IEDA
Project Information
Borehole Optical Stratigraphy: Ice Microphysics, Climate Change, and the Optical Properties of Firn
Description/Abstract
This award supports a study of the physical nature and environmental origin of optical features (light and dark zones) observed by video in boreholes in polar ice. These features appear to include an annual signal, as well as longer period signals. Borehole logs exist from a previous project, and in this lab-based project the interpretation of these logs will be improved. The origin of the features is of broad interest to the ice-core community. If some components relate to changes in the depositional environment beyond seasonality, important climatic cycles may be seen. If some components relate to post-depositional reworking, insights will be gained into the physical processes that change snow and firn, and the implications for interpretation of the chemical record in terms of paleoclimate. In order to exploit these features to best advantage in future ice-core and climate-change research, the two principal objectives of this project are to determine what physically causes the optical differences that we see and to determine the environmental processes that give rise to these physical differences. In the laboratory at NICL the conditions of a log of a borehole wall will be re-created as closely as possible by running the borehole video camera along sections of ice core, making an optical log of light reflected from the core. Combinations of physical variables that are correlated with optical features will be identified. A radiative-transfer model will be used to aid in the interpretation of these measurements, and to determine the optimum configuration for an improved future logging tool. An attempt will be made to determine the origin of the features. Two broad possibilities exist: 1) temporal changes in the depositional environment, and 2) post-depositional reworking. This project represents an important step toward a new way of learning about paleoclimate with borehole optical methods. Broader impacts include enhancing the infrastructure for research and education, since this instrument will complement high-resolution continuous-melter chemistry techniques and provide a rapid way to log physical variables using optical features as a proxy for climate signals. Since no core is required for this method, it can be used in rapidly drilled access holes or where core quality is poor. This project will support a graduate student who will carry out this project under the direction of the Principal Investigator. K-12 education will be enhanced through an ongoing collaboration with a science and math teacher from a local middle school. International collaboration will be expanded through work on this project with colleagues at the Norwegian Polar Institute and broad dissemination of results will occur through a project website for the general public.
Personnel
Person Role
Smith, Ben Investigator
Waddington, Edwin D. Co-Investigator
Hawley, Robert L. Co-Investigator
Fudge, T. J. Co-Investigator
Funding
Antarctic Glaciology Award # 0335330
AMD - DIF Record(s)
Data Management Plan
None in the Database
Product Level:
Not provided
Datasets
Repository Title (link) Format(s) Status
USAP-DC Borehole Optical Stratigraphy Modeling, Antarctica None exist
Platforms and Instruments

This project has been viewed 18 times since May 2019 (based on unique date-IP combinations)