IEDA
Project Information
LTER Palmer, Antarctica (PAL): Land-Shelf-Ocean Connectivity, Ecosystem Resilience and Transformation in a Sea-Ice Influenced Pelagic Ecosystem
Start Date:
2014-09-01
End Date:
2022-02-28
Program:
LTER
Description/Abstract
The Palmer Antarctica LTER (Long Term Ecological Research) site has been in operation since 1990. The goal of all the LTER sites is to conduct policy-relevant research on ecological questions that require tens of years of data, and cover large geographical areas. For the Palmer Antarctica LTER, the questions are centered around how the marine ecosystem west of the Antarctica peninsula is responding to a climate that is changing as rapidly as any place on the Earth. For example, satellite observations over the past 35 years indicate the average duration of sea ice cover is now ~90 days (3 months!) shorter than it was. The extended period of open water has implications for many aspects of ecosystem research, with the concurrent decrease of Adèlie penguins within this region regularly cited as an exemplar of climate change impacts in Antarctica. Cutting edge technologies such as autonomous underwater (and possibly airborne) vehicles, seafloor moorings, and numerical modeling, coupled with annual oceanographic cruises, and weekly environmental sampling, enables the Palmer Antarctica LTER to expand and bridge the time and space scales needed to assess climatic impacts. This award includes for the first time study of the roles of whales as major predators in the seasonal sea ice zone ecosystem. The team will also focus on submarine canyons, special regions of enhanced biological activity, along the Western Antarctic Peninsula (WAP).

The current award's overarching research question is: How do seasonality, interannual variability, and long term trends in sea ice extent and duration influence the structure and dynamics of marine ecosystems and biogeochemical cycling? Specific foci within the broad question include: 1. Long-term change and ecosystem transitions. What is the sensitivity or resilience of the ecosystem to external perturbations as a function of the ecosystem state? 2. Lateral connectivity and vertical stratification. What are the effects of lateral transports of freshwater, heat and nutrients on local ocean stratification and productivity and how do they drive changes in the ecosystem? 3. Top-down controls and shifting baselines. How is the ecosystem responding to the cessation of whaling and subsequent long-term recovery of whale stocks? 4. Foodweb structure and biogeochemical processes. How do temporal and spatial variations in foodweb structure influence carbon and nutrient cycling, export, and storage? The broader impacts of the award leverage local educational partnerships including the Sandwich, MA STEM Academy, the New England Aquarium, and the NSF funded Polar Learning and Responding (PoLAR) Climate Change Education Partnership at Columbia's Earth Institute to build new synergies between Arctic and Antarctic, marine and terrestrial scientists and students, governments and NGOs. The Palmer Antarctic LTER will also conduct appropriate cross LTER site comparisons, and serve as a leader in information management to enable knowledge-building within and beyond the Antarctic, oceanographic, and LTER communities.
Personnel
Person Role
Ducklow, Hugh Investigator
Martinson, Doug Co-Investigator
Schofield, Oscar Investigator and contact
Funding
Antarctic Integrated System Science Award # 2023425
Antarctic Organisms and Ecosystems Award # 2023425
Antarctic Integrated System Science Award # 1440435
Antarctic Organisms and Ecosystems Award # 1440435
AMD - DIF Record(s)
Deployment
Deployment Type
LMG1501 ship expedition
LMG1601 ship expedition
LMG1701 ship expedition
LMG1801 ship expedition
LMG1901 ship expedition
Data Management Plan
None in the Database
Product Level:
Not provided
Datasets
Repository Title (link) Format(s) Status
EDI Environmental Data Initiative Repository, Supporting LTER None exists
R2R Expedition Data None exist
R2R Expedition data of LMG1701 None exists
R2R Expedition data of LMG1501 None exists
R2R Expedition data of LMG1601 None exists
R2R Expedition data of LMG1801 Not Provided exists
R2R Expedition data of LMG1901 Not Provided exists
USAP-DC UAV images and video of whales in the Antarctic Penisula during LMG1802 None exists
Publications
