Project Information
Palmer, Antarctica Long Term Ecological Research Project
Start Date:
End Date:
Since 1990, Palmer LTER (PAL) research has been guided by the hypothesis that variability in the polar marine ecosystem is mechanistically coupled to changes in the annual advance, retreat and spatial extent of sea ice. Since that time, the hypothesis has been modified to incorporate climate migration, i.e. the displacement of a cold, dry polar climate by a warm, moist climate regime in the northern component of the PAL region, producing fundamental changes in food web structure and elemental cycling. The observed northern changes are affecting all trophic levels and elemental cycling, and the primary mechanism of change involves match-mismatch dynamics. The proposed research builds on previous findings, with a new emphasis on process studies and modeling to elucidate the mechanistic links between teleconnections, climate change, physical oceanographic forcing and ecosystem dynamics. The proposed research will examine the hypothesis that regional warming and sea ice decline associated with historical and on-going climate migration in the northern part of the study area have altered key phenological relationships, leading to changes in species distributions, increasing trophic mismatches and changes in habitat, food availability, ecosystem dynamics and biogeochemical cycling. Through targeted process studies linked to numerical model simulations, the research also will test the hypothesis that deep cross-shelf canyons characterizing the core study region are focal areas for ecosystem processes that result in predictable, elevated food resources for top-predators. The effort includes the addition of 3 new PIs: a zooplankton ecologist with expertise in biogeochemical fluxes, a phytoplankton ecologist focusing on bio-optics and autonomous observations using gliders, and a numerical simulation modeler specializing in coupled global models of ocean circulation, plankton ecology and biogeochemical cycles. The program will add trace metal sampling and analysis, moored physical oceanographic sensors, a moored sediment trap in the south, drifting sediment traps and stable carbon (del 13C) and nitrogen (del 15N) isotope analyses. Missions lasting up to 45 days using gliders deployed before, during and after summer cruises will, along with moorings and satellite remote sensing of sea ice, ocean color, sea surface temperatures and wind fields, greatly extend the observational program in space and time.

Since its inception, PAL has been a leader in Information Management to enable knowledge-building within and beyond the Antarctic, oceanographic and LTER communities. PAL has designed and deployed a new information infrastructure with a relational database architecture to facilitate data distribution and sharing. The Education and Outreach program capitalizes on the public's fascination with Antarctica to promote scientific literacy from kindergarten students to adult citizens concerned with climate change and environmental sustainability. Through communicating results to the public and working with scientific assessment bodies (e.g., IPCC) and Antarctic Treaty parties to protect Earth's last frontier, PAL researchers contribute to the national scientific agenda and the greater public benefit.
Person Role
Ducklow, Hugh Investigator
Antarctic Ocean and Atmospheric Sciences Award # 0823101
Antarctic Organisms and Ecosystems Award # 0823101
Deployment Type
LMG1301 ship expedition
Data Management Plan
None in the Database
Product Level:
Not provided
Repository Title (link) Format(s) Status
R2R Expedition data of LMG1301 None exists
R2R Expedition Data None exist
  1. Bowman, J. S., Vick-Majors, T. J., Morgan-Kiss, R., Takacs-Vesbach, C., Ducklow, H. W., & Priscu, J. C. (2016). Microbial Community Dynamics in Two Polar Extremes: The Lakes of the McMurdo Dry Valleys and the West Antarctic Peninsula Marine Ecosystem. BioScience, 66(10), 829–847. (doi:10.1093/biosci/biw103)
  2. Kim, H., Doney, S. C., Iannuzzi, R. A., Meredith, M. P., Martinson, D. G., & Ducklow, H. W. (2016). Climate forcing for dynamics of dissolved inorganic nutrients at Palmer Station, Antarctica: An interdecadal (1993-2013) analysis. Journal of Geophysical Research: Biogeosciences, 121(9), 2369–2389. (doi:10.1002/2015jg003311)
  3. Eveleth, R., Cassar, N., Sherrell, R. M., Ducklow, H., Meredith, M. P., Venables, H. J., … Li, Z. (2017). Ice melt influence on summertime net community production along the Western Antarctic Peninsula. Deep Sea Research Part II: Topical Studies in Oceanography, 139, 89–102. (doi:10.1016/j.dsr2.2016.07.016)
  4. Weinstein, B. G., & Friedlaender, A. S. (2017). Dynamic foraging of a top predator in a seasonal polar marine environment. Oecologia, 185(3), 427–435. (doi:10.1007/s00442-017-3949-6)
  5. Gray, P. C., Bierlich, K. C., Mantell, S. A., Friedlaender, A. S., Goldbogen, J. A., & Johnston, D. W. (2019). Drones and convolutional neural networks facilitate automated and accurate cetacean species identification and photogrammetry. Methods in Ecology and Evolution, 10(9), 1490–1500. (doi:10.1111/2041-210x.13246)
