IEDA
Project Information
Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise - IPY/ASEP
Short Title:
ASEP
Description/Abstract
The Office of Polar Programs, Antarctic Science Division, Ocean & Climate Systems Program has made this award to support a multidisciplinary effort to study the upwelling of relatively warm deep water onto the Amundsen Sea continental shelf and how it relates to atmospheric forcing and bottom bathymetry and how the warm waters interact with both glacial and sea ice. This study constitutes a contribution of a coordinated research effort in the region known as the Amundsen Sea Embayment Project or ASEP. Previous work by the PI and others has shown that the West Antarctic Ice Sheet has been found to be melting faster, perhaps by orders of magnitude, than ice sheets elsewhere around Antarctica, excluding those on the Peninsula. Submarine channels that incise the continental shelf are thought to provide fairly direct access of relatively warm circum polar deep water to the cavity under the floating extension of the ice shelf. Interactions with sea ice en route can modify the upwelled waters. The proposed investigations build on previous efforts by the PI and colleagues to use hydrographic measurements to put quantitative bounds on the rate of glacial ice melt by relatively warm seawater.
The region can be quite difficult to access due to sea ice conditions and previous hydrographic measurements have been restricted to the austral summer time frame. In this project it was proposed to obtain the first austral spring hydrographic data via CTD casts and XBT drops (September-October 2007) as part of a separately funded cruise (PI Steve Ackley) the primary focus of which is sea-ice conditions to be studied while the RV Nathanial B Palmer (RV NBP) drifts in the ice pack. This includes opportunistic sampling for pCO2 and TCO2. A dedicated cruise in austral summer 2009 will follow this opportunity. The principal objectives of the dedicated field program are to deploy a set of moorings with which to characterize temporal variability in warm water intrusions onto the shelf and to conduct repeat hydrographic surveying and swath mapping in targeted areas, ice conditions permitting. Automatic weather stations are to be deployed in concert with the program, sea-ice observations will be undertaken from the vessel and the marine cavity beneath the Pine Island may be explored pending availability of the British autonomous underwater vehicle Autosub 3. These combined ocean-sea ice-atmosphere observations are aimed at a range of model validations. A well-defined plan for making data available as well as archiving in a timely fashion should facilitate a variety of modeling efforts and so extend the value of the spatially limited observations.
Broader impacts: This project is relevant to an International Polar Year research emphasis on ice sheet dynamics focusing in particular on the seaward ocean-ice sheet interactions. Such interactions must be clarified for understanding the potential for sea level rise by melt of the West Antarctic ice Sheet. The project entails substantive international partnerships (British Antarctic Survey and Alfred Wegner Institute) and complements other Amundsen Sea Embayment Project proposals covering other elements of ice sheet dynamics. The proposal includes partial support for 2 graduate students and 2 post docs. Participants from the Antarctic Artists and Writers program are to take part in the cruise and so aid in outreach. In addition, the project is to be represented in the Lamont-Doherty annual open house.
Personnel
Person Role
Jacobs, Stanley Investigator
Hellmer, Hartmut Co-Investigator
Jenkins, Adrian Co-Investigator
Giulivi, Claudia F. Researcher
Funding
Antarctic Ocean and Atmospheric Sciences Award # 0632282
AMD - DIF Record(s)
Deployment
Deployment Type
NBP0901 ship expedition
Data Management Plan
None in the Database
Product Level:
Not provided
Publications
  1. Jacobs, S., Giulivi, C., Dutrieux, P., Rignot, E., Nitsche, F., & Mouginot, J. (2013). Getz Ice Shelf melting response to changes in ocean forcing. Journal of Geophysical Research: Oceans, 118(9), 4152–4168. (doi:10.1002/jgrc.20298)
  2. Christianson, K., Bushuk, M., Dutrieux, P., Parizek, B. R., Joughin, I. R., Alley, R. B., … Holland, D. M. (2016). Sensitivity of Pine Island Glacier to observed ocean forcing. Geophysical Research Letters, 43(20), 10,817–10,825. (doi:10.1002/2016gl070500)

This project has been viewed 51 times since May 2019 (based on unique date-IP combinations)