Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics
Start Date:
2020-04-01
End Date:
2022-03-31
Description/Abstract
Many animals, from crustaceans to humans, engage in long-term relationships. The demographic consequences of divorce or widowhood for monogamous species are poorly understood. This research seeks to advance understanding of the drivers of partner loss and quantify its resulting effects on individual fitness and population dynamics in polar species that form life-long relationships. The project will focus on pair disruption in two seabirds that form long-last pair bonds: the wandering albatross and the snow petrel. Unique long-term individual mark-recapture data sets exist for these iconic polar species, allowing for a comprehensive study of the rates, causes and consequences of pair disruption and how they may differ among Antarctic species. Insights might be gained regarding the effects of changing environmental regimes as well as by direct and indirect effects of fisheries as a by-product of this research. The aim of the project is to better understand the implications of different drivers of pair disruption and quantify its resulting effects on individual fitness components and population growth rate and structure for two procellariiformes breeding in the Southern Ocean. The project will focus on the wandering albatross and the snow petrel, which both form long-lasting pair bonds. The unique long-term individual mark-recapture data sets allow for a study of the rates, causes and consequences of pair disruption and how they differ among species with different life histories as well as expected differences in mechanisms and rates of pair disruptions. The study will result in a detailed analysis of the impact of social monogamy and long-term pair bonds on individual fitness components (vital rates: survival, recruitment and fecundity; life-history outcomes: life expectancy, age at 1st breeding and lifetime reproductive success; and occupancy times: duration of pair bond or widowhood) and population growth and structure (e.g, sex ratio of individuals available for mating). Specifically, the project will assess: 1. Variations in pair disruption rates, and if they are related to global change (by-catch in the case of albatross widowing, and climate in the case of petrel divorce) by developing a statistical multievent mark-recapture model. 2. Impacts of pair disruption on vital rates, specifically whether i) greater familiarity and better coordination within pairs improves breeding performance and survival, ii) mating costs reduce the probability of breeding and iii) divorce is more likely to occur after a breeding failure. 3. Impacts of pair disruption on life-history outcomes and occupancy times using Markov chain stochastic life cycle models. 4. Impacts of pair disruption on population dynamics by developing a novel non-linear two-sex matrix population model. The research will include sensitivity and Life Table Response Experiment analyses to examine the respective effects of fisheries, climate, vital rates, and pair-disruption rates on life-history outcomes, occupancy times, and population growth and structure, and their variations among year and species This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Personnel
Funding
AMD - DIF Record(s)
Data Management Plan
None in the Database
Product Level:
1 (processed data)
Datasets
Publications
Keywords
Platforms and Instruments
|
This project has been viewed 128 times since May 2019 (based on unique date-IP combinations)