  6. Bowman, J. S., Kavanaugh, M. T., Doney, S. C., & Ducklow, H. W. (2018). Recurrent seascape units identify key ecological processes along the western Antarctic Peninsula. Global Change Biology, 24(7), 3065–3078. (doi:10.1111/gcb.14161)
  7. Weinstein, B. G., Double, M., Gales, N., Johnston, D. W., & Friedlaender, A. S. (2017). Identifying overlap between humpback whale foraging grounds and the Antarctic krill fishery. Biological Conservation, 210, 184–191. (doi:10.1016/j.biocon.2017.04.014)
  8. Chen, D., Hale, R. C., La Guardia, M. J., Luellen, D., Kim, S., & Geisz, H. N. (2015). Hexabromocyclododecane flame retardant in Antarctica: Research stations as sources. Environmental Pollution, 206, 611–618. (doi:10.1016/j.envpol.2015.08.024)
  9. Massom, R. A., & Stammerjohn, S. E. (2010). Antarctic sea ice change and variability – Physical and ecological implications. Polar Science, 4(2), 149–186. (doi:10.1016/j.polar.2010.05.001)
  10. Carvalho, F., Gorbunov, M. Y., Oliver, M. J., Haskins, C., Aragon, D., Kohut, J. T., & Schofield, O. (2020). FIRe glider: Mapping in situ chlorophyll variable fluorescence with autonomous underwater gliders. Limnology and Oceanography: Methods. (doi:10.1002/lom3.10380)
  11. Asher, E. C., Dacey, J. W. H., Stukel, M., Long, M. C., & Tortell, P. D. (2016). Processes driving seasonal variability in DMS, DMSP, and DMSO concentrations and turnover in coastal Antarctic waters. Limnology and Oceanography, 62(1), 104–124. (doi:10.1002/lno.10379)
  12. Luria, C. M., Amaral-Zettler, L. A., Ducklow, H. W., Repeta, D. J., Rhyne, A. L., & Rich, J. J. (2017). Seasonal Shifts in Bacterial Community Responses to Phytoplankton-Derived Dissolved Organic Matter in the Western Antarctic Peninsula. Frontiers in Microbiology, 8. (doi:10.3389/fmicb.2017.02117)
  13. Kim, H., Ducklow, H. W., Abele, D., Ruiz Barlett, E. M., Buma, A. G. J., Meredith, M. P., … Schloss, I. R. (2018). Inter-decadal variability of phytoplankton biomass along the coastal West Antarctic Peninsula. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2122), 20170174. (doi:10.1098/rsta.2017.0174)
  14. Ducklow, H. W., Stukel, M. R., Eveleth, R., Doney, S. C., Jickells, T., Schofield, O., … Cassar, N. (2018). Spring–summer net community production, new production, particle export and related water column biogeochemical processes in the marginal sea ice zone of the Western Antarctic Peninsula 2012–2014. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2122), 20170177. (doi:10.1098/rsta.2017.0177)
  15. Steinberg, D. K., Ruck, K. E., Gleiber, M. R., Garzio, L. M., Cope, J. S., Bernard, K. S., … Ross, R. M. (2015). Long-term (1993–2013) changes in macrozooplankton off the Western Antarctic Peninsula. Deep Sea Research Part I: Oceanographic Research Papers, 101, 54–70. (doi:10.1016/j.dsr.2015.02.009)
  16. Pallin, L., Robbins, J., Kellar, N., Bérubé, M., & Friedlaender, A. (2018). Validation of a blubber-based endocrine pregnancy test for humpback whales. Conservation Physiology, 6(1). (doi:10.1093/conphys/coy031)
  17. Sherman, J., Gorbunov, M. Y., Schofield, O., & Falkowski, P. G. (2020). Photosynthetic energy conversion efficiency in the West Antarctic Peninsula. Limnology and Oceanography, 65(12), 2912–2925. (doi:10.1002/lno.11562)
  18. Bernard, K. S., Cimino, M., Fraser, W., Kohut, J., Oliver, M. J., Patterson-Fraser, D., … Winsor, P. (2017). Factors that affect the nearshore aggregations of Antarctic krill in a biological hotspot. Deep Sea Research Part I: Oceanographic Research Papers, 126, 139–147. (doi:10.1016/j.dsr.2017.05.008)
  19. Gorman, K. B., Ruck, K. E., Williams, T. D., & Fraser, W. R. (2021). Advancing the Sea Ice Hypothesis: Trophic Interactions Among Breeding Pygoscelis Penguins With Divergent Population Trends Throughout the Western Antarctic Peninsula. Frontiers in Marine Science, 8. (doi:10.3389/fmars.2021.526092)
  20. Schofield, O., Brown, M., Kohut, J., Nardelli, S., Saba, G., Waite, N., & Ducklow, H. (2018). Changes in the upper ocean mixed layer and phytoplankton productivity along the West Antarctic Peninsula. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2122), 20170173. (doi:10.1098/rsta.2017.0173)
  21. Lin, Y., Gifford, S., Ducklow, H., Schofield, O., & Cassar, N. (2019). Towards Quantitative Microbiome Community Profiling Using Internal Standards. Applied and Environmental Microbiology, 85(5). (doi:10.1128/aem.02634-18)
  22. Luria, C. M., L. A. Amaral-Zettler, H. W. Ducklow, and J. J. Rich. 2016. Seasonal succession of free-living bacterial communities in coastal waters of the Western Antarctic Peninsula. Frontiers in Microbiology 7: 1731. (doi:10.3389/fmicb.2016.01731)
  23. Modest, M., Irvine, L., Andrews-Goff, V., Gough, W., Johnston, D., Nowacek, D., … Friedlaender, A. (2021). First description of migratory behavior of humpback whales from an Antarctic feeding ground to a tropical calving ground. Animal Biotelemetry, 9(1). (doi:10.1186/s40317-021-00266-8)
  24. Jonsson, B. F., Doney, S., Dunne, J., & Bender, M. L. (2014). Evaluating Southern Ocean biological production in two ocean biogeochemical models on daily to seasonal time-scales using satellite surface chlorophyll and O<sub>2</sub>/Ar observations. (doi:10.5194/bgd-11-9629-2014)
Platforms and Instruments

This project has been viewed 5 times since May 2019 (based on unique date-IP combinations)