  1. Obryk, M. K., Doran, P. T., Friedlaender, A. S., Gooseff, M. N., Li, W., Morgan-Kiss, R. M., … Ducklow, H. W. (2016). Responses of Antarctic Marine and Freshwater Ecosystems to Changing Ice Conditions. BioScience, 66(10), 864–879. (doi:10.1093/biosci/biw109)
  2. McKee, D. C., Martinson, D. G., & Schofield, O. (2019). Origin and Attenuation of Mesoscale Structure in Circumpolar Deep Water Intrusions to an Antarctic Shelf. Journal of Physical Oceanography, 49(5), 1293–1318. (doi:10.1175/jpo-d-18-0133.1)
  3. Eveleth, R., Cassar, N., Sherrell, R. M., Ducklow, H., Meredith, M. P., Venables, H. J., … Li, Z. (2017). Ice melt influence on summertime net community production along the Western Antarctic Peninsula. Deep Sea Research Part II: Topical Studies in Oceanography, 139, 89–102. (doi:10.1016/j.dsr2.2016.07.016)
  4. Stukel, M. R., & Ducklow, H. W. (2017). Stirring Up the Biological Pump: Vertical Mixing and Carbon Export in the Southern Ocean. Global Biogeochemical Cycles, 31(9), 1420–1434. (doi:10.1002/2017gb005652)
  5. Weinstein, B. G., & Friedlaender, A. S. (2017). Dynamic foraging of a top predator in a seasonal polar marine environment. Oecologia, 185(3), 427–435. (doi:10.1007/s00442-017-3949-6)
  6. Stukel, M. R., Asher, E., Couto, N., Schofield, O., Strebel, S., Tortell, P., & Ducklow, H. W. (2015). The imbalance of new and export production in the western Antarctic Peninsula, a potentially “leaky” ecosystem. Global Biogeochemical Cycles, 29(9), 1400–1420. (doi:10.1002/2015gb005211)
  7. Gray, P. C., Bierlich, K. C., Mantell, S. A., Friedlaender, A. S., Goldbogen, J. A., & Johnston, D. W. (2019). Drones and convolutional neural networks facilitate automated and accurate cetacean species identification and photogrammetry. Methods in Ecology and Evolution, 10(9), 1490–1500. (doi:10.1111/2041-210x.13246)
  8. Bowman, J. S., Kavanaugh, M. T., Doney, S. C., & Ducklow, H. W. (2018). Recurrent seascape units identify key ecological processes along the western Antarctic Peninsula. Global Change Biology, 24(7), 3065–3078. (doi:10.1111/gcb.14161)
  9. Weinstein, B. G., Double, M., Gales, N., Johnston, D. W., & Friedlaender, A. S. (2017). Identifying overlap between humpback whale foraging grounds and the Antarctic krill fishery. Biological Conservation, 210, 184–191. (doi:10.1016/j.biocon.2017.04.014)
  10. Brown, M. S., Munro, D. R., Feehan, C. J., Sweeney, C., Ducklow, H. W., & Schofield, O. M. (2019). Enhanced oceanic CO2 uptake along the rapidly changing West Antarctic Peninsula. Nature Climate Change, 9(9), 678–683. (doi:10.1038/s41558-019-0552-3)
  11. Rohr, T., Long, M. C., Kavanaugh, M. T., Lindsay, K., & Doney, S. C. (2017). Variability in the mechanisms controlling Southern Ocean phytoplankton bloom phenology in an ocean model and satellite observations. Global Biogeochemical Cycles, 31(5), 922–940. (doi:10.1002/2016gb005615)
  12. Luria, C. M., Amaral-Zettler, L. A., Ducklow, H. W., Repeta, D. J., Rhyne, A. L., & Rich, J. J. (2017). Seasonal Shifts in Bacterial Community Responses to Phytoplankton-Derived Dissolved Organic Matter in the Western Antarctic Peninsula. Frontiers in Microbiology, 8. (doi:10.3389/fmicb.2017.02117)
  13. Kim, H., Ducklow, H. W., Abele, D., Ruiz Barlett, E. M., Buma, A. G. J., Meredith, M. P., … Schloss, I. R. (2018). Inter-decadal variability of phytoplankton biomass along the coastal West Antarctic Peninsula. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2122), 20170174. (doi:10.1098/rsta.2017.0174)
  14. Ducklow, H. W., Stukel, M. R., Eveleth, R., Doney, S. C., Jickells, T., Schofield, O., … Cassar, N. (2018). Spring–summer net community production, new production, particle export and related water column biogeochemical processes in the marginal sea ice zone of the Western Antarctic Peninsula 2012–2014. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2122), 20170177. (doi:10.1098/rsta.2017.0177)
  15. McKee, D. C., & Martinson, D. G. (2020). Spatially Coherent Intraseasonal Velocity Fluctuations on the Western Antarctic Peninsula Shelf. Journal of Geophysical Research: Oceans, 125(5). (doi:10.1029/2019jc015770)
  16. Marcondes, M. C. C., Cheeseman, T., Jackson, J. A., Friedlaender, A. S., Pallin, L., Olio, M., … Sousa-Lima, R. S. (2021). The Southern Ocean Exchange: porous boundaries between humpback whale breeding populations in southern polar waters. Scientific Reports, 11(1). (doi:10.1038/s41598-021-02612-5)
