Project Information
Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO)
Start Date:
End Date:
Intellectual Merit:
Mt. Erebus is one of only a handful of volcanoes worldwide that have lava lakes with readily observable and nearly continuous Strombolian explosive activity. Erebus is also unique in having a permanent convecting lava lake of anorthoclase phonolite magma. Over the years significant infrastructure has been established at the summit of Mt. Erebus as part of the Mount Erebus Volcano Observatory (MEVO), which serves as a natural laboratory to study a wide range of volcanic processes, especially magma degassing associated with an open convecting magma conduit. The PI proposes to continue operating MEVO for a further five years. The fundamental fundamental research objectives are: to understand diffuse flank degassing by using distributed temperature sensing and gas measurements in ice caves, to understand conduit processes, and to examine the environmental impact of volcanic emissions from Erebus on atmospheric and cryospheric environments. To examine conduit processes the PI will make simultaneous observations with video records, thermal imaging, measurements of gas emission rates and gas compositions, seismic, and infrasound data.

Broader impacts:
An important aspect of Erebus research is the education and training of students. Both graduate and undergraduate students will have the opportunity to work on MEVO data and deploy to the field site. In addition, this proposal will support a middle or high school science teacher for two field seasons. The PI will also continue working with various media organizations and filmmakers.
Person Role
Kyle, Philip Investigator
Oppenheimer, Clive Co-Investigator
Rotman, Holly TBD
Chaput, Julien Investigator
Jones, Laura Investigator
Fischer, Tobias Investigator
Antarctic Earth Sciences Award # 1142083
Data Management Plan
None in the Database
Product Level:
  1. Moussallam, Y, Oppenheimer, C., Scaillet, B., Buisman, I., Kimball, C., Dunbar, N., Burgisser, A., Schipper, I., Andujar, J., and Kyle, P. (2015), Megacrystals track magma convection between reservoir and surface, Earth and Planetary Science Letters, 413, 1-12 (doi:10.1016/j.epsl.2014.12.022)
  2. Moussallam, Y., Oppenheimer, C., Scaillet, B., Gaillard, F., Kyle, P., Peters, N., Hartley, M., Berlo, K, and Donovan, A. (2014). Tracking the changing oxidation state of Erebus magmas, from mantle to surface, driven by magma ascent and degassing, Earth and Planetary Science Letters, 393, 200-209 (doi:10.1016/j.epsl.2014.02.055)
  3. Moussallam, Y., Oppenheimer, C., Scaillet, B., and Kyle, P.R. (2013), Experimental phase-equilibrium constraints on the phonolite magmatic system of Erebus volcano, Antarctica, Journal of Petrology, 54, 7, 1285-1307 (doi:10.1093/petrology/egt012)
  4. Moussallam, Y., Oppenheimer, C., Aiuppa, A., Giudice, G., Moussallam, M., and Kyle, P. (2012), Hydrogen emissions from Erebus volcano, Antarctica, Bulletin of Volcanology, 74, 9, 2109-2120 (doi:10.1007/s00445-012-0649-2)
  5. Iacovino, K., Moore, G., Roggensack, K., Oppenheimer, C., and Kyle, P. (2013), H2O-CO2 solubility in mafic alkaline magma: applications to volatile sources and degassing behavior at Erebus volcano, Antarctica, Contributions to Mineralogy and Petrology, 166, 3, 845-860 (doi:10.1007/s00410-013-0877-2)
  6. Iacovino, K. (2015), Linking subsurface to surface degassing at active volcanoes: A thermodynamic model with applications to Erebus volcano, Earth and Planetary Science Letters, 431, 59-74 (doi:10.1016/j.epsl.2015.09.016)
  7. Iacovino, K., Oppenheimer, C., Scaillet, B., and Kyle, P. (2016), Storage and evolution of mafic and intermediate alkaline magmas beneath Ross Island, Antarctica, Journal of Petrology, 57, 1, 93-118 (doi:10.1093/petrology/egv083)
