IEDA
Project Information
Ocean Tides around Antarctica and in the Southern Ocean
Short Title:
Antarctic Tides
Start Date:
2001-01-01
End Date:
2021-07-31
Project Website(s)
Description/Abstract
The ocean tide is a large component of total variability of ocean surface height and currents in the seas surrounding Antarctica, including under the floating ice shelves. Maximum tidal height range exceeds 7 m (near the grounding line of Rutford Ice Stream) and maximum tidal currents exceed 1 m/s (near the shelf break in the northwest Ross Sea). Tides contribute to several important climate and ecosystems processes including: ocean mixing, production of dense bottom water, flow of warm Circumpolar Deep Water onto the continental shelves, melting at the bases of ice shelves, fracturing of the ice sheet near a glacier or ice stream’s grounding line, production and decay of sea ice, and sediment resuspension. Tide heights and, in particular, currents can change as the ocean background state changes, and as the geometry of the coastal margins of the Antarctic Ice Sheet varies through ice shelf thickness changes and ice-front and grounding-line advances or retreats. For satellite-based studies of ocean surface height and ice shelf thickness changes, tide heights are a source of substantial noise that must be removed. Similarly, tidal currents can also be a substantial noise signal when trying to estimate mean ocean currents from short-term measurements such as from acoustic Doppler current profilers mounted on ships and CTD rosettes. Therefore, tide models play critical roles in understanding current and future ocean and ice states, and as a method for removing tides in various measurements. A paper in Reviews of Geophysics (Padman, Siegfried and Fricker, 2018, see list of project-related publications below) provides a detailed review of tides and tidal processes around Antarctica. This project provides a gateway to tide models and a database of tide height coefficients at the Antarctic Data Center, and links to toolboxes to work with these models and data.
Personnel
Person Role
Howard, Susan L. Investigator and contact
Padman, Laurence Investigator
Erofeeva, Svetlana Co-Investigator
King, Matt Co-Investigator
Funding
Antarctic Ocean and Atmospheric Sciences Award # 0125602
Arctic System Science Award # 0125252
AMD - DIF Record(s)
Data Management Plan
None in the Database
Product Level:
1 (processed data)
Datasets
Repository Title (link) Format(s) Status
GitHub AntTG_Database_Tools Excel; ASCII exists
GitHub TMD_Matlab_Toolbox_v2.5 Excel; ASCII exists
GitHub pyTMD Excel; ASCII exists
USAP-DC CATS2008: Circum-Antarctic Tidal Simulation version 2008 Excel; ASCII exists
USAP-DC Antarctic Tide Gauge Database, version 1 Excel; ASCII exists
USAP-DC CATS2008_v2023: Circum-Antarctic Tidal Simulation 2008, version 2023 netCDF exists
Publications
  1. Begeman, C. B., Tulaczyk, S., Padman, L., King, M., Siegfried, M. R., Hodson, T. O. and Fricker, H. A. (2020). Tidal pressurization of the ocean cavity near an Antarctic ice shelf grounding line, Journal of Geophysical Research: Oceans, 125(4):e2019JC015562. (doi:10.1029/2019JC015562)
  2. Dalrymple, R. W. and L. Padman, (2019). Are tides controlled by latitude? In: Latitudinal Controls on Stratigraphic Models and Sedimentary Concepts, edited by C. Fraticelli, A. Martinius, J. Suter, and P. Markwick. Soc. Sediment. Res. (SEPM) Spec. Publ. (doi:10.2110/sepmsp.108.03)
  3. Flexas, M. M., M. P. Schodlok, L. Padman, D. Menemenlis, and A. H. Orsi (2015), Role of tides on the formation of the Antarctic Slope front at the Weddell-Scotia Confluence, J. Geophys. Res. — Oceans, 120, doi:10.1002/2014JC010372. (doi:10.1002/2014JC010372)
  4. Arzeno, I., R. C. Beardsley, R. Limeburner, B. Owens, L. Padman, S. R. Springer, C. L. Stewart, and M. J. M. Williams (2014), Ocean variability contributing to basal melt rate near the ice front of Ross Ice Shelf, Antarctica, J. Geophys. Res. Oceans, 119, 4214-4233, doi:10.1002/2014JC009792. (doi:10.1002/2014JC009792)
  5. Stammer, D., et al. (incl. L. Padman) (2014), Accuracy assessment of global ocean tide models, Rev. Geophys., 52, doi:10.1002/2014RG000450. (doi:10.1002/2014RG000450)
  6. Mack, S., L. Padman, and J. Klinck (2013), Extracting tidal variability of sea ice concentration from AMSR-E passive microwave single-swath data: A case study of the Ross Sea, Geophys. Res. Lett., 40, doi:10.1002/grl.50128. (doi:10.1002/grl.50128)
