brittleness potential, including bubble size and number-density, ice fabric, grain statistics, fracture characteristics, and the location and properties of grain and subgrain boundaries. End members of this sample assessment have been identified and include Siple Dome, which exhibited major brittle behavior and damage, and South Pole ice core, which exhibited very-minor brittle behavior and almost no damage. Output datasets will include calibrated relationships for bubble number-density, mean grain and bubble sizes, subgrain prevalence and orientation, and a usable indicator for estimating brittle-ice onset and magnitude. There is an immediate applicability of results from this effort for the Hercules Dome drilling project. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Near the Antarctic coast, polynyas are open-water regions where extreme heat loss in winter causes seawater to become cold, salty, and dense enough to sink into the deep sea. The formation of this dense water has regional and global importance because it influences the ocean current system. Polynya processes are also tied to the amount of sea ice formed, ocean heat lost to atmosphere, and atmospheric CO2 absorbed by the Southern Ocean. Unfortunately, the ocean-atmosphere interactions that influence the deep ocean water properties are difficult to observe directly during the Antarctic winter. This project will combine field measurements and laboratory experiments to investigate whether differences in the concentration of noble gasses (helium, neon, argon, xenon, and krypton) dissolved in ocean waters can be linked to environmental conditions at the time of their formation. If so, noble gas concentrations could provide insight into the mechanisms controlling shelf and bottom-water properties, and be used to reconstruct past climate conditions. Project results will contribute to the Southern Ocean Observing System (SOOS) theme of The Future and Consequences of Carbon Uptake in the Southern Ocean. The project will also train undergraduate and graduate students in environmental monitoring, and earth and ocean sciences methods. Understanding the causal links between Antarctic coastal processes and changes in the deep ocean system requires study of winter polynya processes. The winter period of intense ocean heat loss and sea ice production impacts two important Antarctic water masses: High-Salinity Shelf Water (HSSW), and Antarctic Bottom Water (AABW), which then influence the strength of the ocean solubility pump and meridional overturning circulation. To better characterize how sea ice cover, ocean-atmosphere exchange, brine rejection, and glacial melt influence the physical properties of AABW and HSSW, this project will analyze samples and data collected from two Ross Sea polynyas during the 2017 PIPERS winter cruise. Gas concentrations will be measured in seawater samples collected by a CTD rosette, from an underwater mass-spectrometer, and from a benchtop Membrane Inlet Mass Spectrometer. Noble gas concentrations will reveal the ocean-atmosphere (dis)equilibrium that exists at the time that surface water is transformed into HSSW and AABW, and provide a fingerprint of past conditions. In addition, nitrogen (N2), oxygen (O2), argon, and CO2 concentration will be used to determine the net metabolic balance, and to evaluate the efficacy of N2 as an alternative to O2 as glacial meltwater tracer. Laboratory experiments will determine the gas partitioning ratios during sea ice formation. Findings will be synthesized with PIPERS and related projects, and so provide an integrated view of the role of the wintertime Antarctic coastal system on deep water composition. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The goal of this study is to identify and distinguish different source areas of glacial sediment in the McMurdo Dry Valleys, Antarctica to determine past glacial flow direction. Understanding ice flow is critical for determining how the Antarctic Ice Sheets have behaved in the past. Such insight is fundamental for allowing scientists to predict how the Antarctic Ice Sheets will evolve and, in turn, forecast how much and how fast sea level may rise. The project study site, the McMurdo Dry Valleys, contain a tremendous record of glacial deposits on land that extends back at least 14 million years. Chemistry of the rocks within the glacial deposits hold clues to the sources of ice that deposited the material. The chemical analyses of the glacial deposits will allow mapping of the former extent of glaciations providing a better understand of ice flow history. The mapping of the largest ice sheet expansion of the past 14 million years in the McMurdo Dry Valleys is of broad interest to the global climate change community. Undergraduate students comprise the majority of the field teams and will be responsible for sample preparation and analysis in the laboratory. This project utilizes new geochemical techniques to test hypotheses about the source, extent, and flow patterns of the glacier ice that deposited glacial tills in the McMurdo Dry Valleys, Antarctica (MDV). The MDV contain an unparalleled terrestrial archive of glacial deposits, which record multiple sources of ice that deposited them. These include the northeast flowing ice that overrode the Transantarctic Mountains, the eastward expansion of the East Antarctic Ice Sheet, the westward extension of the Ross Ice Shelf representing an expansion of the West Antarctic Ice Sheet, and the growth of local alpine glaciers. The glacial tills and drifts in the Antarctic are typically isolated in patches or disjointed outcrop patterns making it difficult to correlate tills and determine their source. This project will undertake a systematic study of the tills in the McMurdo Dry Valleys to determine their provenance with a variety of geochemical techniques including major and minor element analyses with X-ray fluorescence, heavy mineral composition, soil salt concentration, and determining the uranium-lead (U-Pb) ages of zircon sands contained in these tills. The primary tool will be the age distribution of the population of detrital zircon in a glacial drift because it reflects the source of the tills and provides a unique geochemical "fingerprint" used to distinguish source areas while correlating units across different sites. A deliverable from this project will be a community available library of zircon fingerprints for mapped glacial tills from archived samples at the Polar Rock Repository and the systematic collection of samples in the MDV. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Undersea canyons play disproportionately important roles as oceanic biological hotspots and are critical for our understanding of many coastal ecosystems. Canyon-associated biological hotspots have persisted for thousands of years Along the Western Antarctic Peninsula, despite significant climate variability. Observations of currents over Palmer Deep canyon, a representative hotspot along the Western Antarctic Peninsula, indicate that surface phytoplankton blooms enter and exit the local hotspot on scales of ~1-2 days. This time of residence is in conflict with the prevailing idea that canyon associated hotspots are primarily maintained by phytoplankton that are locally grown in association with these features by the upwelling of deep waters rich with nutrients that fuel the phytoplankton growth. Instead, the implication is that horizontal ocean circulation is likely more important to maintaining these biological hotspots than local upwelling through its physical concentrating effects. This project seeks to better resolve the factors that create and maintain focused areas of biological activity at canyons along the Western Antarctic Peninsula and create local foraging areas for marine mammals and birds. The project focus is in the analysis of the ocean transport and concentration mechanisms that sustain these biological hotspots, connecting oceanography to phytoplankton and krill, up through the food web to one of the resident predators, penguins. In addition, the research will engage with teachers from school districts serving underrepresented and underserved students by integrating the instructors and their students completely with the science team. Students will conduct their own research with the same data over the same time as researchers on the project. Revealing the fundamental mechanisms that sustain these known hotspots will significantly advance our understanding of the observed connection between submarine canyons and persistent penguin population hotspots over ecological time, and provide a new model for how Antarctic hotspots function. To understand the physical mechanisms that support persistent hotspots along the Western Antarctic Peninsula (WAP), this project will integrate a modeling and field program that will target the processes responsible for transporting and concentrating phytoplankton and krill biomass to known penguin foraging locations. Within the Palmer Deep canyon, a representative hotspot, the team will deploy a High Frequency Radar (HFR) coastal surface current mapping network, uniquely equipped to identify the eddies and frontal regions that concentrate phytoplankton and krill. The field program, centered on surface features identified by the HFR, will include (i) a coordinated fleet of gliders to survey hydrography, chlorophyll fluorescence, optical backscatter, and active acoustics at the scale of the targeted convergent features; (ii) precise penguin tracking with GPS-linked satellite telemetry and time-depth recorders (TDRs); (iii) and weekly small boat surveys that adaptively target and track convergent features to measure phytoplankton, krill, and hydrography. A high resolution physical model will generalize our field measurements to other known hotspots along the WAP through simulation and determine which physical mechanisms lead to the maintenance of these hotspots. The project will also engage educators, students, and members of the general public in Antarctic research and data analysis with an education program that will advance teaching and learning as well as broadening participation of under-represented groups. This engagement includes professional development workshops, live connections to the public and classrooms, student research symposia, and program evaluation. Together the integrated research and engagement will advance our understanding of the role regional transport pathways and local depth dependent concentrating physical mechanisms play in sustaining these biological hotspots. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This project will conduct basic research into geological dating techniques that are useful for determining the age of glacial deposits in polar regions, Antarctica in particular. These techniques are necessary for determining how large the polar ice sheets were in the geologic past, including during past periods of warm climate that likely resemble present and near-future conditions. Thus, they represent an important technical capability needed for estimating the response of polar ice sheets to climate warming. Because changes in the size of polar ice sheets are the largest potential contribution to future global sea-level change, this capability is also relevant to understanding likely sea-level impacts of future climate change. The research in this project comprises several observational and experimental approaches to improving the speed, efficiency, cost, and accuracy of these techniques, as well as a scientific outreach program aimed at making the resulting capabilities more broadly available to other researchers. The project supports a postdoctoral scholar and contributes to human resources development in polar and climate science. The project focuses on several areas of cosmogenic-nuclide geochemistry, which is a geochemical dating method that relies on the production and decay of cosmic-ray-produced radionuclides in surface rocks. Measurements of these nuclides can be used to quantify the duration of surface exposure and ice cover at locations in Antarctica that are covered and uncovered by changes in the size of the Antarctic ice sheets, thus providing a means of reconstructing past ice-sheet change. The first proposed set of experiments are aimed at implementing a 'virtual mineral separation' approach to cosmogenic noble gas analysis that may allow measurement of nuclide concentrations in certain minerals without physically separating the minerals from the host rock. If feasible, this would realize significant speed and cost improvements for this type of analysis. A second set of experiments will focus on means of identifying and quantifying non-cosmogenic background inventories of some relevant nuclides, which is intended to improve the measurement sensitivity and precision for cosmic-ray-produced inventories of these nuclides. A third focus area aims to improve capabilities to measure multiple cosmic-ray-produced nuclides in the same sample, which has the potential to improve the accuracy of dating methods based on these nuclides and to expand the situations in which these methods can be applied. If successful, these experiments are likely to improve a number of applications of cosmogenic-nuclide geochemistry relevant to Antarctic research, including subglacial bedrock exposure dating, dating of multimillion-year-old glacial deposits, and surface-process studies useful in understanding landform evolution and ecosystem dynamics. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The purpose of this project is to use geological data that record past changes in the Antarctic ice sheets to test computer models for ice sheet change. The geologic data mainly consist of dated glacial deposits that are preserved above the level of the present ice sheet, and range in age from thousands to millions of years old. These provide information about the size, thickness, and rate of change of the ice sheets during past times when the ice sheets were larger than present. In addition, some of these data are from below the present ice surface and therefore also provide some information about past warm periods when ice sheets were most likely smaller than present. The primary purpose of the computer model is to predict future ice sheet changes, but because significant changes in the size of ice sheets are slow and likely occur over hundreds of years or longer, the only way to determine whether these models are accurate is to test their ability to reproduce past ice sheet changes. The primary purpose of this project is to carry out such a test. The research team will compile relevant geologic data, in some cases generate new data by dating additional deposits, and develop methods and software to compare data to model simulations. In addition, this project will (i) contribute to building and sustaining U.S. science capacity through postdoctoral training in geochronology, ice sheet modeling, and data science, and (ii) improve public access to geologic data and model simulations relevant to ice sheet change through online database and website development. Technical aspects of this project are primarily focused on the field of cosmogenic-nuclide exposure-dating, which is a method that relies on the production of rare stable and radio-nuclides by cosmic-ray interactions with rocks and minerals exposed at the Earth's surface. Because the advance and retreat of ice sheets results in alternating cosmic-ray exposure and shielding of underlying bedrock and surficial deposits, this technique is commonly used to date and reconstruct past ice sheet changes. First, this project will contribute to compiling and systematizing a large amount of cosmogenic-nuclide exposure age data collected in Antarctica during the past three decades. Second, it will generate additional geochemical data needed to improve the extent and usefulness of measurements of stable cosmogenic nuclides, cosmogenic neon-21 in particular, that are useful for constraining ice-sheet behavior on million-year timescales. Third, it will develop a computational framework for comparison of the geologic data set with existing numerical model simulations of Antarctic ice sheet change during the past several million years, with particular emphasis on model simulations of past warm periods, for example the middle Pliocene ca. 3-3.3 million years ago, during which the Antarctic ice sheets are hypothesized to have been substantially smaller than present. Fourth, guided by the results of this comparison, it will generate new model simulations aimed at improving agreement between model simulations and geologic data, as well as diagnosing which processes or parameterizations in the models are or are not well constrained by the data. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Hydroxyl radicals are responsible for removal of most atmospheric trace gases, including pollutants and important greenhouse gases. They have been called the "detergent of the atmosphere". Changes in hydroxyl radical concentration in response to large changes in reactive trace gas emissions, which may happen in the future, are uncertain. This project aims to provide the first estimates of the variability of atmospheric hydroxyl radicals since about 1880 AD when anthropogenic emissions of reactive trace gases were minimal. This will improve understanding of their stability in response to large changes in emissions. The project will also investigate whether ice cores record past changes in Southern Hemisphere westerly winds. These winds are a key component of the global climate system, and have an important influence on ocean circulation and possibly on atmospheric carbon dioxide concentrations. The project team will include three early career scientists, a postdoctoral researcher, and graduate and undergraduate students, working in collaboration with senior scientists and Australian collaborators. Firn air and shallow ice to a depth of about 233 m will be sampled at the Law Dome high-accumulation coastal site in East Antarctica. Trapped air will be extracted from the ice cores on site immediately after drilling. Carbon-14 of carbon monoxide (14CO) will be analyzed in firn and ice-core air samples. Corrections will be made for the in situ cosmogenic 14CO component in the ice, allowing for the atmospheric 14CO history to be reconstructed. This 14CO history will be interpreted with the aid of a chemistry-transport model to place the first observational constraints on the variability of Southern Hemisphere hydroxyl radical concentration after about 1880 AD. An additional component of the project will analyze Krypton-86 in the firn-air and ice-core samples. These measurements will explore whether ice-core Krypton-86 acts as a proxy for barometric pressure variability, and whether this proxy can be used in Antarctic ice cores to infer past movement of the Southern Hemisphere westerly winds. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The western portion of the Antarctic continent is very active in terms of plate tectonic processes that can produce significant variations in the Earths mantle temperature as well as partial melting of the mantle. In addition to these internal processes, the ice sheet in western Antarctica is melting due to Earths warming climate and adding water to the ocean. These changes in ice mass cause adjustments in rocks within the Earth's crust, allowing the surface to rebound in some locations and fall in others, altering the geographical pattern of sea-level change. However, the solid Earth response depends strongly on the strength of the rocks at a wide range of timescales which is not well-known and varies with temperature and other rock properties. This project has three primary goals. (1) It will assess how processes such as rifting, mantle upwelling and lithospheric instability have altered the lithosphere and underlying asthenosphere of western Antarctica, contributing to a planet-wide understanding of these processes. (2) It will use new measurements of mantle and crust properties to estimate the rate at which heat from the solid Earth flows into the base of the ice, which is important for modeling the rates at which the ice melts and flows. (3) It will places bounds on mantle viscosity, which is key for modeling the interaction of the solid Earth with changing ice and water masses and their implications for sea-level rise. To accomplish these goals, new resolution of crust and mantle structure will be obtained by analyzing seismic waves from distant earthquakes that have been recorded at numerous seismic stations in Antarctica. These analyses will include new combinations of seismic wave data that provide complementary information about mantle temperature, heat flow and viscosity. This project will provide educational and career opportunities to a Brown University graduate student, undergraduates from groups underrepresented in science who will come to Brown University for a summer research program, and other undergraduates. The project will bring together faculty and students for a seminar at Brown that explores the connections between the solid Earth and ice processes in Antarctica. Project research will be incorporated in outreach to local public elementary schools and high schools. This research addresses key questions about mantle processes and properties in western Antarctica. What are the relative impacts of rifting, mantle plumes, and lithospheric delamination in the evolution of the lithosphere and asthenosphere? Where is topography isostatically compensated, and where are dynamic processes such as plate flexure or tractions from 3-D mantle flow required? What are the bounds on heat flow and mantle viscosity, which represent important inputs to models of ice sheet evolution and its feedback from the solid Earth? To address these questions, this project will measure mantle and crust properties using seismic tools that have not yet been applied in Antarctica: regional-scale measurement of mantle attenuation from surface waves; Sp body wave phases to image mantle velocity gradients such as the lithosphere-asthenosphere boundary; and surface wave amplification and ellipticity. The resulting models of seismic attenuation and velocity will be jointly interpreted to shed new light on temperature, bulk composition, volatile content, and partial melt, using a range of laboratory-derived constitutive laws, while considering data from mantle xenoliths. To test the relative roles of rifting, mantle plumes, and delamination, and to assess isostatic support for Antarctic topography, the predictions of these processes will be compared to the new models of crust and mantle properties. To improve bounds on western Antarctic heat flow, seismic attenuation and velocity will be used in empirical comparisons and in direct modeling of vertical temperature gradients. To better measure mantle viscosity at the timescales of glacial isostatic adjustment, frequency-dependent viscosity will be estimated from the inferred mantle conditions. This project will contribute to the education and career development of the following: a Brown University Ph.D. student, Brown undergraduates, and undergraduates from outside the university will be involved through the Department of Earth, Environmental and Planetary Sciences (DEEPS) Leadership Alliance NSF Research Experience for Undergraduates (REU) Site which focuses on geoscience summer research experiences for underrepresented students. The project will be the basis for a seminar at Brown that explores the connections between the solid Earth and cryosphere in Antarctica and will contribute to outreach in local public elementary and high schools. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Warming on the western Antarctic Peninsula in the later 20th century has caused widespread changes in the cryosphere (ice and snow) and terrestrial ecosystems. These recent changes along with longer-term climate and ecosystem histories will be deciphered using peat deposits. Peat accumulation can be used to assess the rate of glacial retreat and provide insight into ecological processes on newly deglaciated landscapes in the Antarctic Peninsula. This project builds on data suggesting recent ecosystem transformations that are linked to past climate of the western Antarctic Peninsula and provide a timeline to assess the extent and rate of recent glacial change. The study will produce a climate record for the coastal low-elevation terrestrial region, which will refine the major climate shifts of up to 6 degrees C in the recent past (last 12,000 years). A novel terrestrial record of the recent glacial history will provide insight into observed changes in climate and sea-ice dynamics in the western Antarctic Peninsula and allow for comparison with off-shore climate records captured in sediments. Observations and discoveries from this project will be disseminated to local schools and science centers. The project provides training and career development for a postdoctoral scientist as well as graduate and undergraduate students. The research presents a new systematic survey to reconstruct ecosystem and climate change for the coastal low-elevation areas on the western Antarctic Peninsula (AP) using proxy records preserved in late Holocene peat deposits. Moss and peat samples will be collected and analyzed to generate a comprehensive data set of late-Holocene climate change and ecosystem dynamics. The goal is to document and understand the transformations of landscape and terrestrial ecosystems on the western AP during the late Holocene. The testable hypothesis is that coastal regions have experienced greater climate variability than evidenced in ice-core records and that past warmth has facilitated dramatic ecosystem and cryosphere response. A primary product of the project is a robust reconstruction of late Holocene climate changes for coastal low-elevation terrestrial areas using multiple lines of evidence from peat-based biological and geochemical proxies, which will be used to compare with climate records derived from marine sediments and ice cores from the AP region. These data will be used to test several ideas related to novel peat-forming ecosystems (such as Antarctic hairgrass bogs) in past warmer climates and climate controls over ecosystem establishment and migration to help assess the nature of the Little Ice Age cooling and cryosphere response. The chronology of peat cores will be established by radiocarbon dating of macrofossils and Bayesian modeling. The high-resolution time series of ecosystem and climate changes will help put the observed recent changes into a long-term context to bridge climate dynamics over different time scales. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Nontechnical abstract Presently, Antarctica’s glaciers are melting as Earth’s atmosphere and the Southern Ocean warm. Not much is known about how Antarctica’s ice sheets might respond to ongoing and future warming, but such knowledge is important because Antarctica’s ice sheets might raise global sea levels significantly with continued melting. Over time, mud accumulates on the sea floor around Antarctica that is composed of the skeletons and debris of microscopic marine organisms and sediment from the adjacent continent. As this mud is deposited, it creates a record of past environmental and ecological changes, including ocean depth, glacier advance and retreat, ocean temperature, ocean circulation, marine ecosystems, ocean chemistry, and continental weathering. Scientists interested in understanding how Antarctica’s glaciers and ice sheets might respond to ongoing warming can use a variety of physical, biological, and chemical analyses of these mud archives to determine how long ago the mud was deposited and how the ice sheets, oceans, and marine ecosystems responded during intervals in the past when Earth’s climate was warmer. In this project, researchers from the University of South Florida, University of Massachusetts, and Northern Illinois University will reconstruct the depth, ocean temperature, weathering and nutrient input, and marine ecosystems in the central Ross Sea from ~17 to 13 million years ago, when the warm Miocene Climate Optimum transitioned to a cooler interval with more extensive ice sheets. Record will be generated from new sediments recovered during the International Ocean Discovery Program (IODP) Expedition 374 and legacy sequences recovered in the 1970’s during the Deep Sea Drilling Program. Results will be integrated into ice sheet and climate models to improve the accuracy of predictions. The research provides experience for three graduate students and seven undergraduate students via a multi-institutional REU program focused on increasing diversity in Antarctic Earth Sciences. Technical Abstract Deep-sea sediments reveal that the Miocene Climatic Optimum (MCO) was the warmest climate interval of the last ~20 Ma, was associated with global carbon cycle changes and ice growth, and immediately preceded the Middle Miocene Climate Transition (MMCT; ~14 Ma), one of three major intervals of Antarctic ice expansion and global cooling. Ice-proximal studies are required to assess: where and when ice grew, ice sheet extent, continental shelf geometry, high-latitude heat and moisture supply, oceanic and/or atmospheric temperature influence on ice dynamics, regional sea ice extent, meltwater input, and regions of bottom water formation. Existing studies indicate that ice expanded beyond the Transantarctic Mountains and onto the prograding Ross Sea continental shelf multiple times between ~17 and 13.5 Ma. However, these records are either too ice-proximal/terrestrial to adequately assess ocean-ice interactions or under-studied. To address this data gap, this work will: 1) generate micropaleontologic and geochemical records of oceanic and atmospheric temperature, water depth, ocean circulation, and paleoproductivity from existing Ross Sea marine sedimentary sequences, and 2) use these proxy records to test the hypothesis that dynamic glacial expansion in the Ross Sea sector during the MCO was driven by heat and moisture transport to the high latitudes during an interval of enhanced climate sensitivity. Downcore geochemical and micropaleontologic studies will focus on an expanded (120 m/my) early to middle Miocene (~17-16 Ma) diatom-bearing/rich mudstone/diatomite unit from IODP Site U1521, drilled on the Ross Sea continental shelf. A hiatus (~16-14.6 Ma) suggests ice expansion during the MCO, followed by diamictite to mudstone unit indicative of slight retreat (14.6 -14 Ma) immediately preceding the MMCT. Data from Site U1521 will be integrated with foraminiferal geochemical and micropaleontologic data from DSDP Leg 28 (1972/73) and RISP J-9 (1978-79) to develop a MCO to late Miocene regional view of ocean-ice sheet interactions using legacy core material previously processed for foraminifera. This integrated record will: 1) document the timing and extent of glacial advances and retreats across the prograding Ross Sea shelf during the middle and late Miocene, 2) provide orbital-scale paleotemperature reconstructions (TEX86, Mg/Ca, δ18O, MBT/CBT) to establish atmosphere-ocean-ice interactions during an extreme high-latitude warm interval, and 3) provide orbital-scale nutrient/paleoproductivity, ocean circulation, and paleoenvironmental data required to assess climate feedbacks associated with Miocene Antarctic ice sheet and global climate system development. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Cores drilled through the Antarctic ice sheet provide a remarkable window on the evolution of Earth’s climate and unique samples of the ancient atmosphere. The clear link between greenhouse gases and climate revealed by ice cores underpins much of the scientific understanding of climate change. Unfortunately, the existing data do not extend far enough back in time to reveal key features of climates warmer than today. COLDEX, the Center for Oldest Ice Exploration, will solve this problem by exploring Antarctica for sites to collect the oldest possible record of past climate recorded in the ice sheet. COLDEX will provide critical information for understanding how Earth’s near-future climate may evolve and why climate varies over geologic time. New technologies will be developed for exploration and analysis that will have a long legacy for future research. An archive of old ice will stimulate new research for the next generations of polar scientists. COLDEX programs will galvanize that next generation of polar researchers, bring new results to other scientific disciplines and the public, and help to create a more inclusive and diverse scientific community. Knowledge of Earth’s climate history is grounded in the geologic record. This knowledge is gained by measuring chemical, biological and physical properties of geologic materials that reflect elements of climate. Ice cores retrieved from polar ice sheets play a central role in this science and provide the best evidence for a strong link between atmospheric carbon dioxide and climate on geologic timescales. The goal of COLDEX is to extend the ice-core record of past climate to at least 1.5 million years by drilling and analyzing a continuous ice core in East Antarctica, and to much older times using discontinuous ice sections at the base and margin of the ice sheet. COLDEX will develop and deploy novel radar and melt-probe tools to rapidly explore the ice, use ice-sheet models to constrain where old ice is preserved, conduct ice coring, develop new analytical systems, and produce novel paleoclimate records from locations across East Antarctica. The search for Earth’s oldest ice also provides a compelling narrative for disseminating information about past and future climate change and polar science to students, teachers, the media, policy makers and the public. COLDEX will engage and incorporate these groups through targeted professional development workshops, undergraduate research experiences, a comprehensive communication program, annual scientific meetings, scholarships, and broad collaboration nationally and internationally. COLDEX will provide a focal point for efforts to increase diversity in polar science by providing field, laboratory, mentoring and networking experiences for students and early career scientists from groups underrepresented in STEM, and by continuous engagement of the entire COLDEX community in developing a more inclusive scientific culture. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Melt from the Greenland and Antarctic ice sheets is increasingly contributing to sea-level rise. This ice sheet mass loss is primarily driven by the thinning, retreat, and acceleration of glaciers in contact with the ocean. Observations from the field and satellites indicate that glaciers are sensitive to changes at the ice-ocean interface and that the increase in submarine melting is likely to be driven by the discharge of meltwater from underneath the glacier known as subglacial meltwater plumes. The melting of glacier ice also directly adds a large volume of freshwater into the ocean, potentially causing significant changes in the circulation of ocean waters that regulate global heat transport, making ice-ocean interactions an important potential factor in climate change and variability. The ability to predict, and hence adequately respond to, climate change and sea-level rise therefore depends on our knowledge of the small-scale processes occurring in the vicinity of subglacial meltwater plumes at the ice-ocean interface. Currently, understanding of the underlying physics is incomplete; for example, different models of glacier-ocean interaction could yield melting rates that vary over a factor of five for the same heat supply from the ocean. It is then very difficult to assess the reliability of predictive models. This project will use comprehensive laboratory experiments to study how the melt rates of glaciers in the vicinity of plumes are affected by the ice roughness, ice geometry, ocean turbulence, and ocean density stratification at the ice-ocean interface. These experiments will then be used to develop new and improved predictive models of ice-sheet melting by the ocean. This project builds bridges between modern experimental fluid mechanics and glaciology with the goal of leading to advances in both fields. As a part of this work, two graduate students will receive interdisciplinary training and each year two undergraduate students will be trained in experimental fluid mechanics to assist in this work and develop their own research projects. This project consists of a comprehensive experimental program designed for studying the melt rates of glacier ice under the combined influences of (1) turbulence occurring near and at the ice-ocean interface, (2) density stratification in the ambient water column, (3) irregularities in the bottom topology of an ice shelf, and (4) differing spatial distributions of multiple meltwater plumes. The objective of the experiments is to obtain high-resolution data of the velocity, density, and temperature near/at the ice-ocean interface, which will then be used to improve understanding of melt processes down to scales of millimeters, and to devise new, more robust numerical models of glacier evolution and sea-level rise. Specially, laser-based, optical techniques in experimental fluid mechanics (particle image velocity and laser-induced fluorescence) will be used to gather the data, and the experiments will be conducted using refractive-index matching techniques to eliminate changes in refractive indices that could otherwise bias the measurements. The experiments will be run inside a climate-controlled cold room to mimic field conditions (ocean temperature from 0-10 degrees C). The project will use 3D-printing to create different casting molds for making ice blocks with different types of roughness. The goal is to investigate how ice melt rate changes as a function of the properties of the plume, the ambient ocean water, and the geometric properties of the ice interface. Based on the experimental findings, this project will develop and test a new integral-plume-model coupled to a regional circulation model (MITgcm) that can be used to predict the effects of glacial melt on ocean circulation and sea-level rise. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part 1: Non-technical description: With support from the Office of Polar Programs, this project will evaluate how an important part of the food web in the coastal ocean of Antarctica will respond to climate change. The focal study organism in the plankton is a shelled mollusk, the Antarctic pteropod, Limacina helicina antarctica, an Southern Ocean organism that this known to respond to climate driven changes in ocean acidification and ocean warming. Ocean acidification, the lowering of ocean pH via the absorption of atmospheric carbon dioxide in the surface of the ocean, is a change in the ocean that is expected to cross deleterious thresholds of pH within decades. This study will improve understanding of how pteropods will respond, which will provide insight into predicting the resilience of the Antarctic marine ecosystem during future changes, one of the planet’s last marine wildernesses. The project will use tools of molecular biology to examine specifically how gene expression is modulated in the pteropods, and further, how the changes and regulation of genes act to resist the stress of low pH and high temperature. In addition, this project supports the training of Ph.D. graduate students and advances the goal of inclusive excellence in STEM and in marine sciences, in particular. The students involved in this project are from groups traditionally under-represented in marine science including first-generation college students. Overall, the project contributes to the development of the U.S. work force and contributes to diversity and inclusive excellence in the geosciences. Part 2: Technical description: The overarching goal of this project is to investigate the molecular response of the Antarctic thecosome pteropod, Limacina helicina antarctica to ocean acidification (OA) and ocean warming. The project will investigate changes in the epigenome of juvenile L. h. antarctica, by assessing the dynamics of DNA methylation in response to three scenarios of environmental conditions that were simulated in laboratory mesocosm CO2 experiments: (1) present-day pCO2 conditions for summer and winter, (2) future ocean acidification expected within 10-15 years, and (3) a multiple stressor experiment to investigate synergistic interaction of OA and high temperature stress. Recent lab-based mesocosm experiment research showed significant changes in the dynamics of global DNA methylation in the pteropod genome, along with variation in gene expression in response to abiotic changes. Thus, it is clear that juvenile L. h. antarctica are capable of mounting a substantial epigenetic response to ocean acidification. However, it is not known how DNA methylation, as an epigenetic process, is modulating changes in the transcriptome. In order to address this gap in the epigenetic knowledge regarding pteropods, the project will use next-generation sequencing approaches (e.g., RNA sequencing and reduced representation bisulfite sequencing) to integrate changes in methylation status with changes in gene expression in juvenile pteropods. Overall, this investigation is an important step in exploring environmental transcriptomics and phenotypic plasticity of an ecologically important member of Southern Ocean macrozoooplankton in response to anthropogenic climate change. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Warming at the northern Antarctic Peninsula is causing fundamental changes in the marine ecosystem. Antarctic krill are small shrimp-like animals that are most abundant in that area. They are also an essential part of the marine food web of the waters surrounding Antarctica. Meanwhile, a rapidly growing international fishery has developed for krill. Understanding changes in krill populations is therefore critical both to the management of the fishery and the ability of scientists to predict changes in the Antarctic marine ecosystem. This project will have two broader societal impacts. First, the project will support the training of students for careers in oceanography. The students will be recruited from underrepresented groups in an effort to increase diversity, equity and inclusion in STEM. Second, results from this project will develop improved population models, which are essential for the effective management of the Antarctic krill fishery. In collaboration with US delegates on the Commission for the Conservation of Antarctic Marine Living Resources, the researchers will produce a report outlining the key findings from the study. Effective population modeling relies on empirical and theoretical understanding of how environment drives krill reproduction. There are two critical egg development stages in Antarctic krill that impact population growth. They are early egg development, and advanced egg development/spawning. The timing and duration of early egg development determines the number of eggs produced and the number of seasonal spawning events a female can undergo. The research team will use samples of Antarctic krill collected over the last 30 years in late winter/early spring, summer and early fall. The reproductive development stages of individual females in these samples will be assessed. These data will be modeled against climatological and oceanographic data to test three hypotheses. First, they will test if colder winter conditions correspond to early preparation for spawning. Second, they will test if favorable winter-summer conditions increase early spawning. Finally, they will test if favorable winter-summer conditions lengthen the spawning season. The study will advance current understanding of the environmental conditions that promote population increases in Antarctic krill and will fill an important gap in current knowledge of the reproductive development and output of Antarctic krill. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This project seeks to make detailed measurements of the oxygen content of the surface ocean along the Western Antarctic Peninsula. Detailed maps of changes in net oxygen content will be combined with measurements of the surface water chemistry and phytoplankton distributions. The project will determine the extent to which on-shore or offshore phytoplankton blooms along the peninsula are likely to lead to different amounts of carbon being exported to the deeper ocean. The project team members will participate in the development of new learning tools at the Museum of Life and Science. They will also teach secondary school students about aquatic biogeochemistry and climate, drawing directly from the active science supported by this grant. The project will analyze oxygen in relation to argon that will allow determination of the physical and biological contributions to surface ocean oxygen dynamics. These assessments will be combined with spatial and temporal distributions of nutrients (iron and macronutrients) and irradiances. This will allow the investigators to unravel the complex interplay between ice dynamics, iron and physical mixing dynamics as they relate to Net Community Production (NCP) in the region. NCP measurements will be normalized to Particulate Organic Carbon (POC) and be used to help identify area of "High Biomass and Low NCP" and those with "Low Biomass and High NCP" as a function of microbial plankton community composition. The team will use machine learning methods- including decision tree assemblages and genetic programming- to identify plankton groups key to facilitating biological carbon fluxes. Decomposing the oxygen signal along the West Antarctic Peninsula will also help elucidate biotic and abiotic drivers of the O2 saturation to further contextualize the growing inventory of oxygen measurements (e.g. by Argo floats) throughout the global oceans.
This award supports a project to investigate the sensitivity of the Antarctic ice sheet (AIS) to global climate change over the last two Glacial/Interglacial cycles. The intellectual merit of the project is that despite its importance to Earth's climate system, we currently lack a full understanding of AIS sensitivity to global climate change. This project will reconstruct and precisely date the history of marine-based ice in the Ross Sea sector over the last two glacial/interglacial cycles, which will enable a better understanding of the potential driving mechanisms (i.e., sea-level rise, ice dynamics, ocean temperature variations) for ice fluctuations. This will also help to place present ice?]sheet behavior in a long-term context. During the last glacial maximum (LGM), the AIS is known to have filled the Ross Embayment and although much has been done both in the marine and terrestrial settings to constrain its extent, the chronology of the ice sheet, particularly the timing and duration of the maximum and the pattern of initial recession, remains uncertain. In addition, virtually nothing is known of the penultimate glaciation, other than it is presumed to have been generally similar to the LGM. These shortcomings greatly limit our ability to understand AIS evolution and the driving mechanisms behind ice sheet fluctuations. This project will develop a detailed record of ice extent and chronology in the western Ross Embayment for not only the LGM, but also for the penultimate glaciation (Stage 6), from well-dated glacial geologic data in the Royal Society Range. Chronology will come primarily from high-precision Accelerator Mass Spectrometry (AMS) Carbon-14 (14C) and multi-collector Inductively Coupled Plasma (ICP)-Mass Spectrometry (MS) 234Uranium/230Thorium dating of lake algae and carbonates known to be widespread in the proposed field area.
Hall/1643248 This award supports a project to reconstruct the behavior of a portion of the East Antarctic Ice Sheet (the Ross Ice Sheet), using glacial geologic mapping and radiocarbon dating of algal deposits contained in glacial moraines, at the end of the last glacial period. The results will be compared with other dating methods that will be used on alpine glaciers that terminated in the mountains of the Royal Society Range in East Antarctica during the last glacial maximum and whose landforms intersect with those of the Ross Ice Sheet. Results from this comparison will contribute to a better understanding of the Antarctic ice sheet during the most recent global warming that ended the last ice age. This period is of interest since it will help inform our understanding of Antarctic ice sheet behavior in a future climate warming. Such data also will help inform models that attempt to simulate not only the behavior of the ice sheet during the end of the last ice age, but also its future response to elevated atmospheric carbon dioxide. The work will contribute to the education and training of both graduate and undergraduate students and results from the work will be incorporated in classes at the University of Maine. Results derived from the research will be disseminated to the public through lectures and visits to K-12 classrooms and data from this project will be downloadable from a University of Maine web site, as well as from public data repositories. The Antarctic Ice Sheet exerts a key control on global sea levels, both past and future, and strongly influences Southern Hemisphere and even global climate and ocean circulation. And yet a complete understanding of the evolution of the ice sheet over the last glacial cycle and of the mechanisms that caused it to advance and retreat is still lacking. Of particular interest is the response of the Antarctic Ice Sheet to the global warming that ended the last ice age, because it yields important clues about likely future ice-sheet behavior under a warming climate. In this project, scientists will reconstruct the thinning history of the Antarctic Ice Sheet in the Ross Sea sector during the last glacial/interglacial transition on the headlands of the southern Royal Society Range. They will use a combination of glacial geomorphological mapping and radiocarbon dating of algal deposits enclosed within recessional moraines. Finally, this record will be compared with a beryllium- and radiocarbon-dated chronology that will be produced of adjacent independent alpine glaciers that terminated on land during the last glacial maximum and whose deposits show cross-cutting relationships with those of the ice sheet. Results from this comparison will bear on the behavior of the Antarctic Ice Sheet during the termination of the last ice age. This work will support six students, including at least three undergraduates, and involves field work in the Antarctic.
Correlating ecosystem responses to past climate forcing is highly dependent on the use of reliable techniques for establishing the age of events (dating techniques). In Antarctic dry regions (land areas without glaciers), carbon-14 dating has been used to assess the ages of organic deposits left behind by ancient lakes. However, the reliability of the ages is debatable because of possible contamination with "old carbon" from the surrounding landscape. The proposed research will attempt to establish two alternate dating techniques, in situ carbon-14 cosmogenic radionuclide exposure dating and optically stimulated luminescence (OSL), as reliable alternate dating methods for lake history in Antarctic dry areas that are not contaminated by the old carbon. The end goal will be to increase scientific understanding of lake level fluctuation in the lakes of Taylor Valley, Antarctica so that inference about past climate, glacier, and ecosystem response can be inferred. The results of this study will provide a coarse-scale absolute chronology for lake level history in Taylor Valley, demonstrate that exposure dating and OSL are effective means to understand the physical dynamics of ancient water bodies, and increase the current understanding of polar lacustrine and ice sheet responses to past and present climatic changes. These chronologies will allow polar lake level fluctuations to be correlated with past changes in global and regional climate, providing information critical for understanding and modeling the physical responses of these environments to modern change. This research supports a PhD student; the student will highlight this work with grade school classes in the United States. This research aims to establish in situ carbon-14 exposure dating and OSL as reliable alternate (to carbon-14 of organic lake deposits) geochronometers that can be used to settle the long-disputed lacustrine history and chronology of Taylor Valley, Antarctica and elsewhere. Improved lake level history will have significant impacts for the McMurdo Dry Valleys Long Term Ecological Research (MCM LTER) site as the legacy of fluctuating lake levels of the past affects the distribution of organic matter and nutrients, and impacts biological connectivity valley-wide. This work will provide insight into the carbon reservoir of large glacial lakes in the late Holocene and have implications for previously reported radiocarbon chronologies. OSL samples will be analyzed in the Desert Research Institute Luminescence Laboratory in Reno, NV. For the in situ carbon-14 work, rock samples extracted from boulders and bedrock surfaces will be prepared at Tulane University. The prepared in situ carbon-14 samples will be analyzed at the National Ocean Sciences Accelerator Mass Spectrometry laboratory in Woods Hole, MA. The two datasets will be combined to produce a reliable, coarse scale chronology for late Quaternary lake level fluctuations in Taylor Valley. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The focus of this collaborative project is to collect fossil plants, wood, and sedimentary and chemical information from rocks in the Shackleton Glacier (SHK) area of Antarctica. This information will be used to reconstruct plant life and environments during the Permian and Triassic (~295-205 million years ago) in Antarctica. This time interval is important to study as Antarctica experienced a large glaciation in the Permian followed by deglaciation and recovery of plant and animal life, only to be subjected to the largest extinction in Earth history at the end of the Permian. After the extinction events, the climate in Antarctica continued to warm extensively and there were forests growing close to the paleo-South Pole. These ancient environments provide a natural laboratory in which to study the effects of climate change on plant life. The results of this project will advance the field in the areas of changing sedimentary patterns during global cooling and warming, as well as plant evolution during times following glaciation and during global warmth. This project will study the extent of the Gondwana glaciation in the SHK area, the invasion and subsequent flourishing of life following glacial retreat, and the eventual recovery of plant life after Late Permian extinction events. Only in Antarctica does a complete polar-to-near-polar succession occur across this climatic and biologic transition. The SHK area is an important one as it is one of the few regions in the world where the Permian-Triassic boundary (PTB) is exposed within terrestrial rocks. The field and lab work for this project is organized around three hypotheses that address fundamental issues in Earth history, including changes in the extent and diversity of flora during the Permian build up to the Late Paleozoic Ice Age, the possible diachronous nature of the PTB, and that poor fossil preservation during the Early Triassic has given a false impression that Antarctica was devoid of plants during this time. The hypotheses will be tested by integrating various types of paleobotanical approaches with detailed sedimentology, stratigraphy, and geochemistry. Compression floras and petrified wood will be collected (constrained by stratigraphy) both quantitatively and qualitatively in order to obtain biodiversity and abundance data, and as a data source for paleoecological analysis. Standard sedimentologic and stratigraphic analyses will be performed, as well as paleosol analyses, including mineralogic and major- and trace-element geochemistry. Collections will also be made for U-Pb zircon geochronology to better constrain geologic and biotic events through time. Results of the project will be incorporated into educational and outreach activities that are designed to include women and under-represented groups in the excitement of Antarctic earth sciences and paleontology, including workshops in Kansas and Wisconsin, as well as links to science classes during fieldwork.
The McMurdo Dry Valleys are the largest ice-free region in Antarctica and home to a seasonally active hydrologic system, with streams and saline lakes. Streams are fed by summer meltwater from local glaciers and snowbanks. Therefore, streamflow is tied to summer climate conditions such as air temperatures, ground temperatures, winds, and incoming solar radiation. Based on 50 years of monitoring, summer stream activity has been observed to change, and it likely varied during the geologic past in response to regional climate change and fluctuating glaciers. Thus, deposits from these streams can address questions about past climate, meltwater, and lake level changes in this region. How did meltwater streamflow respond to past climate change? How did streamflow vary during periods of glacial advance and retreat? At what times did large lakes fill many of the valleys and what was their extent? The researchers plan to acquire a record of stream activity for the Dry Valleys that will span the three largest valleys and a time period of about 100,000 years. This record will come from a series of active and ancient alluvial fans that were deposited by streams as they flowed from valley sidewalls onto valley floors. The study will provide a long-term context with which to assess recent observed changes to stream activity and lake levels. The research will be led by two female mid-career investigators and contribute significantly to student research opportunities and education. The research will contribute to graduate and undergraduate education by including students in both field and laboratory research, as well as incorporating data and results into the classroom. The research will be disseminated to K-12 and non-scientific communities through outreach that includes professional development training for K-12 teachers in eastern Massachusetts, development of hands-on activities, visits to K-12 classrooms, and STEM education and literacy activities in North Carolina. The PIs propose to constrain rates of fluvial deposition and periods of increased fluvial activity in the McMurdo Dry Valleys during the Holocene and late Pleistocene. During 50 years of hydrologic monitoring in the Dry Valleys, scientists have observed that streams exhibit significant response to summer conditions. Previous studies of glacial and lacustrine deposits indicate regional glacier advance in the Dry Valleys during recent interglacial periods and high lake levels during and after the Last Glacial Maximum (LGM), with potentially significant low and high stands during the Holocene. However, the geologic record of meltwater activity is poorly constrained. The PIs seek to develop the first spatially-extensive record of stream deposition in the Dry Valleys by analyzing and dating alluvial fans. Given that alluvial fans are deposited by summer meltwater streams in a relatively stable tectonic setting, this record will serve as a proxy of regional summer climate conditions. Meltwater streams are an important component of the regional hydrologic system, connecting glaciers to lakes and affecting ecosystems and soils. A record of fluvial deposition is key to understanding the relationship between past climate change and regional hydrology. The proposed research will include remote- and field-based mapping of alluvial fans, stream channels, and meltwater sources as well as modeling potential incoming solar radiation to the fans and moisture sources during the austral summer. In the field, the PIs will document stratigraphy, collect near-surface sediments from 25 fans across four valleys (Taylor, Pearse, Wright, and Victoria), and collect 2- to 3-m vertical cores of ice-cemented sediments from three alluvial fan complexes. The PIs will then conduct depositional dating of fluvial sands via optically stimulated luminescence, and analyze mineralogy and bulk major element chemistry with X-ray powder diffraction and X-ray fluorescence. From these analyses, the PIs propose to (1) determine the timing of local- to regional-scale periods of high fluvial deposition, (2) calculate depositional rates, and (3) constrain depositional environments and sediment provenance. Given that many of the alluvial fans occur below the hypothesized maximum extents of glacially-dammed lakes in Wright and Victoria valleys, detailed stratigraphy, sediment provenance, and OSL dating of these fans could shed light on ongoing debates regarding the timing and extent of LGM and post-LGM lakes. The work will support a postdoctoral researcher, a PhD student, and many undergraduate and master’s students in cross-disciplinary research that spans stratigraphy, geochemistry, paleoclimatology and physics. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Microbial mats are found throughout the McMurdo Dry Valleys where summer snowmelt provides liquid water that allows these mats to flourish. Researchers have long studied the environmental conditions microbial mats need to grow. Despite these efforts, it has been difficult to develop a broad picture of these unique ecosystems. Recent advances in satellite technology now provide researchers an exciting new tool to study these special Antarctic ecosystems from space using the unique spectral signatures associated with microbial mats. This new technology not only offers the promise that microbial mats can be mapped and studied from space, this research will also help protect these delicate environments from potentially harmful human impacts that can occur when studying them from the ground. This project will use satellite imagery and spectroscopic techniques to identify and map microbial mat communities and relate their properties and distributions to both field and lab-based measurements. This research provides an exciting new tool to help document and understand the distribution of a major component of the Antarctic ecosystem in the McMurdo Dry Valleys. The goal of this project is to establish quantitative relationships between spectral signatures derived from orbit and the physiological status and biogeochemical properties of microbial mat communities in Taylor Valley, Antarctica, as measured by field and laboratory analyses on collected samples. The goal wioll be met by (1) refining atmospheric correction techniques using in situ radiometric rectification to derive accurate surface spectra; (2) collecting multispectral orbital images concurrent with in situ sampling and spectral measurements in the field to ensure temporal comparability; (3) measuring sediment, water, and microbial mat samples for organic and inorganic carbon content, essential biogeochemical nutrients, and chlorophyll-a to determine relevant mat characteristics; and (4) quantitatively associating these laboratory-derived characteristics with field-derived and orbital spectral signatures and parameters. The result of this work will be a more robust quantitative link between the distribution of microbial mat communities and their biogeochemical properties to landscape-scale spectral signatures. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Welten/1644128 This award supports a project to use existing samples from the West Antarctic Ice Sheet (WAIS) Divide ice core to align its timescale with that of the Greenland ice cores using common chronological markers. The upper 2850 m of the WAIS Divide core, which was drilled to a depth of 3405 m, has been dated with high precision. The timescale of the remaining (bottom) 550 m of the core has larger uncertainties, limiting our understanding of the timing of abrupt climate events in Antarctica relative to those in Greenland during the last ice age. The intellectual merit of this project is to further constrain the relative timing of these abrupt climate events in Greenland and Antarctica to obtain crucial insight into the underlying mechanism. The main objective of this project is to improve the current timescale of the WAIS Divide core from 31,000 to 65,000 years ago by synchronizing this core with the Greenland ice cores using common signals in Beryllium-10, a radioactive isotope of Be that is produced in the atmosphere by cosmic rays and is deposited onto the snow within 1-2 years of its production. The 10Be flux is largely independent of climate signals since its production varies with solar activity and the geomagnetic field. This project will further strengthen collaborations between the PI's in Berkeley and Purdue with ice core researchers in the US and Europe, involve undergraduate students in many aspects of its research, and continue outreach to under-represented students. The direct ice-to-ice synchronization of the WAIS Divide ice core with the Greenland Ice Core Chronology (GICC05) using cosmogenic 10Be is expected to reduce the uncertainty in the relative timing of more than 20 abrupt climate events in Greenland and Antarctica to a few decades. To achieve this goal the investigators will obtain a continuous high-resolution record of 10Be in the WAIS Divide core from 2850 to 3390 m depth, and compare the obtained 10Be record with existing 10Be records of the Greenland ice cores, including GISP2 and NGRIP. The scientists will separate 10Be from ~1000 ice samples of the WAIS Divide core and measure the 10Be concentration in each sample using accelerator mass spectrometry (AMS). Broader impacts of the 10Be measurements are that they will also provide information on the Laschamp event, a ~2000 year long period of low geomagnetic field strength around 41,000 years ago, and improve the calibration of the 14C dating method for organic samples older than 30,000 years. The broader impacts of the project include (1) the involvement and training of undergraduate students in ice core research and accelerator mass spectrometry measurements, (2) the incorporation of ice core and climate research into ongoing outreach programs at Purdue University and Berkeley SSL, (3) better understanding of abrupt climate changes in the past will improve our ability to predict future climate change, (4) evaluating the possible threat of a future geomagnetic excursion in the next few hundred years. This award does not require support in Antarctica.
Icebergs influence climate by controlling how freshwater from ice sheets is distributed into the ocean, where roughly half of ice sheet mass loss is attributed to iceberg calving in the current climate. The freshwater deposited by icebergs as they drift and melt can affect ocean circulation, sea-ice formation, and biological primary productivity. Furthermore, calving of icebergs from ice shelves, the floating extensions of ice sheets, can influence ice sheet evolution and sea-level rise by reducing the resistive stresses provided by ice shelves on the seaward flow of upstream grounded ice. The majority of mass calved from ice shelves occurs in the form of tabular icebergs, which are typically hundreds of meters thick and on the order of tens to hundreds of kilometers in length and width. Tabular calving occurs when full-thickness ice shelf fractures known as rifts propagate to the edges of the ice shelf. These calving events are infrequent, often with decades between events on an individual ice shelf. Changes in tabular calving behavior, i.e., the size and frequency of calving events, can strongly influence climate and ice sheet evolution. However, tabular calving behavior, and how it responds to changes in climate, is neither well understood nor accurately represented in climate models. In this project, a tabular calving parameterization for climate models will be developed. The parameterization will be derived according to data generated from a series of realistic and idealized century-scale tabular calving simulations, which will be performed with a novel ice flow and damage framework that can be applied at the scale of individual ice sheet-ice shelf systems: the CD-MPM-SSA (Continuum Damage Material Point Method for Shelfy-Stream Approximation). During these simulations, the geometry of the ice shelf, mechanical/rheological properties of the ice, and climate forcings such as ocean temperature will be varied to determine the rifting and calving response. The calving parameterization derived from these experiments will be implemented in a Geophysical Fluid Dynamics Laboratory (GFDL) climate model, where it will be coupled with a bonded-particle iceberg model. Then, experiments will be run to study the feedback between changes in iceberg calving behavior and climate. Success of this project will improve our understanding and representation of the ice mass budget, ice sheet evolution, and ocean freshwater fluxes, and will improve projections of climate change and sea-level rise. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Antarctic Ice Sheet stability remains a large uncertainty in predicting future sea level. Presently, the greatest ice mass loss is observed in locations where relatively warm water comes into contact with glaciers and ice shelves, melting them from below. This has led researchers to hypothesize that the interactions that occur between the ocean and the ice are important for determining ice sheet stability and that increased warm water presence will accelerate Antarctic ice mass loss and lead to greater sea level rise in the coming century. To better predict future ice sheet behavior, it is critical to understand past ice-ocean interactions around Antarctica, especially during warm periods and at times when Earth’s climate was undergoing major changes. Past Antarctic ice mass and environmental conditions like ocean temperature can be reconstructed using sediments, which capture an environmental record as they accumulate on the ocean floor. By looking at sediment composition and by analyzing geochemical signatures within the sediment, it is possible to piece together a record of climate change on hundred- to million-year timescales. This project will reconstruct upper ocean temperatures and Antarctic ice retreat/advance cycles from 2.6 to 0.7 million years ago, which encompasses the Mid-Pleistocene Transition, a time in Earth’s history that marks the shift from 41-thousand year glacial cycles to 100-thousand year glacial cycles. A record will be generated from existing sediment cores collected from the Scotia Sea during International Ocean Discovery Program Expedition 382. The Mid-Pleistocene Transition (MPT; ~1.25–0.7 Ma) marks the shift from glacial-interglacial cycles paced by obliquity (~41 kyr cycles) to those paced by eccentricity (~100-kyr cycles). This transition occurred despite little variation in Earth’s orbital parameters, suggesting a role for internal climate feedbacks. The MPT was accompanied by decreasing atmospheric pCO2, increasing deep ocean carbon storage, and changes in deep water formation and distribution, all of which are linked to Antarctic margin atmosphere-ice-ocean interactions. However, Pleistocene records that document such interactions are rarely preserved on the shelf due to repeated Antarctic Ice Sheet (AIS) advance; instead, they are preserved in deep Southern Ocean basins. This project takes advantage of the excellent preservation and recovery of continuous Pleistocene sediment sequences collected from the Scotia Sea during International Ocean Discovery Program Expedition 382 to test the following hypotheses: 1) Southern Ocean upper ocean temperatures vary on orbital timescales during the early to middle Pleistocene (2.6–0.7 Ma), and 2) Southern Ocean temperatures co-vary with AIS advance/retreat cycles. Paleotemperatures will be reconstructed using the TetraEther indeX of 86 carbons (TEX86), a proxy that utilizes marine archaeal biomarkers. The Scotia Sea TEX86-based paleotemperature record will be compared to records of AIS variability, including ice rafted debris. Expedition 382 records will be compared to orbitally paced climatic time series and the benthic oxygen isotope record of global ice volume and bottom water temperature to determine if a correlation exists between upper ocean temperature, AIS retreat/advance, and orbital climate forcing. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This study will collect a novel dataset to determine how the West Antarctic Ice Sheet (WAIS) responded to a warmer climate during the last interglacial period (~125,000 years ago) by reconstructing the glacial history at the Mt. Waesche volcano. Reconstructing WAIS geometry when the ice sheet was smaller than present is difficult and data are lacking because the evidence lies beneath the present ice sheet. This study will drill through the ice sheet and recover bedrock that can be analyzed for its surface exposure history to help determine when the surface became overridden by the ice sheet. This study will provide constraints on the past maximum and minimum spatial extent of WAIS during the last glacial-interglacial cycle. Understanding the geometry of a reduced WAIS during intervals when the planet was warmer than present may provide a possible analogue for future environmental conditions given predicted temperature trends. A reduction of WAIS results in rising sea levels which threatens coastal communities across the globe. The data will help improve numerical ice sheet models to better predict WAIS response to current and future climate trends. The project supports a teacher educational workshop and the training of graduate and undergraduate students. The goal of this project is to obtain rock samples from beneath the WAIS through shallow (<80 m) drilling at Mt. Waesche, a volcano in Marie Byrd Land, near an ice dome of WAIS (2000 m elevation). The lithologies of lava flows exposed on the flank of the volcano are well-suited for cosmogenic 3He and 36Cl as well as 40Ar/39Ar measurements which will establish eruption and exposure age. Existing 40Ar/39Ar data indicate basaltic lava flows on the volcano flank as young as 350 ka. Thus, measured cosmogenic nuclides measured in rock cores from beneath the ice surface will be indicative of relatively recent exposure during periods of reduced ice elevation, most likely, during the last interglacial. The first field season is focused on identifying appropriate locations for drilling and a ground penetrating radar (GPR) survey of the subglacial topography <100m under the blue ice area. Mapping and dating the adjacent exposed lava flows will allow tracing of lava flows of known age and composition below the ice margin that will be targeted for drilling the following year. The second field season activities include drilling 8 boreholes (two transects) through blue ice with the Winkie drill near the ice margin to 80 m depth to obtain rock cores from the sub-ice lava flows. 3He exposure ages will constrain the duration and minimum extent of past surface lowering of the WAIS in Marie Byrd Land. Deeper GPR imaging (up to 700 m) will hope to reveal additional evidence of lava/ice interactions that would independently place constraints on lower ice levels during past eruptions. Results from this study will be compared with the modeled ice elevation histories at Mt. Waesche to validate ice sheet modeling efforts. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The application of innovative ocean observing and animal telemetry technology over Palmer Deep (Western Antarctic Peninsula; WAP) is leading to new understanding, and also to many new questions related to polar ecosystem processes and their control by bio-physical interactions in the polar environment. This multi-platform field study will investigate the impact of coastal physical processes (e.g. tides, currents, upwelling events, sea-ice) on Adélie penguin foraging ecology in the vicinity of Palmer Deep, off Anvers Island, WAP. Guided by real-time surface convergence and divergences based on remotely sensed surface current maps derived from a coastal network of High Frequency Radars (HFRs), a multidisciplinary research team will adaptively sample the distribution of phytoplankton and zooplankton, which influence Adélie penguin foraging ecology, to understand how local oceanographic processes structure the ecosystem. Core educational objectives of this proposal are to increase awareness and understanding of (i) global climate change, (ii) the unique WAP ecosystem, (iii) innovative methods and technologies used by the researchers, and (iv) careers in ocean sciences, through interactive interviews with scientists, students, and technicians, during the field work. These activities will be directed towards instructional programming for K-16 students and their teachers. Researchers and educators will conduct formative and summative evaluation to improve the educational program and measure its impacts respectively.
Nontechnical Description The Antarctic core collection, curated at Florida State University since 1963, is one of the world?s premier marine geology collections. Consisting of irreplaceable sediment cores, this archive has greatly advanced the understanding of the Earth system, past and present, and will remain critical to future studies of the Earth. Given Oregon State University?s (OSU) leadership in marine research and long track record providing state-of-the-art curatorial services through the OSU Marine and Geology Repository, this facility will provide world-class curatorial stewardship of the Antarctic core collection for decades to come. The Antarctic core collection will be co-located and co-managed with the current OSU collection in a single modern repository and analytical facility. The combined collection will contain more than 30 km of refrigerated sediment core from the world?s oceans and will be housed in a new 33,000 SFT facility purchased in 2009 by OSU and upgraded in 2016-17. The total refrigerated space can hold both collections comfortably and has at least five decades of expansion space. The co-location and co-management of these two collections, paired with a modern suite of analytical facilities, will lead to greater collaboration, cross-pollination of ideas, and availability of enhanced technical services and capabilities for a growing user group that increasingly relies on marine sediments. The facility will employ a comprehensive community interaction plan that takes advantage of the new OSU Marine and Geology Repository building with a 32-person seminar room, its large 1,044 square foot core lab, and ten adjoining analytical laboratories, which will provide scientific and experiential learning opportunities for students, the general public, and the Earth Sciences research community. The facility will organize small group meetings, sampling parties and summer schools that will complement ongoing support for teaching, training and learning through the use of the repository in graduate, undergraduate, and K-12 classes and Research Experience for Undergraduate programs. The repository is open to the general public for tours and presentations, and the data products derived from the facility will be disseminated via the repository website at http://osu-mgr.org/ and other national databases. Technical Description The Antarctic and the Southern Ocean National Collection of Rock and Sediment Cores currently housed at Florida State University will be relocated to Oregon State University (OSU) and housed along with the OSU Marine and Geology Repository. Oregon State University investigators will co-manage the Antarctic core collection and the Marine and Geology Repository as a single modern repository and analytical facility. The combined collection will be housed a new 33,000 square foot building with refrigerated space that can hold both collections with approximately five decades of expansion space. The co-location and co-management of these two collections offers unique curatorial synergies, cost savings, and improved capabilities to support both the research and educational needs of a wider marine and Antarctic communities. The facility will house a 32-person seminar room, a large 1,044 square foot core lab that allows layout, inspection and examination of cores, and adjoining analytical laboratories that will provide quantitative analysis as well as experiential learning opportunities for students.
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). Part I: Non-technical description: The Weddell seal is an iconic Antarctic species and a superb diver, swimming down to 2,000 feet and staying underwater for up to 45 minutes. However, as for any mammal, the low oxygen concentrations in the blood during diving and the recovery once back at the surface are challenges that need to be overcome making their diving ability something unique that has fascinated scientists for decades. This research project will evaluate the underlying processes in Weddell seal’s physiology that protects this species from the consequences of diving. The work will combine laboratory experiments where cells that line the blood vessels will be exposed to conditions of low oxygen, similar to those that will be measured in diving seals in Antarctica. The investigarors will test a new idea that several short-term dives, performed before a long dive, allows seals to condition themselves. Measurements on the chemical compounds released to the blood during dives, combined with experiments on the genes that regulate them will provide clues on the biochemical pathways that help the seals tolerate these extreme conditions. The project allows for documentation of individual seal dives and provisioning of such information to the broader science community that seeks to study these seals, educating graduate and undergraduate students and a post-doctoral researcher and producing a science-outreach comic book for middle-school students to illustrate the project's science activities, goals and outcomes. Part II: Technical description: The Weddell seal is a champion diver with high natural tolerance for low blood oxygen concentration (hypoxemia) and inadequate blood supply (ischemia). The processes unique to this species protects their tissues from inflammation and oxidative stress observed in other mammalian tissues exposed to such physiological conditions. This project aims to understand the signatures of the processes that protect seals from inflammation and oxidant stress, using molecular, cellular and metabolic tools. Repetitive short dives before long ones are hypothesized to precondition seal tissues and activate the protective processes. The new aspect of this work is the study of endothelial cells, which sense changes in oxygen and blood flow, providing a link between breath-holding and cellular function. The approach is one of laboratory experiments combined with 2-years of field work in an ice camp off McMurdo Station in Antarctica. The study is structured by three main objectives: 1) laboratory experiments with arterial endothelial cells exposed to changes in oxygen and flow to identify molecular pathways responsible for tolerance of hypoxia and ischemia using several physiological, biochemical and genomic tools including CRSPR/Cas9 knochout and knockdown approaches. 2) Metabolomic analyses of blood metabolites produced by seals during long dives. And 3) Metabolomic and genomic determinations of seal physiology during short dives hypothesized to pre-condition tolerance responses. In the field, blood samples will be taken after seals dive in an isolated ice hole and its diving performance recorded. It is expected that the blood will contain metabolites that can be related to molecular pathways identified in lab experiments. Expert collaborators will provide field support, with the ice camp, dive hole for the seals, and telemetry associated with the seals’ dives. The project builds upon previous NSF-funded projects where the seal genome and cellular resources were produced. Undergraduate researchers will be recruited from institutional programs with a track record of attracting underrepresented minorities and a minority-serving institution. To further increase polar literacy training and educational impacts, the field team will include a blog where field experiences are shared and comic book preparation with an artist designed for K-12 students and public outreach. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Nontechnical Abstract Mount Erebus volcano on Ross Island, Antarctica, is the southernmost active volcano on the planet. It provides a natural laboratory to study a volcanic system that has been in a continuous state of activity with a persistent lava lake over at least the last 40 years. Worldwide only four other volcanoes with such long-lived lava lakes exist: Erta Ale, Ethiopia; Kilauea, Hawaii; Nyiragongo, Congo; and Ambrym, Vanuatu. These volcanoes are a rare anomaly that provide a window into the underlying magmatic system and behavior. Erebus is of particular interest as it cycles through phases of very explosive activity every 20 thousand years. This project will investigate interactions between the magmatic system, the rift it is located in, and the impact of the gravitational load the volcano imposes on the underlying crust and its own magmatic system. Possible interactions between these factors may explain the changes in activity. The project will analyze geophysical data that have been collected at Erebus over at least the last two decades. The results of this work will be available to the public and scientific community and inform geodynamic models in this region. The project funds an early-career scientist and a graduate student at New Mexico Tech and contributes to the development of the next generation of scientists. Technical Abstract The proposed work targets scientific questions recently formulated by the community during the 2016 NSF-sponsored Scientific Drivers and Future of Mount Erebus Volcano Observatory workshop. The location and geometry of the magmatic plumbing from vent to lower crust system remain poorly constrained, particularly below 1 km depth. The style and causes for changes in volcanic and magmatic activity over the short term (minutes to hours) and on the decadal scale remains enigmatic. Two decades of campaign and continuous GPS data on Ross Island will inform about the longer term dynamics of both, Ross Island growing within the Terror Rift, and Erebus? deeper magmatic system. This project will organize and analyze all existing GPS data for Ross Island, and interpret any anomalies in the resulting time series. These activities require organization, consistent processing and interpretation/modeling of the existing ~20 years of GPS data, which include campaign, continuous, and high-rate GPS observations. We will generate these position time series in a consistent local reference frame and make the results, including models of transient deformation available to the community. Volcanic, tectonic and isostatic adjustment related deformation will be modeled to place Erebus in a broad volcano-tectonic framework of West Antarctica. During the data analysis phase, the utility of existing GPS data for reflection studies of snow and sea-level dynamics will also be evaluated.
The overall goal of this project is to determine the effect of past changes in the size of the Antarctic Ice Sheet on global sea level. At the peak of the last ice age 25,000 years ago, sea level was 120 meters (400 feet) lower than it is at present because water that is now part of the ocean was instead part of expanded glaciers and ice sheets in North America, Eurasia, and Antarctica. Between then and now, melting and retreat of this land ice caused sea level to rise. In this project, we aim to improve our understanding of how changes in the size of the Antarctic Ice Sheet contributed to this process. The overall strategy to accomplish this involves (i) visiting areas in Antarctica that are not now covered by ice; (ii) looking for geological evidence, specifically rock surface and sediment deposits, that indicates that these areas were covered by thicker ice in the past; and (iii) determining the age of these geological surfaces and deposits. This project addresses the final part of this strategy -- determining the age of Antarctic glacial rock surfaces or sediment deposits -- using a relatively new technique that involves measuring trace elements in rock surfaces that are produced by cosmic-ray bombardment after the rock surfaces are exposed by ice retreat. By applying this method to rock samples collected in previous visits to Antarctica, the timing of past expansion and contraction of the ice sheet can be determined. The main scientific outcomes expected from this project are (i) improved understanding of how Antarctic Ice Sheet changes contributed to past global sea level rise; and (ii) improved understanding of modern observed Antarctic Ice Sheet changes in a longer-term context. This second outcome will potentially improve predictions of future ice sheet behavior. Other outcomes of the project include training of individual undergraduate and graduate students, as well as the development of a new course on sea level change to be taught at Tulane University in New Orleans, a city that is being affected by sea level change today. This project will use measurements of in-situ-produced cosmogenic carbon-14 in quartz from existing samples collected at several sites in Antarctica to resolve major ambiguities in existing Last Glacial Maximum to present ice sheet reconstructions. This project is important because of the critical nature of accurate reconstructions of ice sheet change in constraining reconstructions of past sea level change. Although carbon-14 is most commonly exploited as a geochronometer through its production in the upper atmosphere and incorporation into organic materials, it is also produced within the crystal lattice of rocks and minerals that are exposed to the cosmic-ray flux at the Earth's surface. In this latter case, its concentration is proportional to the duration of surface exposure, and measurements of in-situ-produced carbon-14 can be used to date geological events that form or expose rock surfaces, for example, ice sheet expansion and retreat. Although carbon-14 is one of several trace radionuclides that can be used for this purpose, it is unique among them in that its half-life is short relative to the time scale of glacial-interglacial variations. Thus, in cases where rock surfaces in polar regions have been repeatedly covered and uncovered by ice sheet change during many glacial-interglacial cycles, carbon-14 measurements are uniquely suited to accurately dating the most recent episode of ice sheet advance and retreat. We aim to use this property to improve our understanding of Antarctic Ice Sheet change at a number of critically located sites at which other surface exposure dating methods have yielded ambiguous results. Geographically, these are focused in the Weddell Sea embayment of Antarctica, which is an area where the geometry of the Antarctic continent potentially permits large glacial-interglacial changes in ice volume but where existing geologic records of ice sheet change are particularly ambiguous. In addition, in-situ carbon-14 measurements, applied where independently constrained deglaciation chronologies already exist, can potentially allow us to date the last period of ice sheet advance as well as the most recent retreat.
Bubbles of ancient air trapped in ice cores have been used to directly reconstruct atmospheric composition, and its links to Antarctic and global climate, over the last 800,000 years. Previous field expeditions to the Allan Hills Blue Ice Area, Antarctica, have recovered ice cores that extend as far back as 2.7 million years, by far the oldest polar ice samples yet recovered. These ice cores extend direct observations of atmospheric carbon dioxide and methane concentrations and indirect records of Antarctic climate into a period of Earth's climate history that represents a plausible geologic analogue to future anthropogenic climate change. The results demonstrate a smaller glacial-interglacial variability of climate and greenhouse gases, and a persistent linkage between Antarctic climate and atmospheric carbon dioxide, between 1 and 2 million years ago. Through this project, the team will return to the Allan Hills Blue Ice Area to recover additional ice cores that date to 2 million years or older. The climate records developed from these ice cores will provide new insights into the chemical composition of the atmosphere and Antarctic climate during times of comparable or even greater warmth than the present day. Project results will help answer questions about issues associated with anthropogenic change including the relationship between temperature change and the mass balance of Antarctic ice and the relationship between atmospheric greenhouse gases and global climate change. Earth has been cooling, and ice sheets expanding, over the past ~52 million years. Superimposed on this cooling are periodic changes in Earth's climate system driven by variations in the eccentricity, precession, and obliquity of Earth's orbit around the Sun. Climate reconstructions based on measurements of oxygen isotopes in foraminiferal calcite indicate that, from ~2.8 to 1.2 million years before present (Ma), Earth's climate system oscillated between glacial and interglacial states every ~40,000 years (the "40k world"). Between 1.2-0.8 Ma and continuing to the present, the period of glacial cycles increased in amplitude and lengthened to ~100,000 years (the "100k world"). Ice cores preserve ancient air that allows direct reconstructions of atmospheric carbon dioxide and methane. They also archive proxy records of regional climate, mean ocean temperature, global oxygen cycling, and the aridity of nearby continents. Studies of stratigraphically continuous ice cores, extending to 800,000 years before present, have demonstrated that atmospheric carbon dioxide is strongly linked to climate, and it is of great interest to extend the ice-core record into the 40k world. Recent discoveries of well-preserved ice dating from 1.0 to 2.7 Ma from ice cores drilled in the Allan Hills Blue Ice Area (BIA), Antarctica, demonstrate the potential to retrieve stratigraphically discontinuous old ice at shallow depths (<200 meters). This project will continue this work by retrieving new large-volume ice cores and measuring paleoclimate properties in both new and existing ice from the Allan Hills BIA. The experimental objectives are to more fully characterize fundamental properties of the climate system and the carbon cycle during the 40k world. Project results will have implications for Pleistocene climate change, and will provide new constraints on the processes that regulate atmospheric carbon dioxide, methane, and oxygen on geologic timescales. Given a demonstrated age of the ice at the Allan Hills BIA of at least 2 million years, the team will drill additional cores to prospect for ice that predates the initiation of Northern Hemisphere glaciation at the Plio-Pleistocene transition (~2.8 Ma). This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part I: Non-technical description: Methane is one of the more effective atmospheric gases at retaining heat in the lower atmosphere and the earth’s crust contains large quantities of methane. Research that identifies the factors that control methane’s release into the atmosphere is critical to understanding and mitigating climate change. One of the most effective natural processes that inhibits the release of methane from aquatic habitats is a community of bacteria and Archaea (microbes) that use the chemical energy stored in methane, transforming methane into less-climate-sensitive compounds. The amount of methane that may be released in Antarctica is unknown, and it is unclear which microbes consume the methane before it is released from the ocean in Antarctica. This project will study one of the few methane seeps known in Antarctica to advance our understanding of which microbes inhibit the release of methane in marine environments. The research will also identify if methane is a source of energy for other Antarctic organisms. The researchers will analyze the microbial species associated with methane consumption over several years of field and laboratory research based at an Antarctic US station, McMurdo. This project clearly expands the fundamental knowledge of Antarctic systems, biota, and processes outlined as a goal in the Antarctic solicitation. This research communicates and produces educational material for K-12, college, and graduate students to inspire and inform the public about the role Antarctic ecosystems play in the global environment. This project also provides a young professor an opportunity to establish himself as an expert in the field of Antarctic microbial ecology to help solidify his academic career. Part II: Technical description: Microbes act as filter to methane release from the ocean into the atmosphere, where microbial chemosynthetic production harvests the chemical energy stored in this greenhouse gas. In spite of methane reservoirs in Antarctica being as large as Arctic permafrost, we know only a little about the taxa or dominant processes involved in methane consumption in Antarctica. The principal investigator will undertake a genomic and transcriptomic study of microbial communities developed and still developing after initiation of methane seepage in McMurdo Sound. An Antarctic methane seep was discovered at this location in 2012 after it began seeping in 2011. Five years after it began releasing methane, the methane-oxidizing microbial community was underdeveloped and methane was still escaping from the seafloor. This project will be essential in elucidating the response of microbial communities to methane release and identify how methane oxidation occurs within the constraints of the low polar temperatures. This investigation is based on 4 years of field sampling and will establish a time series of the development of cold seep microbial communities in Antarctica. A genome-to-ecosystem approach will establish how the Southern Ocean microbial community is adapted to prevent methane release into the ocean. As methane is an organic carbon source, results from this study will have implications for the Southern Ocean carbon cycle. Two graduate students will be trained and supported with undergraduates participating in laboratory activities. The researcher aims to educate, inspire and communicate about Antarctic methane seeps to a broad community. A mixed-media approach, with videos, art and education in schools will be supported in collaboration with a filmmaker, teachers and a visual artist. Students will be trained in filmmaking and K-12 students from under-represented communities will be introduced to Antarctic science through visual arts. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part I: Non-technical description: Earth’s terrestrial ecosystems have the potential to either slow down or hasten the pace of climate change. The direction depends in part on both plant and microbial responses to warming. This study uses Antarctica as a model ecosystem to study the carbon balance of a simplified ecosystem (simplified compared to terrestrial ecosystems elsewhere) in response to a warming treatment. Carbon balance is dictated by sequestered carbon (through photosynthesis) and released carbon (plant and microbial respiration). Hence, to best assess plant and microbial responses to warming, this study uses a plant gradient that starts at the glacier (no plants, only soil microbes) to an old site entirely covered by plants. Experimental warming in the field is achieved by open-top chambers that warm the air and soil inside. The net ecosystem carbon exchange, the net result of sequestered and released carbon, will be measured in warmed and control plots with a state-of-the art gas exchange machine. Laboratory temperature incubation studies will supplement field work to attribute changes in carbon fluxes to individual plant species and soil microbial taxa (i.e., “species”). Data from this study will feed into earth system climate change models. The importance of this study will be shared with the broader community through the production of a video series created by an award-winning science media production company, an Antarctic blog, and through interactions with schools in the United States (on-site through Skype and in-person visits). Part II: Technical description: Responses of the carbon balance of terrestrial ecosystems to warming will feed back to the pace of climate change, but the size and direction of this feedback are poorly constrained. Least known are the effects of warming on carbon losses from soil, and clarifying the major microbial controls is an important research frontier. This study uses a series of experiments and observations to investigate microbial, including autotrophic taxa, and plant controls of net ecosystem productivity in response to warming in intact ecosystems. Field warming is achieved using open-top chambers paired with control plots, arrayed along a productivity gradient. Along this gradient, incoming and outgoing carbon fluxes will be measured at the ecosystem-level. The goal is to tie warming-induced shifts in net ecosystem carbon balance to warming effects on soil microbes and plants. The field study will be supplemented with lab temperature incubations. Because soil microbes dominate biogeochemical cycles in Antarctica, a major focus of this study is to determine warming responses of bacteria, fungi and archaea. This is achieved using a cutting-edge stable isotope technique, quantitative stable isotope probing (qSIP) developed by the proposing research team, that can identify the taxa that are active and involved in processing new carbon. This technique can identify individual microbial taxa that are actively participating in biogeochemical cycling of nutrients (through combined use of 18O-water and 13C-bicarbonate) and thus can be distinguished from those that are simply present (cold-preserved). The study further assesses photosynthetic uptake of carbon by the vegetation and their sensitivity to warming. Results will advance research in climate change, plant and soil microbial ecology, and ecosystem modeling. Science communication will be achieved through an informative video series, a daily Antarctic blog, and online- and in-person visits to schools in the United States. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Albatrosses (family Diomedeidae) are among the most threatened of bird species. Of the 22 species that are currently recognized, all are considered at least Threatened or Near-Threatened, and 9 are listed as Endangered or Critically Endangered. Because of the decline in albatross populations and the birds' role as a top predator in the pelagic ecosystem, it is vitally important to understand the factors affecting the population dynamics of these birds to better inform strategies for conservation and mitigating environmental change. The goal of this project is to answer the question: What are the population consequences of albatross bioenergetics and foraging strategies? The investigators will take a two pronged approach: 1) constructing, parameterizing, and validating an Individual Based Model (IBM) that rests on Dynamic Energy Budget theory and state dependent foraging theory; and 2) undertaking an in-depth meta-analysis of existing individual tracking and life history data from multiple albatross species across successive life stages. This theoretical work will be grounded with a unique and extensive data set on albatrosses provided by collaborator Richard Phillips from the British Antarctic Survey. The IBM approach will incorporate details such as adult energetic state, chick needs and energetics, reproductive stage, and spatial and temporal variation in prey availability within a single framework. This facilitates exploration of emergent patterns, allowing the investigators to explicitly link behavior, energetic, and population dynamics. Bioenergetics constrain a variety of behaviors. A more complete understanding of how individuals use energy can give insight into how behaviors from foraging to breeding and survival, and resulting population attributes, might change with environmental factors, due to anthropogenic and other drivers. This work will further a general understanding of how bioenergetics shapes behavior and drives population level processes, while providing an approach that can be used to guide conservation strategies for endangered populations. The research findings and activities will be made accessible to public audiences through websites and on a blog maintained for the project by a postdoctoral researcher. The project will involve undergraduate and high school researchers in the project, within formal laboratory groups and also through in-classroom presentations and activities. This project also involves outreach to local elementary schools, as the albatross-Antarctic bioenergetics system provides a charismatic and tangible teaching tool, for exploring a complex conservation issue, and demonstrating the utility of quantitative biological research approaches. All project publications will be open access, the resulting open source software will be released to the public, and metadata and analyses will be fully documented and made available through the Knowledge Network for Biodiversity, to promote further collaborative exploration of this system.
Blue and fin whales are the two largest animals on the planet, and the two largest krill predators in the Southern Ocean. Commercial whaling in Antarctic waters started in the early 1900?s, and by the 1970's whale populations were reduced from thousands to only a few hundred individuals. The absence of data about whale biology and ecology prior to these large population reductions has limited our understanding of how the ecosystem functioned when cetacean populations were more robust. However, an archive of baleen plates from 800 Antarctic blue and fin whales harvested between 1946 and 1948 was recently rediscovered in the Smithsonian's National Museum of Natural History that will shed insight into historic whale ecology. As baleen grows, it incorporates circulating hormones, and compounds from the whale's diet, recording continuous biological and oceanographic information across multiple years. This project will apply a suite of modern molecular techniques to these archived specimens to ask how blue and fin whale foraging and reproduction responded to climate variability, changes at the base of the food web, and whaling activities in the early 1940s. By comparison with more modern datasets, these investigations will fill major gaps in understanding of the largest krill predators, their response to disturbance and environmental change, and the impact that commercial whaling has had on the structure and function of the Antarctic marine ecosystem. This project will improve stem education through annual programming for middle and high school girls in partnership with UNCW's Marine Quest program. Public outreach will occur through partnerships with the Smithsonian and the International Association of Antarctic Tour Operators to deliver emerging research on Antarctic ecosystems and highlight the contemporary relevance and scientific value of museum collections. Examination of past conditions and adaptations of polar biota is fundamental to predictions of future climate change scenarios. The baleen record that will be used in this study forms an ideal experimental platform for studying bottom-up, top-down and anthropogenic impacts on blue and fin whales. This historic baleen archive includes years with strong climate and temperature anomalies allowing the influence of climate variability on predators and the ecosystems that support them to be examined. Additionally, the impact of commercial whaling on whale stress levels will be investigated by comparing years of intensive whaling with the non-whaling years of WWII, both of which are captured in the time series. There are three main approaches to this project. First, bulk stable isotope analysis will be used to examine the trophic dynamics of Antarctic blue and fin whales. Second, compound-specific stable isotope analyses (CSIA-AA) will characterize the biogeochemistry of the base of the Antarctic food web. Finally, analyses of hormone levels in baleen will reveal differences in stress levels and reproductive status of individuals, and inform understanding of cetacean population biology. This project will generate a new public data archive to foster research opportunities across various components of the OPP program, all free from the logistical constraints of Antarctic field work. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The goal of this project is to discover whether the Antarctic scallop, Adamussium colbecki, provides a guide to sea-ice conditions in nearshore Antarctica today and in the past. Scallops may grow slower and live longer in habitats where sea ice persists for many years, limited by food, compared to habitats where sea ice melts out annually. Also, the chemicals retained in the shell during growth may provide crucial habitat information related to not only changing sea-ice conditions but also the type of food, whether it is recycled from the seafloor or produced by algae blooming when sea ice has melted. Unlocking the ecological imprint captured within the shell of the Antarctic Scallop will increase our understanding of changing sea-ice conditions in Antarctica. Further, because the Antarctic scallop had relatives living at the time when the Antarctic ice sheet first appeared, the scallop shell record may contain information on the stability of the ice sheet and the history of Antarctic shallow seas. Funding will also be integral for training a new generation of geoscientists in fossil and chemical forensics related to shallow sea habitats in Antarctica. Scallops are worldwide in distribution, are integral for structuring marine communities have an extensive fossil record dating to the late Devonian, and are increasingly recognized as important paleoenvironmental proxies because they are generally well preserved in the sediment and rock record. The primary goal of this project is to assess the differences in growth, lifespan, and chemistry (stable isotopes, trace elements) archived in the shell of the Antarctic scallop that may be indicative of two ice states: persistent (multiannual) sea ice at Explorers Cove (EC) and annual sea ice (that melts out every year) at Bay of Sails (BOS), western McMurdo Sound, Antarctica. This project will investigate growth and lifespan proxies (physical and geochemical) and will use high-resolution records of stable oxygen isotopes to determine if a melt-water signal is archived in A. colbecki shells and whether that signal captures the differing ice behavior at two sites (EC versus BOS). Stable isotopes of carbon and nitrogen in association with trace elements will be used to examine subannual productivity spikes indicative of phytoplankton blooms, which are predicted to be more pronounced during open ocean conditions. Small growth increments in the outer calcite layer will be assessed to determine if they represent fortnightly growth, if so, they could provide a high-resolution proxy for monthly environmental processes. Unlocking the environmental archive preserved in A. colbecki shells may prove to be an important proxy for understanding changing sea-ice conditions in Antarctica's past. Funding will support a Ph.D. student and undergraduates from multiple institutions working on independent research projects. Web content focused on Antarctic marine communities will be designed for museum outreach, reaching thousands of middle-school children each year. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Viruses are prevalent in aquatic environments where they reach up to five hundred million virus particles in a teaspoon of water. Ongoing discovery of viruses seems to confirm current understanding that all forms of life can host and be infected by viruses and that viruses are one of the largest reservoirs of unexplored genetic diversity on Earth. This study aims to better understand interactions between specific viruses and phytoplankton hosts and determine how these viruses may affect different algal groups present within lakes of the Vestfold Hills, Antarctica. These lakes (Ace, Organic and Deep)were originally derived from the ocean and contain a broad range of saline conditions with a similarly broad range of physicochemical characteristics resulting from isolation and low external influence for thousands of years. These natural laboratories allow examination of microbial processes and interactions that would be difficult to characterize elsewhere on earth. The project will generate extensive genomic information that will be made freely available. The project will also leverage the study of viruses and the genomic approaches employed to advance the training of undergraduate students and to engage and foster an understanding of Antarctic science and studies of microbes during a structured informal education program in Maine for the benefit of high school students. By establishing the dynamics and interactions of (primarily) specific dsDNA virus groups in different habitats with different redox conditions throughout seasonal and inter annual cycles the project will learn about the biotic and abiotic factors that influence microbial community dynamics. This project does not require fieldwork in Antarctica. Instead, the investigators will leverage already collected and archived samples from three lakes that have concurrent measures of physicochemical information. Approximately 2 terabyte of Next Generation Sequencing (NGS) (including metagenomes, SSU rRNA amplicons and single virus genomes) will be generated from selected available samples through a Community Science Program (CSP) funded by the Joint Genome Institute. The investigators will employ bioinformatics to interrogate those sequence databases. In particular, they will focus on investigating the presence, phylogeny and co-occurrence of polintons, polinton-like viruses, virophages and large dsDNA phytoplankton viruses as well as of their putative eukaryotic microbial hosts. Bioinformatic analyses will be complemented with quantitative digital PCR and microbial association network analysis to detect specific virus?virus?host interactions from co-occurrence spatial and temporal patterns. Multivariate analysis and network analyses will also be performed to investigate which abiotic factors most closely correlate with phytoplankton and virus abundances, temporal dynamics, and observed virus-phytoplankton associations within the three lakes. The results of this project will improve understanding of phytoplankton and their viruses as vital components of the carbon cycle in Antarctic, marine-derived aquatic environments, and likely in any other aquatic environment. Overall, this work will advance understanding of the genetic underpinnings of adaptations in unique Antarctic environments.
The chemical composition of diatom fossils in the Southern Ocean provides information about the environmental history of Antarctica, including sea ice extent, biological production, and ocean nutrient distribution. The sea ice zone is an important habitat for a group of diatoms, largely from the genus Chaetoceros, that have a unique life cycle stage under environmental stress, when they produce a structure called a resting spore. Resting spores are meant to reseed the surface ocean when conditions are more favorable. The production of these heavy resting spores tends to remove significant amounts of carbon and silicon, essential nutrients, out of the surface ocean. As a result, this group has the potential to remove carbon from the surface ocean and can impact the sedimentary record scientists use to reconstruct environmental change. This project explores the role of resting spores in the sedimentary record using the nitrogen isotopic signature of these fossils and how those measurements are used to estimate carbon cycle changes. The work will include laboratory incubations of these organisms to answer if and how the chemistry of the resting spores differs from that of a typical diatom cell. The incubation results will be used to evaluate nutrient drawdown in sea ice environments during two contrasting intervals in earth history, the last ice age and the warm Pliocene. This work should have significant impact on how the scientific community considers the impact of seasonal sea ice cover in the Southern Ocean in terms of how it responds to and regulates global climate. The project provides training and research opportunities for undergraduate and graduate students. Ongoing research efforts in Antarctic earth sciences will be disseminated through an interactive display at the home institution. The work proposed here will address uncertainties in how Chaetoceros resting spores record surface nutrient conditions in their nitrogen stable isotopic composition, the relative impact of their specific signal with respect to the full sedimentary assemblage, and their potential to bias or enhance environmental reconstructions in the sea ice zone. Measurements of nitrogen stable isotopes of nitrate, biomass, and diatom-bound nitrogen and silicon-to-nitrogen ratios of individual species grown in the laboratory will be used to quantify how resting spores record nutrient drawdown in the water column and to what degree their signature is biased toward low nutrient conditions. These relationships will be used to inform diatom-bound nitrogen isotope reconstructions of nutrient drawdown from a Pliocene coastal polyna and an open ocean core that spans the last glacial maximum. This proposal capitalizes on the availability of Southern Ocean isolates of Chaetoceros spp. collected in 2017 for the proposed culture work and archived sediment cores and/or existing data. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part I: Non-technical description: Predicting how polar ice sheets will respond to future global warming is difficult because all the processes that contribute to their melting are not well understood. This is important because the more ice on land that melts, the higher sea levels will rise. The most significant uncertainty in current estimates of sea-level rise in the coming decades is the potential contribution from the Antarctic Ice Sheet. One way to increase our knowledge about how large ice sheets respond to climate change in response to natural factors is to examine the geologic past. Natural global warming (and cooling) events in Earth’s history provide examples that we can use to better understand processes, interactions, and responses we can’t directly observe today. One such time period, approximately three million years ago (known as the Pliocene), was the last time atmospheric carbon dioxide levels were as high as they are today and, therefore, represents a time period to study to better understand the ice sheet response to a warming climate. Specifically, this project is interested in understanding how ocean currents near Antarctica, which transport heat and store carbon, behaved during these past climate events. The history of past ice sheet-ocean interactions are recorded in sediments that were deposited, layer upon layer, in the deep sea offshore Antarctica. In January-February 2018, a team of scientists and crew set sail to the Ross Sea, offshore west Antarctica, on the scientific ocean drilling vessel JOIDES Resolution to recover such sediment archives. This project focuses on a sediment core from that expedition, which captures the relatively warm Pliocene time interval, as well as the subsequent transition into cooler climates typical of the past two million years. The researchers will analyze the sediment with multiple complementary measurements, including: grain size, composition, chemistry of organic matter, physical structures, microfossil type and abundance, and more. These analyses will be done by the research team, including several students, at their respective laboratories and will then integrated into a unified record of ice sheet-ocean interactions. Ultimately, the results will be used to improve modeled projections of how the Antarctic Ice Sheet could respond to future climate change. Part II: Technical description: Geological records from the Antarctic Ice Sheet (AIS) margin demonstrate that the ice sheet oscillated in response to orbital variations in insolation (i.e., ~400, 100, 41, and 20 kyr), and it appears to be more sensitive to specific frequencies that regulate mean annual insolation (i.e., 41-kyr obliquity), particularly when the ice sheet extends into marine environments and is impacted by ocean circulation. However, the relationship between orbital forcing and the production of Antarctic Bottom Water (AABW) is unconstrained. Thus, a knowledge gap exists in understanding how changing insolation impacts ice marginal and Southern Ocean conditions that directly influence ventilation of the global ocean. The researchers hypothesize that insolation-driven changes directly affected the production and export of AABW to the Southern Ocean from the Pliocene through the Pleistocene. For example, obliquity amplification during the warmer Pliocene may have led to enhanced production and export of dense waters from the shelf due to reduced AIS extent, which, in turn, led to greater AABW outflow. To determine the relationship of AABW production to orbital regime, they plan to reconstruct both from a single, continuous record from the levee of Hillary Canyon, a major conduit of AABW outflow, on the Ross Sea continental rise. To test their hypothesis, they will analyze sediment from IODP Site U1524 (recovered in 2018 during International Ocean Discovery Program Expedition 374) and focus on three data sets. (1) They will use the occurrence, frequency, and character of mm-scale turbidite beds as a proxy of dense-shelf-water cascading outflow and AABW production. They will estimate the down-slope flux via numerical modeling of turbidity current properties using morphology, grain size, and bed thickness as input parameters. (2) They will use grain-size data, physical properties, XRF core scanning, CT imaging, and hyperspectral imaging to guide lithofacies analysis to infer processes occurring during glacial, deglacial, and interglacial periods. Statistical techniques and optimization methods will be applied to test for astronomical forcing of sedimentary packages in order to provide a cyclostratigraphic framework and interpret the orbital-forcing regime. (3) They will use bulk sedimentary carbon and nitrogen abundance and isotope data to determine how relative contributions of terrigenous and marine organic matter change in response to orbital forcing. All of these data will be integrated with sedimentological records to deconvolve organic matter production from its deposition or remobilization due to AABW outflow as a function of the oscillating extent of the AIS. These data sets will be integrated into a unified chronostratigraphy to determine the relationship between AABW outflow and orbital-forcing scenarios under the varying climate regimes of the Plio-Pleistocene. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part 1: Because of the manner in which it is formed at high latitudes in the Antarctic ice, Antarctic Bottom Water (AABW) is the coldest, saltiest and densest water on the planet. The global circulation of is often quantified via the transport in a two-dimensional, latitude/depth coordinate space. However, AABW formation, northward flow and distribution between the Atlantic, Indian and Pacific basins are fundamentally three-dimensional processes. AABW is formed in a handful of distinct sites around the Antarctic coast, notably the southern Weddell Sea, the western Ross Sea, along the Ad´elie coast, and in Prydz Bay. AABW is one of the key components of the global ocean overturning circulation, and plays a critical role in regulating Earth's climate, on multi-decadal-to-millennial time scales. Part 2: Mapping of AABW transport to northern basins is not well constrained, with conflicting conclusions drawn in previous studies. At one extreme the ACC has been suggested to be a “conduit" that simply allows each variety of AABW to transit directly northward. At the other extreme, it has been suggested that the ACC “blends" all shelf AABW sources together before they reach the northern basins. To close the gap in understanding, this collaborative project draws on three complementary analytical tools: process-oriented modeling of AABW export across the ACC, a high-resolution global ocean model, and an observationally-constrained estimate of the global circulation. The proposed identification and mechanistic understanding of AABW pathways. This project will also advance the careers of three postdoctoral researchers and two early-career faculty members, and will continue collaborative links between the PI and a foreign investigator. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This project will take initial development steps toward a laser-cut ice-sampling capability in glaciers and ice sheets. The collection of ice samples from the Polar Ice Sheets involves large amounts of time, effort, and expense. However, the most important science data are often retrieved from small sections of an ice core and, while replicate coring can supplement this section of ice core, there is often a need to retrieve additional ice samples based on subsequent scientific findings or borehole logging at a research site. In addition, there are currently no easy methods of extracting ice samples from a borehole drilled by non-coring mechanical drills that are faster, lighter, and less expensive to operate. There are numerous science applications that could potentially benefit from laser-cut ice samples, including sampling ice overlying buried impact craters and bolides, filling critical gaps in chemical records retrieved from damaged ice cores, and obtaining ice samples from sites where coring drills apply stresses that may fracture the ice. This award will explore a laser cutting technology to rapidly extract high-quality ice samples from a borehole wall. The project will investigate and validate the existing technology of laser ice sampling and will use a fiberoptic cable to deliver light pulses to a borehole instrument rather than attempting to assemble a complete laser system in an instrument deployed in a borehole. This offers a new way of retrieving ice samples from a polar ice sheet without the need to drill a borehole to collect ice-core samples (i.e., the hole could be mechanically drilled). This technology could also be used in existing boreholes or those that are made by augering through ice (i.e., not coring) or made with hot water. If successful, this technique would create the ability to rapidly retrieve ice samples with a small logistical footprint and enable science that might not be supportable otherwise. The proposed technology could eventually provide better access to ice-core samples to study past atmospheric composition for understanding past climate and inform on future potential for ice-sheet change. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part I: Non-technical summary: This project focuses on understanding annual changes in microbial life that grows on the bottom of Lake Fryxell, Antarctica. Because of its polar latitude, photosynthesis can only occur during the summer months. During summer, photosynthetic bacteria supply communities with energy and oxygen. However, it is unknown how the microbes behave in the dark winter, when observations are not possible. This project will install environmental monitors and light-blocking shades over parts of these communities. The shades will extend winter conditions into the spring to allow researchers to characterize the winter behavior of the microbial communities. Researchers will measure changes in the water chemistry due to microbial activities when the shades are removed and the mats first receive light. Results are expected to provide insights into how organisms interact with and change their environments. The project includes training of graduate students and early career scientists in fieldwork, including scientific ice diving techniques. In addition, the members of the project team will develop a web-based “Guide to Thrive”, which will compile field tips ranging from basic gear use to advanced environmental protection techniques. This will be a valuable resource for group leaders ranging from undergraduate teaching assistants to Antarctic expedition leaders to lead well-planned and tailored field expeditions. Part II: Technical summary: The research team will measure seasonal metabolic and biogeochemical changes in benthic mats using differential gene expression and geochemical gradients. They will identify seasonal phenotypic differences in microbial communities and ecosystem effects induced by spring oxygen production. To do so, researchers will install environmental sensors and opaque shades over mats at three depths in the lake. The following spring, shaded and unshaded mats will be sampled. The shades will then be removed, and changes in pore water O2, H2S, pH, and redox will be measured using microelectrodes. Mats will also be sampled for transcriptomic gene expression analyses at intervals guided by geochemical changes. Pore water will be sampled for nutrient analyses. Field research will be supplemented with laboratory experiments to refine field techniques, gene expression data analysis, and integration of results into a seasonal model of productivity and nitrogen cycling in Lake Fryxell. Results will provide insights into several key priorities for NSF, including how biotic, abiotic and environmental components of the benthic mats interact to affect Antarctic lakes. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The ice of the polar ice sheets is among the purest substances on Earth, yet the small amount of impurities --such as acids-- are important to how the ice flows and what can be learned from ice cores about past climate. The goal of this project is to understand the role of such acids on the deformation of polycrystalline ice by comparing the deformation behavior of pure and sulfuric acid-doped samples. Sulfuric acid was chosen both because of its importance for interpreting past climate and because it can lead to water veins in ice at low temperatures. This work will focus on the location, movement, and impact of acids in polycrystalline ice that are more complex than in single crystals of ice. By deforming samples and performing microstructural characterization, the role of acids on deformation rate, grain evolution, and the movement of the acids themselves, will be assessed. The work will lead to the education of a Ph.D. student at Dartmouth College, introduce undergraduate students to research at both the University of Washington and Dartmouth College. Despite the ubiquitous use of the constitutive relation for ice commonly referred to as "Glen's Flow Law", significant uncertainty exists particularly with regard to the role of impurities and the development of oriented fabrics. The aim of this project is to improve the constitutive relationship for ice by performing deformation tests and microstructural characterization of pure and sulfuric acid-doped ice. The project will focus on sulfuric acid's impact on ice viscosity, fabric evolution, and diffusivity. Sulfuric acid can have both direct and indirect effects on the mechanical properties of polycrystalline ice. The direct effects change the dislocation velocity and/or density, and the indirect effects change the grain size and fabric. The complexity and interaction of these effects means that it is not possible to understand the effects of sulfuric acid by simply examining ice core specimens. In this project, the team will deform four types of ice: lab-grown ice samples doped with similar-to-natural concentrations of sulfuric acid, lab-grown high-purity ice, layered doped and pure ice, and natural ice from Antarctic ice cores. Deformation will be performed in both uniaxial compression and simple shear. The addition of simple shear tests is critical for relating the laboratory-observed deformation behavior to the behavior of polar ice sheets where the shear strain dominates ice motion in basal ice. After deformation to strains from 5 percent up to 25 percent, the microstructural development will be assessed with methods including a variety of scanning electron microscope techniques, Raman microscopy, synchrotron-based Nano-X-ray fluorescence, and ion chromatography. These analysis techniques will allow the determination of 1) the segregation and movement of impurities, 2) the rate of grain-boundary migration, 3) the number of recrystallized grains; and 4) the full orientation of the ice crystals. The results will enable both microstructural modeling of the effects of sulfuric acid and numerical modeling of diffusion in ice cores. The net result will be a better understanding of ice deformation that improves ice-core interpretation and ice-sheet modeling. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Ice supersaturation plays a key role in cloud formation and evolution, and it determines the partitioning among ice, liquid and vapor phases. Over the Southern Ocean and Antarctica, the transition between mixed-phase and ice clouds significantly impacts the radiative effects of clouds. Remote regions such as the Antarctica and Southern Ocean historically have been under-sampled by in-situ observations, especially by airborne observations. Even though more attention has been given to the cloud microphysical properties over these regions, the distribution and characteristics of ice supersaturation and its role in the current and future climate have not been fully investigated at the higher latitudes in the Southern Hemisphere. One of the main objectives of this study is to analyze observations from three recent major field campaigns sponsored by NSF and DOE, which provide intensive in-situ, airborne measurements over the Southern Ocean and ground-based observations at McMurdo station in Antarctica. This project will analyze aircraft-based and ground-based observations over the Southern Ocean and Antarctica, and compare the observations with the Community Earth System Model Version 2 (CESM2) simulations. The focus will be on the observations of ice supersaturation and the relative humidity distribution in mixed-phase and ice clouds, as well as their relationship with cloud micro- and macrophysical properties. Observations will be compared to CESM2 simulations to elucidate model biases. Surface radiation and the precipitation budget at the McMurdo station will be quantified and compared against the CESM2 simulations to improve the fidelity of the representation of Antarctic climate (and climate prediction over Antarctica). Results from our research will be released to the community for improving the understanding of cloud radiative effects and the mass transport of water in the high southern latitudes. Comparisons between the simulations and observations will provide valuable information for improving the next generation CESM model. Two education/outreach projects will be carried out by PI Diao at San Jose State University (SJSU), including a unique undergraduate student research project with hands-on laboratory work on an airborne instrument, and an outreach program that uses social media to broadcast news on polar research to the public. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The coastal Antarctic is undergoing great environmental change. Physical changes in the environment, such as altered sea ice duration and extent, have a direct impact on the phytoplankton and bacteria species which form the base of the marine foodweb. Photosynthetic phytoplankton are the ocean's primary producers, transforming (fixing) CO2 into organic carbon molecules and providing a source of food for zooplankton and larger predators. When phytoplankton are consumed by zooplankton, or killed by viral attack, they release large amounts of organic carbon and nutrients into the environment. Heterotrophic bacteria must eat other things, and function as "master recyclers", consuming these materials and converting them to bacterial biomass which can feed larger organisms such as protists. Some protists are heterotrophs, but others are mixotrophs, able to grow by photosynthesis or heterotrophy. Previous work suggests that by killing and eating bacteria, protists and viruses may regulate bacterial populations, but how these processes are regulated in Antarctic waters is poorly understood. This project will use experiments to determine the rate at which Antarctic protists consume bacteria, and field studies to identify the major bacterial taxa involved in carbon uptake and recycling. In addition, this project will use new sequencing technology to obtain completed genomes for many Antarctic marine bacteria. To place this work in an ecosystem context this project will use microbial diversity data to inform rates associated with key microbial processes within the PALMER ecosystem model. This project addresses critical unknowns regarding the ecological role of heterotrophic marine bacteria in the coastal Antarctic and the top-down controls on bacterial populations. Previous work suggests that at certain times of the year grazing by heterotrophic and mixotrophic protists may meet or exceed bacterial production rates. Similarly, in more temperate waters bacteriophages (viruses) are thought to contribute significantly to bacterial mortality during the spring and summer. These different top-down controls have implications for carbon flow through the marine foodweb, because protists are grazed more efficiently by higher trophic levels than are bacteria. This project will use a combination of grazing experiments and field observations to assess the temporal dynamics of mortality due to temperate bacteriophage and protists. Although many heterotrophic bacterial strains observed in the coastal Antarctic are taxonomically similar to strains from other regions, recent work suggest that they are phylogenetically and genetically distinct. To better understand the ecological function and evolutionary trajectories of key Antarctic marine bacteria, their genomes will be isolated and sequenced. Then, these genomes will be used to improve the predictions of the paprica metabolic inference pipeline, and our understanding of the relationship between heterotrophic bacteria and their major predators in the Antarctic marine environment. Finally, researchers will modify the Regional Test-Bed Model model to enable microbial diversity data to be used to optimize the starting conditions of key parameters, and to constrain the model's data assimilation methods. There is an extensive education and outreach component to this project that is designed to engage students and the public in diverse activities centered on Antarctic microbiota and marine sciences. A new module on Antarctic marine science will be developed for the popular Sally Ride Science program, and two existing undergraduate courses at UC San Diego will be strengthened with laboratory modules introducing emerging technology, and with cutting-edge polar science. A PhD student and a post-doctoral researcher will be supported by this project. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Fish that reside in the harsh, subfreezing waters of the Antarctic and Arctic provide fascinating examples of adaptation to extreme environments. Species at both poles have independently evolved ways to deal with constant cold temperature, including the evolution of antifreeze proteins. Under freezing conditions, these compounds attach to ice crystals and prevent their growth. This lowers the tissue freezing point and reduces the chance the animal will be injured or killed. While it might seem that the need for unique adaptations to survive in polar waters would reduce species diversity in these habitats, recent evidence showed higher speciation rates in fishes from polar environments as compared to those found in warmer waters. This is despite the fact cold temperatures slow cellular processes, which had been expected to lower rates of molecular evolution in these species. To determine how rates of speciation and molecular evolution are linked in marine fishes, this project will compare the genomes of multiple polar and non-polar fishes. By doing so, it will (1) clarify how rates of evolution vary in polar environments, (2) identify general trends that shape the adaptive trajectories of polar fishes, and (3) determine how functional differences shape the evolution of novel compounds such as the antifreeze proteins some polar fishes rely upon to survive. In addition to training a new generation of scientists, the project will develop curriculum and outreach activities for elementary and undergraduate science courses. Materials will be delivered in classrooms across the western United States, with a focus on rural schools as part of a network for promoting evolutionary education in rural communities. To better understand the biology of polar fishes and the evolution of antifreeze proteins (AFPs), this research will compare the evolutionary histories of cold-adapted organisms to those of related non-polar species from both a genotypic and phenotypic context. In doing so, this research will test whether evolutionary rates are slowed in polar environments, perhaps due to constraints on cellular processes. It will also evaluate the effects of positive selection and the relaxation of selection on genes and pathways, both of which appear to be key adaptive strategies involved in the adaptation to polar environments. To address specific mechanisms by which extreme adaptation occurs, researchers will determine how global gradients of temperature and dissolved oxygen shape genome variation and influence adaptive trajectories among multiple species of eelpouts (family Zoarcidae). An in-vitro experimental approach will then be used to test functional hypotheses about the role of copy number variation in AFP evolution, and how and why multiple antifreeze protein isoforms have evolved. By comparing the genomes of multiple polar and non-polar fishes, the project will clarify how rates of evolution vary in polar environments, identify general trends that shape the adaptive trajectories of cold-adapted marine fishes, and determine how functional differences shape the evolution of novel proteins. This project addresses the strategic programmatic aim to provide a better understanding of the genetic underpinnings of organismal adaptations to their current environment and ways in which polar fishes may respond to changing conditions over different evolutionary time scales. The project is jointly funded by the Antarctic Organisms and Ecosystems Program in the Office of Polar Programs of the Geosciences Directorate, and the Molecular Biophysics Program of the Division of Molecular and Cellular Biosciences in the Biological Sciences Directorate. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Iverson/1643120 This award supports a project to study temperate ice, using both experimental methods and modeling, in order to determine the effect of water on its flow resistance and structure and to study the mobility of water within the ice. A new mathematical model of ice stream flow and temperature is developed in conjunction with these experiments. The model includes water production, storage, and movement in deforming ice and their effects on flow resistance at ice stream margins and on water availability for lubrication of ice stream beds. Results will improve estimates of the evolution of ice stream speed and geometry in a warming climate, and so improve the accuracy of assessments of the contribution of the Antarctic ice sheet to sea level rise over the next century. Ice streams are zones of rapid flow within the Antarctic ice sheet and are primarily responsible for its discharge of ice to the ocean and major effect on sea-level rise. Water plays a central role in the flow of ice streams. It lubricates their bases and softens their margins, where flow speeds abruptly transition from rapid to slow. Within ice stream margins some ice is "temperate", meaning that it is at its melting temperature and thus contains intercrystalline water that significantly softens the ice. Two postdoctoral researchers will be supported, trained, and mentored for academic careers, and three undergraduates will be introduced to research in the geosciences. This award is part the NSF/GEO-UK NERC lead agency opportunity (NSF 14-118) and is a collaboration between Iowa State University in the United States and Oxford University in the United Kingdom. The two-phase deformation of temperate ice will be studied, with the objective of determining its effect on the flow of Antarctic ice streams. The project has two components that reinforce each other. First there will be laboratory experiments in which a rotary device at Iowa State University will be used to determine relationships between the water content of temperate ice and its rheology and permeability. The second component will involve the development at Oxford University of a two-phase, fluid-dynamical theory of temperate ice and application of this theory in models of ice-stream dynamics. Results of the experiments will guide the constitutive rules and parameter ranges considered in the theory, and application of elements of the theory will improve interpretations of the experimental results. The theory and resultant models will predict the coupled distributions of temperate ice, water, stress, deformation, and basal slip that control the evolution of ice-stream speed and geometry. The modeling will result in parameterizations that allow ice streaming to be included in continental-scale models of ice sheets in a simplified but physically defensible way.
