Project Information
Investigation of the Stratigraphy and Time Scale of the WAIS Divide Ice Core Using Electrical Methods
This award supports a project that is part of the West Antarctic Ice Sheet Divide (WAIS Divide) program; which is a multi-disciplinary multi-institutional program to investigate the causes of natural changes in climate, the influence of the West Antarctic ice sheet on sea level, and the biology of deep ice. The WAIS Divide core will be unique among Antarctic ice cores in that it will have discernable annual layers for the last 40,000 years. A critical element of the program is to determine the age of the ice so that the climate proxies measured on the core can be interpreted in terms of age, not just depth. This project will make electrical measurements that can identify the annual layers. This information will be combined with information from other investigators to develop an annually resolved timescale over the last 40,000 years. This timescale will be the foundation on which the recent climate records are interpreted. Electrical measurements will also be used to produce two-dimensional images of the ice core stratigraphy; allowing sections of the core with abnormal stratigraphy to be identified. The broader impacts of this project include exposing a diverse group of undergraduate and graduate students to ice core research and assisting the Smithsonian National Museum of Natural History in Washington, D.C to develop a paleoclimate/ice core display.
Person Role
Taylor, Kendrick C. Investigator
Antarctic Glaciology Award # 0440819
AMD - DIF Record(s)
Data Management Plan
None in the Database
  1. Sigl, M., Fudge, T. J., Winstrup, M., Cole-Dai, J., Ferris, D., McConnell, J. R., … Sowers, T. A. (2015). The WAIS Divide deep ice core WD2014 chronology – Part 2: Annual-layer counting (0–31 ka BP). Climate of the Past Discussions, 11(4), 3425–3474. (doi:10.5194/cpd-11-3425-2015)
  2. McConnell, J. R., Burke, A., Dunbar, N. W., Köhler, P., Thomas, J. L., Arienzo, M. M., … Winckler, G. (2017). Synchronous volcanic eruptions and abrupt climate change ∼17.7 ka plausibly linked by stratospheric ozone depletion. Proceedings of the National Academy of Sciences, 114(38), 10035–10040. (doi:10.1073/pnas.1705595114)
  3. Sigl M, Fudge TJ, Winstrup M, Cole-Dai J, Ferris D, McConnell JR, Taylor KC, Welten KC, Woodruff TE, Adolphi F, Bisiaux M, Brook EJ, Buizert C, Caffee MW, Dunbar NW, Edwards R, Geng L, Iverson N, Koffman B, Layman L, Maselli OJ, McGwire K, Muscheler R, Nishiizumi K, Pasteris DR, Rhodes RH, Sowers TA. 2016. The WAIS Divide deep ice core WD2014 chronology -Part 2: Annual-layer counting (0.31 ka BP). Climate of the Past, 12, p. 769-786. doi: 10.5194/cp-12-769-2016. (doi:10.5194/cp-12-769-2016)

This project has been viewed 4 times since May 2019 (based on unique date-IP combinations)