High Resolution Ice Thickness and Plane Wave Mapping of Near-Surface Layers
Description/Abstract
This award supports a project to build and test a 12-18 GHz radar system with a plane wave antenna. This is a wideband radar operating over a frequency range of 12 to 18 GHz to detect near-surface internal firn layers of the ice sheet with better than 10 cm resolution to a depth of approximately 7 m. These measurements will allow determination of spatially continuous snow accumulation rate in the firn, which would be useful along a traverse and is of critical importance to the validation of CryoSat and ICESAT satellite missions aimed at assessing the current state of mass balance of the polar ice sheets. The antenna system planned for the radar is relatively compact, and will be located on the sledge carrying the radar systems. The broad scientific focus of this project will be to investigate important glacial processes relevant to ice sheet mass balance. The new radar will allow the characterization (with high depth resolution) of the spatial variability of snow accumulation rate along a traverse route for interpreting data from CryoSat and ICESAT missions. As part of this project, we will institute a strong outreach program involving K-12 education and a minority institution of higher education. We currently work closely with the Advanced Learning Technology Program (ALTec) at the University of Kansas to develop interactive, resource-based lessons for use on-line by students of all grade levels, and we will develop new resources related to this project. We currently have an active research and education collaboration with faculty and undergraduate students at neighboring Haskell Indian Nations University, in Lawrence, Kansas, and we will expand our collaboration to include this project.
Personnel
Funding
AMD - DIF Record(s)
Data Management Plan
None in the Database
Product Level:
Not provided
Keywords
Platforms and Instruments
|
This project has been viewed 6 times since May 2019 (based on unique date-IP combinations)