The Earth's mantle influences the movement of tectonic plates and volcanism on the surface. One way to understand the composition and nature of the Earth's mantle is by studying the chemistry of basalts, which originate by volcanic eruptions of partially melting mantle rocks. This study will establish the budget and distribution of volatile elements (hydrogen, carbon, fluorine, chlorine, sulfur) in volcanic basalts to better understand the composition of the Earth's interior. Volatiles influence mantle melting, magma crystallization, magma migration and volcanic eruptions. Their abundances and spatial distribution provide important constraints on models of mantle flow and temperature. Moreover, volatiles are key constituents of the Earth's atmosphere and oceans. Establishing the cycles of volatiles between the Earth's interior and surface is of fundamental importance to understand the long-term evolution of our planet. This project supports a graduate student and research scientist at Brown University. It promotes the collaboration with geochemists from eleven institutions representing six different countries: USA, Germany, United Kingdom, Argentina, South Korea and Japan, and utilizes several NSF-funded USA analytical facilities. Communication of results will occur through: 1) peer-reviewed journals, presentations at conferences and invited university lectures, 2) hands-on science learning activities for local elementary and high school classes, and 3) outreach to the general audience through public lectures. Over the last 60 years of funded research, the Antarctic Peninsula and nearby ocean ridges have been extensively investigated providing information on the origin of the magmatism, and the composition, structure, temperature and evolution of the lithospheric and asthenospheric mantle. Diverse hypotheses have been proposed for the origin of the magmatism in the Antarctic Peninsula, from flux melting of the mantle wedge during devolatilization of the subducted Phoenix plate, to adiabatic decompression melting of a carbonated and hydrous asthenosphere, to melting of a volatile-rich metasomatized subcontinental lithospheric mantle. All proposed hypotheses invoke the role of volatiles. Surprisingly, data on the volatile contents of basalts and mantle from this region are non-existent. This is a significant omission from the geochemical data set, given the important role volatile elements play in the generation and composition of magmas and their sources. The focus of our research is to examine the regional variations in volatile contents (C, H, F, S, Cl) in geochemically well-characterized Pliocene-recent basalts from the Antarctic Peninsula and Phoenix ridge. Our goal is to establish the budget and distribution of volatiles in the mantle to understand 1) the processes responsible for the generation of chemically diverse basalts in close spatial and temporal proximity and 2) the nature (lithology, composition and temperature) of the heterogeneous mantle source beneath the Antarctic Peninsula and Phoenix ridge.
Worldwide publicity surrounding the calving of an iceberg the size of Delaware in July 2017 from the Larsen C Ice Shelf on the eastern side of the Antarctic Peninsula presents a unique and time-sensitive opportunity for research and education on polar ecosystems in a changing climate. The goal of this project is to convene a workshop, drawing from the large fund of intellectual capital in the US and international Antarctic research communities. The two-day workshop will be held at Florida State University where a consortium of researchers with expertise in Antarctic biological, ecological, and ecosystem sciences will be gathered to share knowledge, identify important research knowledge gaps, and outline strategic plans for research. The workshop will help advance scientific and public understanding of the continent-wide changes that Antarctic ice shelves and surrounding ecosystems experience as ice shelves change. The primary products will be reports focusing on synthesizing, coordinating and integrating research efforts to understand the ecological impacts of ice-shelf collapses and large iceberg calving along the Antarctic Peninsula. The workshop will also provide an immediate, interactive experience for K-12 school children with a hands-on ?Saturday Polar Academy?, a children?s poster session, and question-answer session during the workshop. Children will have the opportunity to interact with Antarctic researchers and become familiar with Antarctic science, organisms, ecosystems and current issues, feeding their scientific curiosity. The calving of A-68, the 5,800-km2 iceberg shed in July 2017 from the Larsen C Ice Shelf presents a unique and time-sensitive research opportunity. The scientific momentum and public interest created by this most recent event will be leveraged to convene a workshop at the earliest opportunity, drawing from the large intellectual capital in the US and international Antarctic research communities. The two-day workshop will be held at Florida State University, Coastal and Marine Laboratory on the Gulf Coast organized by Jeroen Ingels (Florida State University; FSU), Richard Aronson (Florida Institute of Technology; FIT), and Craig Smith (University of Hawaii at Manoa; UHM). A consortium of researchers with a diversity of expertise in Antarctic biological, ecological, and ecosystem sciences will be gathered to share knowledge, identify important research priorities and knowledge gaps, and outline strategic plans for research to advance understanding of the continent-wide changes that Antarctic ice shelves and surrounding ecosystems experience as ice shelves change.
Undersea forests of seaweeds dominate the shallow waters of the central and northern coast of the western Antarctic Peninsula and provide critical structural habitat and carbon resources (food) for a host of marine organisms. Most of the seaweeds are chemically defended against herbivores yet support very high densities of herbivorous shrimp-like grazers (crustaceans, primarily amphipods) which greatly benefit their hosts by consuming filamentous and microscopic algae that otherwise overgrow the seaweeds. The amphipods benefit from the association with the chemically defended seaweeds by gaining an associational refuge from fish predation. The project builds on recent work that has demonstrated that several species of amphipods that are key members of crustacean assemblages associated with the seaweeds suffer significant mortality when chronically exposed to increased seawater acidity (reduced pH) and elevated temperatures representative of near-future oceans. By simulating these environmental conditions in the laboratory at Palmer Station, Antarctica, the investigators will test the overall hypothesis that ocean acidification and ocean warming will play a significant role in structuring crustacean assemblages associated with seaweeds. Broader impacts include expanding fundamental knowledge of the impacts of global climate change by focusing on a geographic region of the earth uniquely susceptible to climate change. This project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. This includes training graduate students and early career scientists with an emphasis on diversity, presentations to K-12 groups and the general public, and a variety of social media-based outreach programs. The project will compare population and assemblage-wide impacts of natural (ambient), carbon dioxide enriched, and elevated temperature seawater on assemblages of seaweed-associated crustacean grazers. Based on prior results, it is likely that some species will be relative "winners" and some will be relative "losers" under the changed conditions. The project will then aim to carry out measurements of growth, calcification, mineralogy, the incidence of molts, and biochemical and energetic body composition for two key amphipod "winners" and two key amphipod "losers". These measurements will allow an assessment of what factors drive species-specific enhanced or diminished performance under conditions of ocean acidification and sea surface warming. The project will expand on what little is known about prospective impacts of changing conditions on benthic marine Crustacea, in Antarctica, a taxonomic group that faces the additional physiological stressor of molting. The project is likely to provide additional insight on the indirect regulation of the seaweeds that comprise Antarctic undersea forests that provide key architectural components of the coastal marine ecosystem. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Antarctica is almost entirely covered by ice, in places over two miles thick. This ice hides a landscape that is less well known than the surface of Mars and represents one of Earth's last unexplored frontiers. Ice-penetrating radar images provide a remote glimpse of this landscape including ice-buried mountains larger than the European Alps and huge fjords twice as deep as the Grand Canyon. The goal of this project is to collect sediment samples derived from these landscapes to determine when and under what conditions these features formed. Specifically, the project seeks to understand the landscape in the context of the history and dynamics of the overlying ice sheet and past mountain-building episodes. This project accomplishes this goal by analyzing sand collected during previous sea-floor drilling expeditions off the coast of Antarctica. This sand was supplied from the continent interior by ancient rivers when it was ice-free over 34 million year ago, and later by glaciers. The project will also study bedrock samples from rare ice-free parts of the Transantarctic Mountains. The primary activity is to apply multiple advanced dating techniques to single mineral grains contained within this sand and rock. Different methods and minerals yield different dates that provide insight into how Antarctica?s landscape has eroded over the many tens of millions of years during which sand was deposited offshore. The dating techniques that are being developed and enhanced for this study have broad application in many branches of geoscience research and industry. The project makes cost-effective use of pre-existing sample collections housed at NSF facilities including the US Polar Rock Repository, the Gulf Coast Core Repository, and the Antarctic Marine Geology Research Facility. The project will contribute to the STEM training of two graduate and two undergraduate students, and includes collaboration among four US universities as well as international collaboration between the US and France. The project also supports outreach in the form of a two-week open workshop giving ten students the opportunity to visit the University of Arizona to conduct STEM-based analytical work and training on Antarctic-based projects. Results from both the project and workshop will be disseminated through presentations at professional meetings, peer-reviewed publications, and through public outreach and media. The main objective of this project is to reconstruct a chronology of East Antarctic subglacial landscape evolution to understand the tectonic and climatic forcing behind landscape modification, and how it has influenced past ice sheet inception and dynamics. Our approach focuses on acquiring a record of the cooling and erosion history contained in East Antarctic-derived detrital mineral grains and clasts in offshore sediments deposited both before and after the onset of Antarctic glaciation. Samples will be taken from existing drill core and marine sediment core material from offshore Wilkes Land (100°E-160°E) and the Ross Sea. Multiple geo- and thermo-chronometers will be employed to reconstruct source region cooling history including U-Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar. This offshore record will be augmented and tested by applying the same methods to onshore bedrock samples in the Transantarctic Mountains obtained from the US Polar Rock Repository and through fieldwork. The onshore work will additionally address the debated incision history of the large glacial troughs that cut the range, now occupied by glaciers draining the East Antarctic Ice Sheet. This includes collection of samples from several age-elevation transects, apatite 4He/3He thermochronometry, and Pecube thermo-kinematic modeling. Acquiring an extensive geo- and thermo-chronologic database will also provide valuable new information on the poorly known ice-hidden geology and tectonics of subglacial East Antarctica that has implications for improving supercontinent reconstructions and understanding continental break-up.
1245871/McCarthy This award supports a project to conduct laboratory experiments with a new, custom-fabricated cryo-friction apparatus to explore ice deformation oscillatory stresses like those experienced by tidewater glaciers in nature. The experimental design will explore the dynamic frictional properties of periodically loaded ice sliding on rock. Although the frictional strength of ice has been studied in the past these studies have all focused on constant rates of loading and sliding. The results of this work will advance understanding of ice stream dynamics by improving constraints on key material and frictional properties and allowing physics-based predictions of the amplitude and phase of glacier strain due to tidally induced stress variations. The intellectual merit of this work is that it will result in a better understanding of dynamic rheological parameters and will provide better predictive tools for dynamic glacier flow. The proposed experiments will provide dynamic material properties of ice and rock deformation at realistic frequencies experienced by Antarctic glaciers. The PIs will measure the full spectrum of material response from elastic to anelastic to viscous. The study will provide better constraints to improve predictive capability for glacier and ice-stream response to external forcing. The broader impacts of the work include providing estimates of material properties that can be used to broaden our understanding of glacier flow and that will ultimately be used for models of sea level rise and ice sheet stability. The ability to predict sea level in the near future is contingent on understanding of the processes responsible for flow of Antarctic ice streams and glaciers. Modulation of glacier flow by ocean tides represents a natural experiment that can be used to improve knowledge of ice and bed properties, and of the way in which these properties depend on time-varying forcings. Presently, the influence of tidal forcing on glacier movement is poorly understood, and knowledge of ice properties under tidal loading conditions is limited. The study will generate results of interest beyond polar science by examining phenomena that are of interest to seismology, glaciology and general materials science. The project will provide valuable research and laboratory experience for two undergraduate interns and will provide experience for the PI (currently a postdoc) in leading a scientific project. The three PIs are early career scientists. This proposal does not require fieldwork in the Antarctic.
The ice sheets of Antarctica and Greenland are losing mass and contributing to accelerating global sea-level rise. Satellite altimetry provides precise measurement of ice-sheet volume change, but computing ice-sheet mass change—the quantity relevant for estimating the ice sheet’s sea-level contribution—requires knowing the density of the ice sheet. The density near the ice-sheet surface also affects age estimates of air bubbles recovered in ice cores, which are a key source of information on past climate changes. Ice-sheet density is primarily controlled by the rate at which firn (snow that has persisted for a year or more on ice sheets) compacts into ice, but there is currently no widely accepted theory of how this compaction occurs. The goal of this project is thus to advance understanding of how firn densifies. The team will conduct laboratory experiments and analyze ice-penetrating radar and ice-core data from Antarctica. A key desired outcome of the project is a new model of firn densification that can be used to improve satellite-based altimetry measurements of present-day ice-sheet change and reconstructions of past climate changes from ice cores. This project will combine laboratory experiments, numerical modeling, and geophysical techniques to determine the rheology of firn as it compacts to form ice. The team will use two methods to measure firn compaction: (1) lab-based experiments and (2) analysis of ice-core and radar data. For the lab-based work, the team will conduct a suite of compaction experiments on synthetic firn samples under uni-axial strain and constant temperature and axial stress. They will also measure the grain-size evolution. By running a large number of experiments (> 25), the team will constrain key parameters that determine how firn compaction rate depends on density, temperature, grain size, and axial stress. The experiments will be conducted in a table-top apparatus at temperatures as low as -40 degrees C and axial stresses up to 4 MPa. For the field-data-based component, the team will analyze ice-core and ice-penetrating radar data to produce the first coincident set of radar-derived firn compaction rates, borehole temperatures, firn densities, and firn grain sizes. Results from lab and field data will be tied together using a numerical firn compaction model. This model is formulated using conservation of mass, momentum, and energy, along with an explicit description of firn rheology and grain-size evolution. Constraints on firn rheology will be incorporated into this model and the team will use it to examine fundamental questions about how changes in the climate affect firn density. This is a crucial unknown that contributes significant measurement uncertainty in estimates of past and present climate change. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This award funds the continued management and operations (M&O) of the IceCube Neutrino Observatory (ICNO) located at the South Pole Station. The core team of researchers and engineers maintain the existing ICNO infrastructure at the South Pole and home institution, guaranteeing an uninterrupted stream of scientifically unique, high-quality data. The M&O activities are built upon eight highly successful years of managing the overall ICNO operations after the start of science operations in 2008. Construction of ICNO was supported by NSF's Major Research Equipment and Facilities Construction (MREFC) account and was completed on schedule and within budget in 2010. Effective coordination of efforts by the core M&O personnel and efforts by personnel within the IceCube Collaboration has yielded significant increases in the performance of this cubic-kilometer detector over time. The scientific output from the IceCube Collaboration during the past five years has been outstanding. The broader impacts of the ICNO/M&O activities are strong, involving postdoctoral, graduate, and (in some cases) undergraduate students in the day-today operation & calibration of the neutrino detector. The extraordinary physics results recently produced by ICNO and its extraordinary location at South Pole have a high potential to excite the imagination of high school children and the public in general at a national and international level. The current ICNO/M&O effort produces better energy and angular resolution information about detected neutrino events, has more efficient data filters and more accurate detector simulations, and enables continuous software development for systems that are needed to acquire and analyze data. This has produced data acquisition and data management systems with high robustness, traceability, and maintainability. The current ICNO/M&O effort includes: (1) resources for both distributed and centrally managed activities, and (2) additional accountability mechanisms for "in-kind" and institutional contributions. Both are necessary to ensure that the detector maintains its capability to produce quality scientific data at the level required to achieve the detector's scientific discovery objectives. Recent ICNO discoveries of cosmic high-energy neutrinos (some reaching energies close to and over 2.5 PeV) and oscillating atmospheric neutrinos in a previously unexplored energy range from 10 to 60 GeV became possible because of the "state-of-the-art" detector configuration, excellently supported infrastructure, and cutting-edge science analyses. The ICNO has set limits on Dark Matter annihilations, made precision measurements of the angular distribution of cosmic ray muons, and characterized in detail physical properties of the Antarctic 2.5-km thick ice sheet at South Pole. The discovery of high-energy cosmic neutrinos by IceCube with a flux at the level anticipated for those associated with high-energy gamma- and cosmic-ray accelerators brightens the prospect for identifying the sources of the highest energy particles.
This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. The Thwaites Glacier system dominates the contribution to sea-level rise from Antarctica. Predicting how this system will evolve in coming decades, and thereby its likely contribution to sea level, requires detailed understanding of how it has responded to changes in climate and oceanographic conditions in the past. This project will provide a record of regional sea-level change by establishing chronologies for raised marine beaches as well as the timing and duration of periods of retreat of Thwaites Glacier during the past 10,000 years by sampling and dating bedrock presently covered by Thwaites Glacier via subglacial drilling. Together with climatic and oceanographic conditions from other records, these will provide boundary conditions for past-to-present model simulations as well as those used to predict future glacier changes under a range of climate scenarios. Specifically, the project will test the hypothesis--implied by existing geological evidence from the region--that present rapid retreat of the Thwaites Glacier system is reversible. The team aims to utilize two approaches: 1. To reconstruct relative sea level during the Holocene, it will map and date raised marine and shoreline deposits throughout Pine Island Bay. Chronological constraints on sea-level change will be provided by radiocarbon dating of organic material in landforms and sediments that are genetically related to past sea level, such as shell fragments, bones of marine fauna, and penguin guano. 2. To obtain geological evidence for past episodes of grounding-line retreat, the team will apply cosmogenic-nuclide exposure-dating of subglacial bedrock. Using drill systems recently developed for subglacial bedrock recovery, the team will obtain subglacial bedrock from sites where ice thickness is dynamically linked to grounding-line position in the Thwaites system (specifically in the Hudson Mountains, and near Mount Murphy). Observation of significant cosmogenic-nuclide concentrations--the team will primarily measure Beryllium-10 and in situ Carbon-14--in these samples would provide direct, unambiguous evidence for past episodes of thinning linked to grounding-line retreat as well as constraints on their timing and duration. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part I: Nontechnical Antarcticas ice sheets constitute the largest ice mass on Earth, with approximately 53 meters of sea level equivalent stored in the East Antarctic Ice Sheet alone. The history of the East Antarctic Ice Sheet is therefore important to understanding and predicting changes in sea level and Earths climate. There is conflicting evidence regarding long-term stability of the East Antarctic Ice Sheet, over the last twenty million years. To better understand past ice sheet changes, together with the history of the Transantarctic Mountains, accurate time scales are needed. One of the few dating methods applicable to the Antarctic glacial deposits, that record past ice sheet changes, is the measurement of rare isotopes produced by cosmic rays in surface rock samples, referred to as cosmogenic nuclides. Whenever a rock surface is exposed/free of cover, cosmic rays produce rare isotopes such as helium-3, beryllium-10, and neon-21within the minerals. This project will involve measurement of all three isotopes in some of the oldest glacial deposits found at high elevation in the Transantarctic Mountains. Because the amount of each isotope is directly linked to the exposure time, this can be used to calculate the age of a surface. This method requires knowledge of the rates that cosmic radiation produces each isotope, which depends upon mineral composition, and is presently a limitation of the method. The goal of this project is to advance and enhance existing measurement methods and expand the range of possibilities in surface dating with new measurements of all three isotopes in pyroxene, a mineral that is commonly found throughout the Transantarctic Mountains. This technological progress will allow a better application of the surface exposure dating method, which in turn will help to reconstruct Antarctic ice sheet history and provide valuable knowledge of former ice-extent. Understanding Antarcticas ice-sheet history is crucial to predict its influence on past and future sea level changes. Part II: Technical Description Measurements of in-situ produced cosmogenic nuclides in Antarctic surficial rock samples provide unique time scales for glacial and landscape evolution processes. However, due to analytical challenges, pyroxene-bearing and widely distributed lithologies like the Ferrar dolerite of the Transantarctic Mountains, are underutilized. This proposal aims to changes this and to improve the cosmogenic nuclide methodologies for stable isotopes (21Ne and 3He) and radioactive nuclides (10Be) in pyroxenes. Proposed methodological improvements will be directly applicable to erosion rates and deposition ages of important glacial deposits, such as the controversial Sirius Group tills, and also to younger glacial features. Bennett Platform is the focus of this study because it is one of the southern-most Sirius Group outcrops along the Transantarctic Mountains, where cosmogenic ages are sparse. Preliminary measurements demonstrate large discrepancies between 3He and 21Ne age determinations in Sirius Group pyroxenes. One possible explanation is composition dependence of the 21Ne production rates. Coupled measurements of 3He, 21Ne, and 10Be in well-characterized pyroxene mineral separates from Ferrar dolerite will be used to better constrain the production rates, major element and trace element dependencies, the assumptions of the method, and ultimately advance the application of cosmogenic nuclides to mafic Antarctic lithologies. The main goals of this study are to improve measurement protocols for 10Be in pyroxene, and the determination of the composition dependence of 21Ne production rates by measuring mineral compositions (by electron microprobe), and nuclide concentrations in mineral pairs from young lava flows. Further aims are the validation of the nucleogenic contributions and the effects of helium diffusive loss through measurements of 3He/21Ne production ratios, combined with measurements of shielded samples of the Ferrar dolerite. Combined measurements of 3He, 21Ne and 10Be in pyroxenes have rarely been published for individual samples in Antarctica. The new and unique measurements of this study will advance the applicability of in-situ produced cosmogenic nuclides to both young and ancient Antarctic surfaces. The study will be performed using existing samples: no field work is requested. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This project will acquire measurements of the concentration of beryllium-10 (10Be) from an ice core from the South Pole, Antarctica. An isotope of the element beryllium, 10Be, is produced in the atmosphere by high-energy protons (cosmic rays) that enter Earth's atmosphere from space. It is removed from the atmosphere by settling or by scavenging by rain or snowfall. Hence, concentrations of 10Be in snow at the South Pole reflect the production rate of 10Be in the atmosphere. Because the rate of production of 10Be over Antarctica depends primarily on the strength of the Sun's magnetic field, measurements of 10Be in the South Pole ice core will provide a record of changes in solar activity. The South Pole ice core will reach an age of 40,000 years at the bottom. The project will result in measurements of 10Be at annual resolution for the last 100 years and selected periods in the more distant past, such as the Maunder Minimum, a period during the late 17th century during which no sunspots were observed, or the last glacial cold period, about 20,000 years ago. A climate model that can simulate the production of 10Be in the atmosphere, it's transport through the atmosphere, and its deposition at the snow surface in Antarctica will be used to aid in using the 10Be data to determine past changes in solar activity from decadal to millennial scale, and in turn to evaluate the role of the Sun in Earth?s climate from a new perspective. The production of 10Be in Earth's atmosphere results from the spallation of oxygen and nitrogen in the atmosphere by cosmic rays. Cosmic ray variations in the high latitudes are primarily modulated by solar variability. Time-series records of 10Be from ice cores are therefore important for deriving variations in solar activity through time, which is fundamental to understanding climate variability. Deposition of 10Be to the ice surface is also influenced by variability in atmospheric circulation and deposition processes, and South Pole is the best available location for minimizing the influence of variable atmospheric circulation on 10Be deposition. To date, only one record of 10Be exists from South Pole; that record is widely used in solar forcing estimates used in climate models, but covers only the last millennium and ends in CE 1982. We will obtain 10Be concentration measurements in a 1500-m, 40000-year long ice core from the South Pole. This will extend the existing record both further back in time and forward to the present, providing overlap with the modern instrumental record of solar and climate variability. High resolution (annual to biannual) measurements will be made in targeted areas of interest, including the last 100 years, the Maunder Minimum (CE 1650-1715), and the last glacial maximum. The novel data will be used in conjunction with climate model experiments that incorporate 10Be production, transport, and deposition physics. Together, data and modeling will create an updated record of atmospheric 10Be production and hence of solar activity.
The Earth's climate has changed through time and during the Eocene Epoch (56 to 34 million years ago) there was a transition from 'greenhouse' to 'icehouse' conditions. During the Eocene, a shift to cooler temperatures at high latitudes resulted in the inception of polar glaciation. This in turn affected the environment for living organisms. This project looks to uncover the interaction between biological, oceanographic, and climate systems for the Eocene in Antarctica using chemical analysis of fossil shark teeth collected during past expeditions. The combination of paleontological and geochemical analyses will provide insight to the past ecology and ocean conditions; climate models will be applied to test the role of tectonics, greenhouse gas concentration and ocean circulation on environmental change during this time period. The study contributes to understanding the interaction of increased atmospheric carbon dioxide and ocean circulation. This project also seeks to improve diversity, equity, and inclusion within the geosciences workforce with efforts targeted to undergraduate, graduate, postdoctoral, and early career faculty. The research goal is to elucidate the processes leading from the Eocene greenhouse to Oligocene icehouse conditions. Previous explanations for this climate shift centers on Antarctica, where tectonic configurations influenced oceanic gateways, ocean circulation reduced heat transport, and/or greenhouse gas declines prompted glaciation. The team will reconstruct watermass, current, and climate fluctuations proximal to the Antarctic Peninsula using geochemical indicators (oxygen and neodymium isotope composition) from fossil shark teeth collected from Seymour Island. The approach builds on previous shark paleontological studies, incorporates geochemical analyses for environmental reconstruction (i.e., temperature gradients and ocean circulation), and tests hypotheses on Earth System dynamics using novel global climate model simulations with geochemical tracers. This project will advance global climate modeling capabilities with experiments that consider Eocene tectonic configuration within isotope-enabled climate model simulations. A comparison of geochemical results from Eocene climate simulations and empirical records of shark teeth will reveal processes and mechanisms central to the Eocene Antarctic climatic shift. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Notothenioid fishes live in the world's coldest marine waters surrounding Antarctica and have evolved strategies to avoid freezing. Past studies have shown that most Antarctic notothenioids produce special antifreeze proteins that prevent the growth of ice crystals that enter the body. While these proteins help prevent individuals from being killed by growing ice crystals, it is unclear how these fish avoid the accumulation of these small ice crystals inside their tissues over time. This project will observe how ice crystal accumulation relates to the harshness of the fish's habitat and the fish's behavior within different habitats of McMurdo Sound, Antarctica. The researchers will collect fishes and ocean observations at different field sites that cover a range of habitat severity in terms of temperature and iciness. Researchers will install an underwater ocean observatory near McMurdo Station which will include a HD video camera and hydrophone. The observatory will allow continuous monitoring of ocean conditions and fish behavior that will help explain the conditions and behaviors that contribute to the acquisition and accrual of ice inside the body. Acoustic and video data from the observatory will be available to other scientists and to the public. The project will advance understanding of the many challenges life faces in extreme cold environments. This work continues a line of inquiry that has resulted in the discovery of potential medical and food preservation applications. Hundreds of antifreeze protein (AFP) structure-function studies have been conducted in the laboratory, providing a basic physical understanding of the AFP-ice interaction. How AFPs function within fishes and their range of environments, however, is far from clear. This project will provide an understanding of notothenioid's freezing avoidance mechanisms, and strategies by quantifying the acquisition, accumulation, and loss of internal ice crystals. Specifically, the goal is to determine if and how habitat severity (as defined by iciness, seawater temperature, and prevalence of supercooled water) and fish behavior influence the abundance of ice crystals in their tissues. Four locations in the McMurdo Sound with different levels of habitat severity will be sampled for oceanographic conditions and ice crystal count within fish tissues. Researchers will use a new technique to count the number of splenic ice crystals, expanding on and simplifying previous methods. Environmental data loggers will be deployed for the duration of the project at the four sites to provide context and real-time assessment of environmental conditions. An oceanographic observatory near McMurdo Station will provide year-round, real-time and archival records of oceanographic conditions, in situ video observations of anchor ice growth and ice-organism interactions, hydroacoustic recordings, and serve as proof-of concept for expanding scientific infrastructure in McMurdo Sound related to monitoring of supercooled waters and oceanographic information.
The project will characterize the functional, taxonomic, biotic and abiotic drivers of soil ecosystems in the Trans Antarctic Mountains (one of the most remote and harsh terrestrial landscapes on the planet). The work will utilize new high-throughput DNA and RNA sequencing technologies to identify members of the microbial communities and determine if the microbial community structures are independent of local environmental heterogeneities. In addition the project will determine if microbial diversity and function are correlated with time since the last glacial maximum (LGM). The expected results will greatly contribute to our knowledge regarding rates of microbial succession and help define the some of the limits to life and life-maintaining processes on Earth. The project will analyze genomes and RNA derived from these genomes to describe the relationships between biodiversity and ecosystem functioning from soils above and below LGM elevations and to correlate these with the environmental drivers associated with their development during the last ~18,000 years. The team will identify the taxonomic diversity and the functional genetic composition within a broad suite of soil biota and examine their patterns of assembly and distribution within the framework of their geological legacies. The project will mentor participants from undergraduate students to postdoctoral researchers and prepare them to effectively engage in research to meet their career aspirations. The project will contribute to ongoing public education efforts through relationships with K-12 teachers and administrators- to include University-Public School partnerships. Less formal activities include public lecture series and weblogs aimed at providing information on Antarctic polar desert ecosystems to the general public. Targeted classrooms near each PI's institution will participate in online, real-time discussions about current topics in Antarctic ecosystems research.
Nontechnical description of proposed research: This project will apply cutting-edge seismic imaging methods to existing seismic data to study the three-dimensional structure of the Earth beneath the ice-covered Antarctic continent. The study will improve understanding of Earth structure and hotspots and geologically recent and ancient rift systems. The results will be useful for models of ice movement and bedrock elevation changes due to variation in ice sheet thickness. The results will also help guide future seismic data collection. The researchers will transfer existing software from the high-performance computers at The University of Rhode Island to the Alabama supercomputer facilities. The project will also broaden public understanding of scientific research in Antarctica by engaging with the students and teachers in Socorro County, New Mexico to discuss career opportunities in science, technology, engineering, and mathematics (STEM), the Earth Sciences, and the importance of computers in scientific research. Project personnel from Alabama will visit Socorro and share research with students at New Mexico Tech and at the Socorro High School. The project will also train undergraduate and graduate students in the expanding field of computational seismology, by applying these approaches to study Antarctic geology. Technical description of proposed research: The project seeks to better resolve the three-dimensional Antarctic mantle structure and viscosity and to identify locations of ancient rifts within the stable East Antarctic lithosphere. To accomplish this, the researchers will utilize full-waveform tomographic inversion techniques that combine long-period ambient noise data with earthquake constraints to more accurately resolve structure than traditional tomographic approaches. The proposed research will be completed using the Alabama supercomputer facilities and the programs and methodology developed at The University of Rhode Island. The new tomographic results will be useful in assessing lithospheric structure beneath Dronning Maud Land as well as the Wilkes and Aurora Subglacial Basins in East Antarctica, where previous rifting episodes and mid-lithospheric discontinuities will be explored. In West Antarctica, the work will elucidate the easternmost extent of the West Antarctic Rift System as well as rifted structure and possible compositional variations within the Weddell Sea. The accuracy of existing Antarctic seismic models will be quantified through model validation approaches. The researchers will highlight regions of Antarctica where tomographic resolution is still lacking and where future deployments would improve resolution.
This project investigates a rapidly moving section of the West Antarctic Ice Sheet known as the Whillans Ice Stream. Ice streams and outlet glaciers are the major pathways for ice discharge from ice sheets into the ocean. Consequently, understanding ice stream dynamics, specifically the processes controlling the frictional resistance of ice sliding on sediments at its base, is essential for predictive modeling of how Earth's ice sheets will respond to a changing climate. Rather than flowing smoothly, Whillans Ice Stream advances in stick-slip cycles: brief periods of rapid sliding, equivalent to magnitude 7 earthquakes, alternating with much longer periods of repose. The PIs will perform simulations of these stick-slip cycles using computer codes originally developed for modeling tectonic earthquakes. By matching observed ice motions, the PIs will constrain the range of frictional processes acting at the base of the ice stream. An additional focus of the project is on brittle fracture processes in ice, expressed through seismic waves radiated by faulting and/or crevassing episodes that accompany the large-scale sliding events. An understanding of ice fracture provides a basis for assessing the susceptibility of ice shelves to rifting and catastrophic disintegration. Project results will be incorporated into outreach activities (from elementary school to community college events) as well as a polar science class for the California State Summer School for Mathematics and Science (COSMOS) program for high school students. Simulations of the stick-slip cycle will employ 3D dynamic rupture models that simultaneously solve for the seismic wavefield and rupture process, consistent with elastodynamic material response and friction laws on the ice stream bed. Stresses and frictional properties will be varied to achieve consistency with surface GPS and broadband seismic data as well as borehole seismograms from the WISSARD project. The results will be interpreted using laboratory till friction experiments, which link velocity-weakening/strengthening behavior to temperature and water content, and to related experiments quantifying basal drag from ice flow over rough beds. The source mechanism of seismicity accompanying the slip events (shear faulting versus crevassing) will be determined using 3D waveform modeling in conjunction with mechanical models of the seismic source processes. This proposal does not require fieldwork in the Antarctic.
Baker/1141411 This award supports a project to undertake a systematic examination of the effects of soluble impurities, particularly sulfuric acid, on the creep of polycrystalline ice as function of temperature, strain rate and impurity concentration. The working hypothesis is that soluble impurities will increase the flow rate of polycrystalline ice compared to high-purity ice, that this effect will be temperature dependent and that the impurities by affecting the re-crystallization and grain growth will change the fabric of the ice. Both H2SO4-doped and high-purity poly-crystalline ice will be produced by freezing sheets of ice, breaking them up, sieving the ice particles and then sintering them in a mold into fine-grained cylindrical specimens with at least ten grains across their diameter. The resulting microstructures (dislocation structure, grain size and shape, grain boundary character and micro-structural location of the acid) will be characterized using a variety of techniques including: optical microscopy, scanning electron microscopy, including secondary electron imaging, electron backscattered patterns, energy dispersive X-ray spectroscopy, electron channeling contrast imaging, and X-ray topography. The creep of both the H2SO4-doped and the high-purity polycrystalline ice will be undertaken at a range of temperatures and stresses. The ice?s response to the creep deformation (grain boundary sliding, dislocation motion, re-crystallization, grain boundary migration, impurity redistribution) will be studied using a combination of methods. The creep behavior will be modeled and related to the microstructure. Of particular interest is how impurities affect the activation energy for creep. The intellectual merit of the work is that it will lead to a better understanding of glacier ice and will enable glaciologists to model the influence of impurities on the flow and fabric development in polycrystalline ice. The broader impacts of the project include the knowledge that will be gained of the effects of impurities on the flow of ice which will allow paleoclimatologists to better interpret ice core data and will allow scientists developing predictive models to better address the flow of ice sheets under various climate change scenarios. The project will also lead to the education and training of a Ph.D. student, several undergraduates and some high school students. Results from the research will be published in refereed journals. Several undergraduates, typically two per year, will also perform the work. Dartmouth aggressively courts minority students at all degree levels, and we will seek women or minority group undergraduates for this project. The undergraduates will be supported by Dartmouth?s nationally-honored Women In Science Project or by REU funding. The undergraduates? research will integrate closely with the Ph.D. student?s studies. Hanover High School students will also be involved in the project and develop an educational kit to introduce students to the properties of ice. Results from the research will be published in refereed journals and presented at conferences.
Licht/1443433 Sediments deposited by the Antarctic ice sheet are an archive of its history with time and help geologists to determine how the remote interior of the ice sheet has changed over the past several hundred thousand years. This project will focus on the formation and dynamics of moraines (accumulations of dirt and rocks that are incorporated in the glacier surface or have been pushed along by the glacier as it moves) near the blue ice area of Mt. Achernar in the central Transantarctic Mountains in Antarctica.. The study will improve basic understanding of the formation of these moraines. Fieldwork at the site will focus on imaging the internal structure of the moraine to determine the processes by which it, and others like it, form over time. Additional analyses will include measurements of ice flow and collection of rock samples to determine the timing of debris deposition and the changes in the sources of sediments from deep within the Antarctic continent. The project will provide both graduate and undergraduate students training in paleoclimate studies, geology, and numerical modeling approaches. The broader impacts of the proposed work include hands on training in the Earth Sciences for graduate and undergraduate students, collaboration with colleagues in New Zealand and Sweden to provide an international research experience for students from the US, and three educational modules to be delivered by student researchers regarding Antarctica's role in global environments. The research is societally relevant and multidisciplinary and the topics are ideal for sharing with the public. All research findings will be made publicly available to others via timely publication in high-impact, peer-reviewed journals and all data will be submitted to the National Snow and Ice Data Center, and excess samples will be provided to the U.S. Polar Rock Repository. Direct observations of ice sheet history from the margins of Antarctica's polar plateau are essential for testing numerical ice sheet models, and the laterally extensive, blue-ice moraines of the Mt. Achernar Moraine complex in the central Transantarctic Mountains contain a unique and nearly untapped direct, quasi-continuous record of ice sheet change over multiple glacial cycles. The project objectives include improved understanding of processes and rates of blue ice moraine formation, as well as identifying the topographic, glaciological, and climatic controls on their evolution. Data to be collected with fieldwork in Antarctica include: imaging of internal ice structure with ground-penetrating radar, measurement of ice flow velocity and direction with a global positioning system (GPS) array, analysis of debris concentration and composition in glacier ice, state-of-the-art cosmogenic multi-nuclide analyses to determine exposure ages of moraine debris, mapping of trimlines and provenance analysis. Numerical model simulations, constrained by field data, will be used to evaluate the factors influencing changes in glacier flow that potentially impact the accumulation of the moraine debris. All together, the new data and modeling efforts will improve conceptual models of blue ice moraine formation, and thereby make them a more valuable proxy for developing a better understanding of the history of the ice sheet.
Abstract for the general public: The margins of the Antarctic ice sheet have advanced and retreated repeatedly over the past few million years. Melting ice from the last retreat, from 19,000 to 9,000 years ago, raised sea levels by 8 meters or more, but the extents of previous retreats are less well known. The main goal of this project is to understand how Antarctic ice retreats: fast or slow, stepped or steady, and which parts of the ice sheet are most prone to retreat. Antarctica loses ice by two main processes: melting of the underside of floating ice shelves and calving of icebergs. Icebergs themselves are ephemeral, but they carry mineral grains and rock fragments that have been scoured from Antarctic bedrock. As the icebergs drift and melt, this 'iceberg-rafted debris' falls to the sea-bed and is steadily buried in marine sediments to form a record of iceberg activity and ice sheet retreat. The investigators will read this record of iceberg-rafted debris to find when and where Antarctic ice destabilized in the past. This information can help to predict how Antarctic ice will behave in a warming climate. The study area is the Weddell Sea embayment, in the Atlantic sector of Antarctica. Principal sources of icebergs are the nearby Antarctic Peninsula and Weddell Sea embayment, where ice streams drain about a quarter of Antarctic ice. The provenance of the iceberg-rafted debris (IRD), and the icebergs that carried it, will be found by matching the geochemical fingerprint (such as characteristic argon isotope ages) of individual mineral grains in the IRD to that of the corresponding source area. In more detail, the project will: 1. Define the geochemical fingerprints of the source areas of the glacially-eroded material using samples from each major ice stream entering the Weddell Sea. Existing data indicates that the hinterland of the Weddell embayment is made up of geochemically distinguishable source areas, making it possible to apply geochemical provenance techniques to determine the origin of Antarctica icebergs. Few samples of onshore tills are available from this area, so this project includes fieldwork to collect till samples to characterize detritus supplied by the Recovery and Foundation ice streams. 2. Document the stratigraphic changes in provenance of iceberg-rafted debris (IRD) and glacially-eroded material in two deep water sediment cores in the NW Weddell Sea. Icebergs calved from ice streams in the embayment are carried by the Weddell Gyre and deposit IRD as they pass over the core sites. The provenance information identifies which groups of ice streams were actively eroding and exporting detritus to the ocean (via iceberg rafting and bottom currents), and the stratigraphy of the cores shows the relative sequence of ice stream activity through time. A further dimension is added by determining the time lag between fine sediment erosion and deposition, using a new method of uranium-series isotope measurements in fine grained material. Technical abstract: The behavior of the Antarctic ice sheets and ice streams is a critical topic for climate change and future sea level rise. The goal of this proposal is to constrain ice sheet response to changing climate in the Weddell Sea during the three most recent glacial terminations, as analogues for potential future warming. The project will also examine possible contributions to Meltwater Pulse 1A, and test the relative stability of the ice streams draining East and West Antarctica. Much of the West Antarctic ice may have melted during the Eemian (130 to 114 Ka), so it may be an analogue for predicting future ice drawdown over the coming centuries. Geochemical provenance fingerprinting of glacially eroded detritus provides a novel way to reconstruct the location and relative timing of glacial retreat during these terminations in the Weddell Sea embayment. The two major objectives of the project are to: 1. Define the provenance source areas by characterizing Ar, U-Pb, and Nd isotopic signatures, and heavy mineral and Fe-Ti oxide compositions of detrital minerals from each major ice stream entering the Weddell Sea, using onshore tills and existing sediment cores from the Ronne and Filchner Ice Shelves. Pilot data demonstrate that detritus originating from the east and west sides of the Weddell Sea embayment can be clearly distinguished, and published data indicates that the hinterland of the embayment is made up of geochemically distinguishable source areas. Few samples of onshore tills are available from this area, so this project includes fieldwork to collect till to characterize detritus supplied by the Recovery and Foundation ice streams. 2. Document the stratigraphic changes in provenance of iceberg-rafted debris (IRD) and glacially-eroded material in two deep water sediment cores in the NW Weddell Sea. Icebergs calved from ice streams in the embayment are carried by the Weddell Gyre and deposit IRD as they pass over the core sites. The provenance information will identify which ice streams were actively eroding and exporting detritus to the ocean (via iceberg rafting and bottom currents). The stratigraphy of the cores will show the relative sequence of ice stream activity through time. A further time dimension is added by determining the time lag between fine sediment erosion and deposition, using U-series comminution ages.
Despite recent advances, we still know little about how life and its traces persist in extremely harsh conditions. What survival strategies do cells employ when pushed to their limit? Using a new technique, this project will investigate whether Antarctic paleolakes harbor "microbial seed banks," or caches of viable microbes adapted to past paleoenvironments that could help transform our understanding of how cells survive over ancient timescales. Findings from this investigation could also illuminate novel DNA repair pathways with possible biomedical and biotechnology applications and help to refine life detection strategies for Mars. The project will bring Antarctic research to Georgetown University's campus for the first time, providing training opportunities in cutting edge analytical techniques for multiple students and a postdoctoral fellow. The field site will be the McMurdo Dry Valleys, which provide an unrivaled opportunity to investigate fundamental questions about the persistence of microbial life. Multiple lines of evidence, from interbedded and overlying ashfall deposits to parameterized models, suggest that the large-scale landforms there have remained essentially fixed as far back as the middle of the Miocene Epoch (i.e., ~8 million years ago). This geologic stability, coupled with geographic isolation and a steady polar climate, mean that biological activity has probably undergone few qualitative changes over the last one to two million years. The team will sample paleolake facies using sterile techniques from multiple Dry Valleys sites and extract DNA from entombed organic material. Genetic material will then be sequenced using Pacific Biosciences' Single Molecule, Real-Time DNA sequencing technology, which sequences native DNA as opposed to amplified DNA, thereby eliminating PCR primer bias, and enables read lengths that have never before been possible. The data will be analyzed with a range of bioinformatic techniques, with results that stand to impact our understanding of cell biology, Antarctic paleobiology, microbiology and biogeography, biotechnology, and planetary science.
Tremblay, Marissa; Granger, Darryl; Balco, Gregory; Lamp, Jennifer
No dataset link provided
. ______________________________________________________________________________________________________________ Part I: Nontechnical Description Scientists study the Earth's past climate in order to understand how the climate will respond to ongoing global change in the future. One of the best analogs for future climate might the period that occurred approximately 3 million years ago, during an interval known as the mid-Pliocene Warm Period. During this period, the concentration of carbon dioxide in the atmosphere was similar to today's and sea level was 15 or more meters higher, due primarily to warming and consequent ice sheet melting in polar regions. However, the temperatures in polar regions during the mid-Pliocene Warm Period are not well determined, in part because we do not have records like ice cores that extend this far back in time. This project will provide constraints on surface temperatures in Antarctica during the mid-Pliocene Warm Period using a new type of climate substitute, known as cosmogenic noble gas paleothermometry. This project focuses on an area of Antarctica called the McMurdo Dry Valleys. In this area, climate models suggest that temperatures were more than 10 C warmer during the mid-Pliocene than they are today, but indirect geologic observations suggest that temperatures may have been similar to today. The McMurdo Dry Valleys are also a place where rocks have been exposed to Earth surface conditions for several million years, and where this new climate substitute can be readily applied. The team will reconstruct temperatures in the McMurdo Dry Valleys during the mid-Pliocene Warm Period in order to resolve the discrepancy between models and indirect geologic observations and provide much-needed constraints on the sensitivity of Antarctic ice sheets to warming temperatures. The temperature reconstructions generated in this project will have scientific impact in multiple disciplines, including climate science, glaciology, geomorphology, and planetary science. In addition, the project will (1) broaden the participation of underrepresented groups by supporting two early-career female principal investigators, (2) build STEM talent through the education and training of a graduate student, (3) enhance infrastructure for research via publication of a publicly-accessible, open-source code library, and (4) be broadly disseminated via social media, blog posts, publications, and conference presentations. Part II: Technical Description The mid-Pliocene Warm Period (3-3.3 million years ago) is the most recent interval of the geologic past when atmospheric CO2 concentrations exceeded 400 ppm and is widely considered an analog for how Earth’s climate system will respond to current global change. Climate models predict polar amplification - the occurrence of larger changes in temperatures at high latitudes than the global average due to a radiative forcing - both during the mid-Pliocene Warm Period and due to current climate warming. However, the predicted magnitude of polar amplification is highly uncertain in both cases. The magnitude of polar amplification has important implications for the sensitivity of ice sheets to warming and the contribution of ice sheet melting to sea level change. Proxy-based constraints on polar surface air temperatures during the mid-Pliocene Warm Period are sparse to non-existent. In Antarctica, there is only indirect evidence for the magnitude of warming during this time. This project will provide constraints on surface temperatures in the McMurdo Dry Valleys of Antarctica during the mid-Pliocene Warm Period using a newly developed technique called cosmogenic noble gas (CNG) paleothermometry. CNG paleothermometry utilizes the diffusive behavior of cosmogenic 3He in quartz to quantify the temperatures rocks experience while exposed to cosmic-ray particles within a few meters of the Earth’s surface. The very low erosion rates and subzero temperatures characterizing the McMurdo Dry Valleys make this region uniquely suited for the application of CNG paleothermometry for addressing the question: what temperatures characterized the McMurdo Dry Valleys during the mid-Pliocene Warm Period? To address this question, the team will collect bedrock samples at several locations in the McMurdo Dry Valleys where erosion rates are known to be low enough that cosmic ray exposure extends into the mid-Pliocene or earlier. They will pair cosmogenic 3He measurements, which will record the thermal histories of our samples, with measurements of cosmogenic 10Be, 26Al, and 21Ne, which record samples exposure and erosion histories. We will also make in situ measurements of rock and air temperatures at sample sites in order to quantify the effect of radiative heating and develop a statistical relationship between rock and air temperatures, as well as conduct diffusion experiments to quantify the kinetics of 3He diffusion specific to each sample. This suite of observations will be used to model permissible thermal histories and place constraints on temperatures during the mid-Pliocene Warm Period interval of cosmic-ray exposure. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The geomagnetic field is decreasing rapidly, leading some to propose that it will undergo collapse followed by a return to its usual strength but in the opposite direction, a phenomenon known as a "polarity reversal" which happened last approximately 800,000 years ago. Such a collapse would have a potentially devastating effect on the ability of the magnetic field to shield us from cosmic ray bombardment, placing our electrical grid at grave risk, among other things. The probability of such a drastic event happening depends on the average strength of the magnetic field. If the average is approximately equal to the present field (as many researchers assume), then the fact that the field is dropping rapidly would be more alarming than if the magnetic field is quite a bit higher than average, as implied by the current data for the ancient magnetic field from Antarctica. The argument over the average field strength stems from the difficulty of its estimation. The new approach advocated for in this proposal will allow researchers to obtain a robust data set for high southerly latitudes which will greatly enhance confidence in estimates of the average ancient field strength, contributing to our ability to assess the likelihood of catastrophic collapse of the geomagnetic field. The difficulty in estimating the average magnetic field strength over the past five million years is apparent when one examines data for ancient field strength as a function of latitude. Directions of the geomagnetic field have been well approximated by an axial dipole (bar magnetic) at the center of the Earth that is aligned with the spin axis. But the signal of such an axial geomagnetic dipole, whereby the field strength doubles from the equator to the poles, is not readily apparent in the database of field strength estimates from the last five million years. There are several possible explanations for this troubling failure: 1) combining data from different ages with possibly different average intensities leads to an inappropriate comparison of field states, 2) there is a depression of field strength at high latitude, perhaps reflecting the role of the `tangent cylinder?, or 3) there is noise and/or bias introduced by poor selection criteria or poor experimental design. The latter is a likely explanation as published data from the 1960 lava flow on Hawaii display the entire range of intensity values observed on the Earth's surface today, yet samples from this lava flow should all have one distinct value. This proposal benefits from the development of new experimental methods, better field strategies and a new approach to data selection that will allow accurate estimation of the ancient field strength through a comprehensive field campaign to collect lava flow samples from previously studied outcrops targeting the most promising material. These will be analyzed using the most robust experimental protocol and subjected to rigorous selection criteria proven to reject inaccurate results, leading to both accurate and precise estimates of ancient field strength.
Nontechnical Abstract Studies in Antarctica are, at present, severely limited by the costs of placing measurement instruments within and beneath thousands of meters of ice. Our aim is to enable dense, widespread measurement-networks by advancing development of low-cost ice melt probe technology to deploy instruments. Ice melt probes use electrical energy to descend through thick ice with little support structure on the ice surface. We are extending previous technology by using anti-freeze to maintain a partially open melt-hole above a descending probe, deploying as we go a new a new fiber-optic technology to measure ice temperature. Ice temperature measurements will reveal spatial patterns of heat welling up from the Earth beneath the ice, which in turn will contribute greatly to finding ancient ice that contains global climate records, and to understanding how ice flow may raise sea levels. Our immediate objective in this 1-year project is to test and refine our anti-freeze-based method in a 15 meter-tall ice column at the University of Wisconsin, so as to reduce technical risk in future field tests. Technical Abstract The overarching aim of our development is to enable widespread, spatially dense deployments of instruments within and beneath the Antarctic Ice Sheet for a variety of investigations, beginning with observations of basal temperature and geothermal flux at the base of the ice sheet. Dense, widespread deployment requires logistical costs far below current costs for ice drilling and coring. Our approach is to extend ice melt probe technology (which is inherently light, logistically) to allow the progressive deployment of cable for Distributed Temperature Sensing (DTS) from the ice surface as the probe descends, without greatly increasing logistical costs. Our extension is based on arresting refreezing of the melt-hole above the probe (at a diameter a few times the cable diameter) by injecting anti-freeze - specifically, ethanol at temperature near 0C - a few meters above the probe during descent. After thermal equilibration of the liquid ethanol/water column with the ice, DTS measurements yield the depth-profile of ice sheet temperature, from which basal temperature and (over frozen beds) geothermal flux can be inferred. We have carried out initial trials of our approach in a cold-room laboratory, but field work based only on such small-scale tests may still involve unnecessary risk. We therefore propose further testing at a facility of the Ice Drilling Design and Operations (IDDO) facility in Madison, WI. The new trials will test our approaches to melt-hole control and probe recovery in the taller column, will test cable and cable-tension-management methods more nearly approximating those needed to work on ice sheets, and will demonstrate the Distributed Temperature Sensing in its field configuration. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Antarctic subglacial environment remains one of the least explored regions on Earth. This project will examine the physical and biological characteristics of Subglacial Lake Mercer, a lake that lies 1200m beneath the West Antarctic Ice Sheet. This study will address key questions relating to the stability of the ice sheet, the subglacial hydrological system, and the deep-cold subglacial biosphere. The education and outreach component aims to widely disseminate results to the scientific community and to the general public through short films, a blog, and a website. Subglacial Lake Mercer is one of the larger hydrologically active lakes in the southern basin of the Whillans Ice Plain, West Antarctica. It receives about 25 percent of its water from East Antarctica with the remainder originating from West Antarctica, is influenced by drain/fill cycles in a lake immediately upstream (Subglacial Lake Conway), and lies about 100 km upstream of the present grounding line of the Ross Ice Shelf. This site will yield information on the history of the Whillans and Mercer Ice Streams, and on grounding line migration. The integrated study will include direct sampling of basal ice, water, and sediment from the lake in concert with surface geophysical surveys over a three-year period to define the hydrological connectivity among lakes on the Whillans Ice Plain and their flow paths to the sea. The geophysical surveys will furnish information on subglacial hydrology, aid the site selection for hot-water drilling, and provide spatial context for interpreting findings. The hot-water-drilled boreholes will be used to collect basal ice samples, provide access for direct measurement of subglacial physical, chemical, and biological conditions in the water column and sediments, and to explore the subglacial water cavities using a remotely operated vehicle equipped with sensors, cameras, and sampling equipment. Data collected from this study will address the overarching hypothesis "Contemporary biodiversity and carbon cycling in hydrologically-active subglacial environments associated with the Mercer and Whillans ice streams are regulated by the mineralization and cycling of relict marine organic matter and through interactions among ice, rock, water, and sediments". The project will be undertaken by a collaborative team of scientists, with expertise in microbiology, biogeochemistry, hydrology, geophysics, glaciology, marine geology, paleoceanography, and science communication.
Mak/1443482 This project will compare current atmospheric conditions with those of the remote past prior to human influence. This is important in order to understand the impact of human activities on Earth's atmosphere, and to determine the stability of the composition of the atmosphere in the past. How humans have impacted Earth?s atmospheric composition is important for developing accurate predictions of future global atmospheric conditions. In addition to training students, the investigators will support continuing education of high school science teachers on Long Island through specifically tailored, interactive seminars on various topics in earth science, atmospheric sciences, physics and biology. A pilot program at Mount Sinai School District, near Stony Brook University will be the first implementation of this program. The investigators plan to reconstruct historical variations in the sources of atmospheric carbon monoxide (CO) from measurements of the concentration and stable isotopic abundance of carbon monoxide ([CO], 13CO and C18O) in the South Pole Ice Core, which is being drilled in 2014-2016. The goal is to strategically sample and reconstruct the relative variations in CO source strengths over the past 20,000 years. These will be the first measurements to extend the CO record beyond 650 years before present, back to the last glacial maximum. Both atmospheric chemical processes and variations in CO sources can impact the CO budget, and variations in the CO budget are useful in identifying and quantifying chemistry-climate interactions.
Non-technical description: East Antarctica holds a vast, ancient ice sheet. The bedrock hidden beneath this ice sheet may provide clues to how today's continents formed, while the ice itself contains records of Earth's atmosphere from distant eras. New drilling technologies are now available to allow for direct sampling of these materials from more than two kilometers below the ice surface. However, getting this material will require knowing where to look. The Southern Plateau Ice-sheet Characterization and Evolution of the Central Antarctic Plate (SPICECAP) project will use internationally collected airborne survey data to search East Antarctica near the South Pole for key locations that will provide insight into Antarctica's geology and for locating the oldest intact ice on Earth. Ultimately, scientists are interested in obtaining samples of the oldest ice to address fundamental questions about the causes of changes in the timing of ice-age conditions from 40,000 to 100,000 year cycles. SPICECAP data analysis will provide site survey data for future drilling and will increase the overall understanding of Antarctica's hidden ice and geologic records. The project involves international collaboration and leveraging of internationally collected data. The SPICECAP project will train new interdisciplinary scientists at the undergraduate, graduate, and postdoctoral levels. Technical description: This study focuses on processing and interpretation of internationally collected aerogeophysical data from the Southern Plateau of the East Antarctic Ice Sheet. The data include ice penetrating radar data, laser altimetry, gravity and magnetics. The project will provide information on geological trends under the ice, the topography and character of the ice/rock interface, and the stratigraphy of the ice. The project will also provide baseline site characterization for future drilling. Future drilling sites and deep ice cores for old ice require that the base of the ice sheet be frozen to the bed (i.e. no free water at the interface between rock and ice) and the assessment will map the extent of frozen vs. thawed areas. Specifically, three main outcomes are anticipated for this project. First, the study will provide an assessment of the viability of Titan Dome, a subglacial highland region located near South Pole, as a potential old ice drilling prospect. The assessment will include determining the hydraulic context of the bed by processing and interpreting the radar data, ice sheet mass balance through time by mapping englacial reflectors in the ice and connecting them to ice stratigraphy in the recent South Pole, and ice sheet geometry using laser altimetry. Second, the study will provide an assessment of the geological context of the Titan Dome region with respect to understanding regional geologic boundaries and the potential for bedrock sampling. For these two goals, we will use data opportunistically collected by China, and the recent PolarGAP dataset. Third, the study will provide an assessment of the risk posture for RAID site targeting in the Titan Dome region, and the Dome C region. This will use a high-resolution dataset the team collected previously at Dome C, an area similar to the coarser resolution data collected at Titan Dome, and will enable an understanding of what is missed by the wide lines spacing at Titan Dome. Specifically, we will model subglacial hydrology with and without the high resolution data, and statistically examine the detection of subglacial mountains (which could preserve old ice) and subglacial lakes (which could destroy old ice), as a function of line spacing.
The ocean tide is a large component of total variability of ocean surface height and currents in the seas surrounding Antarctica, including under the floating ice shelves. Maximum tidal height range exceeds 7 m (near the grounding line of Rutford Ice Stream) and maximum tidal currents exceed 1 m/s (near the shelf break in the northwest Ross Sea). Tides contribute to several important climate and ecosystems processes including: ocean mixing, production of dense bottom water, flow of warm Circumpolar Deep Water onto the continental shelves, melting at the bases of ice shelves, fracturing of the ice sheet near a glacier or ice stream’s grounding line, production and decay of sea ice, and sediment resuspension. Tide heights and, in particular, currents can change as the ocean background state changes, and as the geometry of the coastal margins of the Antarctic Ice Sheet varies through ice shelf thickness changes and ice-front and grounding-line advances or retreats. For satellite-based studies of ocean surface height and ice shelf thickness changes, tide heights are a source of substantial noise that must be removed. Similarly, tidal currents can also be a substantial noise signal when trying to estimate mean ocean currents from short-term measurements such as from acoustic Doppler current profilers mounted on ships and CTD rosettes. Therefore, tide models play critical roles in understanding current and future ocean and ice states, and as a method for removing tides in various measurements. A paper in Reviews of Geophysics (Padman, Siegfried and Fricker, 2018, see list of project-related publications below) provides a detailed review of tides and tidal processes around Antarctica.
This project provides a gateway to tide models and a database of tide height coefficients at the Antarctic Data Center, and links to toolboxes to work with these models and data.
Overview: In order to close the global overturning circulation, high-density deep- and bottom waters produced at high latitudes must be made less dense and upwell to shallower depths. Available observations from the subtropical South Atlantic indicate that the bulk of the mixing in the deep ocean there takes place over the topographically rough Mid-Atlantic Ridge, in particular in the quasi-regularly spaced "fracture zone canyons" corrugating the ridge flanks. There, dense water is advected toward the ridge crest (i.e. upwelled) by persistent along-valley currents that flow down the unidirectional density gradients, which are maintained by strong turbulence (diapycnal mixing). Most of the data on which these inferences are based were collected during the Brazil Basin Tracer Release Experiment (BBTRE) along a single ridge-flank canyon in the western South Atlantic near 22S where previous analyses have shown that both tidal mixing and overflow processes are important. Therefore, it is likely that both processes must be considered in order to understand and parameterize the effects of turbulence and mixing in the canyons corrugating the flanks of all slow-spreading ridges, which make up large fractions of the sea floor, in particular in the Atlantic, Indian and Southern Oceans. The primary aim of this follow-on project is to improve our understanding of the dynamics over the corrugated flanks of slow-spreading mid-ocean ridges. Due to the coarse sampling resolution and choice of station locations it is not possible to answer important questions, such as the relative importance of tidal and sill mixing, from the BBTRE data. Therefore, high-resolution surveys of hydrography, three-dimensional flow, turbulence and mixing will be carried out in two neighboring canyons and over the intervening topographic spur in the BBTRE region to determine the relative contributions of tidal and sill-related mixing. Furthermore, profiling moorings deployed on two nearby sill regions will be used to derive time series of spatially integrated mixing related buoyancy fluxes and to investigate the strong but unexplained sub-inertial variability of the along-canyon flow recorded previously. Additionally, three small moorings will be deployed in saddles between the two canyons to investigate inter-canyon exchange. The data analysis will include available data from previous experiments, including a set of tracer profiles that has not been analyzed before. Intellectual Merit: The corrugated flanks of slow-spreading ridges cover large areas of the sea floor of several major ocean basins. Therefore, understanding the dynamics in the ~100 km of ridge-flank canyons and its effects on the buoyancy and upwelling budget of the abyssal ocean is of global significance. In addition to determining the relative importance of tidal mixing and cross-sill flows in two canyons, the temporal variability of turbulence and mixing from tidal to yearly time scales will be investigated to gain insights into the forcing of the along-canyon flows, the exchange between neighboring canyons, and the eventual fate of the canyon waters. Broader Impacts: It is anticipated that insights gained during this project will improve our understanding of abyssal mixing in many different regions with similar bottom topography and provide the basis for better parameterizations of the effects of turbulence and mixing in large-scale circulation and climate models that cannot resolve these small-scale processes. As part of the project, a graduate student and a post-doctoral researcher will be trained in all aspects of observational physical oceanography, from data acquisition to interpretation.
Modeling fluctuations in the extent of the West Antarctic Ice Sheet (WAIS) over time is a principal goal of the glaciological community. These models will provide a critical basis for predictions of future sea level change, and therefore this work great societal relevance. The mid-Pliocene time interval is of particular interest, as it is the most recent period in which global temperatures were warmer and atmospheric CO2 concentrations may have been higher than current levels. However, observational constraints on fluctuations in the WAIS older than the last glacial maximum are rare. The investigators propose to collect geochemical data from the Ohio Range and Scott Glacier to quantify past variability in the height of the WAIS. Limited available cosmogenic nuclide data are broadly consistent with a model indicating that Pliocene WAIS elevations and volumes were smaller than at present, and that WAIS collapse was common. The PIs will use geologic observations and cosmogenic nuclide concentrations from bedrock samples at multiple locations and at multiple elevations, including sub-ice samples, to constrain WAIS ice volume changes in a "dipstick" like fashion. Data obtained from the proposed research will provide targets for data-ice sheet model comparisons to accurately characterize Plio-Pleistocene and future WAIS behavior. As part of this project, the investigators will work with the Natural History Museum and the Earth & Planetary Science department at Harvard to develop an exhibit that will become part of the Museum's recently opened Earth and Planetary Science Gallery. The project involves mentoring of a female graduate student as well as an undergraduate student.
Atmospheric oxygen rose suddenly approximately 2.4 billion years ago after Cyanobacteria evolved the ability to produce oxygen through photosynthesis (oxygenic photosynthesis). This change permanently altered the future of life on Earth, yet little is known about the evolutionary processes leading to it. The Melainabacteria were first discovered in 2013 and are closely related non-photosynthetic relatives of the first group of organisms capable of oxygenic photosynthesis. This project will utilize existing data on metagenomes from microbial mats in Lake Vanda, an ice-covered lake in Antarctica where many sequences of Melainabacteria have been previously identified. From this genetic information, the project aims to assess the metabolic capabilities of these Melainabacteria and identify their potential ecological roles. The project will additionally evaluate the evolutionary relationships among the Cyanobacteria and Melainabacteria and closely related organisms that will allow an advancement in understanding of the evolutionary path that lead to oxygenic photosynthesis on Earth. The project will focus on extracting evolutionary information from the genomic data of Melainabacteria and Sericytochromatia, recently-described groups closely related to but basal to the Cyanobacteria. The characterization of novel members of these groups in samples from Lake Vanda, Antarctica, will provide insights into the path and processes involved in the evolution of oxygenic photosynthesis. The research will focus on assessing the metabolic capabilities of Melainabacteri, deriving the evolutionary relationships among Melainabacteria and Cyanobacteria and reconstructing potential evolutionary pathways leading to oxygenic photosynthesis. The project will focus on 12 metagenomes where the researchers expect to obtain genomes for at least the eight most abundant Melainabacteria in the dataset. Melainabacteria bins will be annotated and preliminary metabolic pathways will be constructed. The project will utilize full-length sequences of marker genes from across the bacterial domain with a particular focus on taxa that are oxygenic or anoxygenic phototrophs and use the marker genes, to build a rooted "backbone" tree. Incomplete or short sequences from the metagenomes will be added to the tree using the Evolutionary Placement Algorithm. The researchers will also build a corresponding phylogenetic tree using a Bayesian framework and compare their topologies. By doing so, the project aims to improve the understanding of the evolution of oxygenic photosynthesis, which caused the most significant change in Earth's surface chemistry. Specifically, they will document a significantly broader metabolic diversity within the Melainabacteria than has been previously identified, gain significant insights into their metabolic evolution, their evolutionary relationships with the Cyanobacteria, and the evolutionary steps leading to the origin of oxygenic photosynthesis. This research will have the overall effect of constraining key evolutionary processes in the origin of oxygenic photosynthesis. It will provide the foundation for future studies by indicating where a genomic record of the evolution of oxygenic photosynthesis may be preserved. Results will also be shared with middle school children through the development of scientific lesson plans in collaboration with teachers. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Brook/1246465 This award supports a project to measure the carbon dioxide (CO2) concentration in the WAIS Divide ice core covering the time period 25,000 to 60,000 years before present, and to analyze the isotopic composition of CO2 in selected time intervals. The research will improve understanding of how and why atmospheric CO2 varied during the last ice age, focusing particularly on abrupt transitions in the concentration record that are associated with abrupt climate change. These events represents large perturbations to the global climate system and better information about the CO2 response should inform our understanding of carbon cycle-climate feedbacks and radiative forcing of climate. The research will also improve analytical methods in support of these goals, including completing development of sublimation methods to replace laborious mechanical crushing of ice to release air for analysis. The intellectual merit of the proposed work is that it will increase knowledge about the magnitude and timing of atmospheric CO2 variations during the last ice age, and their relationship to regional climate in Antarctica, global climate history, and the history of abrupt climate change in the Northern Hemisphere. The temporal resolution of the proposed record will in most intervals be ~ 4 x higher than previous data sets for this time period, and for selected intervals up to 8-10 times higher. Broader impacts of the proposed work include a significant addition to the amount of data documenting the history of the most important long-lived greenhouse gas in the atmosphere and more information about carbon cycle-climate feedbacks - important parameters for predicting future climate change. The project will contribute to training a postdoctoral researcher, research experience for an undergraduate and a high school student, and outreach to local middle school and other students. It will also improve the analytical infrastructure at OSU, which will be available for future projects.
The depletion of stratospheric ozone over Antarctica leads to abnormally high levels of ultraviolet radiation (UVR) from the sun reaching the surface of the ocean. This phenomenon is predicted to continue for the next half century, despite bans on ozone-destroying pollutants. Phytoplankton in the near surface ocean are subjected to variable amounts of UVR and contain a lot of lipids (fats). Because phytoplankton are at the base of the food chain their lipids makes their way into the Antarctic marine ecosystem's food web. The molecular structures of phytoplankton lipids are easily altered by UVR. When this happens, their lipids can be transformed from healthy molecules into potentially harmful molecules(oxylipins) known to be disruptive to reproductive and developmental processes. This project will use state-of-the-art molecular methods to answer questions about extent to which UVR damages lipid molecules in phytoplankton, and how these resultant molecules might effect the food chain in the ocean near Antarctica. Lipid peroxidation is often invoked as consequence of increased exposure of phytoplankton to UVR-produced reactive oxygen species (ROS), but the literature is practically silent on peroxidized lipids and their byproducts (i.e. oxylipins) in the ocean. In waters of the West Antarctic Peninsula (WAP), spring-time blooms of diatoms contribute significantly to overall marine primary production. Oxylipins from diatoms can be highly bioactive; their impact on zooplankton grazers, bacteria, and other phytoplankton has been the subject of intense study. However, almost all of this work has focused on the production of oxylipins via enzymatic pathways, not by pathways involving UVR and/or ROS. Furthermore, rigorous experimental work on the effects of oxylipins has been confined almost exclusively to pure cultures and artificial communities. Thus, the true potential of these molecules to disrupt carbon cycling is very poorly-constrained, and is entirely unknown in the waters of the WAP. Armed with new highly-sensitive, state-of-the-art analytical techniques based on high-mass-resolution mass spectrometry, the principal investigator and his research group have begun to uncover an exquisite diversity of oxylipins in natural WAP planktonic communities. These techniques will be applied to understand the connections between UVR, ROS, oxylipins, and carbon cycling. The project will answer the question of how UVR, via ROS, affects oxylipin production by diatoms in WAP surface waters in controlled experiments conducted at a field station. With the answer to this question in hand, the project will also seek to answer how this phenomenon impacts the flow of carbon, particularly the export of organic carbon from the system, during a research cruise. The level of UVR-induced stresses experienced by oxylipin-rich planktonic communities in the WAP is unique, making Antarctica the only location for answering these fundamental questions. Major activities will include laboratory experiments with artificial membranes and diatom cultures, as well field experiments with phytoplankton, zooplankton, and bacteria in WAP waters.
Hydrogen (H2) is one of the most abundant trace gases in the atmosphere, with a mean level of 500 ppb and an atmospheric lifetime of about two years. Hydrogen has an impact on both air quality and climate, due to its role as a precursor for tropospheric ozone and stratospheric water vapor. Projections indicate that a future "hydrogen economy" would increase hydrogen emissions. Understanding of the atmospheric hydrogen budget is largely based on a 30-year record of surface air measurements, but there are no long-term records with which to assess either: 1) the influence of climate change on atmospheric hydrogen, or 2) the extent to which humans have impacted the hydrogen budget. Polar ice core records of hydrogen will advance our understanding of the atmospheric hydrogen cycle and provide a stronger basis for projecting future changes to atmospheric levels of hydrogen and their impacts. The research will involve laboratory work to enable the collection and analysis of hydrogen in polar ice cores. Hydrogen is a highly diffusive molecule and, unlike most other atmospheric gases, diffusion of hydrogen in ice is so rapid that ice samples must be stored in impermeable containers immediately upon drilling and recovery. This project will: 1) construct a laboratory system for extracting and analyzing hydrogen in polar ice, 2) develop and test materials and construction designs for vessels to store ice core samples in the field, and 3) test the method on samples of opportunity previously stored in the field. The goal of this project is a proven, cost-effective design for storage flasks to be fabricated for use on future polar ice coring projects. This project will support the dissertation research of a graduate student in the UC Irvine Department of Earth System Science. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Predictions of future sea level rise require better understanding of the changing dynamics of the Greenland and Antarctic ice sheets. One way to better understand the past history of the ice sheets is to obtain records from inland ice for past geological periods, particularly in Antarctica, the world?s largest remaining ice sheet. Such records are exceedingly rare, and can be acquired at volcanic outcrops in the La Gorce Mountains of the central Transantarctic Mountains. Volcanoes now exposed within the La Gorce Mountains erupted beneath the East Antarctic ice sheet and the data collected will record how thick the ice sheet was in the past. In addition, information will be used to determine the thermal conditions at the base of the ice sheet, which impacts ice sheet stability. The project will also investigate the origin of volcanic activity in Antarctica and links to the West Antarctic Rift System (WARS). The WARS is a broad area of extended (i.e. stretched) continental crust, similar to that found in East Africa, and volcanism is wide spread and long-lived (65 million years to currently active) and despite more than 50 years of research, the fundamental cause of volcanism and rifting in Antarctica is still vigorously debated. The results of this award therefore also potentially impact the study of oceanic volcanism in the entire southwestern Pacific region (e.g., New Zealand and Australia), where volcanic fields of similar composition and age have been linked by common magma sources and processes. The field program includes a graduate student who will work on the collection, analysis, and interpretation of petrological data as part of his/her Masters project. The experience and specialized analytical training being offered will improve the quality of the student?s research and optimize their opportunities for their future. The proposed work fosters faculty and student national and international collaboration, including working with multi-user facilities that provide advanced technological mentoring of science students. Results will be broadly disseminated in peer-reviewed journals, public presentations at science meetings, and in outreach activities. Petrologic and geochemical data will be disseminated to be the community through the Polar Rock Repository. The study of subglacially erupted volcanic rocks has been developed to the extent that it is now the most powerful proxy methodology for establishing precise ?snapshots? of ice sheets, including multiple critical ice parameters. Such data should include measurements of ice thickness, surface elevation and stability, which will be used to verify, or reject, published semi-empirical models relating ice dynamics to sea level changes. In addition to establishing whether East Antarctic ice was present during the formation of the volcanoes, data will be used to derive the coeval ice thicknesses, surface elevations and basal thermal regime(s) in concert with a precise new geochronology using the 40Ar/39Ar dating method. Inferences from measurement of standard geochemical characteristics (major, trace elements and Sr, Nd, Pb, O isotopes) will be used to investigate a possible relationship between the volcanoes and the recently discovered subglacial ridge under the East Antarctic ice, which may be a rift flank uplift. The ridge has never been sampled, is undated and its significance is uncertain. The data will provide important new information about the deep Earth and geodynamic processes beneath this mostly ice covered and poorly understood sector of the Antarctic continent.
Brook/1643722 This award supports a project to measure the concentration of the gas methane in air trapped in an ice core collected from the South Pole. The data will provide an age scale (age as a function of depth) by matching the South Pole methane changes with similar data from other ice cores for which the age vs. depth relationship is well known. The ages provided will allow all other gas measurements made on the South Pole core (by the PI and other NSF supported investigators) to be interpreted accurately as a function of time. This is critical because a major goal of the South Pole coring project is to understand the history of rare gases in the atmosphere like carbon monoxide, carbon dioxide, ethane, propane, methyl chloride, and methyl bromide. Relatively little is known about what controls these gases in the atmosphere despite their importance to atmospheric chemistry and climate. Undergraduate assistants will work on the project and be introduced to independent research through their work. The PI will continue visits to local middle schools to introduce students to polar science, and other outreach activities (e.g. laboratory tours, talks to local civic or professional organizations) as part of the project. Methane concentrations from a major portion (2 depth intervals, excluding the brittle ice-zone which is being measured at Penn State University) of the new South Pole ice core will be used to create a gas chronology by matching the new South Pole ice core record with that from the well-dated WAIS Divide ice core record. In combination with measurements made at Penn State, this will provide gas dating for the entire 50,000-year record. Correlation will be made using a simple but powerful mid-point method that has been previously demonstrated, and other methods of matching records will be explored. The intellectual merit of this work is that the gas chronology will be a fundamental component of this ice core project, and will be used by the PI and other investigators for dating records of atmospheric composition, and determining the gas age-ice age difference independently of glaciological models, which will constrain processes that affected firn densification in the past. The methane data will also provide direct stratigraphic markers of important perturbations to global biogeochemical cycles (e.g., rapid methane variations synchronous with abrupt warming and cooling in the Northern Hemisphere) that will tie other ice core gas records directly to those perturbations. A record of the total air content will also be produced as a by-product of the methane measurements and will contribute to understanding of this parameter. The broader impacts include that the work will provide a fundamental data set for the South Pole ice core project and the age scale (or variants of it) will be used by all other investigators working on gas records from the core. The project will employ an undergraduate assistant(s) in both years who will conduct an undergraduate research project which will be part of the student's senior thesis or other research paper. The project will also offer at least one research position for the Oregon State University Summer REU site program. Visits to local middle schools, and other outreach activities (e.g. laboratory tours, talks to local civic or professional organizations) will also be part of the project.
Ice cores contain detailed accounts of Earth's climate history. The collection of an ice core can be logistically challenging, and extraction of data from the core can be time-consuming as well as susceptible to both human and machine error. Furthermore, locked in measurements from ice cores is information that scientists have not yet found ways to recover. This project will apply techniques from information theory to ice-core data to unlock that information. The primary goal is to demonstrate that information theory can (a) identify regions of a specific ice-core record that are in need of further analysis and (b) provide some specific guidance for that analysis. A secondary goal is to demonstrate that information theory has practical and scientific utility for studies of past climate. This project aims to use information theory in two distinct ways: first, to identify regions of a core where information appears to be damaged or missing, perhaps due to human and/or machine error. In the segment of the West Antarctic Ice Sheet Divide core that is 5000-8000 years old, for instance, information-theoretic methods reveal significant levels of noise, probably due to a laboratory instrument, and something that was not visible in the raw data. This is a particularly important segment of the record, as it contains valuable clues about climatic shifts and the onset of the Holocene. Targeted re-sampling of this segment of the core and reanalysis with newer laboratory apparatus could resolve the data issues. The second way in which information theory can potentially aid in ice-core analysis is by extracting climate signals from the data--such as the accumulation rate at the core site over the period of its formation. This quantity usually requires significant time and effort to produce, but information theory could help to streamline that process. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Abstract (non-technical) Sea level rise is a problem of global importance and it is increasingly affecting the tens of millions of Americans living along coastlines. The melting of glaciers in mountain areas worldwide in response to global warming is a major cause of sea level rise and increases in nuisance coastal flooding. However, the world's largest land-based ice sheets are situated in the Polar Regions and their response under continued warming is very difficult to predict. One reason for this uncertainty is a lack of observations of ice behavior and melt under conditions of warming, as it is a relatively new global climate state lasting only a few generations so far. Researchers will investigate ice growth on Antarctica under past warm conditions using geological archives embedded in the layers of sand and mud under the sea floor near Antarctica. By peeling back at the layers beneath the seafloor investigators can read the history book of past events affecting the ice sheet. The Antarctic continent on the South Pole, carries the largest ice mass in the world. The investigator's findings will substantially improve scientists understanding of the response of ice sheets to global warming and its effect on sea level rise. Abstract (technical) The melt of land based ice is raising global sea levels with at present only minor contributions from polar ice sheets. However, the future role of polar ice sheets in climate change is one of the most critical uncertainties in predictions of sea level rise around the globe. The respective roles of oceanic and atmospheric greenhouse forcing on ice sheets are poorly addressed with recent measurements of polar climatology, because of the extreme rise in greenhouse forcing the earth is experiencing at this time. Data on the evolution of the West Antarctic ice sheet is particularly sparse. To address the data gap, researchers will reconstruct the timing and spatial distribution of Antarctic ice growth through the last greenhouse to icehouse climate transition around 37 to 33 Ma. They will collect sedimentological and geochemical data on core samples from a high-latitude paleoarchive to trace the shutdown of the chemical weathering system, the onset of glacial erosion, ice rafting, and sea ice development, as East and West Antarctic ice sheets coalesced in the Weddell Sea sector. Their findings will lead to profound increases in the understanding of the role of greenhouse forcing in ice sheet development and its effect on the global climate system. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The PIs will design and build a new rapid access ice drill (RAID) for use in Antarctica. This drill will have the ability to rapidly drill through ice up to 3300 m thick and then collect samples of the ice, ice-sheet bed interface, and bedrock substrate below. This drilling technology will provide a new way to obtain in situ measurements and samples for interdisciplinary studies in geology, glaciology, paleoclimatology, microbiology, and astrophysics. The RAID drilling platform will give the scientific community access to records of geologic and climatic change on a variety of timescales, from the billion-year rock record to thousand-year ice and climate histories. Successful development of the RAID system will provide a research tool that is currently unavailable. Development of this platform will enable scientists to address critical questions about the deep interface between the Antarctic ice sheets and the substrate below. Development of RAID will provide a way to address many of the unknowns associated with general stability of the Antarctic ice sheets in the face of changing climate and sea level rise. The scientific rationale for RAID was reviewed in a previous proposal (Goodge 1242027). The PIs were granted ?Phase I? funding to develop a more detailed conceptual design for the RAID drill that would provide a better understanding of construction costs as well as operation and maintenance costs for RAID once it is constructed. Phase I support also allowed the PIs to work with the research community to develop more detailed science requirements for the drill. This proposal requests continued funding (Phase II) to construct, assemble and test the RAID drilling platform, through to staging it in Antarctic for future scientific operations.
Blankenship: 9319369 Bell: 9319854 Behrendt: 9319877 This award supports a project to conduct an integrated geophysical survey over a large portion of the West Antarctic Ice Sheet (WAIS) toward an understanding of the dynamic behavior of the ice sheet and the nature of the lithosphere beneath the ice sheet. West Antarctica is characterized by two kinds of the Earth s most dynamic systems, a continental rift (the West Antarctic Rift System) and a marine based ice sheet (the WAIS). Active continental rift systems, caused by divergent plate motions, result in thinned continental crust. Associated with the thin crust are fault-bounded sedimentary basins, active volcanism, and elevated heat flow. Marine ice sheets are characterized by rapidly moving streams of ice, penetrating and draining a slowly moving ice reservoir. Evidence left by past marine ice sheets indicates that they may have a strongly non- linear response to long-term climate change which results in massive and rapid discharges of ice. Understanding the evolution of the ice stream system and its interaction with the interior ice is the key to understanding this non-linear response. Subglacial geology and ice dynamics are generally studied in isolation, but evidence is mounting that the behavior of the West Antarctic ice streams may be closely linked to the nature of the underlying West Antarctic rift system. The fast moving ice streams appear to glide on a lubricating layer of water-saturated till. This till requires easily eroded sediment and a source of water, both of which may be controlled by the geology of the rift system; the sediments from the fault-bounded basins and the water from the elevated heat flux associated with active lithospheric extension. This project represents an interdisciplinary aerogeophysical study to characterize the lithosphere of the West Antarctic rift system beneath critical regions of the WAIS. The objective is to determine the effects of the rift architect ure, as manifested by the distribution of sedimentary basins and volcanic constructs, on the ice stream system. The research tool is a unique geophysical aircraft with laser altimetry, ice penetrating radar, aerogravity, and aeromagnetic systems integrated with a high precision kinematic GPS navigation system. It is capable of imaging both the surface and bed of the ice sheet while simultaneously measuring the gravity and magnetic signature of the subglacial lithosphere. Work to be done under this award will build on work already completed in the southern sector of central West Antarctica and it will focus on the region of the Byrd Subglacial Basin and Ice Stream D. The ice sheet in these regions is completely covered by satellite imagery and so this project will be integrated with remote sensing studies of the ice stream. The changing dynamics of Ice Stream D, as with other West Antarctic ice streams, seem to be correlated with changes in the morphological provinces of the underlying rift system. The experimental targets proceed from the divide of the interior ice, downstream through the onset of streaming to the trunk of Ice Stream D. This study will be coordinated with surface glaciological investigations of Ice Stream D and will be used to guide cooperative over-snow seismic investigations of the central West Antarctic rift system. The data will also be used to select a site for future deep ice coring along the crest of the WAIS. These data represent baseline data for long term global change monitoring work and represent crucial boundary conditions for ice sheet modeling efforts.
OPP 9615281 Luyendyk OPP 9615282 Siddoway Abstract This award supports a collaborative project that combines air and ground geological-geophysical investigations to understand the tectonic and geological development of the boundary between the Ross Sea Rift and the Marie Byrd Land (MBL) volcanic province. The project will determine the Cenozoic tectonic history of the region and whether Neogene structures that localized outlet glacier flow developed within the context of Cenozoic rifting on the eastern Ross Embayment margin, or within the volcanic province in MBL. The geological structure at the boundary between the Ross Embayment and western MBL may be a result of: 1) Cenozoic extension on the eastern shoulder of the Ross Sea rift; 2) uplift and crustal extension related to Neogene mantle plume activity in western MBL; or a combination of the two. Faulting and volcanism, mountain uplift, and glacier downcutting appear to now be active in western MBL, where generally East-to-West-flowing outlet glaciers incise Paleozoic and Mesozoic bedrock, and deglaciated summits indicate a previous North-South glacial flow direction. This study requires data collection using SOAR (Support Office for Aerogeophysical Research, a facility supported by Office of Polar Programs which utilizes high precision differential GPS to support a laser altimeter, ice-penetrating radar, a towed proton magnetometer, and a Bell BGM-3 gravimeter). This survey requires data for 37,000 square kilometers using 5.3 kilometer line spacing with 15.6 kilometer tie lines, and 86,000 square kilometers using a grid of 10.6 by 10.6 kilometer spacing. Data will be acquired over several key features in the region including, among other, the eastern edge of the Ross Sea rift, over ice stream OEO, the transition from the Edward VII Peninsula plateau to the Ford Ranges, the continuation to the east of a gravity high known from previous reconnaissance mapping over the Fosdick Metamorphic Complex, an d the extent of the high-amplitude magnetic anomalies (volcanic centers?) detected southeast of the northern Ford Ranges by other investigators. SOAR products will include glaciology data useful for studying driving stresses, glacial flow and mass balance in the West Antarctic Ice Sheet (WAIS). The ground program is centered on the southern Ford Ranges. Geologic field mapping will focus on small scale brittle structures for regional kinematic interpretation, on glaciated surfaces and deposits, and on datable volcanic rocks for geochronologic control. The relative significance of fault and joint sets, the timing relationships between them, and the probable context of their formation will also be determined. Exposure ages will be determined for erosion surfaces and moraines. Interpretation of potential field data will be aided by on ground sampling for magnetic properties and density as well as ground based gravity measurements. Oriented samples will be taken for paleomagnetic studies. Combined airborne and ground investigations will obtain basic data for describing the geology and structure at the eastern boundary of the Ross Embayment both in outcrop and ice covered areas, and may be used to distinguish between Ross Sea rift- related structural activity from uplift and faulting on the perimeter of the MBL dome and volcanic province. Outcrop geology and structure will be extrapolated with the aerogeophysical data to infer the geology that resides beneath the WAIS. The new knowledge of Neogene tectonics in western MBL will contribute to a comprehensive model for the Cenozoic Ross rift and to understanding of the extent of plume activity in MBL. Both are important for determining the influence of Neogene tectonics on the ice streams and WAIS.
9978236 Bell Abstract This award, provided by the Office of Polar Programs under the Life in Extreme Environments (LExEn) Program, supports a geophysical study of Lake Vostok, a large lake beneath the East Antarctic Ice Sheet. Subglacial ecosystems, in particular subglacial lake ecosystems are extreme oligotrophic environments. These environments, and the ecosystems which may exist within them, should provide key insights into a range of fundamental questions about the development of Earth and other bodies in the Solar System including: 1) the processes associated with rapid evolutionary radiation after the extensive Neoproterozoic glaciations; 2) the overall carbon cycle through glacial and interglacial periods; and 3) the possible adaptations organisms may require to thrive in environments such as on Europa, the ice covered moon of Jupiter. Over 70 subglacial lakes have been identified beneath the 3-4 kilometer thick ice of Antarctica. One lake, Lake Vostok, is sufficiently large to be clearly identified from space with satellite altimetry. Lake Vostok is similar to Lake Ontario in area but with a much larger volume including measured water depths of 600 meters. The overlying ice sheet is acting as a conveyer belt continually delivering new water, nutrients, gas hydrates, sediments and microbes as the ice sheet flows across the lake. The goal of this program is to determine the fundamental boundary conditions for this subglacial lake as an essential first step toward understanding the physical processes within the lake. An aerogeophysical survey over the lake and into the surrounding regions will be acquired to meet this goal. This data set includes gravity, magnetic, laser altimetry and ice penetrating radar data and will be used to compile a basic set of ice surface elevation, subglacial topography, gravity and magnetic anomaly maps. Potential field methods widely used in the oil industry will be modified to estimate the subglacial topography from gravity data where the ice penetrating radar will be unable to recover the depth of the lake. A similar method can be modified to estimate the thickness of the sediments beneath the lake from magnetic data. These methods will be tested and applied to subglacial lakes near South Pole prior to the Lake Vostok field campaign and will provide valuable comparisons to the planned survey. Once the methods have been adjusted for the Lake Vostok application, maps of the water cavity and sediment thickness beneath the lake will be produced. These maps will become tools to explore the geologic origin of the lake. The two endmember models are, first, that the lake is an active tectonic rift such as Lake Baikal and, second, the lake is the result of glacial scouring. The distinct characteristics of an extensional rift can be easily identified with our aerogeophysical survey. The geological interpretation of the airborne geophysical survey will provide the first geological constraints of the interior of the East Antarctic continent based on modern data. In addition, the underlying geology will influence the ecosystem within the lake. One of the critical issues for the ecosystem within the lake will be the flux of nutrients. A preliminary estimation of the regions of freezing and melting based on the distance between distinctive internal layers observed on the radar data will be made. These basic boundary conditions will provide guidance for a potential international effort aimed at in situ exploration of the lake and improve the understanding of East Antarctic geologic structures.
Bell and Buck: OPP 9615704 Blankenship: OPP 9615832 Abstract Continental extension produces a great variety of structures from the linear narrow rifts of the East African Rift to the diffuse extension of the Basin and Range Province of the Western U.S. Rift shoulder uplift varies dramatically between rift flanks. The cause of variable rift width and crustal thinning is fairly well explained by variable initial heat flow and crustal thickness. Mechanical stretching of the lithosphere has been linked to rift shoulder uplift but the cause of variable rift flank uplift remains poorly understood. The Transantarctic Mountains (TAM) are an extreme example of rift flank uplift, extending over 3500 km across Antarctica and reaching elevations up to 4500 m and thus constitute a unique feature of EarthOs crust. The range was formed in the extensional environment associated with the Mesozoic and Cenozoic breakup of Gondwanaland. Geological and geophysical work has shown that the TAM developed along the long-lived lithospheric boundary between East and West Antarctica reactivated by a complex history of extensional and translational microplate motions. The TAM are not uniform along strike. Along the OWilkes FrontO, the northern segment of the rift extends from North Victoria Land to Byrd Glacier. The Wilkes Front architecture consists of (1) thin, extended crust forming the Victoria Land Basin in the Ross Sea, (2) the TAM rift shoulder, and (3) a long-wavelength down- ward forming the Wilkes Basin. Contrasting structures are mapped along the OPensacola/PoleO Front, the southern segment of the rift extending from the Nimrod Glacier to the Pensacola Mountains. Along this southern section no rift basin has been mapped to date and the down-ward along the East Antarctic, or ObacksideO, edge of the mountains is less pronounced. A flexural model linking the extension in the Ross Sea to the formation of both the mountains and the Wilkes Basin has been considered as a me chanism for uplift of the entire mountain range. The variability in fundamental architecture along the TAM indicates that neither a single event nor a sequence of identical events produced the rift flank uplift. The observation of variable architecture suggests complex mechanisms and possibly a fundamental limitation in maximum sustainable rift flank elevation. The motivation for studying the TAM is to try to understand the geodynamics of this extreme elevation rift flank. Are the geodynamics of the area unique, or does the history of glaciation and related erosion contribute to the extreme uplift? With the existing data sets it is difficult to confidently constrain the geological architecture across representative sections of the TAM. Any effort to refine geodynamic mechanisms requires this basic understanding of the TAM architecture. The goal of this project is to (1) constrain the architecture of the rift system as well as the distribution and structure of sedimentary basins, glacial erosion and mafic igneous rocks surrounding the rift flank by acquiring three long wavelength geophysical transects with integrated gravity, magnetics, ice- penetrating radar, and ice surface measurements, (2) quantify the contribution of various geodynamic mechanisms to understand the geological conditions which can lead to extreme rift flank uplift, and (3) use the improved understanding of architecture and geophysical data to test geodynamic models in order to improve our understanding both of the TAM geodynamics and the general problem of the geodynamics of rift flank uplift worldwide. This project will allow development of a generalized framework for understanding the development of rift flank uplift as well as address the question of the specific geodynamic evolution of the TAM.
Antarctic notothenioid fishes exhibit two adaptive traits to survive in frigid temperatures. The first of these is the production of anti-freeze proteins in their blood and tissues. The second is a system-wide ability to perform cellular and physiological functions at extremely cold temperatures.The proposal goals are to show how Antarctic fishes use these characteristics to avoid freezing, and which additional genes are turned on, or suppressed in order for these fishes to maintain normal physiological function in extreme cold temperatures. Progressively colder habitats are encountered in the high latitude McMurdo Sound and Ross Shelf region, along with somewhat milder near?shore water environments in the Western Antarctic Peninsula (WAP). By quantifying the extent of ice crystals invading and lodging in the spleen, the percentage of McMurdo Sound fish during austral summer (Oct-Feb) will be compared to the WAP intertidal fish during austral winter (Jul-Sep) to demonstrate their capability and extent of freeze avoidance. Resistance to ice entry in surface epithelia (e.g. skin, gill and intestinal lining) is another expression of the adaptation of these fish to otherwise lethally freezing conditions. The adaptive nature of a uniquely characteristic polar genome will be explored by the study of the transcriptome (the set of expressed RNA transcripts that constitutes the precursor to set of proteins expressed by an entire genome). Three notothenioid species (E.maclovinus, D. Mawsoni and C. aceratus) will be analysed to document evolutionary genetic changes (both gain and loss) shaped by life under extreme chronic cold. A differential gene expression (DGE) study will be carried out on these different species to evaluate evolutionary modification of tissue-wide response to heat challenges. The transcriptomes and other sequencing libraries will contribute to de novo ice-fish genome sequencing efforts.
Many animals, from crustaceans to humans, engage in long-term relationships. The demographic consequences of divorce or widowhood for monogamous species are poorly understood. This research seeks to advance understanding of the drivers of partner loss and quantify its resulting effects on individual fitness and population dynamics in polar species that form life-long relationships. The project will focus on pair disruption in two seabirds that form long-last pair bonds: the wandering albatross and the snow petrel. Unique long-term individual mark-recapture data sets exist for these iconic polar species, allowing for a comprehensive study of the rates, causes and consequences of pair disruption and how they may differ among Antarctic species. Insights might be gained regarding the effects of changing environmental regimes as well as by direct and indirect effects of fisheries as a by-product of this research. The aim of the project is to better understand the implications of different drivers of pair disruption and quantify its resulting effects on individual fitness components and population growth rate and structure for two procellariiformes breeding in the Southern Ocean. The project will focus on the wandering albatross and the snow petrel, which both form long-lasting pair bonds. The unique long-term individual mark-recapture data sets allow for a study of the rates, causes and consequences of pair disruption and how they differ among species with different life histories as well as expected differences in mechanisms and rates of pair disruptions. The study will result in a detailed analysis of the impact of social monogamy and long-term pair bonds on individual fitness components (vital rates: survival, recruitment and fecundity; life-history outcomes: life expectancy, age at 1st breeding and lifetime reproductive success; and occupancy times: duration of pair bond or widowhood) and population growth and structure (e.g, sex ratio of individuals available for mating). Specifically, the project will assess: 1. Variations in pair disruption rates, and if they are related to global change (by-catch in the case of albatross widowing, and climate in the case of petrel divorce) by developing a statistical multievent mark-recapture model. 2. Impacts of pair disruption on vital rates, specifically whether i) greater familiarity and better coordination within pairs improves breeding performance and survival, ii) mating costs reduce the probability of breeding and iii) divorce is more likely to occur after a breeding failure. 3. Impacts of pair disruption on life-history outcomes and occupancy times using Markov chain stochastic life cycle models. 4. Impacts of pair disruption on population dynamics by developing a novel non-linear two-sex matrix population model. The research will include sensitivity and Life Table Response Experiment analyses to examine the respective effects of fisheries, climate, vital rates, and pair-disruption rates on life-history outcomes, occupancy times, and population growth and structure, and their variations among year and species This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The ocean surrounding Antarctica is home to an extraordinary assemblage of fishes, dominated by a single group that are extremely well-suited to life in icy waters and which are of significant ecological importance there. Of great concern is the capacity of these fishes to withstand increases in temperature as the region of the Western Antarctic Peninsula warms at a rate faster than any other area in the Southern hemisphere. One particular group of Antarctic fishes, known as the icefishes, are particularly vulnerable to increases in temperature because unlike all other vertebrates on earth, icefishes are white-blooded due to their lack of the oxygen-binding protein hemoglobin. This greatly reduces their capacity to transport and deliver oxygen to tissues compared to red-blooded Antarctic fishes. Previous studies have shown that icefishes are indeed less tolerant to elevations in temperature but the underlying factors are completely unknown. Additionally, it is not understood if red- or white-blooded Antarctic fishes can adjust, or acclimate, to modest increases in temperature, similar to those changes in temperature the animals might experience as the earth warms. The investigators will determine if heart function and/or nervous system function limits thermal tolerance of Antarctic fishes, and will determine their capacity to acclimate to warmer temperatures. The project will further the NSF goal of training new generations of scientists by training graduate and undergraduate students. In addition, the project will collaborate with a high school biology teacher from a school which serves a largely minority student body. The students will learn about the marine environment, and will construct a camera to be used in the field to learn more about Antarctic fishes. Two students and the teacher will also attend a summer marine biology internship program. Antarctic fishes within the suborder Notothenioidei (called "notothenioids") are among the organisms on earth least able to deal with changes in temperature. The hemoglobinless icefish are even less able to withstand temperature changes than are red-blooded notothenioids. While this is well documented, the underlying physiological and biochemical mechanisms responsible are unknown. The investigators will test the hypotheses that cardiac work is significantly greater in icefishes compared to red-blooded species, and that as temperature increases, the greater cardiac work of icefishes, coupled with reduced blood oxygen-carrying capacity, results in cardiac failure at a lower temperature compared to red-blooded species. They also hypothesize that neuronal function limits thermal tolerance of red-blooded notothenioids. These hypotheses will be tested using a wide variety of experiments. For example, the investigators will measure heart rate concurrently with critical thermal maximum. They will also characterize metabolic and gene-expression responses to elevated temperature and determine if mitochondrial function contributes to thermal tolerance using a variety of techniques. To determine if neuronal function limits thermal tolerance they will quantify behavioral responses to warming of whole animals and to warming of only the brain area. They will also determine if acclimation to warmer temperatures impacts heart function and they will measure activities of a variety of enzymes from central metabolic pathways.
Icefish live in frigid Antarctic seas, and have unique traits such as the absence of red blood cells, enlarged hearts, large diameter blood vessels, low bone mineral densities, and fat droplets that disrupt their muscles. These features would be harmful in other animals. In mammals and fish inhabiting warm waters, development of organs involved in these traits is modulated by genes that encode specific proteins, but the rate of protein production is often regulated by short RNA molecules called microRNAs (miRNAs). Genes that code for proteins must first make an RNA copy, and the actual protein is made from this RNA copy intermediate. MiRNAs regulate the amount of protein that is made by binding to the RNA intermediate and interrupting its production of protein. Binding of miRNAs to RNA depends strongly on temperature. Regulation of genes by miRNAs has not been studied in Antarctic fish, which live in seas with temperatures below the freezing point of fresh water. This project will compare miRNA regulation 1) in Antarctic fish vs. warm-water fish to learn how miRNAs regulate gene expression in constant cold; and 2) in Antarctic icefish with no red blood cells, enlarged hearts, and reduced bone density vs. closely related Antarctic fish containing red blood cells, normal hearts, and dense bones. The project will have broad impacts to science and society nationally and globally. First, this will be the first study of important factors in gene regulation (miRNAs) in Antarctic fish, which are an essential component of the entire ecology of the Southern Ocean, and will shed light on how these fish might respond to the warming of Antarctic waters. Second, it will bring Antarctic science to under-represented high school students at a local alternative downtown high school by conducting video conferences during the Antarctic field seasons and hosting student investigations of Antarctic fish in the research laboratory. microRNAs (miRNAs) are key post-transcriptional regulators of gene expression that modulate development and physiology in temperate animals. Although miRNAs act by binding to messenger RNAs (mRNAs), a process that is strongly sensitive to temperature, miRNAs have yet not been studied in Antarctic animals, including Notothenioid fish, which dominate the Southern Ocean. This project will compare miRNA regulation in 1) Antarctic vs. temperate fish to learn the roles of miRNA regulation in adaptation to constant cold; and in 2) bottom-dwelling, dense-boned, red-blooded Nototheniods vs. high buoyancy, osteopenic, white-blooded icefish to understand miRNA regulation in specialized organs after the evolution of the loss of hemoglobin genes and red blood cells, the origin of enlarged heart and vasculature, and the evolution of increased buoyancy, which arose by decreased bone mineralization and increased lipid deposition. Aim 1 is to test the hypothesis that Antarctic fish evolved miRNA-related genome specializations in response to constant cold. The project will compare four Antarctic Notothenioid species to two temperate Notothenioids and two temperate laboratory species to test the hypotheses that (a) Antarctic fish evolved miRNA genome repertoires by loss of ancestral genes and/or gain of new genes, (b) express miRNAs that are involved in cold tolerance, and (c) respond to temperature change by changing miRNA gene expression. Aim 2 is to test the hypothesis that the evolution of icefish from red-blooded bottom-dwelling ancestors was accompanied by an altered miRNA genomic repertoire, sequence, and/or expression. The project will test the hypotheses that (a) miRNAs in icefish evolved in sequence and/or in expression in icefish specializations, including head kidney (origin of red blood cells); heart (changes in vascular system), cranium and pectoral girdle (reduced bone mineral density); and skeletal muscle (lipid deposition), and (b) miRNAs that evolved in icefish specializations had ancestral functions related to their derived roles in icefish, as determined by functional tests of zebrafish orthologs of icefish miRNAs in developing zebrafish. The program will isolate, sequence, and determine the expression of miRNAs and mRNAs using high-throughput transcriptomics and novel software. Results will show how the microRNA system evolves in vertebrate animals pushed to physiological extremes and provide insights into the prospects of key species in the most rapidly warming part of the globe.
