IEDA
Project Information
Management and Operations of the IceCube Neutrino Observatory 2021-2026
Start Date:
2021-04-21
End Date:
2026-03-31
Program:
IceCube
Project Website(s)
Description/Abstract
This award funds the continued management and operations (M&O) of the IceCube Neutrino Observatory (ICNO) located at the South Pole Station. The core team of researchers and engineers maintain the existing ICNO infrastructure at the South Pole and home institution, guaranteeing an uninterrupted stream of scientifically unique, high-quality data. The M&O activities are built upon eight highly successful years of managing the overall ICNO operations after the start of science operations in 2008. Construction of ICNO was supported by NSF's Major Research Equipment and Facilities Construction (MREFC) account and was completed on schedule and within budget in 2010. Effective coordination of efforts by the core M&O personnel and efforts by personnel within the IceCube Collaboration has yielded significant increases in the performance of this cubic-kilometer detector over time. The scientific output from the IceCube Collaboration during the past five years has been outstanding.

The broader impacts of the ICNO/M&O activities are strong, involving postdoctoral, graduate, and (in some cases) undergraduate students in the day-today operation & calibration of the neutrino detector. The extraordinary physics results recently produced by ICNO and its extraordinary location at South Pole have a high potential to excite the imagination of high school children and the public in general at a national and international level.

The current ICNO/M&O effort produces better energy and angular resolution information about detected neutrino events, has more efficient data filters and more accurate detector simulations, and enables continuous software development for systems that are needed to acquire and analyze data. This has produced data acquisition and data management systems with high robustness, traceability, and maintainability. The current ICNO/M&O effort includes: (1) resources for both distributed and centrally managed activities, and (2) additional accountability mechanisms for "in-kind" and institutional contributions. Both are necessary to ensure that the detector maintains its capability to produce quality scientific data at the level required to achieve the detector's scientific discovery objectives. Recent ICNO discoveries of cosmic high-energy neutrinos (some reaching energies close to and over 2.5 PeV) and oscillating atmospheric neutrinos in a previously unexplored energy range from 10 to 60 GeV became possible because of the "state-of-the-art" detector configuration, excellently supported infrastructure, and cutting-edge science analyses. The ICNO has set limits on Dark Matter annihilations, made precision measurements of the angular distribution of cosmic ray muons, and characterized in detail physical properties of the Antarctic 2.5-km thick ice sheet at South Pole. The discovery of high-energy cosmic neutrinos by IceCube with a flux at the level anticipated for those associated with high-energy gamma- and cosmic-ray accelerators brightens the prospect for identifying the sources of the highest energy particles.
Personnel
Person Role
Halzen, Francis Investigator and contact
Karle, Albrecht Co-Investigator
Funding
Antarctic Astrophysics and Geospace Sciences Award # 2042807
Antarctic Astrophysics and Geospace Sciences Award # 1600823
Management and Operations of the IceCube Neutrino Observatory 2016-2021

This award funds the continued management and operations (M&O) of the IceCube Neutrino Observatory (ICNO) located at the South Pole Station. The core team of researchers and engineers maintain the existing ICNO infrastructure at the South Pole and home institution, guaranteeing an uninterrupted stream of scientifically unique, high-quality data. The M&O activities are built upon eight highly successful years of managing the overall ICNO operations after the start of science operations in 2008. Construction of ICNO was supported by NSF's Major Research Equipment and Facilities Construction (MREFC) account and was completed on schedule and within budget in 2010. Effective coordination of efforts by the core M&O personnel and efforts by personnel within the IceCube Collaboration has yielded significant increases in the performance of this cubic-kilometer detector over time. The scientific output from the IceCube Collaboration during the past five years has been outstanding.

The broader impacts of the ICNO/M&O activities are strong, involving postdoctoral, graduate, and (in some cases) undergraduate students in the day-today operation & calibration of the neutrino detector. The extraordinary physics results recently produced by ICNO and its extraordinary location at South Pole have a high potential to excite the imagination of high school children and the public in general at a national and international level.