  7. Mueller, R. D., L. Padman, M. S. Dinniman, S. Y. Erofeeva, H. A. Fricker, and M. A. King (2012), Impact of tide-topography interactions on basal melting of Larsen C Ice Shelf, Antarctica, J. Geophys. Res., 117, C05005, doi:10.1029/2011JC007263. (doi:10.1029/2011JC007263)
  8. King, M.A., L. Padman, K.W. Nicholls, P.J. Clarke, H. Gudmundsson, B. Kulessa, and A. Shepherd (2011), Ocean tides in the Weddell Sea: new observations on the Filchner-Ronne and Larsen C ice shelves and model validation, J. Geophys. Res. (Oceans), 116, C06006, doi:10.1029/2011JC006949. (doi:10.1029/2011JC006949)
  9. Muench, R., L. Padman, A. Gordon, and A. Orsi (2009), A dense water outflow from the Ross Sea, Antarctica: Mixing and the contribution of tides, J. Marine Systems, 77, 369-387, doi:10.1016/j.jmarsys.2008.11.003. (doi:10.1016/j.jmarsys.2008.11.003)
  10. Padman, L., S. L. Howard, A. Orsi, and R. Muench (2009), Tides of the northwestern Ross Sea and their impact on dense outflows of Antarctic Bottom Water, Deep-Sea Res. II, 56, 818-834, doi: 10.1016/j.dsr2.2008.10.026. (doi:10.1016/j.dsr2.2008.10.026)
  11. Padman, L., S. Howard, and R. Muench (2006), Internal tide generation along the South Scotia Ridge, Deep-Sea Research II, 53, 157-171, doi:10.1016/j.dsr2.2005.07.011. (doi:10.1016/j.dsr2.2005.07.011)
  12. Erofeeva, S. Y., G. D. Egbert, and L. Padman (2005), Assimilation of ship-mounted ADCP data for barotropic tides: Application to the Ross Sea, J. Atmos. Oceanic Technol., 22(6), 721-734. (doi:10.1175/JTECH1735.1)
  13. King, M. A., and L. Padman (2005), Accuracy assessment of ocean tide models around Antarctica, Geophys. Res. Lett., 32, L23608, doi:10.1029/2005GL023901. (doi:10.1029/2005GL023901)
  14. Koentopp, M., O. Eisen, Ch. Kottmeier, L. Padman, and P. Lemke (2005), Influence of tides on sea ice in the Weddell Sea: Investigations with a high-resolution dynamic-thermodynamic sea ice model, J. Geophys. Res., 110, C02014, doi:10.1029/2004JC002405. (doi:10.1029/2004JC002405)
  15. Padman, L., and H. A. Fricker (2005), Tides on the Ross Ice Shelf observed with ICESat, Geophys. Res. Lett., 32, L14503, doi:10.1029/2005GL023214. (doi:10.1029/2005GL023214)
  16. Padman, L., S. Erofeeva, and I. Joughin (2003), Tides of the Ross Sea and Ross Ice Shelf cavity, Antarct. Sci., 15(01), 31-40. (doi:10.1017/S0954102003001032)
  17. Fricker, H. A., and L. Padman (2002), Tides on Filchner-Ronne Ice Shelf from ERS radar altimetry, Geophysical Res. Letters, 29(12), 10.1029/2001GL014175. (doi:10.1029/2001GL014175)
  18. Padman, L., and C. Kottmeier (2000), High-frequency ice motion and divergence in the Weddell Sea, J. Geophys. Res., 105, 3379-3400. (doi:10.1029/1999JC900267)
  19. Rignot, E., L. Padman, D. R. MacAyeal, and M. Schmeltz (2000), Observation of ocean tides below the Filchner and Ronne Ice Shelves, Antarctica, using synthetic aperture radar: comparison with tide model predictions, J. Geophys. Res., 105, 19,615-19,630. (doi:10.1029/1999JC000011)
  20. Robertson, R. A., L. Padman, and G. D. Egbert (1998), Tides in the Weddell Sea, in Ocean, Ice, and Atmosphere, Interactions at the Antarctic Continental Margin, Antarctic Research Series, vol. 75, edited by S. S. Jacobs and R. F. Weiss, pp. 341-369, AGU, Washington, D.C., doi: 10.1029/AR075p0341. (doi:10.1029/AR075p0341)
  21. Levine, M. D., L. Padman, R. D. Muench, and J. H. Morison (1997), Internal waves and tides in the western Weddell Sea: Observations from Ice Station Weddell, J. Geophys. Res., 102, 1073-1089. (doi:10.1029/96JC03013)
  22. Klein, E., Mosbeux, C, Bromirski, P. D., Padman, L., Bock, Y., Springer, S. R., and Fricker, H. A. (2020). Seasonal cycle in flow of Ross Ice Shelf, Antarctica, driven by basal melting, Journal of Glaciology.
  23. Padman, L., M. R. Siegfried, and H. A. Fricker (2018), Ocean tide influences on the Antarctic and Greenland ice sheets, Reviews of Geophysics, 56. (doi:10.1002/2016RG000546)
  24. Mueller, R. D., T. Hattermann, S. L. Howard, and L. Padman (2018), Tidal influences on a future evolution of the Filchner-Ronne Ice Shelf cavity in the Weddell Sea, Antarctica, The Cryosphere, 12(2),. (doi:10.5194/tc-12-453-2018)
  25. Fricker, H. A. and L. Padman. 2006. Ice shelf grounding zone structure, from ICESat laser altimetry. Geophysical Research Letters, 33(15),, L15502. (doi:10.1029/2006GL026907)
  26. Padman, L., L. Erofeeva, and H. A. Fricker (2008), Improving Antarctic tide models by assimilation of ICESat laser altimetry over ice shelves, Geophys. Res. Lett., 35, L22504. (doi:10.1029/2008GL035592)

This project has been viewed 201 times since May 2019 (based on unique date-IP combinations)