Collaborative Proposal: A field and laboratory examination of the diatom N and Si isotope proxies: Implications for assessing the Southern Ocean biological pump The rise in atmospheric carbon dioxide concentrations and associated climate changes make understanding the role of the ocean in large scale carbon cycle a priority. Geologic samples allow exploration of potential mechanisms for carbon dioxide drawdown during glacial periods through the use of geochemical proxies. Nitrogen and silicon isotope signatures from fossil diatoms (microscopic plants) are used to investigate changes in the physical supply and biological demand for nutrients (like nitrogen and silicon and carbon) in the Southern Ocean. The project will evaluate the use the nitrogen and silicon isotope proxies through a series of laboratory experiments and Southern Ocean field sampling. The results will provide quantification of real relationships between nitrogen and silicon isotopes and nutrient usage in the Southern Ocean and allow exploration of the role of other factors, including biological diversity, ice cover, and mixing, in altering the chemical signatures recorded by diatoms. Seafloor sediment samples will be used to evaluate how well the signal created in the water column is recorded by fossil diatoms buried in the seafloor. Improving the nutrient isotope proxies will allow for a more quantitative understanding of the role of polar biology in regulating natural variation in atmospheric carbon dioxide. The project will also result in the training of a graduate student and development of outreach materials targeting a broad popular audience. This project seeks to test the fidelity of the diatom nitrogen and silicon isotope proxies, two commonly used paleoceanographic tools for investigating the role of the Southern Ocean biological pump in regulating atmospheric CO2 concentrations on glacial-interglacial timescales. Existing ground-truthing data, including culture experiments, surface sediment data and downcore reconstructions, all suggest that nutrient utilization is the primary driver of isotopic variation in the Southern Ocean. However, strong contribution of interspecific variation is implied by recent culture results. Moreover, field and laboratory studies present some contradictory results in terms of the relative importance of interspecific variation and of inferred post-depositional alteration of the nutrient isotope signals. Here, a first order test of the N and Si diatom nutrient isotope paleo-proxies, involving water column dissolved and particulate sampling and laboratory culturing of field-isolates, is proposed. Southern Ocean water, biomass, live diatoms and fossil diatom sampling will be conducted to investigate species and assemblage related variability in diatom nitrogen and silicon isotopes and their relationship to surface nutrient fields and early diagenesis. Access to fresh materials produced in an analogous environmental context to the sediments of primary interest is critical for making robust paleoceanographic reconstructions. Field sampling will occur along 175°W, transecting the Antarctic Circumpolar Current from the subtropics to the marginal ice edge. Collection of water, sinking/suspended particles and multi-core samples from 13 stations and 3 shipboard incubation experiments will be used to test four proposed hypotheses that together evaluate the significance of existing culture results and seek to allow the best use of diatom nutrient isotope proxies in evaluating the biological pump.
Nontechnical project description Globally, 500 million people live near and are threatened by active volcanoes. An important step in mitigating volcanic hazards is understanding the variables that influence the explosivity of eruptions. The rate at which a magma ascends from the reservoir within the Earth to the surface is one such variable. However, magma ascent rates are particularly difficult to determine because of the lack of reliable methods for investigating the process. This research applies a new approach to study magma storage depths and ascent rates at the Erebus volcanic province of Antarctica, one of Earth's largest alkaline volcanic centers. Small pockets of magma that become trapped within growing olivine crystals are called melt inclusions. The concentrations of water and carbon dioxide in these melt inclusions preserve information on the depth of magma reservoirs. Changes to the concentration and isotopic composition of water in the inclusions provide information on how long it took for the host magma to rise to the surface. In combination, these data from samples of olivine-rich volcanic deposits in the Erebus volcanic province will be used to determine the depths at which magmas are stored and their ascent rates. The project results will provide a framework for understanding volcanic hazards associated with alkaline volcanism worldwide. In addition, this project facilitates collaboration among three institutions, and provides an important educational opportunity for a postdoctoral researcher. Technical project description The depths at which magmas are stored, their pre-eruptive volatile contents, and the rates at which they ascend to the Earth's surface are important controls on the dynamics of volcanic eruptions. Basaltic magmas are likely to be vapor undersaturated as they begin their ascent from the mantle through the crust, but volatile solubility drops with decreasing pressure. Once vapor saturation is achieved and the magma begins to degas, its pre-eruptive volatile content is determined largely by the depth at which it resides within the crust. Magma stored in deeper reservoirs tend to experience less pre-eruptive degassing and to be richer in volatiles than magma shallower reservoirs. Eruptive style is influenced by the rate at which a magma ascends from the reservoir to the surface through its effect on the efficiency of vapor bubble nucleation, growth, and coalescence. The proposed work will advance our understanding of pre-eruptive storage conditions and syn-eruptive ascent rates through a combined field and analytical research program. Volatile measurements from olivine-hosted melt inclusions will be used to systematically investigate magma storage depths and ascent rates associated with alkaline volcanism in the Erebus volcanic province. A central goal of the project is to provide a spatial and temporal framework for interpreting results from studies of present-day volcanic processes at Mt Erebus volcano. The Erebus volcanic province of Antarctica is especially well suited to this type of investigation because: (1) there are many exposed mafic scoria cones, fissure vents, and hyaloclastites (exposed in sea cliffs) that produced rapidly quenched, olivine-rich tephra; (2) existing volatile data for Ross Island MIs show that magma storage was relatively deep compared to many mafic volcanic systems; (3) some of the eruptive centers ejected mantle xenoliths, allowing for comparison of ascent rates for xenolith-bearing and xenolith-free eruptions, and comparison of ascent rates for those bearing xenoliths with times estimated from settling velocities; and (4) the cold, dry conditions in Antarctica result in excellent tephra preservation compared to tropical and even many temperate localities. The project provides new tools for assessing volcanic hazards, facilitates collaboration involving researchers from three different institutions (WHOI, U Wyoming, and U Oregon), supports the researchers' involvement in teaching, advising, and outreach, and provides an educational opportunity for a promising young postdoctoral researcher. Understanding the interrelationships among magma volatile contents, reservoir depths, and ascent rates is vital for assessing volcanic hazards associated with alkaline volcanism across the globe.
Part I: Nontechnical One of the most interesting historical records that science can provide is contained in the ice of Antarctica. Layer by layer over hundreds of thousands of years, snow has precipitated on the ice sheet, become compacted, and turned into additional ice. Any dust or other impurities in the air or snow have been precipitated as well and thus each snowfall leaves a snapshot record of the atmosphere that existed at or near the time of deposition. A detailed chronology of volcanic eruptions can be obtained from the ice layers where ash and other volcanic products were deposited. Normally, the analysis of volcanic layers requires the physical extraction of a core from the ice sheet; however, chronologies from cores have discontinuities and are difficult, time-consuming, and expensive to obtain. Borehole logging is a measurement method where one lowers instrumentation into a drilled hole in the ice, whether or not core has been retrieved. To date, this technology has only been used to measure optical systems to identify volcanic ash and other impurity layers. In this program, a profiling technology will be developed that measures the conductivity of the ice. A radio-frequency emitter lowered into the borehole will create a return signal that changes depending on the local conductivity, which depends on the concentration of dissolved ions. For example, dissolved sulfates are a critical marker of volcanic activity that may not be coincident with deposited ash. Other dissolved ions, such as chloride, can be indicative of other processes. It is expected that this borehole profiling instrument will be able to help rapidly identify volcanic eruptions that had potentially global impact, distinguish between different dissolved ions via their frequency dependencies, and assist in establishing chronologies between different ice cores and boreholes. Part II: Technical Description Borehole logging of the polar ice sheets is one of the most important methods that earth scientists have to identify and date volcanic eruptions. However, current technology only indicates the presence and depth of ash from an eruption. In order to extract more detailed information, one must obtain an ice core, and laboriously measure each section in the laboratory using electrical conductivity or dielectric measurements to determine the presence or absence of dissolved sulfate and its location relative to the corresponding ash, if any. This program will investigate and demonstrate a borehole logging-compatible radio-frequency dielectric sensor to detect and measure spikes in dissolved major ions chemistry in ice, particularly in intervals corresponding to volcanically produced sulfates. The sulfate layers are one of the primary signatures of volcanic products. However, other ions, such as chlorides, calcium, and others are also commonly seen in ice, and the dielectric logging technology of this program would also measure these. It is expected that certain sets of ions will be distinguishable by their frequency dependencies. This technique could guide other investigators, who are using conventional core scanning and sampling methods, to regions of special interest in corresponding core. We plan to construct a ring-based electrode system and test this system on a variety of artificial ice boreholes and ice cores. This unit will not include a pressure vessel or other borehole logger packing. We will test different means of applying electrical signals including short pulses and periodic waves. We will further utilize differential measurements with low noise circuits and filters to achieve maximum sensitivity. We will correlate the signals extracted with known molarities of sulfates and other ions and measured ECM records. We will perform scaled-down experiments using real ice cores stored in Bay?s lab at UC Berkeley. This will permit testing of different designs in ice with natural impurities and polycrystalline structure. This small collection includes cores from a variety of locations in Antarctica and Greenland, and a variety of ages as old as a million years.
Current oceanographic interest in the interaction of relatively warm water of the Southern Ocean Circumpolar Deep Water ( CDW) as it moves southward to the frigid waters of the Antarctic continental shelves is based on the potential importance of heat transport from the global ocean to the base of continental ice shelves. This is needed to understand the longer term mass balance of the continent, the stability of the vast Antarctic ice sheets and the rate at which sea-level will rise in a warming world. Improved observational knowledge of the mechanisms of how warming CDW moves across the Antarctic Circumpolar Current (ACC) is needed. Understanding this dynamical transport, believed to take place by the eddy flux of time-varying mesoscale circulation features, will improve coupled ocean-atmospheric climate models. The development of the next generation of coupled ocean-ice- climate models help us understand future changes in atmospheric heat fluxes, glacial and sea-ice balance, and changes in the Antarctic ecosystems. A recurring obstacle to our understanding is the lack of data in this distant region. In this project, a number of subsurface profiling EM-APEX floats adapted to operate under sea ice will be launched on up to 4 cruises of opportunity to the Pacific sector during Austral summer. The floats will be launched south of the Polar Front and measure shear, turbulence, temperature, and salinity to 2000m depth for up to 2 year missions while following the CDW layer.
Subduction takes place at convergent plate boundaries and involves sinking of one tectonic plate underneath another. Although this process is a key aspect of plate tectonics that shapes the planet over geologic time, and is a primary cause of earthquakes, it is not known what causes subduction to cease, and what effect it has on the deepest portions of the crust and the upper part of the mantle. By studying the age and composition of igneous rocks emplaced at the very end of the subduction cycle, this project seeks to understand what causes subduction to cease, and how this changes the composition and structure of the crust and upper mantle. Because this process occurs deep within the earth, the project will focus on rocks in the root of an ancient subduction zone, now exposed in the Transantarctic Mountains of Antarctica. In addition, Antarctica remains relatively poorly understood, and this project will contribute directly to increasing our understanding of the geologic history of this region. The project will focus on training graduate and undergraduate students - incorporating hands-on experience with an array of state-of-the-art analytical instrumentation. Students will also gain a range of more general skills including Geographic Information Systems (GIS), written and oral communication, and data management - strengths that are highly relevant to careers both in the academic and Geosciences industry. Each summer, high school students will be incorporated into aspects of the laboratory-based research through the UCSB research mentorship program. The PI and graduate students will engage the general public through a purpose-built iPhone App and multimedia website. Activities will include live phone and video conversations from the field between elementary school students and members of the team in Antarctica. The mechanisms by which the deep crustal delaminates or "founders" and is returned to the mantle remains a fundamental problem in earth science. Specifically, little is known about the temporal and spatial scales over which this process occurs or the mechanisms that trigger such catastrophic events. Igneous rocks highly enriched in potassium, called lamprophyres, are often emplaced during, and immediately after, termination of subduction and therefore potentially provide direct insight into foundering. These enigmatic rocks are important because they represent near-primary mantle melt compositions and therefore their age, geochemistry and petrologic evolution reveal key information on both the composition of the upper mantle and its thermal state. Of equal importance, they reveal how these key parameters vary through both space and time. By evaluating lamprophyres along a subduction zone margin it is possible to extract: 1) local-scale information, such as the timing and duration of melting and the role of igneous crystallization processes in generation of isotopic heterogeneities; 2) along-strike variations in mantle source composition, temperature, and depth of melting 3) the plate-scale forces that control foundering and termination of subduction. This project will study a suite of lamprophyres along the axis of the Transantarctic Mountains, emplaced during the latest stages of the Neoproterozoic - Ordovician Ross orogeny, Antarctica (roughly 505 to 470 million years before present). High-precision geochronology (age determinations) will be combined with geochemical measurements on the rocks and minerals to understand the mechanisms and timing of deep crustal foundering/delamination.
This study aims to better understand salt accumulation in cold deserts and develop a model of salt transport by groundwater. Cold deserts, like the Antarctic McMurdo Dry Valleys (MDV), are similar to hot deserts in that they accumulate high concentrations of salts because there is not enough water to flush the salts out of the soils into the ocean. The accumulation of salt allows for the creation of brine-rich groundwater that freezes at much lower temperatures. Field work will focus on several groundwater features in the MDV including Don Juan Pond, a shallow lake that accumulates extremely high levels of salts and does not freeze until the temperature reaches -51 degrees C (-60 degrees F). The setting offers the potential to better understand this unique water environment including life at its extremes. It also serves as an analog environment for Mars, a planet that is entirely underlain by permafrost, similar to the MDV. This project will support a doctoral student at the University of Washington Department of Earth and Space Sciences, who will be trained in chemical analysis, chemical and physical modeling, and remote field work in a polar desert environment. Past research suggests that the movement of soluble ions in sediment and soil is controlled by the water activity, permeability, and the thermal regime; however, processes controlling the ionic redistribution in Antarctic environments are poorly constrained. This project aims to better understand the formation, salt redistribution, and water activity of pervasive brine-rich groundwater that is enriched in calcium chloride. A primary goal is to develop a brine thermal;reactive;transport model for the MDV region using data collected from the field to constrain model inputs and ground-truth model outputs. The model will develop a Pitzer-type thermodynamic, reactive transport model and couple it to a ground temperature model. The model will test mechanisms of groundwater formation in the MDV and the properties (e.g. composition, temperature, and water activity) of widespread shallow brine-rich waters. Water is an essential ingredient for life and defining processes that control the availability of water is critical for understanding the habitability of extreme environments, including Mars.
This project will develop a record of the stable-isotope ratios of water from an ice core at the South Pole, Antarctica. Water-isotope ratio measurements provide a means to determine variability in temperature through time. South Pole is distinct from most other locations in Antarctica in showing no warming in recent decades, but little is known about temperature variability in this location prior to the installation of weather stations in 1957. The measurements made as part of this project will result in a much longer temperature record, extending at least 40,000 years, aiding our ability to understand what controls Antarctic climate, and improving projections of future Antarctic climate change. Data from this project will be critical to other investigators working on the South Pole ice core, and of general interest to other scientists and the public. Data will be provided rapidly to other investigators and made public as soon as possible. This project will obtain records of the stable-isotope ratios of water on the ice core currently being obtained at South Pole. The core will reach a depth of 1500 m and an age of 40,000 years. The project will use laser spectroscopy to obtain both an ultra-high-resolution record of oxygen 18/16 and deuterium-hydrogen ratios, and a lower-resolution record of oxygen 17/16 ratios. The high-resolution measurements will be used to aid in dating the core, and to provide estimates of isotope diffusion that constrain the process of firn densification. The novel 17/16 measurement provides additional constraints on the isotope fractionation due to the temperature-dependent supersaturation ratio, which affects the fractionation of water during the liquid-solid condensate transition. Together, these techniques will allow for improved accuracy in the use of the water isotope ratios as proxies for ice-sheet temperature, sea-surface temperature, and atmospheric circulation. The result will be a record of decadal through centennial and millennial scale climate change in a climatically distinct region in East Antarctica that has not been previously sampled by deep ice coring. The project will support a graduate student who will be co-advised by faculty at the University of Washington and the University of Colorado, and will be involved in all aspects of the work.
This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Satellite observations extending over the last 25 years show that Thwaites Glacier is rapidly thinning and accelerating. Over this same period, the Thwaites grounding line, the point at which the glacier transitions from sitting on the seabed to floating, has retreated. Oceanographic studies demonstrate that the main driver of these changes is incursion of warm water from the deep ocean that flows beneath the floating ice shelf and causes basal melting. The period of satellite observation is not long enough to determine how a large glacier, such as Thwaites, responds to long-term and near-term changes in the ocean or the atmosphere. As a result, records of glacier change from the pre-satellite era are required to build a holistic understanding of glacier behavior. Ocean-floor sediments deposited at the retreating grounding line and further offshore contain these longer-term records of changes in the glacier and the adjacent ocean. An additional large unknown is the topography of the seafloor and how it influences interactions of landward-flowing warm water with Thwaites Glacier and affects its stability. Consequently, this project focuses on the seafloor offshore from Thwaites Glacier and the records of past glacial and ocean change contained in the sediments deposited by the glacier and surrounding ocean. Uncertainty in model projections of the future of Thwaites Glacier will be significantly reduced by cross-disciplinary investigations seaward of the current grounding line, including extracting the record of decadal to millennial variations in warm water incursion, determining the pre-satellite era history of grounding-line migration, and constraining the bathymetric pathways that control flow of warm water to the grounding line. Sedimentary records and glacial landforms preserved on the seafloor will allow reconstruction of changes in drivers and the glacial response to them over a range of timescales, thus providing reference data that can be used to initiate and evaluate the reliability of models. Such data will further provide insights on the influence of poorly understood processes on marine ice sheet dynamics. This project will include an integrated suite of marine and sub-ice shelf research activities aimed at establishing boundary conditions seaward of the Thwaites Glacier grounding line, obtaining records of the external drivers of change, improving knowledge of processes leading to collapse of Thwaites Glacier, and determining the history of past change in grounding line migration and conditions at the glacier base. These objectives will be achieved through high-resolution geophysical surveys of the seafloor and analysis of sediments collected in cores from the inner shelf seaward of the Thwaites Glacier grounding line using ship-based equipment, and from beneath the ice shelf using a corer deployed through the ice shelf via hot water drill holes. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
1142517/Saltzman This proposal requests support for a project to drill and recover a new ice core from South Pole, Antarctica. The South Pole ice core will be drilled to a depth of 1500 m, providing an environmental record spanning approximately 40 kyrs. This core will be recovered using a new intermediate drill, which is under development by the U.S. Ice Drilling Design and Operations (IDDO) group in collaboration with Danish scientists. This proposal seeks support to provide: 1) scientific management and oversight for the South Pole ice core project, 2) personnel for ice core drilling and core processing, 3) data management, and 3) scientific coordination and communication via scientific workshops. The intellectual merit of the work is that the analysis of stable isotopes, atmospheric gases, and aerosol-borne chemicals in polar ice has provided unique information about the magnitude and timing of changes in climate and climate forcing through time. The international ice core research community has articulated the goal of developing spatial arrays of ice cores across Antarctica and Greenland, allowing the reconstruction of regional patterns of climate variability in order to provide greater insight into the mechanisms driving climate change. The broader impacts of the project include obtaining the South Pole ice core will support a wide range of ice core science projects, which will contribute to the societal need for a basic understanding of climate and the capability to predict climate and ice sheet stability on long time scales. Second, the project will help train the next generation of ice core scientists by providing the opportunity for hands-on field and core processing experience for graduate students and postdoctoral researchers. A postdoctoral researcher at the University of Washington will be directly supported by this project, and many other young scientists will interact with the project through individual science proposals. Third, the project will result in the development of a new intermediate drill which will become an important resource to US ice core science community. This drill will have a light logistical footprint which will enable a wide range of ice core projects to be carried out that are not currently feasible. Finally, although this project does not request funds for outreach activities, the project will run workshops that will encourage and enable proposals for coordinated outreach activities involving the South Pole ice core science team.
This collaborative project explores the signatures and causes of natural climate change in the region surrounding Antarctica over the last 40,000 years as the Earth transitioned from an ice age into the modern warm period. The researchers will investigate how the wind belts that surround Antarctica changed in their strength and position through time, and document explosive volcanic eruptions and CO2 cycling in the Southern Ocean as potential climate forcing mechanisms over this interval. Understanding how and why the climate varied naturally in the past is critical for improving understanding of modern climate change and projections of future climate under higher levels of atmospheric CO2. The investigators plan to conduct a suite of chemical measurements along the 1500m length of the South Pole Ice Core, including major ion and trace element concentrations, and microparticle (dust) concentrations and size distributions. These measurements will (1) extend the South Pole record of explosive volcanic eruptions to 40,000 years using sulfate and particle data; (2) establish the relative timing of climate changes in dust source regions of Patagonia, New Zealand, and Australia using dust flux data; (3) investigate changes in the strength and position of the westerly wind belt using dust size distribution data; and (4) quantify the flux of bioavailable trace metals deposited as dust to the Southern Ocean over time. These chemistry records will also be critical for creating the timescale that will be used by all researchers studying records from the South Pole core. The project will support four graduate students and several undergraduate students across three different institutions, and become a focus of the investigators' efforts to disseminate outcomes of climate change science to the broader community.
The Antarctic marine ecosystem is highly productive and supports a diverse range of ecologically and commercially important species. A key species in this ecosystem is Antarctic krill, which in addition to being commercially harvested, is the principle prey of a wide range of marine organisms including penguins, seals and whales. The aim of this study is to use penguins and other krill predators as sensitive indicators of past changes in the Antarctic marine food web resulting from climate variability and the historic harvesting of seals and whales by humans. Specifically this study will recover and analyze modern (<20 year old), historic (20-200 year old) and ancient (200-10,000 year old) penguin and other krill predator tissues to track their past diets and population movements relative to shifts in climate and the availability of Antarctic krill. Understanding how krill predators were affected by these factors in the past will allow us to better understand how these predators, the krill they depend on, and the Antarctic marine ecosystem as a whole will respond to current challenges such as global climate change and an expanding commercial fishery for Antarctic krill. The project will further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. This project will support the cross-institutional training of undergraduate and graduate students in advanced analytical techniques in the fields of ecology and biogeochemistry. In addition, this project includes educational outreach aimed encouraging participation in science careers by engaging K-12 students in scientific issues related to Antarctica, penguins, marine ecology, biogeochemistry, and global climate change. This research will help place recent ecological changes in the Southern Ocean into a larger historical context by examining decadal and millennial-scale shifts in the diets and population movements of Antarctic krill predators (penguins, seals, and squid) in concert with climate variability and commercial harvesting. This will be achieved by coupling advanced stable and radio isotope techniques, particularly compound-specific stable isotope analysis, with unprecedented access to modern, historical, and well-preserved paleo-archives of Antarctic predator tissues dating throughout the Holocene. This approach will allow the project to empirically test if observed shifts in Antarctic predator bulk tissue stable isotope values over the past millennia were caused by climate-driven shifts at the base of the food web in addition to, or rather than, shifts in predator diets due to a competitive release following the historic harvesting of krill eating whale and seals. In addition, this project will track the large-scale abandonment and reoccupation of penguin colonies around Antarctica in response to changes in climate and sea ice conditions over the past several millennia. These integrated field studies and laboratory analyses will provide new insights into the underlying mechanisms that influenced past shifts in the diets and population movements of charismatic krill predators such as penguins. This will allow for improved projections of the ecosystem consequences of future climate change and anthropogenic harvesting scenarios in the Antarctica that are likely to affect the availability of Antarctic krill.
Rapid changes in the extent and thickness of sea ice during the austral spring subject microorganisms within or attached to the ice to large fluctuations in temperature, salinity, light and nutrients. This project aims to identify cellular responses in sea-ice algae to increasing temperature and decreasing salinity during the spring melt along the western Antarctic Peninsula and to determine how associated changes at the cellular level can potentially affect dynamic, biologically driven processes. Understanding how sea-ice algae cope with, and are adapted to, their environment will not only help predict how polar ecosystems may change as the extent and thickness of sea ice change, but will also provide a better understanding of the widespread success of photosynthetic life on Earth. The scientific context and resulting advances from the research will be communicated to the general public through outreach activities that includes work with Science Communication Fellows and the popular Polar Science Weekend at the Pacific Science Center in Seattle, Washington. The project will provide student training to college students as well as provide for educational experiences for K-12 school children. There is currently a poor understanding of feedback relationships that exist between the rapidly changing environment in the western Antarctic Peninsula region and sea-ice algal production. The large shifts in temperature and salinity that algae experience during the spring melt affect critical cellular processes, including rates of enzyme-catalyzed reactions involved in photosynthesis and respiration, and the production of stress-protective compounds. These changes in cellular processes are poorly constrained but can be large and may have impacts on local ecosystem productivity and biogeochemical cycles. In particular, this study will focus on the thermal sensitivity of enzymes and the cycling of compatible solutes and exopolymers used for halo- and cryo-protection, and how they influence primary production and the biogeochemical cycling of carbon and nitrogen. Approaches will include field sampling during spring melt, incubation experiments of natural sea-ice communities under variable temperature and salinity conditions, and controlled manipulation of sea-ice algal species in laboratory culture. Employment of a range of techniques, from fast repetition rate fluorometry and gross and net photosynthetic measurements to metabolomics and enzyme kinetics, will tease apart the mechanistic effects of temperature and salinity on cell metabolism and primary production with the goal of quantifying how these changes will impact biogeochemical processes along the western Antarctic Peninsula. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Brook 1543267 Approximately half of the human caused carbon dioxide emissions to the atmosphere are absorbed by the ocean, which reduces the amount of global warming associated with these emissions. Much of this carbon uptake occurs in the Southern Ocean around Antarctica, where water from the deep ocean comes to the surface. How much water "up-wells," and therefore how much carbon is absorbed, is believed to depend on the strength and location of the major westerly winds in the southern hemisphere. These wind patterns have been shifting southward in recent decades, and future changes could impact the global carbon cycle and promote the circulation of relatively warm water from the deep ocean on to the continental shelf, which contributes to enhanced Antarctic ice melt and sea level rise. Understanding of the westerly winds and their role in controlling atmospheric carbon dioxide levels and the circulation of ocean water is therefore very important. The work supported by this award will study past movement of the SH westerlies in response to natural climate variations. Of particular interest is the last deglaciation (20,000 to 10,000 years ago), when the global climate made a transition from an ice age climate to the current warm period. During this period, atmospheric carbon dioxide rose from about 180 ppm to 270 parts per million, and one leading hypothesis is that the rise in carbon dioxide was driven by a southward movement of the southern hemisphere westerlies. The broader impacts of the work include a perspective on past movement of the southern hemisphere westerlies and their link to atmospheric carbon dioxide, which could guide projections of future oceanic carbon dioxide uptake, with strong societal benefits; international collaboration with German scientists; training of a postdoctoral investigator; and outreach to public schools. This project will investigate whether the abundance of a noble gas, krypton-86, trapped in Antarctic ice cores, records atmospheric pressure variability, and whether or not this pressure variability can be used to infer past movement of the Southern Hemisphere westerly winds. The rationale for the project is that models of air movement in the snow pack (firn) in Antarctica indicate that pressure variations drive air movement that disturbs the normal enrichment in krypton-86 caused by gravitational settling of gases. Calculations predict that the krypton-86 deviation from gravitational equilibrium reflects the magnitude of pressure variations. In turn, atmospheric data show that pressure variability over Antarctica is linked to the position of the southern hemisphere westerly winds. Preliminary data from the West Antarctic Ice Sheet (WAIS) Divide ice core show a large excursion in krypton-86 during the transition from the last ice age to the current warm period. The investigators will perform krypton-86 analysis on ice core and firn air samples to establish whether the Kr-86 deviation is linked to pressure variability, refine the record of krypton isotopes from the WAIS Divide ice core, investigate the role of pressure variability in firn air transport using firn air models, and investigate how barometric pressure variability in Antarctica is linked to the position/strength of the SH westerlies in past and present climates.
The Ross Ice Shelf is the largest existing ice shelf in Antarctica, and is currently stabilizing significant portions of the land ice atop the Antarctic continent. An ice shelf begins where the land ice goes afloat on the ocean, and as such, the Ross Ice Shelf interacts with the ocean and seafloor below, and the land ice behind. Currently, the Ross Ice Shelf slows down, or buttresses, the fast flowing ice streams of the West Antarctic Ice Sheet (WAIS), a marine-based ice sheet, which if melted, would raise global sea level by 3-4 meters. The Ross Ice Shelf average ice thickness is approximately 350 meters, and it covers approximately 487,000 square kilometers, an area slightly larger than the state of California. The Ross Ice Shelf has disappeared during prior interglacial periods, suggesting in the future it may disappear again. Understanding the dynamics, stability and future of the West Antarctic Ice Sheet therefore requires in-depth knowledge of the Ross Ice Shelf. The ROSETTA-ICE project brings together scientists from 4 US institutions and from the Institute of Geological and Nuclear Sciences Limited, known as GNS Science, New Zealand. The ROSETTA-ICE data on the ice shelf, the water beneath the ice shelf, and the underlying rocks, will allow better predictions of how the Ross Ice Shelf will respond to changing climate, and therefore how the WAIS will behave in the future. The interdisciplinary ROSETTA-ICE team will train undergraduate and high school students in cutting edge research techniques, and will also work to educate the public via a series of vignettes integrating ROSETTA-ICE science with the scientific and human history of Antarctic research. The ROSETTA-ICE survey will acquire gravity and magnetics data to determine the water depth beneath the ice shelf. Radar, LIDAR and imagery systems will be used to map the Ross Ice Shelf thickness and fine structure, crevasses, channels, debris, surface accumulation and distribution of marine ice. The high resolution aerogeophysical data over the Ross Ice Shelf region in Antarctica will be acquired using the IcePod sensor suite mounted externally on an LC-130 aircraft operating from McMurdo Station, Antarctica. Field activities will include ~36 flights on LC-130 aircraft over two field seasons in Antarctica. The IcePod instrument suite leverages the unique experience of the New York Air National Guard operating in Antarctica for NSF scientific research as well as infrastructure and logistics. The project will answer questions about the stability of the Ross Ice Shelf in future climate, and the geotectonic evolution of the Ross Ice Shelf Region, a key component of the West Antarctic Rift system. The comprehensive benchmark data sets acquired will enable broad, interdisciplinary analyses and modeling, which will also be performed as part of the project. ROSETTA-ICE will illuminate Ross ice sheet-ice shelf-ocean dynamics as the system nears a critical juncture but still is intact. Through interacting with an online data visualization tool, and comparing the ROSETTA-ICE data and results from earlier studies, we will engage students and young investigators, equipping them with new capabilities for the study of critical earth systems that influence global climate.
Microbial mats are found throughout the McMurdo Dry Valleys where summer snowmelt provides liquid water that allows these mats to flourish. Researchers have long studied the environmental conditions microbial mats need to grow. Despite these efforts, it has been difficult to develop a broad picture of these unique ecosystems. Recent advances in satellite technology now provide researchers an exciting new tool to study these special Antarctic ecosystems from space using the unique spectral signatures associated with microbial mats. This new technology not only offers the promise that microbial mats can be mapped and studied from space, this research will also help protect these delicate environments from potentially harmful human impacts that can occur when studying them from the ground. This project will use satellite imagery and spectroscopic techniques to identify and map microbial mat communities and relate their properties and distributions to both field and lab-based measurements. This research provides an exciting new tool to help document and understand the distribution of a major component of the Antarctic ecosystem in the McMurdo Dry Valleys. The goal of this project is to establish quantitative relationships between spectral signatures derived from orbit and the physiological status and biogeochemical properties of microbial mat communities in Taylor Valley, Antarctica, as measured by field and laboratory analyses on collected samples. The goal wioll be met by (1) refining atmospheric correction techniques using in situ radiometric rectification to derive accurate surface spectra; (2) collecting multispectral orbital images concurrent with in situ sampling and spectral measurements in the field to ensure temporal comparability; (3) measuring sediment, water, and microbial mat samples for organic and inorganic carbon content, essential biogeochemical nutrients, and chlorophyll-a to determine relevant mat characteristics; and (4) quantitatively associating these laboratory-derived characteristics with field-derived and orbital spectral signatures and parameters. The result of this work will be a more robust quantitative link between the distribution of microbial mat communities and their biogeochemical properties to landscape-scale spectral signatures. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Proteorhodopsins are proteins that are embedded in membranes that can act as light-driven proton pumps to generate energy for metabolism and growth. The discovery of proteorhodopsins in many diverse marine prokaryotic microbes has initiated extensive investigation into their distributions and functional roles. Recently, a proton-pumping, rhodopsin-like gene was identified in diatoms, a group of marine phytoplankton that dominates the base of the food web in much of the Southern Ocean. Since this time, proteorhodopsins have been identified in many, but not all, diatom species. The proteorhodopsin gene is more frequently found in diatoms residing in cold, iron-limited regions of the ocean, including the Southern Ocean, than in diatoms from other regions. It is thought that proteorhodopsin is especially suited for use energy production in the Southern Ocean since it uses no iron and its reaction rate is insensitive to temperature (unlike conventional photosynthesis). The overall objective of the project is to characterize Antarctic diatom-proteorhodopsin and determine its role in the adaptation of these diatoms to low iron concentrations and extremely low temperatures found in Antarctic waters. This research will provide new information on the genetic underpinnings that contribute to the success of diatoms in the Southern Ocean and how this unique molecule may play a pivotal role in providing energy to the base of the Antarctic food web. Broader impact activities are aimed to promote the teaching and learning of polar marine-sciences related topics by translating research objectives into readily accessible educational materials for middle-school students. This project will combine molecular, biochemical and physiological measurements to determine the role and importance of proteorhodopsin in diatom isolates from the Western Antarctic Peninsula region. Proton-pumping characteristics and pumping rates of proteorhodopsin as a function of light intensity and temperature, the resultant proteorhodopsin-linked intracellular ATP production rates, and the cellular localization of the protein will be determined. The project will examine the environmental conditions where Antarctic diatom-proteorhodopsin is most highly expressed and construct a cellular energy budget that includes diatom-proteorhodopsin when grown under these different environmental conditions. Estimates of the energy flux generated by proteorhodopsin will be compared to total energy generation by the photosynthetic light reactions and metabolically coupled respiration rates. Finally, the characteristics and gene expression of diatom-proteorhodopsin in Antarctic diatoms and a proteorhodopsin-containing diatom isolates from temperate regions will be compared in order to determine if there is a preferential dependence on energy production through proteorhodopsin in diatoms residing in cold, iron-limited regions of the ocean. Educational activities will be performed in collaboration with the Morehead Planetarium and Science Center who co-ordinates the SciVentures program, a popular summer camp for middle-school students from Chapel Hill and surrounding areas. In collaboration with the Planetarium, the researchers will develop activities that focus on phytoplankton and the important role they play within polar marine food webs for the SciVentures participants. Additionally, a teaching module on Antarctic phytoplankton will be developed for classrooms and made available to educational networking websites and presented at workshops for science educators nationwide. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Proposal Title: Collaborative Research: Seasonal Sea Ice Production in the Ross Sea, Antarctica (working title changed from submitted title) Institutions: UT-San Antonio; Columbia University; Naval Postgraduate School; Woods Hole Oceanographic Institute; UC@Boulder The one place on Earth consistently showing increases in sea ice area, duration, and concentration is the Ross Sea in Antarctica. Satellite imagery shows about half of the Ross Sea increases are associated with changes in the austral fall, when the new sea ice is forming. The most pronounced changes are also located near polynyas, which are areas of open ocean surrounded by sea ice. To understand the processes driving the sea ice increase, and to determine if the increase in sea ice area is also accompanied by a change in ice thickness, this project will conduct an oceanographic cruise to the polynyas of the Ross Sea in April and May, 2017, which is the austral fall. The team will deploy state of the art research tools including unmanned airborne systems (UASs, commonly called drones), autonomous underwater vehicles (AUVs), and remotely operated underwater vehicles (ROVs). Using these tools and others, the team will study atmospheric, oceanic, and sea ice properties and processes concurrently. A change in sea ice production will necessarily change the ocean water below, which may have significant consequences for global ocean circulation patterns, a topic of international importance. All the involved institutions will be training students, and all share the goal of expanding climate literacy in the US, emphasizing the role high latitudes play in the Earth's dynamic climate. The main goal of the project is to improve estimates of sea ice production and water mass transformation in the Ross Sea. The team will fully capture the spatial and temporal changes in air-ice-ocean interactions when they are initiated in the austral fall, and then track the changes into the winter and spring using ice buoys, and airborne mapping with the newly commissioned IcePod instrument system, which is deployed on the US Antarctic Program's LC-130 fleet. The oceanographic cruise will include stations in and outside of both the Terra Nova Bay and Ross Ice Shelf polynyas. Measurements to be made include air-sea boundary layer fluxes of heat, freshwater, and trace gases, radiation, and meteorology in the air; ice formation processes, ice thickness, snow depth, mass balance, and ice drift within the sea ice zone; and temperature, salinity, and momentum in the ocean below. Following collection of the field data, the team will improve both model parameterizations of air-sea-ice interactions and remote sensing algorithms. Model parameterizations are needed to determine if sea-ice production has increased in crucial areas, and if so, why (e.g., stronger winds or fresher oceans). The remote sensing validation will facilitate change detection over wider areas and verify model predictions over time. Accordingly this project will contribute to the international Southern Ocean Observing System (SOOS) goal of measuring essential climate variables continuously to monitor the state of the ocean and ice cover into the future.
Intellectual Merit: Evidence from the eastern Ross Sea continental shelf indicates that the West Antarctic Ice Sheet advanced and retreated during the last glacial cycle, but it is unclear whether the ice sheet advanced to the shelf edge or just to the middle shelf. These two end-member scenarios offer different interpretations as to why, how, and when the West Antarctic Ice Sheet oscillated. The PI proposes to acquire seismic, multibeam, and core data from Whales Deep, to evaluate the timing and duration of two advances of grounded ice to the outer and middle shelf of the Whales Deep Basin, a West Antarctic Ice Sheet paleo ice stream trough in eastern Ross Sea. Grounding events are represented by seismically resolvable Grounding Zone Wedges. The PI will collect radiocarbon dates on in situ benthic foraminifera from the grounding zone diamict as well as ramped pyrolysis radiocarbon dates on acid insoluble organics from open-marine mud overlying the grounding zone diamict. Using these data the PI will calculate the duration of the two grounding events. Furthermore, the PI will test a numerical model prediction that West Antarctic Ice Sheet retreat must have involved melting at the marine terminus of the ice sheet. Pore-water from the grounding zone diamict will be extracted from piston cores to determine salinity and δ18O values that should indicate if significant melting occurred at the grounding line. Broader impacts: The data collected will provide constraints on the timing and pattern of Last Glacial Maximum advance and retreat that can be incorporated into interpretations of ice-surface elevation changes. The proposed activities will provide valuable field and research training to undergraduate/graduate students and a Louisiana high-school science teacher. The research will be interactively shared with middle- and high-school science students and with visitors to the LSU Museum of Natural Science Weekend-Science Program.
Omelon, Christopher; Breecker, Daniel; Bennett, Philip
No dataset link provided
Cryptoendoliths are organisms that colonize microscopic cavities of rocks, which give them protection and allow them to inhabit extreme environments, such as the cold, arid desert of the Dry Valleys of Antarctica. Fossilized cryptoendoliths preserve the forms and features of organisms from the past and thus provide a unique opportunity to study the organisms? life histories and environments. To study this fossil record, there needs to be a better understanding of what environmental conditions allow these fossils to form. A climate gradient currently exists in the Dry Valleys that allows us to study living, dead, and fossilized cryptoendoliths from mild to increasingly harsh environments; providing insight to the limits of life and how these fossils are formed. This project will develop instruments to detect the biological activity of the live microorganisms and conduct laboratory experiments to determine the environmental limits of their survival. The project also will characterize the chemical and structural features of the living, dead, and fossilized cryptoendoliths to understand how they become fossilized. Knowing how microorganisms are preserved as fossils in cold and dry environments like Antarctica can help to refine methods that can be used to search for and identify evidence for extraterrestrial life in similar habitats on planets such as Mars. This project includes training of graduate and undergraduate students. Little is known about cryptoendolithic microfossils and their formation processes in cold, arid terrestrial habitats of the Dry Valleys of Antarctica, where a legacy of activity is discernible in the form of biosignatures including inorganic materials and microbial fossils that preserve and indicate traces of past biological activity. The overarching goals of the proposed work are: (1) to determine how rates of microbial respiration and biodegradation of organic matter control microbial fossilization; and (2) to characterize microbial fossils and their living counterparts to elucidate mechanisms for fossilization. Using samples collected across an increasingly harsher (more cold and dry) climatic gradient that encompasses living, dead, and fossilized cryptoendolithic microorganisms, the proposed work will: (1) develop an instrument to be used in the field that can measure small concentrations of CO2 in cryptoendolithic habitats in situ; (2) conduct incubation experiments to target variations in microbial activity in samples containing living, dead, and fossilized microorganisms as well as limits to microbial activity by measuring CO2 evolution and delta13C signatures; and (3) use a suite of microscopy techniques (CLSM, cryo-SEM, FIB-SEM, µ-XFM) to correlate laboratory experimental evidence for microbial viability and activity and to identify the chemical and morphological characteristics of biosignatures and microbial fossils. A metagenomic survey of microbial communities in these samples will be used to characterize differences in diversity, identify if specific microorganisms (e.g. prokaryotes, eukaryotes) are more capable of surviving under these harsh climatic conditions, and to corroborate microscopic observations of the viability states of these microorganisms.
Since the advent of Antarctic continental glaciation, the opening of the Drake Passage between South America and the Antarctic Peninsula, and the onset of cooling of the Southern Ocean ~40-25 million years ago, evolution of the Antarctic marine biota has been driven by the development of extreme cold temperatures. As circum-Antarctic coastal temperatures declined during this period from ~20°C to the modern ?1.9 to +2.0°C (reached ~8-10 million years ago), the psychrophilic (cold-loving) ectotherms of the Southern Ocean evolved compensatory molecular, cellular, and physiological traits that enabled them to maintain normal metabolic function at cold temperatures. Today, these organisms are threatened by rapid warming of the Southern Ocean over periods measured in centuries (as much as 5°C/100 yr), a timeframe so short that re-adaptation and/or acclimatization to the ?new warm? may not be possible. Thus, the long-term goals of this research project are: 1) to understand the biochemical and physiological capacities of the embryos of Antarctic notothenioid fish to resist or compensate for rapid oceanic warming; and 2) to assess the genetic toolkit available to support the acclimatization and adaptation of Antarctic notothenioid embryos to their warming habitat. The specific aims of this work are: 1) to determine the capacity of the chaperonin complex of notothenioid fishes to assist protein folding at temperatures between ?4 and +20°C; and 2) to evaluate the genetic responses of notothenioid embryos, measured as global differential gene transcription, to temperature challenge, with ?1.9°C as the ?normal? control and +4 and +10°C as high temperature insults. The physiology of embryonic development of marine stenotherms under future climate change scenarios is an important but understudied problem. This project will provide valuable insights into the capacity of Antarctic fish embryos to acclimatize and adapt to plausible climate change scenarios by examining multiple levels of biological organization, from the biochemical to the organismal. The results should also be broadly applicable to understanding the impact of global warming on marine biota worldwide. The research will also introduce graduate and REU undergraduate students to state-of-the-art biochemical, cellular, and molecular-biological research relevant to ecological and environmental issues of the Antarctic marine ecosystem.
Intellectual Merit: Ice free rock outcrops in the Transantarctic Mountains provide the only accessible windows into the interior of the ice covered Antarctic continent; they are extremely remote and difficult to study. This region also hosts the highest latitude ice-free valley systems on the planet. Based on two interdisciplinary workshops, the Transantarctic region near the Shackleton Glacier has been identified as a high priority site for further studies, with a field camp proposed for the 2015-2016 Antarctic field season. The geology of this region has been studied since the heroic era of Antarctic exploration, in the early 1900s, but geologic mapping has not been updated in more than forty years, and existing maps are at poor resolution (typically 1:250,000). This project would utilize the WorldView-2 multispectral orbital dataset to supplement original geologic mapping efforts near the proposed 2015-2016 Shackleton Glacier camp. The WorldView-2 satellite is the only multispectral orbiting sensor capable of imaging the entirety of the Transantarctic Mountains, and all necessary data are currently available to the Polar Geospatial Center. High-latitude atmospheric correction of multispectral data for geologic investigations has only recently been tested, but has never been applied to WorldView-2 data, and never for observations of this type. Therefore, this research will require technique refinements and methodological developements to accomplish the goals. Atmospheric correction refinements and spectral validation will be made possible by laboratory spectroscopic measurements of rock samples currently stored at the U.S. Polar Rock Repository, at the Ohio State University. This project will result in spectral unit identification and boundary mapping at a factor of four higher resolution (1:62,500) than previous geologic mapping efforts, and more detailed investigations (1:5,123) are possible at resolutions more than a factor of forty-eight improved over previous geologic maps. Validated spectral mapping at these improved resolutions will allow for detailed lithologic, and potentially biologic, mapping using existing satellite imagery. This will greatly enhance planning capabilities, thus maximizing the efficiency of the scientific research and support logistics associated with the Shackleton Glacier deep field camp. Broader impacts: The proposed work will have multiple impacts on the broader scientific community. First, the refinement of existing atmospheric correction methodologies, and the development of new spectral mapping techniques, may substantially improve our ability to remotely investigate geologic surfaces throughout Antarctica. The ability to validate this orbital dataset will be of use to both current and future geologic, environmental, and biologic studies, potentially across the entire continent. The project will yield a specific spectral mapping product (at a scale of 1:62,500) to the scientific community by a targeted date of 01 March 2014, in order to support proposals submitted to the National Science Foundation for the proposed 2015/2016 Shackleton Glacier camp. High-resolution spectral mapping products (up to a maximum resolution of 2 meters per pixel) will also be generated for regions of particular scientific interest. The use of community based resources, such as Polar Geospatial Center (PGC) imagery and U.S. Polar Rock Repository rock samples, will generate new synergistic and collaborative research possibilities within the Antarctic research community. In addition, the lead PI (Salvatore) is an early career scientist who is active in both Antarctic and planetary remote sensing. There are overlaps in the calibration, correction, and validation of remote spectral datasets for Antarctic and planetary applications which can lead to benefits and insights to an early career PI, as well as the two communities.
The Southern Ocean surrounding Antarctica is changing rapidly in response to Earth's warming climate. These changes will undoubtedly influence communities of primary producers (the organisms at the base of the food chain, particularly plant-like organisms using sunlight for energy) by altering conditions that influence their growth and composition. Because primary producers such as phytoplankton play an important role in global biogeochemical cycling, it is essential to understand how they will respond to changes in their environment. The growth of phytoplankton in certain regions of the Southern Ocean is constrained by steep gradients in chemical and physical properties that vary in both space and time. Light and iron have been identified as key variables influencing phytoplankton abundance and distribution within Antarctic waters. Microscopic algae known as diatoms are dominant members of the phytoplankton and sea ice communities, accounting for significant proportions of primary production. The overall objective of this project is to identify the molecular bases for the physiological responses of polar diatoms to varying light and iron conditions. The project should provide a means of evaluating the extent these factors regulate diatom growth and influence net community productivity in Antarctic waters. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. It will facilitate the teaching and learning of polar-related topics by translating the research objectives into readily accessible educational materials for middle-school students. This project will also provide funding to enable a graduate student and several undergraduate students to be trained in the techniques and perspectives of modern biology. Although numerous studies have investigated how polar diatoms are affected by varying light and iron, the cellular mechanisms leading to their distinct physiological responses remain unknown. Using comparative transcriptomics, the expression patterns of key genes and metabolic pathways in several ecologically important polar diatoms recently isolated from Antarctic waters and grown under varying iron and irradiance conditions will be examined. In addition, molecular indicators for iron and light limitation will be developed within these polar diatoms through the identification of iron- and light-responsive genes -- the expression patterns of which can be used to determine their physiological status. Upon verification in laboratory cultures, these indicators will be utilized by way of metatranscriptomic sequencing to examine iron and light limitation in natural diatom assemblages collected along environmental gradients in Western Antarctic Peninsula waters. In order to fully understand the role phytoplankton play in Southern Ocean biogeochemical cycles, dependable methods that provide a means of elucidating the physiological status of phytoplankton at any given time and location are essential.
The Western Antarctic Peninsula is experiencing climate change at one of the fastest rates of anywhere around the globe. Accelerated climate change is likely to affect the many benthic marine invertebrates that live within narrow temperature windows along the Antarctic Continental Shelf in presently unidentified ways. At present however, there are few data on the physiological consequences of climate change on the sensitive larval stages of cold-water corals, and none on species living in thermal extremes such as polar waters. This project will collect the larvae of the non-seasonal, brooding scleractinian Flabellum impensum to be used in a month-long climate change experiment at Palmer Station. Multidisciplinary techniques will be used to examine larval development and cellular stress using a combination of electron microscopy, flow cytometry, and Inductively Coupled Plasma Mass Spectometry. Data from this project will form the first systematic study of the larval stages of polar cold-water corals, and how these stages are affected by temperature stress at the cellular and developmental level. Cold-water corals have been shown to be important ecosystem engineers, providing habitat for thousands of associated species, including many that are of commercial importance. Understanding how the larvae of these corals react to warming trends seen today in our oceans will allow researchers to predict future changes in important benthic communities around the globe. Associated education and outreach include: 1) Increasing student participation in polar research by involving postdoctoral and undergraduate students in the field and research program; ii) promotion of K-12 teaching and learning programs by providing information via a research website, Twitter, and in-school talks in the local area; iii) making the data collected available to the wider research community via peer reviewed published literature and iv) reaching a larger public audience through such venues as interviews in the popular media, You Tube and other popular media outlets, and local talks to the general public.
The coastal environments of the western Antarctic Peninsula harbor rich assemblages of marine animals and algae. The importance of the interactions between these groups of organisms in the ecology of coastal Antarctica are well known and often mediated by chemical defenses in the tissues of the algae. These chemicals are meant to deter feeding by snails and other marine animals making the Antarctic Peninsula an excellent place to ask important questions about the functional and evolutionary significance of chemical compound diversity for marine communities. This project will focus on three main objectives: the first objective is to expand the current understanding of the relationship between algae and their associated marine animals. The second objective focuses on the diversity of chemical compounds used to defend algae from being consumed. The third objective seeks to understand how marine animals can benefit from these compounds by consuming the algae that contain them, and then using those compounds to chemically deter predators. The field components of this research will be performed during three expeditions to the US Palmer Station, Antarctica. During these expeditions, a variety of laboratory feeding bioassays, manipulative field and laboratory experiments, and on-site chemical analyses will be performed. The investigators will also foster opportunities to integrate their NSF research with a variety of educational activities. As in the past they will support undergraduate research, both through NSF programs as well as home, university-based, programs, and they will also continue to support and foster graduate education. Through their highly successful University of Alabama in Antarctica interactive web program (two time recipient of awards of excellence from the US Council for Advancement and Support of Education), they will continue to involve large numbers of teachers, K-12 students, and other members of the community at large in their scientific endeavors in Antarctica. In addition, the investigators have hosted K-12 teachers on their Antarctic field teams through the former NSF Teachers Experiencing Antarctica and the Arctic program and will pursue participation in PolarTREC, the successor to this valuable program. Moreover, they will actively participate in outreach efforts by presenting numerous talks on their research to local school and community groups. The near shore environments of the western Antarctic Peninsula harbor rich assemblages of macroalgae and macroinvertebrates. The importance of predator-prey interactions and chemical defenses in mediating community-wide trophic interactions makes the western Antarctic Peninsula an excellent place to ask important questions about the functional and evolutionary significance of defensive compound diversity for marine communities. This project will focus on three main objectives which are a direct outcome of the past studies of the chemical ecology of shallow-water marine macroalgae and invertebrates on the Antarctic Peninsula by this group of investigators. The first objective is to expand the current understanding of a community-wide mutualism between macroalgae and their associated amphipods to include gastropods, which are also abundant on many macroalgae. The second objective focuses on the diversity of chemical compounds used to defend macroalgae from being consumed, particularly in the common red alga Plocamium cartilagineum. The third objective seeks to understand the relationship between P. cartilagineum and the amphipod Paradexamine fissicauda, including the ecological benefits and costs to P. fissicauda resulting from the ability to consume P. cartilagineum and other chemically defended red algae. The investigators will focus on the costs and benefits related to the ability of P. fissicauda to sequester defensive compounds from the alga P. cartilagineum and use those chemicals to defend itself from predation. The field components of this research will be performed during three expeditions to Palmer Station, Antarctica. During these expeditions, a variety of laboratory feeding bioassays, manipulative field and laboratory experiments, and on-site chemical analyses will be performed. Phylogenetic analyses, detailed secondary metabolite chemical analyses and purifications, and other data analyses will also be performed at the investigators' home institutions between and after their field seasons.
Worldwide publicity surrounding the calving of an iceberg the size of Delaware in July 2017 from the Larsen C Ice Shelf on the eastern side of the Antarctic Peninsula presents a unique and time-sensitive opportunity for research and education on polar ecosystems in a changing climate. The goal of this project was to convene a workshop, drawing from the large fund of intellectual capital in the US and international Antarctic research communities. The two-day workshop was designed to bring scientists with expertise in Antarctic biological, ecological, and ecosystem sciences to Florida State University to share knowledge, identify important research knowledge gaps, and outline strategic plans for research.
Major outcomes from the project were as follows. The international workshop to share and review knowledge concerning the response of Antarctic ecosystems to ice-shelf collapse was held at the Florida State University Coastal and Marine Laboratory (FSUCML) on 18-19 November 2017. Thirty-eight U.S. and international scientists attended the workshop, providing expertise in biological, ecological, geological, biogeographical, and glaciological sciences. Twenty-six additional scientists were either not able to attend or were declined because of having reached maximum capacity of the venue or for not responding to our invitation before the registration deadline.
The latest results of ice-shelf research were presented, providing an overview of the current scientific knowledge and understanding of the biological, ecological,
geological and cryospheric processes associated with ice-shelf collapse and its
ecosystem-level consequences. In addition, several presentations focused on future plans to investigate the impacts of the recent Larsen C collapse. The following presentations were given at the meeting:
1) Cryospheric dynamics and ice-shelf collapse – past and future (M. Truffer,
University of Alaska, Fairbanks)
2) The geological history and geological impacts of ice-shelf collapse on the Antarctic Peninsula (Scottt Ishman, Amy Leventer)
3) Pelagic ecosystem responses to ice-shelf collapse (Mattias Cape, Amy Leventer)
4) Benthic ecosystem response to ice-shelf collapse (Craig Smith, Pavica Sršen, Ann Vanreusel)
5) Larsen C and biotic homogenization of the benthos (Richard Aronson, James
McClintock, Kathryn Smith, Brittany Steffel)
6) British Antarctic Survey: plans for Larsen C investigations early 2018 and in the
future (Huw Griffiths)
7) Feedback on the workshop “Climate change impacts on marine ecosystems:
implications for management of living resources and conservation” held 19-22
September 2017, Cambridge, UK (Alex Rogers)
8) Past research activities and plans for Larsen field work by the Alfred Wegener
Institute, Germany (Charlotte Havermans, Dieter Piepenburg.
One of the salient points emerging from the presentations and ensuing discussions was that, given our poor abilities to predict ecological outcomes of ice-shelf collapses, major cross-disciplinary efforts are needed on a variety of spatial and temporal scales to achieve a broader, predictive understanding of ecosystem
consequences of climatic warming and ice-shelf failure. As part of the workshop, the FSUCML Polar Academy Team—Dr. Emily Dolan, Dr. Heidi Geisz, Barbara Shoplock, and Dr. Jeroen Ingels—initiated AntICE: "Antarctic Influences of Climate Change on Ecosystems" (AntICE). They reached out to various groups of school children in the local area (and continue to do so). The AntICE Team have been interacting with these children at Wakulla High School and Wakulla Elementary in Crawfordville; children from the Cornerstone Learning Community, Maclay Middle School, Gilchrist Elementary, and the School of Arts and Sciences in Tallahassee; and the Tallahassee-area homeschooling community to educate them about Antarctic ecosystems and ongoing climate change. The underlying idea was to
make the children aware of climatic changes in the Antarctic and their effect on
ecosystems so they, in turn, can spread this knowledge to their communities, family
and friends – acting as ‘Polar Ambassadors’. We collaborated with the Polar-ICE
project, an NSF-funded educational project that established the Polar Literacy
Initiative. This program developed the Polar Literacy Principles, which outline
essential concepts to improve public understanding of Antarctic and Arctic
ecosystems. In the Polar Academy work, we used the Polar Literacy principles, the
Polar Academy Team’s own Antarctic scientific efforts, and the experience of the FSU outreach and education program to engage with the children. We focused on the importance of Antarctic organisms and ecosystems, the uniqueness of its biota and the significance of its food webs, as well as how all these are changing and will
change further with climate change. Using general presentations, case studies,
scientific methodology, individual experiences, interactive discussions and Q&A
sessions, the children were guided through the many issues Antarctic ecosystems
are facing. Over 300 'Polar ambassadors' attended the interactive lectures and
afterwards took their creativity to high latitudes by creating welcome letters, displays, dioramas, sculptures, videos and online media to present at the scientific workshop. Over 50 projects were created by the children (Please see supporting files for images). We were also joined by a photographer, Ryan David Reines, to document the event. More information, media and links to online outreach products are available at https://marinelab.fsu.edu/labs/ingels/outreach/polar-academy/
Marine communities along the western Antarctic Peninsula are highly productive ecosystems which support a diverse assemblage of charismatic animals such as penguins, seals, and whales as well as commercial fisheries such as that on Antarctic krill. Fjords (long, narrow, deep inlets of the sea between high cliffs) along the central coast of the Peninsula appear to be intense, potentially climate sensitive, hotspots of biological production and biodiversity, yet the structure and dynamics of these fjord ecosystems are very poorly understood. Because of this intense biological activity and the charismatic fauna it supports, these fjords are also major destinations for a large Antarctic tourism industry. This project is an integrated field and modeling program to evaluate physical oceanographic processes, glacial inputs, water column community dynamics, and seafloor bottom community structure and function in these important yet little understood fjord systems. These Antarctic fjords have characteristics that are substantially different from well-studied Arctic fjords, likely yielding much different responses to climate warming. This project will provide major new insights into the dynamics and climate sensitivity of Antarctic fjord ecosystems, highlighting contrasts with Arctic sub-polar fjords, and potentially transforming our understanding of the ecological role of fjords in the rapidly warming west Antarctic coastal marine landscape. The project will also further the NSF goal of training new generations of scientists, providing scientific training for undergraduate, graduate, and postdoctoral students. This includes the unique educational opportunity for undergraduates to participate in research cruises in Antarctica and the development of a novel summer graduate course on fjord ecosystems. Internet based outreach activities will be enhanced and extended by the participation of a professional photographer who will produce magazine articles, websites, radio broadcasts, and other forms of public outreach on the fascinating Antarctic ecosystem. This project will involve a 15-month field program to test mechanistic hypotheses concerning oceanographic and glaciological forcing, and phytoplankton and benthic community response in the Antarctic fjords. Those efforts will be followed by a coupled physical/biological modeling effort to evaluate the drivers of biogeochemical cycles in the fjords and to explore their potential sensitivity to enhanced meltwater and sediment inputs. Fieldwork over two oceanographic cruises will utilize moorings, weather stations, and glacial, sea-ice and seafloor time-lapse cameras to obtain an integrated view of fjord ecosystem processes. The field team will also make multiple shipboard measurements and will use towed and autonomous underwater vehicles to intensively evaluate fjord ecosystem structure and function during spring/summer and autumn seasons. These integrated field and modeling studies are expected to elucidate fundamental properties of water column and sea bottom ecosystem structure and function in the fjords, and to identify key physical-chemical-glaciological forcing in these rapidly warming ecosystems.
There is compelling historical evidence that the West Antarctic Ice Sheet (WAIS) is vulnerable to rapid retreat and collapse. Recent observations, compared to observations made 20-30 years before, indicate that both ice shelves (thick ice with ocean below) and land ice (thick ice with land below), are now melting at a much faster rate. Some numerical models suggest that significant ice retreat may begin within many of our lifetimes, starting with the abrupt collapse of Pine Island and Thwaites Glaciers in the next 50 years. This may be followed by retreat of much of the WAIS and then the collapse of parts of the East Antarctic ice sheet (EAIS). This research project will assess the extent to which global ocean circulation and climate will be impacted if enormous volumes of fresh water and ice flow into the Southern Ocean. It will establish whether a rapid collapse of WAIS in the near-future poses any significant threat to the stability of modern-day climate and human society. This is a topic that has so far received little attention as most prior research has focused on the response of climate to melting the Greenland ice sheet. Yet model simulations predict that the volumes of fresh water and ice released from Antarctica in the next few centuries could be up at least ten-times larger than from Greenland. The Intellectual Merit of this project stems from its ability to establish a link between the physical Antarctic system (ice sheet dynamics, fresh water discharge and iceberg calving) and global climate. The PIs (Principal Investigators) will assess the sensitivity of ocean circulation and climate to increased ice sheet melt using a combination of ocean, iceberg, ice sheet and climate models. Results from this study will help identify areas of the ice sheet that are vulnerable to collapse and also regions of the ocean where a significant freshening will have a considerable impact on climate, and serve to guide the deployment of an observational monitoring system capable of warning us when ice and fresh water discharge start to approach levels capable of disrupting ocean circulation and global climate. This project will support and train two graduate students, and each PI will be involved with local primary and secondary schools, making presentations, mentoring science fair projects, and contributing to curriculum development. A novel, web-based, interactive, cryosphere learning tool will be developed to help make school children more aware of the importance of the Polar Regions in global climate, and this software will be introduced to science teachers at a half day workshop organized by the UMass STEM Education Institute. Recent numerical simulations using a continental ice sheet/shelf model show the potential for more rapid and greater Antarctic ice sheet retreat in the next 50-300 years (under the full range of IPCC RCP (Intergovernmental Panel on Climate Change, Representative Concentration Pathways) future warming scenarios) than previously projected. Exactly how the release of enormous volumes of ice and fresh water to the Southern Ocean will impact global ocean circulation and climate has yet to be accurately assessed. This is in part because previous model simulations were too coarse to accurately resolve narrow coastal boundary currents, shelf breaks, fronts, and mesoscale eddies that are all very important for realistically simulating fresh water transport in the ocean. In this award, future projections of fresh water discharge and iceberg calving from Antarctic will be used to force a high resolution eddy-resolving ocean model (MITgcm) coupled to a new iceberg module and a fully-coupled global climate model (CCSM4). High resolution ocean/iceberg simulations will determine the role of mesoscale eddies in freshwater transport and give new insight into how fresh water is advected to far-field locations, including deep water formation sites in the North Atlantic. These simulations will provide detailed information about subsurface temperatures and changes in ocean circulation close to the ice front and grounding line. An accompanying set of fully coupled climate model simulations (NCAR CCSM4) will identify multidecadal-to-centennial changes in the climate system triggered by increased high-latitude Southern Ocean freshwater forcing. Particular attention will be given to changes in the strength of the Atlantic Meridional Overturning Circulation (AMOC), wind stress, sea ice formation, and global temperatures. In doing so, this project will more accurately determine whether abrupt and potentially catastrophic changes in global climate are likely to be triggered by changes in the Antarctic system in the near-future.
Gases trapped in ice cores have revealed astonishing things about the greenhouse gas composition of the past atmosphere, including the fact that carbon dioxide concentrations never rose above 300 parts per million during the last 800,000 years. This places today's concentration of 400 parts per million in stark contrast. Furthermore, these gas records show that natural sources of greenhouse gas such as oceans and ecosystems act as amplifiers of climate change by increasing emissions of gases during warmer periods. Such amplification is expected to occur in the future, adding to the human-produced gas burden. The South Pole ice core will build upon these prior findings by expanding the suite of gases to include, for the first time, those potent trace gases that both trapped heat and depleted ozone during the past 40,000 years. The present project on inert gases and methane in the South Pole ice core will improve the dating of this crucial record, to unprecedented precision, so that the relative timing of events can be used to learn about the mechanism of trace gas production and destruction, and consequent climate change amplification. Ultimately, this information will inform predictions of future atmospheric chemical cleansing mechanisms and climate in the context of our rapidly changing atmosphere. This award also engages young people in the excitement of discovery and polar research, helping to entrain the next generations of scientists and educators. Education of graduate students, a young researcher (Buizert), and training of technicians, will add to the nation?s human resource base. This award funds the construction of the gas chronology for the South Pole 1500m ice core, using measured inert gases (d15N and d40Ar--Nitrogen and Argon isotope ratios, respectively) and methane in combination with a next-generation firn densification model that treats the stochastic nature of air trapping and the role of impurities on densification. The project addresses fundamental gaps in scientific understanding that limit the accuracy of gas chronologies, specifically a poor knowledge of the controls on ice-core d15N and the possible role of layering and impurities in firn densification. These gaps will be addressed by studying the gas enclosure process in modern firn at the deep core site. The work will comprise the first-ever firn air pumping experiment that has tightly co-located measurements of firn structural properties on the core taken from the same borehole. The project will test the hypothesis that the lock-in horizon as defined by firn air d15N, CO2, and methane is structurally controlled by impermeable layers, which are in turn created by high-impurity content horizons in which densification is enhanced. Thermal signals will be sought using the inert gas measurements, which improve the temperature record with benefits to the firn densification modeling. Neon, argon, and oxygen will be measured in firn air and a limited number of deep core samples to test whether glacial period layering was enhanced, which could explain low observed d15N in the last glacial period. Drawing on separate volcanic and methane synchronization to well-dated ice cores to create independent ice and gas tie points, independent empirical estimates of the gas age-ice age difference will be made to check the validity of the firn densification model-inert gas approach to calculating the gas age-ice age difference. These points will also be used to test whether the anomalously low d15N seen during the last glacial period in east Antarctic ice cores is due to deep air convection in the firn, or a missing impurity dependence in the firn densification models. The increased physical understanding gained from these studies, combined with new high-precision measurements, will lead to improved accuracy of the gas chronology of the South Pole ice core, which will enhance the overall science return from this gas-oriented core. This will lead to clarification of timing of atmospheric gas variations and temperature, and aid in efforts to understand the biogeochemical feedbacks among trace gases. These feedbacks bear on the future response of the Earth System to anthropogenic forcing. Ozone-depleting substances will be measured in the South Pole ice core record, and a precise gas chronology will add value. Lastly, by seeking a better understanding of the physics of gas entrapment, the project aims to have an impact on ice-core science in general.
Aydin/1644245 This award supports a project to measure ethane in ice core air extracted from the recently drilled intermediate depth South Pole ice core (SPICECORE). Ethane is an abundant hydrocarbon in the atmosphere. The ice core samples that will be used in this analysis will span about 150 years before present to about 55,000 years before present and therefore, ethane emissions linked to human activities are not a subject of this study. The study will focus on quantifying the variability in the natural sources of ethane and the processes that govern its removal from the atmosphere. A long-term ice core ethane record will provide new knowledge on the chemistry of Earth?s atmosphere during time periods when human influence was either much smaller than present day or non-existent. The broader impacts of this work include education and training of students and a contribution to a better understanding of the chemistry of the atmosphere in the past and how it has been impacted by past changes in climate. Natural sources that emit ethane are both geologic (e.g. seeps, vents, mud volcanoes etc.) and pyrogenic (wild fires) which is commonly called biomass burning. Ethane is removed from the atmosphere via oxidation reactions. The ice core ethane measurements have great potential as a proxy for gaseous emissions from biomass burning. This is especially true for time periods preceding the industrial revolution when atmospheric variability of trace gases was largely controlled by natural processes. Another objective of this study is to improve understanding of the causes of atmospheric methane variability apparent which are in the existing ice core records. Methane is a simpler hydrocarbon than ethane and more abundant in the atmosphere. Even though the project does not include any methane measurements; the commonalities between the sources and removal of atmospheric ethane and methane mean that ethane measurements can be used to gain insight into the causes of changes in atmospheric methane levels. The broader impacts of the project include partial support for one Ph.D. student and support for undergraduate researchers at UC Irvine. The PIs group currently has 4 undergraduate researchers. The PI and the graduate students in the UCI ice core laboratory regularly participate in on- and off-campus activities such as laboratory tours and lectures directed towards educating high-school students and science teachers, and the local community at large about the scientific value of polar ice cores as an environmental record of our planet's past. The results of this research will be disseminated via peer-review publications and will contribute to policy-relevant activities such as the IPCC Climate Assessment. Data resulting from this project will be archived in a national data repository. This award does not have field work in Antarctica.
Bubbles of ancient air trapped in ice cores permit the direct reconstruction of atmospheric composition and allow us to link greenhouse gases and global climate over the last 800,000 years. Previous field expeditions to the Allan Hills blue ice area, Antarctica, have recovered ice cores that date to one million years, the oldest ice cores yet recovered from Antarctica. These records have revealed that interglacial CO2 concentrations decreased by 800,000 years ago and that, in the warmer world 1 million years ago, CO2 and Antarctic temperature were linked as during the last 800,000 years. This project will return to the Allan Hills blue ice area to recover additional ice cores that date to 1 million years or older. The climate records developed from the drilled ice cores will provide new insights into the chemical composition of the atmosphere and Antarctic climate during times of comparable or even greater warmth than the present day. Our results will help answer questions about issues associated with anthropogenic change. These include the relationship between temperature change and the mass balance of Antarctic ice; precipitation and aridity variations associated with radiatively forced climate change; and the climate significance of sea ice extent. The project will entrain two graduate students and a postdoctoral scholar, and will conduct outreach including workshops to engage teachers in carbon science and ice cores. Between about 2.8-0.9 million years ago, Earth's climate was characterized by 40,000-year cycles, driven or paced by changes in the tilt of Earth's spin axis. Much is known about the "40,000-year" world from studies of deep-sea sediments, but our understanding of climate change during this period is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of ancient ice from the Main Ice Field, Allan Hills, Antarctica. During previous field seasons we recovered ice extending, discontinuously, from 0.1-1.0 million years old. Ice was dated by measuring the 40Ar/38Ar (Argon) ratio of the trapped gases. Our discovery of million year-old ice demonstrates that there is gas-record-quality ice from the 40,000-year world in the Allan Hills Main Ice Field. We have identified two different sites, each overlying bedrock at ~ 200 m depth, that are attractive targets for coring ice dating to 1 million years and older. This project aims to core the ice at these two sites, re-occupy a previous site with million year-old ice and drill it down to the bedrock, and generate 10-20 short (~10-meter) cores in areas where our previous work and terrestrial meteorite ages suggest ancient surface ice. We plan to date the ice using the 40Ar/38Ar ages of trapped Argon. We also plan to characterize the continuity of our cores by measuring the deuterium and oxygen isotope ratios in the ice, methane, ratios of Oxygen and Argon to Nitrogen in trapped gas, the Nitrogen-15 isotope (d15N) of Nitrogen, and the Oxygen-18 isotope (d18O) of Oxygen. As the ice may be stratigraphically disturbed, these measurements will provide diagnostic properties for assessing the continuity of the ice-core records. Successful retrieval of ice older than one million years will provide the opportunity for follow-up work to measure the CO2 concentration and other properties within the ice to inform on the temperature history of the Allan Hills region, dust sources and source-area aridity, moisture sources, densification conditions, global average ocean temperature, and greenhouse gas concentrations. We will analyze the data in the context of leading hypotheses of the 40,000-year world and the Mid-Pleistocene Transition to the 100,000-year world. We expect to advance understanding of climate dynamics during these periods.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The LISSARD project (Lake and Ice Stream Subglacial Access Research Drilling) is one of three research components of the WISSARD integrative initiative (Whillans Ice Stream Subglacial Access Research Drilling) that is being funded by the Antarctic Integrated System Science Program of NSF's Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The LISSARD component of WISSARD focuses on the role of active subglacial lakes in determining how fast the West Antarctic ice sheet loses mass to the global ocean and influences global sea level changes. The importance of Antarctic subglacial lakes has only been recently recognized, and the lakes have been identified as high priority targets for scientific investigations because of their unknown contributions to ice sheet stability under future global warming scenarios. LISSARD has several primary science goals: A) To provide an observational basis for improving treatments of subglacial hydrological and mechanical processes in models of ice sheet mass balance and stability; B) To reconstruct the past history of ice stream stability by analyzing archives of past basal water and ice flow variability contained in subglacial sediments, porewater, lake water, and basal accreted ice; C) To provide background understanding of subglacial lake environments to benefit RAGES and GBASE (the other two components of the WISSARD project); and D) To synthesize data and concepts developed as part of this project to determine whether subglacial lakes play an important role in (de)stabilizing Antarctic ice sheets. We propose an unprecedented synthesis of approaches to studying ice sheet processes, including: (1) satellite remote sensing, (2) surface geophysics, (3) borehole observations and measurements and, (4) basal and subglacial sampling. <br/><br/>INTELLECTUAL MERIT: The latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations. <br/><br/>BROADER IMPACTS: Societal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars.
Meltwater lakes that sit on top of Antarctica's floating ice shelves have likely contributed to the dramatic changes seen in Antarctica's glacial ice cover over the past two decades. In 2002, the 1,600-square-kilometer Larsen B Ice Shelf located on the Eastern side of the Antarctic Peninsula, for example, broke into thousands of small icebergs, which subsequently floated away as a result of the formation of more than 2,000 meltwater lakes on its surface over the prior decade. Our research project addresses the reasons why surface lakes form on Antarctic ice shelves and how these surface lakes subsequently contribute to the forces that may contribute to ice-shelf breakup like that of the Larsen B. Our project focuses primarily on making precise global positioning system (GPS) measurements of ice-shelf bending in response to the filling and draining of a surface lake on the McMurdo Ice Shelf. The observed vertical displacements (on the order of tens of centimeters) in response to lake filling will be used to calibrate and test computer simulation models that predict the response of ice shelves to surface lakes more generally and in a variety of future climate conditions. Our project will make hourly measurements of both vertical ice-shelf movements (using GPS surveying instruments) and of temperature and sunlight conditions (that drive melting) around a surface lake located close to the McMurdo Station airfield. Following this initial data-gathering effort, computer simulations and other more theoretical analysis will be undertaken to determine the suitability of the chosen McMurdo Ice Shelf surface lake as a field-laboratory for continued study. Ultimately, the research will contribute to understanding of the glaciological processes that link climate change to rising sea level. A successful outcome of the research will allow glaciologists to better assess the processes that promote or erode the influence Antarctic ice shelves have in controlling the transfer of ice from the interior of Antarctica into the ocean. The project will undertake two outreach activities: (1) web-posting of a field-activity journal and (2) establishing an open-access glaciological teaching and outreach web-sharing site for the International Glaciological Society. The proposed project seeks to experimentally verify a theory of ice-shelf instability proposed to explain the explosive break-up of Larsen B Ice Shelf in 2002. This theory holds that the filling and draining of supraglacial lakes on floating ice shelves induces sufficient flexure stress within the ice to (a) induce upward/downward propagating fractures originating at the base/surface of the ice shelf that (b) dissect the ice shelf into fragments that tend to have widths less than about half the ice thickness. The significance of narrow widths is that they promote capsize of the ice-shelf fragments during the break-up process. This capsize releases large amounts of gravitational potential energy (comparable to thousands of kilotons of TNT for the Larsen B Ice Shelf) thereby promoting explosiveness of the Larsen B event. The observational motivation for experimentally verifying the surface-lake mechanism for ice-shelf breakup is based on the fact that >2,000 surface lakes developed on the Larsen B Ice Shelf in the decade prior to its break up, and that these lakes were observed (via satellite imagery) to drain in a coordinated fashion during the day prior to the initiation of the break up. The field-observation component of the project will focus on a supraglacial lake on the McMurdo Ice Shelf where there is persistent summer season surface melting. The lake will be studied during a single provisional field season to determine whether grooming of surrounding surface streams and shorelines with heavy construction equipment will allow surface water to be manually encouraged to fill the lake. If successfully encouraged to develop, the McMurdo Ice Shelf surface lake will allow measurements of key ice-shelf flexure and stress variables needed to develop the theory of ice-shelf surface lakes without having to access the much more logistically demanding surface lakes of ice-shelves located elsewhere in Antarctica. Data to be gathered during the 6-week provisional field season include: energy- and water-balance parameters determining how the surface lake grows and fills, and various global positioning system measurements of the vertical bending of the ice sheet in response to the changing meltwater load contained within the surface lake. These data will be used to (1) constrain a computer model of viscoelastic flexure and possible fracture of the ice shelf in response to the increasing load of meltwater in the lake, and (2) determine whether continued study of the incipient surface-meltwater lake features on the McMurdo Ice Shelf provides a promising avenue for constraining the more-general behavior of surface meltwater lakes on other ice shelves located in warmer parts of Antarctica. Computer models constrained by the observational data obtained from the field project will inform energy- and water-balance models of ice shelves in general, and allow more accurate forecasts of changing ice-shelf conditions surrounding the inland ice of Antarctica. The project will create the first-ever ground-based observations useful for spawning the development of models capable of predicting viscoelastic and fracture behavior of ice shelves in response to supraglacial lake evolution, including slow changes due to energy balance effects, as well as fast changes due to filling and draining.
The Palmer Antarctica LTER (Long Term Ecological Research) site has been in operation since 1990. The goal of all the LTER sites is to conduct policy-relevant research on ecological questions that require tens of years of data, and cover large geographical areas. For the Palmer Antarctica LTER, the questions are centered around how the marine ecosystem west of the Antarctica peninsula is responding to a climate that is changing as rapidly as any place on the Earth. For example, satellite observations over the past 35 years indicate the average duration of sea ice cover is now ~90 days (3 months!) shorter than it was. The extended period of open water has implications for many aspects of ecosystem research, with the concurrent decrease of Adèlie penguins within this region regularly cited as an exemplar of climate change impacts in Antarctica. Cutting edge technologies such as autonomous underwater (and possibly airborne) vehicles, seafloor moorings, and numerical modeling, coupled with annual oceanographic cruises, and weekly environmental sampling, enables the Palmer Antarctica LTER to expand and bridge the time and space scales needed to assess climatic impacts. This award includes for the first time study of the roles of whales as major predators in the seasonal sea ice zone ecosystem. The team will also focus on submarine canyons, special regions of enhanced biological activity, along the Western Antarctic Peninsula (WAP). The current award's overarching research question is: How do seasonality, interannual variability, and long term trends in sea ice extent and duration influence the structure and dynamics of marine ecosystems and biogeochemical cycling? Specific foci within the broad question include: 1. Long-term change and ecosystem transitions. What is the sensitivity or resilience of the ecosystem to external perturbations as a function of the ecosystem state? 2. Lateral connectivity and vertical stratification. What are the effects of lateral transports of freshwater, heat and nutrients on local ocean stratification and productivity and how do they drive changes in the ecosystem? 3. Top-down controls and shifting baselines. How is the ecosystem responding to the cessation of whaling and subsequent long-term recovery of whale stocks? 4. Foodweb structure and biogeochemical processes. How do temporal and spatial variations in foodweb structure influence carbon and nutrient cycling, export, and storage? The broader impacts of the award leverage local educational partnerships including the Sandwich, MA STEM Academy, the New England Aquarium, and the NSF funded Polar Learning and Responding (PoLAR) Climate Change Education Partnership at Columbia's Earth Institute to build new synergies between Arctic and Antarctic, marine and terrestrial scientists and students, governments and NGOs. The Palmer Antarctic LTER will also conduct appropriate cross LTER site comparisons, and serve as a leader in information management to enable knowledge-building within and beyond the Antarctic, oceanographic, and LTER communities.
Ice cores record detailed histories of past climate variations. The South Pole ice core will allow investigation of atmospheric trace gases and fill an important gap in understanding the pattern of climate variability across Antarctica. An accurate timescale that assigns an age to the ice at each depth in the core is essential to interpretation of the ice-core records. This work will use electrical methods to identify volcanic eruptions throughout the past ~40,000 years in the core by detecting the enhanced electrical conductance in those layers due to volcanic impurities in the ice. These eruptions will be pattern-matched to other cores across Antarctica, synchronizing the timing of climate variations among cores and allowing the precise timescales developed for other Antarctic ice cores to be transferred to the South Pole ice core. The well-dated records of volcanic forcing will be combined with records of atmospheric gases, stable water-isotopes, and aerosols to better understand the large natural climate variations of the past 40,000 years. The electrical conductance method and dielectric profiling measurements will be made along the length of each section of the South Pole ice core at the National Ice Core Lab. These measurements will help to establish a timescale for the core. Electrical measurements will provide a continuous record of volcanic events for the entire core including through the brittle ice (550-1250m representing ~10,000-20,000 year-old ice) where the core quality and thin annual layers may prevent continuous melt analysis and cause discrete measurements to miss volcanic events. The electrical measurements also produce a 2-D image of the electrical layering on a longitudinal cut surface of each core. These data will be used to identify any irregular or absent layering that would indicate a stratigraphic disturbance in the core. A robust chronology is essential to interpretation of the paleoclimate records from the South Pole ice core. The investigators will engage teachers through talks and webinars with the National Science Teachers Association and will share information with the public at events such as Polar Science Weekend at the Pacific Science Center. Results will be disseminated through publications and conference presentations and the data will be archived and publicly available.
Non-Technical Summary: About 80 million years ago, the tip of the Antarctic Peninsula in the vicinity of what is now James Ross Island experienced an episode of rapid subsidence, creating a broad depositional basin that collected sediments eroding from the high mountains to the West. This depression accumulated a thick sequence of fossil-rich, organic-rich sediments of the sort that are known to preserve hydrocarbons, and for which Argentina, Chile, and the United Kingdom have overlapping territorial claims. The rocks preserve one of the highest resolution records of the biological and climatic events that led to the eventual death of the dinosaurs at the Cretaceous-Tertiary boundary (about 66 million years ago). A previous collaboration between scientists from the Instituto Antártico Argentino (IAA) and NSF-supported teams from Caltech and the University of Washington were able to show that this mass extinction event started nearly 50,000 years before the sudden impact of an asteroid. The asteroid obviously hit the biosphere hard, but something else knocked it off balance well before the asteroid hit. A critical component of the previous work was the use of reversals in the polarity of the Earth?s magnetic field as a dating tool ? magnetostratigraphy. This allowed the teams to correlate the pattern of magnetic reversals from Antarctica with elsewhere on the planet. This includes data from a major volcanic eruption (a flood basalt province) that covered much of India 65 million years ago. The magnetic patterns indicate that the Antarctic extinction started with the first pulse of this massive eruption, which was also coincident with a rapid spike in polar temperature. The Argentinian and US collaborative teams will extend this magnetic polarity record back another ~ 20 million years in time, and expand it laterally to provide magnetic reversal time lines across the depositional basin. They hope to recover the end of the Cretaceous Long Normal interval, which is one of the most distinctive events in the history of Earth?s magnetic field. The new data should refine depositional models of the basin, allow better estimates of potential hydrocarbon reserves, and allow biotic events in the Southern hemisphere to be compared more precisely with those elsewhere on Earth. Other potential benefits of this work include exposing several US students and postdoctoral fellows to field based research in Antarctica, expanding the international aspects of this collaborative work via joint IAA/US field deployments, and follow-up laboratory investigations and personnel exchange of the Junior scientists. Technical Description of Project The proposed research will extend the stratigraphic record in the late Cretaceous and early Tertiary sediments (~ 83 to 65 Ma before present) of the James Ross Basin, Antarctica, using paleo-magnetic methods. Recent efforts provided new methods to analyze these rocks, yielding their primary magnetization, and producing both magnetic polarity patterns and paleomagnetic pole positions. This provided the first reliable age constraints for the younger sediments on Seymour Island, and quantified the sedimentation rate in this part of the basin. The new data will allow resolution of the stable, remnant magnetization of the sediments from the high deposition rate James Ross basin (Tobin et al., 2012), yielding precise chronology/stratigraphy. This approach will be extended to the re-maining portions of this sedimentary basin, and will allow quantitative estimates for tectonic and sedimentary processes between Cretaceous and Early Tertiary time. The proposed field work will refine the position of several geomagnetic reversals that occurred be-tween the end of the Cretaceous long normal period (Chron 34N, ~ 83 Ma), and the lower portion of Chron 31R (~ 71 Ma). Brandy Bay provides the best locality for calibrating the stratigraphic position of the top of the Cretaceous Long Normal Chron, C34N. Although the top of the Cretaceous long normal Chron is one of the most important correlation horizons in the entire geological timescale, it is not properly correlated to the southern hemisphere biostratigraphy. Locating this event, as well as the other reversals, will be a major addition to understanding of the geological history of the Antarctic Peninsula. These data will also help refine tectonic models for the evolution of the Southern continents, which will be of use across the board for workers in Cretaceous stratigraphy (including those involved in oil exploration). This research is a collaborative effort with Dr. Edward Olivero of the Centro Austral de Investigaciones Cientificas (CADIC/CONICET) and Prof. Augusto Rapalini of the University of Buenos Aires. The collaboration will include collection of samples on their future field excursions to important targets on and around James Ross Island, supported by the Argentinian Antarctic Program (IAA). Argentinian scientists and students will also be involved in the US Antarctic program deployments, proposed here for the R/V Laurence Gould, and will continue the pattern of joint international publication of the results.
This CAREER proposal will support an early career female PI to establish an integrated research and education program in the fields of polar biology and environmental microbiology, focusing on single-celled eukaryotes (protists) in high latitude ice-covered Antarctic lakes systems. Protists play important roles in energy flow and material cycling, and act as both primary producers (fixing inorganic carbon by photosynthesis) and consumers (preying on bacteria by phagotrophic digestion). The McMurdo Dry Valleys (MDV) located in Victoria Land, Antarctica, harbor microbial communities which are isolated in the unique aquatic ecosystem of perennially ice-capped lakes. The lakes support exclusively microbial consortia in chemically stratified water columns that are not influenced by seasonal mixing, allochthonous inputs, or direct human impact. This project will exploit permanently stratified biogeochemistry that is unique across the water columns of several MDV lakes to address gaps in our understanding of protist trophic function in aquatic food webs. The proposed research will examine (1) the impact of permanent biogeochemical gradients on protist trophic strategy, (2) the effect of major abiotic drivers (light and nutrients) on the distribution of two key mixotrophic and photoautotrophic protist species, and (3) the effect of episodic nutrient pulses on mixotroph communities in high latitude (ultraoligotrophic) MDV lakes versus low latitude (eutrophic) watersheds. The project will impact the fields of microbial ecology and environmental microbiology by combining results from field, laboratory and in situ incubation studies to synthesize new models for the protist trophic roles in the aquatic food web. The research component of this proposed project will be tightly integrated with the development of two new education activities designed to exploit the inherent excitement associated with polar biological research. The educational objectives are: 1) to establish a teaching module in polar biology in a core undergraduate course for microbiology majors; 2) to develop an instructional module to engage middle school girls in STEM disciplines. Undergraduates and middle school girls will also work with a doctoral student on his experiments in local Ohio watersheds.
This award supports a project to use the Roosevelt Island ice core as a glaciological dipstick for the eastern Ross Sea. Recent attention has focused on the eastern Ross Embayment, where there are no geological constraints on ice thickness changes, due to the lack of protruding rock "dipsticks" where the ice sheet can leave datable records of high stands. Recent work has shown how dated ice cores can be used as dipsticks to derive ice-thickness histories. Partners from New Zealand and Denmark will extract an ice core from Roosevelt Island during the 2010-2011 and 2011-12 austral summers. Their science objective is to contribute to understanding of climate variability over the past 40kyr. The science goal of this project is not the climate record, but rather the history of deglaciation in the Ross Sea. The new history from the eastern Ross Sea will be combined with the glacial histories from the central Ross Sea (Siple Dome and Byrd) and existing and emerging histories from geologic and marine records along the western Ross Sea margin and will allow investigators to establish an updated, self-consistent model of the configuration and thickness of ice in the Ross Embayment during the LGM, and the timing of deglaciation. Results from this work will provide ground truth for new-generation ice-sheet models that incorporate ice streams and fast-flow dynamics. Realistic ice-sheet models are needed not only for predicting the response to future possible environments, but also for investigating past behaviors of ice sheets. This research contributes to the primary goals of the West Antarctic Ice Sheet Initiative as well as the IPY focus on ice-sheet history and dynamics. It also contributes to understanding spatial and temporal patterns of climate change and climate dynamics over the past 40kyr, one of the primary goals of the International Partnerships in Ice Core Sciences (IPICS). The project will help to develop the next generation of scientists and will contribute to the education and training of two Ph.D. students. All participants will benefit from the international collaboration, which will expose them to different field and laboratory techniques and benefit future collaborative work. All participants are involved in scientific outreach and undergraduate education, and are committed to fostering diversity. Outreach will be accomplished through regularly scheduled community and K-12 outreach events, talks and popular writing by the PIs, as well as through University press offices.
Intellectual Merit: The PI hypothesizes that bedforms found in the Central and Joides troughs can be interpreted as having been formed by rapid retreat, and possible collapse of an ice stream that occupied this area. To test this hypothesis, the PI proposes to conduct a detailed marine geological and geophysical survey of Central and Joides Troughs in the western Ross Sea. This project will bridge gaps between the small and isolated areas previously surveyed and will acquire a detailed sedimentological record of the retreating grounding line. The PI will reconstruct the retreat history of the Central and Joides troughs to century-scale resolution using radiocarbon dating methods and by looking at geomorphic features that are formed at regular time intervals. Existing multibeam, deep tow side-scan sonar, and core data will provide a framework for this research. The western Ross Sea is an ideal study area to investigate a single ice stream and the dynamics controlling its stability, including interactions between both East and West Antarctic Ice Sheets. Broader impacts: This proposal includes a post-doc, a graduate and two undergraduate students. The post-doc is involved with teaching an in-service K-12 teacher development and training course at Rice University for high-need teachers with a focus on curriculum enhancement. The project fosters collaboration for the PI and students with researchers at Louisiana State University and international colleagues at the Institute for Paleobiology at the Polish Academy of Sciences. The results from this project could lead to a better understanding of ice sheet and ice stream stability. This project will yield implications for society's understanding of climate change, as this work improves understanding of the behavior of ice sheets and their links to global climate.
Intellectual Merit: The PI requests support to analyze sediments from multi-cores and mega-cores previously collected from beneath the former Larsen B and Larsen A ice shelves. These unique cores will allow the PI to develop a time-integrated understanding of the benthic response to ice shelf collapse off the East Antarctic Peninsula over time periods as short as 5 years following ice shelf collapse up to >170 years after collapse. High latitudes are responding to climate change more rapidly than the rest of the planet and the disappearance of ice shelves are a key manifestation of climate warming. The PI will investigate the newly created benthic environments and associated ecosystems that have resulted from the re-initiation of fresh planktonic material to the sediment-water interface. This proposal will use a new geochemical technique, based on naturally occurring 14C that can be used to assess the distribution and inventory of recently produced organic carbon accumulating in the sediments beneath the former Larsen A and B ice shelves. The PI will couple 14C measurements with 210Pb analyses to assess turnover times for sedimentary labile organic matter. By comparing the distributions and inventories of labile organic matter as well as the bioturbation intensities among different locations as a function of time following ice shelf collapse/retreat, the nature and timing of the benthic response to ice shelf collapse can be assessed. Broader impacts: This study will provide important information characterizing changes occurring on the seafloor after the collapse of ice shelves. This research will support the research project of a graduate student. This project brings together researchers from both the European community and the LARISSA Project.
Like no other region on Earth, the northern Antarctic Peninsula represents a spectacular natural laboratory of climate change and provides the opportunity to study the record of past climate and ecological shifts alongside the present-day changes in one of the most rapidly warming regions on Earth. This award supports the cryospheric and oceano-graphic components of an integrated multi-disciplinary program to address these rapid and fundamental changes now taking place in Antarctic Peninsula (AP). By making use of a marine research platform (the RV NB Palmer and on-board helicopters) and additional logistical support from the Argentine Antarctic program, the project will bring glaciologists, oceanographers, marine geologists and biologists together, working collaboratively to address fundamentally interdisciplinary questions regarding climate change. The project will include gathering a new, high-resolution paleoclimate record from the Bruce Plateau of Graham Land, and using it to compare Holocene- and possibly glacial-epoch climate to the modern period; investigating the stability of the remaining Larsen Ice Shelf and rapid post-breakup glacier response ? in particular, the roles of surface melt and ice-ocean interactions in the speed-up and retreat; observing the contribution of, and response of, oceanographic systems to ice shelf disintegration and ice-glacier interactions. Helicopter support on board will allow access to a wide range of glacial and geological areas of interest adjacent to the Larsen embayment. At these locations, long-term in situ glacial monitoring, isostatic uplift, and ice flow GPS sites will be established, and high-resolution ice core records will be obtained using previously tested lightweight drilling equipment. Long-term monitoring of deep water outflow will, for the first time, be integrated into changes in ice shelf extent and thickness, bottom water formation, and multi-level circulation by linking near-source observations to distal sites of concentrated outflow. The broader impacts of this international, multidisciplinary effort are that it will significantly advance our understanding of linkages amongst the earth's systems in the Polar Regions, and are proposed with international participation (UK, Spain, Belgium, Germany and Argentina) and interdisciplinary engagement in the true spirit of the International Polar Year (IPY). It will also provide a means of engaging and educating the public in virtually all aspects of polar science and the effects of ongoing climate change. The research team has a long record of involving undergraduates in research, educating high-performing graduate students, and providing innovative and engaging outreach products to the K-12 education and public media forums. Moreover, forging the new links both in science and international Antarctic programs will provide a continuing legacy, beyond IPY, of improved understanding and cooperation in Antarctica.
This project will investigate the marine component of the Totten Glacier and Moscow University Ice Shelf, East Antarctica. This system is of critical importance because it drains one-eighth of the East Antarctic Ice Sheet and contains a volume equivalent to nearly 7 meters of potential sea level rise, greater than the entire West Antarctic Ice Sheet. This nearly completely unexplored region is the single largest and least understood marine glacial system that is potentially unstable. Despite intense scrutiny of marine based systems in the West Antarctic Ice Sheet, little is known about the Totten Glacier system. This study will add substantially to the meager oceanographic and marine geology and geophysics data available in this region, and will significantly advance understanding of this poorly understood glacial system and its potentially sensitive response to environmental change. Independent, space-based platforms indicate accelerating mass loss of the Totten system. Recent aerogeophysical surveys of the Aurora Subglacial Basin, which contains the deepest ice in Antarctica and drains into the Totten system, have provided the subglacial context for measured surface changes and show that the Totten Glacier has been the most significant drainage pathway for at least two previous ice flow regimes. However, the offshore context is far less understood. Limited physical oceanographic data from the nearby shelf/slope break indicate the presence of Modified Circumpolar Deep Water within a thick bottom layer at the mouth of a trough with apparent access to Totten Glacier, suggesting the possibility of sub-glacial bottom inflow of relatively warm water, a process considered to be responsible for West Antarctic Ice Sheet grounding line retreat. This project will conduct a ship-based marine geologic and geophysical survey of the region, combined with a physical oceanographic study, in order to evaluate both the recent and longer-term behavior of the glacial system and its relationship to the adjacent oceanographic system. This endeavor will complement studies of other Antarctic ice shelves, oceanographic studies near the Antarctic Peninsula, and ongoing development of ice sheet and other ocean models.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The West Antarctic Ice Sheet is believed to be vulnerable to climate change as it is grounded below sea level, is drained by rapidly flowing ice streams and is fringed by floating ice shelves subject to melting by incursions of relatively warm Antarctic circumpolar water. Currently, the most rapidly thinning glaciers in Antarctica occur in the Amundsen and Bellingshausen Sea sectors. This study seeks to place the present day observations into a longer-term geological context over a broad scale by high-resolution swath bathymetric mapping of continental shelf sea floor features that indicate past ice presence and behavior. Gaps in existing survey coverage of glacial lineations and troughs indicating ice flow direction and paleo-grounding zone wedges over the Ross, Amundsen and Bellingshausen Sea sectors are targeted. The surveys will be conducted as part of the 2010 Icebreaker Oden science opportunity and will take advantage of the vessel?s state-of-the-art swath mapping system.<br/><br/>Broader impacts:<br/>This activity will supplement and complement more focused regional studies by US, Swedish, UK, French, Japanese and Polish collaborators also sailing on the Oden. The PI will compile bathymetric data to be acquired by the Oden and other ships in the region over the duration of the project into the existing bathymetric data base. The compiled data set will be made publically available through the NSF founded Antarctic Multibeam Bathymetry and Geophysical Data Synthesis (AMBS) site. It will also be integrated into the GEBCO International Bathymetric Chart of the Southern Ocean (IBCSO) and so significantly improve the basis for ship navigation in the Pacific sector of the Southern Ocean. Undergraduate students will be involved in the research under supervision of the PI via the Lamont summer internship program. The PI is a young investigator and this will be his first NSF grant as a PI.
Interest in the reduced alkalinity of high latitude waters under conditions of enhanced CO2 uptake from the atmosphere have been the impetus of numerous recent studies of bio-stressors in the polar marine environment. The project seeks to improve our understanding of the variance of coastal Southern Ocean carbonate species (CO2 system), its diurnal and inter-annual variability, by acquiring autonomous, high frequency observations from an Antarctic coastal mooring(s). A moored observing system co-located within the existing Palmer LTER array will measure pH, CO2 partial pressure, temperature, salinity and dissolved oxygen with 3-hour frequency in this region of the West Antarctic Peninsula continental shelf. Such observations will help estimate the dominant physical and biological controls on the seasonal variations in the CO2 system in coastal Antarctic waters, including the sign, seasonality and the flux of the net annual air-sea exchange of carbon dioxide. The Palmer LTER site is experiencing rapid ecological change in the West Antarctic Peninsula, a region that is warming at rates faster than any other region of coastal Antarctica.
Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project seeks to drive a transformative shift in our understanding of the crucial role of the Southern Ocean in taking up anthropogenic carbon and heat, and resupplying nutrients from the abyss to the surface. An observational program will generate vast amounts of new biogeochemical data that will provide a greatly improved view of the dynamics and ecosystem responses of the Southern Ocean. A modeling component will apply these observations to enhancing understanding of the current ocean, reducing uncertainty in projections of future carbon and nutrient cycles and climate. Because it serves as the primary gateway through which the intermediate, deep, and bottom waters of the ocean interact with the surface layers and thus the atmosphere, the Southern Ocean has a profound influence on the oceanic uptake of anthropogenic carbon and heat as well as nutrient resupply from the abyss to the surface. Yet it is the least observed and understood region of the world ocean. The oceanographic community is on the cusp of two major advances that have the potential to transform understanding of the Southern Ocean. The first is the development of new biogeochemical sensors mounted on autonomous profiling floats that allow sampling of ocean biogeochemistry and acidification in 3-dimensional space with a temporal resolution of five to ten days. The SOCCOM float program proposed will increase the average number of biogeochemical profiles measured per month in the Southern Ocean by ~10-30x. The second is that the climate modeling community now has the computational resources and physical understanding to develop fully coupled climate models that can represent crucial mesoscale processes in the Southern Ocean, as well as corresponding models that assimilate observations to produce a state estimate. Together with the observations, this new generation of models provides the tools to vastly improve understanding of Southern Ocean processes and the ability to quantitatively assess uptake of anthropogenic carbon and heat, as well as nutrient resupply, both today and into the future. In order to take advantage of the above technological and modeling breakthroughs, SOCCOM will implement the following research programs: * Theme 1: Observations. Scripps Institution of Oceanography will lead a field program to expand the number of Southern Ocean autonomous profiling floats and equip them with sensors to measure pH, nitrate, and oxygen. The University of Washington and Monterey Bay Aquarium Research Institute will design, build, and oversee deployment of the floats. Scripps will also develop a mesoscale eddying Southern Ocean state estimate that assimilates physical and biogeochemical data into the MIT ocean general circulation model. * Theme 2: Modeling. University of Arizona and Princeton University, together with NOAA's Geophysical Fluid Dynamics Laboratory (GFDL), will use SOCCOM observations to develop data/model assessment metrics and next-generation model analysis and evaluation, with the goal of improving process level understanding and reducing the uncertainty in projections of our future climate. Led by Climate Central, an independent, non-profit journalism and research organization that promotes understanding of climate science, SOCCOM will collaborate with educators and media professionals to inform policymakers and the public about the challenges of climate change and its impacts on marine life in the context of the Southern Ocean. In addition, the integrated team of SOCCOM scientists and educators will: * communicate data and results of the SOCCOM efforts quickly to the public through established data networks, publications, broadcast media, and a public portal; * train a new generation of diverse ocean scientists, including undergraduate students, graduate students, and postdoctoral fellows versed in field techniques, data calibration, modeling, and communication of research to non-scientists; * transfer new sensor technology and related software to autonomous instrument providers and manufacturers to ensure that they become widely useable.
This project will support two training courses that will introduce early-career scientists from a wide range of disciplinary backgrounds to key issues in polar science, and especially to provide the opportunity to gain hands-on experience in Antarctic field activities. Antarctica is an ideal location to study a wide variety of questions in biology. However, few students and early-career scientists have the opportunity to work on-site in Antarctica unless they are directly associated with a senior scientist who has a funded Antarctic project. The project will further the NSF goal of training new generations of scientists by providing hands-on training in Antarctica during one course at Palmer Station in 2016 and another at McMurdo Station in 2018. This represents a continuation of nine previous courses at McMurdo Station which have a proven record of introducing participants to Antarctic science under realistic field conditions, providing opportunities to understand and appreciate the complexities and logistical challenges of undertaking science in Antarctica, enhancing the professional careers of the participants, and increasing international collaborations for early-career scientists. The proposed training courses will be open to Ph.D. students and post-doctoral scientists who have interests in the study of Antarctic marine organisms to help prepare them for success in developing their own independent research programs in polar regions. Long-standing and recent questions in evolution and ecology of Antarctic organisms will be examined with 1) field collections, 2) physiological experiments on whole organisms, 3) studies of isolated cells and tissues, 4) experiments on macromolecular processes (e.g., enzymes), and 5) molecular biological analyses.
The extreme mountain topographies of alpine landscapes at mid latitudes (e.g., European Alps, Patagonia, Alaska) are thought to have formed by the erosive action of glaciers, yet our understanding of exactly when and how those topographies developed is limited. If glacial ice was responsible for forming them, then those landscapes must have developed primarily over the last 2-3 million years when ice was present at those latitudes; this timing has only recently been confirmed by observations. In contrast, the Antarctic Peninsula, which contains similarly spectacular topographic relief, is known to have hosted alpine glaciers as early as 37 million years ago, and is currently covered by ice. Thus, if caused by glacial erosion, the high relief of the peninsula should have formed much earlier than what has been observed at mid latitude sites, yet we know nearly nothing about the timing of its development. The primary benefit of this research will be to study the timing of topography development along the Antarctic Peninsula by applying state of the art chemical analyses to sediments collected offshore. This research is important because studying a high latitude site will enable comparison with sites at mid latitudes and test current hypotheses on the development of glacial landscapes in general. This project aims to apply low-temperature thermochronometry based on the (U-Th)/He system in apatite to investigate the exhumation history, the development of the present topography, and the pattern of glacial erosion in the central Antarctic Peninsula. A number of recent studies have used this approach to study the dramatic, high-relief landscapes formed by Pleistocene alpine glacial erosion in temperate latitudes: New Zealand, the Alps, British Columbia, Alaska, and Patagonia. These studies have not only revealed when these landscapes formed, but have also provided new insights into the physical mechanisms of glacial erosion. The Antarctic Peninsula is broadly akin to temperate alpine landscapes in that the dominant landforms are massive glacial troughs. However, what we know about Antarctic glacial history suggests that the timing and history of glacial erosion was most likely very different from the temperate alpine setting: The Antarctic Peninsula has been glaciated since the Eocene, and Pleistocene climate cooling is hypothesized to have suppressed, rather than enhanced, glacial erosion. Our goal is to evaluate these hypotheses by developing a direct thermochronometric record of when and how the present glacial valley relief formed. We propose to learn about the timing and process of glacial valley formation through apatite (U-Th)/He and 4He/3He measurements on glacial sediment collected near the grounding lines of major glaciers draining the Peninsula. In effect, since we cannot sample bedrock directly that is currently covered by ice, we will rely on these glaciers to do it for us.
