IEDA
Project Information
Laboratory Studies of Photochemistry in Antarctic Snow and Ice
Program:
Dome C Ice Core
Description/Abstract
Photochemical reactions in snow can have important effects on the chemistry and composition of the snowpack as well as the overlying atmosphere. For example, recent measurements in the Antarctic and Arctic have revealed that sunlit snow releases a number of important pollutants to the atmosphere. Our ability to understand and model this chemistry is currently limited, in part because we lack fundamental photochemical information for a number of important chemical species in snow. This award supports research that will help fill this gap by characterizing the low-temperature photochemistry of three of these key species: nitrite (NO2-), nitrous acid (HNO2), and hydrogen peroxide (HOOH). We will measure quantum yields for these reactions on ice using a sensitive technique that we recently developed during a study of nitrate (NO3-) photochemistry. In addition to this basic research, we will also measure the rates of formation of hydroxyl radical (OH), nitrogen oxides (NOx), and HOOH in illuminated Antarctic snow samples. These measurements will be important inputs for future models, and will allow us to test whether known species (e.g., NO3-, NO2- and HNO2) are responsible for most of snowpack reactivity (e.g., OH formation). Overall, results from this award will significantly improve our ability to understand snowpack chemistry, and the resulting effects on the atmosphere, both in the Antarctic as well as in the many other regions with permanent or seasonal snow. These results will also strengthen efforts to use ice core records to monitor global change. In addition to these impacts, this award will help train students and a postdoctoral fellow, and results from this work will be integrated into two classes in order to expose students to some of the important issues facing polar regions.
Personnel
Person Role
Anastasio, Cort Investigator
Robles, Tony Co-Investigator
Funding
Antarctic Glaciology Award # 0230288
AMD - DIF Record(s)
Data Management Plan
None in the Database
Datasets