The current ICNO/M&O effort produces better energy and angular resolution information about detected neutrino events, has more efficient data filters and more accurate detector simulations, and enables continuous software development for systems that are needed to acquire and analyze data. This has produced data acquisition and data management systems with high robustness, traceability, and maintainability. The current ICNO/M&O effort includes: (1) resources for both distributed and centrally managed activities, and (2) additional accountability mechanisms for "in-kind" and institutional contributions. Both are necessary to ensure that the detector maintains its capability to produce quality scientific data at the level required to achieve the detector's scientific discovery objectives. Recent ICNO discoveries of cosmic high-energy neutrinos (some reaching energies close to and over 2.5 PeV) and oscillating atmospheric neutrinos in a previously unexplored energy range from 10 to 60 GeV became possible because of the "state-of-the-art" detector configuration, excellently supported infrastructure, and cutting-edge science analyses. The ICNO has set limits on Dark Matter annihilations, made precision measurements of the angular distribution of cosmic ray muons, and characterized in detail physical properties of the Antarctic 2.5-km thick ice sheet at South Pole. The discovery of high-energy cosmic neutrinos by IceCube with a flux at the level anticipated for those associated with high-energy gamma- and cosmic-ray accelerators brightens the prospect for identifying the sources of the highest energy particles.

Antarctic Astrophysics and Geospace Sciences Award # 0937462
IceCube Maintenance and Operations 2010-2015

Antarctic Astrophysics and Geospace Sciences Award # 0639286
IceCube Neutrino Observatory Maintenance and Operations