The research will examine how diatoms (an important group of plankton in the Southern Ocean) adapt to environmental change. Diatoms will be sampled from different regions of the Southern Ocean, including the Drake Passage, the Pacific Sector of the Southern Ocean and the Ross Sea and examined to determine the range of genetic variation among diatoms in these regions. Experiments on a range of diatoms will be conducted in home laboratories and will be aimed at measuring shifts in physiological capacities over many generations in response to directional changes in the environment (temperature and pH). The information on the genetic diversity of field populations combined with information on potential rates of adaptability and genome changes will provide insight into ways in which polar marine diatoms populations may respond to environmental changes that may occur in surface oceans in the future or may have occurred during past climate conditions. Such information allows better modeling of biogeochemical cycles in the ocean as well as improves our abilities to interpret records of past ocean conditions. The project will support a doctoral student and a postdoctoral researcher as well as several undergraduate students. These scientists will learn the fundamentals of experimental evolution, a skill set that is being sought in the fields of biology and oceanography. The project also includes a collaboration with the Metcalf Institute for Marine and Environmental Reporting that will design and facilitate a session focused on current research related to evolution and climate change to be held at the annual conference of the National Association of Science Writers (NASW). Both physiological and genetic variation are key parameters for understanding evolutionary processes in phytoplankton but they are essentially unknown for Southern Ocean diatoms. The extent to which these two factors determine plasticity and adaptability in field populations and the interaction between them will influence how and whether cold-adapted diatoms can respond to changing environments. This project includes a combination of field work to identify genetic diversity within diatoms using molecular approaches and experiments in the lab to assess the range of physiological variation in contemporary populations of diatoms and evolution experiments in the lab to assess how the combination of genetic diversity and physiological variation influence the evolutionary potential of diatoms under a changing environment. This research will uncover general relationships between physiological variation, genetic diversity, and evolutionary potential that may apply across microbial taxa and geographical regions, substantially improving efforts to predict shifts in marine ecosystems. Results from this study can be integrated into developing models that incorporate evolution to predict ecosystem changes under future climate change scenarios.
This project aims to identify which portions of the glacial cover in the Antarctic Peninsula are losing mass to the ocean. This is an important issue to resolve because the Antarctic Peninsula is warming at a faster rate than any other region across the earth. Even though glaciers across the Antarctic Peninsula are small, compared to the continental ice sheet, defining how rapidly they respond to both ocean and atmospheric temperature rise is critical. It is critical because it informs us about the exact mechanisms which regulate ice flow and melting into the ocean. For instance, after the break- up of the Larsen Ice Shelf in 2002 many glaciers began to flow rapidly into the sea. Measuring how much ice was involved is difficult and depends upon accurate estimates of volume and area. One way to increase the accuracy of our estimates is to measure how fast the Earth's crust is rebounding or bouncing back, after the ice has been removed. This rebound effect can be measured with very precise techniques using instruments locked into ice free bedrock surrounding the area of interest. These instruments are monitored by a set of positioning satellites (the Global Positioning System or GPS) in a continuous fashion. Of course the movement of the Earth's bedrock relates not only to the immediate response but also the longer term rate that reflects the long vanished ice masses that once covered the entire Antarctic Peninsula?at the time of the last glaciation. These rebound measurements can, therefore, also tell us about the amount of ice which covered the Antarctic Peninsula thousands of years ago. Glacial isostatic rebound is one of the complicating factors in allowing us to understand how much the larger ice sheets are losing today, something that can be estimated by satellite techniques but only within large errors when the isostatic (rebound) correction is unknown. The research proposed consists of maintaining a set of six rebound stations until the year 2016, allowing for a longer time series and thus more accurate estimates of immediate elastic and longer term rebound effects. It also involves the establishment of two additional GPS stations that will focus on constraining the "bull's eye" of rebound suggested by measurements over the past two years. In addition, several more geologic data points will be collected that will help to reconstruct the position of the ice sheet margin during its recession from the full ice sheet of the last glacial maximum. These will be based upon the coring of marine sediment sequences now recognized to have been deposited along the margins of retreating ice sheets and outlets. Precise dating of the ice margin along with the new and improved rebound data will help to constrain past ice sheet configurations and refine geophysical models related to the nature of post glacial rebound. Data management will be under the auspices of the UNAVCO polar geophysical network or POLENET and will be publically available at the time of station installation. This project is a small scale extension of the ongoing LARsen Ice Shelf, Antarctica Project (LARISSA), an IPY (International Polar Year)-funded interdisciplinary study aimed at understanding earth system connections related to the Larsen Ice Shelf and the northern Antarctic Peninsula.
This project focuses on an important group of photosynthetic algae in the Southern Ocean (SO), diatoms, and the roles associated bacterial communities play in modulating their growth. Diatom growth fuels the SO food web and balances atmospheric carbon dioxide by sequestering the carbon used for growth to the deep ocean on long time scales as cells sink below the surface. The diatom growth is limited by the available iron in the seawater, most of which is not freely available to the diatoms but instead is tightly bound to other compounds. The nature of these compounds and how phytoplankton acquire iron from them is critical to understanding productivity in this region and globally. The investigators will conduct experiments to characterize the relationship between diatoms, their associated bacteria, and iron in open ocean and inshore waters. Experiments will involve supplying nutrients at varying nutrient ratios to natural phytoplankton assemblages to determine how diatoms and their associated bacteria respond to different conditions. This will provide valuable data that can be used by climate and food web modelers and it will help us better understand the relationship between iron, a key nutrient in the ocean, and the organisms at the base of the food web that use iron for photosynthetic growth and carbon uptake. The project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. The project supports early career senior investigators and the training of graduate and undergraduate students as well as outreach activities with middle school Girl Scouts in Rhode Island, inner city middle and high school age girls in Virginia, and middle school girls in Florida. The project combines trace metal biogeochemistry, phytoplankton cultivation, and molecular biology to address questions regarding the production of iron-binding compounds and the role of diatom-bacterial interactions in this iron-limited region. Iron is an essential micronutrient for marine phytoplankton. Phytoplankton growth in the SO is limited by a lack of sufficient iron, with important consequences for carbon cycling and climate in this high latitude regime. Some of the major outstanding questions in iron biogeochemistry relate to the organic compounds that bind >99.9% of dissolved iron in surface oceans. The investigators' prior research in this region suggests that production of strong iron-binding compounds in the SO is linked to diatom blooms in waters with high nitrate to iron ratios. The sources of these compounds are unknown but the investigators hypothesize that they may be from bacteria, which are known to produce such compounds for their own use. The project will test three hypotheses concerning the production of these iron-binding compounds, limitations on the biological availability of iron even if present in high concentrations, and the roles of diatom-associated bacteria in these processes. Results from this project will provide fundamental information about the biogeochemical trigger, and biological sources and function, of natural strong iron-binding compound production in the SO, where iron plays a critical role in phytoplankton productivity, carbon cycling, and climate regulation.
The Antarctic Automatic Weather Station (AAWS) network, first commenced in 1978, is the most extensive ground meteorological network in the Antarctic, approaching its 30th year at several of its installations. Its prime focus as a long term observational record is to measure the near surface weather and climatology of the Antarctic atmosphere. AWS sites measure air-temperature, pressure, wind speed and direction at a nominal surface height of 3m. Other parameters such as relative humidity and snow accumulation may also be measured. Observational data from the AWS are collected via the DCS Argos system aboard either NOAA or MetOp polar orbiting satellites and thus made available in near real time to operational and synoptic weather forecasters. The surface observations from the AAWS network are important records for recent climate change and meteorological processes. The surface observations from the AAWS network are also used operationally, and in the planning of field work. The surface observations from the AAWS network have been used to check on satellite and remote sensing observations.
Intellectual Merit: Southern Ocean processes play an important role in Late Quaternary glacial-interglacial climate change. However, the direct influence of newly upwelled warm nutrient-rich Circumpolar Deep Water on the Antarctic cryosphere remains speculative. The PI proposes to test the hypothesis that Circumpolar Deep Water-derived ocean heat negatively impacts the mass-balance of Antarctica?s ice sheets during deglaciations using precisely dated late Quaternary paleoceanographic studies of Antarctic margin sediments and a suite of geochemical proxies measured on three existing glacial marine sediment cores from the Prydz Channel, Antarctica. Specifically, the PI will use these data to reconstruct the Late Quaternary history of the Lambert Glacier/Amery Ice Shelf system; evaluate the timing, speed, and style of retreat of the Lambert Glacier/Amery Ice Shelf system during the last deglaciation, and to assess the impact of Circumpolar Deep Water intrusions on the Lambert Glacier/Amery Ice Shelf system in the Late Quaternary. Diatom bound radiocarbon and optically stimulated luminescence techniques will be used to obtain precise stratigraphic age control for the Prydz Channel siliceous muddy ooze intervals. In addition, the PI will measure sedimentary 10Be concentrations to determine the origin of the siliceous muddy ooze units and to track past changes in the position of the ice shelf front. Broader impacts: This proposal will support an early career female scientist and will provide professional development and research experiences for women/minority graduate and undergraduate students. The PI will take advantage of USF?s Oceanography Camp for Girls.
Intellectual Merit: Southern Ocean processes play an important role in Late Quaternary glacial-interglacial climate change. However, the direct influence of newly upwelled warm nutrient-rich Circumpolar Deep Water on the Antarctic cryosphere remains speculative. The PI proposes to test the hypothesis that Circumpolar Deep Water-derived ocean heat negatively impacts the mass-balance of Antarctica?s ice sheets during deglaciations using precisely dated late Quaternary paleoceanographic studies of Antarctic margin sediments and a suite of geochemical proxies measured on three existing glacial marine sediment cores from the Prydz Channel, Antarctica. Specifically, the PI will use these data to reconstruct the Late Quaternary history of the Lambert Glacier/Amery Ice Shelf system; evaluate the timing, speed, and style of retreat of the Lambert Glacier/Amery Ice Shelf system during the last deglaciation, and to assess the impact of Circumpolar Deep Water intrusions on the Lambert Glacier/Amery Ice Shelf system in the Late Quaternary. Diatom bound radiocarbon and optically stimulated luminescence techniques will be used to obtain precise stratigraphic age control for the Prydz Channel siliceous muddy ooze intervals. In addition, the PI will measure sedimentary 10Be concentrations to determine the origin of the siliceous muddy ooze units and to track past changes in the position of the ice shelf front. Broader impacts: This proposal will support an early career female scientist and will provide professional development and research experiences for women/minority graduate and undergraduate students. The PI will take advantage of USF?s Oceanography Camp for Girls.
The investigators will map glacial deposits and date variations in glacier variability at several ice-free regions in northern Victoria Land, Antarctica. These data will constrain the nature and timing of past ice thickness changes for major glaciers that drain into the northwestern Ross Sea. This is important because during the Last Glacial Maximum (15,000 - 18,000 years ago) these glaciers were most likely flowing together with grounded ice from both the East and West Antarctic Ice Sheets that expanded across the Ross Sea continental shelf to near the present shelf edge. Thus, the thickness of these glaciers was most likely controlled in part by the extent and thickness of the Ross Sea ice sheet and ice shelf. The data the PIs propose to collect can provide constraints on the position of the grounding line in the western Ross Sea during the Last Glacial Maximum, the time that position was reached, and ice thickness changes that occurred after that time. The primary intellectual merit of this project will be to improve understanding of a period of Antarctic ice sheet history that is relatively unconstrained at present and also potentially important in understanding past ice sheet-sea level interactions. This proposal will support an early career researcher's ongoing program of undergraduate education and research that is building a socio-economically diverse student body with students from backgrounds underrepresented in the geosciences. This proposal will also bring an early career researcher into Antarctic research.
Paragraph for Public Audiences: Many of the natural processes that modify the landscape inhabited by humans occur over very long timescales, making them difficult to observe. Exceptions include rare catastrophic events such as earthquakes, volcanic eruptions, and floods that occur on short timescales. Many significant processes that affect the land and landscape that we inhabit operate on time scales imperceptible to humans. One of these processes is wind transport of sand, with related impacts to exposed rock surfaces and man-made objects, including buildings, windshields, solar panels and wind-farm turbine blades. The goal of this project is to gain an understanding of wind erosion processes over long timescales, in the Antarctic Dry Valleys, a cold desert environment where there were no competing processes (such as rain and vegetation) that might mask the effects. The main objective is recovery of rock samples that were deployed in 1983/1984 at 11 locations in the Antarctic Dry Valleys, along with measurements on the rock samples and characterization of the sites. In the late 1980's and early 1990's some of these samples were returned and indicated more time was needed to accumulate information about the timescales and impacts of the wind erosion processes. This project will allow collection of the remaining samples from this experiment after 30 to 31 years of exposure. The field work will be carried out during the 2014/15 Austral summer. The results will allow direct measurement of the abrasion rate and hence the volumes and timescales of sand transport; this will conclude the longest direct examination of such processes ever conducted. Appropriate scaling of the results may be applied to buildings, vegetation (crops), and other aspects of human presence in sandy and windy locations, in order to better determine the impact of these processes and possible mitigation of the impacts. The project is a collaborative effort between a small business, Malin Space Science Systems (MSSS), and the University of Washington (UW). MSSS will highlight this Antarctic research on its web site, by developing thematic presentations describing our research and providing a broad range of visual materials. The public will be engaged through daily updates on a website and through links to material prepared for viewing in Google Earth. UW students will be involved in the laboratory work and in the interpretation of the results. Technical Description of Project: The goal of this project is to study the role of wind abrasion by entrained particles in the evolution of the McMurdo Dry Valleys in the Transantarctic Mountains. During the 1983 to 1984 field seasons, over 5000 rock targets were installed at five heights facing the 4 cardinal directions at 10 locations (with an additional site containing fewer targets) to study rates of physical weathering due primarily to eolian abrasion. In addition, rock cubes and cylinders were deployed at each site to examine effects of chemical weathering. The initial examination of samples returned after 1, 5, and 10 years of exposure, showed average contemporary abrasion rates consistent with those determined by cosmogenic isotope studies, but further stress that "average" should not be interpreted as meaning "uniform." The samples will be characterized using mass measurements wtih 0.01 mg precision balances, digital microphotography to compare the evolution of their surface features and textures, SEM imaging to examine the micro textures of abraded rock surfaces, and optical microscopy of thin sections of a few samples to examine the consequences of particle impacts extending below the abraded surfaces. As much as 60-80% of the abrasion measured in samples from 1984-1994 appears to have occurred during a few brief hours in 1984. This is consistent with theoretical models that suggest abrasion scales as the 5th power of wind velocity. The field work will allow return of multiple samples after three decades of exposure, which will provide a statistical sampling (beyond what is acquired by studying a single sample), and will yield the mass loss data in light of complementary environmental and sand kinetic energy flux data from other sources (e.g. LTER meteorology stations). This study promises to improve insights into one of the principal active geomorphic process in the Dry Valleys, an important cold desert environment, and the solid empirical database will provide general constraints on eolian abrasion under natural conditions.
The Weddell seal is a champion diving mammal. The physiology that permits these animals to sustain extended breath-hold periods and survive the extreme pressure of diving deep allows them to thrive in icy Antarctic waters. Key elements of their physiological specializations to breath-hold diving are their ability for remarkable adjustment of their heart and blood vessel system, coordinating blood pressure and flow to specific body regions based on their metabolic requirements, and their ability to sustain periods without oxygen. Identifying the details of these strategies has tremendous potential to better inform human medicine, helping us to develop novel therapies for cardiovascular trauma (e.g. stroke, heart attack) and diseases associated with blunted oxygen delivery to tissues (e.g. pneumonia, sepsis, or cancer). The goal of this project is to document specific genes that control these cardiovascular adjustments in seals, and to compare their abundance and activity with humans. Specifically, the investigators will study a signaling pathway that coordinates local blood flow. They will also use tissue samples to generate cultured cells from Weddell seals that can be used to study the molecular effects of low oxygen conditions in the laboratory. The project will further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. The project will train a pre-veterinary student researcher will conduct public outreach via a center for community health improvement, a multicultural affairs office, and a public aquarium. The goal of this study is to unravel the molecular mechanisms underlying the dive response. A hallmark of the dive response is tissue-specific vascular system regulation, likely resulting from variation in both nerve inputs and in production of local signaling molecules produced by blood vessel cells. The investigators will use emerging genomic information to begin to unravel the genetics underlying redistribution of the circulation during diving. They will also directly test the hypothesis that modifications in the signaling system prevent local blood vessel changes under low oxygen conditions, thereby allowing the centrally mediated diving reflex to override local physiological responses and to control the constriction of blood vessel walls in Weddell seals. They will perform RNA-sequencing of Weddell seal tissues and use the resulting sequence, along with information from other mammals such as dog, to obtain a full annotation (identifying all genes based on named features of reference genomes) of the existing genome assembly for the Weddell seal, facilitating comparative and species-specific genomic research. They will also generate a Weddell seal pluripotent stem cell line which should be a valuable research tool for cell biologists, molecular biologists and physiologists that will allow them to further test their hypotheses. It is expected that the proposed studies will advance our knowledge of the biochemical and physiological adaptations that allow the Weddell seal to thrive in the Antarctic environment.
Intellectual Merit: This project will investigate glacial advance and retreat of the East Antarctic Ice Sheet through the Eocene-Oligocene transition, a major episode of ice growth. In Prydz Bay, East Antarctica, a 130-170 m thick Eocene-Oligocene transition interval of glaciomarine sediments was cored in drillholes of the Ocean Drilling Program at Sites 739, 742 and 1166. Correlations between the Prydz Bay drillholes have recently been made through well-log and multichannel seismic interpretations. Recent drilling on the Wilkes Land margin of East Antarctica recovered earliest Oligocene sediments overlying a major regional unconformity in two drillholes. The PI will study the lithostratigraphy and weathering history of cores in the five drillholes, to establish a unique Eocene-Oligocene transition record within Antarctic continental margin sediments of glacial advance and retreat cycles, the onset of physical weathering, and glacio-isostasy and self-gravitation processes with implications for the margin architecture, sediment routing, and off-shore sediment dispersal. Cores from the five drillholes will be re-examined through detailed core description using an updated classification scheme, so that lithofacies can be compared between drillholes. Samples will be collected for detailed laser particle size and bulk major element geochemistry via ICP-AES to determine the degree of chemical alteration of the sediments. Phases of major ice growth will be recognized as marker beds of physically eroded sediment and will be correlated to isotopic records documenting Antarctic ice growth offshore in the Southern Ocean. Broader impacts: This project will benefit a large minority undergraduate student population through the availability of up to two paid laboratory internships, a classroom exercise, and the availability of research equipment supported by this award. The project also allows support and training of a graduate student.
0538520<br/>Thiemens<br/>This award supports a project to develop the first complete record of multiple isotope ratios of nitrate and sulfate covering the last ~100,000 years, from the deep ice core planned for the central ice divide of the West Antarctic Ice Sheet (WAIS). The WAIS Divide ice core will be the highest resolution long ice core obtained from Antarctica and we can expect important complementary information to be available, including accurate knowledge of past accumulation rates, temperatures, and compounds such as H2O2, CO and CH4. These compounds play significant roles in global atmospheric chemistry and climate. Especially great potential lies in the use of multiple isotope signatures. The unique mass independent fractionation (MIF) 17O signature of ozone is observed in both nitrate and sulfate, due to the interaction of their precursors with ozone. The development of methods to measure the multiple-isotope composition of small samples of sulfate and nitrate makes continuous high resolution measurements on ice cores feasible for the first time. Recent work has shown that such measurements can be used to determine the hydroxyl radial (OH) and ozone (O3) concentrations in the paleoatmosphere as well as to apportion sulfate and nitrate sources. There is also considerable potential in using these isotope measurements to quantify post depositional changes. In the first two years, continuous measurements from the upper ~100-m of ice at WAIS divide will be obtained, to provide a detailed look at seasonal through centennial scale variability. In the third year, measurements will be made throughout the available depth of the deep core (expected to reach ~500 m at this time). The broader impacts of the project include applications to diverse fields including atmospheric chemistry, glaciology, meteorology, and paleoclimatology. Because nitrate and sulfate are important atmospheric pollutants, the results will also have direct and relevance to global environmental policy. This project will coincide with the International Polar Year (2007-2008), and contributes to goals of the IPY, which include the fostering of interdisciplinary research toward enhanced understanding of atmospheric chemistry and climate in the polar regions.
Intellectual Merit: <br/>The primary goal of this project is to sample two beds in the Meyer Desert Formation, which are known to be especially fossiliferous containing plants, insects, other arthropods, freshwater mollusks, and fish. There is a possibility that the teeth and bones of a small marsupial could also be found. Previous studies have demonstrated that these horizons contain unique fossil assemblages that provide information used to reconstruct paleoenvironments and paleoclimate. The fossils represent organisms previously not found in Antarctica and consequently their study will lead to the development of new hypotheses concerning southern hemisphere biogeography. The new discoveries will also increase knowledge of paleoenvironments and paleoclimates as well as biogeographic relationships of the biota of the southern hemisphere. For some organisms, such as Nothofagus (Southern Beech) or the trechine groundbeetle, fossils would confirm that Antarctica was inhabited as part of Gondwana. For other fossils, such as the cyclorrhaphan fly or freshwater mollusks not expected to have inhabited Antarctica, the discoveries will require a reassessment of phylogenetic interpretations and a reinvestigation of the role of Antarctica in the evolutionary history of those organisms. The new fossil-based knowledge will require integration with interpretations from cladistics and molecular genetics to develop more comprehensive phylogenetic hypotheses for a range of organisms.<br/><br/>Broader impacts: <br/>The discovery of fossils in Antarctica and implications for climate change has proven to be popular with the media. This attention will help disseminate the results of this study. Before the field season, the PI will work with local media and with area schools to set up field interviews and web casts from Antarctica. The project will also involve the training of a graduate student in the field and in the follow up studies of the fossils in the laboratory.
0539578<br/>Alley <br/>This award supports a five-year collaborative project to study the physical-properties of the planned deep ice core and the temperature of the ice in the divide region of the West Antarctic Ice Sheet. The intellectual merit of the proposed research is to provide fundamental information on the state of the ice sheet, to validate the integrity of the climate record, to help reconstruct the climate record, and to understand the flow state and history of the ice sheet. This information will initially be supplied to other investigators and then to the public and to appropriate databases, and will be published in the refereed scientific literature. The objectives of the proposed research are to aid in dating of the core through counting of annual layers, to identify any exceptionally warm intervals in the past through counting of melt layers, to learn as much as possible about the flow state and history of the ice through measurement of size, shape and arrangements of bubbles, clathrate inclusions, grains and their c-axes, to identify any flow disturbances through these indicators, and to learn the history of snow accumulation and temperature from analyses of bubbles and borehole temperatures combined with flow modeling and use of data from other collaborators. These results will then be synthesized and communicated. Failure to examine cores can lead to erroneous identification of flow features as climate changes, so careful examination is required. Independent reconstruction of accumulation rate provides important data on climate change, and improves confidence in interpretation of other climate indicators. Borehole temperatures are useful recorders of temperature history. Flow state and history are important in understanding climate history and potential contribution of ice to sea-level change. By contributing to all of these and additional issues, the proposed research will be of considerable value. The broader impacts of the research include making available to the public improved knowledge on societally central questions involving abrupt climate change and sea-level rise. The project will also contribute to the education of advanced students, will utilize results in education of introductory students, and will make vigorous efforts in outreach, informal science education, and supplying information to policy-makers as requested, thus contributing to a more-informed society.
This award supports a three-year study of the ongoing deceleration and stick-slip motion of Whillans Ice Stream (WIS), West Antarctica. Understanding the dynamic behavior of ice streams is essential for predicting the future of the West Antarctic Ice Sheet (WAIS). Despite being one of the best-studied ice streams in Antarctica, the surprising flow characteristics of WIS continue to demand interdisciplinary research. Recent estimates indicate that the WIS may stagnate within 50 years, resulting in a significant change to the mass balance of the Siple Coast sector of West Antarctica. The reasons for the ongoing stagnation are not well known, and are possibly linked (causally or coincidentally) to the stick-slip behavior. Our recent work on WIS stick-slip motion suggest that all slip events nucleate from a common location on the ice stream, suggesting that a relatively small (approximately 10 km in diameter) region of the exerts fundamental control over the flow of this large ice stream (100s of km long and 100 kilometers wide). We hypothesize that this is a region of increased bed strength and our measurements will address that hypothesis. We will deploy a series of GPS receivers and seismometers on the ice stream to accurately locate the nucleation region so that a comprehensive ground based geophysical survey can be conducted to determine the physical properties of bed at the nucleation point. The ground geophysical program will consist of reflection seismic and ice-penetrating radar studies that will better constrain the properties of both the hypothesized higher-friction nucleation zone and the surrounding regions. Slip events also generate seismic energy that can be recorded 100s of km away from the ice stream, thus, the GPS and seismometer deployment will also aid us in relating seismic waveforms directly with the rapid motion that occurs during slip events. The increased ability to relate rupture processes with seismic emissions will allow us to use archived seismic records to explore changes in the behavior of WIS during the later half of the 20th century. Broader impacts of this study include improved knowledge ice sheet dynamics, which remain a poorly constrained component of the climate system, thus, limiting our ability to predict the Earth's response to climate change. The scientific work includes the education of two graduate students and continued training of one post-doctoral scholar, thus helping to train the next generation of polar scientists. We will expose the broader public to polar science through interactions with the media and by take advantaging of programs to include K-12 educators in our field work.
1043517/Clark This award supports a project to develop a better understanding of the response of the WAIS to climate change. The timing of the last deglaciation of the western Ross Sea will be improved using in situ terrestrial cosmogenic nuclides (3He, 10Be, 14C, 26Al, 36Cl) to date glacial erratics at key areas and elevations along the western Ross Sea coast. A state-of-the art ice sheet-shelf model will be used to identify mechanisms of deglaciation of the Ross Sea sector of WAIS. The model results and forcing will be compared with observations including the new cosmogenic data proposed here, with the aim of better determining and understanding the history and causes of WAIS deglaciation in the Ross Sea. There is considerable uncertainty, however, in the history of grounding line retreat from its last glacial maximum position, and virtually nothing is known about the timing of ice- surface lowering prior to ~10,000 years ago. Given these uncertainties, we are currently unable to assess one of the most important questions regarding the last deglaciation of the global ice sheets, namely as to whether the Ross Sea sector of WAIS contributed significantly to meltwater pulse 1A (MWP-1A), an extraordinarily rapid (~500-year duration) episode of ~20 m sea-level rise that occurred ~14,500 years ago. The intellectual merit of this project is that recent observations of startling changes at the margins of the Greenland and Antarctic ice sheets indicate that dynamic responses to warming may play a much greater role in the future mass balance of ice sheets than considered in current numerical projections of sea level rise. The broader impacts of this work are that it has direct societal relevance to developing an improved understanding of the response of the West Antarctic ice sheet to current and possible future environmental changes including the sea-level response to glacier and ice sheet melting due to global warming. The PI will communicate results from this project to a variety of audiences through the publication of peer-reviewed papers and by giving talks to public audiences. Finally the project will support a graduate student and undergraduate students in all phases of field-work, laboratory work and data interpretation.
Steig/1043092 This award supports a project to contribute one of the cornerstone analyses, stable isotopes of ice (Delta-D, Delta-O18) to the ongoing West Antarctic Ice Sheet Divide (WAIS) deep ice core. The WAIS Divide drilling project, a multi-institution project to obtain a continuous high resolution ice core record from central West Antarctica, reached a depth of 2560 m in early 2010; it is expected to take one or two more field seasons to reach the ice sheet bed (~3300 m), plus an additional four seasons for borehole logging and other activities including proposed replicate coring. The current proposal requests support to complete analyses on the WAIS Divide core to the base, where the age will be ~100,000 years or more. These analyses will form the basis for the investigation of a number of outstanding questions in climate and glaciology during the last glacial period, focused on the dynamics of the West Antarctic Ice Sheet and the relationship of West Antarctic climate to that of the Northern polar regions, the tropical Pacific, and the rest of the globe, on time scales ranging from years to tens of thousands of years. One new aspect of this work is the growing expertise at the University of Washington in climate modeling with isotope-tracer-enabled general circulation models, which will aid in the interpretation of the data. Another major new aspect is the completion and use of a high-resolution, semi-automated sampling system at the University of Colorado, which will permit the continuous analysis of isotope ratios via laser spectroscopy, at an effective resolution of ~2 cm or less, providing inter-annual time resolution for most of the core. Because continuous flow analyses of stable ice isotopes is a relatively new measurement, we will complement them with parallel measurements, every ~10-20 m, using traditional discrete sampling and analysis by mass spectrometry at the University of Washington. The intellectual merit and the overarching goal of the work are to see Inland WAIS become the reference ice isotope record for West Antarctica. The broader impacts of the work are that the data generated in this project pertain directly to policy-relevant and immediate questions of the stability of the West Antarctic ice sheet, and thus past and future changes in sea level, as well as the nature of climate change in the high southern latitudes. The project will also contribute to the development of modern isotope analysis techniques using laser spectroscopy, with applications well beyond ice cores. The project will involve a graduate student and postdoc who will work with both P.I.s, and spend time at both institutions. Data will be made available rapidly through the Antarctic Glaciological Data Center, for use by other researchers and the public.
Elevated temperatures and ocean acidification are both threatening the Southern Ocean. The effects of these environmental changes are poorly understood, but preliminary data suggest that they are driving a biological invasion. Specifically, large populations of skeleton-crushing king crabs, Paralomis birsteini, have been detected off Marguerite Bay on the West Antarctic Peninsula. These crabs appear to be invading the continental shelf region where benthic communities have evolved in the absence of such top-predators. Thus, this invasion could result in a wholesale restructuring of the Antarctic benthic ecosystem. The proposed work seeks to document this invasion and better understand the effects of the introduction of P. birsteini on the ecology of this region. A towed underwater vehicle will be used to photographically image communities, and communities with and without P. birsteini will be compared quantitatively. Additionally, crabs will trapped and various aspects of their morphology and physiology will be assessed. This research is unique in that it will document a biological invasion in real-time and it will therefore enhance our general understandings of the drivers of invasion and resilience in biological communities. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of undergraduate and graduate students and will foster an international collaboration with British scientists. Researchers on this project will participate in outreach thorough the development of K-12 curricular materials.
The research supported in this project will examine the effects of environmental change on a key Antarctic marine invertebrate, a pelagic mollusk, the pteropod, Limacina helicina antarctica. There are two main activities in this project: (1) to deploy oceanographic equipment ? in this case, autonomously recording pH sensors called SeaFETs and other devices that record temperature and salinity, and (2) to use these environmental data in the laboratory at McMurdo Station to study the response of the marine invertebrates to future changes in water quality that is expected in the next few decades. Notably, changes in oceanic pH (aka ocean acidification) and ocean warming are projected to be particularly threatening to calcifying marine organisms in cold-water, high latitude seas, making tolerance data on these organisms a critical research need in Antarctic marine ecosystems. These Antarctic shelled-animals are especially vulnerable to dissolution stress from ocean acidification because they currently inhabit seawater that is barely at the saturation level to support biogenic calcification. Indeed, these polar animals are considered to be the 'first responders' to chemical changes in the surface oceans. Thus, this project will lead to information about the adaptive capacity of L. helcina antarctica. From an ecological perspective this is important because this animal is a critical part of the Antarctic food chain in coastal waters and changes in its abundance will impact other species. Finally, the research conducted in this project will serve as a training and educational opportunity for undergraduate and graduate students as well as postdoctoral scholars.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). Mount Erebus is Antarctica?s most active volcano that has been in a persistent state of activity for at least the last 35 years. It has a unique geochemistry among the Earth's active volcanoes and is also unique in hosting a persistent convecting lake(s) of anorthclase phonolite magma in its summit crater. The relative simplicity of the magmatic system, consistency of activity, and accessibility of close-range observation make Erebus attractive as a target for extensive studies. Although the Erebus' seismicity and eruptive activity and processes are becoming increasingly well understood over years of research, there is a near total lack of understanding its deeper magmatic system. The primary goal of this proposal is to continue supporting the Mt. Erebus Volcano Observatory (MEVO III) improving our current understanding of the Erebus eruptive and non-eruptive magmatic system using an integrated approach from geophysical, geochemical and remote sensing observations. This goal can be grouped into the following fundamental research objectives: (a) to sustain year-round surveillance of on-going volcanic activity primarily using geophysical observatories; (b) to understand processes within the convecting conduit which feeds the persistent lava lakes; and (c) to understand the impact of Erebus eruptive activity upon the Antarctic environment. Continued reliance on students provides a broader impact to this proposed research and firmly grounds this effort in its educational mission.
1043481/Creyts This award supports a project to develop models of subglacial hydrology in order to understand dynamics of water movement, lake drainage, and how drainage affects ice slip over deformable till with the goal of understanding present and future behavior of fast flowing regions of Antarctica. Drainage of subglacial water falls into two broad categories: distributed and channelized. In distributed systems, water is forced out along the ice?bed interface. Conversely, in channelized systems water is drawn toward a few major arteries. Observations of lake filling and draining sup- port changes in subglacial water flow and suggest a switch from a low to high discharge state or vice versa. Filling or draining can move the subglacial system from one type of drainage morphology to the other. A switch of drainage type will affect slip along the ice-bed interface because distributed morphologies tend to cause enhanced sliding whereas channelized morphologies tend to cause enhanced coupling of the ice-bed interface. Conditions beneath fast flowing ice streams of West Antarctica are ideal for switching between subglacial drainage morphologies. Fast flowing ice in West Antarctica commonly rests on sub- glacial tills and is coincident, in some areas, with observed subglacial lake filling and draining. The goal of the work is to develop the next generation of spatially distributed hydraulic models that capture lake filling and draining phenomena and investigate the effects on subglacial till. Models will be theoretical, process-based descriptions of water drainage and till failure along fast flowing ice streams. Models will be based on balance of mass, momentum, and energy. Building on previous studies, we will incorporate two dimensional movement of water to investigate distributed basal hydrology, distributed basal hydrology coupled to channels, and couple these models with till deformation. These models will provide a framework for determining how lake draining and filling affects ice discharge by providing a constraints on ice?bed coupling. The intellectual merit of the work is that it will advance knowledge about drainage of water subglacially beneath Antarctica and how water affects ice motion. Our modeling provides a unique opportunity to understand the role subglacial hydrology plays in the dynamics of key outlet glaciers and ice streams. The broader impacts of the work include training for one postdoctoral scientist and training for a summer student in simple laboratory techniques for analog experiments. In addition, the proposal dovetails into an existing polar education and outreach plan by including a component of physical, numerical, and scale models in programs developed for high school and middle school classroom visits, teacher workshops and community events. Additionally, because knowledge of glacial hydrology is increasing rapidly, we will convene a workshop on observations and models of subglacial hydrology to facilitate transfer of knowledge and ideas.
Intellectual Merit: The role that Antarctica has played in vertebrate evolution and paleobiogeography during the Late Cretaceous and early Paleogene is largely unknown. Evidence indicates that Antarctica was home to a diverse flora during the Late Cretaceous and Paleogene, yet the vertebrates that must have existed on the continent remain virtually unknown. To fill this gap, the PIs have formed the Antarctic Vertebrate Paleontology Initiative (AVPI), whose goal is to search for and collect Late Cretaceous-Paleogene vertebrate fossils in Antarctica at localities that have never been properly surveyed, as well as in areas of proven potential. Two field seasons are proposed for the James Ross Island Group on the northeastern margin of the Antarctic Peninsula. Expected finds include chondrichthyan and osteichthyan fishes, marine reptiles, ornithischian and non-avian theropod dinosaurs, ornithurine birds, and therian and non-therian mammals. Hypotheses to be tested include: 1) multiple extant bird and/or therian mammal lineages originated during the Cretaceous and survived the K-Pg boundary extinction event; 2) the ?Scotia Portal? permitted the dispersal of continental vertebrates between Antarctica and South America prior to the latest Cretaceous and through to the late Paleocene or early Eocene; 3) Late Cretaceous non-avian dinosaurs from Antarctica are closely related to coeval taxa from other Gondwanan landmasses; 4) terminal Cretaceous marine reptile faunas from southern Gondwana differed from contemporaneous but more northerly assemblages; and 5) the collapse of Antarctic ichthyofaunal diversity during the K-Pg transition was triggered by a catastrophic extinction. Broader impacts: The PIs will communicate discoveries to audiences through a variety of channels, such as the Dinosaurs in Their Time exhibition at Carnegie Museum of Natural History and the outreach programs of the Environmental Science Institute of the University of Texas at Austin. In addition, Carnegie Museum will launch a student-oriented programming initiative using AVPI research as a primary focus. This array of activities will help some 2,000 Pittsburgh-area undergraduates to explore the relevance of deep-time discoveries to critical modern issues. The AVPI will provide research opportunities for eight undergraduate and three graduate students, several of whom will receive field training in Antarctica. Fossils will be accessioned into the Carnegie Museum collection, and made accessible virtually through the NSF-funded Digital Morphology library at University of Texas.
Intellectual Merit: Magmas generated during subduction of oceanic lithosphere beneath active continental margins typically have a calc-alkaline chemistry. However, igneous rocks with signatures usually associated with anorogenic magmatism are increasingly being found with calc-alkaline rocks in subduction zones. These enigmatic rocks provide insight into a variety of magmatic and structural processes that are fundamental to subduction zone dynamics but processes that lead to their petrogenesis remain a matter of debate. This project will investigate the Koettlitz Glacier Alkaline Province (KGAP) in the Transantarctic Mountains, which is a section through a Na-alkaline province bounded to the north and south by calc-alkaline magmatism. This province potentially contains key information on the thermo-mechanical processes leading to generation of Na-alkaline rocks in subduction systems. The PI will examine structures that bound the KGAP as well as intrusives and metasedimentary rocks contained within it to determine the tectonomagmatic history in the framework of two end-member hypotheses: the KGAP represents a crustal-scale extensional or transtensional domain in a subduction setting; or the KGAP formed in response to ridge subduction. Broader impacts: This study will train three graduate and three undergraduate students incorporating hands-on experience with state of the art instrumentation. Each summer, four high school students will be incorporated into various aspects of the laboratory-based research through the UCSB research mentorship program. This project will stimulate refinement of in-situ LA-ICPMS methods and development of collaborative linkages with Antarctic geologists at GNS Science in New Zealand. Results will be disseminated via papers and presentations at international conferences.
A range of chemical and microphysical pathways in polar latitudes, including spring time (tropospheric) ozone depletion, oxidative pathways for mercury, and cloud condensation nuclei (CCN) production leading to changes in the cloud cover and attendant surface energy budgets, have been invoked as being dependent upon the emission of halogen gases formed in sea-ice. The prospects for climate warming induced reductions in sea ice extent causing alteration of these incompletely known surface-atmospheric feedbacks and interactions requires confirmation of mechanistic details in both laboratory studies and field campaigns. One such mechanistic question is how bromine (BrO and Br) enriched snow migrates or is formed through processes in sea-ice, prior to its subsequent mobilization as an aerosol fraction into the atmosphere by strong winds. Once aloft, it may react with ozone and other atmospheric species. Dartmouth researchers will collect snow from the surface of sea ice, from freely blowing snow and in sea-ice cores from Cape Byrd, Ross Sea. A range of spectroscopic, microanalytic and and microstructural approaches will be subsequently used to determine the Br distribution gradients through sea-ice, in order to shed light on how sea-ice first forms and then releases bromine species into the polar atmospheric boundary layer.
1043500/Sowers This award supports a project to develop a 50 yr resolution methane data set that will play a pivotal role in developing the WAIS Divide timescale as well as providing a common stratigraphic framework for comparing climate records from Greenland and West Antarctica. Even higher resolution data are proposed for key intervals to assist in precisely defining the phasing of abrupt climate change between the hemispheres. Concurrent analysis of a suit of samples from both the WAIS Divide and GISP-2 cores throughout the last 110,000 years is also proposed, to establish the interpolar methan (CH4) gradient that will be used to identify geographic areas responsible for the climate related methane emission changes. The intellectual merit of the proposed work is that it will provide chronological control needed to examine the timing of changes in climate proxies, and critical chronological ties to the Greenland ice core records via methane variations. One main objective is to understand the interpolar timing of millennial-scale climate change. This is an important scientific goal relevant to understanding climate change mechanisms in general. The proposed work will help establish a chronological framework for addressing these issues. In addition, this proposal addresses the question of what methane sources were active during the ice age, through the work on the interpolar methane gradient. This work is directed at the fundamental question of what part of the biosphere controlled past methane variations, and is important for developing more sophisticated understanding of those variations. The broader impacts of the work are that the ultra-high resolution CH4 record will directly benefit all ice core paleoclimate research and the chronological refinements will impact paleoclimate studies that rely on ice core timescales for correlation purposes. The project will support both graduate and undergraduate students and the PIs will participate in outreach to the public.
Global climate change is having significant effects on areas of the Southern Ocean, and a better understanding of this ecosystem will permit predictions about the large-scale implications of these shifts. The haptophyte Phaeocystis antarctica is an important component of the phytoplankton communities in this region, but little is known about the factors controlling its distribution. Preliminary data suggest that P. antarctica posses unique adaptations that allow it to thrive in regions with dynamic light regimes. This research will extend these results to identify the physiological and genetic mechanisms that affect the growth and distribution of P. antarctica. This work will use field and laboratory-based studies and a suite of modern molecular techniques to better understand the biogeography and physiology of this key organism. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of two graduate students and will foster an established international collaboration with Dutch scientists. Researchers on this project will participate in outreach programs targeting K12 teachers as well as high school students.
Pettit/0948247<br/><br/>This award supports a project to study of the relationship between fabric and climate for the ice near the EPICA Dome C ice core site, East Antarctica. The work builds on an ongoing study at Siple Dome, West Antarctica and takes advantage of collaborations with European scientists and access to the Dome C borehole to make measurements of sonic velocity. The intellectual merit of the project is that a better understanding of how fabric preserves past climate information can improve models of the ice flow near ice core sites and the interpreta-tion of ice core data (particularly paleo-accumulation), and it may allow us to extract climate information directly from fabric data. In addition, because ice deformation is sensitive to the orientation of crystals, ice flow patterns are sensitive to the fabric. Thus, variations in the fabric between glacial and interglacial ice can affect how ice deforms and how fabric in the ice sheet develops. The Dome C site is particularly important for answering these questions, because the ice core shows evidence of eight glacial cycles, not just one as found at Siple Dome or the Greenland sites. The research will improve the understanding of the proxy relationship between sonic-velocity data and fabric; will help to model the pattern of ice flow caused by the fabric variation between glacial and interglacial time periods using these data, existing ice core chemistry and existing and new thin section data, improved surface strain data, and borehole deformation data; and will help to better understand the positive feedback mechanism that enhances fabric (and corresponding rheological) variability through a focused study of several climate transitions and the associated fabric changes. Borehole compressional-wave sonic-velocity will be measured which will complement the sonic-velocity data that already exist for boreholes in Greenland and West Antarctica. These will be the first sonic-velocity measurements in East Antarctica and the first measurements that extend for more than a single glacial/interglacial transition. The project will ultimately contribute to better interpretation of ice core records for both paleoclimate studies and for ice flow history, both of which connect to the broader questions of the role of ice in the climate system. This project will also strengthen the international collaborations within the paleoclimate and ice sheet modeling communities. This project will partially support a graduate student at the University of Alaska Fairbanks who is currently working on modeling ice including anisotropy and it will support the growth of a young scientist through a Post-Doc position. This Post Doc will gain important experience collaborating with the EPICA scientists in studying the climate-fabric relationship. Erin Pettit is active in field-science education for high school students, under-graduates, teachers, and adults. This project will help support the continued development and enhancement of Girls on Ice a program that encourages young women to explore science and the natural world.
The emperor penguin dives deeper and longer, fasts longer, and endures the harshest weather conditions of all diving birds. It spends about four and half months per annum deep in Antarctic pack ice away from shore and stations, and thus is largely unavailable for study. This time includes preparation for the molt, and travel to the colony to breed, a time period in which great swings in body weight occur. This study will fill an important gap in what we know about the biology of the annual cycle of the emperor by examining the molt-post molt period. The P.I. proposes to traverse the Amundsen and Bellingshausen seas on the Oden, to locate and tag emperor penguins during the molt season. The objectives are to (1) Place satellite tags on 20 adult post molt birds to determine their route, rate of travel, and diving behavior as they return back to their breeding colonies, (2) Obtain an index of body condition, (3) Collect guano to determine the type of food consumed by emperor penguins in the region, (4) Conduct shipboard surveys to sight and plot the location and abundance of adult and juvenile birds on the ship's track. The PI hypothesizes that bird dives will be shallow during the initial post-molt phase, and that food will consist primarily of krill; that there will be differential dispersal of birds from the Ross Sea vs. Marie Byrd Land, with Ross Sea birds traveling farther; and that the greatest adult mortality occurs during the molt and early post molt period. Broader impacts include training of a post doc, a graduate student, and an aquarium volunteer. The P.I. also will present findings through a website, through public lectures, and in collaboration with the Birch aquarium.
Intellectual Merit: The PIs propose to investigate the impact of earth surface processes on the application of cosmogenic exposure dating in Antarctica by combining multi-nuclide techniques, detailed field experiments, rock-mechanic studies, and climate modeling. They will analyze cosmogenic-nuclide inventories for a suite of six alpine-moraine systems in inland regions of the McMurdo Dry Valleys. This area is ideally suited for this study because 1) the targeted alpine moraine sequences are critically important in helping to reconstruct past temperature and precipitation values over the last several million years, 2) the production rates for cosmogenic nuclides are typically high and well-known, and 3) the complexity of surface processes is relatively low. Their work has two specific goals: to evaluate the effects of episodic geomorphic events in modulating cosmogenic inventories in surface rocks in polar deserts and to generate an alpine glacier chronology that will serve as a robust record of regional climate variation over the last several million years. A key objective is to produce a unique sampling strategy that yields consistent exposure-age results by minimizing the effects of episodic geomorphic events that obfuscate cosmogenic-nuclide chronologies. They will link their moraine chronology with regional-scale atmospheric models developed by collaborators at University of Massachusetts Amherst. Broader impacts: This research is interdisciplinary and includes two early career scientists. Results of this work will be used to enhance undergraduate education by engaging two female students in Antarctic field and summer research projects. Extended outreach includes development of virtual Antarctic field trips for Colgate University?s Ho Tung Visualization Laboratory and Boston University?s Antarctic Digital Image Analyses Laboratory. The PIs will continue to work with the Los Angeles Valley Community College, which serves students of mostly Hispanic origin as part of the PolarTREC program. This project will contribute to the collaboration between LDEO and several New York City public high schools within the Lamont-Doherty Secondary School Field Program.
This award supports a detailed, molecular level characterization of dissolved organic carbon and microbes in Antarctic ice cores. Using the most modern biological (genomic), geochemical techniques, and advanced chemical instrumentation researchers will 1) optimize protocols for collecting, extracting and amplifying DNA from deep ice cores suitable for use in next generation pyrosequencing; 2) determine the microbial diversity within the ice core; and 3) obtain and analyze detailed molecular characterizations of the carbon in the ice by ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS). With this pilot study investigators will be able to quantify the amount of material (microbial biomass and carbon) required to perform these characterizations, which is needed to inform future ice coring projects. The ultimate goal will be to develop protocols that maximize the yield, while minimizing the amount of ice required. The broader impacts include education and outreach at both the local and national levels. As a faculty mentor with the American Indian Research Opportunities and BRIDGES programs at Montana State University, Foreman will serve as a mentor to a Native American student in the lab during the summer months. Susan Kelly is an Education and Outreach Coordinator with a MS degree in Geology and over 10 years of experience in science outreach. She will coordinate efforts for comprehensive educational collaboration with the Hardin School District on the Crow Indian Reservation in South-central Montana.
1142010/Talghader This award supports a project to combine the expertise of both glaciologists and optical engineers to develop polarization- preserving optical scattering techniques for borehole tools to identify changes in high-resolution crystal structure (fabric) and dust content of glacial ice. The intellectual merit of this work is that the fabric and impurity content of the ice contain details on climate, volcanic activity and ice flow history. Such fabric measurements are currently taken by slicing an ice core into sections after it has started to depressurize which is an extremely time-intensive process that damages the core and does not always preserve the properties of ice in its in-situ state. In addition the ice core usually must be consumed in order to measure the components of the dust. The fabric measurements of this study utilize the concept that singly-scattered light in ice preserves most of its polarization when it is backscattered once from bubbles or dust; therefore, changes to the polarization of singly-backscattered light must originate with the birefringence. Measurements based on this concept will enable this program to obtain continuous records of fabric and correlate them to chronology and dust content. The project will also develop advanced borehole instruments to replace current logging tools, which require optical sources, detectors and power cables to be submerged in borehole fluid and lowered into the ice sheet at temperatures of -50oC. The use of telecommunications fiber will allow all sources and detectors to remain at the surface and enable low-noise signal processing techniques such as lock-in amplification that increase signal integrity and reduce needed power. Further, fiber logging systems would be much smaller and more flexible than current tools and capable of navigating most boreholes without a heavy winch. In order to assess fabric in situ and test fiber-optic borehole tools, field measurements will be made at WAIS Divide and a deep log will also be made at Siple Dome, both in West Antarctica. If successful, the broader impacts of the proposed research would include the development of new analytical methods and lightweight logging tools for ice drilling research that can operate in boreholes drilled in ice. Eventually the work could result in the development of better prehistoric records of glacier flow, atmospheric particulates, precipitation, and climate forcing. The project encompasses a broad base of theoretical, experimental, and design work, which makes it ideal for training graduate students and advanced undergraduates. Collaboration with schools and classroom teachers will help bring aspects of optics, climate, and polar science to an existing Middle School curriculum.
Aydin/1043780 This award supports the analysis of the trace gas carbonyl sulfide (COS) in a deep ice core from West Antarctic Ice Sheet Divide (WAIS-D), Antarctica. COS is the most abundant sulfur gas in the troposphere and a precursor of stratospheric sulfate. It has a large terrestrial COS sink that is tightly coupled to the photosynthetic uptake of atmospheric carbon dioxide (CO2). The primary goal of this project is to develop high a resolution Holocene record of COS from the WAIS-D 06A ice core. The main objectives are 1) to assess the natural variability of COS and the extent to which its atmospheric variability was influenced by climate variability, and 2) to examine the relationship between changes in atmospheric COS and CO2. This project also includes low-resolution sampling and analysis of COS from 10,000-30,000 yrs BP, covering the transition from the Last Glacial Maximum into the early Holocene. The goal of this work is to assess the stability of COS in ice core air over long time scales and to establish the COS levels during the last glacial maximum and the magnitude of the change between glacial and interglacial conditions. The results of this work will be disseminated via peer-review publications and will contribute to environmental assessments such as the WMO Stratospheric Ozone Assessment and IPCC Climate Assessment. This project will support a PhD student and undergraduate researcher in the Department of Earth System Science at the University of California, Irvine, and will create summer research opportunities for undergraduates from non-research active Universities.
1042883/Mayewski This award supports a project to analyze a deep ice core which will be drilled by a New Zealand research team at Roosevelt Island. The objectives are to process the ice core at very high resolution to (a) better understand phasing sequences in Arctic/Antarctic abrupt climate change, even at the level of individual storm events; (b) determine the impact of changes in the Westerlies and the Amundsen Sea Low on past/present/future climate change; (c) determine how sea ice extent has varied in the area; (d) compare the response of West Antarctica climate to other regions during glacial/interglacial cycles; and (e) determine how climate of the Ross Sea Embayment changed during the transition from Ross Ice Sheet to Ross Ice Shelf. The intellectual merit of the RICE deep ice core project is that it is expected to provide a 30kyr long (and possibly 150kyr long) extremely high-resolution view of climate change in the Ross Sea Embayment Region and data essential to test and understand critical questions that have emerged as a consequence of the recent synthesis of Antarctic and Southern Ocean climate change presented in the Scientific Commission for Antarctic Research document: Antarctic Climate Change and the Environment (ACCE, 2009). Ice core processing and analysis will be performed jointly by University of Maine and the collaborators from New Zealand. Co-registered sampling for all chemical analyses will be accomplished by a joint laboratory effort at the IGNS NZ ice core facility using a continuous melter system developed by the University of Maine. The RICE deep ice core record will provide information necessary in unraveling the significance of multi-millennial underpinning for climate change and in the understanding of observed and projected climate change in light of current dramatic human impact on Antarctica and the Southern Ocean. The broader impacts of the project include the fact that two CCI graduate students will be funded through the project, and will be involved in all aspects of field research, core sampling, sample processing, analytical and numerical analyses, data interpretation, writing of manuscripts, and presentation of results at national and international conferences. Data and ideas developed in this project and associated work will be used in several courses taught at the University of Maine. Innovative cyberinfrastructure will be incorporated into this work and ground breaking analytical technologies, and data access/storage tools will be used.
Intellectual Merit: The PIs propose to investigate the impact of earth surface processes on the application of cosmogenic exposure dating in Antarctica by combining multi-nuclide techniques, detailed field experiments, rock-mechanic studies, and climate modeling. They will analyze cosmogenic-nuclide inventories for a suite of six alpine-moraine systems in inland regions of the McMurdo Dry Valleys. This area is ideally suited for this study because 1) the targeted alpine moraine sequences are critically important in helping to reconstruct past temperature and precipitation values over the last several million years, 2) the production rates for cosmogenic nuclides are typically high and well-known, and 3) the complexity of surface processes is relatively low. Their work has two specific goals: to evaluate the effects of episodic geomorphic events in modulating cosmogenic inventories in surface rocks in polar deserts and to generate an alpine glacier chronology that will serve as a robust record of regional climate variation over the last several million years. A key objective is to produce a unique sampling strategy that yields consistent exposure-age results by minimizing the effects of episodic geomorphic events that obfuscate cosmogenic-nuclide chronologies. They will link their moraine chronology with regional-scale atmospheric models developed by collaborators at University of Massachusetts Amherst. Broader impacts: This research is interdisciplinary and includes two early career scientists. Results of this work will be used to enhance undergraduate education by engaging two female students in Antarctic field and summer research projects. Extended outreach includes development of virtual Antarctic field trips for Colgate University?s Ho Tung Visualization Laboratory and Boston University?s Antarctic Digital Image Analyses Laboratory. The PIs will continue to work with the Los Angeles Valley Community College, which serves students of mostly Hispanic origin as part of the PolarTREC program. This project will contribute to the collaboration between LDEO and several New York City public high schools within the Lamont-Doherty Secondary School Field Program.
Intellectual Merit: The PIs propose to quantify the hillslope water, solute, and carbon budgets for Taylor Valley in the McMurdo Dry Valleys, using water tracks to investigate near-surface geological processes and challenge the paradigm that shallow groundwater is minimal or non-exixtant. Water tracks are linear zones of high soil moisture that route shallow groundwater downslope in permafrost dominated soils. Four hypotheses will be tested: 1) water tracks are important pathways for water and solute transport; 2) water tracks transport more dissolved silica than streams in Taylor Valley indicating they are the primary site of chemical weathering for cold desert soils and bedrock; 3) water tracks that drain highland terrains are dominated by humidity-separated brines while water tracks that drain lowland terrains are dominated by marine aerosols; 4) water tracks are the sites of the highest terrestrial soil carbon concentrations and the strongest CO2 fluxes in Taylor Valley and their carbon content increases with soil age, while carbon flux decreases with age. To test these hypotheses the PIs will carry out a suite of field measurements supported by modeling and remote sensing. They will install shallow permafrost wells in water tracks that span the range of geological, climatological, and topographic conditions in Taylor Valley. Multifrequency electromagnetic induction sounding of the upper ~1 m of the permafrost will create the first comprehensive map of soil moisture in Taylor Valley, and will permit direct quantification of water track discharge across the valley. The carbon contents of water track soils will be measured and linked to global carbon dynamics. Broader impacts: Non-science majors at Oregon State University will be integrated into the proposed research through a new Global Environmental Change course focusing on the scientific method in Antarctica. Three undergraduate students, members of underrepresented minorities, will be entrained in the research, will contribute to all aspects of field and laboratory science, and will present results at national meetings.
The Office of Polar Programs, Antarctic Science Division, Ocean & Climate Systems Program has made this award to support a multidisciplinary effort to study the upwelling of relatively warm deep water onto the Amundsen Sea continental shelf and how it relates to atmospheric forcing and bottom bathymetry and how the warm waters interact with both glacial and sea ice. This study constitutes a contribution of a coordinated research effort in the region known as the Amundsen Sea Embayment Project or ASEP. Previous work by the PI and others has shown that the West Antarctic Ice Sheet has been found to be melting faster, perhaps by orders of magnitude, than ice sheets elsewhere around Antarctica, excluding those on the Peninsula. Submarine channels that incise the continental shelf are thought to provide fairly direct access of relatively warm circum polar deep water to the cavity under the floating extension of the ice shelf. Interactions with sea ice en route can modify the upwelled waters. The proposed investigations build on previous efforts by the PI and colleagues to use hydrographic measurements to put quantitative bounds on the rate of glacial ice melt by relatively warm seawater. <br/>The region can be quite difficult to access due to sea ice conditions and previous hydrographic measurements have been restricted to the austral summer time frame. In this project it was proposed to obtain the first austral spring hydrographic data via CTD casts and XBT drops (September-October 2007) as part of a separately funded cruise (PI Steve Ackley) the primary focus of which is sea-ice conditions to be studied while the RV Nathanial B Palmer (RV NBP) drifts in the ice pack. This includes opportunistic sampling for pCO2 and TCO2. A dedicated cruise in austral summer 2009 will follow this opportunity. The principal objectives of the dedicated field program are to deploy a set of moorings with which to characterize temporal variability in warm water intrusions onto the shelf and to conduct repeat hydrographic surveying and swath mapping in targeted areas, ice conditions permitting. Automatic weather stations are to be deployed in concert with the program, sea-ice observations will be undertaken from the vessel and the marine cavity beneath the Pine Island may be explored pending availability of the British autonomous underwater vehicle Autosub 3. These combined ocean-sea ice-atmosphere observations are aimed at a range of model validations. A well-defined plan for making data available as well as archiving in a timely fashion should facilitate a variety of modeling efforts and so extend the value of the spatially limited observations. <br/>Broader impacts: This project is relevant to an International Polar Year research emphasis on ice sheet dynamics focusing in particular on the seaward ocean-ice sheet interactions. Such interactions must be clarified for understanding the potential for sea level rise by melt of the West Antarctic ice Sheet. The project entails substantive international partnerships (British Antarctic Survey and Alfred Wegner Institute) and complements other Amundsen Sea Embayment Project proposals covering other elements of ice sheet dynamics. The proposal includes partial support for 2 graduate students and 2 post docs. Participants from the Antarctic Artists and Writers program are to take part in the cruise and so aid in outreach. In addition, the project is to be represented in the Lamont-Doherty annual open house.
Intellectual Merit: Sinking particles are a major element of the biological pump and they are commonly assigned to two fates: mineralization in the water column and accumulation at the seafloor. However, there is another fate of export hidden within the vertical decline of carbon, the transformation of sinking organic matter to fine suspended and/or dissolved organic fractions. This process has been suggested but has rarely been observed or quantified. As a result, it is presumed that the solubilized fraction is largely mineralized over short time scales. However, global ocean surveys of dissolved organic carbon are demonstrating a significant water column accumulation of organic matter under high productivity environments. This proposal will investigate the transformation of organic particles from sinking to solubilized phases of the export flux in the Ross Sea. The Ross Sea experiences high export particle production, low dissolved organic carbon export with overturning circulation, and the area has a predictable succession of production and export events. In addition, the basin is shallow (< 000 m) so the products the PIs will target are relatively concentrated. To address the proposed hypothesis, the PIs will use both well-established and novel biochemical and optical measures of export production and its fate. The outcomes of this work will help researchers close the carbon budget in the Ross Sea. Broader impacts: This research will support graduate and undergraduate students and will provide undergraduates and pre-college students with field-based research experience. Scientifically, this research will increase understanding of carbon sinks in the Ross Sea and will help develop new tools for identifying, quantifying, and tracking that carbon. The PIs will interface with K-12 students through daily reports from the field and through educational modules developed by several of the PIs in collaboration with science education specialists and college students. A K-12 educator will be included on the research cruises. Outreach will be through COSEE Florida and the Maritime Center in Norfolk, VA.
1043421/Severinghaus This award supports a project to obtain samples of ice in selected intervals for replication and verification of the validity and spatial representativeness of key results in the WAIS Divide ice core, and to obtain additional ice samples in areas of intense scientific interest where demand is high. The US Ice Core Working Group recommended in 2003 that NSF pursue the means to take replicate samples, termed "replicate coring". This recommendation was part of an agreement to reduce the diameter of the (then) new drilling system (the DISC drill) core to 12.2 cm to lighten logistics burdens, and the science community accepted the reduction in ice sample with the understanding that replicate coring would be able to provide extra sample volume in key intervals. The WAIS Divide effort would particularly benefit from replicate coring, because of the unique quality of the expected gas record and the large samples needed for gases and gas isotopes; thus this proposal to employ replicate coring at WAIS Divide. In addition, scientific demand for ice samples has been, and will continue to be, very unevenly distributed, with the ice core archive being completely depleted in depth intervals of high scientific interest (abrupt climate changes, volcanic sulfate horizons, meteor impact horizons, for example). The broader impacts of the proposed research may include identification of leads and lags between Greenland, tropical, and Antarctic climate change, enabling critical tests of hypotheses for the mechanism of abrupt climate change. Improved understanding of volcanic impacts on atmospheric chemistry and climate may also emerge. This understanding may ultimately help improve climate models and prediction of the Earth System feedback response to ongoing human perturbation in coming centuries. Outreach and public education about climate change are integral components of the PIs' activities and the proposed work will enhance these efforts. Broader impacts also include education and training of 2 postdoctoral scholars and 1 graduate student, and invaluable field experience for the graduate and undergraduate students who will likely make up the core processing team at WAIS Divide.
1143619/Severinghaus This award supports a project to extend the study of gases in ice cores to those gases whose small molecular diameters cause them to escape rapidly from ice samples (the so-called "fugitive gases"). The work will employ helium, neon, argon, and oxygen measurements in the WAIS Divide ice core to better understand the mechanism of the gas close-off fractionation that occurs while air bubbles are incorporated into ice. The intellectual merit of the proposed work is that corrections for this fractionation using neon (which is constant in the atmosphere) may ultimately enable the first ice core-based atmospheric oxygen and helium records. Neon may also illuminate the mechanistic link between local insolation and oxygen used for astronomical dating of ice cores. Helium measure-ments in the deepest ~100 m of the core will also shed light on the stratigraphic integrity of the basal ice, and serve as a probe of solid earth-ice interaction at the base of the West Antarctic ice sheet. Past atmospheric oxygen records, currently unavailable prior to 1989 CE, would reveal changes in the size of the terrestrial biosphere carbon pool that accompany climate variations and place constraints on the biogeochemical feedback response to future warming. An atmospheric helium-3/helium-4 record would test the hypothesis that the solar wind (which is highly enriched in helium-3) condensed directly into Earth?s atmosphere during the collapse of the geomagnetic field that occurred 41,000 years ago, known as the Laschamp Event. Fugitive-gas samples will be taken on-site immediately after recovery of the ice core by the PI and one postdoctoral scholar, under the umbrella of an existing project to support replicate coring and borehole deepening. This work will add value to the scientific return from field work activity with little additional cost to logistical resources. The broader impacts of the work on atmospheric oxygen are that it may increase understanding of how terrestrial carbon pools and atmospheric greenhouse gas sources will respond in a feedback sense to the coming warming. Long-term atmospheric oxygen trends are also of interest for understanding biogeochemical regulatory mechanisms and the impact of atmospheric evolution on life. Helium records have value in understanding the budget of this non-renewable gas and its implications for space weather and solar activity. The project will train one graduate student and one postdoctoral scholar. The fascination of linking solid earth, cryosphere, atmosphere, and space weather will help to entrain and excite young scientists and efforts to understand the Earth as a whole interlinked system will provide fuel to outreach efforts at all ages.
1245659/Petrenko This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, δ18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, δ13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of δ13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica.
The Ross Sea continental shelf is one of the most productive areas in the Southern Ocean, and may comprise a significant, but unaccounted for, oceanic CO2 sink, largely driven by phytoplankton production. The processes that control the magnitude of primary production in this region are not well understood, but data suggest that iron limitation is a factor. Field observations and model simulations indicate four potential sources of dissolved iron to surface waters of the Ross Sea: (1) circumpolar deep water intruding from the shelf edge; (2) sediments on shallow banks and nearshore areas; (3) melting sea ice around the perimeter of the polynya; and (4) glacial meltwater from the Ross Ice Shelf. The principal investigators hypothesize that hydrodynamic transport via mesoscale currents, fronts, and eddies facilitate the supply of dissolved iron from these four sources to the surface waters of the Ross Sea polynya. These hypotheses will be tested through a combination of in situ observations and numerical modeling, complemented by satellite remote sensing. In situ observations will be obtained during a month-long cruise in the austral summer. The field data will be incorporated into model simulations, which allow quantification of the relative contributions of the various hypothesized iron supply mechanisms, and assessment of their impact on primary production. The research will provide new insights and a mechanistic understanding of the complex oceanographic phenomena that regulate iron supply, primary production, and biogeochemical cycling. The research will thus form the basis for predictions about how this system may change in a warming climate. The broader impacts include training of graduate and undergraduate students, international collaboration, and partnership with several ongoing outreach programs that address scientific research in the Southern Ocean. The research also will contribute to the goals of the international research programs ICED (Integrated Climate and Ecosystem Dynamics) and GEOTRACES (Biogeochemical cycling and trace elements in the marine environment).
The proposed research targets the molecular genetics of salps, an increasingly important member of the zooplankton in Antarctic waters who's dominance appears to be related to climate warming and sea ice loss. Specifically the research will examine genome-wide patterns of gene expression, target gene expression levels, and patterns of population genetic diversity and structure underlying the complex life history and population dynamics of S. thompsoni. The P.I.s hypothesize that (1) deep analysis of the Salpa thompsoni transcriptome will reveal significant associations among selected set of differentially expressed genes and critical life history stages and events (e.g., ontogenetic maturation, sexual reproduction, senescence) of the salp; and 2) the species will show variable levels of clonal diversity and significant genetic differentiation among populations in different regions of the Southern Ocean. Broader impacts include training of two graduate students; inclusion of undergraduates in research, and in a formal training workshop; development of a summer workshop for high school teachers in collaboration with Connecticut Sea Grant; and public outreach via postings on the Census of Marine Zooplankton homepage.
Time series data, from ocean moorings, on key aspects of evolving ocean properties are of considerable importance in assessing the condition of the ocean system. They are needed, for example, their understand how the oceans are warming, and how they continue to uptake greenhouse gases such as CO2. The Cape Adare Long Term Mooring (CALM) program goal was to observe the bottom water export from the Ross Sea to the deep ocean. To accomplish this two instrumented moorings were set on the continental slope off Cape Adare (western Ross Sea, Antarctica), positioned to capture the export of Antarctic Bottom Water (AABW), some of the coldest and densest water found in the global ocean. Data records for the moorings spans over some four years in this very remote part of the ocean. The CALM analysis will address some specific objectives: ? Characterize the temperature, salinity and current variability associated with the Ross Sea AABW export. ? Examine the linkages between observed variability to regional tides, atmosphere and sea ice forcing. ? Relate the Ross Sea AABW export fluctuations to the larger scale climate system dynamics, such as ENSO and SAM, and to AABW formation along other margins of Antarctica, e.g. the Weddell Sea
Abstract Researchers will explore the use of a distributed temperature sensing monitoring system (DTS), using fiber-optical (FO) technology, as the basis of a sustainable, sub-ice cavity sensing array. FO cable systems, such as may be deployed through a hot-water drilled hole through an ice shelf, passing through the underlying cavity to the sea floor, are capable of measuring temperatures down fiber at 1 meter intervals, and at time frequencies as high as 15 seconds. DTS FO systems operate via optical time domain reflectometry along the fiber waveguide using inelastic backscatter of coherent laser light as a probe beam in the FO environment. The introduction of new technologies to the harsh environmental conditions of the Antarctic are often associated with high risk. However, the potential rewards of this approach (e.g. multiyear capability, minimal submerged mechanical or electrical components that may fail, relative simplicity of deployment and measurement principle, yet yielding distributed real time and spatial observation) are attractive enough to conduct a pilot project at a field-ready location (McMurdo). Current indications are that the instability of some of the world's largest ice sheets located around the Antarctic and Greenland may be caused by the presence of warming, deep ocean waters, shoaling over continental shelves, and melting the underside of floating ice shelves. Additional knowledge of the temporal and spatial variability of the temperature fields underneath terminal ice shelves, such as those draining the West Antarctic Ice Sheet, are needed to accurately project future global climate effects on ice-shelf ocean interactions, and in order to inform societal and technological aspects of adaption to changing sea-level.
This award provides support for "EAGER: Handbook of Hot Water Drill System (HWDS) Design Considerations and Best Practices" from the Antarctic Integrated System Science within the Office of Polar Programs. More and more science projects are proposing to use hot-water drilling systems (HWDS) to rapidly and/or cleanly access glacial and subglacial systems. To date the hot-water drill systems have been developed in isolation, and no attempt has been made to gather information about the different systems in one place. This proposal requests funds to document existing HWDS, and to then assess the design, testing, and development of a hot-water drill system that will be integrated with the evolving over-ice traverse capability of the USAP program. Intellectual Merit: A working handbook of best practices for hot-water drill design systems, including safety considerations, is long overdue, and will 1) provide suggestions for optimizing current systems; 2) contribute in the very near term to already funded projects such as WISSARD (Whillans Ice Stream Subglacial Access and Research Drilling); and 3) fit the long-term needs of the Antarctic science community who have identified rapid and clean access to glacial and subglaical environments as a top priority for the next decades. The collected information will be used for community education and training, will discuss potential design and operational trade-offs, and will identify ways to optimize the capabilities of an integrated USAP traverse and HWDS infrastructure. EAGER funding for this project is warranted because such a handbook has not been tried before, and needs to be shown to be doable prior to larger investments in such compilations. It fits the AISS (Antarctic Integrated System Science) program as an optimized HWDS will meet the needs of many different Antarctic research disciplines including biology, geology, glaciology, and oceanography. Broader Impacts: The proposed work is being done on behalf of the Antarctic research community, and will seek to capture the knowledge of experienced hot-water drill engineers who are nearing retirement, and to educate the next generation of hot-water drillers and engineers. The PI indicates he will work with the owners of such systems both within the US and abroad. Identification of best practices in hot-water drilling will save several different Antarctic research communities significant time, effort, and funding in the future.
The albedo, or reflection coefficient, is a measure of the diffuse reflectivity of an irradiated surface. With the sunlit atmosphere as a light source, and sea-ice as a diffuse reflecting surface, the albedo would be the fraction of incident light that is returned to the atmosphere. A perfect (white) reflecting surface would have an albedo of 1; a perfect (black) absorbing surface would have an albedo of 0. The albedo of sea-ice is needed to assess the solar energy budget of the marginal ice zone, to compute the partial solar bands in radiation budgets in general circulation and earth system models, and is also needed to interpret remote sensing imagery data products. Applications requiring albedos further into the near IR, out to 2500nm, are assumed or approximated. Modern spectral radiometers, such as will be used in this campaign on a Southern Ocean voyage from Hobart to Antarctica, can extend these measurements of albedo from 350 to 2500nm, allowing earlier estimates to be verified, or corrected. Surfaces to be encountered on this research cruise are expected to include open water, grease ice, nila ice, pancake ice, young grey ice, young grey-white ice, along with first year ice. The presence of variable amounts of snow on these surfaces is also of interest. Light absorbing impurities in the snow and ice, including black carbon and organic matter (brown carbon) are different from those found in Arctic Sea ice, the Antarctic being so remote from combustion sources. This may allow better understanding of the seasonal cycles, energy budgets and their recent trends in spatial extent and thickness. The project will also broaden the educational experiences of both US and Australian students participating in the measurement campaign
This award supports a project to understand the flow dynamics of large, fast-moving outlet glaciers that drain the East Antarctic Ice Sheet. The project includes an integrated field, remote sensing and modeling study of Byrd Glacier which is a major pathway for the discharge of mass from the East Antarctic Ice Sheet (EAIS) to the ocean. Recent work has shown that the glacier can undergo short-lived but significant changes in flow speed in response to perturbations in its boundary conditions. Because outlet glacier speeds exert a major control on ice sheet mass balance and modulate the ice sheet contribution to sea level rise, it is essential that their sensitivity to a range of dynamic processes is properly understood and incorporated into prognostic ice sheet models. The intellectual merit of the project is that the results from this study will provide critically important information regarding the flow dynamics of large EAIS outlet glaciers. The proposed study is designed to address variations in glacier behavior on timescales of minutes to years. A dense network of global positioning satellite (GPS) instruments on the grounded trunk and floating portions of the glacier will provide continuous, high-resolution time series of horizontal and vertical motions over a 26-month period. These results will be placed in the context of a longer record of remote sensing observations covering a larger spatial extent, and the combined datasets will be used to constrain a numerical model of the glacier's flow dynamics. The broader impacts of the work are that this project will generate results which are likely to be a significant component of next-generation ice sheet models seeking to predict the evolution of the Antarctic Ice Sheet and future rates of sea level rise. The most recent report from the Intergovernmental Panel on Climate Change (IPCC) highlights the imperfect understanding of outlet glacier dynamics as a major obstacle to the production of an accurate sea level rise projections. This project will provide significant research opportunities for several early-career scientists, including the lead PI for this proposal (she is both a new investigator and a junior faculty member at a large research university) and two PhD-level graduate students. The students will be trained in glaciology, geodesy and numerical modeling, contributing to society's need for experts in those fields. In addition, this project will strengthen international collaboration between polar scientists and geodesists in the US and Spain. The research team will work closely with science educators in the Center for Remote Sensing of Ice Sheets (CReSIS) outreach program to disseminate project results to non-specialist audiences.
This project constructs POLENET a network of GPS and seismic stations in West Antarctica to understand how the mass of the West Antarctic ice sheet (WAIS) changes with time. The information is ultimately used to predict sea level rise accompanying global warming and interpret climate change records. The GPS (global positioning system) stations measure vertical and horizontal movements of bedrock, while the seismic stations characterize physical properties of the ice/rock interface, lithosphere, and mantle. Combined with satellite data, this project offers a more complete picture of the ice sheet's current state, its likely change in the near future, and its overall size during the last glacial maximum. This data will also be used to infer sub-ice sheet geology and the terrestrial heat flux, critical inputs to models of glacier movement. As well, this project improves tomographic models of the earth's deep interior and core through its location in the Earth's poorly instrumented southern hemisphere. <br/><br/><br/><br/>Broader impacts of this project are varied. The work is relevant to society for improving our understanding of the impacts of global warming on sea level rise. It also supports education at the postdoctoral, graduate, and undergraduate levels, and outreach to groups underrepresented in the sciences. As an International Polar Year contribution, this project establishes a legacy of infrastructure for polar measurements. It also involves an international collaboration of twenty four countries. For more information see IPY Project #185 at IPY.org. NSF is supporting a complementary Arctic POLENET array being constructed in Greenland under NSF Award #0632320.
Collaborative With: McPhee 0732804, Holland 0732869, Truffer 0732730, Stanton 0732926, Anandakrishnan 0732844 <br/>Title: Collaborative Research: IPY: Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica<br/><br/>The Office of Polar Programs, Antarctic Integrated and System Science Program has made this award to support an interdisciplinary study of the effects of the ocean on the stability of glacial ice in the most dynamic region the West Antarctic Ice Sheet, namely the Pine Island Glacier in the Amundsen Sea Embayment. The collaborative project builds on the knowledge gained by the highly successful West Antarctic Ice Sheet program and is being jointly sponsored with NASA. Recent observations indicate a significant ice loss, equivalent to 10% of the ongoing increase in sea-level rise, in this region. These changes are largest along the coast and propagate rapidly inland, indicating the critical impact of the ocean on ice sheet stability in the region. While a broad range of remote sensing and ground-based instrumentation is available to characterize changes of the ice surface and internal structure (deformation, ice motion, melt) and the shape of the underlying sediment and rock bed, instrumentation has yet to be successfully deployed for observing boundary layer processes of the ocean cavity which underlies the floating ice shelf and where rapid melting is apparently occurring. Innovative, mini ocean sensors that can be lowered through boreholes in the ice shelf (about 500 m thick) will be developed and deployed to automatically provide ocean profiling information over at least three years. Their data will be transmitted through a conducting cable frozen in the borehole to the surface where it will be further transmitted via satellite to a laboratory in the US. Geophysical and remote sensing methods (seismic, GPS, altimetry, stereo imaging, radar profiling) will be applied to map the geometry of the ice shelf, the shape of the sub ice-shelf cavity, the ice surface geometry and deformations within the glacial ice. To integrate the seismic, glaciological and oceanographic observations, a new 3-dimensional coupled ice-ocean model is being developed which will be the first of its kind. NASA is supporting satellite based research and the deployment of a robotic-camera system to explore the environment in the ocean cavity underlying the ice shelf and NSF is supporting all other aspects of this study. <br/><br/>Broader impacts: This project is motivated by the potential societal impacts of rapid sea level rise and should result in critically needed improvements in characterizing and predicting the behavior of coupled ocean-ice systems. It is a contribution to the International Polar Year and was endorsed by the International Council for Science as a component of the "Multidisciplinary Study of the Amundsen Sea Embayment" proposal #258 of the honeycomb of endorsed IPY activities. The research involves substantial international partnerships with the British Antarctic Survey and the University of Bristol in the UK. The investigators will partner with the previously funded "Polar Palooza" education and outreach program in addition to undertaking a diverse set of outreach activities of their own. Eight graduate students and one undergraduate as well as one post doc will be integrated into this research project.
The investigators propose to build and test a multi-sensor, automated measurement station for monitoring Arctic and Antarctic ice-ocean environments. The system, based on a previously successful design, will incorporate weather and climate sensors, camera, snow and firn sensors, instruments to measure ice motion, ice and ocean thermal profilers, hydrophone, and salinity sensors. This new system will have two-way communications for real-time data delivery and is designed for rapid deployment by a small field group. AMIGOS-II will be capable of providing real time information on geophysical processes such as weather, snowmelt, ice motion and strain, fractures and melt ponds, firn thermal profiling, and ocean conditions from multiple levels every few hours for 2-4 years. Project personnel will conduct a field test of the new system at a location with a deep ice-covered lake. Development of AMIGOS-II is motivated by recent calls by the U.S. Antarctic Program Blue-Ribbon Panel to increase Antarctic logistical effectiveness, which cites a need for greater efficiency in logistical operations. Installation of autonomous stations with reduced logistical requirements advances this goal.
This award supports a project to generate an absolute timescale for the Allan Hills Blue Ice Area (BIA), and then to reconstruct details of past climate changes and greenhouse gas concentrations for certain time periods back to 2.5 Ma. Ice ages will be determined by applying emerging methods for absolute and relative dating of trapped air bubbles (based on Argon-40/Argon-38, delta-18O of O2, and the O2/N2 ratio). To demonstrate the potential of the Allan Hills BIAs as a paleoclimate archive trenches and ice cores will be collected for age intervals corresponding to 110-140 ka, 1 Ma, and 2.5 Ma. During the proposed two field seasons a total of 6x100 m and additional 15 m cores will be combined with trenching. The intellectual merit of the proposed activity is that the results of this work will extend the landmark work of EPICA and other deep ice coring efforts, which give records dating back to 0.8 Ma, and will complement work planned by IPICS to drill a continuous Antarctic ice core extending to 1.5 Ma. The results will help to advance understanding of major climate regimes and transitions that took place between 0-2.5 Ma, including the 40 kyr world and the mid-Pleistocene climate transition. A major long-term scientific goal is to provide a transformative approach to the collection of paleoclimate records by establishing an "International Climate Park" in the Allan Hills BIA that would enable sampling of large quantities of known age ice as old as 2.5 Ma, by any interested American or foreign investigator. The broader impacts resulting from the proposed activity include training students who are well versed in advanced field, laboratory and numerical modeling methods combining geochemistry, glaciology, and paleoclimatology. We will include material relevant to our proposed research in our ongoing efforts in local education and in our outreach efforts for media. The University of Maine already has cyberinfrastructure, using state of the art web-based technology, which can provide a wide community of scientists with fast access to the results of our research. The work will contribute to the broad array of climate change studies that is informing worldwide understanding of natural and anthropogenic forced climate change, and the options for responding. This award has field work in Antarctica.
This award supports a project to contribute one of the cornerstone analyses, stable isotopes of ice (Delta-D, Delta-O18) to the ongoing West Antarctic Ice Sheet Divide (WAIS) deep ice core. The WAIS Divide drilling project, a multi-institution project to obtain a continuous high resolution ice core record from central West Antarctica, reached a depth of 2560 m in early 2010; it is expected to take one or two more field seasons to reach the ice sheet bed (~3300 m), plus an additional four seasons for borehole logging and other activities including proposed replicate coring. The current proposal requests support to complete analyses on the WAIS Divide core to the base, where the age will be ~100,000 years or more. These analyses will form the basis for the investigation of a number of outstanding questions in climate and glaciology during the last glacial period, focused on the dynamics of the West Antarctic Ice Sheet and the relationship of West Antarctic climate to that of the Northern polar regions, the tropical Pacific, and the rest of the globe, on time scales ranging from years to tens of thousands of years. One new aspect of this work is the growing expertise at the University of Washington in climate modeling with isotope-tracer-enabled general circulation models, which will aid in the interpretation of the data. Another major new aspect is the completion and use of a high-resolution, semi-automated sampling system at the University of Colorado, which will permit the continuous analysis of isotope ratios via laser spectroscopy, at an effective resolution of ~2 cm or less, providing inter-annual time resolution for most of the core. Because continuous flow analyses of stable ice isotopes is a relatively new measurement, we will complement them with parallel measurements, every ~10-20 m, using traditional discrete sampling and analysis by mass spectrometry at the University of Washington. The intellectual merit and the overarching goal of the work are to see Inland WAIS become the reference ice isotope record for West Antarctica. The broader impacts of the work are that the data generated in this project pertain directly to policy-relevant and immediate questions of the stability of the West Antarctic ice sheet, and thus past and future changes in sea level, as well as the nature of climate change in the high southern latitudes. The project will also contribute to the development of modern isotope analysis techniques using laser spectroscopy, with applications well beyond ice cores. The project will involve a graduate student and postdoc who will work with both P.I.s, and spend time at both institutions. Data will be made available rapidly through the Antarctic Glaciological Data Center, for use by other researchers and the public.
Barbeau, David; Hemming, Sidney R.; Barbeau, David Jr
No dataset link provided
Intellectual Merit: Recent geochemical, sequence stratigraphic, and integrated investigations of marine strata from several continental margins and ocean basins suggest that ephemeral ice sheets may have existed on Antarctica during parts of the Cretaceous and early Paleogene. However, atmospheric carbon dioxide estimates for this time are as much as four times modern levels. With such greenhouse conditions, the presence of Antarctic ice sheets would imply that our current understanding of Earth?s climate system, and specifically the interpreted thresholds of Antarctic glaciation and deglaciation should be reconsidered. The proposed research will compare the quantity and provenance of Cretaceous sediments in the Larsen basin of the eastern Antarctic Peninsula with the exhumation chronology and composition of potential sediment source terranes on the peninsula and in adjacent regions. New outcrop stratigraphic analyses with improvements in the age models from radioisotopic approaches will be integrated to determine the amount of detrital sediment fluxed to the Larsen basin between key chronostratigraphic surfaces. Microtextural analysis of quartz sand and silt grains will help determine whether the Larsen basin detrital sediment originated from glacial weathering. These preliminary results will test the viability of the proposed approach to assess the controversial Cretaceous Antarctic glaciation hypothesis. Broader impacts: The proposed work will partially support a PhD, a MSc, and three undergraduate students at the University of South Carolina. The PIs will publicize this work through volunteer speaking engagements and the development of videos and podcasts. They also commit to prompt publication of the results and timely submission of data to archives. The development/improvement of the Larsen basin age model will benefit ongoing research in paleobiology, paleoclimate and biogeography. Development of the glauconite K-Ar and Rb-Sr chronometers could be an important outcome beyond the direct scope of the proposed research.
Intellectual Merit:<br/>The focus of this proposal is to collect fossil plants and palynomorphs from Permian-Triassic (P-T) rocks of the central Transantarctic Mountains (CTM), together with detailed data on sedimentologic and paleoecologic depositional environments. Fossil plants are important climate proxies that offer a unique window into the past, and the CTM fossils are an important source of data on the ways that plants responded to a strongly seasonal, polar light regime during a time of global change. The proposed project uses paleobotanical expertise, integrated with detailed sedimentology and stratigraphy, to reconstruct Permian-Triassic plant communities and their paleoenvironments. This interdisciplinary approach could uncover details of Antarctica?s complex late Paleozoic and Mesozoic environmental and climatic history which included: 1) deglaciation, 2) development and evolution of a post-glacial landscape and biota, 3) environmental and biotic change associated with the end-Permian mass extinction, 4) environmental recovery in the earliest Triassic, 5) strong, possible runaway Triassic greenhouse, and 6) widespread orogenesis and development of a foreland basin system. The PIs will collect compression floras both quantitatively and qualitatively to obtain biodiversity and abundance data. Since silicified wood is also present, the PIs will analyze tree rings and growth in a warm, high-latitude environment for which there is no modern analogue. Fossil plants from the CTM can provide biological and environmental information to: 1) interpret paleoclimate when Gondwana moved from icehouse to greenhouse conditions; 2) trace floral evolution across the P-T boundary; 3) reconstruct Antarctic plant life; 4) further understanding of plant adaptations to high latitudes. The Intellectual Merit of the research includes: 1) tracing floral evolution after the retreat of glaciers; 2) examining floral composition and diversity across the PTB; and 3) obtaining data on the recovery of these ecosystems in the Early Triassic, as well as changes in floral cover and diversity in the Early-Middle Triassic. Antarctica is the only place on Earth that includes extensive outcrops of terrestrial rocks, combined with widespread and well-preserved plant fossils, which spans this crucial time period.<br/><br/>Broader impacts:<br/>The broader impacts include public outreach; teaching, and mentoring of women and underrepresented students; mentoring graduate student, postdoctoral, and new faculty women; development of an inquiry-based workshop on Antarctic paleoclimate with the Division of Education, KU Natural History Museum; continuing support of workshops for middle school girls in science via the Expanding Your Horizons Program, Emporia State University, and the TRIO program, KU; exploring Antarctic geosciences through video/computer links from McMurdo Station and satellite phone conferences from the field with K-12 science classes in Wisconsin and Kansas, and through participation in the NSF Research Experiences for Teachers program at the University of Wisconsin.
0944199/Matsuoka<br/><br/>This award supports a project to test the hypothesis that abrupt changes in fabric exist and are associated with both climate transitions and volcanic eruptions. It requires depth-continuous measurements of the fabric. By lowering a new logging tool into the WAIS Divide borehole after the completion of the core drilling, this project will measure acoustic-wave speeds as a function of depth and interpret it in terms of ice fabrics. This interpretation will be guided by ice-core-measured fabrics at sparse depths. This project will apply established analytical techniques for the ice-sheet logging and estimate depth profiles of both compressional- and shear-wave speeds at short intervals (~ 1 m). Previous logging projects measured only compressional-wave speeds averaged over typically 5-7 m intervals. Thus the new logger will enable more precise fabric interpretations. Fabric measurements using thin sections have revealed distinct fabric patterns separated by less than several meters; fabric measurements over a shorter period are crucial. At the WAIS Divide borehole, six two-way logging runs will be made with different observational parameters so that multiple wave-propagation modes will be identified, yielding estimates of both compressional- and shear-wave speeds. Each run takes approximately 24 hours to complete; we propose to occupy the boreholes in total eight days. The logging at WAIS Divide is temporarily planned in December 2011, but the timing is not critical. This project?s scope is limited to the completion of the logging and fabric interpretations. Results will be immediately shared with other WAIS Divide researchers. Direct benefits of this data sharing include guiding further thin-section analysis of the fabric, deriving a precise thinning function that retrieves more accurate accumulation history and depth-age scales. The PIs of this project have conducted radar and seismic surveys in this area and this project will provide a ground truth for these regional remote-sensing assessments of the ice interior. In turn, these remote sensing means can extend the results from the borehole to larger parts of the central West Antarctica. This project supports education for two graduate students for geophysics, glaciology, paleoclimate, and polar logistics. The instrument that will be acquired in this project can be used at other boreholes for ice-fabric characterizations and for englacial hydrology (wetness of temperate ice).
This award supports a project to examine and test a 3-step process model for explosive ice-shelf disintegration that emerged in the wake of the recent 2008 and 2009 events of the Wilkins Ice Shelf. The model is conditioned on Summer melt-driven increase in free-surface water coupled with surface and basal crevasse density growth necessary to satisfy an "enabling condition". Once met, the collapse proceeds through three steps: (Step 1), calving of a "leading phalanx" of tabular icebergs from the seaward ice front of the ice shelf which creates in its wake a region, called a "mosh pit" (located between the phalanx and the edge of the intact ice shelf), where ocean surface-gravity waves are trapped by reflection (a fast mechanically enabled process), (Step 2), and a rapid, runaway conversion of gravitational potential energy into ocean-wave energy by iceberg capsize and fragmentation within the "mosh pit" which leads to further wave-induced calving, capsize and fragmentation (Step 3). The project will be conducted by a multidisciplinary team and will focus on theoretical model development, numerical method development and application and new observations. The project will participate in both the Research Experience for Undergraduates program in the Physics Department and the Summer Research Early Identification Program (SR-EIP) that fosters participation in research by underrepresented minorities. The PIs, postdoctoral scholar, graduate students and unfunded participants will develop a graduate-level seminar/tutorial to introduce advanced computational methods to glaciology. A postdoctoral scholar and graduate student will be trained in new research techniques during the project.
This award supports a project to investigate the transformations from snow to firn to ice and the underlying physics controlling firn's ability to store atmospheric samples from the past. Senior researchers, a graduate student, and several undergraduates will make high-resolution measurements of both the diffusivity and permeability profiles of firn cores from several sites in Antarctica and correlate the results with their microstructures quantified using advanced materials characterization techniques (scanning electron microscopy and x-ray computed tomography). The use of cores from different sites will enable us to examine the influence of different local climate conditions on the firn structure. We will use the results to help interpret existing measurements of firn air chemical composition at several sites where firn air measurements exist. There are three closely-linked goals of this project: to quantify the dependence of interstitial transport properties on firn microstructure from the surface down to the pore close-off depth, to determine at what depths bubbles form and entrap air, and investigate the extent to which these features exhibit site-to-site differences, and to use the measurements of firn air composition and firn structure to better quantify the differences between atmospheric composition (present and past), and the air trapped in both the firn and in air bubbles within ice by comparing the results of the proposed work with firn air measurements that have been made at the WAIS Divide and Megadunes sites. The broader impacts of this project are that the study will this study will enable us to elucidate the fundamental controls on the metamorphism of firn microstructure and its impact on processes of gas entrapment that are important to understanding ice core evidence of past atmospheric composition and climate change. The project will form the basis for the graduate research of a PhD student at Dartmouth, with numerous opportunities for undergraduate involvement in cold room measurements and outreach. The investigators have a track record of successfully mentoring women students, and will build on this experience. In conjunction with local earth science teachers, and graduate and undergraduate students will design a teacher-training module on the role of the Polar Regions in climate change. Once developed and tested, this module will be made available to the broader polar research community for their use with teachers in their communities.
This award supports a program of ground-based geophysical measurements to map in detail the spatial variations of ice flow, accumulation rate, internal layering and ice thickness at the sites which have been identified as promising locations to drill the next deep ice core in West Antarctica. The main investigative tools are a high- and low-frequency ice penetrating radar to image the topography of internal layers and the bed, repeat GPS surveys to calculate the present day surface velocity field, synthetic aperture radar (SAR) interferometry to calculate the regional velocity field, and short firn cores to calculate present day accumulation rates. The data which will be collected will be used to as input to time-dependent ice flow and temperature models that will predict depth variation of age, layer thickness, and temperature. As well as yielding an estimate of expected conditions before drilling, the mismatch between the model prediction and data eventually recovered from the core will help infer thinning and climate (accumulation and temperature) histories for the region. The Western Divide, between the Ross Sea Embayment and the Amundsen Sea, has been identified as the region which best satisfies the criteria which have been established for a deep drilling site. Preliminary site selection using airborne geophysical methods has identified several potential drill sites on the Western Divide where the climate record should be best preserved. This work will contribute in a major way to the final site selection for the next deep ice core in West Antarctica.
Severinghaus/0944343<br/><br/>This award supports a project to develop both a record of past local temperature change at the WAIS Divide site, and past mean ocean temperature using solubility effects on atmospheric krypton and xenon. The two sets of products share some of the same measurements, because the local temperature is necessary to make corrections to krypton and xenon, and thus synergistically support each other. Further scientific synergy is obtained by the fact that the mean ocean temperature is constrained to vary rather slowly, on a 1000-yr timescale, due to the mixing time of the deep ocean. Thus rapid changes are not expected, and can be used to flag methodological problems if they appear in the krypton and xenon records. The mean ocean temperature record produced will have a temporal resolution of 500 years, and will cover the entire 3400 m length of the core. This record will be used to test hypotheses regarding the cause of atmospheric carbon dioxide (CO2) variations, including the notion that deep ocean stratification via a cold salty stagnant layer caused atmospheric CO2 drawdown during the last glacial period. The local surface temperature record that results will synergistically combine with independent borehole thermometry and water isotope records to produce a uniquely precise and accurate temperature history for Antarctica, on a par with the Greenland temperature histories. This history will be used to test hypotheses that the ?bipolar seesaw? is forced from the North Atlantic Ocean, which makes a specific prediction that the timing of Antarctic cooling should slightly lag abrupt Greenland warming. The WAIS Divide ice core is expected to be the premier atmospheric gas record of the past 100,000 years for the foreseeable future, and as such, making this set of high precision noble gas measurements adds value to the other gas records because they all share a common timescale and affect each other in terms of physical processes such as gravitational fractionation. Broader impact of the proposed work: The clarification of timing of atmospheric CO2 and Antarctic surface temperature, along with deep ocean temperature, will aid in efforts to understand the feedbacks among CO2, temperature, and ocean circulation. These feedbacks bear on the future response of the Earth System to anthropogenic forcing. A deeper understanding of the mechanism of deglaciation, and the role of atmospheric CO2, will go a long way towards clarifying a topic that has become quite confused in the public mind in the public debate over climate change. Elucidating the role of the bipolar seesaw in ending glaciations and triggering CO2 increases may also provide an important warning that this represents a potential positive feedback, not currently considered by IPCC. Education of one graduate student, and training of one technician, will add to the nation?s human resource base. Outreach activities will be enhanced and will to continue to entrain young people in discovery, and excitement will enhance the training of the next generation of scientists and educators.
The proposed work is a multi-year study of the transport of water through Drake Passage by the Antarctic Circumpolar Current (ACC). Drake Passage acts as a chokepoint that is not only well suited geographically for measuring the time-varying transport, but observations and computer models suggest that dynamical balances which control the transport are particularly effective here. An array of Current Meters and Pressure-recording Inverted Echo Sounders (CPIES) will be set out for a period of 4 years to quantify the transport and dynamics of the Antarctic Circumpolar Current. Data will be collected annually by acoustic telemetry, leaving the instruments undisturbed until recovered at the end of the project. <br/><br/>The Southern Ocean is believed to be especially sensitive to climate change, responding to winds that have increased over the past thirty years, and warming significantly more than the global ocean over the past fifty years. The proposed observations will resolve the seasonal and interannual variability of the total ACC transport, as well as its vertical and lateral structure. Although not submitted specifically to the International Polar Year (IPY) Program Solicitation, the proposed project contributes to the IPY goal of understanding environmental change in polar regions and represents a pulse of activity in the IPY time frame that will extend the legacy of the IPY. The data and findings will be reported to publicly accessible archives and submitted for publication in the scientific literature. It is a scientific collaboration between the University of California, San Diego, and the University of Rhode Island.
The proposed work will investigate changes in the compositional variation of glacial tills over time across two concentric sequences of Pleistocene moraines located adjacent to the heads of East Antarctic outlet glaciers in the Transantarctic Mountains (TAM). The chronologic framework for this work will be generated from cosmogenic exposure ages of boulders on prominent morainal ridges. The PIs hypothesize that variations in till composition may indicate a change in ice flow direction or a change in the composition of the original source area, while ages of the moraines provide a long-term terrestrial perspective on ice sheet dynamics. Both results are vital for modeling experiments that aim to reconstruct the East Antarctic Ice Sheet and assess its role in the global climate system and its potential impact on global sea level rise. The variation of till compositions through time also allows for a more accurate interpretation of sediment cores from the Ross Sea and the Southern Ocean. Additionally, till exposures at the head of some East Antarctic outlet glaciers have been shown to contain subglacial material derived from East Antarctic bedrock, providing a window through the ice to view East Antarctica?s inaccessible bedrock. Till samples will be collected from two well-preserved sequences of moraine crests at Mt. Howe (head of Scott Glacier) and Mt. Achernar (between Beardmore and Nimrod Glaciers). Each size fraction in glacial till provides potentially valuable information, and the PIs will measure the petrography of the clast and sand fractions, quantitative X-ray diffraction on the crushed <2mm fraction, elemental abundance of the silt/clay fraction, and U/Pb of detrital zircons in the sand fraction. Data collection will rely on established methods previously used in this region and the PIs will also explore new methods to assess their efficacy. On the same moraines crests sampled for provenance studies, the PIs will sample for cosmogenic surface exposure analyses to provide a chronologic framework at the sites for provenance changes through time. <br/><br/>Broader Impact <br/>The proposed research involves graduate and undergraduate training in a diverse array of laboratory methods. Students and PIs will be make presentations to community and campus groups, as well as conduct interviews with local news outlets. The proposed work also establishes a new, potentially long-term, collaboration between scientists at IUPUI and LDEO and brings a new PI (Kaplan) into the field of Antarctic Earth Sciences.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>This award supports a project to use the WAIS Divide deep core to investigate the Last Deglaciation at sub-annual resolution through an integrated set of chemical and biological analyses. The intellectual merit of the project is that these analyses, combined with others, will take advantage of the high snow accumulation WAIS Divide site yielding the highest time resolution glacio-biogeochemical and gas record of any deep Antarctic ice core. With other high resolution Greenland cores (GISP2 and GRIP) and lower resolution Antarctic cores, the combined record will yield new insights into worldwide climate dynamics and abrupt change. The proposed chemical, biological, and elemental tracer measurements will also be used to address all of the WAIS Divide science themes. The broader impacts of the project include education and outreach activities such as numerous presentations to local K-12 students; opportunities for student and teacher involvement in the laboratory work; a teacher training program in Earth sciences in the heavily minority Santa Ana, Compton, and Costa Mesa, California school districts; and development of high school curricula. Extensive graduate and undergraduate student involvement also is planned and will include one post doctoral associate, one graduate student, and undergraduate hourly involvement at DRI; a graduate student and undergraduates at University of California, Irvine (UCI); and a post doctoral fellow at MSU. Student recruitment will be made from underrepresented groups building on a long track record of involvement and will include the NSF funded California Alliance for Minority Participation (CAMP) and the Montana American Indian Research Opportunities (AIRO).<br/><br/>This award does not involve field work in Antarctica.
Cole-Dai/0839066<br/><br/>This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>This award supports a project to make continuous major ion analyses in the West Antarctica Ice Sheet Divide (WAIS Divide) ice core by sampling the brittle ice zone (approximately from 500 m to 1500 m). The intellectual merit of the project is that these will likely be the only chemical measurements on the brittle ice zone and, therefore, will bridge the gap in the expected continuous records of climate, ice sheet dynamics and biological evolution based on chemical measurements. High resolution sampling and analysis, probably on selected portions and depth intervals in the brittle ice zone, will help with the independent, high-precision dating of the WAIS Divide core and contribute to the achievement of the major objectives of the WAIS Divide project?development of high resolution climate records with which to investigate issues of climate forcing by greenhouse gases and the role of Antarctica and Southern Hemisphere in the global climate system. Planned collaboration with other WAIS Divide investigators will develop the longest and most detailed volcanic record from Antarctica ice cores. The broader impacts of this project include a contribution to enhancing our knowledge of the climate system. Such improvements in understanding of the global climate system and the ability to predict the magnitude and uncertainty of future changes are highly relevant to the global community. The project will support post-doctoral scientists and graduate students, including those from under-represented groups, will contribute to education, an help to train future scientists and promote diversity in research and education. Public outreach activities of this project will contribute to informal science education of school age children in the Eastern South Dakota region.
Ammonia oxidation is the first step in the conversion of regenerated nitrogen to dinitrogen gas, a 3-step pathway mediated by 3 distinct guilds of bacteria and archaea. Ammonia oxidation and the overall process of nitrification-denitrification have received relatively little attention in polar oceans where the effects of climate change on biogeochemical rates are likely to be pronounced. Previous work on Ammonia Oxidizing Archaea (AOA) in the Palmer LTER study area West of the Antarctic Peninsula (WAP), has suggested strong vertical segregation of crenarchaeote metabolism, with the "winter water" (WW, ~50-100 m depth range) dominated by non-AOA crenarchaeotes, while Crenarchaeota populations in the "circumpolar deep water" (CDW), which lies immediately below the winter water (150-3500 m), are dominated by AOA. Analysis of a limited number of samples from the Arctic Ocean did not reveal a comparable vertical segregation of AOA, and suggested that AOA and Crenarchaeota abundance is much lower there than in the Antarctic. These findings led to 3 hypotheses that will be tested in this project: 1) the apparent low abundance of Crenarchaeota and AOA in Arctic Ocean samples may be due to spatial or temporal variability in populations; 2) the WW population of Crenarchaeota in the WAP is dominated by a heterotroph; 3) the WW population of Crenarchaeota in the WAP "grows in" during spring and summer after this water mass forms. <br/><br/>The study will contribute substantially to understanding an important aspect of the nitrogen cycle in the Palmer LTER (Long Term Ecological Research) study area by providing insights into the ecology and physiology of AOA. The natural segregation of crenarchaeote phenotypes in waters of the WAP, coupled with metagenomic studies in progress in the same area by others (A. Murray, H. Ducklow), offers the possibility of major breakthroughs in understanding of the metabolic capabilities of these organisms. This knowledge is needed to model how water column nitrification will respond to changes in polar ecosystems accompanying global climate change. The Principal Investigator will participate fully in the education and outreach efforts of the Palmer LTER, including making highlights of our findings available for posting to their project web site and participating in outreach (for example, Schoolyard LTER). The research also will involve undergraduates (including the field work if possible) and will support high school interns in the P.I.'s laboratory over the summer.
Intellectual Merit: The PIs proposed a provenance study of glacial deposits in the Ross Embayment that will provide a broad scale geochronologic survey of detrital minerals in till to help characterize bedrock beneath the East Antarctic ice sheet and constrain Antarctica?s glacial history. This project capitalizes on previous investments in field sampling. Analytical tools applied to single mineral grains extracted from existing collections of glacial till will generate ?fingerprints? of East Antarctic outlet glaciers and West Antarctic till to refine paleo-ice flow models for the Ross Embayment during the last glacial maximum, older records from ANDRILL cores, and to assess IRD sources in the Southern Ocean. New provenance tracers will include a suite of geochronological methods that together provide greater insights into the orogenic and erosional history the region. This project will include U/Pb of detrital zircons, (U-Th)/He on a subset of the U/Pb dated zircons, as well as Ar-Ar of detrital hornblende, mica and feldspars. Broader impacts: This research will train one M.S. student at IUPUI, a Ph.D. student at Columbia, and several undergraduates at both institutions. Graduate students involved in the project will be involved in mentoring undergraduate researchers. Incorporation of research discoveries will be brought into the classroom by providing concrete examples and exercises at the appropriate level. Licht and Columbia graduate student E. Pierce are developing outreach projects with local secondary school teachers to investigate the provenance of glacial materials in their local areas. The research will have broad applicability to many fields.
