Collaborative Research: A High-sensitivity Beryllium-10 Record from an Ice Core at South Pole
Short Title:
South Pole 10Be
Start Date:
2016-05-01
End Date:
2019-04-30
Program:
SPICEcore
Project Website(s)
Description/Abstract
This project will acquire measurements of the concentration of beryllium-10 (10Be) from an ice core from the South Pole, Antarctica. An isotope of the element beryllium, 10Be, is produced in the atmosphere by high-energy protons (cosmic rays) that enter Earth's atmosphere from space. It is removed from the atmosphere by settling or by scavenging by rain or snowfall. Hence, concentrations of 10Be in snow at the South Pole reflect the production rate of 10Be in the atmosphere. Because the rate of production of 10Be over Antarctica depends primarily on the strength of the Sun's magnetic field, measurements of 10Be in the South Pole ice core will provide a record of changes in solar activity. The South Pole ice core will reach an age of 40,000 years at the bottom. The project will result in measurements of 10Be at annual resolution for the last 100 years and selected periods in the more distant past, such as the Maunder Minimum, a period during the late 17th century during which no sunspots were observed, or the last glacial cold period, about 20,000 years ago. A climate model that can simulate the production of 10Be in the atmosphere, it's transport through the atmosphere, and its deposition at the snow surface in Antarctica will be used to aid in using the 10Be data to determine past changes in solar activity from decadal to millennial scale, and in turn to evaluate the role of the Sun in Earth?s climate from a new perspective. The production of 10Be in Earth's atmosphere results from the spallation of oxygen and nitrogen in the atmosphere by cosmic rays. Cosmic ray variations in the high latitudes are primarily modulated by solar variability. Time-series records of 10Be from ice cores are therefore important for deriving variations in solar activity through time, which is fundamental to understanding climate variability. Deposition of 10Be to the ice surface is also influenced by variability in atmospheric circulation and deposition processes, and South Pole is the best available location for minimizing the influence of variable atmospheric circulation on 10Be deposition. To date, only one record of 10Be exists from South Pole; that record is widely used in solar forcing estimates used in climate models, but covers only the last millennium and ends in CE 1982. We will obtain 10Be concentration measurements in a 1500-m, 40000-year long ice core from the South Pole. This will extend the existing record both further back in time and forward to the present, providing overlap with the modern instrumental record of solar and climate variability. High resolution (annual to biannual) measurements will be made in targeted areas of interest, including the last 100 years, the Maunder Minimum (CE 1650-1715), and the last glacial maximum. The novel data will be used in conjunction with climate model experiments that incorporate 10Be production, transport, and deposition physics. Together, data and modeling will create an updated record of atmospheric 10Be production and hence of solar activity.
Personnel
AMD - DIF Record(s)
Data Management Plan
None in the Database
Product Level:
0 (raw data)
Datasets
Publications
Keywords
Platforms and Instruments
|
This project has been viewed 73 times since May 2019 (based on unique date-IP combinations)