AMD - DIF Record(s)
Data Management Plan
None in the Database
Product Level:
0 (raw data)
Datasets
Repository Title (link) Format(s) Status
IceCube IceCube data releases None exists
USAP-DC Amanda 7 Year Data Set Not Provided exists
Publications
  1. Halzen, F., Kheirandish, A., & Niro, V. (2017). Prospects for detecting galactic sources of cosmic neutrinos with IceCube: An update. Astroparticle Physics, 86, 46–56. (doi:10.1016/j.astropartphys.2016.11.004)
  2. Sfiligoi, I. (2020). Demonstrating 100 Gbps in and out of the public Clouds. Practice and Experience in Advanced Research Computing. (doi:10.1145/3311790.3399612)
  3. Sfiligoi, I., Hare, M., Schultz, D., Würthwein, F., Riedel, B., Hutton, T., … Brik, V. (2021). Managing Cloud networking costs for data-intensive applications by provisioning dedicated network links. Practice and Experience in Advanced Research Computing. (doi:10.1145/3437359.3465563)
  4. Sfiligoi, I., Schultz, D., Riedel, B., Wuerthwein, F., Barnet, S., & Brik, V. (2020). Demonstrating a Pre-Exascale, Cost-Effective Multi-Cloud Environment for Scientific Computing. Practice and Experience in Advanced Research Computing. (doi:10.1145/3311790.3396625)
  5. Yoast-Hull, T. M., Gallagher, J. S., Halzen, F., Kheirandish, A., & Zweibel, E. G. (2017). Gamma-ray puzzle in Cygnus X: Implications for high-energy neutrinos. Physical Review D, 96(4). (doi:10.1103/physrevd.96.043011)
  6. Ahlers, M., & Mertsch, P. (2017). Origin of small-scale anisotropies in Galactic cosmic rays. Progress in Particle and Nuclear Physics, 94, 184–216. (doi:10.1016/j.ppnp.2017.01.004)
  7. Ahlers, M. (2016). Deciphering the Dipole Anisotropy of Galactic Cosmic Rays. Physical Review Letters, 117(15). (doi:10.1103/physrevlett.117.151103)
  8. Ahlers, M., & Halzen, F. (2018). Opening a new window onto the universe with IceCube. Progress in Particle and Nuclear Physics, 102, 73–88. (doi:10.1016/j.ppnp.2018.05.001)
  9. Halzen, F., & Wille, L. (2016). Charm contribution to the atmospheric neutrino flux. Physical Review D, 94(1). (doi:10.1103/physrevd.94.014014)
  10. Halzen, F. (2021). High‐Energy Neutrinos from the Cosmos. Annalen Der Physik, 2100309. (doi:10.1002/andp.202100309)
  11. Argüelles, C. A., Diaz, A., Kheirandish, A., Olivares-Del-Campo, A., Safa, I., & Vincent, A. C. (2021). Dark matter annihilation to neutrinos. Reviews of Modern Physics, 93(3). (doi:10.1103/revmodphys.93.035007)
  12. Argüelles, C. A., He, X.-G., Ovanesyan, G., Peng, T., & Ramsey-Musolf, M. J. (2017). Dark gauge bosons: LHC signatures of non-abelian kinetic mixing. Physics Letters B, 770, 101–107. (doi:10.1016/j.physletb.2017.04.037)
  13. Halzen, F., & Kheirandish, A. (2020). Black holes associated with cosmic neutrino flares. Nature Physics, 16(5), 498–500. (doi:10.1038/s41567-020-0864-2)
  14. Sfiligoi, I., Schultz, D., Wurthwein, F., Riedel, B., & Deelman, E. (2021). Pushing the Cloud Limits in Support of IceCube Science. IEEE Internet Computing, 25(1), 71–75. (doi:10.1109/mic.2020.3045209)
  15. Halzen, F. (2021). The observation of high-energy neutrinos from the cosmos: Lessons learned for multimessenger astronomy. International Journal of Modern Physics D. (doi:10.1142/s0218271822300038)
  16. Schwanekamp, H., Hohl, R., Chirkin, D., Gibbs, T., Harnisch, A., Kopper, C., Messmer, P., Mehta, V., Olivas, A., Riedel, B., Rongen, M., Schultz, D., & van Santen, J. (2022). Accelerating IceCube’s Photon Propagation Code with CUDA. Computing and Software for Big Science, 6(1). https://doi.org/10.1007/s41781-022-00080-8 (doi:10.1007/s41781-022-00080-8)
  17. Abbasi, R.Ackermann, M.Adams, J.Agarwalla, S.K.Aguilar, J.A.Ahlers, M.Alameddine, J.M.Amin, N.M.Andeen, K.Anton, G.Argüelles, C.Ashida, Y.Athanasiadou, S.Axani, S.N.Bai, X.Balagopal V., A.Baricevic, M.Barwick, S.W.Basu, V.Bay, R.Beatty, J.J.Tjus, J.B.Beise, J.Bellenghi, C.Benning, C.BenZvi, S.Berley, D.Bernardini, E.Besson, D.Z.Binder, G.Blaufuss, E.Blot, S.Bontempo, F.Book, J.Y.Meneguolo, C.B.Böser, S.Botner, O.Böttcher, J.Bourbeau, E.Braun, J.Brinson, B.Brostean-Kaiser, J.Burley, R.T.Busse, R.S.Butterfield, D.Campana, M.A.Carloni, K.Carnie-Bronca, E.G.Chattopadhyay, S.Chau, N.Chen, C.Chen, Z.Chirkin, D.Choi, S.Clark, B.A.Classen, L.Coleman, A.Collin, G.H.Connolly, A.Conrad, J.M.Coppin, P.Correa, P.Countryman, S.Cowen, D.F.Dave, P.De