COLLABORATIVE RESEARCH: Resolving Ambiguous Exposure-Age Chronologies of Antarctic Deglaciation with Measurements of In-Situ-Produced Cosmogenic Carbon-14
Start Date:
2016-05-01
End Date:
2021-04-30
Description/Abstract
The overall goal of this project is to determine the effect of past changes in the size of the Antarctic Ice Sheet on global sea level. At the peak of the last ice age 25,000 years ago, sea level was 120 meters (400 feet) lower than it is at present because water that is now part of the ocean was instead part of expanded glaciers and ice sheets in North America, Eurasia, and Antarctica. Between then and now, melting and retreat of this land ice caused sea level to rise. In this project, we aim to improve our understanding of how changes in the size of the Antarctic Ice Sheet contributed to this process. The overall strategy to accomplish this involves (i) visiting areas in Antarctica that are not now covered by ice; (ii) looking for geological evidence, specifically rock surface and sediment deposits, that indicates that these areas were covered by thicker ice in the past; and (iii) determining the age of these geological surfaces and deposits. This project addresses the final part of this strategy -- determining the age of Antarctic glacial rock surfaces or sediment deposits -- using a relatively new technique that involves measuring trace elements in rock surfaces that are produced by cosmic-ray bombardment after the rock surfaces are exposed by ice retreat. By applying this method to rock samples collected in previous visits to Antarctica, the timing of past expansion and contraction of the ice sheet can be determined. The main scientific outcomes expected from this project are (i) improved understanding of how Antarctic Ice Sheet changes contributed to past global sea level rise; and (ii) improved understanding of modern observed Antarctic Ice Sheet changes in a longer-term context. This second outcome will potentially improve predictions of future ice sheet behavior. Other outcomes of the project include training of individual undergraduate and graduate students, as well as the development of a new course on sea level change to be taught at Tulane University in New Orleans, a city that is being affected by sea level change today. This project will use measurements of in-situ-produced cosmogenic carbon-14 in quartz from existing samples collected at several sites in Antarctica to resolve major ambiguities in existing Last Glacial Maximum to present ice sheet reconstructions. This project is important because of the critical nature of accurate reconstructions of ice sheet change in constraining reconstructions of past sea level change. Although carbon-14 is most commonly exploited as a geochronometer through its production in the upper atmosphere and incorporation into organic materials, it is also produced within the crystal lattice of rocks and minerals that are exposed to the cosmic-ray flux at the Earth's surface. In this latter case, its concentration is proportional to the duration of surface exposure, and measurements of in-situ-produced carbon-14 can be used to date geological events that form or expose rock surfaces, for example, ice sheet expansion and retreat. Although carbon-14 is one of several trace radionuclides that can be used for this purpose, it is unique among them in that its half-life is short relative to the time scale of glacial-interglacial variations. Thus, in cases where rock surfaces in polar regions have been repeatedly covered and uncovered by ice sheet change during many glacial-interglacial cycles, carbon-14 measurements are uniquely suited to accurately dating the most recent episode of ice sheet advance and retreat. We aim to use this property to improve our understanding of Antarctic Ice Sheet change at a number of critically located sites at which other surface exposure dating methods have yielded ambiguous results. Geographically, these are focused in the Weddell Sea embayment of Antarctica, which is an area where the geometry of the Antarctic continent potentially permits large glacial-interglacial changes in ice volume but where existing geologic records of ice sheet change are particularly ambiguous. In addition, in-situ carbon-14 measurements, applied where independently constrained deglaciation chronologies already exist, can potentially allow us to date the last period of ice sheet advance as well as the most recent retreat.
Personnel
AMD - DIF Record(s)
Data Management Plan
Product Level:
1 (processed data)
Datasets
Publications
Keywords
Platforms and Instruments
|
This project has been viewed 53 times since May 2019 (based on unique date-IP combinations)