  8. Parmelee, D.E.F., Kyle, P.R., Kurz, M.D., Marrero, S.M., and Phillips, F.M. (2015), A new Holocene eruptive history of Erebus volcano, Antarctica using cosmogenic 3He and 36Cl exposure ages, Quaternary Geochronology, 30, A, 114-131 (doi:10.1016/j.quageo.2015.09.001)
  9. Gerst, A., Hort, M., Aster, R.C., Johnson, J.B., and Kyle, P.R. (2013), The first second of volcanic eruptions from the Erebus volcano lava lake, Antarctica--Energies, pressures, seismology, and infrasound, Journal of Geophysical Research:Solid Earth, 118, 7, 3318-3340 (doi:10.1002/jgrb.50234)
  10. Molina, I., Burgisser, A., and Oppenheimer, C. (2015), A model of the geochemical and physical fluctuations of the lava lake at Erebus volcano, Antarctica, Journal of Volcanology and Geothermal Research, 308, 142-157 (doi:10.1016/j.jvolgeores.2015.10.027)
  11. Ilanko, T., Oppenheimer, C., Burgisser, A., and Kyle, P. (2015), Transient degassing events at the lava lake of Erebus volcano, Antarctica: Chemistry and mechanisms, GeoResJ, 7, 43-58 (doi:10.1016/j.grj.2015.05.001)
  12. Ilanko, T., Oppenheimer, C., Burgisser, A., and Kyle, P. (2015), Cyclic degassing of Erebus volcano, Antarctica, Bulletin of Volcanology, 77, 6 (doi:10.1007/s00445-015-0941-z)
  13. Le Losq, C., Neuville, D.R., Moretti, R., Kyle, P.R., and Oppenheimer, C. (2014), Rheology of phonolitic magmas - the case of the Erebus lava lake, Earth and Planetary Science Letters, 411, 53-61 (doi:10.1016/j.epsl.2014.11.042)
  14. Chaput, J., Campillo, M., Aster, R.C., Roux, P., Kyle, P.R., Knox, H., and Czoski, P. (2015), Multiple scattering from icequakes at Erebus volcano, Antarctica: Implications for imaging at glaciated volcanoes, Journal of Geophysical Research: Solid Earth, 120, 2, 1129-1141 (doi:10.1002/2014JB011278)
  15. Chaput, J., Clerc, V., Campillo, M., Roux, P., and Knox, H. (2016), On the practical convergence of coda-based correlations: a window optimization approach, Geophysical Journal International, 204, 2, 736-747 (doi:10.1093/gji/ggv476)
  16. Zandomeneghi, D., Aster, R., Kyle, P., Barclay, A., Chaput, J., and Knox, H. (2013), Internal structure of Erebus volcano, Antarctica imaged by high-resolution active-source seismic tomography and coda interferometry, Journal of Geophysical Research: Solid Earth, 118, 3, 1067-1078 (doi:10.1002/jgrb.50073)
  17. Jones, L.K., Kyle, P.R., Oppenheimer, C., Frechette, J.D, and Okal, M.H. (2015), Terrestrial laser scanning observations of geomorphic changes and varying lava lake levels at Erebus volcano, Antarctica. J. of Volcanology and Geothermal Res., 295, 43-54 (doi:10.1016/j.jvolgeores.2015.02.011)
  18. Lee, M. J., Kyle, P. R., Iverson, N. A., Lee, J. I., & Han, Y. (2019). Rittmann volcano, Antarctica as the source of a widespread 1252 ± 2 CE tephra layer in Antarctica ice. Earth and Planetary Science Letters, 521, 169–176. (doi:10.1016/j.epsl.2019.06.002)
  19. Ilanko, T., Fischer, T. P., Kyle, P., Curtis, A., Lee, H., & Sano, Y. (2019). Modification of fumarolic gases by the ice-covered edifice of Erebus volcano, Antarctica. Journal of Volcanology and Geothermal Research, 381, 119–139. (doi:10.1016/j.jvolgeores.2019.05.017)
  20. Knox, H. A., Chaput, J. A., Aster, R. C., & Kyle, P. R. (2018). Multiyear Shallow Conduit Changes Observed With Lava Lake Eruption Seismograms at Erebus Volcano, Antarctica. Journal of Geophysical Research: Solid Earth, 123(4), 3178–3196. (doi:10.1002/2017jb015045)
  21. Iverson, N. A., Kyle, P. R., Dunbar, N. W., McIntosh, W. C., & Pearce, N. J. G. (2014). Eruptive history and magmatic stability of Erebus volcano, Antarctica: Insights from englacial tephra. Geochemistry, Geophysics, Geosystems, 15(11), 4180–4202. (doi:10.1002/2014gc005435)

This project has been viewed 101 times since May 2019 (based on unique date-IP combinations)