IEDA
Project Information
Collaborative Research: Explosive Ice-Shelf Disintegration
Description/Abstract
This award supports a project to examine and test a 3-step process model for explosive ice-shelf disintegration that emerged in the wake of the recent 2008 and 2009 events of the Wilkins Ice Shelf. The model is conditioned on Summer melt-driven increase in free-surface water coupled with surface and basal crevasse density growth necessary to satisfy an "enabling condition". Once met, the collapse proceeds through three steps: (Step 1), calving of a "leading phalanx" of tabular icebergs from the seaward ice front of the ice shelf which creates in its wake a region, called a "mosh pit" (located between the phalanx and the edge of the intact ice shelf), where ocean surface-gravity waves are trapped by reflection (a fast mechanically enabled process), (Step 2), and a rapid, runaway conversion of gravitational potential energy into ocean-wave energy by iceberg capsize and fragmentation within the "mosh pit" which leads to further wave-induced calving, capsize and fragmentation (Step 3). The project will be conducted by a multidisciplinary team and will focus on theoretical model development, numerical method development and application and new observations. The project will participate in both the Research Experience for Undergraduates program in the Physics Department and the Summer Research Early Identification Program (SR-EIP) that fosters participation in research by underrepresented minorities. The PIs, postdoctoral scholar, graduate students and unfunded participants will develop a graduate-level seminar/tutorial to introduce advanced computational methods to glaciology. A postdoctoral scholar and graduate student will be trained in new research techniques during the project.
Personnel
Person Role
MacAyeal, Douglas Investigator
Funding
Antarctic Glaciology Award # 0944193
AMD - DIF Record(s)
Data Management Plan
None in the Database
Datasets
Repository Title (link) Status
USAP-DC Iceberg Capsize Kinematics and Energetics exist