IEDA
Project Information
Heat and Chemical Exchange During the Early Stages of Backarc Rifting in a Polar Region: Hydrothermal Activity in Bransfield Strait, Antarctica
Start Date:
1998-06-01
End Date:
2001-05-31
Description/Abstract
NSF FORM 1358 (1/94) This award, provided by the Office of Polar Programs of the National Science Foundation, supports research to investigate hydrothermal venting in Bransfield Strait, between the South Shetland Islands and the Antarctic Peninsula. Previous exploratory work in the Strait identified several sites where hot hydrothermal fluids emanate from the sea floor. These discoveries were made using an instrument package specially designed to detect and map the thermal and chemical anomalies that hydrothermal activity imparts on the overlying water column. Hydrothermal sites in the Strait range in water depth from <200 to 1300 meters and occur on the volcanic outcrops that periodically protrude through the sediment cover along the strike of the rift zone. These sites are alligned with the caldera at Deception Island which has active hot springs. These are the first submarine hydrothermal sites discovered in Antarctica and as such represent unique research opportunities. This project will return to the Strait to further map and sample these areas. There are several compelling reasons to believe that further exploration of vent systems in the Bransfield will yield exciting new information: (1) Bransfield Strait is a back-arc rift system and it is likely that the vent fluids and mineral deposits associated with venting in this setting are unlike anything sampled so far from submarine vents. (2) Preliminary evidence suggests that venting in the Bransfield occurs in two different volcanic substrates: andesite and rhyolite. This situation provides a natural laboratory for investigating the effects of substrate chemistry on vent fluid composition. (3) Bransfield Strait is isolated from the system of mid-ocean ridges and has a relatively short history of rifting (approximately 4 my). So, while the region straddles the Atlantic and Pacific, vent biota in the Strait may well have a distinct genealogy. Biochemical information on vent species in the Bransfield will add to our knowledge of the dispersal of life in the deep ocean. In the past such discoveries have led to the identification of new species and the isolation of previously unknown biochemical compounds. (4) The fire and ice environments of hydrothermal sites in the Bransfield may prove to be the closest analog for primordial environments on Earth and extraterrestrial bodies. The Bransfield Strait is one of the most productive areas of the world's oceans and lies close to the Antarctic continent, far removed from the mid-ocean ridge system. The combination of organic-rich sediment and heat produced by volcanism in this back- arc setting creates a situation conducive to unusual fluids, unique vent biota, and exotic hydrothermal deposits. Collaborative awards: OPP 9725972 and OPP 9813450
Personnel
Person Role
Klinkhammer, Gary Investigator
Funding
Unknown Program Award # 9725972
AMD - DIF Record(s)
Data Management Plan
None in the Database
Datasets
Repository Title (link) Status
R2R Expedition Data exist