Intellectual Merit: Diatom abundance in sediment cores is typically used as a proxy for paleo primary productivity. This record is complicated by variable preservation, with most loss occurring in the water column via dissolution and zooplankton grazing. This study will investigate preservational biases via a series of controlled experiments to create proxies of original productivity based on morphological changes associated with diatom dissolution and fracture. The PIs will utilize fresh diatoms from culture. Specific objectives include: (1) Linking changes in diatom morphology to availability of dissolved silica and other physical and chemical parameters; (2) Documenting the dissolution process under controlled conditions; (3) Assessment of changes in morphology and diatom surface roughness with increased dissolution; (4) Documenting the physical effects of grazing and fecal pellet formation on diatom fragmentation and dissolution; and (5) Analyzing the impact of diatom dissolution on silica and carbon export. These objectives will be achieved by growing Southern Ocean diatom species in the laboratory under differing physical and chemical conditions; controlled serial dissolution experiments on cultured diatoms; analysis of the dissolution process by imaging frustules under scanning electron microscopy (SEM) and with micro-analysis of surface texture by atomic force microscopy (AFM); making the cultures available to krill and other live zooplankton crustaceans in order to analyze the specific effects of grazing and pelletization on diatom morphology; and comparing experimental results with natural plankton, sediment trap material, and selected Holocene, Pleistocene and Pliocene sediment core material. Broader impacts: This work will contribute to understanding of the use of diatom abundance as an indicator of paleoproductivity. The proposed experiments are multi-disciplinary in nature. Importantly, the project was designed, and the proposal largely written, by a Ph.D. candidate. The research proposed here will lead to peer-reviewed publications and provide a base for future studies over the course of an extremely promising scientific career. The project will also support an undergraduate research student at NIU. The PI is heavily involved in science outreach, including classroom visits, museum events and webinars related to evolution and climate change, and is active with NSF-funded outreach activities linked to the ANDRILL and WISSARD programs. He will continue these efforts with this project.
The research will explore the genetics, diversity, and biogeography of Antarctic marine benthic invertebrates, seeking to overturn the widely accepted suggestion that benthic fauna do not constitute a large, panmictic population. The investigators will sample adults and larvae from undersampled regions of West Antarctica that, combined with existing samples, will provide significant coverage of the western hemisphere of the Southern Ocean. The objectives are: 1) To assess the degree of genetic connectivity (or isolation) of benthic invertebrate species in the Western Antarctic using high-resolution genetic markers. 2) To begin exploring planktonic larvae spatial and bathymetric distributions for benthic shelf invertebrates in the Bellinghausen, Amundsen and Ross Seas. 3) To continue to develop a Marine Antarctic Genetic Inventory (MAGI) that relates larval and adult forms via DNA barcoding. Broader impacts include traditional forms of training (postdocs, graduate studentships, undergraduate research experiences) and lectures to K-12 groups.
Intellectual Merit: The Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) is a study of ocean mixing in the Antarctic Circumpolar Current (ACC) which runs west to east all around the continent of Antarctica, south of the other continents. This current system is somewhat of a barrier to transport of heat, carbon dioxide and other important ocean constituents between the far south and the rest of the ocean, and mixing processes play an important role in those transports. DIMES is a multi-investigator cooperative project, led by physical oceanographers in the U.S. and in the U.K. A passive tracer and an array of sub-surface floats were deployed early in 2009 more than 2000 km west of Drake Passage on a surface of constant density about 1500 m deep between the Sub Antarctic Front and the Polar Front of the ACC. In early 2010 a U.S. led research cruise sampled the tracer, turbulence levels, and the velocity and density profiles that govern the generation of that turbulence, and additional U.K. led research cruises in 2011 and 2012 continue this sampling as the tracer has made its way through Drake Passage, into the Scotia Sea, and over the North Scotia Ridge, a track of more than 3000 km. The initial results show that diapycnal, i.e., vertical, mixing west of Drake Passage where the bottom is relatively smooth is no larger than in most other regions of the open ocean. In contrast, there are strong velocity shears and intense turbulence levels over the rough topography in Drake Passage and diapycnal diffusivity of the tracer more than 10 times larger in Drake Passage and to the east than west of Drake Passage. The DIMES field program continues with the U.S. team collecting new velocity and turbulence data in the Scotia Sea. It is anticipated that the tracer will continue passing through the Scotia Sea until at least early 2014. The U.K. partners have scheduled sampling of the tracer on cruises at the North Scotia Ridge and in the eastern and central Scotia Sea in early 2013 and early 2014. The current project will continue the time series of the tracer at Drake Passage on two more U.S. led cruises, in late 2012 and late 2013. Trajectories through the Scotia Sea estimated from the tracer observations, from neutrally buoyant floats, and from numerical models will be used to accurately estimate mixing rates of the tracer and to locate where the mixing is concentrated. During the 2013 cruise the velocity and turbulence fields along high-resolution transects along the ACC and across the ridges of Drake Passage will be measured to see how far downstream of the ridges the mixing is enhanced, and to test the hypothesis that mixing is enhanced by breaking lee waves generated by flow over the rough topography. Broader Impacts: DIMES (see web site at http://dimes.ucsd.edu) involves many graduate students and post-doctoral researchers. Two graduate students, who would become expert in ocean turbulence and the processes generating it, will continue be trained on this project. The work in DIMES is ultimately motivated by the need to understand the overturning circulation of the global ocean. This circulation governs the transport and storage of heat and carbon dioxide within the huge oceanic reservoir, and thus plays a major role in regulating the earth?s climate. Understanding the circulation and how it changes in reaction to external forces is necessary to the understanding of past climate change and of how climate might change in the future, and is therefore of great importance to human well-being. The data collected and analyzed by the DIMES project will be assembled and made publicly available at the end of the project. The DIMES project is a process experiment sponsored by the U.S. CLIVAR (Climate variability and predictability) program.
Krill, Euphausia superba, is a keystone species in the Antarctic ecosystem and provides the trophic link between microscopic plankton and charismatic megafauna such as penguins and whales. Recent evidence suggests krill may not be exclusively planktonivorous, which introduces the potential of new pathways of carbon flux through krill based ecosystems. A change in our view of krill from one of being herbivores to omnivores opens up several questions. Climate induced change in the extent, thickness and duration of overlying sea ice coverage is expected to change the prey fields available to krill, and to have subsequent effects on the suite of predators supported by krill. The nature of this benthic prey?krill link, which may be crucial in those parts of the seasonal cycle other than the well studied spring bloom, is yet to be determined. DNA techniques will be used to identify and quantify the prey organisms. This project will measure the in situ feeding ecology and behavior of krill and, ultimately, the success of this key species. An overall goal is to investigate seasonal changes in Euphausia superba in-situ feeding and swimming behavior in the Wilhelmina Bay region of the Western Antarctic Peninsula (WAP) area, known to be a region of changing climate. Understanding the biological impacts of climate change is important to societal and economic goals. The project scientists will additionally team with a marine and environmental reporting group to design presentations for an annual journalist meeting.
Funds are provided to enable applications of powerful mathematical concepts and computational tools for rigorous sensitivity analysis, pseudo-spectra and generalized stability theory, and advanced state estimation in the context of large-scale ice sheet modeling. At the center of the proposal is the generation and application of adjoint model (ADM) and tangent linear model (TLM) components of the new Community Ice Sheet Model (CISM). The goal will be achieved through rigorous use of automatic differentiation (AD) to ensure synchronicity between the ongoing model development and improvement in terms of better representation of higher-order stress terms (which account for crucial fast flow regimes) of the nonlinear forward model (NLM) code and the derivative codes. The adjoint enables extremely efficient computation of gradients of scalar-valued functions in very high-dimensional control spaces. A hierarchy of applications is envisioned: (1) sensitivity calculations in support of the Intergovernmental Panel on Climate Change (IPCC) in order to determine to which control variables the polar ice sheet volumes are most sensitive; based on adjoint sensitivity maps, to establish quantitative estimates of ice sheet volume changes for relevant forcing scenarios; and to assess how sensitivities change when including higher-order stress terms; (2) coupling of the ADM and TLM to calculate pseudo-spectra or singular vectors (SV?s) of relevant ice sheet norms; SV?s provide perturbation patterns which lead to non-normal growth, optimally amplifying norm kernels over finite times; among the many applications of SV?s are optimal initialization of ensembles to assess uncertainties; SV?s are calculated through matrix-free iterative solution of a generalized eigenvalue problem via Lanczos or Arnoldi implicit restart algorithms; (3) a long-term goal is the development of an ice sheet state estimation system based on the adjoint or Lagrange Multiplier Method (LMM) in order to synthesize, in a formal manner, the increasing number and heterogeneous types of observations with a three-dimensional, state-of-the-art ice sheet model; an important requirement is that the adjoint incorporate new schemes that are being developed for CISM to capture crucial, but as yet unrepresented physical processes.
Intellectual Merit: <br/>The goal of this project is to address relationships between foreland basins and their tectonic settings by combining detrital zircon isotope characteristics and sedimentological data. To accomplish this goal the PIs will develop a detailed geochronology and analyze Hf- and O-isotopes of detrital zircons in sandstones of the Devonian Taylor Group and the Permian-Triassic Victoria Group. These data will allow them to better determine provenance and basin fill, and to understand the nature of the now ice covered source regions in East and West Antarctica. The PIs will document possible unexposed/unknown crustal terrains in West Antarctica, investigate sub-glacial terrains of East Antarctica that were exposed to erosion during Devonian to Triassic time, and determine the evolving provenance and tectonic history of the Devonian to Triassic Gondwana basins in the central Transantarctic Mountains. Detrital zircon data will be interpreted in the context of fluvial dispersal/drainage patterns, sandstone petrology, and sequence stratigraphy. This interpretation will identify source terrains and evolving sediment provenances. Paleocurrent analysis and sequence stratigraphy will determine the timing and nature of changing tectonic conditions associated with development of the depositional basins and document the tectonic history of the Antarctic sector of Gondwana. Results from this study will answer questions about the Panthalassan margin of Gondwana, the Antarctic craton, and the Beacon depositional basin and their respective roles in global tectonics and the geologic and biotic history of Antarctica. The Beacon basin and adjacent uplands played an important role in the development and demise of Gondwanan glaciation through modification of polar climates, development of peat-forming mires, colonization of the landscape by plants, and were a migration route for Mesozoic vertebrates into Antarctica. <br/><br/>Broader impacts: <br/>This proposal includes support for two graduate students who will participate in the fieldwork, and also support for other students to participate in laboratory studies. Results of the research will be incorporated in classroom teaching at the undergraduate and graduate levels and will help train the next generation of field geologists. Interactions with K-12 science classes will be achieved by video/computer conferencing and satellite phone connections from Antarctica. Another outreach effort is the developing cooperation between the Byrd Polar Research Center and the Center of Science and Industry in Columbus.
The importance of gelatinous zooplankton in marine systems worldwide is increasing. In Southern Ocean, increasing salp densities could have a detrimental effect on higher predators, including penguins, fur seals, and baleen whales. The proposed research is a methods-develoment project that will improve the capability to indirectly assess abundances and distributions of salps in the Southern Ocean through acoustic surveys. Hydrographic, net tow, and acoustic backscatter data will be collected in the waters surrounding the South Shetland Islands and the Antarctic peninsula, where both krill and salps are found and compete for food. Shipboard experimental manipulations and measurements will lead to improved techniques for assessment of salp biomass acoustically. Experiments will focus on material properties (density and sound speed), size and shape of salps, as well as how these physical properties will vary with the salp's environment, feeding rate, and reproductive status. In the field, volume backscattering data from an acoustic echosounder will be collected at the same locations as the net tows to enable comparison of net and acoustic estimates of salp abundance. A physics-based scattering model for salps will be developed and validated, to determine if multiple acoustic frequencies can be used to discriminate between scattering associated with krill swarms and that from salp blooms. During the same period as the Antarctic field work, a parallel outreach and education study will be undertaken in Long Island, New York examining local gelatinous zooplankton. This study will enable project participants to learn and practice research procedures and methods before traveling to Antarctica; provide a comparison time-series that will be used for educational purposes; and include many more students and teachers in the research project than would be able to participate in the Antarctic field component.
Aciego/1043367 This award supports the development of a new method for determining the absolute age of samples from deep ice cores. The project will: (1) prove the efficacy of the Uranium-series dating method on a high accumulation rate ice core, and (2) address the uncertainties in the age dating of the EPICA Dronning-Maud Land (EDML) ice core in the lower 300 m. The well-dated upper section of the ice core (down to 150,000 years at 2415.7 m) will provide excellent constraints to validate the ages determined by the U-series method. After verification, and possible adjustments to the laboratory chemistry, the method will be applied to a suite of ice samples of unknown age in the lower part of the EDML ice core. Within the lower 300 m of this ice core, the climate records are disturbed by tilting and folding of the ice, and, due to the uncertainties in how the ice has flowed, it is impossible to determine if accurate age dates can be obtained to access the record of climate change, or if mixing of the ice is too incoherent. As part of the methodology, the PI will measure surface area of dust included in the ice using a gas adsorption technique developed for ultra-small samples; these measurements will be made on a BET nano-scale which is to be purchased from the funding of this project. Intellectual Merit: The proposed research will contribute to our understanding of geophysical processes that fold and tilt ice. This will allow new paleoclimate records to be recovered from ice cores that have been physically deformed and disturbed and previously did not permit accurate dating. Broader Impacts: This funding will provide support for one PhD graduate student and contribute to their training as a researcher in geochemistry and paleoclimate studies. The PI will teach classes in earth surface processes (including glaciology) and in advanced isotope geochemistry. Work related to this research will be integrated as a teaching tool into the classroom to provide a hands-on, relevant learning experience. Furthermore, samples examined as part of this research will be made available from the AWI archive in Bremerhaven, Germany as part of the collaboration between the PI in the United States and the European ice core community.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). <br/><br/>Most organisms meet their carbon and energy needs using photosynthesis (phototrophy) or ingestion/assimilation of organic substances (heterotrophy). However, a nutritional strategy that combines phototrophy and heterotrophy - mixotrophy - is geographically and taxonomically widespread in aquatic systems. While the presence of mixotrophs in the Southern Ocean is known only recently, preliminary evidence indicates a significant role in Southern Ocean food webs. Recent work on Southern Ocean dinoflagellate, Kleptodinium, suggests that it sequesters functional chloroplasts of the bloom-forming haptophyte, Phaeocystis antarctica. This dinoflagellate is abundant in the Ross Sea, has been reported elsewhere in the Southern Ocean, and may have a circumpolar distribution. By combining nutritional modes. mixotrophy may offer competitive advantages over pure autotrophs and heterotrophs. <br/><br/>The goals of this project are to understand the importance of alternative nutritional strategies for Antarctic species that combine phototrophic and phagotrophic processes in the same organism. The research will combine field investigations of plankton and ice communities in the Southern Ocean with laboratory experiments on Kleptodinium and recently identified mixotrophs from our Antarctic culture collections. The research will address: 1) the relative contributions of phototrophy and phagotrophy in Antarctic mixotrophs; 2) the nature of the relationship between Kleptodinium and its kleptoplastids; 3) the distributions and abundances of mixotrophs and Kleptodinium in the Southern Ocean during austral spring/summer; and 4) the impacts of mixotrophs and Kleptodinium on prey populations, the factors influencing these behaviors and the physiological conditions of these groups in their natural environment. The project will contribute to the maintenance of a culture collection of heterotrophic, phototrophic and mixotrophic Antarctic protists that are available to the scientific community, and it will train graduate and undergraduate students at Temple University. Research findings and activities will be summarized for non-scientific audiences through the PIs' websites and through other public forums, and will involve middle school teachers via collaboration with COSEE-New England.
This award supports an aerogeophysical study of the Gamburtsev Subglacial Mountains (GSM), a Texas-sized mountain range buried beneath the ice sheets of East Antarctica. The project would perform a combined gravity, magnetics, and radar study to achieve a range of goals including: advancing our understanding of the origin and evolution of the polar ice sheets and subglacial lakes; defining the crustal architecture of East Antarctica, a key question in the earth's history; and locating the oldest ice in East Antarctica, which may ultimately help find ancient climate records. Virtually unexplored, the GSM represents the largest unstudied area of crustal uplift on earth. As well, the region is the starting point for growth of the Antarctic ice sheets. Because of these outstanding questions, the GSM has been identified by the international Antarctic science community as a research focus for the International Polar Year (2007-2009). In addition to this study, NSF is also supporting a seismological survey of the GSM under award number 0537371. Major international partners in the project include Germany, China, Australia, and the United Kingdom. For more information see IPY Project #67 at IPY.org. In terms of broader impacts, this project also supports postdoctoral and graduate student research, and various forms of outreach including a focus on groups underrepresented in the earth sciences.
The mechanisms enabling bacteria to be metabolically active at very low temperatures are of considerable importance to polar microbial ecology, astrobiology, climate and cryopreservation. This research program has two main objectives. The first is to investigate metabolic activities and gene expression of polar marine psychrophilic bacteria when confronted with freezing conditions at temperatures above the eutectic of seawater (<54C) to unveil cold adaptation mechanisms with relevance to wintertime sea-ice ecology. The second objective is to discern if psychrophilic processes of leucine incorporation into proteins, shown to occur to -196C, amount to metabolic activity providing for the survival of cells or are merely biochemical reactions still possible in flash-frozen samples without any effect on survival. We will examine extracellular and intracellular processes of psychrophilic activity above and below the eutectic by (i) determining the temperature range of metabolic activities such as DNA synthesis, carbon utilization, respiration and ATP generation using radioactive tracer technology, including a control at liquid helium temperature (-268.9C), (ii) analyzing gene expression in ice using whole genome and microarray analyses and iii) examining the role of exopolymeric substances (EPS) and ice micro-physics for the observed activity using an in-situ microscopy technique. Results of the proposed research can be expected to aid in the determination of cellular and genetic strategies that allow cells to maintain activity at extremely low temperatures within an icy matrix and/or to resume activity again when more growth-permissive conditions are encountered. The research is an interdisciplinary collaboration involving three different institutions with participants in Oceanography, Genomics, and Geophysical Sciences. The proposed activity will support the beginning professional career of a female researcher and will serve as the basis for several undergraduate student laboratory projects.
Intellectual Merit: Mt. Erebus is one of only a handful of volcanoes worldwide that have lava lakes with readily observable and nearly continuous Strombolian explosive activity. Erebus is also unique in having a permanent convecting lava lake of anorthoclase phonolite magma. Over the years significant infrastructure has been established at the summit of Mt. Erebus as part of the Mount Erebus Volcano Observatory (MEVO), which serves as a natural laboratory to study a wide range of volcanic processes, especially magma degassing associated with an open convecting magma conduit. The PI proposes to continue operating MEVO for a further five years. The fundamental fundamental research objectives are: to understand diffuse flank degassing by using distributed temperature sensing and gas measurements in ice caves, to understand conduit processes, and to examine the environmental impact of volcanic emissions from Erebus on atmospheric and cryospheric environments. To examine conduit processes the PI will make simultaneous observations with video records, thermal imaging, measurements of gas emission rates and gas compositions, seismic, and infrasound data. Broader impacts: An important aspect of Erebus research is the education and training of students. Both graduate and undergraduate students will have the opportunity to work on MEVO data and deploy to the field site. In addition, this proposal will support a middle or high school science teacher for two field seasons. The PI will also continue working with various media organizations and filmmakers.
This award supports a project to create new, unprecedented high-resolution atmospheric carbon dioxide (CO2) records spanning intervals of abrupt climate changes during the last glacial period and the early Holocene. The proposed work will utilize high-precision methods on existing ice cores from high accumulation sites such as Siple Dome and Byrd Station, Antarctica and will improve our understanding of how fast CO2 can change naturally, how its variations are linked with climate, and, combined with a coupled climate-carbon cycle model, will clarify the role of terrestrial and oceanic processes during past abrupt changes of climate and CO2. The intellectual merit of this work is that CO2 is the most important anthropogenic greenhouse gas and understanding its past variations, its sources and sinks, and how they are linked to climate change is a major goal of the climate research community. This project will produce high quality data on centennial to multi-decadal time scales. Such high-resolution work has not been conducted before because of insufficient analytical precision, slow experimental procedures in previous studies, or lack of available samples. The proposed research will complement future high-resolution studies from WAIS Divide ice cores and will provide ice core CO2 records for the target age intervals, which are in the zone of clathrate formation in the WAIS ice cores. Clathrate hydrate is a phase composed of air and ice. CO2 analyses have historically been less precise in clathrate ice than in ?bubbly ice? such as the Siple Dome ice core that will be analyzed in the proposed project. High quality, high-resolution results from specific intervals in Siple Dome that we propose to analyze will provide important data for verifying the WAIS Divide record. The broader impacts of the work are that current models show a large uncertainty of future climate-carbon cycle interactions. The results of this proposed work will be used for testing coupled carbon cycle-climate models and may contribute to reducing this uncertainty. The project will contribute to the training of several undergraduate students and a full-time technician. Both will learn analytical techniques and the basic science involved. Minorities and female students will be highly encouraged to participate in this project. Outreach efforts will include participation in news media interviews, at a local festival celebrating art, science and technology, and giving seminar presentations in the US and foreign countries. The OSU ice core laboratory has begun a collaboration with a regional science museum and is developing ideas to build an exhibition booth to make public be aware of climate change and ice core research. All data will be archived at the National Snow and Ice Data Center and at other similar archives per the OPP data policy.
9725057 Mayewski This award is for support for a Science Management Office (SMO) for the United States component of the International Trans-Antarctic Scientific Expedition (US ITASE). The broad aim of US ITASE is to develop an understanding of the last 200 years of past West Antarctic climate and environmental change. ITASE is a multidisciplinary program that integrates remote sensing, meteorology, ice coring, surface glaciology and geophysics. In addition to the formation of a science management office, this award supports a series of annual workshops to coordinate the science projects that will be involved in ITASE and the logistics base needed to undertake ground-based sampling in West Antarctica.
The climatic changes of late Precambrian time, 600-800 million years ago, included episodes of extreme glaciation, during which ice may have covered nearly the entire ocean for several million years, according to the Snowball Earth hypothesis. These episodes would hold an important place in Earth?s evolutionary history; they could have encouraged biodiversity by trapping life forms in small isolated ice-free areas, or they could have caused massive extinctions that cleared the path for new life forms to fill empty niches. What caused the Earth to become iced over, and what later caused the ice to melt? Scientific investigation of these questions will result in greater understanding of the climatic changes that the Earth can experience, and will enable better predictions of future climate. This project involves Antarctic field observations as well as laboratory studies and computer modeling. The aim of this project is not to prove or disprove the Snowball Earth hypothesis but rather to quantify processes that are important for simulating snowball events in climate models. The principal goal is to identify the types of ice that would have been present on the frozen ocean, and to determine how much sunlight they would reflect back to space. Reflection of sunlight by bright surfaces of snow and ice is what would maintain the cold climate at low latitudes. The melting of the ocean required buildup of greenhouse gases, but it was probably aided by deposition of desert dust and volcanic ash darkening the snow and ice. With so much ice on the Earth?s surface, even small differences in the amount of light that the ice absorbed or reflected could cause significant changes in climate. The properties of the ice would also determine where, and in what circumstances, photosynthetic life could have survived. Some kinds of ice that are rare on the modern Earth may have been pivotal in allowing the tropical ocean to freeze. The ocean surfaces would have included some ice types that now exist only in Antarctica: bare cold sea ice with precipitated salts, and "blue ice" areas of the Transantarctic Mountains that were exposed by sublimation and have not experienced melting. Field expeditions were mounted to examine these ice types, and the data analysis is underway. A third ice type, sea ice with a salt crust, is being studied in a freezer laboratory. Modeling will show how sunlight would interact with ice containing light-absorbing dust and volcanic ash. Aside from its reflection of sunlight, ice on the Snowball ocean would have been thick enough to flow under its own weight, invading all parts of the ocean. Yet evidence for the survival of photosynthetic life indicates that some regions of liquid water were maintained at the ocean surface. One possible refuge for photosynthetic organisms is a bay at the far end of a nearly enclosed tropical sea, formed by continental rifting and surrounded by desert, such as the modern Red Sea. A model of glacier flow is being developed to determine the dimensions of the channel, connecting the sea to the ocean, necessary to prevent invasion by the flowing ice yet maintain a water supply to replenish evaporation.
Hulbe/0838810 <br/><br/>This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>This award supports a modeling study of the processes in West Antarctic grounding zones, the transition from ice resting on bedrock to ice floating on the ocean surface with an eye toward understanding the interrelated causes of rapid change in grounding line configuration and outlet flow. A combination of satellite remote sensing and numerical modeling will be used to investigate both past and ongoing patterns of change. New high-resolution surface elevation maps made from a novel combination of satellite laser altimetry and remotely observed surface shape provide a unique view of grounding zones. These data will be used to diagnose events associated with the shutdown of Kamb Ice Stream, to investigate a recent discharge event on Institute Ice Stream and to investigate ongoing change at the outlet of Whillans Ice Stream, along with other modern processes around the West Antarctic. An existing numerical model of coupled ice sheet, ice stream, and ice shelf flow will be used and improved as part of the research project. The broader impacts of the project relate to the importance of understanding the role of polar ice sheets in global sea level rise. The work will contribute to the next round of deliberations for the Intergovernmental Panel on Climate Change (IPCC). Improved views, interpretations, and insights into the physical processes that govern variability in ice sheet outlet streams will help correct the shortcomings of the last IPCC report that didn?t include the role of ice sheets in sea level rise. The PIs have a strong record of public outreach, involvement in the professional community, and student training.
Since 1990, Palmer LTER (PAL) research has been guided by the hypothesis that variability in the polar marine ecosystem is mechanistically coupled to changes in the annual advance, retreat and spatial extent of sea ice. Since that time, the hypothesis has been modified to incorporate climate migration, i.e. the displacement of a cold, dry polar climate by a warm, moist climate regime in the northern component of the PAL region, producing fundamental changes in food web structure and elemental cycling. The observed northern changes are affecting all trophic levels and elemental cycling, and the primary mechanism of change involves match-mismatch dynamics. The proposed research builds on previous findings, with a new emphasis on process studies and modeling to elucidate the mechanistic links between teleconnections, climate change, physical oceanographic forcing and ecosystem dynamics. The proposed research will examine the hypothesis that regional warming and sea ice decline associated with historical and on-going climate migration in the northern part of the study area have altered key phenological relationships, leading to changes in species distributions, increasing trophic mismatches and changes in habitat, food availability, ecosystem dynamics and biogeochemical cycling. Through targeted process studies linked to numerical model simulations, the research also will test the hypothesis that deep cross-shelf canyons characterizing the core study region are focal areas for ecosystem processes that result in predictable, elevated food resources for top-predators. The effort includes the addition of 3 new PIs: a zooplankton ecologist with expertise in biogeochemical fluxes, a phytoplankton ecologist focusing on bio-optics and autonomous observations using gliders, and a numerical simulation modeler specializing in coupled global models of ocean circulation, plankton ecology and biogeochemical cycles. The program will add trace metal sampling and analysis, moored physical oceanographic sensors, a moored sediment trap in the south, drifting sediment traps and stable carbon (del 13C) and nitrogen (del 15N) isotope analyses. Missions lasting up to 45 days using gliders deployed before, during and after summer cruises will, along with moorings and satellite remote sensing of sea ice, ocean color, sea surface temperatures and wind fields, greatly extend the observational program in space and time. <br/><br/>Since its inception, PAL has been a leader in Information Management to enable knowledge-building within and beyond the Antarctic, oceanographic and LTER communities. PAL has designed and deployed a new information infrastructure with a relational database architecture to facilitate data distribution and sharing. The Education and Outreach program capitalizes on the public's fascination with Antarctica to promote scientific literacy from kindergarten students to adult citizens concerned with climate change and environmental sustainability. Through communicating results to the public and working with scientific assessment bodies (e.g., IPCC) and Antarctic Treaty parties to protect Earth's last frontier, PAL researchers contribute to the national scientific agenda and the greater public benefit.
The west Antarctic Peninsula is warming rapidly, and continuing changes in the thermal regime will likely result in severe consequences for marine fauna, including potential extinction of strongly adapted stenotherms, and invasions from neighboring faunas. Initial impacts of climate change may result in changes in connectivity among populations of the same species. These changes may will be undetectable by direct observation, but may be assessed via genetic connectivity, i.e. differences in allele or haplotype frequencies among populations can be used to infer levels of gene flow. The proposed research will explore the role that the Scotia Arc plays in connecting populations from South America to Antarctica, a corridor identified as a likely entry route for invaders into Antarctica. It also will examine the way in which cryptic species may confound our knowledge of broad-scale distributions, and in doing so, make contributions towards understanding biodiversity and testing the paradigm of circumpolarity in Antarctica. The principal investigator will to collect multi-locus genetic data across 'species' from a broad suite of benthic marine invertebrate phyla, from multiple locations, in order to address hypotheses regarding speciation and connectivity, to estimate demographic population changes, and to identify the underlying processes that drive observed phylogeographic patterns. Comparative phylogeography is a particularly valuable approach because it enables the identification of long-term barriers and refugia common to groups of species and is consequently highly relevant to conservation planning. Moreover, this work will form a valuable baseline for detecting future changes in connectivity. The results of the research will be disseminated through peer-reviewed publications and presentations at conferences. In addition, the project will support the interdisciplinary training of a female graduate student, two undergraduate students, and host additional summer students through the STARS program at SIO, which helps minority students prepare for graduate school. This project will integrate research and education through conducting an interdisciplinary workshop that brings together Earth Science and Biology high school teachers. This workshop aims to assist teachers derive their own curricula uniting plate tectonics, ocean history and evolution, supporting a new high school earth sciences program. Information generated by this project will also directly feed into international efforts to design a series of Marine Protected Areas (MPAs) in Antarctica.
Bell/0636883<br/><br/>This award support a project to study the role that subglacial water plays in the overall stability of major ice sheets. An estimated 22,000 km3 of water is currently stored within Antarctica's subglacial lakes. Movement of this water occurs through a complex and largely inferred drainage system in both East and West Antarctica. Geomorphic evidence for the catastrophic drainage of subglacial lakes documents repeated events. These major flood events appear to have drained the largest subglacial lakes situated in the relatively stable interior of the East Antarctic ice sheet. Emerging evidence suggests there is a close connection between significant subglacial lakes and the onset of the Recovery Ice Stream one of the largest in East Antarctica. Our preliminary analysis of the Recovery Lakes region, East Antarctica suggests a direct linkage between lakes and streaming ice flow, specifically the 800 km long Recovery Ice Stream and its tributaries. Located just upslope of the Recovery Ice Stream, the Recovery Lakes Region is composed of 3 well-defined lakes and a fourth, ambiguous, 'lake-like' feature. While other large lakes have a localized impact on ice surface slope, the Recovery Lakes Region lakes are coincident with an abrupt regional change in the ice sheet surface slope. Satellite imagery demonstrates that the downslope margin of this lake area contains distinct flow strips and crevasses: both indicative of increasing ice velocities. The discovery of a series of large lakes coincident with the onset of rapid ice flow in East Antarctica clearly links subglacial lakes and ice sheet dynamics for the first time. The evidence linking the onset of streaming in the Recovery Drainage Ice Stream to the series of large subglacial lakes raises the fundamental question: How can subglacial lakes trigger the onset of ice streaming? We advance two possible mechanisms: (i) Subglacial lakes can produce accelerated ice flow through the drainage of lake water beneath the ice sheet downslope of the lakes. (ii) Subglacial lakes can produce accelerated ice flow accelerated ice flow by modifying the basal thermal gradient via basal accretion over the lakes so when the ice sheet regrounds basal melting dominates. To evaluate the contribution of lake water and the changing basal thermal gradient, we propose an integrated program incorporating satellite imagery analysis, a series of reconnaissance aerogeophysical profiles over the Recovery Lake Region and the installation of continuous GPS sites over the Recovery Lakes. This analysis and new data will enable us (1) to produce a velocity field over the Recovery Lakes Region, (2) to map the ice thickness changes over the lakes due to acceleration triggered thinning, basal melting and freezing, (3) determine the depth and possible the tectonic origin of the Recovery Lakes and (4) determine the stability of these lakes over time. These basic data sets will enable us to advance our understanding of how subglacial lakes trigger the onset of streaming. The intellectual merit of this project is that it will be the first systematic analysis of ice streams triggering the onset of ice streams. This work has profound implications for the modeling of ice sheet behavior in the future, the geologic record of abrupt climate changes and the longevity of subglacial lakes. The broader impacts of the project are programs that will reach students of all ages through undergraduates involved in the research, formal presentations in teacher education programs and ongoing public outreach efforts at major science museums. Subglacial Antarctic lake environments are emerging as a premier, major frontier for exploration during the IPY 2007-2009.
This award is for support for a four year program to study the basal conditions of ice stream D using techniques previously applied to ice stream B. The objective is to determine whether the physical conditions and processes to be observed by borehole geophysics at the base of this large ice stream are consistent with what has been observed at ice stream B and to point to a common basal mechanism of ice streaming. This project includes a comparison between two parts of ice stream D, an upstream reach where flow velocities are modest (about 80 meters/year) and a downstream reach of high velocity (about 400 meters/year). The comparison will help to reveal what physical variable or combination of variables is mainly responsible for the streaming flow. The variables to be monitmred by borehole observation include basal water pressure, basal sliding velocity, flow properties and sedimentological characteristics of subglacial till if present, ice temperature profile including basal water transport velocity, connection time to the basal water system, basal melting rate and others.
Rice, James; Platt, John; Suckale, Jenny; Perol, Thibaut; Tsai, Victor
No dataset link provided
Rice 0739444<br/><br/>This award supports a project to study the mode of formation and causes of glacial earthquakes. The paradigm for glacial flow has been that glaciers flow in a viscous manner, with major changes in the force balance occurring on the decade timescale or longer. The recent discovery of a number of even shorter timescale events has challenged this paradigm. In 2003, it was discovered that Whillans Ice Stream in West Antarctica displays stick-slip behavior on the 10-30 minute timescale, with ice stream speed increasing by a factor of 30 from already high speeds. In the past year, the minimum timescale has been pushed shorter by recognition that a class of recently discovered 50-second-long, magnitude-5 earthquakes are closely associated with changes in the force balance near the calving fronts of large outlet glaciers in both Greenland and East Antarctica. With no adequate theory existing to explain these relatively large earthquakes associated with outlet glaciers, we have begun to investigate the physical mechanisms that must be involved in allowing such a response in a system traditionally not thought capable of generating large variations in forces over timescales less than 100 seconds. The intellectual merit of the work is that large-amplitude, short-timescale variability of glaciers is an important mode of glacier dynamics that has not yet been understood from a first-principles physics perspective. The proposed research addresses this gap in understanding, tying together knowledge from numerous disciplines including glaciology, seismology and fault rupture dynamics, laboratory rock physics, granular flow, fracture mechanics, and hydrogeology. The broader impacts of the work are that there is societal as well as general scientific interest in the stability of the major ice sheets. However, without an understanding of the physical processes governing short time scale variability, it is unlikely that we will be able accurately predict the future of these ice sheets and their impact on sea level changes. The project will also contribute to the development and education of young scientists.
This award supports a project to fully characterize the microstructure in ice cores, in particular the microstructural locations of impurities, grain orientations and strain gradients. This work will complement the optical observations, electrical conductivity measurement, and precise, detailed measurements of the soluble ion and gas contents that are performed by others. Linking the concentrations of soluble ions and gases, measured to a few parts per billion, to the optically determined annual layer structure and the stable isotope data in ice cores has enabled a great deal to be established about the concentrations and depth/age distributions of particles, trace gases and impurities for several polar ice cores. Ice core studies carried out by several groups contribute immensely to our understanding of paleoclimate and, to our ability to predict future climate change. The work will build on previous measurements and technique development in this area, as well as focusing on new techniques to characterize ice cores. The work will use both scanning electron microscopy (SEM) coupled with X-ray energy dispersive spectroscopy (EDS) and confocal scanning optical microscopy coupled with Raman spectroscopy (RS) to determine the microstructural locations of impurities and correlate this information with depth/age, and impurity type and concentration for several polar ice cores. The Broader Impacts of the proposed work are that knowledge of the location of impurities coupled with the grain orientation (both c- and a-axis) and grain misorientation information will allow paleoclimatologists to better interpret ice core data and other scientists to understand and model the physical and mechanical properties of natural ice sheets. Other Broader Impacts of the work are that the work will be performed and lead to the education of a Ph.D. student. At the end of the project, as well as the knowledge gained from coursework, the graduate student will have experience in ice core specimen preparation and characterization using scanning electron microscopy, x-ray microanalysis, confocal scanning microscopy, Raman spectroscopy and ion chromatography. Results from the research will be published in refereed journals, presented at conferences, and placed on a web page.
This award supports a field experiment, with partners from Chile and the Netherlands, to determine the state of health and stability of Larsen C ice shelf in response to climate change. Significant glaciological and ecological changes are taking place in the Antarctic Peninsula in response to climate warming that is proceeding at 6 times the global average rate. Following the collapse of Larsen A ice shelf in 1995 and Larsen B in 2002, the outlet glaciers that nourished them with land ice accelerated massively, losing a disproportionate amount of ice to the ocean. Further south, the much larger Larsen C ice shelf is thinning and measurements collected over more than a decade suggest that it is doomed to break up. The intellectual merit of the project will be to contribute to the scientific knowledge of one of the Antarctic sectors where the most significant changes are taking place at present. The project is central to a cluster of International Polar Year activities in the Antarctic Peninsula. It will yield a legacy of international collaboration, instrument networking, education of young scientists, reference data and scientific analysis in a remote but globally relevant glaciological setting. The broader impacts of the project will be to address the contribution to sea level rise from Antarctica and to bring live monitoring of climate and ice dynamics in Antarctica to scientists, students, the non-specialized public, the press and the media via live web broadcasting of progress, data collection, visualization and analysis. Existing data will be combined with new measurements to assess what physical processes are controlling the weakening of the ice shelf, whether a break up is likely, and provide baseline data to quantify the consequences of a breakup. Field activities will include measurements using the Global Positioning System (GPS), installation of automatic weather stations (AWS), ground penetrating radar (GPR) measurements, collection of shallow firn cores and temperature measurements. These data will be used to characterize the dynamic response of the ice shelf to a variety of phenomena (oceanic tides, iceberg calving, ice-front retreat and rifting, time series of weather conditions, structural characteristics of the ice shelf and bottom melting regime, and the ability of firn to collect melt water and subsequently form water ponds that over-deepen and weaken the ice shelf). This effort will complement an analysis of remote sensing data, ice-shelf numerical models and control methods funded independently to provide a more comprehensive analysis of the ice shelf evolution in a changing climate.
This award supports a project to fully develop the analytical protocols needed to exploit a relatively new technique for the analysis of soluble organic matter in ice core samples. The technique couples Electrospray ionization to high resolution Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS). Sample volume will be reduced and pre-concentration steps will be eliminated. Following method optimization a suite of ice core samples will be studied from several Antarctic and Greenland locations to address several hypothesis driven research questions. Preliminary results show that a vast record of relatively high molecular weight organic material exists in ice core samples and intriguing results from a few samples warrant further investigation. Several important questions related to developing a better understanding of the nature and paleo record of organic matter in ice cores will be addressed. These include developing a better understanding of the origin of nitrogen and sulfur isotopes in pre-industrial vs. modern samples, developing the methods to apply molecular biomarker techniques, routinely used by organic geochemists for sediment analyses, to the analysis of organic matter in ice cores, tracking the level of oxidation of homologous series of compounds and using them as a proxy for atmospheric oxidant levels in the past and determining whether or not high resolution FTICR mass spectral analysis can provide the ice core community with a robust method to analyze organic materials at the molecular level. The intellectual merit of this work is that this analytical method will provide a new understanding of the nature of organic matter in ice, possibly leading to the discovery of multitudes of molecular species indicative of global change processes whose abundances can be compared with other change proxies. The proposed studies are of an exploratory nature and potentially transformative for the field of ice core research and cryobiology. The broader impacts of these studies are that they should provide compelling evidence regarding organic matter sources, atmospheric processing and anthropogenic inputs to polar ice and how these have varied over time. The collaborative work proposed here will partner atmospheric chemistry/polar ice chemistry expertise with organic geochemistry expertise, resulting in significant contributions to both fields of study and significant advances in ice core analysis. Training of both graduate and undergraduate students will be a key component of the project and students will be involved in collaborative research using advanced analytical instrumentation, presentation of research results at national meetings, and will participate in manuscript preparation.
This award supports a project to study ice sheet history and dynamics on the Thwaites Glacier and Pine Island Glacier in the Amundsen Sea sector of the West Antarctic Ice Sheet. The international collaboration that has been established with the British Antarctic Survey will enable a fuller suite of geophysical experiments with more-efficient use of people and logistics than we could achieve individually. This project is one of a number of projects to characterize the Amundsen Sea Embayment, which has been identified in numerous planning documents as perhaps the most important target for ice-dynamical research. Taken together, this "pulse of activity" will result in a better understanding of this important part of the global system. Field work will measure the subglacial environment of Thwaites and Pine Island Glaciers using three powerful, but relatively simple tools: reflection seismic imaging, GPS motion monitoring of the tidal forcing, and passive seismic monitoring of the seismicity associated with motion. The results of the field work will feed into ice-sheet modeling efforts that are tuned to the case of an ocean-terminating glacier and will assess the influence of these glaciers on current sea level and project into the future. The broader impacts of the project involve the inclusion of a film- and audio-professional to document the work for informal outreach (public radio and TV; museums). In addition, we will train graduate students in polar geophysical and glaciological research and in numerical modeling techniques. The ultimate goal of this project, of assessing the role of Thwaites Glacier in global sea level change, has broad societal impact in coastal regions and small islands.
0538674<br/>Matsuoka<br/>This award supports a project to evaluate radio-echo intensities in the available SOAR ice-penetrating radar data along grids covering Lake Vostok, and along four regional tracks from Ridge B toward the lake. The project has two objectives; first, it will examine the upper surface of the lake and reflectors hypothesized to be a boundary between the meteoric and accreted ice. They will provide crucial knowledge on the dynamic evolution of the lake. Second, this project will examine a poorly understood echo-free zone within the deep ice in central East Antarctica. This zone may consist of distorted stagnant ice, while its upper boundary may be a shear zone. The SOAR radar data provide a unique resource to examine spatiotemporal water circulation patterns that should be understood in order to select the best direct-sampling strategy to the lake. The Vostok ice core provides a unique opportunity to do this work. First, the path effects, i.e. propagation loss and birefringence, will be derived at the ice-core site using ice temperature, chemistry, and fabric data. Second, lateral variations of the propagation loss will be estimated by tracking chemistry associated with radar-detected isochronous layers, and by inferring temperatures from an ice-flow model that can replicate those layers. Ice-fabric patterns will be inferred from anisotropy in the reflectivity at about 100 radar-track cross-over sites. In terms of broader impacts, a graduate student will be trained to interpret the radar data in the light of radar theory and glaciological context of Lake Vostok and summer workshops for K-12 teachers will be provided in Seattle and New York. This project will contribute to ongoing efforts to study Lake Vostok and will complement the site selection for a North Vostok ice core, which has been proposed by Russia and France as an IPY program.
Studinger/0636584<br/><br/>This award supports a project to estimate the salinity of subglacial Lake Vostok, Lake Concordia and the 90 deg.E lake using existing airborne ice-penetrating radar and laser altimeter data. These lakes have been selected because of the availability of modern aerogeophysical data and because they are large enough for the floating ice to be unaffected by boundary stresses near the grounding lines. The proposed approach is based on the assumption that the ice sheet above large subglacial lakes is in hydrostatic equilibrium and the density and subsequently salinity of the lake's water can be estimated from the (linear) relationship between ice surface elevation and ice thickness of the floating ice. The goal of the proposed work is to estimate the salinity of Lake Vostok and determine spatial changes and to compare the salinity estimates of 3 large subglacial lakes in East Antarctica. The intellectual merits of the project are that this work will contribute to the knowledge of the physical and chemical processes operating within subglacial lake environments. Due to the inaccessibility of subglacial lakes numerical modeling of the water circulation is currently the only way forward to develop a conceptual understanding of the circulation and melting and freezing regimes in subglacial lakes. Numerical experiments show that the salinity of the lake's water is a crucial input parameter for the 3-D fluid dynamic models. Improved numerical models will contribute to our knowledge of water circulation in subglacial lakes, its effects on water and heat budgets, stratification, melting and freezing, and the conditions that support life in such extreme environments. The broader impacts of the project are that subglacial lakes have captured the interest of many people, scientists and laymen. The national and international press frequently reports about the research of the Principal Investigator. His Lake Vostok illustrations have been used in math and earth science text books. Lake Vostok will be used for education and outreach in the Earth2Class project. Earth2Class is a highly successful science/math/technology learning resource for K-12 students, teachers, and administrators in the New York metropolitan area. Earth2Class is created through collaboration by research scientists at the Lamont- Doherty Earth Observatory; curriculum and educational technology specialists from Teachers College, Columbia University; and classroom teachers in the New York metropolitan area.
Bay 0739743<br/><br/>This award supports a project to make high-resolution logs of dust and ash in the Dome C borehole using an optical dust logger. Logging at 20-50 cm/sec, in a matter of hours, mm-scale depth resolution of dust concentration and volcanic ash layers over the entire 3270 m borehole back to ~800 ka can be provided. The logger probes an area of order m2 of the horizon compared to the ~0.02 m2 core, greatly suppressing depositional noise and making the technique immune to core damage or loss. The method achieves unprecedented resolution of climate variations for matching or comparing ice core records, can detect particulate layers from explosive fallout which are invisible or missing in the core, and often reveals subtle trend changes which can elude standard core analyses. With the highly resolved dust record, it is expected to find new synchronous age markers between East Antarctica, West Antarctica and Greenland. The data could be instrumental in unifying global climate records, or resolving mysteries such as the transition from 41-kyr glacial cycles to apparent 100-kyr cycles. The project will extend previous finding, which make the most convincing case to date for a causal relationship between explosive volcanic events and abrupt climate change on millennial timescales. A search will also be made for evidence that some of the worldwide explosive fallout events that have been identified may have resulted from impacts by comets or asteroids. The investigators will evaluate the reliability of terrestrial impact crater records and the possibility that Earth impacts are considerably more frequent than is generally appreciated. Better understanding of the factors which force abrupt climate changes, the recurrence rate and triggering mechanisms of large volcanic eruptions, and the frequency of Gt to Tt-energy bolide impacts are of vital interest for civilization. The work plan for 2008-11 comprises modifying and testing of existing hardware in year one; logging field work, most likely in year two; data analysis and publication of results in year three. Because the EPICA collaborators will provide a suitable logging winch onsite, the logistical needs of this project are modest and can be accommodated by Twin Otter from McMurdo. The proposal is in the spirit of the International Polar Year (IPY) by forging an international collaboration with potential societal benefit. The project will provide interdisciplinary training to students and postdoctoral fellows from the U.S. and other countries.
Joughin 0631973<br/><br/>This award supports a project to gather data to better understand the mass balance of the West Antarctic Ice Sheet, in the Pine Island and Thwaites region, through the combination of radar altimetry and surface-based ice-core measurements of accumulation. The intellectual merit of the project is that the results of the field work will provide information on decadal-scale average accumulation extending back through the last century and will help constrain a modeling effort to determine how coastal changes propagate inland, to allow better prediction of future change. Comparison of the basin averaged accumulation with ice discharge determined using Interferometric Synthetic Aperture Radar (InSAR) velocity data will provide improved mass-balance estimates. Study of changes in flow speed will produce a record of mass balance over the last three decades. Analysis of the satellite altimeter record in conjunction with annual accumulation estimates also will provide estimates of changes and variability in mass balance. The broader impacts of the work are that it will make a significant contribution to future IPCC estimates of sea level, which are important for projection of the impacts of increased sea level on coastal communities. The research will contribute to the graduate education of students at the Universities of Washington and Kansas and will enrich K-12 education through the direct participation of the PIs in classroom activities. Informal science education includes 4-day glacier flow demonstrations at the Polar Science Weekend held annually at the Pacific Science Center in Seattle. The project also will communicate results through Center for the Remote Sensing of Ice Sheets (CReSIS) outreach effort. All field and remotely-sensed data sets will be archived and distributed by the National Snow and Ice Data Center. This project is relevant to IPY in that the West Antarctic Ice Sheet is losing mass, in large part because of rapid thinning of the Amundsen Coast glaciers so, it will directly address the NSF IPY emphasis on "ice sheet history and dynamics." The project is also international in scope.
This award supports a project to use two new scanning fluorimeters to map microbial concentrations vs depth in the WAIS Divide ice core as portions of it become available at NICL, and selected portions of the GISP2 ice core for inter-hemispheric comparison. Ground-truth calibrations with microbes in ice show that the instruments are sensitive to a single cell and can scan the full length of a 1-meter core at 300-micron intervals in two minutes. The goals of these studies will be to exploit the discovery that microbes are transported onto ice, in clumps, several times per year and that at rare intervals (not periodically) of ~104 years, a much higher flux, sometimes lasting >1 decade, reaches the ice. From variations ranging from seasonal to millennial to glacial scale in the arrival time distribution of phototrophs, methanogens, and total microbes in the Antarctic and Arctic ice, the investigators will attempt to determine oceanic and terrestrial sources of these microbes and will look for correlations of microbial bursts with dust concentration and temperature proxies. In addition the project will follow up on the discovery that the rare instances of very high microbial flux account for some of the"gas artifacts" in ice cores - isolated spikes of excess CH4 and N2O that have been discarded by others in previous climate studies. The intellectual merit of this project is that it will exploit scanning fluorimetry of microbes as a powerful new tool for studies ranging from meteorology to climatology to biology, especially when combined with mapping of dust, gases, and major element chemistry in ice cores. In 2010-11 the WAIS Divide borehole will be logged with the latest version of the dust logger. The log will provide mm-scale depth resolution of dust concentration and of volcanic ash layers down the entire depth of the borehole. The locations of ash layers in the ice will be determined and chemical analyses of the ash will be analyzed in order to determine provenance. By comparing data from the WAIS Divide borehole with data from other boreholes and with chemical data (obtained by others) on volcanic layers, the researchers will examine the relationship between the timing of volcanic eruptions and abrupt climate change. Results from this project with the scanning fluorimeters and the dust logger could have applications to planetary missions, borehole oceanography, limnology, meteorology, climate, volcanology, and ancient life in ice. A deeper understanding of the causes of abrupt climate change, including a causal relationship with volcanic explosivity, would enable a better understanding of the adverse effects on climate. The broader impact of the project is that it will provide training to students and post-docs from the U. S. and other countries.
1043528/Alley This award supports a project to complete the physical-properties studies of the WAIS Divide deep ice core, now being collected in West Antarctica. Ongoing work funded by NSF, under a grant that is ending, has produced visible stratigraphy dating, inspection of the core for any melt layers, volcanic horizons, flow disturbances or other features, analysis of bubble number-densities allowing reconstruction of a two-millennial cooling trend in the latter Holocene at the site, characterization of other bubble characteristics (size, etc.), density studies, characterization of snow-surface changes at the site, preliminary c-axis studies, and more. The current proposal seeks to complete this work, once the rest of the core is recovered. The intellectual merit of the proposed activity starts with quality assurance for the core, by visual detection of any evidence of flow disturbances that would disrupt the integrity of the climate record. Inspection will also reveal any melt layers, volcanic horizons, etc. Annual-layer dating will be conducted; thus far, the visible strata have not been as useful as some other indicators, but the possibility (based on experience in Greenland) that visible examination will allow detection of thinner annual layers than other techniques motivates the effort. Bubble number-density will be used to reconstruct temperature changes through the rest of the bubbly part of the core, providing important paleoclimatic data for earlier parts of the Holocene. Coordinated interpretation of c-axis fabrics, grain sizes and shapes, and bubble characteristics will be used to learn about the history of ice flow, the processes of ice flow, and the softness of the ice for additional deformation. Analysis of surface data already collected will improve interpretation of the layering of the core. It is possible that the annual-layer dating will not be sufficiently successful, and that the core will be undisturbed with no melt layers; if so, then these efforts will not yield major publications. However, success of the other efforts should produce improved understanding of the history and stability of the ice sheet, and key processes controlling these, and the quality assurance provided by the visual examination is important for the project as a whole. The broader impacts of the proposed activity include education of a PhD student and multiple undergraduates, and research opportunities for a junior faculty member at an undergraduate institution. The proposed activity will help support an especially vigorous education and outreach effort providing undergraduate instruction for over 1000 students per year, reaching thousands more citizens and many policymakers, and preparing educational materials used at many levels.
This award supports a project to perform continuous microparticle concentration and size distribution measurements (using coulter counter and state-of-the-art laser detector methods), analysis of biologically relevant trace elements associated with microparticles (Fe, Zn, Co, Cd, Cu), and tephra measurements on the WAIS Divide ice core. This initial three-year project includes analysis of ice core spanning the instrumental (~1850-present) to mid- Holocene (~5000 years BP) period, with sample resolution ranging from subannual to decadal. The intellectual merit of the project is that it will help in establishing the relationships among climate, atmospheric aerosols from terrestrial and volcanic sources, ocean biogeochemistry, and greenhouse gases on several timescales which remain a fundamental problem in paleoclimatology. The atmospheric mineral dust plays an important but uncertain role in direct radiative forcing, and the microparticle datasets produced in this project will allow us to examine changes in South Pacific aerosol loading, atmospheric dynamics, and dust source area climate. The phasing of changes in aerosol properties within Antarctica, throughout the Southern Hemisphere, and globally is unclear, largely due to the limited number of annually dated records extending into the glacial period and the lack of a<br/>tephra framework to correlate records. The broader impacts of the proposed research are an interdisciplinary approach to climate science problems, and will contribute to several WAIS Divide science themes as well as the broader paleoclimate and oceanographic communities. Because the research topics have a large and direct societal relevance, the project will form a centerpiece of various outreach efforts at UMaine and NMT including institution websites, public speaking, local K-12 school interaction, media interviews and news releases, and popular literature. At least one PhD student and one MS student will be directly supported by this project, including fieldwork, core processing, laboratory analysis, and data interpretation/publication. We expect that one graduate student per year will apply for a core handler/assistant driller position through the WAIS Divide Science Coordination Office, and that undergraduate student involvement will result in several Capstone experience projects (a UMaine graduation requirement). Data and ideas generated from the project will be integrated into undergraduate and graduate course curricula at both institutions.
This award supports a project that is part of the West Antarctic Ice Sheet Divide (WAIS Divide) program; which is a multi-disciplinary multi-institutional program to investigate the causes of natural changes in climate, the influence of the West Antarctic ice sheet on sea level, and the biology of deep ice. The WAIS Divide core will be unique among Antarctic ice cores in that it will have discernable annual layers for the last 40,000 years. A critical element of the program is to determine the age of the ice so that the climate proxies measured on the core can be interpreted in terms of age, not just depth. This project will make electrical measurements that can identify the annual layers. This information will be combined with information from other investigators to develop an annually resolved timescale over the last 40,000 years. This timescale will be the foundation on which the recent climate records are interpreted. Electrical measurements will also be used to produce two-dimensional images of the ice core stratigraphy; allowing sections of the core with abnormal stratigraphy to be identified. The broader impacts of this project include exposing a diverse group of undergraduate and graduate students to ice core research and assisting the Smithsonian National Museum of Natural History in Washington, D.C to develop a paleoclimate/ice core display.
Catania 0739654<br/><br/>This award supports a project to study the Amundsen Sea drainage system and improve understanding of the impact of recent glaciological changes as an aid to predicting how this region will change in the future. The intellectual merit of the work is that the Amundsen Sea drainage system has been a recent focus for glaciological research because of rapid changes occurring there as a result of grounding line retreat. The work will focus on the regions of flow transition and will map the internal stratigraphy of the ice sheet across the Thwaites Glacier shear margins and use the age and geometry of radar-detected internal layers to interpret ice flow history. Thwaites Glacier (one of the main pathways for ice drainage in the region) has recently widened and may continue to do so in the near future. Thwaites Glacier may be particularly vulnerable to grounding line retreat because it lacks a well-defined subglacial channel. The subglacial environment exerts strong control on ice flow and flow history will be mapped in the context of bed topography and bed reflectivity. The plan is to use existing ice-penetrating radar data and coordinate with planned upcoming surveys to reduce logistical costs. The work proposed here will take three years to complete but no additional fieldwork in Antarctica is required. More detailed ground-based geophysical (radar and seismic) experiments will be needed at key locations to achieve our overall goal and the work proposed here will aid in identifying those regions. The broader impacts of the project are that it will initiate a new collaboration among radar communities within the US including those that are on the forefront of radar systems engineering and those that are actively involved in radar-derived internal layer and bed analysis. The project will also provide support for a postdoctoral researcher and a graduate student, thus giving them exposure to a variety of methodologies and scientific issues. Finally, there are plans to further develop the "Wired Antarctica" website designed by Ginny Catania with the help of a student-teacher. This will allow for the existing lesson plans to be updated to Texas State standards so that they can be used more broadly within state middle and high schools.
Brook 0739766<br/><br/>This award supports a project to create a 25,000-year high-resolution record of atmospheric CO2 from the WAIS Divide ice core. The site has high ice accumulation rate, relatively cold temperatures, and annual layering that should be preserved back to 40,000 years, all prerequisite for preserving a high quality, well-dated CO2 record. The new record will be used to examine relationships between Antarctic climate, Northern Hemisphere climate, and atmospheric CO2 on glacial-interglacial to centennial time scales, at unprecedented temporal resolution. The intellectual merit of the proposed work is simply that CO2 is the most important greenhouse gas that humans directly impact, and understanding the sources, sinks, and controls of atmospheric CO2 is a major goal for the global scientific community. Accurate chronology and detailed records are primary requirements for developing and testing models that explain and predict CO2 variability. The proposed work has several broader impacts. It contributes to the training of a post-doctoral researcher, who will transfer to a research faculty position during the award period and who will participate in graduate teaching and guest lecture in undergraduate courses. An undergraduate researcher will gain valuable lab training and conduct independent research. Bringing the results of<br/>the proposed work to the classroom will enrich courses taught by the PI. Outreach efforts will expose pre-college students to ice core research. The proposed work will enhance the laboratory facilities for ice core research at OSU, insuring that the capability for CO2 measurements exists for future projects. All data will be archived at the National Snow and Ice Data Center and other similar archives, per OPP policy. Highly significant results will be disseminated to the news media through OSU?s very effective News and Communications group. Carbon dioxide is the most important greenhouse gas that humans are directly changing. Understanding how CO2 and climate are linked on all time scales is necessary for predicting the future behavior of the carbon cycle and climate system, primarily to insure that the appropriate processes are represented in carbon cycle/climate models. Part of the proposed work emphasizes the relationship of CO2 and abrupt climate change. Understanding how future abrupt change might impact the carbon cycle is an important issue for society.
Abstract<br/><br/><br/><br/>This project uses high-precision, U-Pb dating of zircons from the Ferrar igneous intrusion of Antarctica to determine when it formed and whether it caused a major extinction event. Amongst the world?s largest intrusions, the Ferrar is also associated with breakup of Gondwana, the last supercontinent. Data from this project will show how the Ferrar and similar intrusions form and their potential to cause mass extinctions. Intrusion of the Ferrar has been tentatively linked to the Toarcian extinction event of 183 million years ago, thought to have been caused by methane released when the Ferrar intersected subterranean coal beds. The broader impacts are undergraduate, graduate and postdoctoral involvement in research, new collaborations between a research and primarily undergraduate institution, and K12 outreach.
This award supports a three-year study to isolate essential physical processes affecting Thwaites Glacier (TG) in the Amundsen Sea Embayment (ASE) of West Antarctica using a suite of existing numerical models in conjunction with existing and International Polar Year (IPY)-proposed data sets. Four different models will be utilized to explore the effects of embayment geometry, ice-shelf buttressing, basal-stress distribution, surface mass balance, surface climate, and inland dynamic perturbations on the present and future dynamics of TG. This particular collection of models is ideally suited for the broad nature of this investigation, as they incorporate efficient and complementary simplifications of the stress field (shallow-ice and shelf-stream), system geometry (1-d and 2-d plan-view and flowline; depth-integrated and depth-dependent), and mass-momentum energy coupling (mechanical and thermo-mechanical). The models will be constrained and validated by data sets (including regional maps of ice thickness, surface elevation, basal topography, ice surface velocity, and potential fields) and geophysical data analyses (including increasing the spatial resolution of surface elevations, improving regional estimates of geothermal flux, and characterizing the sub-glacial interface of grounded ice as well as the grounding-zone transition between grounded and floating ice). The intellectual merit of the research focuses on several of the NSF Glaciology program's emphases, including: ice dynamics, numerical modeling, and remote sensing of ice sheets. In addition, the research directly addresses the following specific NSF objectives: "investigation of the physics of fast glacier flow with emphasis on processes at glacier beds"; "investigation of ice-shelf stability"; and "identification and quantification of the feedback between ice dynamics and climate change". The broader impacts of this research effort will help answer societally relevant questions of future ice sheet stability and sea-level change. The research also will aid in the early career development of two young investigators and will contribute to the education of both graduate and undergraduate students directly involved in the research, and results will be incorporated into courses and informal presentations.
Sowers/Brook<br/>0538538<br/>This award supports a project to develop a high-resolution (every 50 yr) methane data set that will play a pivotal role in developing the timescale for the new deep ice core being drilled at the West Antarctic Ice Sheet Divide (WAIS Divde) site as well as providing a common stratigraphic framework for comparing climate records from Greenland and WAIS Divide. Certain key intervals will be measured at even higher resolution to assist in precisely defining the phasing of abrupt climate change between the northern and southern hemispheres. Concurrent analysis of a suit of samples from both the WAIS Divide and GISP2 ice cores throughout the last 110kyr is also proposed, to establish the inter-hemispheric methane gradient which will be used to identify geographic areas responsible for the climate-related methane emission changes. A large gas measurement inter-calibration of numerous laboratories, utilizing both compressed air cylinders and WAIS Divide ice core samples, will also be performed. The intellectual merit of the proposed work is that it will provide the chronological control needed to examine the timing of changes in climate proxies, and critical chronological ties to the Greenland ice core records via methane variations. In addition, the project addresses the question of what methane sources were active during the ice age and will help to answer the fundamental question of what part of the biosphere controlled past methane variations. The broader impact of the proposed work is that it will directly benefit all ice core paleoclimate research and will impact the paleoclimate studies that rely on ice core timescales for correlation purposes. The project will also support a Ph.D. student at Oregon State University who will have the opportunity to be involved in a major new ice coring effort with international elements. Undergraduates at Penn State will gain valuable laboratory experience and participate fully in the project. The proposed work will underpin the WAIS Divide chronology, which will be fundamental to all graduate student projects that involve the core. The international inter-calibration effort will strengthen ties between research institutions on four continents and will be conducted as part of the International Polar Year research agenda.
This award supports analyses of stable isotopes of water, dD, d18O and deuterium excess in the proposed West Antarctic Ice Sheet Divide (WAIS) deep ice core. The project will produce a continuous and high-resolution reconstruction of stable isotope ratios for the new core. dD and d18O values provide estimates of temperature change at the ice core site. Deuterium excess provides estimates of ocean surface conditions, such as sea surface temperature, at the moisture source areas. This new ice core is ideally situated to address questions ranging from ice sheet stability to abrupt climate change. WAIS Divide has high enough snowfall rates to record climate changes on annual to decadal time scales. It should also have ice old enough to capture the last interglacial period in detail. The West Antarctic ice sheet is the subject of great scrutiny as our modern climate warms and sea level rises. What are the prospects for added sea level rise from ice released by this ice sheet? Understanding how this ice sheet has responded to climate change in the past, which the data collected in this project will help to assess, is critical to answering this question. The high temporal resolution available in the WAIS Divide core will provide the best available basis for inter-comparison of millennial-scale climate changes between the poles, and thus a better understanding of the spatial expression and dynamics of rapid climate change events. Finally, the location of this core in the Pacific sector of West Antarctica makes it well situated for examining the influence of the tropical Pacific on Antarctica climate, on longer timescales than are available from the instrumental climate record. Analyses will include the measurement of sub-annually resolved isotope variations in the uppermost parts of the core, measurements at annual resolution throughout the last 10,000 years and during periods of rapid climate change prior to that, and measurements at 50-year resolution throughout the entire length of the core that is collected and processed during the period of this grant. We anticipate that this will be about half of the full core expected to be drilled. In terms of broader impacts, the PIs will share the advising of two graduate students, who will make this ice core the focus of their thesis projects. It will be done in an innovative multi-campus approach designed to foster a broader educational experience. As noted above, the data and interpretations generated by this proposal will address climate change questions not only of direct and immediate scientific interest, but also of direct and immediate policy interest.
This award supports a project to strengthen collaborations between the various research groups working on iceberg calving. Relatively little is known about the calving process, especially the physics that governs the initiation and propagation of fractures within the ice. This knowledge gap exists in part because of the diverse range in spatial and temporal scales associated with calving (ranging from less than one meter to over a hundred kilometers in length scale). It is becoming increasingly clear that to predict the future behavior of the Antarctic Ice Sheet and its contribution to sea level rise, it is necessary to improve our understanding of iceberg calving processes. Further challenges stem from difficulties in monitoring and quantifying short-time and spatial-scale processes associated with ice fracture, including increased fracturing events in ice shelves or outlet glaciers that may be a precursor to disintegration, retreat or increased calving rates. Coupled, these fundamental problems currently prohibit the inclusion of iceberg calving into numerical ice sheet models and hinder our ability to accurately forecast changes in sea level in response to climate change. Seismic data from four markedly different environmental regimes forms the basis of the proposed research, and researchers most familiar with the datasets will perform all analyses. Extracting the similarities and differences across the full breadth of calving processes embodies the core of the proposed work, combining and improving methods previously developed by each group. Techniques derived from solid Earth seismology, including waveform cross-correlation and clustering will be applied to each data set allowing quantitative process comparisons on a significantly higher level than previously possible. This project will derive catalogues of glaciologically produced seismic events; the events will then be located and categorized based on their location, waveform and waveform spectra both within individual environments and between regions. The intellectual merit of this work is that it will lead to a better understanding of iceberg calving and the teleconnections between seismic events and other geophysical processes around the globe. The broader impacts of this work are that it relates directly to socio-environmental impacts of global change and sea level rise. Strong collaborations will form as a result of this research, including bolstered collaborations between the glacier and ice sheet communities, as well as the glaciology and seismology communities. Outreach and public dissemination of findings will be driven by SIO's Visualization Center, and Birch Aquarium, hosting presentations devoted to the role of the cryosphere in global change. Time-lapse movies of recent changes at Columbia Glacier will be used to engage potential young scientists. A program of presentations outside the university setting to at-risk and gifted youth will be continued. This study will also involve undergraduates in analyses and interpretation and presentation of the seismic data assembled. The work will also support two junior scientists who will be supported by this project.
This award supports a three-year modeling effort to understand the dynamics surrounding ice-air surface slope reversals on ice streams and ice shelves, with implications for the creation and stability of subglacial lakes. Local reversal of the ice-air surface slope may lead, through a reversal of the hydraulic gradient, to the trapping of basal and surface water, producing subglacial and supraglacial lakes, respectively. In the case of subglacial lakes, once such a sizable reservoir of pressurized water is created the potential exists for drainage, in the form of large outburst floods or as smaller, but sustained, periods of increased subglacial water flow. The research seeks to extend some initial work that has been done to include time-dependence and a wider array of parameters and geometries. The methods will involve the use of a suite of models, all of which will include longitudinal deviatoric and basal-shear stresses, with some also taking account of lateral drag and internal vertical shear. The intellectual merit of the proposed activity includes an improved understanding of the processes and parameters involved in the formation of surface-slope reversals in ice-stream/ice-shelf systems, as well as insight into the stability of subglacial lakes formed as a consequence of slope reversals. The broader impacts resulting from this activity include the provision of tools to study the dynamics of ice-stream/ice-shelf systems, an improved understanding of the physics behind outburst floods, and insights into the coupling of ice streams with their subglacial water systems. The research will support the studies of a beginning postdoctoral researcher. Results of the research will be incorporated into courses and public outreach serving anywhere from hundreds to thousands of people per year.
Waddington/0636997<br/><br/>This award supports a project to integrate three lines of glaciology research, previously treated independently. First, internal layers in ice sheets, detected by ice-penetrating radar, retain information about past spatial and temporal patterns of ice accumulation. Ice-flow modelers can recover this information, using geophysical inverse methods; however, the ages of the layers must be known, through interpolation where they intersect a well-dated ice core. <br/>Second, concentrations of methane and some other atmospheric constituents vary through time as climate changes. However, the atmosphere is always well mixed, and concentrations are similar world-wide at any one time, so gas variations from an undated core can be correlated with those in a well-dated core such as GISP2. Because air in near-surface firn mixes readily with the atmosphere above, the air that is trapped in bubbles deep in the firn is typically hundreds to thousands of years younger than that firn. Gas geochemists must calculate this age difference, called delta-age, with a firn-densification model before the ice enclosing the gas can be dated accurately. To calculate delta-age, they must know the temperature and the snow accumulation rate at the time and place where the snow fell. Third, gases can be correlated between cores only at times when the atmosphere changed, so ice-core dates must be interpolated at depths between the sparse dated points. Simplistic interpolation schemes can create undesirable artifacts in the depth-age profile. The intellectual merit of this project is that it will develop new interpolation methods that calculate layer thinning over time due to ice-flow mechanics. Accurate interpolation also requires a spatial and temporal accumulation history. These three issues are coupled through accumulation patterns and ice-core dates. This project will develop an integrated inversion procedure to solve all three problems simultaneously. The new method will incorporate ice-penetrating radar profile data and ice-core data, and will find self-consistent: spatial/temporal accumulation patterns; delta-age profiles for ice cores; and reliably interpolated depth-age profiles. The project will then: recalculate the depth-age profile at Byrd Station, Antarctica; provide a preliminary depth-age at the West Antarctic Ice Sheet (WAIS) in the initial stages of drilling, using radar layers with estimated ages traced from Byrd Station; and generate a self-consistent depth-age relationship for Taylor Dome, Antarctica over the past 20ka, where low accumulation has created uncertainty in dating, accumulation, and controversy over delta-age estimates. The broader impacts of the project are that it will support the PhD research of a female graduate student, and her continued outreach work with Making Connections, a non-profit program through the University of Washington Women's Center, which matches professional women mentors with minority high-school women interested in mathematics and science, disciplines where they are traditionally under-represented. The graduate student will also work with Girls on Ice, a ten-day glacier field program, taught by women scientist instructors, emphasizing scientific observation through immersion, leadership skills and safety awareness.
Pettit/0636795<br/><br/>This award supports a project to constrain the accumulation rate, thickness, and temperature history for Siple Dome using a vertical velocity profile that includes the effects of an evolving fabric on deformation through time, to invert the depth-profile of fabric determined from sonic velocity measurements and grain size observed in thin sections in Siple Dome for the surface temperature and accumulation rate changes in the past, focusing on the apparent abrupt climate change events at 22ka and 15ka. The intellectual merit of the work is that it will extract past climate information from a number of physical properties of the deep ice using a coupled fabric evolution and ice-sheet flow model. The focus will be on the deep ice-age ice at Siple Dome, where the ice-core record shows puzzling signals and where modeling results imply intriguing deformation patterns. The method will also be applied to the records from Byrd Station and Taylor Dome to ultimately form a basis for future analysis of the West Antarctic Divide core. The broader impacts of the project are that it will ultimately contribute to our understanding of the effects of anisotropy on ice flow dynamics in West Antarctica. It will contribute to our understanding of the connection between ice flow and the paleoclimate record in ice cores, particularly with respect to the relationship between the chemical record and ice deformation. And it will contribute a new ice-flow model that includes the effects of anisotropy and fabric evolution. The project will also contribute to advancing the career of a new, young, female investigator and will support a couple of graduate students. Finally, the work will encouraging diversity in the physical sciences by directly helping to support the Girls on Ice a program that encourages young women to explore science and the natural world.
This study will investigate how the Antarctic Slope Front and continental slope morphology determine the exchanges of mass, heat, and fresh water between the shelf and the deep ocean, in particular those leading to outflows of dense water into intermediate and deep layers of the adjacent basins and into the world ocean circulation <br/>While the importance to the global ocean circulation and climate of cold water masses originating in the Antarctic is unquestioned, the processes by which these water masses enter the deep ocean circulation are not. The primary goal of this work therefore is to identify the principal physical processes that govern the transfer of shelf-modified dense water into intermediate and deep layers of the adjacent deep ocean. At the same time, it seeks to understand the compensatory poleward flow of waters from the oceanic regime. The upper continental slope has been identified as the critical gateway for the exchange of shelf and deep ocean waters. Here the topography, velocity and density fields associated with the nearly ubiquitous front must strongly influence the advective and turbulent transfer of water properties between the shelf and oceanic regimes. The study has four specific objectives: [1] Determine the mean frontal structure and the principal scales of variability, and estimate the role of the front on cross-slope exchanges and mixing of adjacent water masses; [2] Determine the influence of slope topography and bathymetry on frontal location and outflow of dense Shelf Water; [3] Establish the role of frontal instabilities, benthic boundary layer transports, tides and other oscillatory processes on cross-slope advection and fluxes; and [4] Assess the effect of diapycnal mixing, lateral mixing identified through intrusions, and nonlinearities in the equation of state on the rate of descent and the fate of outflowing, near-freezing Shelf Water.
Whillans, Wilson, Goad OPP 9527571 Abstract This award supports a project to initiate Global Positioning System (GPS) measurements for rock motions in South Victoria Land and vicinity. The results will be used to test some of the leading models for ice-sheet change and tectonism, in particular, whether the continent is rebounding due to reduced ice load from East or West Antarctica and whether there is tectonic motion due to Terror Rift or uplift of the Transantarctic Mountains. A modest program to measure ice motion will be conducted as well. The motive is to test models for ice flow in the Allan Hills meteorite concentration region and to determine whether small glaciers in the Dry Valleys are thickening or thinning. Monuments will be set into rock and ice and GPS receivers used to determine their locations. Repeats in later years will determine motion. Field activities will involve close cooperation with the USGS.
Winckler/0636898<br/><br/>This award supports a project to study dust sources in Antarctic ice cores. Atmospheric aerosols play an important role both in global biogeochemical cycles as well as in the climate system of the Earth. Records extracted from Antarctic ice cores inform us that dust deposition from the atmosphere to the ice sheet was 15-20 times greater during glacial periods than during interglacials, which raises the possibility that dust may be a key player in climate change on glacial-interglacial timescales. By characterizing potential source areas from South America, South Africa, and Australia as well as fresh glacial flour from Patagonia, the project will determine if the interglacial dust was mobilized from a distinct geographical region (e.g., Australia) or from a more heavily weathered source region in South America. The intellectual merit of the project is that it will contribute to reconstructing climate-related changes in the rate of dust deposition, and in the provenance of the dust, it will provide critical constraints on hydrology and vegetation in the source regions, as well as on the nature of the atmospheric circulation transporting dust to the archive location. In a recent pilot study it was found that there is a dramatic glacial to Holocene change in the 4He/Ca ratio in the dust extracted from ice from Dronning Maud Land, Antarctica, indicating a shift in the source of dust transported to Antarctica. The broader impacts of the project are that Helium isotopes and calcium measurements provide a wealth of information that can then be turned into critical input for dust-climate models. Improved models, which are able to accurately reconstruct paleo dust distribution, will help us to predict changes in dust in response to future climate variability. This information will contribute to an improvement of our integrated understanding of the Earth's climate system and, in turn, will better inform policy makers of those processes and conditions most susceptible to perturbation by climate change, thereby leading to more meaningful climate-change policy. The project will support a graduate student in the dual masters Earth and Environmental Science Journalism program. The lead-PI manages the rock noble gas laboratory at Lamont. Her leadership role in this facility impacts the training of undergraduate and graduate students as well as visiting scientists.
Reusch/0636618 This award supports a three-year effort to use nonlinear techniques to improve understanding of Antarctic climate through studies of observational and forecast model data sets; improve and extend reconstructions of past Antarctic climate from ice-core data; and reconstruct data missing from the observational records, potentially into the pre-instrumental era. The intellectual merit of the proposed activity arises from the opportunity to improve understanding of the past, present and future climate of the Antarctic, a key component in the global climate system. Self-organizing maps (SOMs), an emerging, powerful nonlinear tool, will be used to classify free-atmosphere reanalysis data into archetypal patterns (SOM states). Feed-forward artificial neural networks (FF-ANNs) will then be trained to predict the preferred SOM states from ice-core data covering the instrumental era. The trained FF-ANNs will extend the reconstructions of SOM states to the full length of the ice core data, leading to long-term reconstruction of climate. Histories of surface conditions will be improved by filling data gaps in observational records using FF-ANNs and free-atmosphere reanalysis data. These records may also be extended into the pre-instrumental era using the above ice-core based reconstructions of the atmospheric circulation. The broader impacts of the project relate to activities with the Earth and Mineral Sciences Museum (co-located in the Geosciences building) which will bring project results/tools to a wider audience through development of interactive graphical visualizations/presentations for the Museum's fixed and traveling GeoWall displays. One or more undergraduates from the College will be involved in the project with an option to also present project results at a national meeting/workshop. The work will also contribute to the continuing development of an "early career" investigator, including the opportunity to continue building (and refining) relevant and useful skills in teaching, outreach, collaboration, etc.
Barletta <br/>0828786<br/><br/>This award supports a Small Grant for Exploratory Research (SGER) for a project to conduct a limited scope, proof-of-concept study of the application of Raman spectroscopy to the analysis of ice cores. As a non-destructive analytical tool with high spatial resolution, Raman spectroscopy has found widespread application in situations where water is a major constituent in the sample, including marine science and the analysis of clathrates in ice-cores themselves. Raman can provide information at high enough sensitivity (ppm to ppb) to make its use as a non-destructive survey tool for ice core samples attractive. Laser-based techniques such as Raman can be used to obtain chemical information at near diffraction-limited resolution allowing particulates on the order of 1micron or less to be characterized. Preliminary work has demonstrated the selectivity of Raman spectroscopy for determining related polyatomic species (ions and compounds), and the ability to discern oxidation state from such analysis. In spite of the potential of this technique, instrumentation necessary to analyze ice core samples using micro-Raman spectroscopy with UV excitation is not readily available. Even with visible excitation, libraries of Raman spectra necessary for mixture de-convolution are not available. The proposed effort is a novel extension of Raman into the area of polar and climatic research, providing data on chemical speciation hitherto unavailable, of critical importance to the understanding of the biology present in glacial ice as well as the sources of particulate material found in ice cores. Since the availability of ice-core material at critical horizons is limited, this non-destructive technique will help to maximize the information obtained from these samples. The broader impacts of the work are that it will bring a new researcher into the field of polar ice core analysis and it has the potential to also bring a new non-destructive technique into the field. Finally, the research will take place at a predominately undergraduate institution in South Alabama with a large proportion (24% of undergraduates) of minority students. The proposed effort is high-risk because, although based upon established principles of vibrational spectroscopy, the application to the analytical problems of trace environmental analysis are unique, and the precision requirements are stringent. Moreover, this work will demonstrate the feasibility of an integrated approach to ice core analysis, while addressing specific problems in glaciology.
This award supports a project to investigate fabrics with ground-based radar measurements near the Ross/Amundsen Sea ice-flow divide where a deep ice core will be drilled. The alignment of crystals in ice (crystal-orientation fabric) has an important effect on ice deformation. As ice deforms, anisotropic fabrics are produced, which, in turn, influence further deformation. Measurement of ice fabric variations can help reveal the deformation history of the ice and indicate how the ice will deform in the future. Ice cores provide opportunities to determine a vertical fabric profile, but horizontal variations of fabrics remain unknown. Remote sensing with ice-penetrating radar is the only way to do that over large areas. Preliminary results show that well-established polarimetric methods can detect the degree of horizontal anisotropy of fabrics and their orientation, even when they are nearly vertical-symmetric fabrics. In conjunction with ice deformation history, our first mapping of ice fabrics will contribute to modeling ice flow near the future ice core site. The project will train a graduate student and provide research experiences for two under graduate students both in field and laboratory. The project will contribute to ongoing West Antarctic ice sheet program efforts to better understand the impact of the ice sheet on global sea level rise. This project also supports an international collaboration between US and Japanese scientists.
This award supports a project to make measurements of methane and other trace gases in firn air collected at South Pole, Antarctica. The analyses will include: methane isotopes (delta-13CH4 and delta-DCH4), light non-methane hydrocarbons (ethane, propane, and n-butane), sulfur gases (COS, CS2), and methyl halides (CH3Cl and CH3Br). The atmospheric burdens of these trace gases reflect changes in atmospheric OH, biomass burning, biogenic activity in terrestrial, oceanic, and wetland ecosystems, and industrial/agricultural activity. The goal of this project is to develop atmospheric histories for these trace gases over the last century through examination of depth profiles of these gases in South Pole firn air. The project will involve two phases: 1) a field campaign at South Pole, Antarctica to drill two firn holes and fill a total of ~200 flasks from depths reaching 120 m, 2) analysis of firn air at University of California, Irvine, Penn State University, and several other collaborating laboratories. Atmospheric histories will be inferred from the measurements using a one dimensional advective/diffusive model of firn air transport. This study will provide new information about the recent changes in atmospheric levels of these gases, providing about a 90 year long time series record that connects the earlier surface and firn air measurements to present day. The project will also explore the possibility of in- situ production of light non-methane hydrocarbons in firn air that is relevant to the interpretation of ice core records. The broader impacts of this research are that it has the potential for significant societal impact by improving our understanding of climate change and man's input to the atmosphere. The results of this work will be disseminated through the peer review process, and will contribute to environmental assessments, such as the Inter-governmental Panel on Climate Change (IPCC) Climate Assessment and the Word Meteorological Organization (WMO) Stratospheric Ozone Assessment. This research will provide educational opportunities for graduate and undergraduate students, and will contribute to a teacher training program for K-12 teachers in minority school districts.
This award supports a project to understand how recent changes in atmospheric chemistry, and historical changes as recorded in snow, firn and ice, have affected atmospheric photochemistry over Antarctica. Atmospheric, snow and firn core measurements of selected gas, meteorological and snow physical properties will be made and modeling of snow-atmosphere exchange will be carried out. The intellectual merit of the project is that it will lead to a better an understanding of the atmospheric chemistry in West Antarctica, its bi-directional linkages with the snowpack, and how it responds to regional influences. There are at least four broader impacts of this work. First is education of university students at both the graduate and undergraduate levels. One postdoctoral researcher and one graduate student will carry out much of the work, and a number of undergraduates will be involved. Second, involvement with the WAIS-Divide coring program will be used to help recruit under-represented groups as UC Merced students. As part of UC Merced's outreach efforts in the San Joaquin Valley, whose students are under-represented in the UC system, the PI and co-PI give short research talks to groups of prospective students, community college and high school educators and other groups. They will develop one such talk highlighting this project. Including high-profile research in these recruiting talks has proven to be an effective way to promote dialog, and interest students in UC Merced. Third, talks such as this also contribute to the scientific literacy of the general public. The PI and grad student will all seek opportunities to share project information with K-14 and community audiences. Fourth, results of the research will be disseminated broadly to the scientific community, and the researchers will seek additional applications for the transfer functions as tools to improve interpretation of ice-cores. This research is highly collaborative, and leverages the expertise and data from a number of other groups.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). Much of the inventory of East Antarctic bedrock geochronology, as well as a record of its erosional history, is preserved in Cenozoic sediments around its margin. This project is to use these sediments to understand their sub-ice provenance and the erosional history of the shield by measuring ages of multiple geo- and thermochronometers on single detrital crystals and on multiple crystals in detrital clasts (U/Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar). The combination of multi-chronometer ages in single grains and clasts provides a powerful fingerprint of bedrock sources, allowing us to trace provenance in Eocene fluvial sandstones through Quaternary diamicts around the margin. Multiple thermochronometric (cooling) ages in the same grains and clasts also allows us to interpret the timing and rates of erosion from these bedrock sources. Delineating a distribution of bedrock age units, their sediment transport connections, and their erosional histories over the Cenozoic, will in turn allow us to test tectonic models bearing on: (1) the origin of the Gamburtsev Subglacial Mountains, (2) fluvial and topographic evolution, and (3) the history of glacial growth and erosion.
This award is for the continuation of the Center for Remote Sensing of Ice Sheets (CReSIS), an NSF Science and Technology Center (STC) established in June 2005 to study present and probable future contributions of the Greenland and Antarctic ice sheets to sea-level rise. The Center?s vision is to understand and predict the role of polar ice sheets in sea level change. In particular, the Center?s mission is to develop technologies, to conduct field investigations, to compile data to understand why many outlet glaciers and ice streams are changing rapidly, and to develop models that explain and predict ice sheet response to climate change. The Center?s mission is also to educate and train a diverse population of graduate and undergraduate students in Center-related disciplines and to encourage K-12 students to pursue careers in science, technology, engineering and mathematics (STEM-fields). The long-term goals are to perform a four-dimensional characterization (space and time) of rapidly changing ice-sheet regions, develop diagnostic and predictive ice-sheet models, and contribute to future assessments of sea level change in a warming climate. In the first five years, significant progress was made in developing, testing and optimizing innovative sensors and platforms and completing a major aircraft campaign, which included sounding the channel under Jakobshavn Isbræ. In the second five years, research will focus on the interpretation of integrated data from a suite of sensors to understand the physical processes causing changes and the subsequent development and validation of models. Information about CReSIS can be found at http://www.cresis.ku.edu.<br/><br/>The intellectual merits of the STC are the multidisciplinary research it enables its faculty, staff and students to pursue, as well as the broad education and training opportunities it provides to students at all levels. During the first phase, the Center provided scientists and engineers with a collaborative research environment and the opportunity to interact, enabling the development of high-sensitivity radars integrated with several airborne platforms and innovative seismic instruments. Also, the Center successfully collected data on ice thickness and bed conditions, key variables in the study of ice dynamics and the development of models, for three major fast-flowing glaciers in Greenland. During the second phase, the Center will collect additional data over targeted sites in areas undergoing rapid changes; process, analyze and interpret collected data; and develop advanced process-oriented and ice sheet models to predict future behavior. The Center will continue to provide a rich environment for multidisciplinary education and mentoring for undergraduate students, graduate students, and postdoctoral fellows, as well as for conducting K-12 education and public outreach. The broader impacts of the Center stem from addressing a global environmental problem with critical societal implications, providing a forum for citizens and policymakers to become informed about climate change issues, training the next generation of scientists and engineers to serve the nation, encouraging underrepresented students to pursue careers in STEM-related fields, and transferring new technologies to industry. Students involved in the Center find an intellectually stimulating atmosphere where collaboration between disciplines is the norm and exposure to a wide variety of methodologies and scientific issues enriches their educational experience. The next generation of researchers should reflect the diversity of our society; the Center will therefore continue its work with ECSU to conduct outreach and educational programs that attract minority students to careers in science and technology. The Center has also established a new partnership with ADMI that supports faculty and student exchanges at the national level and provides expanded opportunities for students and faculty to be involved in Center-related research and education activities. These, and other collaborations, will provide broader opportunities to encourage underrepresented students to pursue STEM careers. <br/><br/>As lead institution, The University of Kansas (KU) provides overall direction and management, as well as expertise in radar and remote sensing, Uninhabited Aerial Vehicles (UAVs), and modeling and interpretation of data. Five partner institutions and a DOE laboratory play critical roles in the STC. The Pennsylvania State University (PSU) continues to participate in technology development for seismic measurements, field activities, and modeling. The Center of Excellence in Remote Sensing, Education and Research (CERSER) at Elizabeth City State University (ECSU) contributes its expertise to analyzing satellite data and generating high-level data products. ECSU also brings to the Center their extensive experience in mentoring and educating traditionally under-represented students. ADMI, the Association of Computer and Information Science/Engineering Departments at Minority Institutions, expands the program?s reach to underrepresented groups at the national level. Indiana University (IU) provides world-class expertise in CI and high-performance computing to address challenges in data management, processing, distribution and archival, as well as high-performance modeling requirements. The University of Washington (UW) provides expertise in satellite observations of ice sheets and process-oriented interpretation and model development. Los Alamos National Laboratory (LANL) contributes in the area of ice sheet modeling. All partner institutions are actively involved in the analysis and interpretation of observational and numerical data sets.
Edwards/0739780<br/><br/>This award supports a project to develop a 2,000-year high-temporal resolution record of biomass burning from the analysis of black carbon in the WAIS Divide bedrock ice core. Pilot data for the WAIS WD05A core demonstrates that we now have the ability to reconstruct this record with minimal impact on the amount of ice available for other projects. The intellectual merit of this project is that black carbon (BC) aerosols result solely from combustion and play a critical but poorly quantified role in global climate forcing and the carbon cycle. When incorporated into snow and ice, BC increases absorption of solar radiation making seasonal snow packs, mountain glaciers, polar ice sheets, and sea ice much more vulnerable to climate warming. BC emissions in the Southern Hemisphere are dominated by biomass burning in the tropical regions of Southern Africa, South America and South Asia. Biomass burning, which results from both climate and human activities, alters the atmospheric composition of greenhouse gases, aerosols and perturbs key biogeochemical cycles. A long-term record of biomass burning is needed to aid in the interpretation of ice core gas composition and will provide important information regarding human impacts on the environment and climate before instrumental records. The broader impacts of the project are that it represents a paradigm shift in our ability to reconstruct the history of fire from ice core records and to understand its impact on atmospheric chemistry and climate over millennial time scales. This type of data is especially needed to drive global circulation model simulations of black carbon aerosols, which have been found to be an important component of global warming and which may be perturbing the hydrologic cycle. The project will also employ undergraduate students and is committed to attracting underrepresented groups to the physical sciences. The project?s outreach component will be conducted as part of the WAIS project outreach program and will reach a wide audience.
This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat.<br/><br/>SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. It is currently in a synthesis and modeling phase. This collaborative project is concerned with the lower trophic levels, and will be integrated with other synthesis and modeling studies that deal with grazers, predators, and other higher trophic levels.
This award supports a research cruise to perform geologic studies in the area under and surrounding the former Larsen B ice shelf, on the Antarctic Peninsula. The ice shelf's disintegration in 2002 coupled with the unique marine geology of the area make it possible to understand the conditions leading to ice shelf collapse. Bellwethers of climate change that reflect both oceanographic and atmospheric conditions, ice shelves also hold back glacial flow in key areas of the polar regions. Their collapse results in glacial surging and could cause rapid rise in global sea levels. This project characterizes the Larsen ice shelf's history and conditions leading to its collapse by determining: 1) the size of the Larsen B during warmer climates and higher sea levels back to the Eemian interglacial, 125,000 years ago; 2) the configuration of the Antarctic Peninsula ice sheet during the LGM and its subsequent retreat; 3) the causes of the Larsen B's stability through the Holocene, during which other shelves have come and gone; 4) the controls on the dynamics of ice shelf margins, especially the roles of surface melting and oceanic processes, and 5) the changes in sediment flux, both biogenic and lithogenic, after large ice shelf breakup. <br/><br/><br/><br/>The broader impacts include graduate and undergraduate education through research projects and workshops; outreach to the general public through a television documentary and websites, and international collaboration with scientists from Belgium, Spain, Argentina, Canada, Germany and the UK. The work also has important societal relevance. Improving our understanding of how ice shelves behave in a warming world will improve models of sea level rise.<br/><br/><br/><br/>The project is supported under NSF's International Polar Year (IPY) research emphasis area on "Understanding Environmental Change in Polar Regions".
9909367 Leventer This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a multi-institutional, international (US - Australia) marine geologic and geophysical investigation of Prydz Bay and the MacRobertson Shelf, to be completed during an approximately 60-day cruise aboard the RVIB N.B. Palmer. The primary objective is to develop a record of climate and oceanographic change during the Quaternary, using sediment cores collected via kasten and jumbo piston coring. Core sites will be selected based on seismic profiling (Seabeam 2112 and Bathy2000). Recognition of the central role of the Antarctic Ice Sheet to global oceanic and atmospheric systems is based primarily on data collected along the West Antarctic margin, while similar extensive and high resolution data sets from the much more extensive East Antarctic margin are sparse. Goals of this project include (1) development of a century- to millennial-scale record of Holocene paleoenvironments, and (2) testing of hypotheses concerning the sedimentary record of previous glacial and interglacial events on the shelf, and evaluation of the timing and extent of maximum glaciation along this 500 km stretch of the East Antarctic margin. High-resolution seismic mapping and coring of sediments deposited in inner shelf depressions will be used to reconstruct Holocene paleoenvironments. In similar depositional settings in the Antarctic Peninsula and Ross Sea, sedimentary records demonstrate millennial- and century- scale variability in primary production and sea-ice extent during the Holocene, which have been linked to chronological periodicities in radiocarbon distribution, suggesting the possible role of solar variability in driving some changes in Holocene climate. Similar high-resolution Holocene records from the East Antarctic margin will be used to develop a circum-Antarctic suite of data regarding the response of southern glacial and oceanographic systems to late Quaternary climate change. In addition, these data will help us to evaluate the response of the East Antarctic margin to global warming. Initial surveys of the Prydz Channel - Amery Depression region reveal sequences deposited during previous Pleistocene interglacials. The upper Holocene and lower (undated) siliceous units can be traced over 15,000 km2 of the Prydz Channel, but more sub-bottom seismic reflection profiling in conjunction with dense coring over this region is needed to define the spatial distribution and extent of the units. Chronological work will determine the timing and duration of previous periods of glacial marine sedimentation on the East Antarctic margin during the late Pleistocene. Analyses will focus on detailed sedimentologic, geochemical, micropaleontological, and paleomagnetic techniques. This multi-parameter approach is the most effective way to extract a valuable paleoenvironmental signal in these glacial marine sediments. These results are expected to lead to a significant advance in understanding of the behavior of the Antarctic ice-sheet and ocean system in the recent geologic past. The combination of investigators, all with many years of experience working in high latitude marine settings, will provide an effective team to complete the project. University and College faculty (Principal Investigators on this project) will supervise a combination of undergraduate and post-graduate students involved in all stages of the project so that educational objectives will be met in tandem with the research goals of the project.
IPY: Shedding dynamic light on iron limitation: The interplay of iron<br/>limitation and dynamic irradiance in governing the phytoplankton<br/>distribution in the Ross Sea<br/><br/>The Southern Ocean plays an important role in the global carbon cycle, accounting for approximately 25% of total anthropogenic CO2 uptake by the oceans, mainly via primary production. In the Ross Sea, primary production is dominated by two taxa that are distinct in location and timing. Diatoms dominate in the shallow mixed layer of the continental shelf, whereas the colony forming Phaeocystis antarctica (Prymnesiophyceae) dominate in the more deeply mixed, open regions. Significantly, both groups have vastly different nutrient utilization characteristics, and support very different marine food webs. Their responses to climate change, and the implications for carbon export, are unclear. Previous studies show that light availability and the quality of the light climate (static versus dynamic) play a major role in defining where and when the different phytoplankton taxa bloom. However, iron (Fe) limitation of the algal communities in both the sub-Arctic and the Southern Ocean is now well documented. Moreover, phytoplankton Fe demand varies as a function of irradiance. The main hypothesis of the proposed research is: The interaction between Fe limitation and dynamic irradiance governs phytoplankton distributions in the Ross Sea. Our strategy to test this hypothesis is three-fold: 1) The photoacclimation of the different phytoplankton taxa to different light conditions under Fe limitation will be investigated in experiments in the laboratory under controlled Fe conditions. 2) The photophysiological mechanisms found in these laboratory experiments will then be tested in the field on two cruises with international IPY partners. 3) Finally, data generated during the lab and field parts of the project will be used to parameterize a dynamic light component of the Coupled Ice Atmosphere and Ocean (CIAO) model of the Ross Sea. Using the improved model, we will run future climate scenarios to test the impact of climate change on the phytoplankton community structure, distribution, primary production and carbon export in the Southern Ocean. The proposed research complies with IPY theme" Understanding Environmental change in Polar Regions" and includes participation in an international cruise. Detailed model descriptions and all of the results generated from these studies will be made public via a DynaLiFe website. Improving the CIAO model will give us and other IPY partners the opportunity to test the ecological consequences of physiological characteristics observed in Antarctic phytoplankton under current and future climate scenarios. Outreach will include participation in Stanford's Summer Program for Professional Development for Science Teachers, Stanford's School of Earth Sciences high school internship program, and development of curriculum for local science training centers, including the Chabot Space and Science Center.
This award supports a project of scientific investigations along two overland traverses in East Antarctica: one going from the Norwegian Troll Station (72deg. S, 2deg. E) to the United States South Pole Station (90deg. S, 0deg. E) in 2007-2008; and a return traverse starting at South Pole Station and ending at Troll Station by a different route in 2008-2009. The project will investigate climate change in East Antarctica, with the goals of understanding climate variability in Dronning Maud Land of East Antarctica on time scales of years to centuries and determining the surface and net mass balance of the ice sheet in this sector to understand its impact on sea level. The project will also investigate the impact of atmospheric and oceanic variability and human activities on the chemical composition of firn and ice in the region, and will revisit areas and sites first explored by traverses in the 1960's, for detection of possible changes and to establish benchmark datasets for future research efforts. In terms of broader impacts, the results of this study will add to understanding of climate variability in East Antarctica and its contribution to global sea level change. The project includes international exchange of graduate students between the institutions involved and international education of undergraduate students through classes taught by the PI's at UNIS in Svalbard. It involves extensive outreach to the general public both in Scandinavia and North America through the press, television, science museums, children's literature, and web sites. Active knowledge sharing and collaboration between pioneers in Antarctic glaciology from Norway and the US, with the international group of scientists and students involved in this project, provide a unique opportunity to explore the changes that half a century have made in climate proxies from East Antarctica, scientific tools, and the culture and people of science. The project is relevant to the International Polar Year (IPY) since it is a genuine collaboration between nations: the scientists involved have complementary expertise, and the logistics involved relies on assets unique to each nation. It is truly an endeavor that neither nation could accomplish alone. This project is a part of the Trans- Antarctic Scientific Traverse Expeditions Ice Divide of East Antarctica (TASTE-IDEA) which is also part of IPY.
This project studies ancient ice buried in the Dry Valleys of Antarctica. The ice, which may approach ten million years in age, will be dated using argon and uranium radioisotope techniques. High-risk work, if successful it will offer the first and perhaps only samples of the Earth's atmosphere from millions of years in the past. These samples could offer critically important tests of paleoclimate records and proxies, as well as a glimpse into the characteristics of a past world much like the predicted future, warmer Earth. The broader impacts are graduate student education, and potentially contributing to society's understanding of global climate change and sea level rise.
This project develops power and communications systems to support the operation of seismometers and GPS receivers in Antarctica throughout the polar night. In terms of intellectual merit, this system would allow a new class of geophysical questions to be approached, in areas as varied as ice sheet movement, plate tectonics, and deep earth structure. In terms of broader impacts, this project represents research infrastructure of potential use to many scientific disciplines. In addition, the results will improve society's understanding of the Antarctic ice sheet and its behavior in response to global warming.
Rising atmospheric carbon dioxide concentrations have resulted in greater oceanic uptake of anthropogenic carbon dioxide. Elevated partial pressure of carbon dioxide can impact marine organisms both via decreased carbonate saturation that affects calcification rates and via disturbance to acid-base (metabolic) physiology. Pteropod molluscs (Thecosomata) form shells made of aragonite, a type of calcium carbonate that is highly soluble, suggesting that these organisms may be particularly sensitive to increasing carbon dioxide and reduced carbonate ion concentration. Thecosome pteropods, which dominate the calcium carbonate export south of the Antarctic Polar Front, will be the first major group of marine calcifying organisms to experience carbonate undersaturation within parts of their present-day geographical ranges as a result of anthropogenic carbon dioxide. An unusual, co-evolved relationship between thecosomes and their specialized gymnosome predators provides a unique backdrop against which to assess the physiological and ecological importance of elevated partial pressure of carbon dioxide. Pteropods are functionally important components of the Antarctic ecosystem with potential to influence phytoplankton stocks, carbon export, and dimethyl sulfide levels that, in turn, influence global climate through ocean-atmosphere feedback loops. The research will quantify the impact of elevated carbon dioxide on a dominant aragonitic pteropod, Limacina helicina, and its specialist predator, the gymnosome Clione antarctica, in the Ross Sea through laboratory experimentation. Results will be disseminated broadly to enhance scientific understanding in this field. The project involves collaboration between researchers at a predominantly undergraduate institution with a significant enrollment of students that are typically underrepresented in the research environment (California State University San Marcos - CSUSM) and at a Ph.D.-granting institution (University of Rhode Island - URI). The program will promote education and learning through the joint education of undergraduate students and graduate students at CSUSM and URI as part of a research team, as well as through the teaching activities of the principal investigators. Dr. Keating, CSUSM professor of science education, will participate in the McMurdo fieldwork and lead the outreach opportunities for the project.
Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions:1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children's books will participate in cruises to produce an account of the expedition and a daily interactive website.
Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions:1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children's books will participate in cruises to produce an account of the expedition and a daily interactive website.
This project studies sediment from the ocean floor to understand Antarctica's geologic history. Glacially eroded from the Antarctic continent, these sediments may offer insight into the 99% Antarctica covered by ice. The work's central focus is determining crust formation ages and thermal histories for three key areas of East Antarctica--Prydz Bay, eastern Weddell Sea, and Wilkes Land--through a combination of petrography, bulk sediment geochemistry and radiogenic isotopes, as well as isotope chronology of individual mineral grains. One specific objective is characterizing the composition of the Gamburtsev Mountains through studies of Eocene fluvial sediments from Prydz Bay. In addition to furthering our understanding of the hidden terrains of Antarctica, these terrigenous sediments will also serve as a natural laboratory to evaluate the effects of continental weathering on the Hf/Nd isotope systematics of seawater. An important broader impact of the project is providing exciting research projects for graduate and postdoctoral students using state of the art techniques in geochemistry.
This award supports a project to test whether Kamb Ice Stream (formerly Ice Stream C (ISC)), an ice stream<br/>that is thought to have stopped ~150 years ago, may be already in the process of restarting. If yes, it will help establish what is the rate of ice stream reactivation and what mechanisms are controlling this rate. If there is no evidence for ongoing ice stream reactivation, the physical controls that are preventing it will be examined and alternative scenarios for near-future evolution of this ice stream will be explored. One such scenario is an increase in ice diversion toward the neighboring Whillans Ice Stream. Such diversion may help prevent a complete stoppage of Whillans Ice Stream,which has been slowing down for at least the last 24 years. This project will consist of two components: (1) field observations of bed properties,geometry of internal radar reflectors, as well as surface strain rates and velocity/topography changes using Ice-Penetrating Radar and differential Global Positioning System, (2) numerical modeling study of near future(~100-1000 years) evolution of Kamb Ice Stream. The field component will be focused on the bulge-to-trunk transition, which is located at the present time just downstream of the so-called camp UpC. Reactivation of Kamb Ice Stream should be reflected in a downstream migration of the bulge-trunk transition at possibly high rates (bulge migration rates of ~km/yr occur on surging mountain glaciers). The modeling<br/>component will be used to generate predictions regarding the near-future behavior of Kamb Ice Stream. This project will provide training opportunities for at least two undergraduate students (per year) at St. Olaf College and for one<br/>undergraduate student (per year) at UCSC. This collaboration will bring together scientists from three different types of US institutions: (1) a liberal arts college (St.Olaf College), (2) a public research university (UCSC) and (3) a NASA research laboratory (JPL). The project will also help build a new glaciological research program at UCSC. Project results will be incorporated into undergraduate and graduate courses at UCSC and will be made available<br/>to the general public and educators through downloadable graphics and animations posted on the research website of the UCSC PI. Field data resulting from the project will be posted in the Antarctic Glaciological Data Center for use by other investigators.
Mosley-Thompson<br/>0820779<br/><br/>This MRI award supports the acquisition of an inductively coupled-sector field mass spectrometer (ICP-SFMS) to extract atmospheric trace element histories from ice cores and to assess contemporary water quality. The intellectual merit and the scientific motivation for acquiring this instrument arises from the urgency to document and understand both contemporary and past Earth system changes. Trace elements are exceptional tools for reconstructing past processes in the Earth?s system and as some toxic species are produced by human activities, for monitoring the global anthropogenic footprint. The ICP-SFMS allows simultaneous analysis of numerous trace and ultra-trace elements from small mass samples and will allow new proxy information to be extracted from both new and archived ice cores. The analyses will make it possible to identify sources of impurities in ice cores and other water samples from which knowledge about past atmospheric circulation patterns, anthropogenic emissions, extraterrestrial contributions and volcanic circulation patterns can be derived. The broader impacts of the work relate to the societal relevance of the science and the strong education and outreach activities of the principal investigators. Students will receive training on state-of-the-art instrumentation which will support their graduate research training.
