Collaborative Research: Antarctic Automatic Weather Station Program 2013-2017
Description/Abstract
The Antarctic Automatic Weather Station (AAWS) network, first commenced in 1978, is the most extensive ground meteorological network in the Antarctic, approaching its 30th year at several of its installations. Its prime focus as a long term observational record is to measure the near surface weather and climatology of the Antarctic atmosphere. AWS sites measure air-temperature, pressure, wind speed and direction at a nominal surface height of 3m. Other parameters such as relative humidity and snow accumulation may also be measured. Observational data from the AWS are collected via the DCS Argos system aboard either NOAA or MetOp polar orbiting satellites and thus made available in near real time to operational and synoptic weather forecasters.
The surface observations from the AAWS network are important records for recent climate change and meteorological processes. The surface observations from the AAWS network are also used operationally, and in the planning of field work. The surface observations from the AAWS network have been used to check on satellite and remote sensing observations.
Funding
Antarctic Ocean and Atmospheric Sciences
|
Award # 1245737
|
Antarctic Ocean and Atmospheric Sciences
|
Award # 1245663
|
Data Management Plan
None in the Database
Product Level:
Not provided
Publications
-
Wille, J. D., Bromwich, D. H., Cassano, J. J., Nigro, M. A., Mateling, M. E., & Lazzara, M. A. (2017). Evaluation of the AMPS Boundary Layer Simulations on the Ross Ice Shelf, Antarctica, with Unmanned Aircraft Observations. Journal of Applied Meteorology and Climatology, 56(8), 2239–2258.
(doi:10.1175/jamc-d-16-0339.1)
-
Mitchell, L. E., Buizert, C., Brook, E. J., Breton, D. J., Fegyveresi, J., Baggenstos, D., … Ahn, J. (2015). Observing and modeling the influence of layering on bubble trapping in polar firn. Journal of Geophysical Research: Atmospheres, 120(6), 2558–2574.
(doi:10.1002/2014jd022766)
-
Traversi, R., Becagli, S., Brogioni, M., Caiazzo, L., Ciardini, V., Giardi, F., … Udisti, R. (2017). Multi-year record of atmospheric and snow surface nitrate in the central Antarctic plateau. Chemosphere, 172, 341–354.
(doi:10.1016/j.chemosphere.2016.12.143)
-
Noonan, B., Zawar-Reza, P., & Lawson, W. (2015). Boundary-layer climate of the Darwin-Hatherton Glacial System, Antarctica: meso- and synoptic-scale circulations. International Journal of Climatology, 35(12), 3608–3623.
(doi:10.1002/joc.4235)
-
Deb, P., Orr, A., Hosking, J. S., Phillips, T., Turner, J., Bannister, D., … Colwell, S. (2016). An assessment of the Polar Weather Research and Forecasting (WRF) model representation of near-surface meteorological variables over West Antarctica. Journal of Geophysical Research: Atmospheres, 121(4), 1532–1548.
(doi:10.1002/2015jd024037)
-
Jones, R. W., Renfrew, I. A., Orr, A., Webber, B. G. M., Holland, D. M., & Lazzara, M. A. (2016). Evaluation of four global reanalysis products using in situ observations in the Amundsen Sea Embayment, Antarctica. Journal of Geophysical Research: Atmospheres, 121(11), 6240–6257.
(doi:10.1002/2015jd024680)
-
Tremblay, M. M., Shuster, D. L., & Balco, G. (2014). Cosmogenic noble gas paleothermometry. Earth and Planetary Science Letters, 400, 195–205.
(doi:10.1016/j.epsl.2014.05.040)
-
Costanza, C. A., Lazzara, M. A., Keller, L. M., & Cassano, J. J. (2016). The surface climatology of the Ross Ice Shelf Antarctica. International Journal of Climatology, 36(15), 4929–4941.
(doi:10.1002/joc.4681)
-
Hollands, T., & Dierking, W. (2016). Dynamics of the Terra Nova Bay Polynya: The potential of multi-sensor satellite observations. Remote Sensing of Environment, 187, 30–48.
(doi:10.1016/j.rse.2016.10.003)
-
Mateling, M. E., Lazzara, M. A., Keller, L. M., Weidner, G. A., & Cassano, J. J. (2018). Alexander Tall Tower! A Study of the Boundary Layer on the Ross Ice Shelf, Antarctica. Journal of Applied Meteorology and Climatology, 57(2), 421–434.
(doi:10.1175/jamc-d-17-0017.1)
-
Nigro, M. A., Cassano, J. J., Wille, J., Bromwich, D. H., & Lazzara, M. A. (2017). A Self-Organizing-Map-Based Evaluation of the Antarctic Mesoscale Prediction System Using Observations from a 30-m Instrumented Tower on the Ross Ice Shelf, Antarctica. Weather and Forecasting, 32(1), 223–242.
(doi:10.1175/waf-d-16-0084.1)
-
Cassano, J. J., Nigro, M. A., & Lazzara, M. A. (2016). Characteristics of the near-surface atmosphere over the Ross Ice Shelf, Antarctica. Journal of Geophysical Research: Atmospheres, 121(7), 3339–3362.
(doi:10.1002/2015jd024383)
-
Milani, L., Kulie, M. S., Casella, D., Dietrich, S., L’Ecuyer, T. S., Panegrossi, G., … Wood, N. B. (2018). CloudSat snowfall estimates over Antarctica and the Southern Ocean: An assessment of independent retrieval methodologies and multi-year snowfall analysis. Atmospheric Research, 213, 121–135.
(doi:10.1016/j.atmosres.2018.05.015)
-
Lubin, D., Kahn, B. H., Lazzara, M. A., Rowe, P., & Walden, V. P. (2015). Variability in AIRS-retrieved cloud amount and thermodynamic phase over west versus east Antarctica influenced by the SAM. Geophysical Research Letters, 42(4), 1259–1267.
(doi:10.1002/2014gl062285)
-
Cassano, J. J., Nigro, M. A., Seefeldt, M. W., Katurji, M., Guinn, K., Williams, G., & DuVivier, A. (2021). Antarctic atmospheric boundary layer observations with the Small Unmanned Meteorological Observer (SUMO). Earth System Science Data, 13(3), 969–982.
(doi:10.5194/essd-13-969-2021)
-
Cassano, J. J., Nigro, M. A., Seefeldt, M. W., Katurji, M., Guinn, K., Williams, G., & DuVivier, A. (2020). Antarctic atmospheric boundary layer observations with the Small Unmanned Meteorological Observer (SUMO).
(doi:10.5194/essd-2020-284)
-
Keller, L. M., Maloney, K. J., Lazzara, M. A., Mikolajczyk, D. E., & Battista, S. D. (2022). An Investigation of Extreme Cold Events at the South Pole. Journal of Climate, 35(6), 1761–1772. https://doi.org/10.1175/jcli-d-21-0404.1
(doi:10.1175/jcli-d-21-0404.1)
Platforms and Instruments
|
|