  17. Bowman, J. S., Van Mooy, B. A. S., Lowenstein, D. P., Fredricks, H. F., Hansel, C. M., Gast, R., … Ducklow, H. W. (2021). Whole Community Metatranscriptomes and Lipidomes Reveal Diverse Responses Among Antarctic Phytoplankton to Changing Ice Conditions. Frontiers in Marine Science, 8. (doi:10.3389/fmars.2021.593566)
  18. Nardelli, S. C., Cimino, M. A., Conroy, J. A., Fraser, W. R., Steinberg, D. K., & Schofield, O. (2021). Krill availability in adjacent Adélie and gentoo penguin foraging regions near Palmer Station, Antarctica. Limnology and Oceanography, 66(6), 2234–2250. (doi:10.1002/lno.11750)
  19. Bernard, K. S., Cimino, M., Fraser, W., Kohut, J., Oliver, M. J., Patterson-Fraser, D., … Winsor, P. (2017). Factors that affect the nearshore aggregations of Antarctic krill in a biological hotspot. Deep Sea Research Part I: Oceanographic Research Papers, 126, 139–147. (doi:10.1016/j.dsr.2017.05.008)
  20. Lin, Y., Moreno, C., Marchetti, A., Ducklow, H., Schofield, O., Delage, E., … Cassar, N. (2021). Decline in plankton diversity and carbon flux with reduced sea ice extent along the Western Antarctic Peninsula. Nature Communications, 12(1). (doi:10.1038/s41467-021-25235-w)
  21. Berger, C. A., Steinberg, D. K., Copley, N. J., & Tarrant, A. M. (2021). De novo transcriptome assembly of the Southern Ocean copepod Rhincalanus gigas sheds light on developmental changes in gene expression. Marine Genomics, 58, 100835. (doi:10.1016/j.margen.2021.100835)
  22. Hauri, C., Doney, S. C., Takahashi, T., Erickson, M., Jiang, G., & Ducklow, H. W. (2015). Two decades of inorganic carbon dynamics along the Western Antarctic Peninsula. (doi:10.5194/bgd-12-6929-2015)
  23. Brown, M. S., Bowman, J. S., Lin, Y., Feehan, C. J., Moreno, C. M., Cassar, N., … Schofield, O. M. (2021). Low diversity of a key phytoplankton group along the West Antarctic Peninsula. Limnology and Oceanography. (doi:10.1002/lno.11765)
  24. Khairy, M. A., Luek, J. L., Dickhut, R., & Lohmann, R. (2016). Levels, sources and chemical fate of persistent organic pollutants in the atmosphere and snow along the western Antarctic Peninsula. Environmental Pollution, 216, 304–313. (doi:10.1016/j.envpol.2016.05.092)
  25. Luria, C. M., L. A. Amaral-Zettler, H. W. Ducklow, and J. J. Rich. 2016. Seasonal succession of free-living bacterial communities in coastal waters of the Western Antarctic Peninsula. Frontiers in Microbiology 7: 1731. (doi:10.3389/fmicb.2016.01731)
  26. Ainley, D. G., Crockett, E. L., Eastman, J. T., Fraser, W. R., Nur, N., O’Brien, K., … Siniff, D. B. (2017). How overfishing a large piscine mesopredator explains growth in Ross Sea penguin populations: A framework to better understand impacts of a controversial fishery. Ecological Modelling, 349, 69–75. (doi:10.1016/j.ecolmodel.2016.12.021)
  27. Modest, M., Irvine, L., Andrews-Goff, V., Gough, W., Johnston, D., Nowacek, D., … Friedlaender, A. (2021). First description of migratory behavior of humpback whales from an Antarctic feeding ground to a tropical calving ground. Animal Biotelemetry, 9(1). (doi:10.1186/s40317-021-00266-8)
  28. Sedwick, P. N., Sohst, B. M., O’Hara, C., Stammerjohn, S. E., Loose, B., Dinniman, M. S., Buck, N. J., Resing, J. A., & Ackley, S. F. (2022). Seasonal Dynamics of Dissolved Iron on the Antarctic Continental Shelf: Late‐Fall Observations From the Terra Nova Bay and Ross Ice Shelf Polynyas. Journal of Geophysical Research: Oceans, 127(10). Portico. (doi:10.1029/2022jc018999)
  29. Pallin, L., Bierlich, K. C., Durban, J., Fearnbach, H., Savenko, O., Baker, C. S., Bell, E., Double, M. C., de la Mare, W., Goldbogen, J., Johnston, D., Kellar, N., Nichols, R., Nowacek, D., Read, A. J., Steel, D., & Friedlaender, A. (2022). Demography of an ice-obligate mysticete in a region of rapid environmental change. Royal Society Open Science, 9(11). (doi:10.1098/rsos.220724)
  30. Ducklow, H., Cimino, M., Dunton, K. H., Fraser, W. R., Hopcroft, R. R., Ji, R., Miller, A. J., Ohman, M. D., & Sosik, H. M. (2022). Marine Pelagic Ecosystem Responses to Climate Variability and Change. BioScience, 72(9), 827–850. (doi:10.1093/biosci/biac050)
  31. Lohmann, A. C., Morton, J. P., Schofield, O. M., & Nowacek, D. P. (2023). Cyclical prey shortages for a marine polar predator driven by the interaction of climate change and natural climate variability. Limnology and Oceanography. Portico. (doi:10.1002/lno.12453)

This project has been viewed 63 times since May 2019 (based on unique date-IP combinations)