0538097<br/>Anandakrishnan<br/><br/>This award supports a project to intensively study a subglacial Antarctic lake near the geographic South Pole using seismic and radar methods. These ground-based experiments are better suited to determine the presence of water and its thickness than are airborne methods. We hypothesize that there are two end-member explanations for this feature: either the lake is thawed, but freezing on (and likely to have been freezing on through much of the current interglacial period), or it is a frozen, relict lake for which the high basal radar reflectivity is due to intergranular water in a permafrost-like layer beneath the ice. The seismic experiment we propose is ideally suited to examine these alternatives. Intermediate cases of, e.g., a thawed saturated sedimentary base or a smooth crystalline basement layer would also be resolved by this experiment. Seismic reflections are sensitive to changes in acoustic impedance which is strongly variable with fluid content, porosity, and lithology. Water has low density relative to most rocks and low seismic velocity (and nil shear wave velocity) relative to both ice and rock. Thus, discriminating between subglacial water and subglacial rock is a task ideally suited to the seismic reflection technique. This project has significant impacts outside the directly affected fields of Antarctic glaciology and geology. The lake (either thawed or sediments with thin liquid layers around the matrix particles) will have the potential for harboring novel life forms. The experiment has the potential for expanding our information about the newest frontier in life on Earth. The collaboration between PIs in the seismic community and the marine acoustics community will foster cross-disciplinary pollination of ideas, techniques, and tools. In addition to traditional seismic techniques, new methods of data analysis that have been developed by acousticians will be applied to this problem as an independent measure of lake properties. We will train students who will have a wider view of seismology than would be possible in a traditional ocean acoustics or traditional geoscience seismology program of study.
Abstract<br/><br/>Since the advent of Antarctic continental glaciation, the opening of the Drake Passage between South America and the Antarctic Peninsula, and the onset of cooling of the Southern Ocean ~38-25 million years ago, evolution of the Antarctic marine biota has been driven by the development of extreme cold temperatures. Because they live at very low and stable temperatures, Antarctic fishes of the suborder Nototheniodei are particularly attractive as models for understanding the mechanisms of biomolecular cold adaptation, or the compensatory restructuring of biochemical and physiological systems to preserve biological function in cold thermal regimes. Two interrelated and potentially co-evolved systems, the tubulins that form microtubules and the chaperonin-containing TCP1 (t-complex protein-1) complex (CCT) that assists the folding of tubulins, provide an unparalleled opportunity to elucidate these mechanisms. This research will yield new and important knowledge regarding: 1) cold adaptation of microtubule assembly and of chaperonin function; and 2) the co-evolutionary origin of tubulin-binding specificity by CCT. The first objective of this proposal is to determine the contributions of five novel amino acid substitutions found in Antarctic fish beta-tubulins to microtubule assembly at cold temperature. The second objective is to establish a chaperonin folding system in vitro using CCT purified from testis tissue of Antarctic fishes and to evaluate its thermal properties and mechanism. The third objective is to evaluate, through phylogenetically controlled contrasts, the hypothesis that CCT and its tubulin substrates from Antarctic fishes have co-evolved to function at cold temperatures. The broader impacts of this proposal include introduction of graduate and REU undergraduate students of Northeastern University to state-of-the-art biochemical, cellular, and molecular-biological research relevant to ecological and environmental issues of the Antarctic marine ecosystem. Because much of the research on the biogenesis and function of cold-adapted proteins will be performed in the field at Palmer Station, these students will gain invaluable experience in the practical considerations of expeditionary biological science. The research also will increase knowledge about molecular cold adaptation in one of the Earth's extreme environments, and hence is relevant to the formulation of refined hypotheses regarding potential extraterrestrial life on Mars or Europa. The cold-functioning chaperonin protein folding system will be of great value to the biopharmaceutical and biotechnological industries for use in folding insoluble proteins.
Cole-Dai<br/>0538553<br/><br/>This award supports a project that will contribute to the US West Antarctica Ice Sheet Ice Divide ice core (WAIS Divide) project by developing new instrumentation and analytical procedures to measure concentrations of major ions (Cl-, NO3-, SO42-, Na+, K+, NH4+, Mg2+, Ca2+). A melter-based, continuous flow, multi-ion-chromatograph technique (CFA-IC) has been developed recently at South Dakota State University (SDSU). This project will further expand and improve the CFA-IC technique and instrumentation and develop procedures for routine analysis of major ions in ice cores. In addition, training of personnel (operators) to perform continuous, high resolution major ion analysis of the deep core will be accomplished through this project. The temporal resolution of the major ion measurement will be as low as 0.5 cm with the fully developed CFA-IC technique. At this resolution, it will be possible to use annual cycles of sulfate and sea-salt ion concentrations to determine annual layers in the WAIS Divide ice core. Annual layer counting using CFA-IC chemical measurements and other high resolution measurements will contribute significantly to the major WAIS Divide project objective of producing precisely (i.e., annually) dated climate records. The project will support the integration of research and education, train future scientists and promote human resource development through the participation of graduate and undergraduate students. In particular, undergraduate participation will contribute to a current REU (Research Experience for Undergraduates) chemistry site program at SDSU. Development and utilization of multi-user instrumentation will promote research collaboration and advance environmental science. NSF support for SDSU will contribute to the economic development and strengthen the infrastructure for research and education in South Dakota.
This award supports a project to examine an existing ice core of opportunity from South Pole (SPRESO core) to develop a 2000+ year long climate record. SPRESO ice core will be an annually dated, sub-annually-resolved reconstruction of past climate (atmospheric circulation, temperature, precipitation rate, and atmospheric chemistry) utilizing continuous, co-registered measurements (n=45) of: major ions, trace elements, and stable isotope series, plus selected sections for microparticle size and composition. The intellectual merit of this project relates to the fact that few 2000+ year records of this quality exist in Antarctica despite increasing scientific interest in this critical time period as the framework within which to understand modern climate. The scientific impact of this ice core investigation are that it will provide an in-depth understanding of climate variability; a baseline for assessing modern climate variability in the context of human activity; and a contribution to the prediction of future climate variability. The broader impact of this work is that the proposed research addresses important questions concerning the role of Antarctica in past, present, and future global change. Results will be translated into publicly accessible information through public lectures, media appearances, and an extensive outreach activity housed in our Institute. Our ice core activities provide a major basis for curriculum in K-12 and University plus a basis for several field and laboratory based graduate theses and undergraduate student projects. The project will support one PhD student for 3 years and undergraduate salaries. The Climate Change Institute has a long history of gender and ethnically diverse student and staff involvement in research.
0538657<br/>Severinghaus<br/>This award supports a project to develop high-resolution (20-yr) nitrogen and oxygen isotope records on trapped gases in the WAIS Divide ice core (Antarctica), with a comparison record for chronological purposes in the GISP2 (Greenland) ice core. The main scientific objective is to provide an independent temperature-change record for the past 100,000 years in West Antarctica that is not subject to the uncertainty inherent in ice isotopes (18O and deuterium), the classical paleothermometer. Nitrogen isotopes (Delta 15N) in air bubbles in glacial ice record rapid surface temperature change because of thermal fractionation of air in the porous firn layer, and this isotopic anomaly is recorded in bubbles as the firn becomes ice. Using this gas-based temperature-change record, in combination with methane data as interpolar stratigraphic markers, the proposed work will define the precise relative timing of abrupt warming in Greenland and abrupt cooling at the WAIS Divide site during the millennial-scale climatic oscillations of Marine Isotopic Stage 3 (30-70 kyr BP) and the last glacial termination. The nitrogen isotope record also provides constraints on past firn thickness, which inform temperature and accumulation rate histories from the ice core. A search for possible solar-related cycles will be conducted with the WAIS Divide Holocene (Delta 15N.) Oxygen isotopes of O2 (Delta 18Oatm) are obtained as a byproduct of the (Delta 15N) measurement. The gas-isotopic records will enhance the value of other atmospheric gas measurements in WAIS Divide, which are expected to be of unprecedented quality. The high-resolution (Delta 18Oatm) records will provide chronological control for use by the international ice coring community and for surface glacier ice dating. Education of a graduate student, and training of a staff member in the laboratory, will contribute to the nation's human resource base. Outreach activities in the context of the International Polar Year will be enhanced. International collaboration is planned with the laboratory of LSCE, University of Paris.
Johnson/0632161<br/><br/>This award supports a project to create a "Community Ice Sheet Model (CISM)". The intellectual merit of the proposed activity is that the development of such a model will aid in advancing the science of ice sheet modeling. The model will be developed with the goal of assuring that CISM is accurate, robust, well documented, intuitive, and computationally efficient. The development process will stress principles of software design. Two complementary efforts will occur. One will involve novel predictive modeling experiments on the Amundsen Sea Embayment region of Antarctica with the goal of understanding how interactions between basal processes and ice sheet dynamics can result in abrupt reconfigurations of ice-sheets, and how those reconfigurations impact other Earth systems. New modeling physics are to include the higher order stress terms that allow proper resolution of ice stream and shelf features, and the associated numerical methods that allow higher and lower order physics to be coexist in a single model. The broader impacts of the proposed activity involve education and public outreach. The model will be elevated to a high standard in terms of user interface and design, which will allow for the production of inquiry based, polar and climate science curriculum for K-12 education. The development of a CISM itself would represent a sea change in the way that glaciological research is conducted, eliminating numerous barriers to progress in polar research such as duplicated efforts, lack of transparency in publication, lack of a cryospheric model for others to link to and reference, and a common starting point from which to begin investigation. As the appropriate interfaces are developed, a curriculum to utilize CISM in education will be developed. Students participating in this grant will be required to be involved in public outreach through various mechanisms including local and state science fairs. The model will also serve as a basis for educating "a new generation" of climate scientists. This project is relevant to the International Polar Year (IPY) as the research team is multi-institutional and multi-disciplinary, will bring new groups and new specialties into the realm of polar research and is part of a larger group of proposals whose research focuses on research in the Amundsen Sea Embayment Plan region of Antarctica. The project is international in scope and the nature of software development is quite international, with firm commitments from the United Kingdom and Belgium to collaborate. In addition there will be an international external advisory board that will be used to guide development, and serve as a link to other IPY activities.
Caffee/0839042 <br/><br/>This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>This award supports a project to measure the concentration of the cosmogenic radionuclide, Beryllium-10 in the deep WAIS divide ice core. Since cosmogenic radionuclides are one of the key parameters used for absolute dating of the ice core and deriving paleoaccumulation rates, it is essential that these measurements be made quickly and efficiently, and that the information is disseminated as soon as the results are available. The intellectual merit of the project is that it will allow a comparison to be made between the core from WAIS Divide and previously measured cosmogenic radionuclide records from Arctic ice cores, particularly GISP2 and GRIP This project will enable scientists to delineate those processes acting at a local level from those that produce global effects and will provide independent chronological markers to aid in the reconstruction of the WAIS Divide ice core chronology. The cosmogenic 10Be profile can also be used to investigate the possible role of solar activity on climate. The direct comparison of radionuclide concentrations with paleoclimate records in ice cores from different sites will provide more insight in the timing and magnitude of solar forcing of climate. The broader impacts of this project include: (i) the formation of a multi-disciplinary team of collaborators for the interpretation of future analyses of cosmogenic radionuclide data from the WAIS divide and other ice cores. (ii) the involvement and training of graduate and undergraduate students in the large scale project of climate research through detailed studies of ice samples. (iii) the opportunity to highlight to a wide range of lab visitors and students from local K-12 schools the importance of ice core and climate change studies.<br/><br/>This award does not involve field work in Antarctica.
The primary objective of this research is to investigate polar marine psychrophilic bacteria for their potential to nucleate ice using a combination of microbiological, molecular biological and atmospheric science approaches in the laboratory. Very little is known about how psychrophiles interact and cope with ice or their adaptations to conditions of extreme cold and salinity. This work will involve a series of laboratory experiments using a novel freeze-tube technique for assaying freezing spectra which will provide quantitative information on: (i) the temperature-dependent freezing rates for heterogeneously frozen droplets containing sea-ice bacteria, (ii) the proportional occurrence of ice-nucleation activity versus anti-freeze activity among sea-ice bacterial isolates and (iii) the temperature-dependent freezing rates of bacteria with ice-nucleation activity grown at a range of temperatures and salinities. The compound(s) responsible for the observed activity will be identified, which is an essential step towards the development of an in-situ bacterial ice-nucleation detection assay that can be applied in the field to Antarctic water and cloud samples.<br/> One of the goals of this work is to better understand survival and cold adaptation processes of polar marine bacteria confronted with freezing conditions in sea ice. Since sea ice strongly impacts polar, as well as the global climates, this research is of significant interest because it will also provide data for accessing the importance of bacterial ice nucleation in the formation of sea ice. These measurements of ice-nucleation rates will be the first high-resolution measurements for psychrophilic marine bacteria. Another goal is to better understand the impact of bacterial ice initiation processes in polar clouds by making high-resolution measurements of nucleation rates for cloud bacteria found over Arctic and Antarctic regions. Initial measurements indicate these bacteria nucleate ice at warmer temperatures and the effect in polar regions may be quite important, since ice can strongly impact cloud dynamics, cloud radiative properties, precipitation formation, and cloud chemistry. If these initial measurements are confirmed, the data collected here will be important for improving the understanding of polar cloud processes and models. A third goal is to better understand the molecular basis of marine bacterial ice nucleation by characterizing the ice-nucleation compound and comparing it with those of known plant-derived ice-nucleating bacteria, which are the only ice-nucleating bacteria examined in detail to date. The proposed activity will support the beginning academic career of a post-doctoral researcher and will serve as the basis for several undergraduate student laboratory projects. Results from this research will be widely published in various scientific journals and outreach venues.
0538494<br/>Meese<br/>This award supports a project for physical properties research on snow pits and firn/ice cores with specific objectives that include stratigraphic analysis including determination of accumulation rates, annual layers, depth hoar, ice and wind crusts and rates of grain growth with depth. Studies of firn densification rates and how these parameters relate to the meteorology and climatology over the last 200 years of snow accumulation in Antarctica will also be investigated. The project will also determine the seasonality of accumulation by co-registration of stratigraphy and chemistry and determination of chemical species at the grain boundaries, how these may change with depth/densification (and therefore temperature), precipitation, and may affect grain growth. Fabric analyses will be made, including variation with depth, location on undulations and if any variation exists with climate/chemistry. The large spatial coverage of the US ITASE program offers the opportunity to determine how these parameters are affected by a large range of temperature, precipitation and topographic effects. The intellectual merit of the project includes the fact that ITASE is the terrestrial equivalent of a polar research vessel that provides a unique, logistically efficient, multi-dimensional (x, y, z and time) view of the atmosphere, ice sheet and their histories. Physical properties measurements/ analyses are an integral part of understanding the dynamic processes to which the accumulated snow is subjected. Recent advancements in the field along with multiple core sites provide an excellent opportunity to gain a much broader understanding of the spatial, temporal and physical variables that impact firnification and the possible resultant impact on climatic interpretation. In terms of broader impacts, the data collected by US ITASE and its international ITASE partners is available to a broad scientific community. US ITASE has an extensive program of public outreach and provides significant opportunities for many students to experience multidisciplinary Antarctic research. A graduate student, a post-doctoral fellow and at least one undergraduate would be funded by this work. Dr. Meese is also a member of the New England Science Collaborative, an organization that educates the public on climate change based on recent scientific advancements.
This award supports an investigation of spatial variations of ice temperature and subglacial conditions using available ice-penetrating radar data around a future deep ice coring site near the Ross and Amundsen flow divide of West Antarctic Ice Sheet. Besides geometry of reflection layers the focus will be on intensities of radar echoes from within ice deeper than several hundred meters and will also examine echoes from the bed. Preliminary studies on theory and comparison with Japanese radar data from East Antarctica suggest that large spatial variations of the vertical gradient of radar echoes from within ice exist and are caused primarily by ice temperature and secondarily by crystal-orientation fabric. The hypothesis that the vertical gradient is a proxy of ice temperature will be tested. The project will utilize an existing data set from the Support Office for Aerogeophysical Research in Antarctica (SOAR) and will complement work already underway at University of Texas to analyze the radar data. The project will provide undergraduate research experience with an emphasis on computer analysis of time series and large data sets as well as development of web-based resource of results and methods and will support an international collaboration between US and Japan through discussions on the preliminary results from their study sites. Practical procedures developed through this study will be downloadable from the project's web site in the third year and will allow investigation of other ice sheets using existing radar data sets. This project will contribute to the interpretation of the future inland West Antarctic ice core and will help in the understanding of ice sheet history and climate change.
The goal of this proposal to bring two groups of undergraduate students to the Antarctic, where they will participate in the collection of data on seabird abundance and behavior. This proposal combines research on the dynamics of seabirds that feed on Antarctic krill, with the teaching of mathematical modeling of foraging behavior and spatial statistics. Students will learn a broad collection of skills through collection of data on physical and biological oceanography as part of the research project that focuses on seabirds. The research goal of this proposal is to learn how foraging seabirds in the Antarctic respond to changes in the abundance and distribution of their prey, primarily Antarctic krill. The approach will be to study bird behavior in the vicinity of krill swarms, and to contrast this behavior to that in areas lacking krill. From these comparisons, foraging models that will make predictions about the dispersion of birds under differing levels of krill abundance will be built. The long-term goal is to be able to make predictions about the impact upon seabirds of future changes in krill stocks. Field work will be conducted in the vicinity of Elephant Island in two field seasons. In each season, the insular shelf north of Elephant Island will be surveyed and the abundance, distribution and behavior of seabirds will be recorded. The primary objective will be to quantify the linkage between prey abundance and bird behavior, with the long-term goal of using information on bird behavior to index long-term changes in the prey base. The teaching goal of this proposal is twofold. First, the project will expose inner city college students to a spectacular and economically important ecosystem. Through their work on an oceanographic research vessel, students will be exposed to a broad diversity of research topics and methods, ranging from behavioral ecology to physical oceanography. Second, back at Staten Island, students will participate in the development of a mathematical biology initiative at the College of Staten Island. Here students will be encouraged to apply basic mathematical reasoning and computer modeling to a real problem - that of determining how foraging choices made by seabirds can ultimately impact their reproductive success.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports project to test and develop approaches for using thermoluminescence techniques to determine the age of Antarctic marine sediments. <br/><br/>Quaternary (last 2 million yrs) marine sediments surrounding Antarctica record the waxing and waning of ice shelves and ice sheets, and also other paleoclimatic information, yet accurate chronologies of these sediments are difficult to obtain. Such chronologies provide the essential foundation for study of geological processes in the past. Within the range of radiocarbon (14C) dating (less than 30-40 thousand yrs, note - "ka" below means 1000 yrs) 14C dates can be inaccurate because of a variable 14C reservoir effect, and beyond 30-40 ka few methods are applicable. Photon-stimulated-luminescence sediment dating (photonic dating) of eolian and waterlain deposits in temperate latitudes spans the range from decades to hundreds of ka, but marine sediments in and around Antarctica pose special difficulty because of the potentially restricted exposure to daylight (the clock-zeroing process) of most detrital grains before deposition. This proposal will test the clock-zeroing assumption in representative Antarctic glaciomarine depositional settings, and thereby determine the potential reliability of photonic dating of Antarctic marine sediments.<br/><br/>Limited luminescence dating and signal-zeroing tests using glaciomarine and marine deposits have been conducted in the northern temperate and polar latitudes, but the effects on luminescence of the different glaciomarine depositional processes have never been studied in detail. Furthermore, the depositional settings around Antarctica are almost entirely polar, with consequent specific processes operating there. For example, transport of terrigenous suspensions by neutrally buoyant "cold-tongue" (mid-water) plumes may be common around Antarctica, yet the effect of such transport on luminescence zeroing is unknown. Typical marine cores near Antarctica may contain an unknown fraction of detrital grains from cold-tongue and near-bottom suspensions. Thus the extent to which the polar glaciomarine depositional processes around Antarctica may limit the potential accuracy of photonic dating of marine cores is unknown (age overestimates would result if grains are not exposed to daylight before deposition).<br/><br/>This project will collect detrital grains from a variety of "zero-age" (modern) marine depositional settings within the Antarctic Peninsula, where representative Antarctic depositional processes have been documented and where logistics permit access. Suspensions will be collected from four fjords representing a transect from polar through subpolar conditions. Suspensions will be collected from two stations and from up to 3 depths (surface and 2 deep plumes) at each station. Sediment traps will be deployed at two of these fjord settings. As well, core-top sediments will be collected from several sites. All samples will be shielded from light and transported to Reno, Nevada, for luminescence analyses.<br/><br/>Systematic study of the effectiveness of luminescence-clock-zeroing in Antarctic glaciomarine settings will determine if photonic dating can be reliable for future applications to Antarctic marine sediments. Refined sedimentological criteria for the selection of future samples for photonic dating are expected from this project. A photonic-dating capability would provide a numeric geochronometer extending well beyond the age range of 14C dating. Such a capability would permit answering a number of broader questions about the timing and extent of past glaciations near and on the Antarctic shelves.
9416989 Cande There is a significant misfit, ranging from 50 to 250 kms, of magnetic anomalies 13, 18, and 20 along the section of the Southeast Indian Ridge east of the Balleny fracture zone. This project will survey the critical plate boundaries and relevant magnetic anomalies in the South Tasman Sea, Emerald Basin and north of the Ross Sea embayment that will better constrain the history of the this plate motion. Data collected will be used to test the hypothesis that the Antarctic side of the ridge acted as a separate plate, attached to Marie Byrd Land, and that these anomalies indirectly indicate motion between East and West Antarctica between anomalies 24 and 13 time. Surveys will be conducted on the R/V W M Ewing in the Tasman Sea, and on the R/V N B Palmer north of the Ross Sea embayment. ***
Antarctic notothenioid fish evolved antifreeze (AF) proteins that prevent ice crystals that enter their body fluids from growing, and thereby avoid freezing in their icy habitats. However, even in the extreme cold Antarctic marine environment, regional gradations of severity are found. The biological correlate for environmental severity in fish is the endogenous ice load, which likely determines the tolerable limit of environmental severity for notothenioid habitation. The endogenous ice load develops from environmental ice crystals entering through body surfaces and somehow localizing to the spleen. How prone the surface tissues are to ice entry, how ice reaches the spleen, and what the fate of splenic ice is, requires elucidation. Spleen sequestration of ice raises the hypothesis that macrophages may play a role in the translocation and perhaps elimination of AF-bound ice crystals. Antifreeze glycoproteins (AFGP) act in concert with a second, recently discovered antifreeze called antifreeze potentiating protein (AFPP), necessitating an assessment of the contribution of AFPP to freezing avoidance. Recent research suggests that the exocrine pancreas and the anterior stomach, not the liver, synthesize AFGPs and secrete them into the intestine, from where they may be returned to the blood. A GI-to-blood transport is a highly unconventional path for a major plasma protein and also begs the questions, What is the source of blood AFPP?. Why are two distinct AF proteins needed and what is the chronology of their evolution? What genomic changes in the DNA are associated with the development or loss of the antifreeze trait? Experiments described in this proposal address these interrelated questions of environmental, organismal, and evolutionary physiology, and will further our understanding of novel vertebrate physiologies, the limits of environmental adaptation, and climatically driven changes in the genome. The proposed research will (1) determine the temporal and spatial heterogeneity of environmental temperature and iciness in progressively more severe fish habitats in the greater McMurdo Sound area, and in the milder Arthur Harbor at Palmer Station. The splenic ice load in fishes inhabiting these sites will be determined to correlate to environmental severity and habitability. (2) Assess the surface tissue site of ice entry and their relative barrier properties in intact fish and isolated tissues preparations (3) Assess the role of immune cells in the fate of endogenous ice, (4) determine whether the blood AFGPs are from intestinal/rectal uptake, (5) examine the contribution of AFPP to the total blood AF activity (6) evaluate the progression of genomic changes in the AFGP locus across Notothenioidei as modulated by disparate thermal environments, in four selected species through the analyses of large insert DNA BAC clones. The origin and evolution of AFPP will be examined also by analyzing BAC clones encompassing the AFPP genomic locus. The broader impacts of the proposed research include training of graduate and undergraduate students in research approaches ranging from physical field measurements to cutting edge genomics. Undergraduate research projects have lead to co-authored publications and will continue to do so. Outreach includes establishing Wiki websites on topics of Antarctic fish biology and freeze avoidance, providing advisory services to the San Francisco Science Exploratorium, and making BAC libraries available to interested polar biologists. This research theme has repeatedly received national and international science news coverage and will continue to be disseminated to the public in that manner.
Recent studies of marine ecosystems show conflicting evidence for trophic cascades, and in particular the relative strength of the crustacean zooplankton-phytoplankton link. The Ross Sea is a natural laboratory for investigating this apparent conflict. It is a site of seasonally high abundances of phytoplankton, characterized by regions of distinct phytoplankton taxa; the southcentral polynya is strongly dominated by the colony-forming prymnesiophyte Phaeocystis antarctica, while coastal regions of this sea are typically dominated by diatoms or flagellate species. Recent studies indicate that, while the south-central polynya exhibits a massive phytoplankton bloom, the poor food quality of P. antarctica for many crustacean zooplankton prevents direct utilization of much of this phytoplankton bloom. Rather, evidence suggests that indirect utilization of this production may be the primary mechanism by which carbon and energy become available to those higher trophic levels. Specifically, we hypothesize that nano and microzooplankton constitute an important food source for crustacean zooplankton (largely copepods and juvenile euphausiids) during the summer period in the Ross Sea where the phytoplankton assemblage is dominated by the prymnesiophyte. In turn, we also hypothesize that predation by copepods (and other Crustacea) controls and structures the species composition of these protistan assemblages. We will occupy stations in the south-central Ross Sea Polynya (RSP) and Terra Nova Bay (TNB) during austral summer to test these hypotheses. We hypothesize that the diatom species that dominate the phytoplankton assemblage in TNB constitute a direct source of nutrition to herbivorous/omnivorous zooplankton (relative to the situation in the south-central RSP). That is, the contribution of heterotrophic protists to crustacean diets will be reduced in TNB. Our research will address fundamental gaps in our knowledge of food web structure and trophic cascades, and provide better understanding of the flow of carbon and energy within the biological community of this perennially cold sea. The PIs will play active roles in public education (K-12) via curriculum development (on Antarctic biology) and teacher trainer activities in the Centers for Ocean Science Education Excellence (COSEE-West), an innovative, NSF-funded program centered at USC and UCLA.
This project seeks to examine the importance of icebergs to the pelagic ecosystem of the North-West Weddell Sea. Atmospheric warming has been associated with retreating glaciers and the increasing prevalence of icebergs in the Southern Ocean over the last decade. The highest concentration of icebergs occurs in the NW Weddell Sea, where they drift in a clockwise pattern to the northeast, following the contours of the Antarctic Peninsula through an area dubbed "Iceberg Alley". Little is known about the impact of free-drifting icebergs on the pelagic ecosystem of the Weddell Sea or on the Southern Ocean as a whole. It is hypothesized that as drifting islands, icebergs of small to intermediate size (< 10 km in largest dimension) impart unique physical, chemical and biological characteristics to the surrounding water. Three general questions will be asked to address this hypothesis: 1) What are the dynamics (approximate size, abundance and spatial distribution) of free-drifting icebergs on temporal scales of days to months, based on correlation of field measurements with imagery derived from satellite sensors? 2) What is the relationship between the size of free-drifting icebergs and the structure of the associated pelagic communities? 3) What is the estimated combined impact of free-drifting icebergs in the NW Weddell Sea on the biological characteristics of the pelagic zone? This interdisciplinary study will use standard oceanographic sampling coupled with unique methodology for staging shipboard data from all types of sensors and survey methods to determine the sphere of influence for a diverse set of biological factors as a function of iceberg size. The exploratory research proposed here will provide critical data on the effects of atmospheric warming in the Antarctic Peninsula region. The recent prevalence of free drifting icebergs in the Southern Ocean should have a pronounced enrichment effect on the surrounding pelagic ecosystem, altering community dynamics. Enhanced primary production associated with these icebergs could influence the global carbon cycle since the Southern Ocean is considered a major sink for excess CO2 from the atmosphere. <br/>The proposed research will include an innovative education component through the Ocean Exploration Center (OEC), whose focus is to provide a comprehensive view of the oceans, intelligible to non-scientists and researchers alike, with direct access to state-of-the-art databases and selected websites. The OEC will allow users to access content which has been classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. The results from this iceberg project will be incorporated into the Antarctic Research division of the OEC, providing databases documenting the impact of free-drifting icebergs on the surrounding pelagic ecosystem. These data then will be extrapolated to evaluate the impact of icebergs on the ecosystem of the Weddell Sea. Graduate students, undergraduates, teachers and volunteers are an important part of the proposed field and laboratory work.
This project studies the relationship between opening of the Drake Passage and formation of the Antarctic ice sheet. Its goal is to answer the question: What drove the transition from a greenhouse to icehouse world thirty-four million years ago? Was it changes in circulation of the Southern Ocean caused by the separation of Antarctica from South America or was it a global effect such as decreasing atmospheric CO2 content? This study constrains the events and timing through fieldwork in South America and Antarctica and new work on marine sediment cores previously collected by the Ocean Drilling Program. It also involves an extensive, multidisciplinary analytical program. Compositional analyses of sediments and their sources will be combined with (U-Th)/He, fission-track, and Ar-Ar thermochronometry to constrain uplift and motion of the continental crust bounding the Drake Passage. Radiogenic isotope studies of fossil fish teeth found in marine sediment cores will be used to trace penetration of Pacific seawater into the Atlantic. Oxygen isotope and trace metal measurements on foraminifera will provide additional information on the timing and magnitude of ice volume changes. <br/><br/><br/><br/>The broader impacts include graduate and undergraduate education; outreach to the general public through museum exhibits and presentations, and international collaboration with scientists from Argentina, Ukraine, UK and Germany.<br/><br/><br/><br/>The project is supported under NSF's International Polar Year (IPY) research emphasis area on "Understanding Environmental Change in Polar Regions". This project is also a key component of the IPY Plates & Gates initiative (IPY Project #77), focused on determining the role of tectonic gateways in instigating polar environmental change.
Salps are planktonic grazers that have a life history, feeding biology and population dynamic strikingly different from krill, copepods or other crustacean zooplankton. Salps can occur in very dense population blooms that cover large areas and have been shown to have major impacts due to the their grazing and the production of fast-sinking fecal pellets. Although commonly acknowledged as a major component of the Southern Ocean zooplankton community, often comparable in biomass and distribution to krill, salps have received relatively little attention. Although extensive sampling has documented the seasonal abundance of salps in the Southern Ocean, there is a paucity of data on important rates that determine population growth and the role of this species in grazing and vertical flux of particulates. This proposed study will include: measurements of respiration and excretion rates for solitary and aggregate salps of all sizes; measurements of ingestion rates, including experiments to determine the size or concentration of particulates that can reduce ingestion; and determination of growth rates of solitaries and aggregates. In addition to the various rate measurements, this study will include quantitative surveys of salp horizontal and vertical distribution to determine their biomass and spatial distribution, and to allow a regional assessment of their effects. Measurements of the physical characteristics of the water column and the quantity and quality of particulate food available for the salps at each location will also be made. Satellite imagery and information on sea-ice cover will be used to test hypotheses about conditions that result in high densities of salps. Results will be used to construct a model of salp population dynamics, and both experimental and modeling results will be interpreted within the context of the physical and nutritional conditions to which the salps are exposed. This integrated approach will provide a good basis for understanding the growth dynamics of salp blooms in the Southern Ocean. Two graduate students will be trained on this project, and cruise and research experience will be provided for two undergraduate students. A portion of a website allowing students to be a virtual participant in the research will be created to strengthen students' quantitative skills. Both PI's will participate in teacher-researcher workshops, and collaboration with a regional aquarium will be developed in support of public education.
The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts.
The Larsen Ice Shelf is the third largest ice shelf in Antarctica and has continued a pattern of catastrophic decay since the mid 1990's. The proposed marine geologic work at the Larsen Ice Shelf builds upon our previous NSF-OPP funding and intends to test the working hypothesis that the Larsen B Ice Shelf system has been a stable component of Antarctica's glacial system since it formed during rising sea levels 10,000 years BP. This conclusion, if supported by observations from our proposed work, is an important first step in establishing the uniqueness and consequences of rapid regional warming currently taking place across the Peninsula. Our previous work in the Larsen A and B embayments has allowed us to recognize the signature of past ice shelf fluctuations and their impact on the oceanographic and biologic environments. We have also overcome many of the limitations of standard radiocarbon dating in Antarctic marine sequences by using variations in the strength of the earth's magnetic field for correlation of sediment records and by using specific organic compounds (instead of bulk sediment) for radiocarbon dating. We intend to pursue these analytical advances and extend our sediment core stratigraphy to areas uncovered by the most recent collapse of the Larsen B Ice Shelf and areas immediately adjacent to the Larsen C Ice Shelf. In addition to the core recovery program, we intend to utilize our unique access to the ice shelf front to continue our observations of the snow/ice stratigraphy, oceanographic character, and ocean floor character. Sediment traps will also be deployed in order to measure the input of debris from glaciers that are now surging in response to the ice shelf collapse. This proposal is a multi-institutional, international (USAP, Italy, and Canada) effort that combines the established expertise in a variety of disciplines and integrates the research plan into the educational efforts of primarily undergraduate institutions but including some graduate education. This is a three-year project with field seasons planned with flexibility in order to accommodate schedules for the RVIB L.M. Gould. The Antarctic Peninsula is undergoing greater warming than almost anywhere on Earth, perhaps associated with human-induced greenhouse effects. Our proposed work contributes to understanding of these changes where they are occurring first and with greatest magnitude and impact upon the environment.
Abstract<br/>OPP-0089451<br/>P.I. William Detrich<br/><br/> As the Southern Ocean cooled during the past 25 million years, the fishes of Antarctic coastal waters evolved biochemical and physiological adaptations that maintain essential cellular processes such as cytoskeletal function and gene transcription. Their microtubules, for example, assemble and function at body temperatures (-1.8 to +1 oC) well below those of homeotherms and temperate poikilotherms. The long range goals of the proposed research are to determine, at the molecular level, the adaptations that enhance the assembly of microtubules, the function of kinesin motors, and the expression of globin and tubulin genes. The specific objectives are three: 1) to determine the primary sequence changes and posttranslational modifications that contribute to the efficient polymerization of Antarctic fish tubulins at low temperatures; 2) to evaluate the biochemical adaptations required for efficient function of the brain kinesin motor of Antarctic fishes at low temperatures; and 3) to characterize the structure, organization, and promoter-driven expression of globin and tubulin genes from an Antarctic rockcod (Notothenia coriiceps) and a temperate congener (N. angustata). Brain tubulins from Antarctic fishes differ from those of temperate and warm-blooded vertebrates both in unusual primary sequence substitutions (located primarily in lateral loops and the cores of tubulin monomers) and in posttranslational C-terminal glutamylation. Potential primary sequence adaptations of the Antarctic fish tubulins will be tested directly by production of wild-type and site directed tubulin mutants for functional analysis in vitro. The capacity of mutated and wild-type fish tubulins to form "cold-stable" microtubules will be determined by measurement of their critical concentrations for assembly and by analysis of their dynamics by video-enhanced microscopy. Three unusual substitutions in the kinesin motor domain of Chionodraco rastrospinosus may enhance mechanochemical activity at low temperature by modifying the binding of ATP and/or the velocity of the motor. To test the functional significance of these changes, the fish residues will be converted individually, and in concert, to those found in mammalian brain kinesin. Reciprocal substitutions will be introduced into the framework of the mammalian kinesin motor domain. After production in Escherichia coli and purification, the functional performance of the mutant motor domains will be evaluated by measurement of the temperature dependence of their ATPase and motility activities. Molecular adaptation of gene expression in N. coriiceps will be analyzed using an a-globin/b-globin gene pair and an a-tubulin gene cluster. Structural features of N. coriiceps globin and tubulin gene regulatory sequences (promoters and enhancers) that support efficient expression will be assessed by transient transfection assay of promoter/luciferase reporter plasmid constructs in inducible erythrocytic and neuronal model cell systems followed by assay of luciferase reporter activity. Together, these studies should reveal the molecular adaptations of Antarctic fishes that maintain efficient cytoskeletal assembly, mechanochemical motor function, and gene expression at low temperatures. In the broadest sense, this research program should advance the molecular understanding of the poikilothermic mode of life.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a demonstration project to prove the viability of shallow ship-based geological drilling while simultaneously collecting useful cores for assessing the early history of the Antarctic ice sheets. For over three decades, U.S. scientists and their international colleagues exploring the shallow shelves and seas along the margins of Antarctic have been consistently frustrated by their inability to penetrate through the over-compacted glacial diamictons encountered at shallow sub bottom depths (within the upper 10 m) over these terrains. This is particularly frustrating because advanced high resolution seismic reflection techniques clearly show in many areas the presence of older successions of Neogene and even Paleogene sequences lying just beneath this thin veneer of diamictons. Until the means are developed to recover these sequences, a detailed history of the Antarctic ice sheets, which is an essential prerequisite to understanding Cenozoic paleoclimate and future climate change on a global scale, will remain an elusive and unobtainable goal. After four years of study and evaluation with the aid of a professional engineer (and over the course of two workshops), the SHALDRIL Committee, an interested group of U.S. scientists, has identified at least two diamond-coring systems deemed suitable for use on existing ice-breaking U.S. Antarctic Research Program vessels. The goal of this project is to employ diamond-coring technology on the RV/IB Nathaniel B. Palmer in order to test out and demonstrate the feasibility of both ship-based diamond coring and down-hole logging. For this "demonstration cruise" coring will be attempted along a high-resolution seismic reflection profile on the continental shelf adjacent to Seymour Island, Antarctic Peninsula, an area of high scientific interest in its own right. Here the well-defined geologic section is estimated to range from Eocene to Quaternary in age, effectively spanning the "Greenhouse-Icehouse" transition in the evolution of Antarctic/global climate. A complete record of this transition has yet to be obtained anywhere along the Antarctic margin. Following core recovery, this project will result in correlation of the paleoclimate records from the new cores with detailed fluctuations of the ice margin recorded at higher latitudes in the eastern Ross Sea by the recently concluded, fast-ice-based Cape Roberts Project. If successful, this mobile and flexible drilling system will then be available to the broader scientific community for further research in paleoenvironmental conditions and other areas of science that are currently hindered by the present gap that exists in the US Antarctic Program's technical capability to explore the Antarctic shelves between the shore-line/fast-ice margin and the continental slope. SHALDRIL will be able to operate effectively in the "no man's land" that presently exists between the near shore (where the fast-ice-based Cape Roberts Project was successful) and the upper slope (where the Ocean Drilling Program's vessel JOIDES Resolution becomes most efficient). This technological breakthrough will not only allow major outstanding scientific problems of the last three decades to be addressed, but will also favorably impact many current U.S. and SCAR (ICSU Scientific Committee on Antarctic Research) Antarctic or drilling-related initiatives, such as WAIS, ANTIME, ANDRILL, ANTEC, IMAGES, PAGES, GLOCHANT (including PICE), MARGINS, ODP, and STRATAFORM.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research to study the region recently occupied by the Larsen Ice Shelf in the Antarctic Peninsula. Over the last 10 years, scientists have observed a dramatic decay and disintegration of floating ice shelves along the northern end of the Antarctic Peninsula. Meteorological records and satellite observations indicate that this catastrophic decay is related to regional warming of nearly 3 degrees C in the last 50 years. While such retreat of floating ice shelves is unprecedented in historic records, current understanding of the natural variability of ice shelf systems over the last few thousand years is not understood well. This award supports a program of marine geologic research directed at filling this knowledge gap by developing an understanding of the dynamics of the northern Larsen Ice Shelf during the Holocene epoch (the last 10,000 years). The Larsen Ice Shelf is located in the NW Weddell Sea along the eastern side of the Antarctic Peninsula and is currently undergoing a rapid, catastrophic retreat as documented by satellite imagery over the past five years. While the region of the northern Antarctic Peninsula has experienced a pronounced warming trend over the last 40 years, the links between this warming and global change (i.e. greenhouse warming) are not obvious. Yet the ice shelf is clearly receding at a rate unprecedented in historic time, leaving vast areas of the seafloor uncovered and in an open marine setting. This project will collect a series of short sediment cores within the Larsen Inlet and in areas that were at one time covered by the Larsen Ice Shelf. By applying established sediment and fossil criteria to the cores we hope to demonstrate whether the Larsen Ice Shelf has experienced similar periods of retreat and subsequent advance within the last 10,000 years. Past work in various regions of the Antarctic has focused on depositional models for ice shelves that allow one to discern the timing of ice shelf retreat/advance in areas of the Ross Sea, Antarctic Peninsula, and Prydz Bay. This research will lead to a much improved understanding of the dynamics of ice shelf systems and their role in past and future climate oscillations.
The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on determining minimum population estimates, distribution and seasonality for mysticete whales, especially blue whales. This will be accomplished using passive acoustic recorders deployed on the seafloor for a period of one to two years. The deployment of a large aperture autonomous hydrophone array in the Antarctic will incorporate the use of passive acoustics as a tool for mysticete whale detection and census. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts.
9317872 Cande This award supports a marine geophysical study of the southwest Pacific between 170 degrees E and 80 degrees W longitude. Recent marine geophysical cruises in the southwest Pacific and a high-resolution altimetric gravity field declassified Geosat data have allowed significant progress to be made towards deciphering the complex history of the rifting between the Campbell Plateau/Chatham Rise landmass and the Marie Byrd Land margin. A revised history of plate interactions explains many enigmatic features seen in the magnetic and gravity fields yet several questions remain that require new data for resolution. The marine geophysical survey proposed will: (1) elucidate plate interactions at the evolving triple junction between the Antarctic and Australian plates and the mosaic of SW Pacific plates; (2) define the boundaries and interactions of the mosaic of plates that accommodated the rapidly changing plate geometry associated with subduction of the Pacific-Phoenix ridge outboard of New Zealand, the rifting of continental and oceanic lithosphere, and hotspot activity; and (3) map the development of Pacific-Antarctic Ridge and the assembly of the several small plates into the modern day Pacific plate. This survey will help to elucidate the dynamics of plate interactions and the plate tectonic evolution of Antarctica and New Zealand. ***
The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on juvenile and adult krill and mesozooplankton prey distribution, using acoustic techniques. Studies will be conducted and krill shrinkage and mortality rates as well as krill aggregation behavior. The results will be analyzed in coordination with components involved in physical and biological models. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts.
The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on krill physiology, using measures of respiration, excretion, and proximate analysis. Additionally, the distribution and abundance of fishes and squid, which are krill predators, will be investigated using acoustic and net tow methods. This research will be coordinated with components studying krill in both the water column and under the ice. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a study to investigate the tectonic development of the southwestern Ross Sea region. Displacements between East and West Antarctica have long been proposed based on global plate circuits, apparent hot spot motions, interpretations of seafloor magnetic anomalies, paleomagnetism, and on geologic grounds. Such motions require plate boundaries crossing Antarctica, yet these boundaries have never been explicitly defined. This project will attempt to delineate the late Cenozoic - active boundary between East and West Antarctica along the Terror Rift in the western Ross Sea, where young structures have been identified, continuity between active extension and intracontinental structures can be established, and where accessibility via ship will allow new key data sets to be acquired. We will use multi-source marine and airborne geophysical data to map the fault patterns and volcanic structure along the eastern margin of the Terror Rift. The orientations of volcanic fissures and seamount alignments on the seafloor will be mapped using multibeam bathymetry. The volcanic alignments will show the regional extension or shear directions across the Terror Rift and the orientations of associated crustal stresses. Swath bathymetry and single channel seismic data will be used to document neotectonic fault patterns and the eastern limit of recent faulting. Delineation of neotectonic fault patterns will demonstrate whether the eastern margin of the Terror Rift forms a continuous boundary and whether the rift itself can be linked with postulated strike-slip faults in the northwestern Ross Sea. Seafloor findings from this project will be combined with fault kinematic and stress field determinations from the surrounding volcanic islands and the Transantarctic Mountains. The integrated results will test the propositions that the eastern boundary of the Terror Rift forms the limit of the major, late Cenozoic -active structures through the Ross Sea and that Terror Rift kinematics involve dextral transtension linked to the right-lateral strike-slip faulting to the north. These results will help constrain the kinematic and dynamic links between the West Antarctic rift system and Southern Ocean structures and any related motions between East and West Antarctica. In the first year, a collaborative structural analysis of existing multichannel and single channel seismic profiles and aeromagnetic data over the Terror Rift will be conducted. The location of volcanic vents or fissures and any fault scarps on the sea floor will be identified and a preliminary interpretation of the age and kinematics of deformation in the Terror Rift will be produced. Late in the second year, a one-month cruise on RVIB N.B. Palmer will carry out multibeam bathymetric and sidescan sonar mapping of selected portions of the seafloor of Terror Rift. Gravity, magnetics, seismic reflection and Bathy2000 3.5 kHz sub-bottom profile data will also be collected across the rift. In the third year, we will use these multisource data to map the orientations and forms of volcanic bodies and the extent and geometry of neotectonic faulting associated with the Terror Rift. The project will: 1) complete a map of neotectonic faults and volcanic structures in the Terror Rift; 2) interpret the structural pattern to derive the motions and stresses associated with development of the rift; 3) compare Terror Rift structures with faults and lineaments mapped in the Transantarctic Mountains to improve age constraints on the structures; and 4) integrate the late Cenozoic structural interpretations from the western Ross Sea with Southern Ocean plate boundary kinematics.
This project is a study of the evolution of the sea ice cover, and the mass balance of ice in the Amundsen Sea and the Bellingshausen Sea in the internationally collaborative context of the International Polar Year (2007-2008). In its simplest terms, the mass balance is the net freezing and melting that occurs over an annual cycle at a given location. If the ice were stationary and were completely to melt every year, the mass balance would be zero. While non-zero balances have significance in questions of climate and environmental change, the process itself has global consequences since the seasonal freeze-melt cycle has the effect of distilling the surface water. Oceanic salt is concentrated into brine and rejected from the ice into deeper layers in the freezing process, while during melt, the newly released and relatively fresh water stabilizes the surface layers. The observation program will be carried out during a drift program of the Nathaniel B. Palmer, and through a buoy network established on the sea ice that will make year-long measurements of ice thickness, and temperature profile, large-scale deformation, and other characteristics. The project is a component of the Antarctic Sea Ice Program, endorsed internationally by the Joint Committee for IPY. Additionally, the buoys to be deployed have been endorsed as an IPY contribution to the World Climate Research Program/Scientific Committee on Antarctic Research (WCRP/SCAR) International Programme on Antarctic Buoys (IPAB). While prior survey information has been obtained in this region, seasonal and time-series measurements on sea ice mass balance are crucial data in interpreting the mechanisms of air-ice-ocean interaction. <br/> The network will consist of an array of twelve buoys capable of GPS positioning. Three buoys will be equipped with thermister strings and ice and snow thickness measurement gauges, as well as a barometer. Two buoys will be equipped with meteorological sensors including wind speed and direction, atmospheric pressure, and incoming radiation. Seven additional buoys will have GPS positioning only, and will be deployed approximately 100 km from the central site. These outer buoys will be critical in capturing high frequency motion complementary to satellite-derived ice motion products. Additional buoys have been committed internationally through IPAB and will be deployed in the region as part of this program.<br/> This project will complement similar projects to be carried out in the Weddell Sea by the German Antarctic Program, and around East Antarctica by the Australian Antarctic Program. The combined buoy and satellite deformation measurements, together with the mass balance measurements, will provide a comprehensive annual data set on sea ice thermodynamics and dynamics for comparison with both coupled and high-resolution sea ice models.
This project will be the first systematic oceanographic study of the continental shelves of the Amundsen and Bellings-hausen Seas, and will include temperature and salinity profiling, water sampling for ocean chemistry, and continuous precision bathymetry. Upwelling warm deep water covers the Amundsen and Bellings-hausen shelves and delivers significant amounts of heat to the sea ice and fringing ice shelves. The regional precipitation is heavy, and has historically maintained a perennial ice cover. However, within the last few years satellite images have shown that the ice has been receding dramatically, with large areas of open water persisting through the winter in sectors that earlier had been ice-covered. These anomalous ice distributions are likely to have been accompanied by altered surface water properties, and possibly changes in the deep vertical circulation. There are indications that the conditions favoring a reduction in the sea ice may migrate westward toward the Ross Sea, and may have influenced a gradual warming over recent decades on the western side of the Antarctic Peninsula. The project will make use of the R/V Nathaniel B. Palmer in two cruises; one in the late austral summer 1993-1994, and a subse- quent cruise in September and October to observe late winter conditions.
Anderson OPP 9527876 Abstract This award supports continuation of a long term investigation of the continental shelf sediments that is aimed at examining the configuration of the West Antarctic Ice Sheet during the last glacial maximum, the events and mechanisms involved in its retreat, and the timing of retreat. The project involves: 1) characterizing variations in the ice sheet grounding zone in a latitudinal transect extending from Ross Sea to Bransfield Basin, 2) reconstructing conditions at the ice/bed interface prior to and after ice sheet retreat, and 3) radiometrically dating ice sheet retreat along this transect. Detailed sea floor imagery (multibeam and deep-tow side-scan sonar), high resolution seismic reflection profiles, and sediment cores will be used to map and characterize prior grounding zones. Of particular concern are features that indicate the amount and organization (channelization) of basal meltwater and the extent of bed deformation that occurred in different ice streams. The timing of ice sheet retreat provides information about the link between Northern and Southern hemisphere ice expansion, and the role of eustasy in ice sheet decoupling. This research should lead to better predictive models to determine which ice streams are most unstable and likely, therefore, to serve as Oweak linksO in the long term behavior of West Antarctic Ice Sheet.
The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on water-column primary production using direct experimental estimates, modeling restuls from a fast repetition rate fluorometer and modeling of primary production from both optical as well as biophysical models. This research will be coordinated with components focused on sea ice production and sea ice habitat. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts.
*** 9725024 Jacobs This project will study the dynamics of Circumpolar Deep Water intruding on the continental shelf of the West Antarctic coast, and the effect of this intrusion on the production of cold, dense bottom water, and melting at the base of floating glaciers and ice tongues. It will concentrate on the Amundsen Sea shelf, specifically in the region of the Pine Island Glacier, the Thwaites Glacier, and the Getz Ice Shelf. Circumpolar Deep Water (CDW) is a relatively warm water mass (warmer than +1.0 deg Celsius) which is normally confined to the outer edge of the continental shelf by an oceanic front separating this water mass from colder and saltier shelf waters. In the Amundsen Sea however, the deeper parts of the continental shelf are filled with nearly undiluted CDW, which is mixed upward, delivering significant amounts of heat to the base of the floating glacier tongues and the ice shelf. The melt rate beneath the Pine Island Glacier averages ten meters of ice per year with local annual rates reaching twenty meters. By comparison, melt rates beneath the Ross Ice Shelf are typically twenty to forty centimeters of ice per year. In addition, both the Pine Island and the Thwaites Glacier are extremely fast-moving, and have a significant effect on the regional ice mass balance of West Antarctica. This project therefore has an important connection to antarctic glaciology, particularly in assessing the combined effect of global change on the antarctic environment. The particular objectives of the project are (1) to delineate the frontal structure on the continental shelf sufficiently to define quantitatively the major routes of CDW inflow, meltwater outflow, and the westward evolution of CDW influence; (2) to use the obtained data set to validate a three-dimensional model of sub-ice ocean circulation that is currently under construction, and (3) to refine the estiamtes of in situ melting on the mass balance of the antarctic ice sheet. The observational program will be carried out from the research vessel Nathaniel B. Palmer in February and March, 1999. ***
9815961 BENGTSON The pack ice region surrounding Antarctica contains at least fifty percent of the world's population of seals, comprising about eighty percent of the world's total pinniped biomass. As a group, these seals are among the dominant top predators in Southern Ocean ecosystems, and the fluctuation in their abundance, growth patterns, life histories, and behavior provide a potential source of information about environmental variability integrated over a wide range of spatial and temporal scales. This proposal was developed as part of the international Antarctic Pack Ice Seals (APIS) program, which is aimed to better understand the ecological relationships between the distribution of pack ice seals and their environment. During January-February, 2000, a research cruise through the pack ice zone of the eastern Ross Sea and western Amundsen Sea will be conducted to survey and sample along six transects perpendicular to the continental shelf. Each of these transects will pass through five environmental sampling strata: continental shelf zone, Antarctic slope front, pelagic zone, the ice edge front, and the open water outside the pack ice zone. All zones but open water will be ice-covered to some degree. Surveys along each transect will gather data on bathymetry, hydrography, sea ice dynamics and characteristics, phytoplankton and ice algae stocks, prey species (e.g., fish, cephalopods and euphausiids), and seal distribution, abundance and diet. This physical and trophic approach to investigating ecological interactions among pack ice seals, prey and the physical environment will allow the interdisciplinary research team to test the hypothesis that there are measurable physical and biological features in the Southern Ocean that result in area of high biological activity by upper trophic level predators. Better insight into the interplay among pack ice seals and biological and physical features of Antarctic marine ecosystems will allow for a better prediction of fluctuation in seal population in the context of environmental change.
This award supports an integrated seismic, sedimentologic, and paleontologic investigation of glacio-marine stratigraphy of the Ross Sea continental shelf. The purpose of this work is to acquire seismic images and sediment cores of the glacial sediments toward a better understanding of the Cenozoic history of glaciation in the Ross Sea region. This investigation will utilize high resolution seismic profiling data to locate regions where the Pleistocene glacial till is thin or perhaps absent. Piston coring at these locations, if the till is penetrated, will provide sedimentary records of Cenozoic depositional environments and could provide important clues to fluctuations of the Antarctic Ice Sheets. The seismic profiling will provide a direct record of the grounding history of the Ross Ice Shelf during the Pleistocene and it will also allow first order correlations of Cenozoic sedimentary units that are represented by sediments recovered in the piston cores. This work will provide important proxy records of the history of both the West Antarctic Ice Sheet and the East Antarctic Ice Sheet and this, in turn, will provide important constraints to climate models.
OPP98-15823 P.I. Craig Smith<br/>OPP98-16049 P.I. David DeMaster<br/><br/>Primary production in Antarctic coastal waters is highly seasonal, yielding an intense pulse of biogenic particles to the continental shelf floor. This seasonal pulse may have major ramifications for carbon cycling, benthic ecology and material burial on the west Antarctic Peninsula (WAP) shelf. Thus, we propose a multii-disciplinary program to evaluate the seafloor accumulation, fate and benthic community impacts of bloom material along a transect of three stations crossing the Antarctic shelf in the Palmer LTER study area. Using a seasonal series of five cruises to our transect, we will test the following hypostheses: (1) A substantial proportion of spring/summer export production is deposited ont eh WAP shelf as phytodetritus or fecal pellets. (2) The deposited bloom production is a source of labile particulate organic carbon for benthos for an extended period of time (months). (3) Large amounts of labile bloom POC are rapidly subducted into the sediment column by the deposit-feeding and caching activities of benthos. (4) Macrobenthic detritivores sustain a rapid increase in biomass and abundance following the spring/summer particulate organic carbon pulse. To test these hypotheses, we will evaluate seabed deposition and lability of particulate organic carbon, patterns of particulate organic carbon mixing into sediments, seasonal variations in macrofaunal and megafaunal abundance, biomass and reproductive condition, and rates of particulate organic carbon and silica mineralization and accumulation in the seabed. Fluxes of biogenic materials and radionuclides into midwater particle traps will be contrasted with seabed deposition and burial rates to establish water-column and seabed preservation efficiencies for these materials. The project will substantially improve our understanding of the spring/summer production pulse on the WAP shelf and its impacts on seafloor communities and carbon cycling in Antarctic coastal systems.
This project explores the feasibility of applying fluid physical analyses to evaluate the importance of viscous forces over compensatory temperature adaptations in a polar copepod. The water of the Southern Ocean is 20 Celsius colder and nearly twice as viscous as subtropical seas, and the increased viscosity has significant implications for swimming zooplankton. In each of these warm and cold aquatic environments have evolved abundant carnivorous copepods in the family Euchaetidae. In this exploratory study, two species from the extremes of the natural temperature range (0 and 23C) will be compared to test two alternate hypotheses concerning how Antarctic plankton adapt to the low temperature-high viscosity realm of the Antarctic and to evaluate the importance of viscous forces in the evolution of plankton. How do stronger viscous forces and lower temperature affect the behavior of the Antarctic species? If the Antarctic congener is dynamically similar to its tropical relative, it will operate at the same Reynolds number (Re) as its tropical congener. Alternatively, if the adaptations of the Antarctic congener are proportional to size, they should occupy a higher Re regime, which suggests that the allometry of various processes is not constrained by having to occupy a transitional fluid regime. The experiments are designed with clearly defined outcomes regarding a number of copepod characteristics, such as swimming speed, propulsive force, and size of the sensory field. These characteristics determine not only how copepods relate to the physical world, but also structure their biological interactions. The results of this study will provide insights on major evolutionary forces affecting plankton and provide a means to evaluate the importance of the fluid physical conditions relative to compensatory measures for temperature. Fluid physical, biomechanical, and neurophysiological techniques have not been previously applied to these polar plankton. However, these approaches, if productive and feasible, will provide ways to explore the sensory ecology of polar plankton and the role of small-scale biological-physical-chemical interactions in a polar environment. Experimental evidence validating the importance of viscous effects will also justify further research using latitudinal comparisons of other congeners along a temperature gradient in the world ocean.
The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on the large-scale distribution, abundance and habitat of seabirds. This will be accomplished using strip-transect surveys and spatial analysis software and models to examine the large-scale data. This research will be coordinated with seabird studies which focus on seabird diet composition and small scale foraging behavior. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts.
The potential consequence of human impact on wildlife in Antarctica has been debated for many decades. Scientists, support staff and visitors in Antarctica may have an effect on the behavior and population dynamics of marine mammals and seabirds. Since the early 1970's, shipboard tourism has expanded to the point where it is timely to address the question, using a scientific research approach. The focus of this study is to examine the potential effect of tourist activities on the Adelie Penguins (Pygoscelis adeliae) in the Antarctic Peninsula. The topic has gathered the interest and opinions of those in private industry, the scientific community, government organizations and environmental groups. A key concern is that increases in these activities may eventually overcome the ability of research to address critical issues in a timely and biologically meaningful manner. The approach to understanding how tourism might affect Adelie Penguins must involve both a study of human activity and a study of natural variability in the physical environment. The ongoing Palmer Long Term Ecological Research program focuses on the ecosystem and its components and thus addresses the issues of natural variability. This project focuses on the human dimension and continues a tourist-monitoring program begun as a pilot project near Palmer Station. This site is in a geographic location that mirrors current patterns in tourism and tourist-wildlife interactions in the western Antarctic Peninsula. It also offers a setting that provides unique opportunities for human impacts research. This includes the presence of long-term databases that document environmental variability over multiple time and space scales in both marine and terrestrial habitats, and the ability to examine potential tourist impacts as part of controlled experiments. The results of the study will have important implications to understanding interactions between climate change and ecosystem response, and for detecting, mitigating and managing the consequences of human activities such as tourism.
This project is a study of the effects of antarctic sea ice in the global climate system, through an examination of how the spatial distribution of ice and snow thickness and of open water is reflected in satellite-based synthetic aperture radar (SAR) imagery. The field investigations will be carried out from the RVIB Nathaniel B. Palmer in winter 1998 and summer 1999, and will produce observations of the snow and ice distribution, the crystal structure, stable isotopes, salinity and temperature structure of ice cores, and the stratigraphy, grain size, and water content of the snow cover. The SAR images from ERS-2 and RADARSAT will be acquired at the McMurdo ground station, and processed at the Alaska SAR Facility. These will provide information about the large-scale ice motion field and the small-scale ice deformation field, both of which contribute to the observed ice thickness distribution. In addition, a study of the spatial and temporal variation of the backscattered microwave energy will contribute to the development of numerical models that simulate the dynamic and thermodynamic interactions among the sea ice, ocean, and atmosphere. The surface data is vital for the extraction of environmental information from the radar data, and for the ultimate validation of interactive models.
NSF FORM 1358 (1/94) This award, provided by the Office of Polar Programs of the National Science Foundation, supports research to investigate hydrothermal venting in Bransfield Strait, between the South Shetland Islands and the Antarctic Peninsula. Previous exploratory work in the Strait identified several sites where hot hydrothermal fluids emanate from the sea floor. These discoveries were made using an instrument package specially designed to detect and map the thermal and chemical anomalies that hydrothermal activity imparts on the overlying water column. Hydrothermal sites in the Strait range in water depth from <200 to 1300 meters and occur on the volcanic outcrops that periodically protrude through the sediment cover along the strike of the rift zone. These sites are alligned with the caldera at Deception Island which has active hot springs. These are the first submarine hydrothermal sites discovered in Antarctica and as such represent unique research opportunities. This project will return to the Strait to further map and sample these areas. There are several compelling reasons to believe that further exploration of vent systems in the Bransfield will yield exciting new information: (1) Bransfield Strait is a back-arc rift system and it is likely that the vent fluids and mineral deposits associated with venting in this setting are unlike anything sampled so far from submarine vents. (2) Preliminary evidence suggests that venting in the Bransfield occurs in two different volcanic substrates: andesite and rhyolite. This situation provides a natural laboratory for investigating the effects of substrate chemistry on vent fluid composition. (3) Bransfield Strait is isolated from the system of mid-ocean ridges and has a relatively short history of rifting (approximately 4 my). So, while the region straddles the Atlantic and Pacific, vent biota in the Strait may well have a distinct genealogy. Biochemical information on vent species in the Bransfield will add to our knowledge of the dispersal of life in the deep ocean. In the past such discoveries have led to the identification of new species and the isolation of previously unknown biochemical compounds. (4) The fire and ice environments of hydrothermal sites in the Bransfield may prove to be the closest analog for primordial environments on Earth and extraterrestrial bodies. The Bransfield Strait is one of the most productive areas of the world's oceans and lies close to the Antarctic continent, far removed from the mid-ocean ridge system. The combination of organic-rich sediment and heat produced by volcanism in this back- arc setting creates a situation conducive to unusual fluids, unique vent biota, and exotic hydrothermal deposits. Collaborative awards: OPP 9725972 and OPP 9813450
This exploratory project searches for fossils on Livingston Island in the South Shetland Islands off of the Antarctic peninsula. Strata there date from 125 to 99 million years in age, a critical time in the development of various flora and fauna. With so many unknowns in the biotic history of the Antarctic, any finds of vertebrate fossils on this little explored island will be of great significance. One key question is marsupial evolution. It is assumed that marsupials of South America and Australia transited through Antarctica, but a supporting fossil record has yet to be discovered. Related investigations on Mesozoic climate will be performed through stable isotope analysis of clay and rock samples. The broader impacts of the project include graduate student education and public outreach through a museum exhibit.
96-14028 Dymond This research project is part of the US Joint Global Ocean Flux Study (JGOFS) Southern Ocean Program aimed at (1) a better understanding of the fluxes of carbon, both organic and inorganic, in the Southern Ocean, (2) identifying the physical, ecological and biogeochemical factors and processes which regulate the magnitude and variability of these fluxes, and (3) placing these fluxes into the context of the contemporary global carbon cycle. This work is one of forty-four projects that are collaborating in the Southern Ocean Experiment, a three-year effort south of the Antarctic Polar Frontal Zone to track the flow of carbon through its organic and inorganic pathways from the air-ocean interface through the entire water column into the bottom sediment. The experiment will make use of the RVIB Nathaniel B. Palmer and the R/V Thompson. This component, a collaborative study by scientists from the Woods Hole Oceanographic Institution, Oregon State University, and the New Zealand Oceanographic Institution, concerns the export of particulate forms of carbon downward from the upper ocean. The observations will be obtained from an array of time- series sediment traps, and will be analyzed to quantify export fluxes from the Subtropical Front to the Ross Sea, over an 18- months period beginning the early austral summer of 1996. The measurement program will two annual phytoplankton blooms. The southern ocean provides a unique opportunity to investigate the processes controlling export flux in contrasting biogeochemical ocean zones demarcated by oceanic fronts. The temperature changes at the fronts coincide with gradients in nutrient concentrations and plankton ecology, resulting in a large latitudinal change in the ratio of calcium to silica taken up by the phytoplankton communities. This experiment will provide data on how the biological pump operates in the Southern Ocean and how it could potentially impact the level of atmospheric c arbon dioxide. The observed export fluxes of organic carbon, nitrogen, inorganic carbon, biogenic silica and alumina are central to the goals of the JGOFS program.
9731695 Klinkhammer This award supports participation of Oregon State University (OSU) researchers in an expedition of the German oceanographic research vessel POLARSTERN to the Antarctic Ocean (POLARSTERN cruise ANT-XV/2). Previous OSU researchers supported by the US Antarctic Program identified several areas of hydrothermal venting in the Bransfield Strait. This discovery has important implications to the biogeography of vent animals, the geological evolution of ore deposits, and the chemical and heat budgets of the Earth. The previous work sampled water and particles from above the vent sites at a reconnaissance level. Subsequent chemical analyses of these samples provided insight into the chemistry of fluids emanating from vents on the sea floor. The POLARSTERN cruise affords a unique opportunity to build on these discoveries in the Bransfield Strait, foster future international work in the Bransfield area, extend research on hydrothermal activity to other parts of the Antarctic Peninsula region, and develop a working relationship with a strong international group. In particular, the POLARSTERN expedition provides the opportunity for: 1) additional sampling of water and suspended particulate matter in the water column over the Bransfield hydrothermal sites this sampling would be aided by German photographic reconnaissance; 2) reconnaissance, to determine the broader geographical extent of hydrothermal activity, would be extended to the Scotia Arc and trench areas following the general theme of the German program which is fluid expulsion from the Scotia- Bransfield system; and 3) the use of unique tools available on the POLARSTERN such as a camera sled and grab bottom sampler. This work will make it possible to better define the location of hydrothermal vents and to begin to quantify the amount of water being expelled by this hydrothermal activity. If vents can be precisely located, the bottom photography holds the promise of revealing possible biologic al communities associated with these submarine hot springs.
This project is a contribution to a coordinated attempt to understand the interactions of biological and physical dynamics by developing relationships among the evolution of the antarctic winter ice and snow cover, biological habitat variability, and the seasonal progression of marine ecological processes. The work will be carried out in the context of the Southern Ocean Experiment of the Global Ocean Ecosystem Dynamics Study (Globec), a large, multi-investigator study of the winter survival strategy of krill under the antarctic sea ice in the vicinity of Marguerite Bay on the western side of the Antarctic Peninsula. There are several aspects to this project: One is the collection, analysis, and archiving of Acoustic Doppler Current Profiler (ADCP), and Conductivity-Temperature-Depth (CTD) data in order to characterize mesoscale circulation features and the regional hydrography. Another is to develop an accurate and fully validated model of tidal currents in Marguerite Bay. A third is to provide a data set of small-scale processes such as shear instabilities, tidal stirring, mesoscale eddies, and double diffusion, that are required for the effective parameterization of the vertical diffusivities of heat, salt, and nutrients. The results of this project will provide a unified data set that satisfies the data requirement of the coordinated chemical and biological studies which will link water column and sea ice processes with the biology of krill and its predators. The results further will help to link these winter observations to similar observations made in summer and elsewhere around Antarctic in the international context of the Globec program. The overall objective is to develop a comprehensive ecosystem model that will test our understanding of the system, determine its sensitivities, and to provide an organizing mechanism for integrating the Southern Ocean Globec observations. ***
The Antarctic Peninsula region exhibits one of the largest warming trends in the world. Climate change in this region will reduce the duration of winter sea-ice cover, altering both the pelagic ecosystem and bentho-pelagic coupling. We postulate that shelf benthic ecosystems are highly suitable for tracking climate change because they act as "low-pass" filters, removing high-frequency seasonal noise and responding to longer-term trends in pelagic ecosystem structure and export production. We propose to conduct a 3-year study of bentho-pelagic coupling along a latitudinal climate gradient on the Antarctic Peninsula to explore the potential impacts of climate change (e.g., reduction in sea-ice duration) on Antarctic shelf ecosystems. We will conduct three cruises during summer and winter regimes along a 5- station transect from Smith Island to Marguerite Bay, evaluating a broad range of benthic ecological and biogeochemical processes. Specifically, we will examine the feeding strategies of benthic deposit feeders along this climatic gradient to elucidate the potential response of this major trophic group to climatic warming. In addition, we will (1) quantify carbon and nitrogen cycling and burial at the seafloor and (2) document changes in megafaunal, macrofaunal, and microbial community structure along this latitudinal gradient. We expect to develop predictive insights into the response of Antarctic shelf ecosystems to some of the effects of climate warming (e.g., a reduction in winter sea-ice duration). The proposed research will considerably broaden the ecological and carbon-flux measurements made as parts of the Palmer Station LTER and GLOBEC programs by providing a complementary benthic component. This project also will promote science education from the 9th grade to graduate-student levels. We will partner with the NSF-sponsored Southeastern Center for Ocean Science Education Excellence to reach students of all races in all areas of NC, SC and GA. The project will also benefit students at the post secondary level by supporting three graduate and two undergraduate students. During each of the three field excursions, NCSU and UH students will travel to Chile and Antarctica to participate in scientific research. Lastly, all three PIs will incorporate material from this project into their undergraduate and graduate courses.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a demonstration project to prove the viability of shallow ship-based geological drilling while simultaneously collecting useful cores for assessing the early history of the Antarctic ice sheets. For over three decades, U.S. scientists and their international colleagues exploring the shallow shelves and seas along the margins of Antarctic have been consistently frustrated by their inability to penetrate through the over-compacted glacial diamictons encountered at shallow sub bottom depths (within the upper 10 m) over these terrains. This is particularly frustrating because advanced high resolution seismic reflection techniques clearly show in many areas the presence of older successions of Neogene and even Paleogene sequences lying just beneath this thin veneer of diamictons. Until the means are developed to recover these sequences, a detailed history of the Antarctic ice sheets, which is an essential prerequisite to understanding Cenozoic paleoclimate and future climate change on a global scale, will remain an elusive and unobtainable goal. After four years of study and evaluation with the aid of a professional engineer (and over the course of two workshops), the SHALDRIL Committee, an interested group of U.S. scientists, has identified at least two diamond-coring systems deemed suitable for use on existing ice-breaking U.S. Antarctic Research Program vessels. The goal of this project is to employ diamond-coring technology on the RV/IB Nathaniel B. Palmer in order to test out and demonstrate the feasibility of both ship-based diamond coring and down-hole logging. For this "demonstration cruise" coring will be attempted along a high-resolution seismic reflection profile on the continental shelf adjacent to Seymour Island, Antarctic Peninsula, an area of high scientific interest in its own right. Here the well-defined geologic section is estimated to range from Eocene to Quaternary in age, effectively spanning the "Greenhouse-Icehouse" transition in the evolution of Antarctic/global climate. A complete record of this transition has yet to be obtained anywhere along the Antarctic margin. Following core recovery, this project will result in correlation of the paleoclimate records from the new cores with detailed fluctuations of the ice margin recorded at higher latitudes in the eastern Ross Sea by the recently concluded, fast-ice-based Cape Roberts Project. If successful, this mobile and flexible drilling system will then be available to the broader scientific community for further research in paleoenvironmental conditions and other areas of science that are currently hindered by the present gap that exists in the US Antarctic Program's technical capability to explore the Antarctic shelves between the shore-line/fast-ice margin and the continental slope. SHALDRIL will be able to operate effectively in the "no man's land" that presently exists between the near shore (where the fast-ice-based Cape Roberts Project was successful) and the upper slope (where the Ocean Drilling Program's vessel JOIDES Resolution becomes most efficient). This technological breakthrough will not only allow major outstanding scientific problems of the last three decades to be addressed, but will also favorably impact many current U.S. and SCAR (ICSU Scientific Committee on Antarctic Research) Antarctic or drilling-related initiatives, such as WAIS, ANTIME, ANDRILL, ANTEC, IMAGES, PAGES, GLOCHANT (including PICE), MARGINS, ODP, and STRATAFORM.
Notothenioid fishes that dominate the fish fauna surrounding Antarctica have been evolving for 10-14 million years at a nearly constant body temperature of ~0C throughout their life histories. As a result, this group of animals is uniquely suited to studies aimed at understanding and identifying features of physiology and biochemistry that result from the process of evolution at cold body temperature. This project has three major objectives aimed at examining adaptations for life in cold environments: <br/><br/>1. Identify the amino acid substitutions in the fatty acid-binding pocket of fatty acyl CoA synthetase (FACS) that explain its substrate specificity. Fatty acids are a major fuel of energy metabolism in Antarctic fishes. FACS catalyzes the condensation of CoASH and fatty acids to fatty acyl CoA esters, a step required for subsequent metabolism of these important compounds. This research may permit us to resolve the specific amino acid substitutions that explain both substrate specificity and preservation of catalytic rate of notothenioid FACS at cold physiological temperatures.<br/><br/>2. Produce a rigorous biochemical and biophysical characterization of the intracellular calcium-binding protein, parvalbumin, from white axial musculature of Antarctic fishes. Parvalbumin plays a pivotal role in facilitating the relaxation phase of fast-contracting muscles and is a likely site of strong selective pressure. Preliminary data strongly indicate that the protein from Antarctic fishes has been modified to ensure function at cold temperature. A suite of physical techniques will be used to determine dissociation constants of Antarctic fish parvalbumins for calcium and magnesium and unidirectional rate constants of ion-dissociation from the protein. Full-length cDNA clones for Antarctic fish parvalbumin(s) will permit deduction of primary amino acid sequence These data will yield insight into structural elements that permit the protein from notothenioid fishes to function at very cold body temperature.<br/><br/>3. Conduct a broad survey of the pattern of cardiac myoglobin expression in the Suborder Notothenoidei. Previous work has indicated a variable pattern of presence or absence of the intracellular oxygen-binding protein, myoglobin (Mb), in hearts of one family of Antarctic notothenioid fishes (Channichthyidae; icefishes). Because Mb is of physiological value in species that express the protein, the observed pattern of interspecific expression has been attributed to unusually low niche competition in the Southern Ocean. This leads to the prediction that similar loss of cardiac Mb should be observed in other notothenioid taxa. This part of the project will survey for the presence and absence of cardiac Mb in as many notothenioid species as possible and, if Mb-lacking species are detected, will extend analyses to determine the mechanism(s) responsible for loss of its expression using molecular biological techniques.
During the past few decades of oceanographic research, it has been recognized that significant variations in biogeochemical processes occur among years. Interannual variations in the Southern Ocean are known to occur in ice extent and concentration, in the composition of herbivore communities, and in bird and marine mammal distributions and reproductive success. However, little is known about the interannual variations in production of phytoplankton or the role that these variations play in the food web. This project will collect time series data on the seasonal production of phytoplankton in the southern Ross Sea, Antarctica. Furthermore, it will assess the interannual variations of the production of the two major functional groups of the system, diatoms and Phaeocystis Antarctica, a colonial haptophyte. The Ross Sea provides a unique setting for this type of investigation for a number of reasons. For example, a de facto time-series has already been initiated in the Ross Sea through the concentration of a number of programs in the past ten years. It also is well known that the species diversity is reduced relative to other systems and its seasonal production is as great as anywhere in the Antarctic. Most importantly, seasonal production of both the total phytoplankton community (as well as its two functional groups) can be estimated from late summer nutrient profiles. The project will involve short cruises on the US Coast Guard ice breakers in the southern Ross Sea that will allow the collection of water column nutrient and particulate after data at specific locations in the late summer of each of five years. Additionally, two moorings with in situ nitrate analyzers moored at fifteen will be deployed, thus collecting for the first time in the in the Antarctic a time-series of euphotic zone nutrient concentrations over the entire growing season. All nutrient data will be used to calculate seasonal production for each year in the southern Ross Sea and compared to previously collected information, thereby providing an assessment of interannual variations in net community production. Particulate matter data will allow us to estimate the amount of export from the surface layer by late summer, and therefore calculate the interannual variability of this ecosystem process. Interannual variations of seasonal production (and of the major taxa of producers) are a potentially significant feature in the growth and survival of higher trophic levels within the food web of the Ross Sea. They are also important in order to understand the natural variability in biogeochemical processes of the region. Because polar regions such as the Ross Sea are predicted to be impacted by future climate change, biological changes are also anticipated. Placing these changes in the context of natural variability is an essential element of understanding and predicting such alterations. This research thus seeks to quantify the natural variability of an Antarctic coastal system, and ultimately understand its causes and impacts on food webs and biogeochemical cycles of the Ross Sea.
The objectives of this proposal are to investigate the controls on the large-scale distribution and production of the two major bloom-forming phytoplankton taxa in the Southern Ocean, diatoms and Phaeocystis Antarctica. These two groups, through their involvement in the biogeochemical cycles of carbon, sulfur and nutrient elements, may have played important roles in the climate variations of the late Quaternary, and they also may be key players in future environmental change. A current paradigm is that irradiance and iron availability drive phytoplankton dynamics in the Southern Ocean. Recent work, however, suggests that carbon dioxide (CO2) concentrations may also be important in structuring algal assemblages, due to species-specific differences in the physiology. This proposal examines the interactive effects of iron, light and CO2 on the physiology, ecology and relative dominance of Phaeocystis and diatoms in the Southern Ocean. The Ross Sea is an ideal system in which to investigate the environmental factors that regulate the distribution and production of these two algal groups, since it is characterized by seasonal blooms of both P. Antarctica and diatoms that are typically separated in both space and time. This study will take the form of an interdisciplinary investigation that includes a field survey and statistical analysis of algal assemblage composition, iron, mixed layer depth, and CO2 levels in the southern Ross Sea, coupled with shipboard experiments to examine the response of diatom and P. Antarctica assemblages to high and low levels of iron, light and CO2 during spring and summer. <br/>This project will provide information on some of the major factors controlling the production and distribution of the two major bloom forming phytoplankton in the Southern Ocean and the related biogeochemical cycling of carbon, sulfur and nutrient elements. The results may ultimately advance the ability to predict how the Southern Ocean will be affected by and possibly modulate future climate change. This project will also make significant educational contributions at several levels, including the planned research involvement of graduate and undergraduate students, postdoctoral associates, a student teacher, and community outreach and educational activities. A number of activities are planned to interface the project with K-12 education. Presentations will be made at local schools to discuss the research and events of the research cruise. During the cruise there will be daily interactive email contact with elementary classrooms. Established websites will be used to allow students to learn about the ongoing research, and to allow researchers to communicate with students through text and downloaded images.
This project will utilize the R/VIB Nathaniel B. Palmer's transit cruises to collect marine geophysical data on targets-of-opportunity in the southern oceans. Because the Palmer generally traverses regions only sparsely surveyed with geophysical instruments, this project represents a cost-effective way to collect important new data. The work's focus is expanding our knowledge of plate motion histories for the Antarctic and surrounding plates. The ultimate goals are improving global plate reconstructions and gaining new insight into general plate kinematics and dynamics and lithospheric rheology. Only slight deviations from the straight routes are required, and we expect to operate on one cruise per year over the three years of the project. The first cruise from New Zealand to Chile will survey a flow line of Pacific-Antarctic plate motion along the Menard fracture zone, which crosses the East Pacific Rise at ~50 S latitude. Swath bathymetry, gravity, magnetics, and a small amount of seismic reflection profiling will be collected to determine the exact trace of the fracture zone and its relationship to the associated gravity anomaly seen in shipboard and satellite radar altimetry data. These observations are critical for precise plate reconstructions, and will provide GPS-navigated locations of a major fracture zone near the northern end of the Pacific-Antarctic boundary. These data will be used in combination with similar data from the Pitman fracture zone at the southwestern end of the plate boundary and magnetic anomalies from previous cruises near the Menard fracture zone to improve high-precision plate reconstructions and evaluate the limits of internal deformation of the Pacific and Antarctic plates. The science plan for cruises in following years will be designed once transit schedules are set. In terms of broader impacts, we plan to teach an on-board marine geophysics class to graduate and undergraduate students on two cruises. The class consists of daily classroom lectures about the instruments and data; several hours per day of watch standing and data processing; and work by each student on an independent research project. We expect to accommodate 15 students per class, including participants from primarily undergraduate institutions with high minority enrollments.
9909374 Fairbanks This study will investigate how the formation of dense water masses on the antarctic continental shelves is affected by the periodic flushing by relatively warm circumpolar deep water, and whether the intrusion of warm water cna enhance the rate of formation of dense antarctic water. The study involves the observation of water mass modification processes on the continental shelf off the Adelie Coast in East Antarctica, near a quasi-permanent area of open water in the vicinity of the Mertz and Ninnis Glacier tongues - the so-called Mertz polynya. Antarctic coastal polynyas, formed by strong offshore winds, are often referred to as major sea ice and salt "factories" because the newly formed ice is blown seaward, allowing more ice to be formed along the coast, and because the freezing process increases the salinity of the continental shelf water. The thin ice, or even open water, implies significant heat losses from the ocean to the atmosphere, which also increases the density of the shelf water. The shelf water sinks, fills any depressions in the bottom, and is gravitationally driven down the continental slope. An additional process is identified for this study and is expected to be at work in this area: the intrusion of relatively warm water onto the continental shelf, overriding the shelf water and essentially shutting down the densification processes. The study will make use of the RVIB Nathaniel B. Palmer to obtain a closely spaced array of hydrographic stations over the continental shelf and slope along the George V Coast in the austral summer. The dat obtained here will complement a similar winter study by the Australian National Antarctic Program. ***
This project studies seasonal variation in the abundance and shell composition of foraminifera from the northern Gerlache-southern Bransfield Straits region of the Western Antarctic Peninsula. Its goal is to improve interpretation of microfaunal and geochemical proxies for reconstruction of ancient ocean currents, climate, and ecologies. Since seasonal variation may greatly affect interpretation, this project focuses on the Antarctic region, where intense seasonality should generate a more obvious signal than at the less extreme mid-latitudes. The results should allow a better understanding of the coupling to seasonal productivity, as well as improve regional reconstructions.<br/>The broader impacts are graduate, undergraduate, and postdoctoral student education; as well as outreach to both the English and Spanish-speaking public. The work will also improve society's understanding of past climate change as an analogue to the future.
9908828 Aronson This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a paleoecological and paleoenvironmental study of Seymour Island. Global climate change late in the Eocene epoch had an important influence in Antarctica. This was the beginning of the transition from a cool-temperate climate in Antarctica to the polar climate that exists there today. The cooling trend strongly influenced the structure of shallow-water, Antarctic marine communities, and these effects are still evident in the peculiar ecological relationships among species living in modern Antarctic communities. Cooling late in the Eocene reduced the abundance of fish and crabs, which in turn reduced skeleton-crushing predation on invertebrates. Reduced predation allowed dense populations of ophiuroids (brittlestars) and crinoids (sea lilies) to appear in shallow-water settings at the end of the Eocene. These low-predation communities appear as dense fossil echinoderm assemblages in the upper portion of the late Eocene La Meseta Formation on Seymour Island, off the Antarctic Peninsula. Today, dense ophiuroid and crinoid populations are common in shallow-water habitats in Antarctica but generally have been eliminated by predators from similar habitats at temperate and tropical latitudes; their persistence in Antarctica to this day is an important ecological legacy of climatic cooling in the Eocene. Although the influence of declining predation on Antarctic ophiuroids and crinoids is now well documented, the effects of cooling on the more abundant mollusks have not been investigated. This study will examine the evolutionary ecology of gastropods (snails) and bivalves (clams) in the late Eocene. A series of hypotheses will be tested in the La Meseta Formation, based on the predicted responses of mollusks to declining temperature and changing levels of predation. The shapes of gastropod shells, the activities of gastropods that prey on other mollusks by drilling holes in their shells, and the effects of predation on the thickness of mollusk shells should have changed significantly through late Eocene time. First, defensive features of gastropod shells, such as spines and ribbing, should decline as temperature and, therefore, the activity of skeleton-crushing predators declined. Second, drilling of bivalve prey by predatory gastropods should increase with time since the drillers should themselves have been subject to lower predation pressure as temperature declined. Drilled shells, therefore, should become more common through time. Third, patterns in the thickness of shells through time will make it possible to separate the direct, physiological effects of declining temperature (shells are more difficult to produce at cooler temperatures, and so should be thinner) from the indirect effects of temperature on evolving biological interactions (increased drilling predation should result in thicker shells). Seymour Island contains the only fossil outcrops readily accessible in Antarctica from this crucial period in Earth history. The La Meseta Formation on Seymour Island thus provides a unique opportunity to learn how climate change affected Antarctic marine communities. In practical terms, global climate change will probably increase upwelling over the next few decades to centuries in some temperate coastal regions. Recent ecological evidence suggests that the resultant lowering of sea temperatures could lower predation in those areas. Understanding the response of the La Meseta faunas to global cooling in the late Eocene will provide direct insight into the rapidly changing structure of modern benthic communities.
As long-lived animals, marine mammals must be capable of accommodating broad variations in food resources over large spatial and temporal scales. While this is true of all marine mammals, variation in the physical and biological environmental is particularly profound in the Southern Ocean. A basic understanding of the foraging behavior and habitat utilization of pelagic predators requires knowledge of this spatial and temporal variation, coupled with information of how they respond to these changes. Current understanding of these associations is primarily limited to population level studies where animal abundance has been correlated with oceanography. Although these studies are informative, they cannot provide insights into the strategies employed by individual animals nor can they provide insights into the spatial or temporal course of these interactions. <br/><br/>Recent technological advances in instrumentation make it possible to extend an understanding beyond the simple linkage of prey and predator distributions with environmental features. The key to understanding the processes that lead to high predator abundance is the identification of the specific foraging behaviors associated with different features of the water column. This study will accomplish these objectives by combining accurate positional data, measures of diving and foraging behavior, animal-derived water-column temperature and salinity data, and available oceanographic data. This project will examine the foraging behavior and habitat utilization of two species of contrasting foraging ecology, the southern elephant seal, Mirounga leonina, and the crabeater seal, Lobodon carcinophagus in the Western Antarctic Peninsula, a region of strong environmental gradients. Although these two species are phylogenetically related, they utilize substantially different but adjacent habitat types. Southern elephant seals are predominantly pelagic, moving throughout the southern ocean, venturing occasionally into the seasonal pack ice whereas crabeater seals range throughout the seasonal pack ice, venturing occasionally into open water. The relationship of specific foraging behaviors and animal movement patterns to oceanographic and bathymetric features develop and test models of the importance of these features in defining habitat use will be determined along with a comparison of how individuals of each species respond to annual variability in the marine environment. The physical oceanography of the Southern Ocean is inherently complex as are the biological processes that are intrinsically linked to oceanographic processes. Significant resources are currently being directed toward developing mathematical models of physical oceanographic processes with the goals of better understanding the role that the Southern Ocean plays in global climate processes, predicting the responses of ocean and global scale processes to climate change, and understanding the linkages between physical and biological oceanographic processes. These efforts have been limited by the scarcity of oceanographic data in the region, especially at high latitudes in the winter months. This study will provide new and significant oceanographic data on temperature and salinity profiles in to further the understanding of the dynamics of the upper water column of west Antarctic Peninsula continental shelf waters. Outreach activities include website development and an association with a marine education program at the Monterrey Bay Aquarium Research Institute.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a project to make use of ship-repositioning transit cruises to gather geophysical information relating to plate tectonics of the Southern Ocean and to support student training activities. Well-constrained Cenozoic plate reconstructions of the circum-Antarctic region are critical for examining a number of problems of global geophysical importance. These problems include, e.g., relating the plate kinematics to its geological consequences in various plate circuits (Pacific-North America, Australia-Pacific); a dynamical understanding of what drives plate tectonics (which requires well-constrained kinematic information in order to distinguish between different geodynamic hypotheses); and an understanding of the rheology of the plates themselves, including the amount of internal deformation they can support, and the conditions leading to the formation of new plate boundaries through breakup of existing plates. By obtaining better constraints on the motion of the Antarctica plate with respect to these other plates, and by better quantifying the internal deformation within Antarctica (between East and West Antarctica), contributions will be made to solving these other fundamental problems.<br/><br/>In this project, existing data will be analyzed to address several specific issues related to plate motions involving the Antarctic plate. First, work will be done on four-plate solutions of Australia-Pacific-West Antarctica-East Antarctica motion, in order to most tightly constrain the rotation parameters for separation between East and West Antarctica for the time period from about 45 to 28 Ma (Adare Basin spreading system). This will be done by imposing closure on the four-plate circuit and using relevant marine geophysical data from all four of the boundaries. The uncertainties in the resulting rotation parameters will be determined based on the uncertainties in the data points. These uncertainties can then be propagated in the plate circuit for use in addressing the various global geodynamic problems mentioned above. Second, rotation parameters for Pacific-West Antarctica during Tertiary time will be determined using recently acquired well-navigated Palmer transit data and any additional data that can be acquired during the course of this project. These parameters and their uncertainties will be used in assessments of plate rigidity and included in the plate circuit studies.<br/><br/>In the framework of this project, new collection of marine geophysical data will be accomplished on a very flexible schedule. This will be done by collecting underway gravity, magnetics, and swath bathymetric data on Palmer transit cruises of geological importance. This has been successfully done on eight previous Palmer cruises since 1997, the most recent four of which were funded under a collaborative OPP grant to CalTech and Scripps which is now expiring. On one of the suitable transits, a formal class in marine geophysics will be conducted that will afford an opportunity to 12 or more graduate and undergraduate students, from CalTech and Scripps as well as other institutions. In this way, educational activities will be integrated with the usual scientific data collection objectives of the research project.
The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on the distribution and activities of sea ice microbial communities. This will be accomplished using an integrated combination of sampling (vertical profiles, horizontal surveys, and under-ice surveys) and observational protocols. Experiments will be designed to estimate microbial activity within the sea ice and at the ice-seawater interface. The research will be coordinated with components studying the water column productivity and the sea ice habitat. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts.
The Antarctic Site Inventory Project has collected biological data and site-descriptive information in the Antarctic Peninsula region since 1994. This research effort has provided data on those sites which are visited by tourists on shipboard expeditions in the region. The aim is to obtain data on the population status of several key species of Antarctic seabirds, which might be affected by the cumulative impact resulting from visits to the sites. This project will continue the effort by focusing on two heavily-visited Antarctic Peninsula sites: Paulet Island, in the northwestern Weddell Sea and Petermann Island, in the Lemaire Channel near Anvers Island. These sites were selected because both rank among the ten most visited sites in Antarctica each year in terms of numbers of visitors and zodiac landings; both are diverse in species composition, and both are sensitive to potential environmental disruptions from visitors. These data collected focus on two important biological parameters for penguins and blue-eyed shags: (1) breeding population size (number of occupied nests) and (2) breeding success (number of chicks per occupied nests). A long-term data program will be supported, with studies at the two sites over a five-year period. The main focus will be at Petermann Island, selected for intensive study due to its visitor status and location in the region near Palmer Station. This will allow for comparative data with the Palmer Long Term Ecological Research program. Demographic data will be collected in accordance with Standard Methods established by the Convention for the Conservation of Antarctic Marine Living Resources Ecosystem Monitoring Program and thus will be comparable with similar data sets being collected by other international Antarctic Treaty nation research programs. While separating human-induced change from change resulting from a combination of environmental factors will be difficult, this work will provide a first step to identify potential impacts. These long-term data sets will contribute to a better understanding of biological processes in the entire region and will contribute valuable information to be used by the Antarctic Treaty Parties as they address issues in environmental stewardship in Antarctica.
This award, provided by the Office of Polar Programs of the National Science Foundation, supports research to investigate the seismicity and tectonics of the South Shetland Arc and the Bransfield Strait. This region presents an intriguing and unique tectonic setting, with slowing of subduction, cessation of island arc volcanism, as well as the apparent onset of backarc rifting occurring within the last four million years. This project will carry out a 5-month deployment of 14 ocean bottom seismographs (OBSs) to complement and extend a deployment of 6 broadband land seismic stations that were successfully installed during early 1997. The OBSs include 2 instruments with broadband sensors, and all have flowmeters for measuring and sampling hydrothermal fluids. The OBSs will be used to examine many of the characteristics of the Shetland- Bransfield tectonic system, including: --- The existence and depth of penetration of a Shetland Slab: The existence of a downgoing Shetland slab will be determined from earthquake locations and from seismic tomography. The maximum depth of earthquake activity and the depth of the slab velocity anomaly will constrain the current configuration of the slab, and may help clarify the relationship between the subducting slab and the cessation of arc volcanism. -- Shallow Shetland trench seismicity?: No teleseismic shallow thrust faulting seismicity has been observed along the South Shetland Trench from available seismic information. Using the OBS data, the level of small earthquake activity along the shallow thrust zone will be determined and compared to other regions undergoing slow subduction of young oceanic lithosphere, such as Cascadia, which also generally shows very low levels of thrust zone seismicity. -- Mode of deformation along the Bransfield Rift: The Bransfield backarc has an active rift in the center, but there is considerable evidence for off-rift faulting. There is a long-standing controversy about whet her back-arc extension occurs along discrete rift zones, or is more diffuse geographically. This project will accurately locate small earthquakes to better determine whether Bransfield extension is discrete or diffuse. -- Identification of volcanism and hydrothermal activity: Seismic records will be used to identify the locations of active seafloor volcanism along the Bransfield rift. Flowmeters attached to the OBSs will record and sample the fluid flux out of the sediments. -- Upper mantle structure of the Bransfield - evidence for partial melting?: Other backarc basins show very slow upper mantle seismic velocities and high seismic attenuation, characteristics due to the presence of partially molten material. This project will use seismic tomography to resolve the upper mantle structure of the Bransfield backarc, allowing comparison with other backarc regions and placing constraints on the existence of partially molten material and the importance of partial melting as a mantle process in this region. Collaborative awards: OPP 9725679 and OPP 9726180
This project will complete construction of a high-quality digital bathymetry database for the Southern Ocean component of the Global Ocean Ecosystem Dynamics GLOBEC) program. Existing along-track and swath bathymetry data collected in Marguerite Bay and in the West Antarctic Peninsula shelf study, have been assembled and merged with new SeaBeam and along-track data collected during cruises of the research vessels R/V Palmer and R/V Gould in 2001 and 2002. New bathymetry data has also been obtained from other US, British, and Russian sources to extend the program database. Once the final R/V Palmer and R/V Gould cruises are completed and other data added, the program database will be closed, edited, documented and made publicly available for use by international GLOBEC investigators and by the broader geophysics community. These results will be developed in conjunction with, and will become part of a planned circum-antarctic high resolution bathymetry database.
This project seeks to examine the importance of icebergs to the pelagic ecosystem of the North-West Weddell Sea. Atmospheric warming has been associated with retreating glaciers and the increasing prevalence of icebergs in the Southern Ocean over the last decade. The highest concentration of icebergs occurs in the NW Weddell Sea, where they drift in a clockwise pattern to the northeast, following the contours of the Antarctic Peninsula through an area dubbed "Iceberg Alley". Little is known about the impact of free-drifting icebergs on the pelagic ecosystem of the Weddell Sea or on the Southern Ocean as a whole. It is hypothesized that as drifting islands, icebergs of small to intermediate size (< 10 km in largest dimension) impart unique physical, chemical and biological characteristics to the surrounding water. Three general questions will be asked to address this hypothesis: 1) What are the dynamics (approximate size, abundance and spatial distribution) of free-drifting icebergs on temporal scales of days to months, based on correlation of field measurements with imagery derived from satellite sensors? 2) What is the relationship between the size of free-drifting icebergs and the structure of the associated pelagic communities? 3) What is the estimated combined impact of free-drifting icebergs in the NW Weddell Sea on the biological characteristics of the pelagic zone? This interdisciplinary study will use standard oceanographic sampling coupled with unique methodology for staging shipboard data from all types of sensors and survey methods to determine the sphere of influence for a diverse set of biological factors as a function of iceberg size. The exploratory research proposed here will provide critical data on the effects of atmospheric warming in the Antarctic Peninsula region. The recent prevalence of free drifting icebergs in the Southern Ocean should have a pronounced enrichment effect on the surrounding pelagic ecosystem, altering community dynamics. Enhanced primary production associated with these icebergs could influence the global carbon cycle since the Southern Ocean is considered a major sink for excess CO2 from the atmosphere. <br/>The proposed research will include an innovative education component through the Ocean Exploration Center (OEC), whose focus is to provide a comprehensive view of the oceans, intelligible to non-scientists and researchers alike, with direct access to state-of-the-art databases and selected websites. The OEC will allow users to access content which has been classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. The results from this iceberg project will be incorporated into the Antarctic Research division of the OEC, providing databases documenting the impact of free-drifting icebergs on the surrounding pelagic ecosystem. These data then will be extrapolated to evaluate the impact of icebergs on the ecosystem of the Weddell Sea. Graduate students, undergraduates, teachers and volunteers are an important part of the proposed field and laboratory work.
OPP98-15823 P.I. Craig Smith OPP98-16049 P.I. David DeMaster Primary production in Antarctic coastal waters is highly seasonal, yielding an intense pulse of biogenic particles to the continental shelf floor. This seasonal pulse may have major ramifications for carbon cycling, benthic ecology and material burial on the west Antarctic Peninsula (WAP) shelf. Thus, we propose a multii-disciplinary program to evaluate the seafloor accumulation, fate and benthic community impacts of bloom material along a transect of three stations crossing the Antarctic shelf in the Palmer LTER study area. Using a seasonal series of five cruises to our transect, we will test the following hypostheses: (1) A substantial proportion of spring/summer export production is deposited ont eh WAP shelf as phytodetritus or fecal pellets. (2) The deposited bloom production is a source of labile particulate organic carbon for benthos for an extended period of time (months). (3) Large amounts of labile bloom POC are rapidly subducted into the sediment column by the deposit-feeding and caching activities of benthos. (4) Macrobenthic detritivores sustain a rapid increase in biomass and abundance following the spring/summer particulate organic carbon pulse. To test these hypotheses, we will evaluate seabed deposition and lability of particulate organic carbon, patterns of particulate organic carbon mixing into sediments, seasonal variations in macrofaunal and megafaunal abundance, biomass and reproductive condition, and rates of particulate organic carbon and silica mineralization and accumulation in the seabed. Fluxes of biogenic materials and radionuclides into midwater particle traps will be contrasted with seabed deposition and burial rates to establish water-column and seabed preservation efficiencies for these materials. The project will substantially improve our understanding of the spring/summer production pulse on the WAP shelf and its impacts on seafloor communities and carbon cycling in Antarctic coastal systems.
This project is an interdisciplinary study, titled Research on Ocean-Atmosphere Variability and Ecosystem Response in the Ross Sea (ROAVERRS), of atmospheric forcing, ocean hydrography, sea ice dynamics, primary productivity, and pelagic-benthic coupling in the southwestern Ross Sea, Antarctica. The primary goal is to examine how changes in aspects of the polar climate system, in this case wind and temperature, combine to influence marine productivity on a large antarctic continental shelf. In the Ross Sea, katabatic winds and mesocyclones influence the spatial and temporal distribution of sea ice as well as the upper ocean mixed layer depth, and thus control primary production within the sea ice as well as in the open water system. The structure, standing stock and productivity of bottom- dwelling biological communities are also linked to meteorological processes through interseasonal and interannual variations in horizontal and vertical fluxes of organic carbon produced in the upper ocean. Linkages among the atmospheric, oceanic, and biological systems will be investigated during a three-year field study of the southwestern Ross Sea ecosystem. Direct measurements will include regional wind and air temperatures derived from automatic weather stations; ice cover, ice movement, and sea surface temperatures derived from a variety of satellite-based sensors; hydrographic characteristics of the upper ocean and primary productivity in the ice and in the water derived from research cruises and satellite studies; vertical flux of organic material and water movement derived from oceanographic moorings containing sediment traps and current meters, and the abundance, distribution, and respiration rates of biological communities on the sea floor, derived from box cores, benthic photographs and shipboard incubations. Based on archived meteorological data, it is expected that the atmospheric variability during the study period will be such that changes in airflow pat terns and their influence on oceanographic and biological patterns can be monitored, and their direct and indirect linkages that are the focus of the research can be deduced. Results from this study will contribute to our knowledge of atmospheric and oceanic forcing of marine ecosystems, and lead to a better understanding of marine ecosystem response to climatic variations. ***
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a demonstration project to prove the viability of shallow ship-based geological drilling while simultaneously collecting useful cores for assessing the early history of the Antarctic ice sheets. For over three decades, U.S. scientists and their international colleagues exploring the shallow shelves and seas along the margins of Antarctic have been consistently frustrated by their inability to penetrate through the over-compacted glacial diamictons encountered at shallow sub bottom depths (within the upper 10 m) over these terrains. This is particularly frustrating because advanced high resolution seismic reflection techniques clearly show in many areas the presence of older successions of Neogene and even Paleogene sequences lying just beneath this thin veneer of diamictons. Until the means are developed to recover these sequences, a detailed history of the Antarctic ice sheets, which is an essential prerequisite to understanding Cenozoic paleoclimate and future climate change on a global scale, will remain an elusive and unobtainable goal. After four years of study and evaluation with the aid of a professional engineer (and over the course of two workshops), the SHALDRIL Committee, an interested group of U.S. scientists, has identified at least two diamond-coring systems deemed suitable for use on existing ice-breaking U.S. Antarctic Research Program vessels. The goal of this project is to employ diamond-coring technology on the RV/IB Nathaniel B. Palmer in order to test out and demonstrate the feasibility of both ship-based diamond coring and down-hole logging. For this "demonstration cruise" coring will be attempted along a high-resolution seismic reflection profile on the continental shelf adjacent to Seymour Island, Antarctic Peninsula, an area of high scientific interest in its own right. Here the well-defined geologic section is estimated to range from Eocene to Quaternary in age, effectively spanning the "Greenhouse-Icehouse" transition in the evolution of Antarctic/global climate. A complete record of this transition has yet to be obtained anywhere along the Antarctic margin. Following core recovery, this project will result in correlation of the paleoclimate records from the new cores with detailed fluctuations of the ice margin recorded at higher latitudes in the eastern Ross Sea by the recently concluded, fast-ice-based Cape Roberts Project. If successful, this mobile and flexible drilling system will then be available to the broader scientific community for further research in paleoenvironmental conditions and other areas of science that are currently hindered by the present gap that exists in the US Antarctic Program's technical capability to explore the Antarctic shelves between the shore-line/fast-ice margin and the continental slope. SHALDRIL will be able to operate effectively in the "no man's land" that presently exists between the near shore (where the fast-ice-based Cape Roberts Project was successful) and the upper slope (where the Ocean Drilling Program's vessel JOIDES Resolution becomes most efficient). This technological breakthrough will not only allow major outstanding scientific problems of the last three decades to be addressed, but will also favorably impact many current U.S. and SCAR (ICSU Scientific Committee on Antarctic Research) Antarctic or drilling-related initiatives, such as WAIS, ANTIME, ANDRILL, ANTEC, IMAGES, PAGES, GLOCHANT (including PICE), MARGINS, ODP, and STRATAFORM.This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a demonstration project to prove the viability of shallow ship-based geological drilling while simultaneously collecting useful cores for assessing the early history of the Antarctic ice sheets. For over three decades, U.S. scientists and their international colleagues exploring the shallow shelves and seas along the margins of Antarctic have been consistently frustrated by their inability to penetrate through the over-compacted glacial diamictons encountered at shallow sub bottom depths (within the upper 10 m) over these terrains. This is particularly frustrating because advanced high resolution seismic reflection techniques clearly show in many areas the presence of older successions of Neogene and even Paleogene sequences lying just beneath this thin veneer of diamictons. Until the means are developed to recover these sequences, a detailed history of the Antarctic ice sheets, which is an essential prerequisite to understanding Cenozoic paleoclimate and future climate change on a global scale, will remain an elusive and unobtainable goal. After four years of study and evaluation with the aid of a professional engineer (and over the course of two workshops), the SHALDRIL Committee, an interested group of U.S. scientists, has identified at least two diamond-coring systems deemed suitable for use on existing ice-breaking U.S. Antarctic Research Program vessels. The goal of this project is to employ diamond-coring technology on the RV/IB Nathaniel B. Palmer in order to test out and demonstrate the feasibility of both ship-based diamond coring and down-hole logging. For this "demonstration cruise" coring will be attempted along a high-resolution seismic reflection profile on the continental shelf adjacent to Seymour Island, Antarctic Peninsula, an area of high scientific interest in its own right. Here the well-defined geologic section is estimated to range from Eocene to Quaternary in age, effectively spanning the "Greenhouse-Icehouse" transition in the evolution of Antarctic/global climate. A complete record of this transition has yet to be obtained anywhere along the Antarctic margin. Following core recovery, this project will result in correlation of the paleoclimate records from the new cores with detailed fluctuations of the ice margin recorded at higher latitudes in the eastern Ross Sea by the recently concluded, fast-ice-based Cape Roberts Project. If successful, this mobile and flexible drilling system will then be available to the broader scientific community for further research in paleoenvironmental conditions and other areas of science that are currently hindered by the present gap that exists in the US Antarctic Program's technical capability to explore the Antarctic shelves between the shore-line/fast-ice margin and the continental slope. SHALDRIL will be able to operate effectively in the "no man's land" that presently exists between the near shore (where the fast-ice-based Cape Roberts Project was successful) and the upper slope (where the Ocean Drilling Program's vessel JOIDES Resolution becomes most efficient). This technological breakthrough will not only allow major outstanding scientific problems of the last three decades to be addressed, but will also favorably impact many current U.S. and SCAR (ICSU Scientific Committee on Antarctic Research) Antarctic or drilling-related initiatives, such as WAIS, ANTIME, ANDRILL, ANTEC, IMAGES, PAGES, GLOCHANT (including PICE), MARGINS, ODP, and STRATAFORM.