Clercq, C.DeLaunay, J.J.Delgado, D.Deng, S.Deoskar, K.Desai, A.Desiati, P.de Vries, K.D.de Wasseige, G.DeYoung, T.Diaz, A.Díaz-Vélez, J.C.Dittmer, M.Domi, A.Dujmovic, H.DuVernois, M.A.Ehrhardt, T.Eller, P.Ellinger, E.El Mentawi, S.Elsässer, D.Engel, R.Erpenbeck, H.Evans, J.Evenson, P.A.Fan, K.L.Fang, K.Farrag, K.Fazely, A.R.Fedynitch, A.Feigl, N.Fiedlschuster, S.Finley, C.Fischer, L.Fox, D.Franckowiak, A.Fritz, A.Fürst, P.Gallagher, J.Ganster, E.Garcia, A.Gerhardt, L.Ghadimi, A.Glaser, C.Glauch, T.Glüsenkamp, T.Goehlke, N.Gonzalez, J.G.Goswami, S.Grant, D.Gray, S.J.Gries, O.Griffin, S.Griswold, S.Groth, K.M.Günther, C.Gutjahr, P.Haack, C.Hallgren, A.Halliday, R.Halve, L.Halzen, F.Hamdaoui, H.Minh, M.H.Hanson, K.Hardin, J.Harnisch, A.A.Hatch, P.Haungs, A.Helbing, K.Hellrung, J.Henningsen, F.Heuermann, L.Heyer, N.Hickford, S.Hidvegi, A.Hill, C.Hill, G.C.Hoffman, K.D.Hori, S.Hoshina, K.Hou, W.Huber, T.Hultqvist, K.Hünnefeld, M.Hussain, R.Hymon, K.In, S.Ishihara, A.Jacquart, M.Janik, O.Jansson, M.Japaridze, G.S.Jeong, M.Jin, M.Jones, B.J.P.Kang, D.Kang, W.Kang, X.Kappes, A.Kappesser, D.Kardum, L.Karg, T.Karl, M.Karle, A.Katz, U.Kauer, M.Kelley, J.L.Zathul, A.K.Kheirandish, A.Kiryluk, J.Klein, S.R.Kochocki, A.Koirala, R.Kolanoski, H.Kontrimas, T.Köpke, L.Kopper, C.Koskinen, D.J.Koundal, P.Kovacevich, M.Kowalski, M.Kozynets, T.Krishnamoorthi, J.Kruiswijk, K.Krupczak, E.Kumar, A.Kun, E.Kurahashi, N.Lad, N.Lagunas Gualda, C.Lamoureux, M.Larson, M.J.Latseva, S.Lauber, F.Lazar, J.P.Lee, J.W.DeHolton, K.L.Leszczyńska, A.Lincetto, M.Liu, Q.R.Liubarska, M.Lohfink, E.Love, C.Mariscal, C.J.L.Lu, L.Lucarelli, F.Luszczak, W.Lyu, Y.Madsen, J.Mahn, K.B.M.Makino, Y.Manao, E.Mancina, S.Sainte, W.M.Mariş, I.C.Marka, S.Marka, Z.Marsee, M.Martinez-Soler, I.Maruyama, R.Mayhew, F.McElroy, T.McNally, F.Mead, J.V.Meagher, K.Mechbal, S.Medina, A.Meier, M.Merckx, Y.Merten, L.Micallef, J.Mitchell, J.Montaruli, T.Moore, R.W.Morii, Y.Morse, R.Moulai, M.Mukherjee, T.Naab, R.Nagai, R.Nakos, M.Naumann, U.Necker, J.Negi, A.Neumann, M.Niederhausen, H.Nisa, M.U.Noell, A.Novikov, A.Nowicki, S.C.Pollmann, A.O.O’Dell, V.Oehler, M.Oeyen, B.Olivas, A.Orsoe, R.Osborn, J.O’Sullivan, E.Pandya, H.Park, N.Parker, G.K.Paudel, E.N.Paul, L.de los Heros, C.P.Peterson, J.Philippen, S.Pizzuto, A.Plum, M.Pontén, A.Popovych, Y.Prado Rodriguez, M.Pries, B.Procter-Murphy, R.Przybylski, G.T.Raab, C.Rack-Helleis, J.Rawlins, K.Rechav, Z.Rehman, A.Reichherzer, P.Renzi, G.Resconi, E.Reusch, S.Rhode, W.Riedel, B.Rifaie, A.Roberts, E.J.Robertson, S.Rodan, S.Roellinghoff, G.Rongen, M.Rott, C.Ruhe, T.Ruohan, L.Ryckbosch, D.Safa, I.Saffer, J.Salazar-Gallegos, D.Sampathkumar, P.Sanchez Herrera, S.E.Sandrock, A.Santander, M.Sarkar, S.Sarkar, S.Savelberg, J.Savina, P.Schaufel, M.Schieler, H.Schindler, S.Schlickmann, L.Schlüter, B.Schlüter, F.Schmeisser, N.Schmidt, T.Schneider, J.Schröder, F.G.Schumacher, L.Schwefer, G.Sclafani, S.Seckel, D.Seikh, M.Seunarine, S.Shah, R.Sharma, A.Shefali, S.Shimizu, N.Silva, M.Skrzypek, B.Smithers, B.Snihur, R.Soedingrekso, J.Søgaard, A.Soldin, D.Soldin, P.Sommani, G.Spannfellner, C.Spiczak, G.M.Spiering, C.Stamatikos, M.Stanev, T.Stezelberger, T.Stürwald, T.Stuttard, T.Sullivan, G.W.Taboada, I.Ter-Antonyan, S.Thiesmeyer, M.Thompson, W.G.Thwaites, J.Tilav, S.Tollefson, K.Tönnis, C.Toscano, S.Tosi, D.Trettin, A.Tung, C.F.Turcotte, R.Twagirayezu, J.P.Ty, B.Unland Elorrieta, M.A.Upadhyay, A.K.Upshaw, K.Valtonen-Mattila, N.Vandenbroucke, J.van Eijndhoven, N.Vannerom, D.van Santen, J.Vara, J.Veitch-Michaelis, J.Venugopal, M.Vereecken, M.Verpoest, S.Veske, D.Vijai, A.Walck, C.Weaver, C.Weigel, P.Weindl, A.Weldert, J.Wendt, C.Werthebach, J.Weyrauch, M.Whitehorn, N.Wiebusch, C.H.Willey, N.Williams, D.R.Wolf, A.Wolf, M.Wrede, G.Xu, X.W.Yanez, J.P.Yildizci, E.Yoshida, S.Young, R.Yu, F.Yu, S.Yuan, T.Zhang, Z.Zhelnin, P.(2024). Search for Galactic Core-collapse Supernovae in a Decade of Data Taken with the IceCube Neutrino Observatory. The Astrophysical Journal, 961(1), 84. (doi:10.3847/1538-4357/ad07d1)
Platforms and Instruments

This project has been viewed 43 times since May 2019 (based on unique date-IP combinations)