IEDA
Project Information
Collaborative Proposal: SHALDRIL - A Demonstration Drilling Cruise to the James Ross Basin
Start Date:
2002-09-01
End Date:
2007-08-31
Description/Abstract
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a demonstration project to prove the viability of shallow ship-based geological drilling while simultaneously collecting useful cores for assessing the early history of the Antarctic ice sheets. For over three decades, U.S. scientists and their international colleagues exploring the shallow shelves and seas along the margins of Antarctic have been consistently frustrated by their inability to penetrate through the over-compacted glacial diamictons encountered at shallow sub bottom depths (within the upper 10 m) over these terrains. This is particularly frustrating because advanced high resolution seismic reflection techniques clearly show in many areas the presence of older successions of Neogene and even Paleogene sequences lying just beneath this thin veneer of diamictons. Until the means are developed to recover these sequences, a detailed history of the Antarctic ice sheets, which is an essential prerequisite to understanding Cenozoic paleoclimate and future climate change on a global scale, will remain an elusive and unobtainable goal. After four years of study and evaluation with the aid of a professional engineer (and over the course of two workshops), the SHALDRIL Committee, an interested group of U.S. scientists, has identified at least two diamond-coring systems deemed suitable for use on existing ice-breaking U.S. Antarctic Research Program vessels. The goal of this project is to employ diamond-coring technology on the RV/IB Nathaniel B. Palmer in order to test out and demonstrate the feasibility of both ship-based diamond coring and down-hole logging. For this "demonstration cruise" coring will be attempted along a high-resolution seismic reflection profile on the continental shelf adjacent to Seymour Island, Antarctic Peninsula, an area of high scientific interest in its own right. Here the well-defined geologic section is estimated to range from Eocene to Quaternary in age, effectively spanning the "Greenhouse-Icehouse" transition in the evolution of Antarctic/global climate. A complete record of this transition has yet to be obtained anywhere along the Antarctic margin. Following core recovery, this project will result in correlation of the paleoclimate records from the new cores with detailed fluctuations of the ice margin recorded at higher latitudes in the eastern Ross Sea by the recently concluded, fast-ice-based Cape Roberts Project. If successful, this mobile and flexible drilling system will then be available to the broader scientific community for further research in paleoenvironmental conditions and other areas of science that are currently hindered by the present gap that exists in the US Antarctic Program's technical capability to explore the Antarctic shelves between the shore-line/fast-ice margin and the continental slope. SHALDRIL will be able to operate effectively in the "no man's land" that presently exists between the near shore (where the fast-ice-based Cape Roberts Project was successful) and the upper slope (where the Ocean Drilling Program's vessel JOIDES Resolution becomes most efficient). This technological breakthrough will not only allow major outstanding scientific problems of the last three decades to be addressed, but will also favorably impact many current U.S. and SCAR (ICSU Scientific Committee on Antarctic Research) Antarctic or drilling-related initiatives, such as WAIS, ANTIME, ANDRILL, ANTEC, IMAGES, PAGES, GLOCHANT (including PICE), MARGINS, ODP, and STRATAFORM.This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a demonstration project to prove the viability of shallow ship-based geological drilling while simultaneously collecting useful cores for assessing the early history of the Antarctic ice sheets. For over three decades, U.S. scientists and their international colleagues exploring the shallow shelves and seas along the margins of Antarctic have been consistently frustrated by their inability to penetrate through the over-compacted glacial diamictons encountered at shallow sub bottom depths (within the upper 10 m) over these terrains. This is particularly frustrating because advanced high resolution seismic reflection techniques clearly show in many areas the presence of older successions of Neogene and even Paleogene sequences lying just beneath this thin veneer of diamictons. Until the means are developed to recover these sequences, a detailed history of the Antarctic ice sheets, which is an essential prerequisite to understanding Cenozoic paleoclimate and future climate change on a global scale, will remain an elusive and unobtainable goal. After four years of study and evaluation with the aid of a professional engineer (and over the course of two workshops), the SHALDRIL Committee, an interested group of U.S. scientists, has identified at least two diamond-coring systems deemed suitable for use on existing ice-breaking U.S. Antarctic Research Program vessels. The goal of this project is to employ diamond-coring technology on the RV/IB Nathaniel B. Palmer in order to test out and demonstrate the feasibility of both ship-based diamond coring and down-hole logging. For this "demonstration cruise" coring will be attempted along a high-resolution seismic reflection profile on the continental shelf adjacent to Seymour Island, Antarctic Peninsula, an area of high scientific interest in its own right. Here the well-defined geologic section is estimated to range from Eocene to Quaternary in age, effectively spanning the "Greenhouse-Icehouse" transition in the evolution of Antarctic/global climate. A complete record of this transition has yet to be obtained anywhere along the Antarctic margin. Following core recovery, this project will result in correlation of the paleoclimate records from the new cores with detailed fluctuations of the ice margin recorded at higher latitudes in the eastern Ross Sea by the recently concluded, fast-ice-based Cape Roberts Project. If successful, this mobile and flexible drilling system will then be available to the broader scientific community for further research in paleoenvironmental conditions and other areas of science that are currently hindered by the present gap that exists in the US Antarctic Program's technical capability to explore the Antarctic shelves between the shore-line/fast-ice margin and the continental slope. SHALDRIL will be able to operate effectively in the "no man's land" that presently exists between the near shore (where the fast-ice-based Cape Roberts Project was successful) and the upper slope (where the Ocean Drilling Program's vessel JOIDES Resolution becomes most efficient). This technological breakthrough will not only allow major outstanding scientific problems of the last three decades to be addressed, but will also favorably impact many current U.S. and SCAR (ICSU Scientific Committee on Antarctic Research) Antarctic or drilling-related initiatives, such as WAIS, ANTIME, ANDRILL, ANTEC, IMAGES, PAGES, GLOCHANT (including PICE), MARGINS, ODP, and STRATAFORM.
Personnel
Person Role
Anderson, John Investigator
Funding
Unknown Program Award # 0125526
AMD - DIF Record(s)
Deployment
Deployment Type
NBP0602A ship expedition
Data Management Plan
None in the Database
Datasets
Repository Title (link) Status
MGDS Expedition data of NBP0602A exists