The Shackleton Fracture Zone (SFZ) in Drake Passage of the Southern Ocean defines a boundary between low and high phytoplankton waters. Low chlorophyll water flowing through the southern Drake Passage emerges as high chlorophyll water to the east, and recent evidence indicates that the Southern Antarctic Circumpolar Current Front (SACCF) is steered south of the SFZ onto the Antarctic Peninsula shelf where mixing between the water types occurs. The mixed water is then advected off-shelf with elevated iron and phytoplankton biomass. The SFZ is therefore an ideal natural laboratory to improve the understanding of plankton community responses to natural iron fertilization, and how these processes influence export of organic carbon to the ocean interior. The bathymetry of the region is hypothesized to influence mesoscale circulation and transport of iron, leading to the observed patterns in phytoplankton biomass. The position of the Antarctic Circumpolar Current (ACC) is further hypothesized to influence the magnitude of the flow of ACC water onto the peninsula shelf, mediating the amount of iron transported into the Scotia Sea. To address these hypotheses, a research cruise will be conducted near the SFZ and to the east in the southern Scotia Sea. A mesoscale station grid for vertical profiles, water sampling, and bottle incubation enrichment experiments will complement rapid surface surveys of chemical, plankton, and hydrographic properties. Distributions of manganese, aluminum and radium isotopes will be determined to trace iron sources and estimate mixing rates. Phytoplankton and bacterial physiological states (including responses to iron enrichment) and the structure of the plankton communities will be studied. The primary goal is to better understand how plankton productivity, community structure and export production in the Southern Ocean are affected by the coupling between bathymetry, mesoscale circulation, and distributions of limiting nutrients. The proposed work represents an interdisciplinary approach to address the fundamental physical, chemical and biological processes that contribute to the abrupt transition in chl-a which occurs near the SFZ. Given recent indications that the Southern Ocean is warming, it is important to advance the understanding of conditions that regulate the present ecosystem structure in order to predict the effects of climate variability. This project will promote training and learning across a broad spectrum of groups. Funds are included to support postdocs, graduate students, and undergraduates. In addition, this project will contribute to the development of content for the Polar Science Station website, which has been a resource since 2001 for instructors and students in adult education, home schooling, tribal schools, corrections education, family literacy programs, and the general public.
This project is a contribution to a coordinated attempt to understand the interactions of biological and physical dynamics by developing relationships among the evolution of the antarctic winter ice and snow cover, biological habitat variability, and the seasonal progression of marine ecological processes. The work will be carried out in the context of the Southern Ocean Experiment of the Global Ocean Ecosystem Dynamics Study (Globec), a large, multi-investigator study of the winter survival strategy of krill under the antarctic sea ice in the vicinity of Marguerite Bay on the western side of the Antarctic Peninsula. The objective of this project is to make a quantitative assessment of the small scale temperature and salinity structure of the oceanic surface layer in order to study the effect of stratification and turbulence on the biochemical and biological processes under the winter sea ice. The water masses on the continental shelf off Marguerite Bay consist of inflowing Upper Circumpolar Deep Water, which is relatively warm, salty, oxygen-poor, and nutrient-rich. In winter atmospheric processes cool and freshen this water, and recharge it with oxygen to produce Antarctic Surface Water which is diffused seaward, and supports both a sea ice cover and a productive krill-based food web. The modification processes work through mixing associated with shear instabilities of the internal wave field, double diffusion of salt and heat, and mixing driven by surface stress and convection. These processes will be quantified with two microstructure profilers, capable of resolving the small but crucial vertical variations that drive these processes. ***
This award, provided jointly by the Antarctic Geology and Geophysics Program of the Office of Polar Programs and the Marine Geology and Geophysics Program of the Division of Ocean Sciences, supports research to develop improved plate rotation models for the Southwest Pacific region (between the Pacific, Antarctic, and Australian plates, and the continental fragments of New Zealand, West Antarctica, Iselin Bank, East Antarctica, and Australia). The improved rotation parameters will be used to address tectonic problems related to motion between East and West Antarctica, and in particular, the questions of relative drift between major hotspot groups and the controversy regarding a possible missing plate boundary in this region. Previous work has documented NNW-striking mid-Tertiary seafloor spreading magnetic anomalies between East and West Antarctica, representing about 150 km of opening of the Adare Trough, north of the Ross Sea. This is not enough motion to resolve the apparent discrepancy between the plate motions and motions inferred from assuming hotspot fixity. Because this motion between East and West Antarctica corresponds to a very small rotation, it points to the need for determination of finite rotations describing motions of the various plates here with a high degree of accuracy, particularly for older times. This is now possible with the datasets that will be used in this project. The work will be accomplished by integrating existing data with analysis and interpretation of other data sets recently made available by Japanese and Italian scientists from their cruises in the region. It will be further augmented by acquisition of new marine geophysical data on selected transits of the R/VIB Nathaniel B. Palmer. Specific objectives of the project include the following: 1) improve the rotation model for mid-Tertiary extension between East and West Antarctica by including the plate boundary between the Pacific and Australia plates directly when calculating Australia-West Antarctica motion, 2) improve the reconstructions for the Late Cretaceous and Early Tertiary times by including new constraints on several boundaries not previously used in the reconstructions, 3) address the implications of new rotation models for the question of the fixity of global hotspots, 4) re-examine the geophysical data from the Western Ross Sea embayment in light of a model for substantial mid-Cenozoic extension.
An array of moorings will be deployed and maintained east of Cape Adare, Antarctica, at the northwestern corner of the Ross Sea to observe the properties of Antarctic Bottom Water (AABW) exiting the Ross Sea. This location has been identified from recent studies as an ideal place to make such measurements. Antarctic Bottom Water has the highest density of the major global water masses, and fills the deepest parts of the world's oceans. Because it obtains many of its characteristics during its contact with the atmosphere and with glacial ice along the continental margins of Antarctica, it is expected that changes in newly-formed AABW may represent an effective indicator for abrupt climate change. The heterogeneous nature of the source regions around Antarctica complicates the observation of newly-formed AABW properties. The two most important source regions for AABW are within the Weddell and the Ross Seas, with additional sources drawn from the east Antarctic margins. In the northwestern Weddell Sea, several programs have been undertaken in the last decade to monitor the long term variability of Weddell Sea Deep and Bottom Water, precursors of AABW originating from the Weddell Sea, however no such systematic efforts have yet been undertaken to make longterm measurements of outflow from the Ross Sea. The proposed study will significantly improve our knowledge of the long term variability in the outflow of deep and bottom water from the Ross Sea, and will provide the beginnings of a long-term monitoring effort which ultimately will allow detection of changes in the ocean in the context of global climate change. When joined with similar efforts ongoing in the Weddell Sea, long-term behavior and possible coupling of these two important sources of the ocean's deepest water mass can be examined in detail.
9528807 Gordon The proposed project is part of a multi-institutional integrated study of the outflow of newly formed bottom water from the Weddell Sea and its dispersion into the South Atlantic Ocean. It builds upon earlier successful studies of the inflow of intermediate water masses into the Eastern Weddell Sea, their modification within the Weddell Gyre, and their interaction with bottom water formation processes in the western Weddell Sea. The study is called Deep Ocean Ventilation Through Antarctic Intermediate Layers (DOVETAIL) and includes six components involving hydrographic measurements, natural tracer experiments, and modeling studies. The study will be centered east of the Drake Passage where water masses from the Weddell Sea and the Scotia Sea come together in the Weddell-Scotia Confluence, and will be carried out in cooperation with the national antarctic programs of Germany and Spain. This particular component concerns observations of the temperature and salinity structure, as well as the chemical nature of the water column in the confluence region. The study has four related objectives. The first is to assess the quantity and the physical and chemical characteristics of Weddell Sea source waters for the confluence. The second is to describe the dominant processes associated with spreading and sinking of dense antarctic waters within the Weddell-Scotia Confluence. The third is to estimate the ventilation rate of the world ocean, and the fourth is to estimate seasonal fluctuations in the regional ocean transport and hydrographic structure and to assess the likely influence of seasonal to interannual variability on rates of ventilation by Weddell Sea waters. Ventilation of the deep ocean -- the rising of sub-surface water masses to the surface to be recharged with atmospheric gases and to give up heat to the atmosphere -- is a uniquely antarctic phenomenon that has significant consequences for global change by affecting the g lobal reservoir of carbon dioxide, and by modulating the amount and extent of seasonal sea ice in the southern hemisphere. This component will make systematic observations of the temperature salinity structure of the water and undertake an extensive sampling program for other chemical studies. The purpose is to identify the individual water masses and to relate their temperature and salinity characteristics to the modification processes within the Weddell Sea. ***
PROPOSAL NO.: 0094078<br/>PRINCIPAL INVESTIGATOR: Bart, Philip<br/>INSTITUTION NAME: Louisiana State University & Agricultural and Mechanical College<br/>TITLE: CAREER: Relative frequency and phase of extreme expansions of the Antarctic Ice Sheets during the late Neogene<br/>NSF RECEIVED DATE: 07/27/2000<br/><br/>PROJECT SUMMARY<br/><br/>Expansions and contractions of the Antarctic Ice Sheets (AISs) have undoubtedly had a profound influence on Earth's climate and global sea-level. However, rather than being a single entity, the Antarctic cryosphere consists of three primary elements: 1) the East Antarctic Ice Sheet (EAIS); 2) the West Antarctic Ice Sheet (WAIS); and 3) the Antarctic Peninsula Ice Cap (APIC). The distinguishing characteristics include significant differences in: 1) ice volume; 2) substratum elevation; 3) ice-surface elevation; and 4) location with respect to latitude. Various lines of evidence indicate that the AISs have undergone significant fluctuations in the past and that fluctuations will continue to occur in the future. The exact nature of the fluctuations has been the subject of many lively debates. According to one line of reasoning, the land-based EAIS has been relatively stable, experiencing only minor fluctuations since forming in the middle Miocene, whereas the marine-based WAIS has been dynamic, waxing and waning frequently since the late Miocene. According to an alternate hypothesis, the ice sheets advanced and retreated synchronously. These two views are incompatible. <br/><br/>The first objective of this proposal is to compare the long-term past behavior of the WAIS to that of the EAIS and APIC. The fluctuations of the AISs involve many aspects (the frequency of changes, the overall magnitude of ice-volume change, etc.), and the activities proposed here specifically concern the frequency and phase of extreme advances of the ice sheet to the continental shelf. The project will build upon previous seismic-stratigraphic investigations of the continental shelves. These studies have clarified many issues concerning the minimum frequency of extreme expansions for the individual ice sheets, but some important questions remain. During the course of the project, the following questions will be evaluated.<br/><br/>Question 1) Were extreme advances of the EAIS and WAIS across the shelf of a similar frequency and coeval? This evaluation is possible because the western Ross Sea continental shelf (Northern Basin) receives drainage from the EAIS, and the eastern Ross Sea (Eastern Basin) receives drainage from the WAIS. Quantitative analyses of the extreme advances from these two areas have been conducted by Alonso et al. (1992) and Bart et al. (2000), respectively. However, the existing single-channel seismic grids are incomplete and can not be used to determine the stratigraphic correlations from Northern Basin to Eastern Basin. It is proposed that high-resolution seismic data (~2000 kms) be acquired to address this issue.<br/><br/>Question 2) Were extreme advances of the APIC across the shelf as frequent as inferred by Bart and Anderson (1995)? Bart and Anderson (1995) inferred that the APIC advanced across the continental shelf at least 30 times since the middle Miocene. This is significant because it suggests that the advances of the small APIC were an order of magnitude more frequent than the advances of the EAIS and WAIS. Others contest the Bart and Anderson (1995) glacial-unconformity interpretation of seismic reflections, and argue that the advances of the APIC were far fewer (i.e., Larter et al., 1997). The recent drilling on the Antarctic Peninsula outer continental shelf has sampled some but not all of the glacial units, but the sediment recovery was poor, and thus, the glacial history interpretation is still ambiguous. The existing high-resolution seismic grids from the Antarctic Peninsula contain only one regional strike line on the outer continental shelf. This is inadequate to address the controversy of the glacial-unconformity interpretation and the regional correlation of the recent ODP results. It is proposed that high-resolution seismic data (~1000 kms) be acquired in a forthcoming (January 2002) cruise to the Antarctic Peninsula to address these issues.<br/><br/>The second objective of this project is 1) to expand the PI's effort to integrate his ongoing and the proposed experiments into a graduate-level course at LSU, and 2) to develop a pilot outreach program with a Baton Rouge public high school. The Louisiana Department of Education has adopted scientific standards that apply to all sciences. These standards reflect what 9th through 12th grade-level students should be able to do and know. The PI will target one of these standards, the Science As Inquiry Standard 1 Benchmark. The PI will endeavor to share with the students the excitement of conducting scientific research as a way to encourage the students to pursue earth science as a field of study at the university level.
This project studies seasonal variation in the abundance and shell composition of foraminifera from the northern Gerlache-southern Bransfield Straits region of the Western Antarctic Peninsula. Its goal is to improve interpretation of microfaunal and geochemical proxies for reconstruction of ancient ocean currents, climate, and ecologies. Since seasonal variation may greatly affect interpretation, this project focuses on the Antarctic region, where intense seasonality should generate a more obvious signal than at the less extreme mid-latitudes. The results should allow a better understanding of the coupling to seasonal productivity, as well as improve regional reconstructions.<br/>The broader impacts are graduate, undergraduate, and postdoctoral student education; as well as outreach to both the English and Spanish-speaking public. The work will also improve society's understanding of past climate change as an analogue to the future.
This award supports a marine geophysical investigation of the Bransfield Strait and the Shackleton Fracture Zone and environs in the Scotia Sea in an effort to understand the neotectonic evolution of the region. Multibeam swath mapping and sidescan sonar mapping will be used along with multichannel seismic imaging. The main goal of this proposal is to collect multibeam and sidescan sonar data to map the structural character and tectonic fabric of the evolving plate boundary in Southwest Scotia Sea, Shackleton Fracture Zone, and Bransfield Strait. Follow up multichannel seismic surveys will be done in the Southwest Scotia Sea. The secondary goal is to use sidescan sonar reflectivity images to generate detailed structural maps of the seafloor of these regions and to integrate the new data with existing seismic reflection, Geosat gravity, Hydrosweep and Seabeam bathymetric data. Once the base maps are produced they can be used by other researchers to help interpret multichannel and single channel seismic reflection records. The neotectonic evolution of the Antarctic Peninsula and Scotia Sea is extremely complex. Understanding the recent evolution of the Drake-Scotia-Antarctic-South America plate intersections will provide important information as to how major plate boundaries reorganize after demise of a long-lived spreading center and the consequential reduction in the number of plates. The plate reorganization probably resulted in the uplift of the Shackleton Ridge which may have effected the sedimentary patterns in both the Scotia Sea and possibly the Weddell Sea. If the break of the Shackleton transform fault can be traced with multibeam and sidescan sonar as it intersects the southern end of South America then the orientation and geometry of the faults, fractures and deformation as the transform fault intersects the South American continent will help to interpret the structures in that complex region. Bransfield Strait is presently undergoing extensi on based on high heat flow, active volcanoes and inferences from seismic reflection work. Seismic refraction indicates thick crust similar to the East African Rift or passive volcanic margins of continents. In contrast, analysis of isotopes and rare earth elements of the recent volcanics shows seemingly no continental contamination. The active extension in Bransfield Strait must be related to the plate reorganization but it is unclear exactly what tectonic processes are occurring. Besides elucidating the tectonic fabric of Bransfield Strait, the multibeam and sidescan sonar survey will identify potential dredge targets and DSRV Alvin dive sites.
This award supports an investigation of the early seafloor spreading history of the Marie Byrd Land Margin, Antarctica. This effort will carefully map the magnetic lineations, the gravity anomalies, the topography and, where possible, the seismically determined depth to basement. The study will integrate the tectonic lineations determined from the gravity, bathymetry and seismic information with the magnetic anomalies to construct a new seafloor spreading history of the Marie Byrd Land Margin. The analysis of these new data sets and the resultant seafloor spreading history will be used to address the following questions: (1) Did the early opening of the Pacific-Antarctic Ridge involve an additional plate, the Bellingshausen Plate, or did the ridge undergo very asymmetric, non-orthogonal spreading? (2) With a better refined opening history for the Pacific Antarctic Ridge, what are the implications for relative motions between the tectonic blocks which compromise West Antarctica and for the structure and evolution of the Marie Byrd Land Margin? (3) Can the global plate circuit solution be enhanced by refining the early Tertiary history of Pacific-Antarctic seafloor spreading?
95-30398 Anderson This research project is part of the US Joint Global Ocean Flux Study (JGOFS) Southern Ocean Program aimed at (1) a better understanding of the fluxes of carbon, both organic and inorganic, in the Southern Ocean, (2) identifying the physical, ecological and biogeochemical factors and processes which regulate the magnitude and variability of these fluxes, and (3) placing these fluxes into the context of the contemporary global carbon cycle. The overall objectives of JGOFS are to determine and understand processes controlling the time-varying fluxes of carbon and associated biogenic elements, and to predict the response of marine biogeochemical processes to climate change. The Southern Ocean is critical in the global carbon cycle, as judged by its size and the physical processes which occur in it (e.g., deep and intermediate water formation), but its present quantitative role is uncertain. JGOFS objectives for the Southern Ocean study are as follows: 1) to constrain the fluxes of carbon (organic and inorganic) and to place these fluxes in the context of the contemporary carbon cycle; 2) to identify the factors and processes which regulate the magnitude and variability of primary productivity and the fate of biogenic matter; 3) to determine the response of the Southern Ocean to natural climate perturbations; and 4) to predict the response of the Southern Ocean to climate change. In order to successfully address these objectives, a large field program has been designed to provide various investigators the opportunity to test specific hypotheses which relate to these broadly-defined objectives. We expect the field test to begin in September 1996, and last through March 1998 using two ships, the R.V. Palmer, and the R.V. Thompson. As most of the investigators will use hydrographic and nutrient data from these cruises, this proposal requests funds for the support of the analysis of nutrient concentrations during these thirteen crui ses. A team of oceanographic experts from a variety of institutions has been assembled to complete these analyses; furthermore, the data will be scrutinized for errors and provided in a timely fashion to all PI's in the project, as well as to the relevant oceanographic data storage facilities. The hydrography and coring groups have been put together using the successful model for the Arabian Sea JGOFS study, and in conjunction with the nutrient data (supported under a separate proposal), will form a large portion of the Southern Ocean JGOFS database which both field investigators and modelers will use to clarify the role of the Southern Ocean in the global carbon cycle.
9317379 Foster This project is study of the deep and bottom water formation processes of the antarctic continental shelf off Wilkes Land between 145 deg E longitude and 160 deg E longitude. The project is to be carried out jointly with an Australian oceanographic project. Preliminary work in 1985 has shown that hydrographic sections in this area are quite similar to those of known deep water formation regions in the southern Weddell Sea. This project will include the year-long deployment of six current meter moorings, and tracer studies (oxygen, carbon dioxide, chlorofluorocarbons, stable isotopes, and nutrients) to test whether shelf waves and tides are the principal mechanism for mixing shelf water with the off-shore intermediate water. Two oceanographic cruises are planned for this work: a cruise of the RVIB Nathaniel B. Palmer in February 1995, and a cruise of the Australian ship R/V Aurora Australis in February 1996. ***
Seabird research conducted at Admiralty Bay, King George Island in the Antarctic Peninsula region has documented annual variability in the life history parameters of the population biology of three related penguin species: the Adelie, the gentoo and the chinstrap (Pygoscelis adeliae, P. papua and P. antarctica, respectively). This long-term study has collected twenty-five years of data on the three related species, including survival and recruitment, population size and breeding success, and diets and foraging ecology. The current project will extend the research linking penguin demography and foraging ecology to variability in the Antarctic marine ecosystem. A major focus of this work will be on the Adelie and gentoo penguin population biology data and the distribution and trophic interactions among the three Pygoscelis species during the breeding season and the non-breeding, winter period. Recent results have provided the first detailed data on the wintering distributions of Adelie and chinstrap penguins in the Antarctic Peninsula region, through the use of satellite tags and time-depth recorders to examine the post-fledging foraging. Specific topics of research include an examination of the size and sex composition of krill captured by penguins feeding chicks and krill collected concurrently by net hauls in the adjacent marine environment and the length-frequency distribution of krill collected from penguin diet samples. The over winter survival of penguin breeding adults and the recruitment of young (two to four year old) pre-breeding penguins to their natal colony will be compared to the extent of sea ice in the winter prior to the breeding season. These variables are expected to be positively correlated for the Adelie but negatively correlated to the chinstrap penguin. Detailed studies of the adult gentoo penguins, which do not disperse widely from the natal colony, will be conducted using satellite tags. The data collected in this study will improve an understanding of the structure and function of the Antarctic through research on the impact of environmental variation on the structure of upper trophic level predators such as the Pygoscelis penguins.
Notothenioid fish are a major group of fish in the Southern Ocean. The ancestral notothenioid fish stock of Antarctica probably arose as a sluggish, bottom-dwelling perciform species that evolved some 40-60 million years ago in the then temperate shelf waters of the Antarctic continent. The grounding of the ice sheet on the continental shelf and changing trophic conditions may have eliminated the taxonomically diverse late Eocene fauna and initiated the original diversification of notothenioids. On the High Antarctic shelf, notothenioids today dominate the ichthyofauna in terms of species diversity, abundance and biomass, the latter two at levels of 90-95%. Since the International Geophysical Year of 1957-58, fish biologists from the Antarctic Treaty nations have made impressive progress in understanding the notothenioid ichthyofauna of the cold Antarctic marine ecosystem. However, integration of this work into the broader marine context has been limited, largely due to lack of access to, and analysis of, specimens of Sub-Antarctic notothenioid fishes. Sub-Antarctic fishes of the notothenioid suborder are critical for a complete understanding of the evolution, population dynamics, eco-physiology, and eco-biochemistry of their Antarctic relatives. This project will support an international, collaborative research cruise to collect and study fish indigenous to sub-antarctic habitats. The topics included in the research plans of the international team of researchers includes Systematics and Evolutionary Studies; Life History Strategies and Population Dynamics; Physiological, Biochemical, and Molecular Biological Investigations of Major Organ and Tissue Systems; Genomic Resources for the Sub-Antarctic Notothenioids; and Ecological Studies of Transitional Benthic Invertebrates. In a world that is experiencing changes in global climate, the loss of biological diversity, and the depletion of marine fisheries, the Antarctic, Sub-Antarctic, and their biota offer compelling natural laboratories for understanding the evolutionary impacts of these processes. The proposed work will contribute to development of a baseline understanding of these sensitive ecosystems, one against which future changes in species distribution and survival may be evaluated judiciously.
This collaborative study between Columbia University and the Southampton Oceanography Centre will investigate the dynamics of warm water intrusions under antarctic floating ice shelves. The study will focus on the Amundsen Sea and Pine Island Glacier, and will document how this water gains access to the continental shelf, transports heat into the ice shelf cavities via deep, glacially-scoured troughs, and rises beneath the ice to drive basal melting. The resulting seawater-meltwater mixtures upwell near the ice fronts, contributing to the formation of atypical coastal polynyas with strong geochemical signatures. Multidecadal freshening downstream is consistent with thinning ice shelves, which may be triggering changes inland, increasing the flow of grounded ice into the sea. This work will be carried out in combination with parallel modeling, remote sensing and data based projects, in an effort to narrow uncertainties about the response of West Antarctic Ice Sheet to climate change. Using state-of-the-art facilities and instruments, this work will enhance knowledge of water mass production and modification, and the understanding of interactions between the ocean circulation, sea floor and ice shelves. The data and findings will be reported to publicly accessible archives and submitted for publication in the scientific literature. The information obtained should prove invaluable for the development and validation of general circulation models, needed to predict the future role of the Antarctic Ice Sheet in sea level change.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a marine geological investigation of the Amundsen Sea region toward a better understanding of the deglaciation history of the West Antarctic Ice Sheet (WAIS). The WAIS may be inherently unstable because it is the last marine-based ice sheet in the world. Unlike other embayments in West Antarctica, major ice streams draining into the Amundsen Sea from the interior of the WAIS lack buttressing ice shelves. Mass balance data for the distal portions of these ice streams (Pine Island and Thwaites glaciers) appear to be in balance or may be becoming negative. Because both ice streams have beds that slope downward toward the center of the ice sheet, grounding-line recession resulting from either continued thinning or sea-level rise could trigger irreversible grounding-line retreat, leading to ice-sheet disintegration and consequent global sea-level rise. The limited marine geological and geophysical data available from the Amundsen Sea suggest that grounded ice or an ice shelf occupied the inner Amundsen Sea embayment until perhaps as recently as 1000 to 2000 years ago, and this ice may have retreated rapidly in historic time. This project, a study of the marine geology and geophysics of the Amundsen Sea continental shelf from 100 degrees W to 130 degrees W, is designed to address the Amundsen Sea part of WAIS Science Plan Priority Goal H2: "What is the deglaciation history in the eastern Ross, the Bellingshausen and Amundsen Seas?" This project will examine bathymetric data of the Amundsen Sea continental shelf to determine the positions of former ice-steam channels, and to aid in choosing sites for sediment coring. Single-channel seismic reflection studies will be conducted in order to determine sediment-thickness patterns, to aid in choice of coring sites, and to locate and identify morphologic features indicative of former grounded ice (e.g., moraines, scours, flutes, striations, till wedges and deltas, etc.). Coring will be concentrated along former ice flow-lines. Core samples will be analyzed in the laboratory for sedimentology, to determine whether of not basal tills are present (indicating former grounded ice and its former extent), and for calcareous and siliceous microfossils. The chronology of grounding-line and ice-shelf retreat from a presumed Last Glacial Maximum position near the shelf break will be established using accelerator mass spectrometry (AMS) carbon-14 dates of acid-insoluble particulate organic carbon. This project will share ship time in the Amundsen Sea with a physical oceanographic project. Marine geologic data and samples collected will be integrated with findings of other investigators toward developing a comprehensive interpretation of the history of the WAIS.
Major progress has been made with respect to our understanding of the tectonic evolution of the Antarctic Plate. Paleomagnetic data, marine magnetic anomaly identifications, Geosat-derived tectonic lineations, heat flow derived seafloor ages and mathematical solutions for plate motions around triple junctions have all contributed to a better model for the tectonic evolution of the circum- Antarctic region. Even so, major problems still exist with respect to the Mesozoic to Recent tectonic evolution of the Antarctic continental margin which can be tackled using heat flow measurements. This award supports the study of a tectonic problem that heat flow can address, the determination of the age of the Powell Basin at the end of the West Antarctic Peninsula and its relationship to the opening of Drake's Passage. Specifically, heat flow measurement will be used to study the age and mode of crustal extension of the Powell Basin, where standard age determination fails and heat flow is the only method that can be used to date its opening.
This project is an investigation into one mechanism by which deep ocean convection can evolve from stable initial conditions, to the extent that it becomes well enough established to bring warm water to the surface and melt an existing ice cover in late, or possibly even mid-winter. The specific study will investigate how the non-linear dependence of seawater density on temperature and salinity (the equation of state) can enhance vertical convection under typical antarctic conditions. When layers of seawater with similar densities but strong contrasts in temperature and salinity interact, there are a number of possible non-linear instabilities that can convert existing potential energy to turbulent energy. In the Weddell Sea, a cold surface mixed layer is often separated from the underlying warm, more saline water by a thin, weak pycnocline, making the water column particularly susceptible to an instability associated with thermobaricity (the pressure dependence of the thermal expansion coefficient). The project is a collaboration between New York University, Earth and Space Research, the University of Washington, the Naval Postgraduate School, and McPhee Research Company.<br/>The work has strong practical applications in contributing to the explanation for the existence of the Weddell Polynya, a 300,000 square kilometer area of open water within the seasonal sea ice of the Weddell Sea, from approximately 1975 to 1979. It has not recurred since, although indications of much smaller and less persistent areas of open water do occur in the vicinity of the Maud Rise seamount. <br/> The experimental component will be carried out on board the RVIB Nathaniel B. Palmer between July and September, 2005.
This project uses radiocarbon in deep-sea corals to understand the Southern Ocean's role in modulating global climate. A key site of deep-water formation, the Southern Ocean is critical to exchange of heat and carbon between the deep-ocean and atmosphere. Changes in it may be linked to low atmospheric CO2 during the last glacial maximum through increased biologic carbon draw down or decreased air-sea CO2 exchange. Testing these hypotheses is challenging because of the scarcity of suitable records of the Southern Ocean's biogeochemistry and circulation. The aragonitic skeletons of deep-sea corals may offer insight because they are well suited for radiocarbon analyses-reflective of the 14C content of the past water column--while also allowing for timing of events through U-series age measurements. Overall, these measurements will put new constraints on the extent of air-sea gas exchange, polar water-column stratification, and the flux of Southern-sourced deep water to the rest of the world's oceans. As a part of this work, new sections of the Drake Passage sea floor will be mapped and imaged, along with the present and past distributions of deep-sea corals and their habitats. <br/><br/><br/><br/>A significant broader impact of this work is characterizing the functioning of what may be a key control of atmospheric CO2 content, which could prove important for fully understanding the impacts of continued CO2 emissions and developing mitigation strategies. As well, the work will characterize deep marine ecologies that are poorly understood, but increasingly exploited as fisheries resources.
Luyendyk et.al.: OPP 0088143<br/>Bartek: OPP 0087392<br/>Diebold: OPP 0087983<br/><br/>This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research program in marine geology and geophysics in the southern central and eastern Ross Sea. The project will conduct sites surveys for drilling from the Ross Ice Shelf into the seafloor beneath it. Many of the outstanding problems concerning the evolution of the East and West Antarctic Ice Sheets, Antarctic climate, global sea level, and the tectonic history of the West Antarctic Rift System can be addressed by drilling into the seafloor of the Ross Sea. Climate data for Cretaceous and Early Cenozoic time are lacking for this sector of Antarctica. Climate questions include: Was there any ice in Late Cretaceous time? What was the Antarctic climate during the Paleocene-Eocene global warming? When was the Cenozoic onset of Antarctic glaciation, when did glaciers reach the coast and when did they advance out onto the margin? Was the Ross Sea shelf non-marine in Late Cretaceous time; when did it become marine? Tectonic questions include: What was the timing of the Cretaceous extension in the Ross Sea rift; where was it located? What is the basement composition and structure? Where are the time and space limits of the effects of Adare Trough spreading? Another drilling objective is to sample and date the sedimentary section bounding the mapped RSU6 unconformity in the Eastern Basin and Central Trough to resolve questions about its age and regional extent. Deep Sea Drilling Project (DSDP) Leg 28 completed sampling at four drill sites in the early 1970's but had low recovery and did not sample the Early Cenozoic. Other drilling has been restricted to the McMurdo Sound area of the western Ross Sea and results can be correlated into the Victoria Land Basin but not eastward across basement highs. Further, Early Cenozoic and Cretaceous rocks have not been sampled. A new opportunity is developing to drill from the Ross Ice Shelf. This is a successor program to the Cape Roberts Drilling Project. One overriding difficulty is the need for site surveys at drilling locations under the ice shelf. This project will overcome this impediment by conducting marine geophysical drill site surveys at the front of the Ross Ice Shelf in the Central Trough and Eastern Basin. The surveys will be conducted a kilometer or two north of the ice shelf front where recent calving events have resulted in a southerly position of the ice shelf edge. In several years the northward advance of the ice shelf will override the surveyed locations and drilling could be accomplished. Systems to be used include swath bathymetry, gravity, magnetics, chirp sonar, high resolution seismic profiling, and 48 fold seismics. Cores will be collected to obtain samples for geotechnical properties, to study sub-ice shelf modern sedimentary processes, and at locations where deeper section is exposed.<br/><br/>This survey will include long profiles and detailed grids over potential drill sites. Survey lines will be tied to existing geophysical profiles and DSDP 270. A recent event that makes this plan timely is the calving of giant iceberg B-15 (in March, 2000) and others from the ice front in the eastern Ross Sea. This new calving event and one in 1987 have exposed 16,000 square kilometers of seafloor that had been covered by ice shelf for decades and is not explored. Newly exposed territory can now be mapped by modern geophysical methods. This project will map geological structure and stratigraphy below unconformity RSU6 farther south and east, study the place of Roosevelt Island in the Ross Sea rifting history, and determine subsidence history during Late Cenozoic time (post RSU6) in the far south and east. Finally the project will observe present day sedimentary processes beneath the ice shelf in the newly exposed areas.
The objective of the proposed work is to provide for the operation of a Planning Office for the synthesis and modeling phase of the Southern Ocean Global Ocean Ecosystems Dynamics (SO-Globec) program. The office will ensure that synthesis and integration activities that are developed as part of SO-Globec are coordinated with those undertaken by the international and U.S. Globec programs through: 1) organization of special sessions at meetings, 2) preparation of dedicated publications focused on program results, 3) maintenance of a project web site, 4) development of program outreach efforts, and 5) ensuring coordination with International Globec and other national and international programs and organizations. The office will consist of one faculty member and one program specialist.<br/><br/>SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. Extensive studies describing the ecology and physiology of important species at all trophic levels contributed to the ecosystem approach which is the essence of SO-Globec. The Planning Office will provide a central focal point for ensuring that the results from SO-Globec are made available to the broader scientific community and to the general public, and that the results will be incorporated into the planning of future Southern Ocean programs.
This award, provided jointly by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research to transform three temporary seismometers in the Antarctic Peninsula into semi-permanent stations and to continue basic research using these data. During 1997 and 1998, a network of 11 broadband seismographs in the Antarctic Peninsula region and southernmost Chilean Patagonia were installed and maintained. Data return from this project has been excellent and interesting initial results have been produced. The continued operation of these instruments over a longer time period would be highly beneficial because the number of larger magnitude regional earthquakes is small and so a longer time is needed to acquire data. However, instruments from this project are borrowed from the IRIS-PASSCAL instrument pool and must be returned to PASSCAL in April, 1999. This award provides funds to convert three stations at permanent Chilean bases in the Antarctic to permanent stations, and to continue the seismological investigation of the region for a period of four years. As part of this project, a fourth station, in Chilean Patagonia, will continue to be operated using Washington University equipment. The funding of this project will enable continued collaboration between Washington University and the Universidad de Chile in the operation of these stations, and the data will be forwarded to the IRIS data center as well as to other international seismological collaborators. Mutual data exchanges with other national groups with Antarctic seismology research programs will provide access to broadband data from a variety of other proprietary broadband stations in the region. The data will be used to study the seismicity and upper mantle velocity structure of several complicated tectonic regions in the area, including the South Shetland subduction zone, the Bransfield backarc rift, and diffuse plate boundaries in Patagonia, Drake Passage, and along the South Scotia Ridge. In particular, the operation of these stations over a longer time period will allow a better understanding of the seismicity of the South Shetland Trench, an unusual subduction zone showing very slow subduction of young lithosphere. These seismometers will also be used to record airgun shots during a geophysical cruise in the Bransfield Strait that is being planned by the University of Texas for April, 2000. These data will provide important constraints on the crustal structure beneath the stations, and the improved structural models will enable implementation of more precise earthquake location procedures in support of a seismological understanding of the region.
Marine geological and geophysical studies of the Ross Sea and Weddell Sea continental shelves provide evidence that the ice sheet grounded near the shelf edge in these areas during the late Wisconsinan, and that the retreat of the ice sheet to its present position was rapid and probably episodic. This Award supports a project which will establish the most recent (late Wisconsin- Holocene) history of ice sheet advance and retreat in Ross Sea. The objectives include: 1) reconstruction the late Wisconsin paleodrainage regime, including ice stream divides; 2) reconstruction of former grounding zone positions; 3) constraint of the timing of ice sheet retreat from the shelf; and 4) acquisition of geophysical, sedimentological, and paleontological data which may provide indicators the environmental factors that may have influenced to ice sheet retreat. This is a joint effort between Rice University, the University of Colorado, and Hamilton College. The project involves experts in a wide variety of fields, and will interface with glaciologists, physical oceanographers and climatologists who will address the problem of ice sheet stability and the record of climatic and glaciological change.
9614201 Costa Sea ice forms an extensive habitat in the Southern Ocean. Reports dating from the earliest explorations of Antarctica have described high concentrations of algae associated with sea-ice, suggesting that the ice must be an important site of production and biological activity. The magnitude and importance of ice-based production is difficult to estimate largely because the spatial and temporal distributions of ice communities have been examined in only a few regions, and the processes controlling production and community development in ice are still superficially understood. This study will examine sea ice communities in the Ross Sea region of Antarctica in conjunction with a studies of ice physics and remote sensing. The specific objectives of the study are: 1) to relate the overall distribution of ice communities in the Ross Sea to specific habitats that are formed as the result of ice formation and growth processes; 2) to study the initial formation of sea ice to document the incorporation and survival of organisms, in particular to examine winter populations within "snow-ice" layers to determine if there is a seed population established at the time of surface flooding; 3) to sample summer communities to determine the extent that highly productive "snow-ice" and "freeboard" communities develop in the deep water regions of the Ross Sea; 4) and to collect basic data on the biota, activity, and general physical and chemical characteristics of the ice assemblages, so that this study contributes to the general understanding of the ecology of the ice biota in pack ice regions.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a demonstration project to prove the viability of shallow ship-based geological drilling while simultaneously collecting useful cores for assessing the early history of the Antarctic ice sheets. For over three decades, U.S. scientists and their international colleagues exploring the shallow shelves and seas along the margins of Antarctic have been consistently frustrated by their inability to penetrate through the over-compacted glacial diamictons encountered at shallow sub bottom depths (within the upper 10 m) over these terrains. This is particularly frustrating because advanced high resolution seismic reflection techniques clearly show in many areas the presence of older successions of Neogene and even Paleogene sequences lying just beneath this thin veneer of diamictons. Until the means are developed to recover these sequences, a detailed history of the Antarctic ice sheets, which is an essential prerequisite to understanding Cenozoic paleoclimate and future climate change on a global scale, will remain an elusive and unobtainable goal. After four years of study and evaluation with the aid of a professional engineer (and over the course of two workshops), the SHALDRIL Committee, an interested group of U.S. scientists, has identified at least two diamond-coring systems deemed suitable for use on existing ice-breaking U.S. Antarctic Research Program vessels. The goal of this project is to employ diamond-coring technology on the RV/IB Nathaniel B. Palmer in order to test out and demonstrate the feasibility of both ship-based diamond coring and down-hole logging. For this "demonstration cruise" coring will be attempted along a high-resolution seismic reflection profile on the continental shelf adjacent to Seymour Island, Antarctic Peninsula, an area of high scientific interest in its own right. Here the well-defined geologic section is estimated to range from Eocene to Quaternary in age, effectively spanning the "Greenhouse-Icehouse" transition in the evolution of Antarctic/global climate. A complete record of this transition has yet to be obtained anywhere along the Antarctic margin. Following core recovery, this project will result in correlation of the paleoclimate records from the new cores with detailed fluctuations of the ice margin recorded at higher latitudes in the eastern Ross Sea by the recently concluded, fast-ice-based Cape Roberts Project. If successful, this mobile and flexible drilling system will then be available to the broader scientific community for further research in paleoenvironmental conditions and other areas of science that are currently hindered by the present gap that exists in the US Antarctic Program's technical capability to explore the Antarctic shelves between the shore-line/fast-ice margin and the continental slope. SHALDRIL will be able to operate effectively in the "no man's land" that presently exists between the near shore (where the fast-ice-based Cape Roberts Project was successful) and the upper slope (where the Ocean Drilling Program's vessel JOIDES Resolution becomes most efficient). This technological breakthrough will not only allow major outstanding scientific problems of the last three decades to be addressed, but will also favorably impact many current U.S. and SCAR (ICSU Scientific Committee on Antarctic Research) Antarctic or drilling-related initiatives, such as WAIS, ANTIME, ANDRILL, ANTEC, IMAGES, PAGES, GLOCHANT (including PICE), MARGINS, ODP, and STRATAFORM.
This award supports a collaborative marine geological and geophysical project between the University of California, Santa Barbara, and the University of Alabama to study the glacial and tectonic history of the eastern Ross Sea and the Marie Byrd Land margin of West Antarctica. The goals of the project are (1) to conduct seismic imaging and piston coring to begin unraveling the history of the West Antarctic ice Sheet as recorded in the recent sediments of the continental shelf of the region, and (2) to acquire seismic images of the acoustic basement beneath the Cenozoic glacial deposits toward an understanding of the relationship between rift structure of the continental crust and Cenozoic glacial deposits of the region. This research will result in bathymetric, structural, sediment isopach, gravity and magnetic maps of the eastern Ross Sea and the Marie Byrd Land margin. This information will be integrated into an interpretation of the major glacial and structural features of the region. This project will result in a better understanding of the glacio-marine stratigraphy and glacial history of the eastern Ross Sea and Marie Byrd Land margin and, consequently, it will represent a significant contribution to the goals of the West Antarctic Ice Sheet initiative.
The goal of this investigation is to understand the role of snow in sea ice development processes and air-ice-ocean heat exchange interactions in the seasonal and perennial sea ice zones of the Ross Sea, the Amundsen Sea, and the Bellingshausen Sea. Observations and measurements of the characteristics of sea ice and snow will be combined with numerical models of sea-ice flooding and the entrainment of snow into the ice cover in order to gain an understanding of the sea-ice heat and mass balance, and to quantify the energy exchange within the antarctic sea-ice cover. The snow measurement program, using the RVIB Nathaniel B. Palmer, will include depth, grain size and morphology, density, temperature, thermal conductivity, water content, and stable isotope ratio. The ice measurement program will include thickness, salinity, temperature, density, brine content, and included gas volume, as well as such structural properties as the fraction of frazil, platelet, and congelation ice in the seasonal antarctic pack ice. Differences in ice types are the result of differences in the environment in which the ice forms: frazil ice is formed in supercooled sea water, normally through wind or wave-induced turbulence, while platelet and congelation ice is formed under quiescent conditions. The fraction of frazil ice is an important variable in the energy budget of the upper ocean, and contributes significantly to the stabilization of the surface layers. The numerical models will involve the thermodynamics of phase changes from liquid water to ice, along with the resulting energy transfer, brine expulsion, and the modulating effect of a snow cover. The results are expected to have broad relevance and application to understanding the effects of sea-ice processes in global change, and atmospheric, oceanographic, and remote sensing investigations of the Southern Ocean.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a project to make use of ship-repositioning transit cruises to gather geophysical information relating to plate tectonics of the Southern Ocean and to support student training activities. Well-constrained Cenozoic plate reconstructions of the circum-Antarctic region are critical for examining a number of problems of global geophysical importance. These problems include, e.g., relating the plate kinematics to its geological consequences in various plate circuits (Pacific-North America, Australia-Pacific); a dynamical understanding of what drives plate tectonics (which requires well-constrained kinematic information in order to distinguish between different geodynamic hypotheses); and an understanding of the rheology of the plates themselves, including the amount of internal deformation they can support, and the conditions leading to the formation of new plate boundaries through breakup of existing plates. By obtaining better constraints on the motion of the Antarctica plate with respect to these other plates, and by better quantifying the internal deformation within Antarctica (between East and West Antarctica), contributions will be made to solving these other fundamental problems.<br/><br/>In this project, existing data will be analyzed to address several specific issues related to plate motions involving the Antarctic plate. First, work will be done on four-plate solutions of Australia-Pacific-West Antarctica-East Antarctica motion, in order to most tightly constrain the rotation parameters for separation between East and West Antarctica for the time period from about 45 to 28 Ma (Adare Basin spreading system). This will be done by imposing closure on the four-plate circuit and using relevant marine geophysical data from all four of the boundaries. The uncertainties in the resulting rotation parameters will be determined based on the uncertainties in the data points. These uncertainties can then be propagated in the plate circuit for use in addressing the various global geodynamic problems mentioned above. Second, rotation parameters for Pacific-West Antarctica during Tertiary time will be determined using recently acquired well-navigated Palmer transit data and any additional data that can be acquired during the course of this project. These parameters and their uncertainties will be used in assessments of plate rigidity and included in the plate circuit studies.<br/><br/>In the framework of this project, new collection of marine geophysical data will be accomplished on a very flexible schedule. This will be done by collecting underway gravity, magnetics, and swath bathymetric data on Palmer transit cruises of geological importance. This has been successfully done on eight previous Palmer cruises since 1997, the most recent four of which were funded under a collaborative OPP grant to CalTech and Scripps which is now expiring. On one of the suitable transits, a formal class in marine geophysics will be conducted that will afford an opportunity to 12 or more graduate and undergraduate students, from CalTech and Scripps as well as other institutions. In this way, educational activities will be integrated with the usual scientific data collection objectives of the research project.
Ultraviolet radiation influences the dynamics of plankton processes in the near-surface waters of most aquatic ecosystems. In particular, the Southern Ocean is affected in the austral spring period when biologically damaging ultraviolet radiation is enhanced by ozone depletion. While progress has been made in estimating the quantitative impact of ultraviolet radiation on bacteria and phytoplankton in the Southern Ocean, some important issues remain to be resolved. Little is known about responses in systems dominated by the colonial haptophyte Phaeocystis antarctica, which dominates spring blooms in a polyna that develops in the southern Ross Sea. The Ross Sea is also of interest because of the occurrence of open water at a far southerly location in the spring, well within the ozone hole, and continuous daylight, with implications for the regulation of DNA repair. A number of studies suggest that vertical mixing can significant modify the impact of ultraviolet radiation in the Southern Ocean and elsewhere. However, there are limited measurements of turbulence intensity in the surface layer and measurements have not been integrated with parallel studies of ultraviolet radiation effects on phytoplankton and bacterioplankton. To address these issues, this collaborative study will focus on vertical mixing and the impact of ultraviolet radiation in the Ross Sea. The spectral and temporal responses of phytoplankton and bacterioplankton to ultraviolet radiation will be characterized in both laboratory and solar incubations. These will lead to the definition of biological weighting functions and response models capable of predicting the depth and time distribution of ultraviolet radiation impacts on photosynthesis, bacterial incorporation and DNA damage in the surface layer. Diel sampling will measure depth-dependent profiles of DNA damage, bacterial incorporation, photosynthesis and fluorescence parameters over a 24 h cycle. Sampling will include stations with contrasting wind-driven mixing and stratification as the polyna develops. The program of vertical mixing measurements is optimized for the typical springtime Ross Sea situation in which turbulence of intermediate intensity is insufficient to mix the upper layer thoroughly in the presence of stabilizing influences like solar heating and/or surface freshwater input from melting ice. Fine-scale vertical density profiles will be measured with a free-fall CTD unit and the profiles will be used to directly estimate large-eddy scales by determining Thorpe scales. Eddy scales and estimated turbulent diffusivities will be directly related to surface layer effects, and used to generate lagrangian depth-time trajectories in models of ultraviolet radiation responses in the surface mixed layer. The proposed research will be the first in-depth study of ultraviolet radiation effects in the Ross Sea and provide a valuable comparison with previous work in the Weddell-Scotia Confluence and Palmer Station regions. It will also enhance the understanding of vertical mixing processes, trophic interactions and biogeochemical cycling in the Ross Sea.
9908856 Blake This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a paleoecological and paleoenvironmental study of Seymour Island. Global climate change late in the Eocene epoch had an important influence in Antarctica. This was the beginning of the transition from a cool-temperate climate in Antarctica to the polar climate that exists there today. The cooling trend strongly influenced the structure of shallow-water, Antarctic marine communities, and these effects are still evident in the peculiar ecological relationships among species living in modern Antarctic communities. Cooling late in the Eocene reduced the abundance of fish and crabs, which in turn reduced skeleton-crushing predation on invertebrates. Reduced predation allowed dense populations of ophiuroids (brittlestars) and crinoids (sea lilies) to appear in shallow-water settings at the end of the Eocene. These low-predation communities appear as dense fossil echinoderm assemblages in the upper portion of the late Eocene La Meseta Formation on Seymour Island, off the Antarctic Peninsula. Today, dense ophiuroid and crinoid populations are common in shallow-water habitats in Antarctica but generally have been eliminated by predators from similar habitats at temperate and tropical latitudes; their persistence in Antarctica to this day is an important ecological legacy of climatic cooling in the Eocene. Although the influence of declining predation on Antarctic ophiuroids and crinoids is now well documented, the effects of cooling on the more abundant mollusks have not been investigated. This study will examine the evolutionary ecology of gastropods (snails) and bivalves (clams) in the late Eocene. A series of hypotheses will be tested in the La Meseta Formation, based on the predicted responses of mollusks to declining temperature and changing levels of predation. The shapes of gastropod shells, the activities of gastropods that prey on other mollusks by drilling holes in their shells, and the effects of predation on the thickness of mollusk shells should have changed significantly through late Eocene time. First, defensive features of gastropod shells, such as spines and ribbing, should decline as temperature and, therefore, the activity of skeleton-crushing predators declined. Second, drilling of bivalve prey by predatory gastropods should increase with time since the drillers should themselves have been subject to lower predation pressure as temperature declined. Drilled shells, therefore, should become more common through time. Third, patterns in the thickness of shells through time will make it possible to separate the direct, physiological effects of declining temperature (shells are more difficult to produce at cooler temperatures, and so should be thinner) from the indirect effects of temperature on evolving biological interactions (increased drilling predation should result in thicker shells). Seymour Island contains the only fossil outcrops readily accessible in Antarctica from this crucial period in Earth history. The La Meseta Formation on Seymour Island thus provides a unique opportunity to learn how climate change affected Antarctic marine communities. In practical terms, global climate change will probably increase upwelling over the next few decades to centuries in some temperate coastal regions. Recent ecological evidence suggests that the resultant lowering of sea temperatures could lower predation in those areas. Understanding the response of the La Meseta faunas to global cooling in the late Eocene will provide direct insight into the rapidly changing structure of modern benthic communities.
The annual advance and retreat of pack ice may be the major physical determinant of spatial and temporal changes in the structure and function of antarctic marine communities. Interannual cycles and/or trends in the annual extent of pack ice may also have significant effects on all levels of the food web, from total annual primary production to breeding success in seabirds. Historical records indicate a six to eight year cycle in the maximum extent of pack ice in the winter. During this decade, winters were colder in 1980 and 1981, and again in 1986 and 1987. Winter-over survival in Adelie penguins varied on the same cycle, higher in winters with heavy pack ice. This Long Term Ecological Research (LTER) project will define ecological processes linking the extent of annual pack ice with the biological dynamics of different trophic levels within antarctic marine communities. The general focus is on interannual variability in representative populations from the antarctic marine food web and on mechanistic linkages that control the observed variability in order to develop broader generalizations applicable to other large marine environments. To achieve these objectives, data from several spatial and temporal scales, including remote sensing, a field approach that includes an annual monitoring program, a series of process-oriented research cruises, and a modeling effort to provide linkages on multiple spatial and temporal scales between biological and environmental components of the ecosystem will be employed.
This work will perform a marine geophysical survey of sea floor spreading off Cape Adare, Antarctica. Magnetic, gravity, swath bathymetry and multi-channel seismic data will be acquired from the southern end of the Adare Basin to the northern parts of the Northern Basin and Central Trough in the Ross Embayment. Previous surveys documented 170 km of regional extension between forty-three and twenty-six million years ago, which resulted in some seafloor spreading in the Adare Basin. However, the relationship of Adare Basin spreading to the overall extension and the southward continental basins of the Ross Embayment has not been established. This relationship is critical to understanding the tectonic evolution of East and West Antarctica and linking Pacific plate motions to the rest of the world. The study will also offer unique insight into rifting processes by studying the transition of rifting between oceanic and continental lithosphere. In terms of broader impacts, this project will support two graduate students and field research experience for undergraduates. The project also involves cooperation between scientists from the US, Australia, New Zealand and Japan.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research to study the deep crustal structure of the Bransfield Strait region. Bransfield Strait, in the northern Antarctic Peninsula, is one of a small number of modern basins that may be critical for understanding ancient mountain-building processes. The Strait is an actively-extending marginal basin in the far southeast Pacific, between the Antarctic Peninsula and the South Shetland Islands, an inactive volcanic arc. Widespread crustal extension, accompanied by volcanism along the Strait's axis, may be associated with slow underthrusting of oceanic crust at the South Shetland Trench; similar "back-arc" extension occurred along the entire Pacific margin (now western South America/West Antarctica) of the supercontinent known as Gondwanaland during the Jurassic-Early Cretaceous. Mid-Cretaceous deformation of these basins some 100 million years ago initiated uplift of the Andes. By understanding the deep structure and evolution of Bransfield rift, it should be possible to evaluate the crustal precursor to the Andes, and thereby understand more fully the early evolution of this globally important mountain chain. Years of international earth sciences research in Bransfield Strait has produced consensus on important aspects of its geologic environment: (1) It is probably a young (probably ~4 million years old) rift in preexisting Antarctic Peninsula crust; continued stretching of this crust results in complex fault patterns and associated volcanism. The volcanism, high heat flow, and mapped crustal trends are all consistent with the basin's continuing evolution as a rift; (2) The volcanism, which is recent and continuing, occurs along a "neovolcanic" zone centralized along the basin's axis. Multichannel seismic data collected aboard R/V Maurice Ewing in 1991 illustrate the following basin-wide characteristics of Bransfield Strait - a) widespread extension and faulting, b) the rise of crustal diapirs or domes associated with flower-shaped normal-fault structures, and c) a complicated system of fault-bounded segments across strike. The geophysical evidence also suggests NE-to-SW propagation of the rift, with initial crustal inflation/doming followed by deflation/subsidence, volcanism, and extension along normal faults. Although Bransfield Strait exhibits geophysical and geologic evidence for extension and volcanism, continental crust fragmentation does not appear to have gone to completion in this "back-arc" basin and ocean crust is not yet being generated. Instead, Bransfield rift lies near the critical transition from intracontinental rifting to seafloor-spreading. The basin's asymmetry, and seismic evidence for shallow intracrustal detachment faulting, suggest that it may be near one end-member of the spectrum of models proposed for continental break-up. Therefore, this basin is a "natural lab" for studying diverse processes involved in forming continental margins. Understanding Bransfield rift's deep crustal structure is the key to resolving its stage of evolution, and should also provide a starting point for models of Andean mountain-building. This work will define the deep structure by collecting and analyzing high-quality, high-density ocean bottom seismometer (OBS) profiles both along and across the Strait's strike. Scientific objectives are as follows: (1) to develop a detailed seismic velocity model for this rift; (2) to calibrate velocity structure and crustal thickness changes associated with presumed NE-to-SW rift propagation, as deduced from the multichannel seismic interpretations; (3) to document the degree to which deep velocity structure corresponds to along- and across-strike crustal segmentation; and (4) to assess structural relationships between the South Shetland Islands "arc" and Bransfield rift. The proposed OBS data, integrated with interpretations of both Ewing profiles and those from other high-quality geophysical coverage in Bransfield Strait, will complement ongoing deep seismic analysis of Antarctic Peninsula crust to the southwest and additional OBS monitoring for deep earthquakes, in order to understand the complex plate tectonic evolution of this region.
This project examines the role of glacier dynamics in glacial sediment yields. The results will shed light on how glacial erosion influences both orogenic processes and produces sediments that accumulate in basins, rich archives of climate variability. Our hypothesis is that erosion rates are a function of sliding speed, and should diminish sharply as the glacier's basal temperatures drop below the melting point. To test this hypothesis, we will determine sediment accumulation rates from seismic studies of fjord sediments for six tidewater glaciers that range from fast-moving temperate glaciers in Patagonia to slow-moving polar glaciers on the Antarctic Peninsula. Two key themes are addressed for each glacier system: 1) sediment yields and erosion rates by determining accumulation rates within the fjords using seismic profiles and core data, and 2) dynamic properties and basin characteristics of each glacier in order to seek an empirical relationship between glacial erosion rates and ice dynamics. The work is based in Patagonia and the Antarctic Peninsula, ideal natural laboratories for these purposes because the large latitudinal range provides a large range of precipitation and thermal regimes over relatively homogeneous lithologies and tectonic settings. Prior studies of these regions noted significant decreases in glaciomarine sediment accumulations in the fjords to the south. As well, the fjords constitute accessible and nearly perfect natural sediment traps.<br/><br/>The broader impacts of this study include inter-disciplinary collaboration with Chilean glaciologists and marine geologists, support for one postdoctoral and three doctoral students, inclusion of undergraduates in research, and outreach to under-represented groups in Earth sciences and K-12 educators. The results of the project will also contribute to a better understanding of the linkages between climate and evolution of all high mountain ranges.
Neale 9615342 Increases in ultraviolet-B radiation (UV-B, 280-320) associated with the Antarctic ozone hole have been shown to inhibit the photosynthesis of phytoplankton, but the overall effect on water column production is still a matter of debate and continued investigation. Investigations have also revealed that even at "normal" levels of Antarctic stratospheric ozone, UV-B and UV-A (320-400 nm) appear to have strong effects on water column production. The role of UV in the ecology of phytoplankton primary production has probably been underappreciated in the past and could be particularly important to the estimation of primary production in the presence of vertical mixing. This research focuses on quantifying UV effects on photosynthesis of Antarctic phytoplankton by defining biological weighting functions for UV-inhibition. In the past, techniques were developed to describe photosynthesis as a function of UV and visible irradiance using laboratory cultures. Further experimentation with natural assemblages from McMurdo Station in Antarctica showed that biological weighting functions are strongly related to light history. Most recently, measurements in the open waters of the Southern Ocean confirmed that there is substantial variability in the susceptibility of phytoplankton assemblages to UV. It was also discovered that inhibition of photosynthesis in Antarctic phytoplankton got progressively worse on the time scale of hours, with no evidence of recovery. Even under benign conditions, losses of photosynthetic capability persisted unchanged for several hours. This was in contrast with laboratory cultures and some natural assemblages which quickly attained a steady- state rate of photosynthesis during exposure to UV, reflecting a balance between damage and recovery processes. Slow reversal of UV-induced damage has profound consequences for water-column photosynthesis, especially during vertical mixing. Results to date have been used to model th e influence of UV, ozone depletion and vertical mixing on photosynthesis in Antarctic waters. Data indicate that normal levels of UV can have a significant impact on natural phytoplankton and that the effects can be exacerbated by ozone depletion as well as vertical mixing. Critical questions remain poorly resolved, however, and these are the focus of the present proposal. New theoretical and experimental approaches will be used to investigate UV responses in both the open waters of the Weddell-Scotia confluence and coastal waters near Palmer Station. In particular, measurements will be made of the kinetics of UV inhibition and recovery on time scales ranging from minutes to days. Variability in biological weighting functions between will be calculated for pelagic and coastal phytoplankton in the Southern Ocean. The results will provide absolute estimates of photosynthesis under in situ, as well as under altered, UV irradiance; broaden the range of assemblages for which biological weighting functions have been determined; and clarify how kinetics of inhibition and recovery should be represented in mixed layer models.
The krill surplus hypothesis argues that the near-extirpation of baleen whales from Antarctic waters during much the twentieth century led to significant changes in the availability of krill for other predators. Over the past decade, however, overall krill abundance has decreased by over an order of magnitude around the Antarctic Peninsula, in part due to physical forces, including the duration and extent of winter sea ice cover. Krill predators are vulnerable to variability in prey and have been shown to alter their demography in response to changes in prey availability This research will use novel tagging technology combined with traditional fisheries acoustics methods to quantify the prey consumed by a poorly understood yet ecologically integral and recovering krill predator in the Antarctic, the humpback whale (Megaptera novaeangliae). It also will use a combination of advanced non-invasive tag technology to study whale behavior concurrent with hydro-acoustic techniques to map krill aggregations. The project will (1) provide direct and quantitative estimates of krill consumption rates by humpback whales and incorporate these into models for the management of krill stocks and the conservation of the Antarctic marine ecosystem; (2) provide information integral to understanding predator-prey ecology and trophic dynamics, i.e., if/how baleen whales affect the distribution and behavior of krill and/or other krill predators; (3) add significantly to the knowledge of the diving behavior and foraging ecology of baleen whales in the Antarctic; and (4) develop new geospatial tools for the construction of multi-trophic level models that account for physical as well as biological data. <br/><br/>Broader Impacts: Whales are assumed to be a major predator on Antarctic krill, yet there is little understanding of how whales utilize this resource. This knowledge is critical to addressing both bottom-up and top-down questions, e.g., how climate change may affect whales or how whales may affect falling krill abundances. This program will integrate research and education by providing opportunities for undergraduate and graduate students as well as postdoctoral researchers at Duke University, the Florida State University and the University of Massachusetts at Boston. This project will also seek to integrate interactive learning through real time, seasonal and curriculum development in collaboration with the National Geographic Society as well as at the participating universities and local schools in those communities.
The objectives of this proposal are to investigate the controls on the large-scale distribution and production of the two major bloom-forming phytoplankton taxa in the Southern Ocean, diatoms and Phaeocystis Antarctica. These two groups, through their involvement in the biogeochemical cycles of carbon, sulfur and nutrient elements, may have played important roles in the climate variations of the late Quaternary, and they also may be key players in future environmental change. A current paradigm is that irradiance and iron availability drive phytoplankton dynamics in the Southern Ocean. Recent work, however, suggests that carbon dioxide (CO2) concentrations may also be important in structuring algal assemblages, due to species-specific differences in the physiology. This proposal examines the interactive effects of iron, light and CO2 on the physiology, ecology and relative dominance of Phaeocystis and diatoms in the Southern Ocean. The Ross Sea is an ideal system in which to investigate the environmental factors that regulate the distribution and production of these two algal groups, since it is characterized by seasonal blooms of both P. Antarctica and diatoms that are typically separated in both space and time. This study will take the form of an interdisciplinary investigation that includes a field survey and statistical analysis of algal assemblage composition, iron, mixed layer depth, and CO2 levels in the southern Ross Sea, coupled with shipboard experiments to examine the response of diatom and P. Antarctica assemblages to high and low levels of iron, light and CO2 during spring and summer. <br/>This project will provide information on some of the major factors controlling the production and distribution of the two major bloom forming phytoplankton in the Southern Ocean and the related biogeochemical cycling of carbon, sulfur and nutrient elements. The results may ultimately advance the ability to predict how the Southern Ocean will be affected by and possibly modulate future climate change. This project will also make significant educational contributions at several levels, including the planned research involvement of graduate and undergraduate students, postdoctoral associates, a student teacher, and community outreach and educational activities. A number of activities are planned to interface the project with K-12 education. Presentations will be made at local schools to discuss the research and events of the research cruise. During the cruise there will be daily interactive email contact with elementary classrooms. Established websites will be used to allow students to learn about the ongoing research, and to allow researchers to communicate with students through text and downloaded images.
This proposal is for the continuation and expansion of an underway program on the R/V Laurence M. Gould to measure dissolved carbon dioxide gas (pCO2) along with occasional total carbon dioxide (TCO2) in surface waters on transects of Drake Passage. The added observations include dissolved oxygen, as well as nutrient and carbon-13. The proposed work is similar to the underway measurement program made aboard R/V Nathaniel B. Palmer, and complements similar surface temperature and current data.<br/>The Southern Ocean is an important component of the global carbon budget. Low surface temperatures with consequently low vertical stability, ice formation, and high winds produce a very active environment for the exchange of gaseous carbon dioxide between the atmospheric and oceanic reservoirs. The Drake Passage is the narrowest point through which the Antarctic Circumpolar Current and its associated fronts must pass, and is the most efficient location for the measurement of latitudinal gradients of gas exchange. The generated time series will contribute towards two scientific goals: the quantification of the spatial and temporal variability and trends of surface carbon dioxide, oxygen, nutrients and C-13, and an understanding of the dominant processes that contribute to the observed variability.
9418153 This award supports a program aimed at providing research experiences to a broad range of undergraduate students. The program sill allow for active participation by undergraduate students in ongoing marine geologic research in Antarctica. Students will be recruited from institutions across the United States and will participate in a preparatory seminar on Antarctic science prior to the field season. This program will integrate undergraduate participation with existing marine geology and geophysics projects aboard either of the two United States Antarctic Program research vessels, the RV Polar Duke and the RVIB Nathaniel B. Palmer. Research topics will be related to the stratigraphy and/or evolution of the Antarctic continental margin, topics of increasing importance to both Antarctic and global geology. Students will have a full year following their field experience to conduct follow-up research via a senior thesis. This program is intended to provide better educational experiences to promising undergraduate students and to stimulate those students to pursue advanced degrees in geology and geophysics. ***
The Larsen Ice Shelf is the third largest ice shelf in Antarctica and has continued a pattern of catastrophic decay since the mid 1990's. The proposed marine geologic work at the Larsen Ice Shelf builds upon our previous NSF-OPP funding and intends to test the working hypothesis that the Larsen B Ice Shelf system has been a stable component of Antarctica's glacial system since it formed during rising sea levels 10,000 years BP. This conclusion, if supported by observations from our proposed work, is an important first step in establishing the uniqueness and consequences of rapid regional warming currently taking place across the Peninsula. Our previous work in the Larsen A and B embayments has allowed us to recognize the signature of past ice shelf fluctuations and their impact on the oceanographic and biologic environments. We have also overcome many of the limitations of standard radiocarbon dating in Antarctic marine sequences by using variations in the strength of the earth's magnetic field for correlation of sediment records and by using specific organic compounds (instead of bulk sediment) for radiocarbon dating. We intend to pursue these analytical advances and extend our sediment core stratigraphy to areas uncovered by the most recent collapse of the Larsen B Ice Shelf and areas immediately adjacent to the Larsen C Ice Shelf. In addition to the core recovery program, we intend to utilize our unique access to the ice shelf front to continue our observations of the snow/ice stratigraphy, oceanographic character, and ocean floor character. Sediment traps will also be deployed in order to measure the input of debris from glaciers that are now surging in response to the ice shelf collapse. This proposal is a multi-institutional, international (USAP, Italy, and Canada) effort that combines the established expertise in a variety of disciplines and integrates the research plan into the educational efforts of primarily undergraduate institutions but including some graduate education. This is a three-year project with field seasons planned with flexibility in order to accommodate schedules for the RVIB L.M. Gould. The Antarctic Peninsula is undergoing greater warming than almost anywhere on Earth, perhaps associated with human-induced greenhouse effects. Our proposed work contributes to understanding of these changes where they are occurring first and with greatest magnitude and impact upon the environment.
The proposed project will expand the suite of observations and lengthen the existing time series of underway surface dissolved carbon dioxide (pCO2) measurements transects across the Drake Passage on the R/VIB L.M. Gould. The additional observations include oxygen, nutrients and total CO2 (TCO2) concentrations, and the 13C to 12C ratio of TCO2. The continued and expanded time series will contribute towards two main scientific goals: the quantification of the spatial and temporal variability and the trends of surface carbon dioxide species in four major water mass regimes in the Drake Passage, and the understanding of the dominant processes and changes in those processes that contribute to the variability in surface pCO2 and the resulting air-sea flux of CO2 in the Drake Passage. The expanded program will also include the analysis of the 14C/12C of TCO2 and the specific study of the observations on one short wintertime cruise, with the objective of testing the hypothesis that the dissolved carbon dioxide in surface waters of the Drake Passage is determined by the degree of winter mixing. This is of special significance in light of two scenarios that may be affecting the ventilation of Southern Ocean deep water now and in the future: a decrease in water column stratification with the observations of higher zonal winds, or an increase in stratification due to higher precipitation and warming from climate change. If winter mixing determines the mean annual pCO2 in the Drake Passage, the increasing trend in atmospheric pCO2 should have little effect on sea surface pCO2.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). <br/><br/>This award supports a project to reconstruct the past physical and chemical climate of Antarctica, with an emphasis on the region surrounding the Ross Sea Embayment, using >60 ice cores collected in this region by US ITASE and by Australian, Brazilian, Chilean, and New Zealand ITASE teams. The ice core records are annually resolved and exceptionally well dated, and will provide, through the analyses of stable isotopes, major soluble ions and for some trace elements, instrumentally calibrated proxies for past temperature, precipitation, atmospheric circulation, chemistry of the atmosphere, sea ice extent, and volcanic activity. These records will be used to understand the role of solar, volcanic, and human forcing on Antarctic climate and to investigate the character of recent abrupt climate change over Antarctica in the context of broader Southern Hemisphere and global climate variability. The intellectual merit of the project is that ITASE has resulted in an array of ice core records, increasing the spatial resolution of observations of recent Antarctic climate variability by more than an order of magnitude and provides the basis for assessment of past and current change and establishes a framework for monitoring of future climate change in the Southern Hemisphere. This comes at a critical time as global record warming and other impacts are noted in the Southern Ocean, the Antarctic Peninsula, and on the Antarctic ice sheet. The broader impacts of the project are that Post-doctoral and graduate students involved in the project will benefit from exposure to observational and modeling approaches to climate change research and working meetings to be held at the two collaborating institutions plus other prominent climate change institutions. The results are of prime interest to the public and the media Websites hosted by the two collaborating institutions contain climate change position papers, scientific exchanges concerning current climate change issues, and scientific contribution series.
0538639<br/>Waddington<br/>This award supports a project to study the patterns of accumulation variation and microstructural properties near the WAIS Divide ice core site in a 2.5 km array of 20 m boreholes. Borehole Optical Stratigraphy (BOS) is a novel optical measurement system that detects annual-scale layers in firn that result from changes in firn microstructure, giving annual-scale records of how accumulation varied spatially over the last 40-50 years. Data from borehole optical stratigraphy can eventually be calibrated against other data on the microstructural parameters of firn to calibrate BOS's sensitivity to density, pore-volume, and pore-shape variations, and to show by proxy how these parameters vary in space across the survey area. Statistical analysis of layer-thickness and layer-brightness data will enable prediction of: 1) interannual accumulation variability, 2) variability in layer-thickness at decadal scales due to changing spatial patterns in accumulation and 3) variability in microstructure-driven metamorphism due to changing spatial patterns of microstructure. With these statistics in hand, a scientist measuring climatic shifts found in the WAIS Divide ice core will be able to determine the fraction by which signals they measure exceed the signal due to background accumulation variations. As an added benefit, while still in the field, we will determine a preliminary depth-age scale for the firn by optical layer-counting, to the depth of the deepest air-filled firn hole available. This will be a valuable result for core-drilling operations and for preliminary data-analysis on the core. In terms of broader impacts, this project will advance education by training a post-doctoral student in field techniques. The P.I. and the post-doctoral researcher will participate in an undergraduate seminar called "What is Scientific Research?", incorporating progress and results from this project. They will also communicate about their progress and field experience with a middle-school science and math class.
This award supports a study of the physical nature and environmental origin of optical features (light and dark zones) observed by video in boreholes in polar ice. These features appear to include an annual signal, as well as longer period signals. Borehole logs exist from a previous project, and in this lab-based project the interpretation of these logs will be improved. The origin of the features is of broad interest to the ice-core community. If some components relate to changes in the depositional environment beyond seasonality, important climatic cycles may be seen. If some components relate to post-depositional reworking, insights will be gained into the physical processes that change snow and firn, and the implications for interpretation of the chemical record in terms of paleoclimate. In order to exploit these features to best advantage in future ice-core and climate-change research, the two principal objectives of this project are to determine what physically causes the optical differences that we see and to determine the environmental processes that give rise to these physical differences. In the laboratory at NICL the conditions of a log of a borehole wall will be re-created as closely as possible by running the borehole video camera along sections of ice core, making an optical log of light reflected from the core. Combinations of physical variables that are correlated with optical features will be identified. A radiative-transfer model will be used to aid in the interpretation of these measurements, and to determine the optimum configuration for an improved future logging tool. An attempt will be made to determine the origin of the features. Two broad possibilities exist: 1) temporal changes in the depositional environment, and 2) post-depositional reworking. This project represents an important step toward a new way of learning about paleoclimate with borehole optical methods. Broader impacts include enhancing the infrastructure for research and education, since this instrument will complement high-resolution continuous-melter chemistry techniques and provide a rapid way to log physical variables using optical features as a proxy for climate signals. Since no core is required for this method, it can be used in rapidly drilled access holes or where core quality is poor. This project will support a graduate student who will carry out this project under the direction of the Principal Investigator. K-12 education will be enhanced through an ongoing collaboration with a science and math teacher from a local middle school. International collaboration will be expanded through work on this project with colleagues at the Norwegian Polar Institute and broad dissemination of results will occur through a project website for the general public.
This award is for support for three years of funding to study the effects of impurities on the flow of poly- crystalline ice. It has been known for thirty years that both hydrofluoric acid (HF) and hydrochloric acid (HCl) dramatically decrease the strength of ice and recent work by the author's group has shown that sulfuric acid (H2SO4) produces a similar reduction in strength. However, these data are for single crystals at strain rates and stresses that far exceed those found in glaciers and ice sheets, and often at concentrations that far exceed those in natural ice. Therefore, it is not known how impurities found in nature affect the flow of polycrystalline ice at slow strain rates. In this research, the effects of nitric acid and sulfuric acid (which are naturally occurring impurities in ice) on the microstructure (dislocation structure, grain boundary structure and location of the acids) and creep of polycrystalline ice (at a range of temperatures and stresses) will be determined. The ice's response to creep deformation will be studied using a combination of x-ray topography, optical microscopy and scanning electron microscopy. X-ray microanalysis in an environmental scanning electron microscope will be used to study the location of impurities. The structure and creep behavior of the acid-doped ice will be compared with those of both high-purity laboratory-grown ice and ice from Byrd Station, Antarctica. The end-result of this project will be to elucidate the effects of naturally-occurring acid impurities on the mechanical properties of polycrystalline ice under conditions relevant to the deformation of glaciers and ice sheets, including and understanding of how impurities affect the underlying deformation mechanisms.
This award supports the coordination of an interdisciplinary and multi institutional deep ice coring program in West Antarctica. The program will develop interrelated climate, ice dynamics, and biologic records focused on understanding interactions of global earth systems. The records will have a year-by-year chronology for the most recent 40,000 years. Lower temporal resolution records will extend to 100,000 years before present. The intellectual activity of this project includes enhancing our understanding of the natural mechanisms that cause climate change. The study site was selected to obtain the best possible material, available from anywhere, to determine the role of greenhouse gas in the last series of major climate changes. The project will study the how natural changes in greenhouse gas concentrations influence climate. The influence of sea ice and atmospheric circulation on climate changes will also be investigated. Other topics that will be investigated include the influence of the West Antarctic ice sheet on changes in sea level and the biology deep in the ice sheet. The broader impacts of this project include developing information required by other science communities to improve predictions of future climate change. The <br/>project will use mass media to explain climate, glaciology, and biology issues to a broad audience. The next generation of ice core investigators will be trained and there will be an emphasis on exposing a diverse group of students to climate, glaciology and biology research.
This award supports a project to develop a quantitative understanding of the processes active in isotopic exchange between snow/firn and water vapor, which is of paramount importance to ice core interpretation. Carefully controlled laboratory studies will be conducted at a variety of temperatures to empirically measure the mass transfer coefficient (the rate at which water moves from the solid to the vapor phase) for sublimating snow and to determine the time scale for isotopic equilibration between water vapor and ice. In addition the isotopic fractionation coefficient for vapor derived from sublimating ice will be determined and the results will be used to update existing models of mass transfer and isotopic evolution in firn. It is well known that water vapor moves through firn due to diffusion, free convection and forced convection. Although vapor movement through variably-saturated firn due to these processes has been modeled, because of a lack of laboratory data the mass transfer coefficient had to be estimated. Field studies have documented the magnitudes of post-depositional changes, but field studies do not permit rigorous analysis of the relative importance of the many processes which are likely to act in natural snow packs. The results of these laboratory investigations will be broadly applicable to a number of studies and will allow for improvement of existing physically-based models of post-depositional isotopic change, isotopic diffusion in firn, and vapor motion in firn. A major component of this project will be the design and fabrication of the necessary, novel experimental apparatus, which will be facilitated by existing technical expertise, cold room facilities, and laboratory equipment at CRREL. This project is a necessary step toward a quantitative understanding of the isotopic effects of water vapor movement in firn. The proposed work has broader impacts in several different areas. The modeling results will be applicable to a wide range of studies of water in the polar environment, including studies of wind-blown or drifting snow. The proposed collaborative study will partially support a Dartmouth graduate student for three years. This project will also provide support for a young first-time NSF investigator at the University of Vermont. Undergraduate students from Dartmouth will be involved in the research through the Women in Science Project and undergraduate students at the University of Vermont will be supported through the Research Experiences for Undergraduates program. The principal investigators and graduate student will continue their tradition of k-12 school outreach by giving science lessons and talks in local schools each year. Research results will be disseminated through scientific conferences, journal publications, and institutional seminars.
The polar ocean presently surrounding Antarctica is the coldest, most thermally stable marine environment on earth. Because oxygen solubility in seawater is inversely proportional to temperature, the cold Antarctic seas are an exceptionally oxygen-rich aquatic habitat. Eight families of a single perciform suborder, the Notothenioidei, dominate the present fish fauna surrounding Antarctica. Notothenioids account for approximately 35% of fish species and 90% of fish biomass south of the Antarctic Polar Front. Radiation of closely related notothenioid species thus has occurred rapidly and under a very unusual set of conditions: relative oceanographic isolation from other faunas due to circumpolar currents and deep ocean trenches surrounding the continent, chronically, severely cold water temperatures, very high oxygen availability, very low levels of niche competition in a Southern Ocean depauperate of species subsequent to a dramatic crash in species diversity of fishes that occurred sometime between the mid-Tertiary and present. These features make Antarctic notothenioid fishes an uniquely attractive group for the study of physiological and biochemical adaptations to cold body temperature. <br/>Few distinctive features of Antarctic fishes are as unique as the pattern of expression of oxygen-binding proteins in one notothenioid family, the Channichthyidae (Antarctic icefishes). All channichthyid icefishes lack the circulating oxygen-binding protein, hemoglobin (Hb); the intracellular oxygen-binding protein, myoglobin (Mb) is not uniformly expressed in species of this family. Both proteins are normally considered essential for adequate delivery of oxygen to aerobically poised tissues of animals. To compensate for the absence of Hb, icefishes have developed large hearts, rapidly circulate a large blood volume and possess elaborate vasculature of larger lumenal diameter than is seen in red-blooded fishes. Loss of Mb expression in oxidative muscles correlates with dramatic elevation in density of mitochondria within the cell, although each individual organelle is less densely packed with respiratory proteins. <br/>Within the framework of oxygen movement, the adaptive significance of greater vascular density and mitochondrial populations is understandable but mechanisms underlying development of these characteristics remain unknown. The answer may lie in another major function of both Hb and Mb, degradation of the ubiquitous bioactive compound, nitric oxide (NO). The research will test the hypothesis that loss of hemoprotein expression in icefishes has resulted in an increase in levels of NO that mediate modification of vascular systems and expansion of mitochondrial populations in oxidative tissues. The objectives of the proposal are to quantify the vascular density of retinas in +Hb and -Hb notothenioid species, to characterize NOS isoforms and catalytic activity in retina and cardiac muscle of Antarctic notothenioid fishes, to evaluate level of expression of downstream factors implicated in angiogenesis (in retinal tissue) and mitochondrial biogenesis (in cardiac muscle), and to determine whether inhibition of NOS in vivo results in regression of angiogenic and mitochondrial biogenic responses in icefishes. Broader impacts range from basic biology, through training of young scientists, to enhanced understanding of clinically relevant biomedical processes.
The applicant will use this Polar Postdoctoral Fellowship to study top-down effects on community structure (habitat choice and behavior of amphipods, the dominant mesograzers) in macroalgal communities in the vicinity of Palmer Station, Antarctica, where amphipods are not only extremely abundant, but their distributions are very different on palatable vs. unpalatable macroalgae. Pilot studies have suggested that these differences in community structure may be driven by algal chemistry and predation. The effects of algal chemistry on amphipod habitat choice, both in the presence and absence of predators will be tested experimentally, as will the question of whether amphipod host-alga choice results in any reduction of predation risk. Mesograzers in general, and amphipods in particular, are an essential trophic link in marine systems worldwide, and in particular, are a critical component of antarctic near-shore ecosystems. However despite their high abundance and species richness, little is known of their functional ecology or trophodynamics, and little research has investigated the trophic dynamics, behavior, or ecology of these organisms. This project will work out the basic biology of the system, by examining amphipod distributions on Himantothallus (a brown macroalga) and in the stomach contents of Notothenia coriiceps (a small cod-like antarctic fish) and determining whether prey selectivity of amphipod species is occurring. A series of laboratory experiments will investigate the influence(s) of predators, algal chemistry, and thallus structure on amphipod behavior and habitat choice, and test the predation risk associated with amphipod host-alga choice.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate Earth's magnetic field over the past 5 million years in order to test models of Earth's geomagnetic dynamo. Paleomagnetic data (directions of ancient geomagnetic fields obtained from rocks) play an important role in a variety of geophysical studies of the Earth, including plate tectonic reconstructions, magnetostratigraphy, and studies of the behavior of the ancient geomagnetic field (which is called paleo-geomagnetism). Over the past four decades the key assumption in many paleomagnetic studies has been that the average direction of the paleomagnetic field corresponds to one that would have been produced by a geocentric axial dipole (GAD) (analogous to a bar magnet at the center of the Earth), and that paleoinclinations (the dip of magnetic directions from rocks) provide data of sufficient accuracy to enable their use in plate reconstructions. A recent re-examination of the fundamental data underlying models of the time averaged field has shown that the most glaring deficiency in the existing data base is a dearth of high quality data, including paleointensity information, from high latitudes. This project will undertake a sampling and laboratory program on suitable sites from the Mt. Erebus Volcanic Province (Antarctica) that will produce the quality data from high southern latitudes that are essential to an enhanced understanding of the time averaged field and its long term variations.
0086645<br/>Fountain<br/><br/>This award supports a Small Grant for Exploratory Research (SGER) to study glaciological change in the McMurdo Dry Valleys, Antarctica under the category of "application of new expertise or new approaches to established research topics". The purpose of the project is to assess the application of classified imagery to the study of the magnitude and rate of change of glacier extent and lake area as an indicator of climate change. Because the rate of change of both glacier extent and lake area is small compared to the resolution of unclassified imagery, the increased resolution of classified imagery is clearly needed. Access to classified imagery with 1 meter or better resolution will provide a baseline measurement against which future changes can be compared. Maximum use will be made of archived imagery but if necessary, one request will be made for new imagery to supplement the existing archive. This work will support on-going field measurements which are part of the Long-Term Ecological Research (LTER) site in the McMurdo Dry Valleys but which are limited by logistic constraints to only a few measurements during limited times of the year. If successful, the information gained in this project will enable researchers to better direct their efforts to identify the important physical processes controlling the changes in the valleys. The information acquired in conducting this project will be made available to the public, using appropriate security procedures to declassify the data. The "exploratory" and "high risk" nature of the proposed work and its "potential" to make an important "impact" on the field of Antarctic glacier studies are all reasons that this work is appropriate to support as an SGER.
0125794<br/>Price<br/><br/>This award supports research in climatology, geosciences, and life in extreme environments to be carried out with a newly developed optical borehole logger. The logger fits into a fluid-filled borehole in glacial ice. It emits light at 370 nm in a horizontal plane in order to probe optical properties of particles embedded in the ice out to several meters from the borehole. After leaving the borehole, the light is partially absorbed and scattered by dust, biomolecules, or microbes. A fraction of the light is scattered back into the borehole and is detected by a system of seven phototubes, each of which collects light with high efficiency in a separate wavelength band. One of them collects light that scatters off of dust and air bubbles without wavelength shift, and serves as a dust logger. The other six are covered with notch filters that measure six different wavelength bands and measure the shape of the fluorescence spectrum of microbes and biomolecules. Thus, the same instrument serves as both a dust logger and a microbe logger. Applications include: 1) Precise chronologies and long-period solar variability. With a resolution of 1 to 2 cm for both GISP2 and Siple Dome, the logger will record annual dust maxima and evaluate claims of modulations of dust concentration with periods ranging from 11 yrs (the solar cycle) to 2300 yrs; 2) Volcanism and age-depth markers. Dozens of volcanic ash bands will be detectable and will serve as primary age-depth markers for other boreholes; 3) Microorganisms and biomolecules. The vertical distribution of living, dormant, and dead microbes can be logged, and searches for archaea and aeolian polyaromatic hydrocarbons can be made. The logging experiments will be carried out at Siple Dome and Dome C in Antarctica and at GISP2 and GRIP in Greenland.
The award supports the development of high-resolution nitrogen and oxygen isotope records on trapped gases in the Byrd and Siple Dome ice cores, and the Holocene part of the GISP2 ice core. The primary scientific goals of this work are to understand the enigmatic d15N anomalies seen thus far in the Siple Dome record at 15.3 ka and 35 ka, and to find other events that may occur in both cores. At these events, d15N of trapped air approaches zero, implying little or no gravitational fractionation of gases in the firn layer at the time of formation of the ice. These events may represent times of low accumulation rate and arid meteorological conditions, and thus may contain valuable information about the climatic history of West Antarctica. Alternatively, they may stem from crevassing and thus may reveal ice-dynamical processes. Finding the events in the Byrd core, which is located 500 km from Siple Dome, would place powerful constraints on their origin and significance. A second major goal is to explore the puzzling absence of the abrupt warming event at 22 ka (seen at Siple Dome) in the nearby Byrd 18O/16O record in the ice (d18Oice), and search for a possible correlative signal in Byrd d15N. A third goal takes advantage of the fact that precise measurements of the oxygen isotopic composition of atmospheric O2 (d18Oatm) are obtained as a byproduct of the d15N measurement. The proposed gas-isotopic measurements will underpin an integrated suite of West Antarctic climate and atmospheric gas records, which will ultimately include the WAIS Divide core. These records will help separate regional from global climate signals, and may place constraints on the cause of abrupt climate change. Education of two graduate students, and training of two staff members in the laboratory, contribute to the nation's human resource base. Education and outreach will be an important component of the project.
0122520<br/>Gogineni<br/><br/>Sea level has been rising over the last century. Although the immediate impact of sea level rise may be less severe than other effects of global climate change, the long-term consequences can be much more devastating since nearly 60% of the world population lives in coastal regions. Scientists have postulated that excess water is being released from polar ice sheets due to long-term, global climate change, but there are insufficient data to confirm these theories. Understanding the interactions between the ice sheets, oceans and atmosphere is essential to quantifying the role of ice sheets in sea level rise. Toward that end, this research project involves the innovative application of information technology in the development and deployment of intelligent radar sensors for measuring key glaciological parameters. <br/><br/>Radar instrumentation will consist of a synthetic aperture radar (SAR) that can operate in bistatic or monostatic mode. One important application of the SAR will be in the determination of basal conditions, particularly the presence and distribution of basal water. Basal water lubricates the ice/bed interface, enhancing flow, and increasing the amount of ice discharged into the ocean. Another application of the SAR will be to measure ice thickness and map internal layers in both shallow and deep ice. Information on near-surface internal layers will be used to estimate the average, recent accumulation rate, while the deeper layers provide a history of past accumulation and flow rates. A tracked vehicle and an automated snowmobile will be used to test and demonstrate the utility of an intelligent radar in glaciological investigations.<br/><br/>The system will be developed to collect, process and analyze data in real time and in conjunction with a priori information derived from archived sources. The combined real time and archived information will be used onboard the vehicles to select and generate an optimum sensor configuration. This project thus involves innovative research in intelligent systems, sounding radars and ice sheet modeling. In addition it has a very strong public outreach and education program, which include near-real-time image broadcasts via the world wide web
This project studies the microbial processes that alter volcanic glass, which is critical to understanding the earliest life on earth. To understand the environmental controls on these processes, this project uses the extreme environments of the McMurdo region of Antarctica as a natural laboratory. Volcanic glass substrates are placed in hydrothermal systems, lakes, and other areas for two to four years to identify colonizing microbial consortia and the chemical processes of microbe-glass interaction. Recovered experiments are analyzed to explore the role of eukaryotic and prokaryotic organisms, and the relevance of autotrophs during colonization and biofilm formation using microscopic, molecular and culture techniques. <br/><br/>The broader impacts include graduate and undergraduate student participation in research and K-12 outreach and teacher training.
Decreases in stratospheric ozone over the Antarctic result in an increase in the ultraviolet radiation flux in the euphotic zone of the ocean. This increase may lead to cellular damage in aquatic organisms resulting in photo-inhibition and decreased productivity. Cellular damage can occur either intracellularly, or externally at the cell surface from biomolecular reactions with externally-generated reactive transient species. Extracellular damage will depend to a large degree on the photochemistry of the seawater surrounding the cell. To date, little is known about the photochemistry of the unique Antarctic waters. This project integrates a field and laboratory approach to obtain baseline information regarding the marine photochemistry of the euphotic zone in Antarctica waters as related to changes in ultraviolet radiation levels. In situ photochemical production rates and steady state concentrations of a suite of reactive species and dissolved organic matter degradation products as well as downwelling ultraviolet radiation will be measured. Additionally, flux by in situ chemical actinometry, action spectra for photochemical production of various reactive species and dissolved organic matter degradation products, and fluorescence and absorbance properties of dissolved organic matter will be determined. This information will serve as a basis for understanding and predicting the effects of ultraviolet radiation-induced marine photochemical processes on the productivity and ecology in the euphotic zone of the Antarctic Ocean.
0538195<br/>Marone<br/>This award supports a project to conduct laboratory experiments and numerical modeling to determine the constitutive properties of subglacial till under dynamic stressing and to test the hypothesis that granular properties of till are sufficient, when coupled elastically to a large ice stream, to reproduce the field observations of triggered slip and subglacial seismicity. Testing will be carried out in a servo-controlled biaxial shear device under controlled temperature and stress conditions, which will allow both sliding and microstructural processes to be studied in detail. The main focus of the work will be on laboratory measurements. In addition, we will construct continuum models to evaluate whether our results can predict complex ice sheet motions and observed characteristics of subglacial seismicity. In terms of broader impacts, the proposed work will encourage interactions between the rock-mechanics and glaciology communities and will bring together members of different scientific backgrounds and vocabularies, but similar problems and data. The project will train undergraduate and graduate students at Penn State University and the scientists involved plan to give presentations to grade school classes, scout groups, and at community open houses. Results will be presented at professional meetings and will be published in a timely manner. The work will result in a better understanding of glacial motion and the physics of earthquake slip, which is essential for understanding ice sheet dynamics and earthquake hazard.
This project is a field and laboratory based investigation of the Vanda dike swarm in the Dry Valleys of Antarctica. These dikes crosscut Cambro-Ordovician granitoid plutons produced during the Ross Orogeny, and mark the transition between the cessation of subduction and the onset of extensional magmatism. Many dying convergent plate margins convert to extensional magmatism, and the Dry Valleys provide a magnificent opportunity to examine the shallow roots of a plate that experienced this transition. Because of their exceptional exposure, bimodal felsic and mafic compositions, and complex field relations, the Vanda dikes have the potential to reveal insights into this important phase of Antarctic tectonic history. <br/>The broader impacts include collaboration between a primarily undergraduate and two research institutions, and support for undergraduate participation in an exciting, field-based research project.
This award supports a project to improve understanding of atmospheric photochemistry over West Antarctica, as recorded in snow, firn and ice. Atmospheric and firn sampling will be undertaken as part of the U.S. International Trans-Antarctic Scientific Expedition (US ITASE) traverses. Measurements of hydrogen peroxide (H2O2) and formaldehyde (HCHO) will be made on these samples and a recently developed, physically based atmosphere-to-snow transfer model will be used to relate photochemical model estimates of these components to the concentrations of these parameters in the atmosphere and snow. The efficiency of atmosphere-to-snow transfer and the preservation of these components is strongly related to the rate and timing of snow accumulation. This information will be obtained by analyzing the concentration of seasonally dependent species such as hydrogen peroxide, nitric acid and stable isotopes of oxygen. Collection of samples along the US ITASE traverses will allow sampling at a wide variety of locations, reflecting both a number of different depositional environments and covering much of the West Antarctic region.
Abstract<br/><br/>This project uses Aster and Hyperion remote sensing data combined with field observations and laboratory analysis to map soils in the McMurdo Dry Valleys of Antarctica. The goal is to use mineral abundances, compositions, and spatial heterogeneities to investigate the connections between microclimate and surface characteristics. The valleys are one of the most unique landscapes on earth. The outcomes will be relevant to understanding their geologic, biologic, and climactic history, and offer insight into the Martian landscape. The main broader impacts are graduate education and curriculum development involving K12 teachers.
Phaeocystis Antarctica is a widely distributed phytoplankton that forms dense blooms and aggregates in the Southern Ocean. This phytoplankton and plays important roles in polar ecology and biogeochemistry, in part because it is a dominant primary producer, a main component of organic matter vertical fluxes, and the principal producer of volatile organic sulfur in the region. Yet P. Antarctica is also one of the lesser known species in terms of its physiology, life history and trophic relationships with other organisms; furthermore, information collected on other Phaeocystis species and from different locations may not be applicable to P. Antarctica in the Ross Sea. P. Antarctica occurs mainly as two morphotypes: solitary cells and mucilaginous colonies, which differ significantly in size, architecture and chemical composition. Relative dominance between solitary cells and colonies determines not only the size spectrum of the population, but also its carbon dynamics, nutrient uptake and utilization. Conventional thinking of the planktonic trophic processes is also challenged by the fact that colony formation could effectively alter the predator-prey interactions and interspecific competition. However, the factors that regulate the differences between solitary and colonial forms of P. Antarctica are not well-understood. The research objective of this proposal is therefore to address these over-arching questions:<br/>o Do P. Antarctica solitary cells and colonies differ in growth, composition and<br/>photosynthetic rates?<br/>o How do nutrients and grazers affect colony development and size distribution of P. <br/>Antarctica?<br/>o How do nutrients and grazers act synergistically to affect the long-term population<br/>dynamics of P. Antarctica? Experiments will be conducted in the McMurdo station with natural P. Antarctica assemblages and co-occurring grazers. Laboratory experiments will be conducted to study size-specific growth and photosynthetic rates of P. Antarctica, size-specific grazing mortality due to microzooplankton and mesozooplankton, the effects of macronutrients on the (nitrogen compounds) relative dominance of solitary cells and colonies, and the effects of micronutrient (Fe) and grazing related chemical signals on P. Antarctica colony development. Because this species is of critical importance in the Southern Ocean, and because this research will provide critical information on factors that regulate the role of P.Antarctica in food webs and biogeochemical cycles, a major gap in knowledge will be addressed. This project will train two marine science PhD students. The investigators will also collaborate with the School of Education and a marine science museum to communicate polar science to a broader audience.
This project studies the opening of the Drake Passage between South America and Antarctica through a combined marine geophysical survey and geochemical study of dredged ocean floor basalts. Dating the passage's opening is key to understanding the formation of the circum-Antarctic current, which plays a major role in worldwide ocean circulation, and whose formation is connected with growth of the Antarctic ice sheet. Dredge samples will undergo various geochemical studies to determine their age and constrain mantle flow beneath the region. <br/><br/>Broader impacts include support for graduate education, as well as undergraduate and K12 teacher involvement in a research cruise. The project also involves international collaboration with the UK and is part of IPY Project #77: Plates&Gates, which aims to reconstruct the geologic history of polar ocean basins and gateways for computer simulations of climate change. See http://www.ipy.org/index.php?/ipy/detail/plates_gates/ for more information.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the role and fate of Boron in high-grade metamorphic rocks of the Larsemann Hills region of Antarctica. Trace elements provide valuable information on the changes sedimentary rocks undergo as temperature and pressure increase during burial. One such element, boron, is particularly sensitive to increasing temperature because of its affinity for aqueous fluids, which are lost as rocks are buried. Boron contents of unmetamorphosed pelitic sediments range from 20 to over 200 parts per million, but rarely exceed 5 parts per million in rocks subjected to conditions of the middle and lower crust, that is, temperatures of 700 degrees C or more in the granulite-facies, which is characterized by very low water activities at pressures of 5 to 10 kbar (18-35 km burial). Devolatization reactions with loss of aqueous fluid and partial melting with removal of melt have been cited as primary causes for boron depletion under granulite-facies conditions. Despite the pervasiveness of both these processes, rocks rich in boron are locally found in the granulite-facies, that is, there are mechanisms for retaining boron during the metamorphic process. The Larsemann Hills, Prydz Bay, Antarctica, are a prime example. More than 20 lenses and layered bodies containing four borosilicate mineral species crop out over a 50 square kilometer area, which thus would be well suited for research on boron-rich granulite-facies metamorphic rocks. <br/><br/>While most investigators have focused on the causes for loss of boron, this work will investigate how boron is retained during high-grade metamorphism. Field observations and mapping in the Larsemann Hills, chemical analyses of minerals and their host rocks, and microprobe age dating will be used to identify possible precursors and deduce how the precursor materials recrystallized into borosilicate rocks under granulite-facies conditions. The working hypothesis is that high initial boron content facilitates retention of boron during metamorphism because above a certain threshold boron content, a mechanism "kicks in" that facilitates retention of boron in metamorphosed rocks. For example, in a rock with large amounts of the borosilicate tourmaline, such as stratabound tourmalinite, the breakdown of tourmaline to melt could result in the formation of prismatine and grandidierite, two borosilicates found in the Larsemann Hills. This situation is rarely observed in rocks with modest boron content, in which breakdown of tourmaline releases boron into partial melts, which in turn remove boron when they leave the system. Stratabound tourmalinite is associated with manganese-rich quartzite, phosphorus-rich rocks and sulfide concentrations that could be diagnostic for recognizing a tourmalinite protolith in a highly metamorphosed complex where sedimentary features have been destroyed by deformation. Because partial melting plays an important role in the fate of boron during metamorphism, our field and laboratory research will focus on the relationship between the borosilicate units, granite pegmatites and other granitic intrusives. The results of our study will provide information on cycling of boron at deeper levels in the Earth's crust and on possible sources of boron for granites originating from deep-seated rocks.<br/><br/>An undergraduate student will participate in the electron microprobe age-dating of monazite and xenotime as part of a senior project, thereby integrating the proposed research into the educational mission of the University of Maine. In response to a proposal for fieldwork, the Australian Antarctic Division, which maintains Davis station near the Larsemann Hills, has indicated that they will support the Antarctic fieldwork.
9911617 Blankenship This award, provided jointly by the Antarctic Geology and Geophysics Program, the Antarctic Glaciology Program, and the Polar Research Support Section of the Office of Polar Programs, provides funds for continuation of the Support Office for Aerogeophysical Research (SOAR). From July 1994 to July 2000, SOAR served as a facility to accomplish aerogeophysical research in Antarctica under an agreement between the University of Texas at Austin and the National Science Foundation's Office of Polar Programs (NSF/OPP). SOAR operated and maintained an aerogeophysical instrument package that consists of an ice-penetrating radar sounder, a laser altimeter, a gravimeter and a magnetometer that are tightly integrated with each other as well as with the aircraft's avionics and power packages. An array of aircraft and ground-based GPS receivers supported kinematic differential positioning using carrier-phase observations. SOAR activities included: developing aerogeophysical research projects with NSF/OPP investigators; upgrading of the aerogeophysical instrumentation package to accommodate new science projects and advances in technology; fielding this instrument package to accomplish SOAR-developed projects; and management, reduction, and analysis of the acquired aerogeophysical data. In pursuit of 9 NSF-OPP funded aerogeophysical research projects (involving 14 investigators from 9 institutions), SOAR carried out six field campaigns over a six-year period and accomplished approximately 200,000 line kilometers of aerogeophysical surveying over both East and West Antarctica in 377 flights. This award supports SOAR to undertake a one year and 8 month program of aerogeophysical activities that are consistent with continuing U.S. support for geophysical research in Antarctica. - SOAR will conduct an aerogeophysical campaign during the 200/01 austral summer to accomplish surveys for two SOAR-developed projects: "Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Studies" (Co-PI's Bell and Studinger, LDEO); and "Collaborative Research: Seismic Investigation of the Deep Continental Structure Across the East-West Antarctic Boundary" (Co-PI's Weins, Washington U. and Anandakrishnan, U. Alabama). After configuration and testing of the survey aircraft in McMurdo, SOAR will conduct survey flights from an NSF-supported base adjacent to the Russian Station above Lake Vostok and briefly occupy one or two remote bases on the East Antarctic ice sheet. - SOAR will reduce these aerogeophysical data and produce profiles and maps of surface elevation, bed elevation, gravity and magnetic field intensity. These results will be provided to the respective project investigators within nine months of conclusion of field activities. We will also submit a technical manuscript that describes these results to a refereed scientific journal and distribute these results to appropriate national geophysical data centers within approximately 24 months of completion of field activities. - SOAR will standardize all previously reduced SOAR data products and transfer them to the appropriate national geophysical data centers by the end of this grant. - SOAR will convene a workshop to establish a community consensus for future U.S. Antarctic aerogeophysical research. This workshop will be co-convened by Ian Dalziel and Richard Alley and will take place during the spring of 2001. - SOAR will upgrade the existing SOAR in-field quality control procedures to serve as a web-based interface for efficient browsing of many low-level SOAR data streams. - SOAR will repair and/or refurbish equipment that was used during the 2000/01 field campaign. Support for SOAR is essential for accomplishing major geophysical investigations in Antarctica. Following data interpretation by the science teams, these data will provide valuable insights to the structure and evolution of the Antarctic continent.
This award supports a project to measure the elemental and isotopic composition of firn air and occluded air in shallow boreholes and ice cores from the WAIS Divide site, the location of a deep ice-coring program planned for 2006-07 and subsequent seasons. The three primary objectives are: 1) to establish the nature of firn air movement and trapping at the site to aid interpretations of gas data from the deep core; 2) to expand the suite of atmospheric trace gas species that can be measured in ice and replicate existing records of other species; and 3) to inter-calibrate all collaborating labs to insure that compositional and isotopic data sets are inter-comparable. The program will be initiated with a shallow drilling program during the 05/06 field season which will recover two 300+m cores and firn air samples. The ice core and firn air will provide more than 700 years of atmospheric history that will be used to address a number of important questions related to atmospheric change over this time period. The research team consists of six US laboratories that also plan to participate in the deep core program. This collaborative research program has a number of advantages. First, the scientists will be able to coordinate sample allocation a priori to maximize the resolution and overlap of records of interrelated species. Second, sample registration will be exact, allowing direct comparison of all records. Third, a coherent data set will be produced at the same time and all PI.s will participate in interpreting and publishing the results. This will insure that the best possible understanding of gas records at the WAIS Divide site will be achieved, and that all work necessary to interpret the deep core is conducted in a timely fashion. The collaborative structure created by the proposal will encourage sharing of techniques, equipment, and ideas between the laboratories. The research will identify impacts of various industrial/agricultural activities and help to distinguish them from natural variations, and will include species for which there are no long records of anthropogenic impact. The work will also help to predict future atmospheric loadings. The project will contribute to training scientists at several levels, including seven undergraduates, two graduate students and one post doctoral fellow.
Denitrification is the main process by which fixed nitrogen is lost from ecosystems and the regulation of this process may directly affect primary production and carbon cycling over short and long time scales. Previous investigations of the role of bioactive metals in regulating denitrification in bacteria from permanently ice-covered Lake Bonney in the Taylor Valley of East Antarctica indicated that denitrifying bacteria can be negatively affected by metals such as copper, iron, cadmium, lead, chromium, nickel, silver and zinc; and that there is a distinct difference in denitrifying activity between the east and west lobes of the lake. Low iron concentrations were found to exacerbate the potential toxicity of the other metals, while silver has the potential to specifically inhibit denitrification because of its ability to interfere with copper binding in redox proteins, such as nitrite reductase and nitrous oxide reductase. High silver concentrations might prevent the functioning of nitrous oxide reductase in the same way that simple copper limitation does, thereby causing the buildup of nitrous oxide and resulting in a nonfunctional nitrogen cycle. Other factors, such as oxygen concentration, are likely also to affect bacterial activity in Lake Bonney. This project will investigate silver toxicity, general metal toxicity and oxygen concentration to determine their effect on denitrification in the lake by using a suite of "sentinel" strains of denitrifying bacteria (isolated from the lake) incubated in Lake Bonney water and subjected to various treatments. The physiological responses of these strains to changes in metal and oxygen concentration will be quantified by flow cytometric detection of single cell molecular probes whose sensitivity and interpretation have been optimized for the sentinel strains. Understanding the relationships between metals and denitrification is expected to enhance our understanding of not only Lake Bonney's unusual nitrogen cycle, but more generally, of the potential role of metals in the regulation of microbial nitrogen transformations.<br/><br/>The broader impacts of this work include not only a better understanding of regional biogeochemistry and global perspectives on these processes; but also the training of graduate students and a substantial outreach effort for school children.
The Shackleton Fracture Zone (SFZ) in the Drake Passage defines a boundary between low and high phytoplankton waters. West of Drake Passage, Southern Ocean waters south of the Polar Front and north of the Antarctic continent shelf have very low satellite-derived surface chlorophyll concentrations. Chlorophyll and mesoscale eddy kinetic energy are higher east of SFZ compared to values west of the ridge. In situ data from a 10-year survey of the region as part of the National Marine Fisheries Service's Antarctic Marine Living Resources program confirm the existence of a strong hydrographic and chlorophyll gradient in the region. An interdisciplinary team of scientists hypothesizes that bathymetry, including the 2000 m deep SFZ, influences mesoscale circulation and transport of iron leading to the observed phytoplankton patterns. To address this<br/>hypothesis, the team proposes to examine phytoplankton and bacterial physiological states (including responses to iron enrichment) and structure of the plankton communities from virus to zooplankton, the concentration and distribution of Fe, Mn, and Al, and mesoscale flow patterns near the SFZ. Relationships between iron concentrations and phytoplankton characteristics will be examined in the context of the mesoscale transport of trace nutrients to determine how much of the observed variability in phytoplankton biomass can be attributed to iron supply, and to determine the most important sources of iron to pelagic waters east of the Drake Passage. The goal is to better understand how plankton productivity and community structure in the Southern Ocean are affected by the coupling between bathymetry, mesoscale circulation, and limiting nutrient distributions.<br/><br/>The research program includes rapid surface surveys of chemical, plankton, and hydrographic properties complemented by a mesoscale station grid for vertical profiles, water sampling, and bottle incubation enrichment experiments. Distributions of manganese and aluminum will be determined to help distinguish aeolian, continental shelf and upwelling sources of iron. The physiological state of the phytoplankton will be monitored by active fluorescence methods sensitive to the effects of iron limitation. Mass concentrations of pigment, carbon and nitrogen will be obtained by analysis of filtered samples, cell size distributions by flow cytometry, and species identification by microscopy. Primary production and photosynthesis parameters (absorption, quantum yields, variable fluorescence) will be measured on depth profiles, during surface surveys and on bulk samples from enrichment experiments. Viruses and bacteria will be examined for abundances, and bacterial production will be assessed in terms of whether it is limited by either iron or organic carbon sources. The proposed work will improve our understanding of processes controlling distributions of iron and the response of plankton communities in the Southern Ocean. This proposal also includes an outreach component comprised of Research Experiences for Undergraduates (REU), Teachers Experiencing the Antarctic and Arctic (TEA), and the creation of an educational website and K-12 curricular modules based on the project.
This award supports the study of lava samples from seamounts in the Cape Adare region of the western Ross Sea. Volcanism in this area is poorly understood, and the geochemistry of these lavas may offer new insight into regional geodynamics and global mantle geochemistry. Because the Cape Adare seamounts are located on oceanic lithosphere, they may be free of the contamination that affects lavas erupted through continental areas. This one-year investigation will gather data on samples collected on a cruise to this region in 2007. It will determine seamount ages, characterize their mantle sources, assess models for their origin, and judge the potential for more detailed study. In terms of broader impacts, this project will involve graduate and undergraduate students in an exciting field expedition, followed by laboratory work using cutting-edge techniques for geochemical analyses.
This award supports work on trapped gases in Antarctic and other ice cores for paleoenvironmental and chronological purposes. The project will complete a ~ 100,000 year, high-resolution record of atmospheric methane from the Siple Dome ice core and use these data to construct a precise chronology for climate events recorded by the Siple Dome record. In addition, the resolution of the GISP2 (Greenland) ice core record will be increased in some critical intervals to help with the Siple Dome chronology and that of future ice cores. Finally, an upgrade to the analytical capabilities of the laboratory, including increasing precision and throughput and decreasing sample size needed for ice core methane measurements will be an important goal of this work. The proposed work will contribute to the understanding of the timing of rapid climate change in the Northern and Southern hemispheres during the last glacial period, the evolution of the global methane budget in the late Quaternary, and the late Quaternary climate history of Antarctica. It will also improve our ability to generate methane records for future ice coring projects, and inform and enrich the educational and outreach activities of our laboratory.
Saltzman/0636953<br/><br/>This award supports a project to measure methyl chloride, methyl bromide, and carbonyl sulfide in air extracted from Antarctic ice cores. Previous measurements in firn air and shallow ice cores suggest that the ice archive contains paleo-atmospheric signals for these gases. The goal of this study is to extend these records throughout the Holocene and into the last Glacial period to examine the behavior of these trace gases over longer time scales and a wider range of climatic conditions. These studies are exploratory, and both the stability of these trace gases and the extent to which they may be impacted by in situ processes will be assessed. This project will involve sampling and analyzing archived ice core samples from the Siple Dome, Taylor Dome, Byrd, and Vostok ice cores. The ice core samples will be analyzed by dry extraction, with gas chromatography/mass spectrometry with isotope dilution. The ice core measurements will generate new information about the range of natural variability of these trace gases in the atmosphere. The intellectual merit of this project is that this work will provide an improved basis for assessing the impact of anthropogenic activities on biogeochemical cycles, and new insight into the climatic sensitivity of the biogeochemical processes controlling atmospheric composition. The broader impact of this project is that there is a strong societal interest in understanding how man's activities impact the atmosphere, and how atmospheric chemistry may be altered by future climate change. The results of this study will contribute to the development of scenarios used for future projections of stratospheric ozone and climate change. In terms of human development, this project will support the doctoral dissertation of a graduate student in Earth System Science, and undergraduate research on polar ice core chemistry. This project will also contribute to the development of an Earth Sciences teacher training curriculum for high school teachers in the Orange County school system in collaboration with an established, NSF-sponsored Math and Science Partnership program (FOCUS).
This award supports a project to collect and develop high-resolution ice core records from the Dry Valleys region of Antarctica, and provide interpretations of interannual to decadal-scale climate variability during the last 2000 years (late Holocene). The project will test hypotheses related to ocean/atmosphere teleconnections (e.g., El Nino Southern Oscillation, Antarctic Oscillation) that may be responsible for major late Holocene climate events such as the Little Ice Age in the Southern Hemisphere. Conceptual and quantitative models of these processes in the Dry Valleys during the late Holocene are critical for understanding recent climate changes, and represent the main scientific merit of the project. We plan to collect intermediate-length ice cores (100-200m) at four sites along transects in Taylor Valley and Wright Valley, and analyze each core at high resolution for stable isotopes (d18O, dD), major ions (Na+, Mg2+, Ca2+, K+, NH4+, Cl-, NO3-, SO42-, MSA), and trace elements (Al, Fe, S, Sr, B). A suite of statistical techniques will be applied to the multivariate glaciochemical dataset to identify chemical associations and to calibrate the time-series records with available instrumental data. Broader impacts of the project include: 1) contributions to several ongoing interdisciplinary Antarctic research programs; 2) graduate and undergraduate student involvement in field, laboratory, and data interpretation activities; 3) use of project data and ideas in several UMaine courses and outreach activities; and 4) data dissemination through peer-reviewed publications, UMaine and other paleoclimate data archive websites, and presentations at national and international meetings.
This award supports a three year project to develop the tools required to interpret complex patterns of flow features on the Ross Ice Shelf, which record the discharge history the ice streams flowing east off of the West Antarctic Ice Sheet. This work builds on previous research that used flow features visible in satellite image mosaics and numerical models of ice shelf flow to detect changes in grounding zone dynamics and redirection of ice stream outlets over hundreds of years. Recently observed changes on Whillans Ice Stream fit within this framework. The pattern of redirection is driven by the influence of rapid downstream thinning on the basal thermal gradient in the ice and associated "sticky spot" (ice rise) formation. In pursuing this work, the investigators recognized other records of discharge variation on the shelf that can be used to build a more complete history and understanding of ice-stream discharge variability. The intellectual merit of the proposed work lies in the fact that these records, including fracture patterns and spatial variation in ice thickness, when understood in the proper context, will yield quantitative information about the timing and dynamics of ice stream slowdowns, grounding line retreat, and the relative history of discharge between the ice streams. New tools will help further constrain this history. The laser altimeter on NASA's IceSAT has improved our knowledge of the surface elevation of Antarctic ice. IceSAT surface elevations provide a high-resolution map of ice-shelf thickness that, along with provenance maps from ice-shelf image mosaics, will be used to estimate the volumes of ice involved in past ice-stream discharge events (slowdowns, redirections, and so on). This project will develop new numerical models for fracture propagation; these will allow past variations in ice-shelf stress state to be investigated. Together, the dynamic and volume-flux histories will provide a powerful set of observations for understanding past variations in ice stream discharge and the underlying physical processes. The broader impacts of this project center on how it contributes to the ability to estimate West Antarctic contributions to global sea level rise and to answer outstanding questions about the causes of millennial and longer-scale evolution of ice streams. This work will provide a history of the most complex record of ice discharge known. In addition to the incorporation of this research into graduate student advising and normal teaching duties, the investigators are involved in other avenues of civic engagement and education. Outreach to high school students and the community at large is promoted on an annual basis by the investigators at both institutions. New outreach projects at Portland State University are developed with the assistance of researchers with expertise in student learning and achievement in science and mathematics. The collaborative research team includes two glaciologists with experience in the pairing of high resolution satellite imagery and a variety of ice-flow models and a geologist whose focus is the mechanics of rock deformation.
This award supports the study of the drift and break-up of Earth's largest icebergs, which were recently released into the Ross Sea of Antarctica as a result of calving from the Ross Ice Shelf. The scientific goals of the study are to determine the physics of iceberg motion within the dynamic context of ocean currents, winds, and sea ice, which determine the forces that drive iceberg motion, and the relationship between the iceberg and geographically and topographically determined pinning points on which the iceberg can ground. In addition, the processes by which icebergs influence the local environments (e.g., sea ice conditions near Antarctica, access to penguin rookeries, air-sea heat exchange and upwelling at iceberg margins, nutrient fluxes) will be studied. The processes by which icebergs generate globally far-reaching ocean acoustic signals that are detected within the global seismic (earthquake) sensing networks will also be studied. A featured element of the scientific research activity will be a field effort to deploy automatic weather stations, seismometer arrays and GPS-tracking stations on several of the largest icebergs presently adrift, or about to be adrift, in the Ross Sea. Data generated and relayed via satellite to home institutions in the Midwest will motivate theoretical analysis and computer simulation; and will be archived on an "iceberg" website (http://amrc.ssec.wisc.edu/amrc/iceberg.html) for access by scientists and the general public. At the most broad level, the study is justified by the fact that icebergs released by the Antarctic ice sheet represent the largest movements of fresh water within the natural environment (e.g., several of the icebergs to be studied, B15, C19 and others calved since 2000 CE, represent over 6000 cubic kilometers of fresh water-an amount roughly equivalent to 100 years of the flow of the Nile River). A better understanding of the impact of iceberg drift through the environment, and particularly the impact on ocean stratification and mixing, is essential to the understanding of the abrupt global climate changes witnessed by proxy during the ice age and of concern under conditions of future greenhouse warming. On a more specific level, the study will generate a knowledge base useful for the better management of Antarctic logistical resources (e.g., the shipping lanes to McMurdo Station) that can occasionally be influenced by adverse effects icebergs have on sea ice conditions.
The large subglacial Lake Vostok in Antarctica is unique ecological site with a novel microbial biota. The temperatures, pressures and lack of light all select for organisms that may not exist anywhere else on Earth. The accretion ice (lake water frozen to the bottom of the lower surface of the glacier) has preserved microbial samples from each region of Lake Vostok as the glacier passes over and into the lake. Thus, without contaminating the lake with microorganisms from the surface, microbes originating from the lake can be collected, transported to the laboratory and studied. Two of the deepest ice cores sections in this project are part of the international allocation. The will be shared between four researchers (Sergey Bulat from Russia, Jean-Robert Petit and Daniel Prieur from France, Scott Rogers from USA). The United States team will study, isolate, and characterize bacteria, fungi, and viruses that have been sampled from the lake through the process of ice accretion to the lower surface of 3500+m thick glacier overriding the lake. The project will involve a suite of methods, including molecular, morphological, and cultural. This includes observation and description by fluorescence, light, and electron microscopy, isolation on thirteen separate cultural media, polymerase chain reaction amplification, DNA sequencing, and phylogenetic analyses. Eleven accretion ice core sections, as well as two glacial ice core sections. As well as two glacial ice core sections will be studied. The accretion ice core sections, as well as two glacial ice core sections will be studied. The accretion ice core sections represent all of the major regions of the lake that have been sampled by the accretion process in the vicinity of the Vostok 5G ice core. The broader impacts of the work relate to the impact the results will have on the filed. These long=isolated lakes, deep below the Antarctic ice sheet may contain novel uniquely adapted organisms. Glacial ice contains an enormous diversity of entrapped microbes, some of which may be metabolically active in the ice. The microbes from Lake Vostok are of special interest, since they are adapted to cold, dark, and high pressure. Thus, their enzyme systems and biochemical pathways may be significantly different from those in the microbes that are the subject of current studies. As such, these organisms may form compounds that may have useful applications. Also, study of the accretion ice, and eventually the water, from Lake Vostok will provide a basis for the study of other subglacial lakes. Additionally, study of the microbes in the accretion ice will be useful to those planning to study analogous systems on ice-covered planets and moons.
0124049<br/>Berger<br/><br/>This award supports a project to add to the understanding of what drives glacial cycles. Most researchers agree that Milankovitch seasonal forcing paces the ice ages but how these insolation changes are leveraged into abrupt global climate change remains unknown. A current popular view is that the climate of Antarctica and the Southern Ocean leads that of the rest of the world by a couple thousand years at Termination I and by even greater margins during previous terminations. This project will integrate the geomorphological record of glacial history with a series of cores taken from the lake bottoms in the Dry Valleys of the McMurdo Sound region of Antarctica. Using a modified Livingstone corer, transects of long cores will be obtained from Lakes Fryxell, Bonney, Joyce, and Vanda. A multiparameter approach will be employed which is designed to extract the greatest possible amount of former water-level, glaciological, and paleoenvironmental data from Dry Valleys lakes. Estimates of hydrologic changes will come from different proxies, including grain size, stratigraphy, evaporite mineralogy, stable isotope and trace element chemistry, and diatom assemblage analysis. The chronology, necessary to integrate the cores with the geomorphological record, as well as for comparisons with Antarctic ice-core and glacial records, will come from Uranium-Thorium, Uranium-Helium, and Carbon-14 dating of carbonates, as well as luminescence sediment dating. Evaluation of the link between lake-level and climate will come from hydrological and energy-balance modelling. Combination of the more continuous lake-core sequences with the spatially extensive geomorphological record will result in an integrated Antarctic lake-level and paleoclimate dataset that extends back at least 30,000 years. This record will be compared to Dry Valleys glacier records and to the Antarctic ice cores to address questions of regional climate variability, and then to other Southern Hemisphere and Northern Hemisphere records to assess interhemispheric synchrony or asynchrony of climate change.
This award supports a project to test whether Kamb Ice Stream (formerly Ice Stream C (ISC)), an ice stream<br/>that is thought to have stopped ~150 years ago, may be already in the process of restarting. If yes, it will help establish what is the rate of ice stream reactivation and what mechanisms are controlling this rate. If there is no evidence for ongoing ice stream reactivation, the physical controls that are preventing it will be examined and alternative scenarios for near-future evolution of this ice stream will be explored. One such scenario is an increase in ice diversion toward the neighboring Whillans Ice Stream. Such diversion may help prevent a complete stoppage of Whillans Ice Stream,which has been slowing down for at least the last 24 years. This project will consist of two components: (1) field observations of bed properties,geometry of internal radar reflectors, as well as surface strain rates and velocity/topography changes using Ice-Penetrating Radar and differential Global Positioning System, (2) numerical modeling study of near future(~100-1000 years) evolution of Kamb Ice Stream. The field component will be focused on the bulge-to-trunk transition, which is located at the present time just downstream of the so-called camp UpC. Reactivation of Kamb Ice Stream should be reflected in a downstream migration of the bulge-trunk transition at possibly high rates (bulge migration rates of ~km/yr occur on surging mountain glaciers). The modeling<br/>component will be used to generate predictions regarding the near-future behavior of Kamb Ice Stream. This project will provide training opportunities for at least two undergraduate students (per year) at St. Olaf College and for one<br/>undergraduate student (per year) at UCSC. This collaboration will bring together scientists from three different types of US institutions: (1) a liberal arts college (St.Olaf College), (2) a public research university (UCSC) and (3) a NASA research laboratory (JPL). The project will also help build a new glaciological research program at UCSC. Project results will be incorporated into undergraduate and graduate courses at UCSC and will be made available<br/>to the general public and educators through downloadable graphics and animations posted on the research website of the UCSC PI. Field data resulting from the project will be posted in the Antarctic Glaciological Data Center for use by other investigators.
This award supports a comprehensive study of land-based polar ice cliffs. Through field measurements, modeling, and remote sensing, the physics underlying the formation of ice cliffs at the margin of Taylor Glacier in the McMurdo Dry Valleys will be investigated. At three sites, measurements of ice deformation and temperature fields near the cliff face will be combined with existing energy balance data to quantify ice-cliff evolution over one full seasonal cycle. In addition, a small seismic network will monitor local "ice quakes" associated with calving events. Numerical modeling, validated by the field data, will enable determination of the sensitivity of ice cliff evolution to environmental variables. There are both local and global motivations for studying the ice cliffs of Taylor Glacier. On a global scale, this work will provide insight into the fundamental processes of calving and glacier terminus A better grasp of ice cliff processes will also improve boundary conditions required for predicting glaciers' response to climate change. Locally, the Taylor Glacier is an important component of the McMurdo Dry Valleys landscape and the results of this study will aid in defining ecologically-important sources of glacial meltwater and will lead to a better understanding of moraine formation at polar ice cliffs. This study will help launch the career of a female scientist, will support one graduate student, and provide experiential learning experiences for two undergraduates. The post-doctoral researcher will also use this research in the curriculum of a wilderness science experiential education program for high school girls.
Because of extreme isolation of the Antarctic continent since the Early Oligocene, one expects a unique invertebrate benthic fauna with a high degree of endemism. Yet some invertebrate taxa that constitute important ecological components of sedimentary benthic communities include more than 40 percent non-endemic species (e.g., benthic polychaetes). To account for non-endemic species, intermittent genetic exchange must occur between Antarctic and other (e.g. South American) populations. The most likely mechanism for such gene flow, at least for in-faunal and mobile macrobenthos, is dispersal of planktonic larvae across the sub- Antarctic and Antarctic polar fronts. To test for larval dispersal as a mechanism of maintaining genetic continuity across polar fronts, the scientists propose to (1) take plankton samples along transects across Drake passage during both the austral summer and winter seasons while concurrently collecting the appropriate hydrographic data. Such data will help elucidate the hydrographic mechanisms that allow dispersal across Drake Passage. Using a molecular phylogenetic approach, they will (2) compare seemingly identical adult forms from Antarctic and South America continents to identify genetic breaks, historical gene flow, and control for the presence of cryptic species. (3) Similar molecular tools will be used to relate planktonic larvae to their adult forms. Through this procedure, they propose to link the larval forms respectively to their Antarctic or South America origins. The proposed work builds on previous research that provides the basis for this effort to develop a synthetic understanding of historical gene flow and present day dispersal mechanism in South American/Drake Passage/Antarctic Peninsular region. Furthermore, this work represents one of the first attempts to examine recent gene flow in Antarctic benthic invertebrates. Graduate students and a postdoctoral fellow will be trained during this research.
Ultraviolet radiation influences the dynamics of plankton processes in the near-surface waters of most aquatic ecosystems. In particular, the Southern Ocean is affected in the austral spring period when biologically damaging ultraviolet radiation is enhanced by ozone depletion. While progress has been made in estimating the quantitative impact of ultraviolet radiation on bacteria and phytoplankton in the Southern Ocean, some important issues remain to be resolved. Little is known about responses in systems dominated by the colonial haptophyte Phaeocystis antarctica, which dominates spring blooms in a polyna that develops in the southern Ross Sea. The Ross Sea is also of interest because of the occurrence of open water at a far southerly location in the spring, well within the ozone hole, and continuous daylight, with implications for the regulation of DNA repair. A number of studies suggest that vertical mixing can significant modify the impact of ultraviolet radiation in the Southern Ocean and elsewhere. However, there are limited measurements of turbulence intensity in the surface layer and measurements have not been integrated with parallel studies of ultraviolet radiation effects on phytoplankton and bacterioplankton. To address these issues, this collaborative study will focus on vertical mixing and the impact of ultraviolet radiation in the Ross Sea. The spectral and temporal responses of phytoplankton and bacterioplankton to ultraviolet radiation will be characterized in both laboratory and solar incubations. These will lead to the definition of biological weighting functions and response models capable of predicting the depth and time distribution of ultraviolet radiation impacts on photosynthesis, bacterial incorporation and DNA damage in the surface layer. Diel sampling will measure depth-dependent profiles of DNA damage, bacterial incorporation, photosynthesis and fluorescence parameters over a 24 h cycle. Sampling will include stations with contrasting wind-driven mixing and stratification as the polyna develops. The program of vertical mixing measurements is optimized for the typical springtime Ross Sea situation in which turbulence of intermediate intensity is insufficient to mix the upper layer thoroughly in the presence of stabilizing influences like solar heating and/or surface freshwater input from melting ice. Fine-scale vertical density profiles will be measured with a free-fall CTD unit and the profiles will be used to directly estimate large-eddy scales by determining Thorpe scales. Eddy scales and estimated turbulent diffusivities will be directly related to surface layer effects, and used to generate lagrangian depth-time trajectories in models of ultraviolet radiation responses in the surface mixed layer. The proposed research will be the first in-depth study of ultraviolet radiation effects in the Ross Sea and provide a valuable comparison with previous work in the Weddell-Scotia Confluence and Palmer Station regions. It will also enhance the understanding of vertical mixing processes, trophic interactions and biogeochemical cycling in the Ross Sea.
The Larsen Ice Shelf is the third largest ice shelf in Antarctica and has continued a pattern of catastrophic decay since the mid 1990's. The proposed marine geologic work at the Larsen Ice Shelf builds upon our previous NSF-OPP funding and intends to test the working hypothesis that the Larsen B Ice Shelf system has been a stable component of Antarctica's glacial system since it formed during rising sea levels 10,000 years BP. This conclusion, if supported by observations from our proposed work, is an important first step in establishing the uniqueness and consequences of rapid regional warming currently taking place across the Peninsula. Our previous work in the Larsen A and B embayments has allowed us to recognize the signature of past ice shelf fluctuations and their impact on the oceanographic and biologic environments. We have also overcome many of the limitations of standard radiocarbon dating in Antarctic marine sequences by using variations in the strength of the earth's magnetic field for correlation of sediment records and by using specific organic compounds (instead of bulk sediment) for radiocarbon dating. We intend to pursue these analytical advances and extend our sediment core stratigraphy to areas uncovered by the most recent collapse of the Larsen B Ice Shelf and areas immediately adjacent to the Larsen C Ice Shelf. In addition to the core recovery program, we intend to utilize our unique access to the ice shelf front to continue our observations of the snow/ice stratigraphy, oceanographic character, and ocean floor character. Sediment traps will also be deployed in order to measure the input of debris from glaciers that are now surging in response to the ice shelf collapse. This proposal is a multi-institutional, international (USAP, Italy, and Canada) effort that combines the established expertise in a variety of disciplines and integrates the research plan into the educational efforts of primarily undergraduate institutions but including some graduate education. This is a three-year project with field seasons planned with flexibility in order to accommodate schedules for the RVIB L.M. Gould. The Antarctic Peninsula is undergoing greater warming than almost anywhere on Earth, perhaps associated with human-induced greenhouse effects. Our proposed work contributes to understanding of these changes where they are occurring first and with greatest magnitude and impact upon the environment.
This award supports a project to use three downhole instruments - an optical logger; a<br/>miniaturized biospectral logger at 420 nm (miniBSL-420); and an Acoustic TeleViewer (ATV) - to log a 350-m borehole at the WAIS Divide drill site. In addition, miniBSL-224 (at 224 nm) and miniBSL-420 will scan ice core sections at NICL to look for abrupt climate changes, volcanic ash, microbial concentrations, and correlations among them. Using the optical logger and ATV to log bubble number densities vs depth in a WAIS Divide borehole, we will detect annual layers, from which we can establish the age vs depth relation to the bottom of the borehole that will be available during the three-year grant period. With the same instruments we will search for long-period modulation of bubble and dust concentrations in order to provide definitive evidence for or against an effect of long-period variability of the sun or solar wind on climate. We will detect and accurately date ash layers in a WAIS Divide borehole. We will match them with ash layers that we previously detected in the Siple Dome borehole, and also match them with sulfate and ash layers found by others at Vostok, Dome Fuji, Dome C, and GISP2. The expected new data will allow us to extend our recent study which showed that the Antarctic record of volcanism correlates with abrupt climate change at a 95% to >99.8% significance level and that the volcanic signatures at bipolar locations match at better than 3 sigma during the interval 2 to 45 kiloyears. The results to be obtained during this grant period will position us to extend an accurate age vs depth relation and volcano-climate correlations to earlier than 150 kiloyears ago in the future WAIS Divide borehole to be drilled to bedrock. Using the miniBSLs to identify biomolecules via their fluorescence, we will log a 350-m borehole at WAIS Divide, and we will scan selected lengths of ice core at NICL. Among the biomolecules the miniBSLs can identify will be chlorophyll, which will provide the first map of aerobic microbes in ice, and F420, which will provide the first map of methanogens in ice. We will collaborate with others in relating results from WAIS Divide and NICL ice cores to broader topics in climatology, volcanology, and microbial ecology. We will continue to give broad training to undergraduate and graduate students, to attract underrepresented minorities to science, engineering, and math, and to educate the press and college teachers. A deeper understanding of the causes of abrupt climate change, including a causal relationship with strong volcanic eruptions, can enable us to understand and mitigate adverse effects on climate.
This award supports a two-year collaborative effort to more fully understand the climatic history and physical properties of the Siple Dome, Antarctica deep ice core, to develop a new paleoclimatic technique based on bubble number-density, and to improve the U.S. capability to analyze ice-core physical properties rapidly and accurately. The Siple Dome ice core from West Antarctica is yielding important paleoclimatic insights, but has proven more difficult than some cores to interpret owing to the large iceflow effects on the paleoclimatic record. Paleoclimatic indicators that do not rely on iceflow corrections thus would be of value. The bubble number-density offers one such indicator, because it preserves information on mean temperature and accumulation rate during the transformation of firn to ice. We will focus on thin-section characteristics that are important to ice flow and the interpretation of the ice-core history, such as c-axis fabrics, and will use indicators that we have been developing, such as the correlation between grain elongation and the c-axis orientation, to gain additional information. To achieve this quickly and accurately, and to prepare for future projects, we propose to upgrade the automatic caxis- fabric analyzer that Wilen has built and housed at the National Ice Core Laboratory. The intellectual merit of the proposed activity includes improved estimates of paleoclimatic conditions in an important region, improved understanding of a new paleoclimatic research tool, greater understanding of ice flow and of linkages to physical properties, and a better instrument for further U.S. research in ice-core physical properties at the National Ice Core Laboratory. The broader impacts resulting from the proposed activity include providing better understanding of abrupt climate change and of ice flow, which eventually should help policy-makers, as well as an improved U.S. capability to analyze ice cores. The proposed research will assist the studies of two promising young scientists. Results of the research will be incorporated into courses and public outreach reaching at least hundreds or thousands of people per year.
Recent years have seen the re-establishment of large-scale marine resource utilization by humans in the Antarctic. In contrast to early sealing and whaling activity, the modern impact is directed on krill and finfish populations, most notably of the Patagonian toothfish (Dissostichus eleginoides), but also its congenor the Antarctic toothfish (Dissostichus mawsoni) in the Ross Sea. Toothfish are a valuable resource and are likely to continue to command a high price in world markets. However, extensive illegal fishing has lead to considerable concern that Patagonian toothfish populations are being over-harvested. In other parts of the world, over-harvesting of larger, commercially valuable species has led to fishing down of marine food webs, leaving impoverished, less valuable ecosystems. The goal of the Convention for the Conservation of Antarctic Marine Living Resources, part of the Antarctic Treaty System, is to allow harvest while avoiding disruptions to the Antarctic ecosystem. To achieve this, the sustainable management of the fishery depends on reliable age data. Age data allow population age structure to be modeled, so that growth, mortality and recruitment rates can be estimated and used to understand population dynamics. Age data provides the basis to determine the life history pattern of a species, to model population dynamics, and to determine which age classes are vulnerable to over-exploitation under a particular set of environmental conditions. Current age and growth information for toothfish is based on age determination methodologies which are not validated and depend on the specific laboratory and principal investigator. Recently, the Commission of the Conservation of Antarctic Marine Living Resources has endorsed three preparation methodologies using otoliths and a common set of criteria for estimating age from otolith micro-structure. The CCAMLR Otolith Network has also been initiated as a medium for exchanging samples to ensure that age estimates are comparable between readers and laboratories. However, considerable work is needed to ensure that age estimates generated by the three methodologies are accurate. One technique that has been successful is radiometric age determination, which uses the disequilibria of lead-210 and radium-226 in otoliths as a natural chronometer. This proposal brings together an international collaboration to examine population age structure for both toothfish species, in an experimental design built around radiometric validation tests of age data generated by all three preparation methodologies. To integrate the validation component within an Antarctic-wide effort to examine toothfish population age structure, sub-samples for validation work will be drawn from sample sets taken for population age studies by research teams working in Australia, New Zealand, the United Kingdom and France, as well as the United States. Scientists at Moss Landing Marine Laboratories will use radiometric age determination to independently age otoliths from Patagonian and Antarctic toothfishes. Scientists at Old Dominion University will use a system already established for aging to generate validated age data, allowing growth, mortality, and longevity to be estimated by geographic areas. The project will provide validated otolith sample sets that can be used as a foundation for a unified and validated age estimation system for the toothfishes. This study will provide information which will be disseminated to the public, policy-makers and the international community. The project will provide opportunities for under-represented students at both universities.
This Small Grant for Exploratory Research supports development of an innovative dating technique for application to ancient, relict ice bodies buried in the Western Dry Valleys of Antarctica. Dating of surrounding sediments and volcanic ashes indicates that these ice bodies may be up to six million years in age, offering the oldest direct atmospheric and climate records available. This SGER is a proof of concept to develop a new dating technique using beryllium (10Be) of cosmogenic origin from the atmosphere and extraterrestrial helium (3He) contained in interplanetary dust particles. Both tracers are deposited to the Earth's surface and likely incorporated into the ice matrix at constant rates. Radioactive decay of 10Be versus the stable extraterrestrial 3He signal may offer way to directly measure the age of the ice.<br/><br/>The broader impacts of this work are development of a new analytical technique that may improve society's understanding of the potential for global climate change from the perspective of the deep time record.
This project will determine the age, origin, and climatic significance of buried ice found in the western Dry Valleys of Antarctica. Previous studies indicate that this ice may be over a million years in age, making it by far the oldest ice yet discovered on Earth. An alternative view is that this ice is represents recently frozen groundwater. To distinguish between these hypotheses and characterize the ice, we are undertaking an interdisciplinary research program focused on: 1) understanding the surface processes that permit ice preservation; and 2) testing the efficacy of cosmogenic nuclides and 40Ar/39Ar analyses in dating both tills and volcanic ash associated with the ice. Our plan calls for the analysis of a minimum of six cosmogenic depth profiles to determine if and how cryoturbation reworks sublimation tills and assess the average rate of ice sublimation for three debris-covered glaciers. We will model through finite- element analyses at least three buried glaciers and compare flow rates with those based on radiometric dating of surface deposits. Ten ice cores will also be collected for measurement of d18O, dD, ice fabric, ice texture, total gas content/composition. Better understanding of surface processes above buried ice will permit researchers to gain access to a record of atmospheric and climate change that could well cover intervals that predate Quaternary time. The work may also add valuable insight into Martian history. In terms of broader impacts, we have recruited three female PhD students and developed interdisciplinary collaborations among geochemists at Columbia University, planetary geologists at Brown University, geomorphologists at Boston University, and numerical modelers at the University of Maine.
This award supports the development of a new laboratory capability in the U.S. to measure CO2 in ice cores and investigate millennial-scale changes in CO2 during the last glacial period using samples from the Byrd and Siple Dome ice cores. Both cores have precise relative chronologies based on correlation of methane and the isotopic composition of atmospheric oxygen with counterpart records from Greenland ice cores. The proposed work will therefore allow comparison of the timing of CO2 change, Antarctic temperature change, and Greenland temperature change on common time scales. Such comparisons are vital for evaluating models that explain changes in atmospheric CO2. The techniques being developed will also be available for future projects, specifically the proposed Inland WAIS ice core, for which a highly detailed CO2 record is a major objective, and studies greenhouse and other atmospheric gases and their isotopic composition for which dry extraction is necessary (stable isotopes in CO2, for example). There are many broad impacts of the proposed work. Ice core greenhouse gas records are central contributions of paleoclimatology to research and policy-making concerning global change. The proposed work will enhance those contributions by improving our understanding of the natural cycling of the most important greenhouse gas. It will contribute to the training of a postdoctoral researcher, who will be an integral part of an established research group and benefit from the diverse paleoclimate and geochemistry community at OSU. The PI teaches major and non-major undergraduate and graduate courses on climate and global change. The proposed work will enrich those courses and the courses will provide an opportunity for the postdoctoral researcher to participate in teaching by giving guest lectures. The PI also participates in a summer climate workshop for high school teachers at Washington State University and the proposed work will enrich that contribution. The extraction device that is built and the expertise gained in using it will be resources for the ice core community and available for future projects. Data will be made available through established national data center and the equipment designs will also be made available to other researchers.
9909665 Berger This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports project to test and develop approaches for using thermoluminescence techniques to determine the age of Antarctic marine sediments. Quaternary (last 2 million yrs) marine sediments surrounding Antarctica record the waxing and waning of ice shelves and ice sheets, and also other paleoclimatic information, yet accurate chronologies of these sediments are difficult to obtain. Such chronologies provide the essential foundation for study of geological processes in the past. Within the range of radiocarbon (14C) dating (less than 30-40 thousand yrs, note - "ka" below means 1000 yrs) 14C dates can be inaccurate because of a variable 14C reservoir effect, and beyond 30-40 ka few methods are applicable. Photon-stimulated-luminescence sediment dating (photonic dating) of eolian and waterlain deposits in temperate latitudes spans the range from decades to hundreds of ka, but marine sediments in and around Antarctica pose special difficulty because of the potentially restricted exposure to daylight (the clock-zeroing process) of most detrital grains before deposition. This proposal will test the clock-zeroing assumption in representative Antarctic glaciomarine depositional settings, and thereby determine the potential reliability of photonic dating of Antarctic marine sediments. Limited luminescence dating and signal-zeroing tests using glaciomarine and marine deposits have been conducted in the northern temperate and polar latitudes, but the effects on luminescence of the different glaciomarine depositional processes have never been studied in detail. Furthermore, the depositional settings around Antarctica are almost entirely polar, with consequent specific processes operating there. For example, transport of terrigenous suspensions by neutrally buoyant "cold-tongue" (mid-water) plumes may be common around Antarctica, yet the effect of such transport on luminescence zeroing is unknown. Typical marine cores near Antarctica may contain an unknown fraction of detrital grains from cold-tongue and near-bottom suspensions. Thus the extent to which the polar glaciomarine depositional processes around Antarctica may limit the potential accuracy of photonic dating of marine cores is unknown (age overestimates would result if grains are not exposed to daylight before deposition). This project will collect detrital grains from a variety of "zero-age" (modern) marine depositional settings within the Antarctic Peninsula, where representative Antarctic depositional processes have been documented and where logistics permit access. Suspensions will be collected from four fjords representing a transect from polar through subpolar conditions. Suspensions will be collected from two stations and from up to 3 depths (surface and 2 deep plumes) at each station. Sediment traps will be deployed at two of these fjord settings. As well, core-top sediments will be collected from several sites. All samples will be shielded from light and transported to Reno, Nevada, for luminescence analyses. Systematic study of the effectiveness of luminescence-clock-zeroing in Antarctic glaciomarine settings will determine if photonic dating can be reliable for future applications to Antarctic marine sediments. Refined sedimentological criteria for the selection of future samples for photonic dating are expected from this project. A photonic-dating capability would provide a numeric geochronometer extending well beyond the age range of 14C dating. Such a capability would permit answering a number of broader questions about the timing and extent of past glaciations near and on the Antarctic shelves.
This award supports a small grant for exploratory research to study the processes that contribute to the melting and break-up of tabular polar icebergs as they drift north. This work will enable the participation of a group of U.S. scientists in this international project which is collaborative with the Instituto Antartico Argentino. The field team will place weather instruments, firn sensors, and a video camera on the iceberg to measure the processes that affect it as it drifts north. In contrast to icebergs in other sectors of Antarctica, icebergs in the northwestern Weddell Sea drift northward along relatively predictable paths, and reach climate and ocean conditions that lead to break-up within a few years. The timing of this study is critical due to the anticipated presence of iceberg A43A, which broke off the Ronne Ice Shelf in February 2000 and which is expected to be accessible from Marambio Station in early 2006. It has recently been recognized that the end stages of break-up of these icebergs can imitate the rapid disintegrations due to melt ponding and surface fracturing observed for the Larsen A and Larsen B ice shelves. However, in some cases, basal melting may play a significant role in shelf break-up. Resolving the processes (surface ponding/ fracturing versus basal melt) and observing other processes of iceberg drift and break up in-situ are of high scientific interest. An understanding of the mechanisms that lead to the distintegration of icebergs as they drift north may enable scientists to use icebergs as proxies for understanding the processes that could cause ice shelves to disintegrate in a warming climate. A broader impact would thus be an ability to predict ice shelf disintegration in a warming world. Glacier mass balance and ice shelf stability are of critical importance to sea level change, which also has broader societal relevance.
This Small Grant for Exploratory Research supports measurement of PGE abundances and Hf, Nd, Sr and Pb isotopic ratios of the Basement Sill and Dais Intrusion lobe of the Ferrar Magmatic Province, Antarctica. This province played a key role in the breakup of Gondwanaland. Models to be tested are magma production by plume activity versus decompression melting in a fossil subduction zone. The PGE data will also be used to evaluate the behavior of volatiles during magma crystallization, which other evidence indicates may have reached saturation. The samples to be studied were collected during the NSF-sponsored, Magmatic Field Laboratory Workshop held in Antarctica in 2005. This study's results will be compliled with complementary data from other attendees to develop a new multidisciplinary model of Ferrar magmatism.<br/><br/>The broader impacts fo this work include international collaboration and informal science education through public outreach to K12 students.
This award supports a comprehensive investigation of the spatial and temporal characteristics of the surface mass balance of the Antarctic ice sheet and the governing mechanisms that affect it. A mesoscale atmospheric model, adapted for Antarctic conditions (Polar MM5), will be used in conjunction with the newly available reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) to resolve the surface mass balance of Antarctica at a time resolution of 3 hours and a spatial resolution of 60 km from 1957 to 2001. Polar MM5 will be upgraded to account for key processes in the simulation, including explicit consideration of blowing snow transport and sublimation as well as surface melting/runoff. The proposed 45-y hindcast of all Antarctic surface mass balance components with a limited area model has not previously been attempted and will provide a dataset of unprecedented scope to complement existing ice core measurements of recent climate, especially those collected by the International Transantarctic Scientific Expedition (ITASE). The trends and variability in space and time over 4.5 decades will be resolved and the impact of the dominant modes of atmospheric variability (Antarctic Oscillation, El Nino-Southern Oscillation, etc.) will be isolated. Hypotheses concerning the Antarctic surface mass balance response to climate change will be tested. The research will provide a sound basis for evaluating the impact of future climate change on Antarctic surface mass balance and its contribution to global sea level change as well as providing an important perspective for the interpretation of Antarctic ice core records. The broader impacts include the education of a Ph.D. student, the development of material for use in university classes, and construction of an interactive educational webpage on Antarctic surface mass balance.
This award is for support for a program to reconstruct records of the isotopic composition of paleoatmospheric methane and nitrous oxide covering the last 200,000 years. High resolution measurements of the carbon-13 isotopic composition of methane from shallow ice cores will help to determine the relative contributions of biogenic (wetlands, rice fields and ruminants) and abiogenic (biomass burning and natural gas) methane emissions which have caused the concentrations of this gas to increase at an exponential rate during the anthropogenic period. Isotopic data on methane and nitrous oxide over glacial/interglacial timescales will help determine the underlying cause of the large concentration variations that are known to occur. This project will make use of a new generation mass spectrometer which is capable of generating precise isotopic information on nanomolar quantities of methane and nitrous oxide, which means that samples can be 1000 times smaller than those needed for a standard isotope ratio instrument. The primary objective of the work is to further our understanding of the biogeochemical cycles of these two greenhouse gases throughout the anthropogenic period as well as over glacial interglacial timescales.
This award supports the development of novel methods for digital image analysis of glacial ice cores that are stored at the National Ice Core Laboratory (NICL) in Denver, Colorado. Ice cores are a critical source of information on how Earth has changed over time, since indicators of local climate (snow accumulation, temperature), regional characteristics (wind-blown materials such as sea salt, dust and pollen), global processes (e.g., CO2, methane), and even extraterrestrial influences (cosmogenic isotopes) are stored in the ice on a common time scale. This project will develop a high-resolution optical scanning system for laboratory curation of ice core images, internet-based search and retrieval capabilities, a digital image analysis system specifically for ice core studies, and methods to integrate ice core image analysis with other dating methods. These tools will be developed and tested in conjunction with scientific investigations of NICL holdings. Optical scanning and analysis tools will improve understanding of the historical development of the ice collected from a particular location and will help to resolve challenges such as ice that has lost stratigraphic order through flow processes. <br/>By providing permanent online digital archives of ice core images, this project will greatly improve the documentation and availability of ice core data while reducing time and costs for subsequent scientific investigations. Using the internet, ice core scientists will be able to determine the appropriateness of specific NICL holdings for various scientific studies. By optically scanning ice cores as they are processed at NICL, any researcher will be able to examine an ice core in similar detail to the few investigators who were fortunate enough to observe it before modifications from sampling and storage. Re-examination of cores could be done decades later by anyone at any location, which is not possible now because only the interpretation of the original observer is recorded. Integration of digital image data into ice core analysis will speed discovery, allow collaborative interpretation, and enhance consistency of analysis to improve ice core dating, identification of melt layers, location of flow disturbances, and more. The equipment will be housed at NICL and will be available to the broad community, improving scientific infrastructure.<br/>This work will also have numerous broader impacts. Ice core science addresses fundamental questions of human interest related to global warming, abrupt climate change, biogeochemical cycling, and more. The principal investigators broadly disseminate their scientific findings through numerous outlets, ranging from meeting with government officials, chairing and serving on NRC panels, writing popular books and articles, publishing in scientific literature, teaching classes, talking to civic groups, and appearing on radio and television. The results from ice core analyses have directly informed policymakers and will continue to do so. Thus, by improving ice core science, this projectl will benefit society.
0125610<br/>Waddington<br/><br/>This award provides three years of funding to study the transition from slow inland flow to fast ice stream flow by making use of a suite of geophysical measurements that have been made near the onset region of ice stream D in West Antarctica. These data provide a unique opportunity to develop and validate glaciological models of the controlling processes in ice stream onset zones. Important processes to quantify are motion at the bed and deformation in the ice. Previous analyses indicate that the controlling resistive forces shift from the bed to the sides during the transition from slow inland flow to fast, streaming flow. Model sensitivity analyses will be used to investigate the relative importance of feedbacks between basal processes and ice deformation in the transition from inland to ice stream flow. Model experiments will determine what factors control the location of the onset of streaming flow, and how that location might migrate when conditions at the bed, or along the flow direction, changes over time. The overall goal of this work is to improve understanding of the evolution of the WAIS drainage system. This study is a first step towards understanding the physics that govern the transition from slow inland flow to fast streaming flow.
This award supports a comprehensive study of rift growth on the Amery Ice Shelf (AIS), East Antarctica, using a combination of in situ and remote sensing data with numerical modeling. On the AIS there is an opportunity to examine an active rift system, which is a combination of two longitudinal-to-flow rifts, which originated at the ice shelf front in the suture zones between merging flowbands, and two transverse-to-flow rifts, which formed at the tip of the western longitudinal rift around 1996. Work in progress indicates that these two transverse rifts do not propagate independently of each other, but somehow grow more or less synchronously. The longest of these rifts-the eastern one-grows at an average rate of about 8m per day. When it meets the eastern longitudinal rift, an event that is expected to occur during the funding period (mid-2006), an iceberg (~30 x 30 km) will calve. Based on observations collected over the past half century, there is reason to believe that such a calving event may be a part of a repetitive sequence. In the proposed project, the expansion and propagation of both transverse rifts will be studied using a network of GPS and seismometers deployed around the tip of each transverse rift. Once the iceberg has calved, the effects its calving has on the dynamics of the ice shelf and the activation of previously inactive rifts will also be studied. Insofar as the rate of calving activity is a proxy for local and regional climate conditions, a broader impact of the proposed work is directly related to the socio-environmental topics of climate and sea-level change. The subject of iceberg calving has a history of sparking a great deal of interest from the media and the public alike, especially since the recent large calving events from the Ross and Ronne ice shelves and the remarkably sudden break-up of the Larsen Ice Shelf. The work will involve at least one graduate student, and will involve a partnership with a local charter high school. Field work, instrument deployments, and data collection and analysis will be conducted in close collaboration with the Australian Antarctic Division and the University of Tasmania, which has been a crucial component of research conducted to date. This project will also make use of the Scripps Institution of Oceanography Visualization Center as a means to display results to faculty and researchers of the University of California, San Diego, undergraduate and graduate students, to school children and their teachers, and ultimately to the visiting public.
This award supports a science management office for a pilot ice-core drilling and analysis program to test the feasibility of obtaining well-dated, high-resolution isotope and chemistry records from East Antarctica. Shallow ice cores will be obtained from two locations: 1) ~100 km from South Pole towards the Pole of Inaccessibility, as an extension of the Byrd Station-to-South Pole ITASE traverse [International Trans Antarctic Scientific Expedition]; 2) at Taylor Dome, near the original deep coring site, and (3) possibly at AGO 3 and AGO 4 as part of a logistics traverse to these sites. All of the cores collected will be sampled at very high resolution (~1/2 cm) and analyzed for major ions. Results from this calibration work, along with those from another project that is analyzing stable isotopes will be used to help plan a program of larger scope, with the objective of mapping the spatial expression of climate variability in East Antarctica. Funds are also provided to organize a community workshop for coordination of the second phase of US ITASE and for one workshop per year for two years dedicated to writing and preparation of scientific papers from phase one of US ITASE. In addition, route selection activities for the follow-on traverse activities in East Antarctica will be conducted using satellite image mapping. A summary document will be produced and made available to the community to help with planning of related field programs (e.g. deep ice radar, firn radar profiling, atmospheric chemistry, ice coring, snow surface properties for satellite observations, ice surface elevation and mass balance).
This project determines the recent history of the West Antarctic Ice Sheet (WAIS) through a multidisciplinary study of the seabed in the Ross Sea of Antarctica. WAIS is perhaps the world's most critical ice sheet to sea level rise dut to near-future global warming. its history has been a key focus for the past decade, but there are significant questions as to whether WAIS was stable during the last glacial maximum--about 20,000 years ago--or undergoing advance and retreat. This project studies grounding zone translantions in Eastern Basin to constrain WAIS movements using a multidisciplinary approach that integrates multibeam bathymetry, seismic stratigraphy, sedimentology, diatom biostratigraphy, radiocarbon dating, 10Be concentration analyses, and numerical modeling.<br/><br/>The broader impacts include improving society's understanding of sea level rise linked to global warming; postdoctoral, graduate, and undergraduate education; and expanding the participation of groups underrepresented in Earth sciences through links with LSU's Geoscience Alliance to Encourage Minority Participation.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research project between the Saint Mary's College of California, the South Dakota School of Mines and technology, and the Argentine Antarctic Institute (Instituto Antartico Argentino or IAA) to investigate the Late Mesozoic vertebrate paleontology of the James Ross Basin in the Antarctic Peninsula region. The Campanian through the Maastrichtian ages (80 to 65 million years ago) is an important time interval concerning vertebrate biogeography (i.e. dispersals and separations due to moving landmasses) and evolution between Antarctica and other Southern Hemisphere continents (including India, i.e. Gondwana). Moreover, the dispersal of terrestrial vertebrates (i.e. dinosaurs and marsupial mammals) from North America to Antarctica and beyond (e.g. Australia) via Patagonia and the Antarctic Peninsula, as well as the dispersal of modern birds from Antarctica northward are important unresolved questions in paleontology. These dispersal events include vertebrates not only in the terrestrial realms, but also in marine settings. Both widely distributed and localized marine reptile species have been identified in Antarctica, creating questions concerning their dispersal in conjunction with the terrestrial animals.<br/><br/>The Antarctic Peninsula and Patagonia represent the western-most portion of the Weddellian Paleobiogeographic Province, a region that extends from Patagonia through the Antarctic Peninsula and western Antarctica to Australia and New Zealand. Within this province lie the dispersal routes for interchanges of vertebrates between South America and: 1) Madagascar and India, and 2) Australia. As the result of previous work by the principal investigators, it is postulated that an isthmus between more northern South America and the Antarctic craton has served to bring typical North American dinosaurs, such as hadrosaurs (duck-billed dinosaurs) and presumably marsupials traveling overland, while marine reptiles swam along coastal waters, to Antarctica in the latest Cretaceous. Finally, this region has served as the cradle for the evolution, if not the origin, for groups of modern birds, and evolution of a suite of typical southern hemisphere plants.<br/><br/>In order to confirm and expand upon these hypotheses, investigations into the latest Cretaceous deposits of the James Ross Basin, Antarctica Peninsula must be continued. The Cape Lamb and Sandwich Bluff geological units, of the Lopez de Bertodano Formation in the James Ross Basin along the eastern Antarctic Peninsula, exhibit a mixture of marine and terrestrial deposits. The following vertebrates have been recovered from these sedimentary deposits during previous field seasons: plesiosaur and mosasaur marine reptiles; plant eating dinosaurs; a meat eating dinosaur; and a variety of modern bird groups, including shorebirds, wading birds and lagoonal birds.<br/><br/>This project will undertake new fieldwork to recover new specimens in order to test biogeographic and evolutionary hypotheses concerning Late Cretaceous vertebrates in Gondwana. Fieldwork is planned in January 2002 and 2003 to explore the eastern slopes of Cape Lamb, Sandwich Bluff and False Island Point on Vega Island, and the Santa Marta Cove area of James Ross Island.<br/><br/>This research will result in important new insights about the evolution and geographic dispersal of several vertebrate species. The results are important to understanding the development and evolution of life on Earth.<br/><br/>This is a collaborative research project with Argentinean scientists from the IAA and it continues a productive collaboration that began in 1995. In addition, collaboration with vertebrate paleontologists from the Museo de La Plata, both in the field and at our respective institutions in Argentina and in the United States, will continue.
Photochemical reactions in snow can have important effects on the chemistry and composition of the snowpack as well as the overlying atmosphere. For example, recent measurements in the Antarctic and Arctic have revealed that sunlit snow releases a number of important pollutants to the atmosphere. Our ability to understand and model this chemistry is currently limited, in part because we lack fundamental photochemical information for a number of important chemical species in snow. This award supports research that will help fill this gap by characterizing the low-temperature photochemistry of three of these key species: nitrite (NO2-), nitrous acid (HNO2), and hydrogen peroxide (HOOH). We will measure quantum yields for these reactions on ice using a sensitive technique that we recently developed during a study of nitrate (NO3-) photochemistry. In addition to this basic research, we will also measure the rates of formation of hydroxyl radical (OH), nitrogen oxides (NOx), and HOOH in illuminated Antarctic snow samples. These measurements will be important inputs for future models, and will allow us to test whether known species (e.g., NO3-, NO2- and HNO2) are responsible for most of snowpack reactivity (e.g., OH formation). Overall, results from this award will significantly improve our ability to understand snowpack chemistry, and the resulting effects on the atmosphere, both in the Antarctic as well as in the many other regions with permanent or seasonal snow. These results will also strengthen efforts to use ice core records to monitor global change. In addition to these impacts, this award will help train students and a postdoctoral fellow, and results from this work will be integrated into two classes in order to expose students to some of the important issues facing polar regions.
This award is for support for a three year project to measure the vertical strain rate as a function of depth at two sites on Siple Dome Antarctica. Ice flow near a divide such as Siple Dome is unique in that it is predominantly vertical. As a consequence, the component of ice deformation in the vertical direction, the "vertical strain rate" is dominant. Its measurement is therefore important for the calibration of dynamic models of ice flow. Two different, relatively new, high resolution systems for its measurement in hot water drilled holes will be employed. The ice flow model resulting from the measurements and flow law determination will be used to interpret the shapes of radar internal layering in terms of the dynamic history and accumulation patterns of Siple Dome over the past 10,000 years. The resulting improved model will also be applied to the interpretation of annual layers thicknesses (to produce annual accumulation rates) and borehole temperatures from the ice core to be drilled at Siple Dome during the 1997/98 field season. The results should permit an improved analysis of the ice core, relative to what was possible at recent coring sites in central Greenland. This is a collaborative project between the University of Alaska, the University of California, San Diego and the University of Washington.
This award supports a two-year project to continue work developing the techniques to make carbon monoxide (CO) measurements in ice core samples. Carbon monoxide is an important atmospheric chemical constituent as it is a primary sink for hydroxyl radical (OH) (and therefore influences the oxidizing capacity of the atmosphere) and because the concentrations of three major greenhouses gases , carbon dioxide (CO2), methane (CH4) and ozone (O3) are directly tied to the concentration of CO. In light of recent anthropogenic increases in the emissions of CO, CO2, CH4 and NOx, it is desirable to understand this complex chemical system and the changes in the greenhouse forcing resulting from perturbation. Because it is difficult to test the accuracy of models for past and future conditions for which no direct atmospheric measurements of trace gas concentrations are available these measurements must be obtained in other ways. Polar ice cores provide a means to make these measurements. Further work is necessary to refine the analytical technique and additional measurements are necessary to investigate the accuracy of these results and to establish the nature of temporal trends in CO. It is anticipated that the CO record, combined with existing or new data for CO2, CH4 , N2O and other paleoclimate variables, will provide further constraints on model studies of the effect of changing atmospheric chemistry on greenhouse forcing.
This award supports a project to significantly improve our understanding of how Taylor Glacier flows and responds to climate changes. Taylor Glacier drains the Taylor Dome region of the East Antarctic Ice Sheet and terminates in Taylor Valley, one of the Dry Valleys of Victoria Land. It provides a crucial and unique link between two intensively studied Antarctic environments: the Taylor Dome, from which a 130 kyr ice core paleoclimate record has recently been extracted, and the Dry Valleys, a pivotal Long-Term Ecological Research (LTER) site and a focus of research on geomorphology and glacial geology. The proposed work will thus make an important contribution to ongoing efforts to exploit the Taylor Dome - Dry Valleys system to build a uniquely comprehensive view of regional long-term environmental changes. The proposed work has two complementary components: field research and numerical modelling. Two field seasons will be used to measure velocity, surface strain rate, mass balance, ice thickness, glacier bed reflectance, and subglacial topography, along a nearly complete longitudinal transect of the Taylor Glacier, and along select cross-valley transects. This information will be used to constrain numerical models of ice and heat flow for the Taylor Dome - Taylor Glacier system. These calibrated models will be used to analyze the time-dependent response of the Taylor Glacier to climate changes. The synthesis of results will be aimed to improve understanding of the glacial geomorphology of Taylor Valley, and to illuminate impacts on the Taylor Valley lakes ecosystem. The project will have a major role in furthering the careers of a doctoral-level graduate student and a post-doctoral researcher.
Polar Programs, provides funds for a study of sediment cores from the McMurdo Dry Valley lakes. The Dry Valley lakes have a long history of fluctuating levels reflecting regional climate change. The history of lake level fluctuations is generally known from the LGM to early Holocene through 14C dates of buried organic matter in paleolake deposits. However, the youngest paleolake deposits available are between 8000 to 9000 14C yr BP, suggesting that lake levels were at or below current levels for much of the Holocene. Thus, any information about the lake history and climate controls for the Holocene is largely contained in bottom sediments. This project will attempt to extract paleoclimatic information from sediment cores for a series of closed-basin dry valley lakes under study by the McMurdo LTER site. This work involves multiple approaches to dating the sediments and use of several climate proxy approaches to extract century to millennial scale chronologies from Antarctic lacustrine deposits. This research uses knowledge on lake processes gained over the past eight years by the LTER to calibrate climate proxies from lake sediments. Proxies for lake depth and ice thickness, which are largely controlled by summer climate, are the focus of this work. This study focuses on four key questions: 1. How sensitively do dry valley lake sediments record Holocene environmental and climate variability? 2. What is the paleoclimatic variability in the dry valleys on a century and millennial scale throughout the Holocene? Especially, is the 1200 yr evaporative event unique, or are there other such events in the record? 3. Does a mid-Holocene (7000 to 5000 yr BP) climate shift occur in the dry valleys as documented elsewhere in the polar regions? 4. Is there evidence, in the dry valley lake record of the 1500 yr Holocene periodicities recently recognized in the Taylor Dome record? Core collection will be performed with LTER support using a state-of-the-art percussion/piston corer system that has been used successfully to retrieve long cores (10 to 20 m) from other remote polar locations. Analyses to be done include algal pigments, biogenic silica, basic geochemistry, organic and inorganic carbon and nitrogen content, stable isotopes of carbon, nitrogen, and oxygen, carbonate phases, salt content and mineralogy, and grain size. In addition this project will pursue a multi-chronometer approach to assess the age of the core through optically-stimulated luminescence, 226Ra/230Th , 230Th/234U, and 14C techniques. New experimentation with U-series techniques will be performed to allow for greater precision in the dry valley lake sediments. Compound specific isotopes and lipid biomarkers , which are powerful tools for inferring past lake conditions, will also be assessed. Combined, these analyses will provide a new century to millennial scale continuous record of the Holocene climate change in the Ross Sea region.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports an interdisciplinary study of fluvial sediments in Antarctica for evidence of what caused the greatest of all mass extinctions in the history of life at the Permian-Triassic boundary. This boundary was, until recently, difficult to locate and thought to be unequivocally disconformable in Antarctica. New studies, particularly of carbon isotopic chemostratigraphy and of paleosols and root traces as paleoecosystem indicators, together with improved fossil plant, reptile and pollen biostratigraphy, now suggest that the precise location of the boundary might be identified and have led to local discovery of iridium anomalies, shocked quartz, and fullerenes with extraterrestrial noble gases. These anomalies are associated with a distinctive claystone breccia bed, similar to strata known in South Africa and Australia, and taken as evidence of deforestation. There is already much evidence from Antarctica and elsewhere that the mass extinction on land was abrupt and synchronous with extinction in the ocean. The problem now is what led to such death and destruction. Carbon isotopic values are so low in these and other Permian-Triassic boundary sections that there was likely to have been some role for catastrophic destabilization of methane clathrates. Getting the modeled amount of methane out of likely reservoirs would require such catastrophic events as bolide impact, flood-basalt eruption or continental-shelf collapse, which have all independently been implicated in the mass extinction and for which there is independent evidence. Teasing apart these various hypotheses requires careful re-examination of beds that appear to represent the Permian-Triassic boundary, and search for more informative sequences, as was the case for the Cretaceous-Tertiary boundary. This collaborative research on geochemistry and petrography of boundary beds and paleosols (by Retallack), on carbon isotopic variation through the boundary interval (by Jahren), and on fullerenes, iridium and helium (by Becker) is designed to test these ideas about the Permian-Triassic boundary in Antarctica and to shed light on processes which contributed to this largest of mass extinctions on Earth. Fieldwork for this research will be conducted in the central Transantarctic Mountains and in Southern Victoria Land with an initial objective of examining the stratigraphic sequences for continuity across the boundary. Stratigraphic continuity is a critical element that must exist for the work to be successful. If fieldwork indicates sufficiently continuous sections, the full analytical program will follow fieldwork.
This award is for support for a research program involving the use of passive microwave data to validate key paleoclimate indicators used in glaciologic research. The specific contributions of this research are: 1) to define the timing and spatial extent of hoar complexes, which may serve as visible, annual stratigraphic markers in ice cores, through a combination of satellite passive microwave data and field observations; and 2) to monitor temperature trends at the site with calibrated passive microwave brightness temperatures and to correlate these trends to proxy temperatures provided by oxygen and hydrogen stable isotope ratio profiles from snow pits and/or ice cores. The work will take place at Siple Dome, Antarctica as part of the field activities associated with the ice core drilling program there.
Kanagaratnam, Pannirselvam; Braaten, David; Bauer, Rob
No dataset link provided
This award supports a project to build and test a 12-18 GHz radar system with a plane wave antenna. This is a wideband radar operating over a frequency range of 12 to 18 GHz to detect near-surface internal firn layers of the ice sheet with better than 10 cm resolution to a depth of approximately 7 m. These measurements will allow determination of spatially continuous snow accumulation rate in the firn, which would be useful along a traverse and is of critical importance to the validation of CryoSat and ICESAT satellite missions aimed at assessing the current state of mass balance of the polar ice sheets. The antenna system planned for the radar is relatively compact, and will be located on the sledge carrying the radar systems. The broad scientific focus of this project will be to investigate important glacial processes relevant to ice sheet mass balance. The new radar will allow the characterization (with high depth resolution) of the spatial variability of snow accumulation rate along a traverse route for interpreting data from CryoSat and ICESAT missions. As part of this project, we will institute a strong outreach program involving K-12 education and a minority institution of higher education. We currently work closely with the Advanced Learning Technology Program (ALTec) at the University of Kansas to develop interactive, resource-based lessons for use on-line by students of all grade levels, and we will develop new resources related to this project. We currently have an active research and education collaboration with faculty and undergraduate students at neighboring Haskell Indian Nations University, in Lawrence, Kansas, and we will expand our collaboration to include this project.
This award supports a study of the chemical composition of air in the snow layer (firn) in a region of "megadunes" near Vostok station, Antarctica. It will test the hypothesis that a deep "convective zone" of vigorous wind-driven mixing can prevent gas fractionation in the upper one-third of the polar firn layer. In the megadunes, ultralow snow accumulation rates lead to structural changes (large grains, pipes, and cracks) that make the permeability of firn to air movement orders of magnitude higher than normal. The unknown thickness of the convective zone has hampered the interpretation of ice core 15N/14N and 40Ar/36Ar ratios as indicators of past firn thickness, which is a key constraint on the climatically important variables of temperature, accumulation rate, and gas age-ice age difference. Studying this "extreme end-member" example will better define the role of the convective zone in gas reconstructions. This study will pump air from a profile of ~20 depths in the firn, to definitively test for the presence of a convective zone based on the fit of observed 15 N/14N and 40Ar/36Ar to a molecular- and eddy-diffusion model. Permeability measurements on the core and 2-D air flow modeling (in collaboration with M. Albert) will permit a more physically realistic interpretation of the isotope data and will relate mixing vigor to air velocities. A new proxy indicator of convective zone thickness will be tested on firn and ice core bubble air, based on the principle that isotopes of slow-diffusing heavy noble gases (Kr, Xe) should be more affected by convection than isotopes of fast-diffusing N2 . These tools will be applied to a test of the hypothesis that the megadunes and a deep convective zone existed at the Vostok site during glacial periods, which would explain the anomalously low 15N/14N and 40Ar/36Ar in the Vostok ice core glacial periods. The broader impacts of this work include 1) clarification of phase relationships of greenhouse gases and temperature in ice core records, with implications for understanding of past and future climates, 2) education of one graduate student, and 3) building of collaborative relationships with five investigators.
This award supports a project to conduct laboratory experiments to investigate textures formed in ice during superplastic flow. Superplastic flow has recently been discovered in the laboratory and can be considered a new flow mechanism for ice. A simple extrapolation of these new data for superplastic flow from laboratory to natural conditions suggests that glaciers and ice sheets flow via this mechanism. Furthermore, several grain-scale features in ice (e.g., crystal shape) produced during superplastic flow in the laboratory are remarkably similar to those observed in glaciers and ice sheets. Despite this exciting discovery, however, important questions remain before we can apply with full confidence these new flow data in mathematical models of glacier and ice sheet flow. The textures seen in laboratory studies will be compared with those observed in field studies of glaciers and ice sheets. These comparisons, coupled with comparisons of the new superplastic flow data from the laboratory with flow measurements from field studies, will provide a powerful method for further assessing the importance of superplastic flow in nature and thereby improve our understanding of glacier and ice sheet dynamics and global climate change. Experiments will be conducted by the PI and an undergraduate research assistant. Experimental results will be published in relevant refereed journals, presented at glaciology meetings and incorporated into coursework.
This award supports a collaborative study between South Dakota State University (SDSU) and University of California, San Diego (UCSD) to investigate the oxygen and sulfur isotope composition of sulfates from a number of large volcanic eruptions in the past 1000 years. The project aims to drill a number of shallow ice cores at South Pole and return them to SDSU and UCSD lab for chemical and isotope analysis. Preliminary results from measurements of isotopes in sulfate samples from several volcanic eruptions in Antarctic snow and ice indicate that isotopic composition of volcanic sulfate contains abundant valuable information on atmospheric chemical and dynamic processes that have not been previously investigated. One tentative conclusion is that mass-independently fractionated sulfur isotopes reveal that atmospheric photolysis of sulfur compounds occurs at longer UV wavelengths than those in the Archean atmosphere, possibly reflecting the atmospheric ozone and/or oxygen concentration. This suggests that isotopic composition of atmospheric sulfate may be used to understand the role of UV radiation in sulfur dioxide conversion in the atmosphere and to track the evolution (i.e., oxygenation) of the atmosphere and the origin of life on Earth. Other major research objectives include understanding what impact massive volcanic eruptions have on the oxidative capacity of the atmosphere, what oxidants and mechanisms are involved in the oxidation or conversion of volcanic sulfur dioxide to sulfate in the stratosphere and what isotopic criteria may be used to differentiate ice core signals of stratospheric eruptions from those of tropospheric eruptions. By providing educational and research opportunities to graduate and undergraduate students at both SDSU and UCSD, the proposed project will promote the integration of research and education and contribute to human resource development in science and engineering. The project will contribute to a proposed REU chemistry site program at SDSU. This collaboration will utilize the complementary strengths of both labs and promote exchange between the two institutions. International collaboration will enhance scientific cooperation between France and US.
The summit crater of Mt. Moulton, in West Antarctica, contains a 600-m thick horizontally-exposed section of ice with intercalated tephra layers from nearby Mt Berlin. Argon-40/Argon-39 dating of the thick, near-source tephra indicates that the age of the horizontal ice section ranges between 15,000 and 492,000 years. Thus, the Mt Moulton site offers an unparalleled repository of ancient West Antarctic snow and trapped air that can be used to investigate West Antarctic climate over much of the past 500,000 years. The planar nature and consistent dips of the tephra layers suggests that, although the ice section has thinned, it is otherwise undeformed. The Mt. Moulton site was visited during the 1999/2000 field season, at which time a horizontal ice core representing approximately 400 meters of ice was collected, ranging in age from 15,000 to older than 480,000 years. In addition to this horizontal core, samples of ice at a range of depths were collected in order to test the quality of the climate record in the ice. Forty tephra layers intercalated in the ice were also collected in order to provide chronology for the ice section. The results of this first effort are extremely encouraging. Based on the d?18 O of ice, for example, there is clearly a useable record of past climate at Mt. Moulton extending back beyond 140,000 years. There is work to do, however, to realize the full potential of this horizontal ice core. The elemental and isotopic composition of trapped gases suggest some contamination with modern air, for example. As gas cross-dating of ice cores is the current standard by which climate records are intercompared, we need to understand why and how the gas record is compromised before adding Moulton to our arsenal of ice core paleoclimate records. This award supports a collaborative effort between three institutions with following objectives: 1) to evaluate more thoroughly the integrity of the climatic record through shallow drilling of the blue ice area, as well as the snow field upslope from the blue ice; 2) to improve the radioisotopic dating of specific tephra layers; 3) to obtain baseline information about modern snowfall deposition, mean annual temperature, and wind pumping around the summit of Mt. Moulton; and 4) to study how firn densification differs when surface accumulation changes from net accumulation to net ablation.
This award supports a three-year renewal project to complete measurement of cosmogenic nuclides in the Siple Dome ice core as part of the West Antarctic ice core program. The investigators will continue to measure profiles of Beryllium-10 (half-life = 1.5x10 6 years) and Chlorine-36 (half-life = 3.0x10 5 years) in the entire ice core which spans the time period from the present to about 100 kyr. It will be particularly instructive to compare the Antarctic record with the detailed Arctic record that was measured by these investigators as part of the GISP2 project. This comparison will help separate global from local effects at the different drill sites. Cosmogenic radionuclides in polar ice cores have been used to study the long-term variations in several important geophysical variables, including solar activity, geomagnetic field strength, atmospheric circulation, snow accumulation rates, and others. The time series of nuclide concentrations resulting from this work will be applied to several problem areas: perfecting the ice core chronology, deducing the history of solar activity, deducing the history of variations in the geomagnetic field, and studying the possible role of solar variations on climate. Comparison of Beryllium-10 and Chlorine-36 profiles in different cores will allow us to improve the ice core chronology and directly compare ice cores from different regions of the globe. Additional comparison with the Carbon-14 record will allow correlation of the ice core paleoenvironment record to other, Carbon-14 dated, paleoclimate records.
A 'horizontal ice core' was collected at the Mount Moulton blue ice field in West Antarctica and preliminary analyses of the sample material suggests that a ~500 kyr climate record is preserved in the ice at this site. This award will contribute to the understanding of the Mt Moulton record by assessing the potential for ice-flow induced deformation of the stratigraphic profile. In addition, this award builds on the recognition of blue ice areas as archives of long climate records by conducting reconnaissance studies for a potential horizontal ice core location at the Allan Hills in East Antarctica. The objectives of this project are to contribute to the glaciological understanding of blue ice areas in Antarctica. Ice flow conditions at the Mt Moulton blue ice field will be studied to assess the possibility that the stratigraphic record has been deformed and reconnaissance of a potential horizontal ice core site in the Allan Hills blue ice field will also be accomplished. Short field programs will be undertaken at each location to collect relevant measurements of ice flow and subglacial topography, and to conduct sampling of material that will enable the preservation of the stratigraphic sequences to be assessed.
High latitude deep ice cores contain fundamental records of polar temperatures, atmospheric dust loads (and continental aridity), greenhouse gas concentrations, the status of the biosphere, and other essential properties of past environments. An accurate chronology for these records is needed if their significance is to be fully realized. The dating challenge has stimulated efforts at orbital tuning. In this approach, one varies a timescale, within allowable limits, to optimize the match between a paleoenvironmental property and a curve of insolation through time. The ideal property would vary with time due to direct insolation forcing. It would be unaffected by complex climate feedbacks and teleconnections, and it would give a clean record with high signal/noise ratio. It is argued strongly that the O2/N2 ratio of ice core trapped gases is such a property, and evidence is presented that this property, whose atmospheric ratio is nearly constant, is tied to local summertime insolation. This award will support a project to analyze the O2/N2 ratios at 1 kyr intervals from ~ 115-400 ka in the Vostok ice core. Ancillary measurements will be made of Ar/N2, and Ne/N2 and heavy noble gas ratios, in order to understand bubble close-off fractionation and its manifestation in the Vostok trapped gas record. O2/N2 variations will be matched with summertime insolation at Vostok to achieve a high-accuracy chronology for the Vostok core. The Vostok and other correlatable climate records will then be reexamined to improve our understanding of the dynamics of Pleistocene climate change.
This award will support a workshop whose aim is to provide a forum for discussion of an international ice core initiative and to examine how such an initiative might work. This workshop will bring together members of the international ice core community to discuss what new large ice core projects are needed to address leading unanswered science questions, technical obstacles to initiating these projects, benefits and difficulties of international collaboration on such projects, and how these collaborations might be facilitated. The very positive response of numerous international ice core scientists consulted about this idea shows that the need for such an initiative is widely recognized. Ice cores have already revolutionized our view of the Earth System, providing, for example, the first evidence that abrupt climate changes have occurred, and showing that greenhouse gases and climate have been tightly linked over the last 400,000 years. Ice cores provide records at high resolution, with particularly good proxies for climate and atmospheric parameters. The challenge that ice core projects present is that they require large concentrations of resources and expertise (both in drilling and in science) that are generally beyond the capacity of any one nation. Maintaining a critical mass of knowledge between projects is also difficult. One way to avoid these problems is to expand international cooperation on ice core drilling projects, so that expertise and resources can be pooled and applied to the most exciting new projects. The broader impacts of this workshop include the societal relevance of ice core science and the fact that the data and interpretations derived from new ice cores will give policymakers the information necessary to make better decisions on the how the earth is responding to climate change. In addition, by improving ice core sciences through international partnerships more students will be able to become involved in an exciting and growing area of climate research.
This award supports a program of field surveys of an area within the large, well-developed megadune field southeast of Vostok station. The objectives are to determine the physical characteristics of the firn across the dunes, including typical climate indicators such as stable isotopes and major chemical species, and to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. Field study will consist of surface snowpit and shallow core sampling, ground penetrating radar (GPR) profiling, GPS topographic and ice motion surveys, AWS installation, accumulation/ ablation measurements, subsurface temperature, and firn permeability studies. Field work in two successive seasons is proposed. Continent-wide remote sensing studies of the dunes will be continued, using the new group of instruments that are now, or will shortly be available (e.g., MODIS, MISR, GLAS, AMSR). The earlier study of topographic, passive microwave, and SAR characteristics will be extended, with the intent of determining the relationships of dune amplitude and wavelength to climate parameters, and further development of models of dune formation. Diffusion, ventilation, and vapor transport processes within the dune firn will be modeled as well. A robust program of outreach is planned and reporting to inform both the public and scientists of the fundamental in-situ and remote sensing characteristics of these uniquely Antarctic features will be an important part of the work. Because of their extreme nature, their broad extent, and their potential impact on the climate record, it is important to improve our current understanding of these. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on past terrestrial climate, or to processes active on other planets. Megadunes are likely to represent an end-member in firn diagenesis, and as such, may have much to teach us about the processes involved.
This award supports a detailed laboratory analysis of the mass-independent isotopic composition of processes associated with atmospheric nitrate trapped in the snow pack at the South Pole. The project will specifically test if the oxygen isotopes 16O, 17O, 18O of nitrate can be used to probe the denitrification of the Antarctic stratosphere. Despite decades of research, there are several important issues in Antarctic atmospheric science, which are presently inadequately resolved. This includes quantification over time of the sources of nitrate aerosols. Today, little is known about the past denitrification of the stratosphere in high latitude regions. This lack of knowledge significantly limits our ability to understand the chemical state of ancient atmospheres and therefore evaluate present and past-coupled climate/atmosphere models. The role of nitrogen in environmental degradation is well known. This issue will also be addressed in this proposal. Atmospheric aerosols have now been shown to possess a mass-independent oxygen isotopic content. The proposed research will investigate the stable oxygen isotope ratios of nitrate in Antarctica both collected in real time and from the snow. Two periods of time will be covered. Full year nitrate aerosol collections, with week resolution time horizons, will be performed at the South Pole. Weekly aerosol collections will help us to identify any seasonal trend of the oxygen-17 excess anomaly, and eventually link this anomaly to the denitrification of the Antarctic stratosphere. This data set will also be used to test our assumption that the oxygen isotopic anomaly of nitrate is mainly formed in the stratosphere and is well preserved in the snow pack. If true, we will for the first time resolve an atmospheric signal extracted from a nitrate profile. The snow pit will allow us to see any trend in the data on a multiple decade timescale.
This award supports the analysis, in Antarctic ice cores, of the ozone depleting substances methyl bromide (CH3Br) and methyl chloride (CH3Cl), and the sulfur-containing gas, carbonyl sulfide (OCS). The broad scientific goal is to assess the level and variability of these gases in the preindustrial atmosphere. This information will allow testing of current models for sources and sinks of these gases from the atmosphere, and to indirectly assess the impact of anthropogenic activities on their biogeochemical cycles. Longer-term records will shed light on the climatic sensitivity of the atmospheric burden of these gases, and ultimately on the biogeochemical processes controlling them. These gases are present in ice at parts per trillion levels, and the current database consists entirely of a small number of measurements made in from a shallow ice core from Siple Dome, Antarctica. This project will involve studies of ice core samples from three Antarctic sites: Siple Station, Siple Dome, and South Pole. The sampling strategy is designed to accomplish several objectives: 1) to verify the atmospheric mixing ratios previously observed in shallow Siple Dome ice for OCS, CH3Br, and CH3Cl at sites with very different accumulation rates and surface temperatures; 2) to obtain a well-dated, high resolution record from a high accumulation rate site (Siple Station), that can provide overlap in mean gas age with Antarctic firn air samples; 3) explore Holocene variability in trace gas mixing ratios; and 4) to make the first measurements of these trace gases in Antarctic glacial ice. In terms of broader impact on society, this research will help to provide a stronger scientific basis for policy decisions regulating the production and use of ozone-depleting and climate-active gases. Specifically, the methyl bromide results will contribute to the current debate on the impact of recent regulation (via the Montreal Protocol and its Amendments) on atmospheric levels. Determination of pre-industrial atmospheric variability of ozone-depleting substances will help place more realistic constraints on scenarios used for future projections of stratospheric ozone and its climatic impacts. This research will involve the participation of both graduate and undergraduate students.
This award supports a program of radar studies of internal stratigraphy and bedrock topography along the traverses for the U.S. component of the International Trans-Antarctic Scientific Expedition (US ITASE). The radar will provide information immediately available in the field on ice thickness and internal layer structure to help in the selection of core sites as the traverse proceeds. These data will also be useful in siting deeper millennial scale cores planned at less frequent intervals along the traverse, and in the selection of the location for the deep inland core planned for the future. In addition to continuous coverage along the traverse route, more detailed studies on a grid surrounding each of the core locations will be made to better characterize accumulation and bedrock topography in each area. This proposal is complimentary to the one submitted by the Cold Regions Research and Engineering Laboratory (CRREL), which proposes a high frequency radar to examine the shallower portion of the record down to approximately 60 meters, including the presence of near-surface crevasses. The radar proposed herein is most sensitive at depths below 60 meters and can depict deep bedrock and internal layers to a substantial fraction of the ice thickness.
0086997<br/>Truffer<br/><br/>This award supports a two year project to investigate the dynamics of the marginal zone of the Siple Coast ice streams using existing velocity and temperature profiles. The flow and stress fields will be modeled using finite element methods and a thermo-mechanical model will be used to investigate the coupling of the flow and temperature fields. Direct comparison of these models with the observed velocity profiles will lead to estimates of the structure of the margins and the softening of the marginal ice. The distribution of basal and marginal shear stress will be investigated, leading to an estimate of the relative roles of the bed and the margins in the overall force balance of the ice streams.
This award is for support for a program to make high resolution studies of variations in the concentration of methane, the oxygenisotope composition of paleoatmospheric oxygen, and the total gas content of deep Antarctic ice cores. Studies of the concentration and isotopic composition of air in the firn of the Antarctic ice sheet will also be continued. One objective of this work is to use the methane concentration and oxygen-isotope composition of oxygen of air in ice as time-stratigraphic markers for the precise intercorrelation of Greenland and Antarctic ice cores as well as the correlation of ice cores to other climatic records. A second objective is to use variations in the concentration and interhemispheric gradient of methane measured in Greenland and Antarctic ice cores to deduce changes in continental climates and biogeochemistry on which the atmospheric methane distribution depends. A third objective is to use data on the variability of total gas content in the Siple Dome ice core to reconstruct aspects of the glacial history of West Antarctica during the last glacial maximum. The fourth objective is to participate in collaborative studies of firn air chemistry at Vostok, Siple Dome, and South Pole which will yield much new information about gas trapping in ice as well as the concentration history and isotopic composition of greenhouse gases, oxygen, trace biogenic gases and trace anthropogenic gases during the last 100 years.
9316564 Mayewski This award is for support for a three year program to provide a high resolution record of the Antarctic climate through the acquisition, analysis, and interpretation of records of atmospheric chemical deposition taken from three ice cores located at sites within or immediately adjacent to the Ross Ice Drainage System (RIDS). These cores include one from Taylor Dome, and two from West Antarctic locations identified as potential deep drilling sites for the WAISCORES program. Collection of the two West Antarctic cores is intended to be a lightweight dry-drilling operation to depths of ~ 200 m, which will provide records of > 2 kyr. Glaciochemical analyses will focus on the major cations and anions found in the antarctic atmosphere, plus methanesulfonic acid and selected measurements of the hydrogen ion, aluminum, iron, and silica. These analyses, and companion stable isotope and particle measurements to be carried out by other investigators require < 7% by volume of each core, leaving > 90% for other investigators and storage at the U.S. National Ice Core Laboratory. These records are intended to solve a variety of scientific objectives while also providing spatial sampling and reconnaissance for future U.S. efforts in West Antarctica. ***
This award is for support of a study to establish a quantitative nuclear method for determination of Antarctic ablation and accumulation rates and to provide correction factors for the carbon 14 ages of ice samples dated using trapped carbon 14. Recent studies have established the presence of cosmogenic in-situ produced carbon 14 in polar ice. In conjunction with estimated carbon 14 production rates, measured concentrations of carbon 14 per gram of ice yield, ablation rates which are in good agreement with the values determined from stake measurements. Similar studies to determine accumulation rates have been tested and the estimates are consistent with previous studies. This study will expand the preliminary work done to date in order to improve the 14CO and 14CO2 vacuum extraction techniques, by lowering blank levels and by obtaining more complete separation of 14CO and 14CO2.
0087235<br/>Grew<br/><br/>This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the role of beryllium in lower crustal partial melting events. The formation of granitic liquids by partial melting deep in the Earth's crust is one of the major topics of research in igneous and metamorphic petrology today. One aspect of this sphere of research is the beginning of the process, specifically, the geochemical interaction between melts and source rocks before the melt has left the source area. One example of anatexis in metamorphic rocks affected by conditions found deep in the Earth's crust is pegmatite in the Archean ultrahigh temperature granulite-facies Napier Complex of Enderby Land, East Antarctica. Peak conditions for this granulite-facies metamorphism are estimated to have reached nearly 1100 Degrees Celsius and 11 kilobar, that is, conditions in the Earth's lower crust in Archean time. The proposed research is a study of the Napier Complex pegmatites with an emphasis on the minerals and geochemistry of beryllium. This element, which is estimated to constitute 3 ppm of the Earth's upper crust, is very rarely found in any significant concentrations in metamorphic rocks subjected to conditions of the Earth's lower crust. Structural, geochronological, and mineralogical studies will be carried out to test the hypothesis that the beryllium pegmatites resulted from anatexis of their metapelitic host rocks during the ultrahigh-temperature metamorphic event in the late Archean. Host rocks will be analyzed for major and trace elements. Minerals will be analyzed by the electron microprobe for major constituents including fluorine and by the ion microprobe for lithium, beryllium and boron. The analytical data will be used to determine how beryllium and other trace constituents were extracted from host rocks under ultrahigh-temperature conditions and subsequently concentrated in the granitic melt, eventually to crystallize out in a pegmatite as beryllian sapphirine and khmaralite, minerals not found in pegmatites elsewhere. Mineral compositions and assemblages will be used to determine the evolution and conditions of crystallization and recrystallization of the pegmatites and their host rocks during metamorphic episodes following the ultrahigh-temperature event. Monazite will be analyzed for lead, thorium and uranium to date the ages of these events. Because fluorine is instrumental in mobilizing beryllium, an undergraduate student will study the magnesium fluorphosphate wagnerite in the pegmatites in order to estimate fluorine activity in the melt as part of a senior project. The results of the present project will provide important insights on the melting process in general and on the geochemical behavior of beryllium in particular under the high temperatures and low water activities characteristic of the Earth's lower crust.
This award provides one year of support to use newly developed technology in which an ice-core melter is coupled with both an Inductively Coupled Plasma - Mass Spectrometer (ICP-MS) and a traditional Continuous Flow Analysis (CFA) system, to measure a continuous time series of chemical and trace element deposition on the Siple Dome ice core from West Antarctica. A coupled ice-core melter, ICP-MS, and CFA system will be used to measure concentrations of a number of elements, isotopes and chemical species at very high depth resolution (~2-cm) in the top 54 m of the Siple Dome A-core. Pilot data from analyses of ~6 m from the nearby but much lower accumulation J-core site at Siple Dome, together with more extensive results from Summit, Greenland, indicate that it will be possible to obtain exactly co-registered, high-quality records of at least 12 seasonally varying elements (sodium, magnesium, aluminum, potassium, calcium, iron, manganese, rubidium, strontium, zirconium, barium, lead) and three other chemical species and ions (ammonium, nitrate, calcium ion) with this system. Under this proposed research, we will also add continuous measurements of sulfate to our system. Because more than sufficient core from Siple Dome for these depths is archived at the National Ice Core Laboratory, the proposed research will require no fieldwork. The continuous, very high-resolution, ~350-y record of these elemental tracers will enhance the value of previous chemical and isotopic measurements that have been made on the Siple Dome core and will be particularly valuable for comparisons between ice-core proxies and modern instrumental data related to El Nino-Southern Oscillation (ENSO) as well as for validation of model simulations of atmospheric circulation. These data, and the expertise gained through this research, will be invaluable when this novel chemical analysis technology is eventually applied to deep ice-core records for the study of rapid climate-change events.
This award supports a two year project to analyze shallow (~150 m) ice cores from South Pole in order to construct an annually resolved, sulfate-based volcanic record covering the last 1400 years. Two shallow ice cores will be recovered at the South Pole during the 00/01 field season and will be used for this work. Volcanic records from polar ice cores provide valuable information for studies of the connection between volcanism and climate. The new records are expected to be continuous and to cover at least the last 1400 years. The information from these records will verify the volcanic events found in the few existing Antarctic records and resolve discrepancies in the timing and magnitude of major explosive eruptions <br/>determined from those earlier records. In order to achieve the objectives of the proposed research, funds are provided to assist with the construction of an analytical laboratory for ice core and environmental <br/>chemistry research.
This award is for support for four years of funding for a program of biogenic sulfur measurements on the Siple Dome ice core. Biogenic sulfur is a major aerosol-forming constituent of the atmosphere and has potentially important links to the earth's radiation budget. Previous work on the Vostok ice core has demonstrated a remarkable climate-related variability in biogenic sulfur, suggesting that the sulfur cycle may act to stabilize climate (keep the glacial atmosphere cool and the interglacial atmosphere warm) in the Southern Hemisphere. In this study, methane-sulfonate (MSA) will be measured on the Siple Dome ice core as part of the West Antarctic ice sheet program (WAIS). Siple Dome is located in a region which is strongly impacted by the incursion of marine air onto the Antarctic plateau. Because of its proximity to the coast and meteorological setting, it is expected that variability in high-latitude marine biogenic sulfur emissions should dominate the MSA record at this site. In addition to the deep ice core record, samples from shallow cores will also be analyzed to provide information about regional variability and decadal-to-centennial scale variability in the deposition of sulfur-containing aerosols from high latitude source regions over the past 200 years.
9980691 Wahlen This award is for support for three years of funding to reconstruct the atmospheric carbon dioxide (CO2) and carbon-13 isotope (d13C) concentration in ice cores from Antarctica over several climatic periods. Samples from the Holocene, the Last Glacial Maximum (LGM)-Holocene transition and glacial stadial/interstadial episodes will be examined. Samples from the Siple Dome ice core drilled in 1998/99 will be made, in addition to measurements from the Taylor Dome and Vostok ice cores. The major objectives are to investigate the phase relationships between variations in the concentration of atmospheric CO2, its carbon isotope composition, and temperature changes (indicated by 18dO and dD of the ice) during deglaciations as well as across rapid climate change events (e.g. Dansgaard-Oeschger events). This will help to determine systematic changes in the global carbon cycle during and between different climatic periods, and to ascertain if the widely spread northern hemisphere temperature stadial/interstadial events produced a global atmospheric carbon dioxide signal. Proven experimental techniques will be used.
This award is for support for a three year program to investigate the response of ice domes, such as Siple Dome in West Antarctica, to changing boundary conditions, for example as arising from fluctuations in thickness or position of bounding ice streams. A range of models will be used, from simple one-dimensional analytical models to coupled dynamic-thermodynamic flow models, to investigate the response of the ice dome to boundary forcing, and the record that boundary forcing can leave in the ice core record. Using radar, temperature, and ice core data from the currently funded field programs on Siple Dome, and ice flux and thickness values from the map view model as boundary conditions, a flow line across Siple Dome will be studied and possible ranges of time scales, the likely origin of ice near the bed, and the basal temperature conditions that exist now and existed in the past will be determined.The response of internal stratigraphy patterns to climate and dynamic forcing effects will be investigated and observed internal layers from ice cores will be used to infer the forcing history.
9419128 Stearns This is a project to maintain and augment as necessary, the network of nearly fifty automatic weather stations established on the Antarctic continent and on several surrounding islands. These weather stations measure surface wind, pressure, temperature, humidity, and in some instances other atmospheric variables, such as snow accumulation and incident solar radiation, and report these via satellite to a number of ground stations. The data are used for operational weather forecasting in support of the United States Antarctic program, for climatological records, and for research purposes. The AWS network, which began as a small-scale program in 1980, has been extremely reliable and has proven indispensable for both forecasting and research purposes. ***
This award is for support for a program to measure the stable isotope (deuterium to hydrogen and oxygen-18 to oxygen-16) concentrations of ice cores retrieved from Siple Dome as part of the West Antarctic ice sheet program. In addition, the deuterium excess of samples from the Taylor Dome ice core will be determined. This project will approach the question of rapid climate change using ice cores to determine the history of temperature changes, moisture source changes, and elevational changes in the West Antarctic ice sheet. Results from ice cores taken to date in the interior of Antarctica (East and West) are surprisingly lacking in indications of abrupt climate changes, such as those that have been observed in the GISP2 ice core from Summit, Greenland. This work will address the question of whether rapid climate changes, which are known to have occurred in other parts of the southern hemi-sphere, may have also occurred in the coastal regions of West Antarctica. There is some indication from existing records of isotopes in ice cores that the West Antarctic ice sheet may have flushed ice in the past (as evidenced by large changes in elevation of the ice sheet).
This award is for two years of support to perform radar investigations across former shear margins at Roosevelt Island and Ice Stream C in order to measure changes in the configuration and continuity of internal layers and the bed. The broad goal of these investigations is to gain an understanding of ice stream flow and the timing and mechanisms of ice stream shutdown. A high-resolution short-pulse radar system will be used for detailed examination of the uppermost hundred meters of the firn and ice, and a monopulse sounding-radar system will be used to image the rest of the ice column (including internal layers) and the bed. Changes in the shape and continuity of layers will be used to interpret mechanisms and modes of ice stream flow including the possible migration of stagnation fronts and rates of shut-down. Variations in bed reflectivity will be used to deduce basal hydrology conditions across lineations. Accumulation rates deduced from snow pits and shallow cores will be used to estimate near-surface depth-age profiles. Improved understanding of ice stream history opens the possibility of linking changes in the West Antarctic ice sheet with the geologic evidence from Northern Victoria Land and the ocean record of the retreat of the grounding line in the Ross Sea.
This award is for support for two years to develop the technology and methodology for digitizing the photographs and analyzing the thin sections from ice cores. In addition, the application of digital technology for whole-core stratigraphy, using digital photography, image enhancement and image processing will be investigated. The thin section analysis will be piloted with samples already in hand from the Taylor Dome ice core. If successful, these techniques will be applied to samples from the Siple Dome ice core, in cooperation with Principal Investigators already funded to retrieve and examine these sections. The original digital images with all original data annotation files will be distributed to Siple Dome principal investigators for their use in the interpretation of their own data. All software and hardware acquired for this project will become part of the permanent equipment inventory at the U.S. National Ice Core Laboratory and will be available for use by clients at the facility.
This award is for support for a program to investigate the visual stratigraphy, index physical properties, relaxation characteristics and crystalline structure of ice cores from Siple Dome, West Antarctica. This investigation will include measurements of a time-priority nature that must be initiated at the drill site on freshly-drilled cores. This will be especially true of cores from the brittle ice zone, which is expected to comprise a significant fraction of the ice core. The brittle zone includes ice in which relaxation , resulting from the release of confining pressure is maximized and leads to significant changes in the mechanical condition of the core that must be considered in relation to the processing and analysis of ice samples for entrapped gas and chemical studies. This relaxation will be monitored via precision density measurements made initially at the drill site and repeated at intervals back in the U.S. Other studies will include measurement of the annual layering in the core to as great a depth as visual stratigraphy can be deciphered, crystal size measurements as a function of depth and age, c-axis fabric studies, and analysis of the physical properties of any debris-bearing basal ice and its relationship to the underlying bedrock. Only through careful documentation and analysis of these key properties can we hope to accurately assess the dynamic state of the ice and the age-depth relationships essential to deciphering the paleoclimate record at this location.
This award is for support for the measurement of electrical and optical properties of the Siple Dome ice core. The electrical methods can be used to determine the concentration of the hydrogen ions and the concentration of a weighted sum of all ions. The electrical measurements can resolve features as small as 1 cm. The albedo of the core is also measured with a laser system that can resolve features as small as 0.5 cm. The high spatial resolution of these methods makes them ideal for resolving narrow features in the core, which can be missed in larger composite samples. The measurements will be particularly useful for assisting to date the core and to identify short duration features in the record, such as volcanic eruptions. These measurements will also provide useful information for assessing the temporal variability of Holocene accumulation rate and atmospheric circulation.
This award is for support for a program of measurements to improve our understanding of the relationship between formaldehyde (HCHO) and hydrogen peroxide (H2O2) in the atmosphere and the concentrations of the same species in Antarctic snow, firn and ice. This work aims to relate changes in concentrations in the snow, firn and ice to corresponding changes in tropospheric chemistry. Atmospheric and firn sampling for formaldehyde and hydrogen peroxide at one or more of the WAIS ice core drilling sites will be undertaken and controlled laboratory studies to estimate thermodynamic and rate parameters will be performed. In addition, this work will involve modeling of atmosphere-snow exchange processes to infer the "transfer function" for reactive species at the sites and atmospheric photochemical modeling to relate changes in concentrations of formaldehyde and hydrogen peroxide in snow, firn and ice to atmospheric oxidation capacity. This work will contribute to a better understanding of the relationship between atmospheric concentrations of various species and those same species measured in snow and ice samples.
Dunbar/Kyle OPP 9527373 Zielinski OPP 9527824 Abstract The Antarctic ice sheets are ideal places to preserve a record the volcanic ash (tephra) layers and chemical aerosol signatures of volcanic eruptions. This record, which is present both in areas of bare blue ice, as well as in deep ice cores, consists of a combination of local eruptions, as well as eruptions from more distant volcanic sources from which glassy shards can be chemically fingerprinted and related to a source volcano. Field work carried out during the 1994/1995 Antarctic field season in the Allan Hills area of Antarctica, and subsequent microbeam chemical analysis and 40Ar/39Ar dating has shown that tephra layers in deep Antarctic ice preserve a coherent, systematic stratigraphy, and can be successfully mapped, dated, chemically fingerprinted and tied to source volcanoes. The combination of chemical fingerprinting of glass shards, and chemical analysis of volcanic aerosols associated with ash layers will allow establishment of a high-resolution chronology of local and distant volcanism that can help understand patterns of significant explosive volcanisms and atmospheric loading and climactic effects associated with volcanic eruptions. Correlation of individual tephra layers, or sets of layers, in blue ice areas, which have been identified in many places the Transantarctic Mountains, will allow the geometry of ice flow in these areas to be better understood and will provide a useful basis for interpreting ice core records.
This award is for support of a program to reconstruct the record of atmospheric carbon dioxide (and the carbon-13 isotopes of carbon dioxide) over several intervals, including the Last Glacial Maximum-Holocene transition, interstadial episodes, the mid-Holocene, the last 1000 years and the penultimate glacial period, using ice from the Taylor Dome and Vostok ice cores. The major objective of this study is to investigate the phase relationship between variations of the greenhouse gases occluded in the ice cores and temperature changes (indicated by oxygen and deuterium isotopes) during the last deglaciation. In addition, the concentration of atmospheric carbon dioxide over the past 1000 years and during the mid-Holocene will be determined in these cores.
9316715 Taylor This award is for support to collect micrometeorites from the bottom of the new water well at South Pole Station, Antarctica. The large volume of firn and ice being melted provides the concentrating mechanism needed to collect large numbers of micrometeorites that occur in low concentrations in the ice. The first task of the project is to design a collection system to retrieve the micrometeorites from the bottom of the water well. The collector must be reliable, easy to operate, must collect all particles larger than 10 mm and should not contaminate the well's water quality. Following successful design and deployment of the collector, recovered particles will be catalogued and distributed to interested researchers. ***
This award supports an in situ and short traverse seismic reflection/refraction and magnetotelluric experiment in West Antarctica. This collaborative experiment involves four awards at four institutions. The four-fold purpose is 1) to investigate part of the Byrd Subglacial Basin, 2) to test techniques for this work that could be done in a long traverse, 3) to determine the viability of the magnetotelluric method on a thick (electrically resistive) ice sheet, and 4) to evaluate the relative merits of refraction with wide reflection versus reflection with narrow refraction seismic studies in imaging the lithosphere. The geophysical techniques that will be employed are capable of imaging the ice sheet, the continental lithosphere, and the upper mantle, as well as determining physical properties of parts of the lithosphere and mantle. Investigations of outcrop geology over the last thirty years in West Antarctica and the Transantarctic Mountains have lead to recent interpretations that the crust is made up of many different lithospheric blocks. Seismic reflection work is the only way to image the crust in detail and the refraction work is the only way to determine physical properties of the layers and blocks defined by the reflection work. The magnetotelluric work is scientifically risky because it may not yield useful information when used over the electrically resistive ice sheet; however, if it works it has the potential to image molten rock in the crust and upper mantle. In a continental rift region such as West Antarctica, the presence of melt in the lithosphere is likely and, if documented, has very important ramifications to ice sheet dynamics. Research work supported by this award is expected to provide constraints to models of a range of crustal processes from models of ice sheet dynamics to tectonic and kinematic models of lithospheric thinning and rifting.
This award supports a project to examine the physical processes that affect the manner in which heat, vapor and chemical species in air are incorporated into snow and polar firn. The processes include advection, diffusion, and the effects of solar radiation penetration into the snow. An understanding of these processes is important because they control the rate at which reactive and non-reactive chemical species in the atmosphere become incorporated into the snow, firn, and polar ice, and thus will affect interpretation of polar ice core data. Currently, the interpretation of polar ice core data assumes that diffusion controls the rate at which chemical species are incorporated into firn. This project will determine whether ventilation, or advection of the species by air movement in the firn, and radiation penetration processes have a significant effect. Field studies at the two West Antarctic ice sheet deep drilling sites will be conducted to determine the spatial and temporal extent for key parameters, and boundary conditions needed to model the advection, conduction, and radiation transmission/absorption processes. An existing multidimensional numerical model is being expanded to simulate the processes and to serve as the basis for ongoing and future work in transport and distribution of reactive chemical species.
9725305 Severinghaus This award supports a project to develop and apply a new technique for quantifying temperature changes in the past based on the thermodynamic principle of thermal diffusion, in which gas mixtures in a temperature gradient become fractionated. Air in polar firn is fractionated by temperature gradients induced by abrupt climate change, and a record of this air is preserved in bubbles in the ice. The magnitude of the abrupt temperature change, the precise relative timing, and an estimate of the absolute temperature change can be determined. By providing a gas-phase stratigraphic marker of temperature change, the phasing of methane (with decadal precision) and hence widespread climate change (relative to local polar temperature changes) can be determined (across five abrupt warming events during the last glacial period).
This award is for support for a program of physical and visible studies on the shallow and deep ice cores to be retrieved from Siple Dome, West Antarctica. Visible examination of ice cores has proven to be a powerful technique for dating and paleoclimatic interpretation. Recent examination of a shallow core from Siple Dome indicates that annual-layer dating is possible and that visible examination will contribute significantly to the dating effort at Siple Dome. Once ages are obtained, distances between layers provide snow accumulation after correction for density variations and ice flow thinning. Thin- section examination of the core will contribute to understanding the visible stratigraphy, and will reveal c-axis fabrics which are related to past ice deformation. The results of this study should include a better understanding of rapid climate change in the Antarctic and should contribute to knowledge of the stability of the West Antarctic ice sheet.
Abstract<br/><br/>The Antarctic Meteorological Research Center (AMRC), located at the University of Wisconsin, Madison, serves several communities by maintaining and extending the stewardship of meteorological data pertinent to the Antarctic continent, its surrounding islands, ice sheets and ice margins and the adjacent Southern Ocean. This data will continue to be made freely available to interested researchers and the general public. Activities of particular interest for the current award include the development of an enhanced data portal to provide improved data and analysis tools to the research community, and to continue to add to the evolution of the Antarctic-Internet Data Distribution system, which is meant to overcome the costly and generally low bandwidth internet connectivity to and from the Antarctic continent. Operational forecasting for logistical activities in the Antarctic, as well as active Antarctic meteorological research programs, are clearly in need of a dependable, steady flow of meteorological observations, model output, and related data in what must be a collaborative environment in order to overcome the otherwise distributed nature of Antarctic meteorological and climatological observations.<br/><br/>AMRC interaction with the public through answering e-mail questions, giving informal public lectures and presentations to K-12 education institutions through visits to schools will help to raise science literacy with regards to meteorology and of the Antarctic and polar regions. <br/><br/><br/><br/>"This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5)."
This is a three-year project to maintain and augment as necessary, the network of approximately fifty automatic weather stations established on the antarctic continent and on several surrounding islands. These weather stations measure surface wind, pressure, temperature, humidity, and in some instances other atmospheric variables, such as snow accumulation and incident solar radiation, and report these via satellite to a number of ground stations. The data are used for operational weather forecasting in support of the United States Antarctic program, for global forecasting through the WMO Global Telecommunications System, for climatological records, and for research purposes. The AWS network, which began as a small-scale program in 1980, has been extremely reliable and has proven indispensable for both forecasting and research purposes.
Kyle OPP 9527329 Abstract The Cape Roberts Project is an international drilling project to obtain a series of cores from the sedimentary strata beneath the sea floor off Cape Roberts in the Ross Sea. The project is a joint venture by scientists from the national Antarctic programs of Germany, Italy, New Zealand, the United Kingdom., Australia, and the United States. Drilling will continuously core a composite section of sediments over 1500 m thick which is expected to represent parts of the time period between 30 and more than 100 million years ago. The principle objectives of this component of the project will be to examine the record of igneous material in the drill core and provide high precision 40Ar/39Ar dates from tephra (volcanic ash) layers, disseminated ash, feldspars and epiclastic volcanic detrital grains to constrain depositional age and provenance of the sediments in the cores. This project will contribute to general geologic logging of the core and will characterize any igneous material using electron microprobe, x-ray fluorescence (XRF) and instrumental neutron activation analysis (INAA) analyses. The presence of alkalic volcanic detritus from the Cenozoic McMurdo Volcanics will constrain the initiation of this phase of volcanism and improve our understanding of the relationship between volcanism and tectonism. The influx of sediments eroded from Jurassic Kirkpatrick Basalts and Ferrar Dolerites will be used to time the unroofing and rates of uplift of the Transantarctic Mountains. Geochemical analyses of core samples will examine the geochemistry and provenance of the sediments.