IEDA
Project Information
Collaborative Research: Integrative Study of Marine Ice Sheet Stability & Subglacial Life Habitats in W Antarctica - Lake & Ice Stream Subglacial Access Research Drilling (LISSARD)
Program:
WISSARD
Description/Abstract
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The LISSARD project (Lake and Ice Stream Subglacial Access Research Drilling) is one of three research components of the WISSARD integrative initiative (Whillans Ice Stream Subglacial Access Research Drilling) that is being funded by the Antarctic Integrated System Science Program of NSF's Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The LISSARD component of WISSARD focuses on the role of active subglacial lakes in determining how fast the West Antarctic ice sheet loses mass to the global ocean and influences global sea level changes. The importance of Antarctic subglacial lakes has only been recently recognized, and the lakes have been identified as high priority targets for scientific investigations because of their unknown contributions to ice sheet stability under future global warming scenarios. LISSARD has several primary science goals: A) To provide an observational basis for improving treatments of subglacial hydrological and mechanical processes in models of ice sheet mass balance and stability; B) To reconstruct the past history of ice stream stability by analyzing archives of past basal water and ice flow variability contained in subglacial sediments, porewater, lake water, and basal accreted ice; C) To provide background understanding of subglacial lake environments to benefit RAGES and GBASE (the other two components of the WISSARD project); and D) To synthesize data and concepts developed as part of this project to determine whether subglacial lakes play an important role in (de)stabilizing Antarctic ice sheets. We propose an unprecedented synthesis of approaches to studying ice sheet processes, including: (1) satellite remote sensing, (2) surface geophysics, (3) borehole observations and measurements and, (4) basal and subglacial sampling.

INTELLECTUAL MERIT: The latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations.

BROADER IMPACTS: Societal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars.
Personnel
Person Role
Tulaczyk, Slawek Investigator
Fisher, Andrew Co-Investigator
Powell, Ross Investigator
Anandakrishnan, Sridhar Investigator
Jacobel, Robert Investigator
Scherer, Reed Paul Co-Investigator
Funding
Antarctic Integrated System Science Award # 0839142
Antarctic Integrated System Science Award # 0839107
Antarctic Integrated System Science Award # 0839059
Antarctic Integrated System Science Award # 0838947
Antarctic Integrated System Science Award # 0838855
Antarctic Integrated System Science Award # 0838764
Antarctic Integrated System Science Award # 0838763
Data Management Plan
None in the Database
Product Level:
Not provided
Datasets
Repository Title (link) Format(s) Status
IRIS IRIS ID#s 201035, 201162, 201205 None exist
UNAVCO UNAVCO ID#s WHL1, WHL2, LA02, LA09 (full data link not provided) None exist
IRIS IRIS offers free and open access to a comprehensive data store of raw geophysical time-series data collected from a large variety of sensors, courtesy of a vast array of US and International scientific networks, including seismometers (permanent and temporary), tilt and strain meters, infrasound, temperature, atmospheric pressure and gravimeters, to support basic research aimed at imaging the Earth's interior. None exist
IRIS The IRIS DMC archives and distributes data to support the seismological research community. None exist
USAP-DC Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats in W Antarctica - Lake and Ice Stream Subglacial Access Research Drilling (LISSARD) None exist
USAP-DC Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats - Robotic Access to Grounding-zones for Exploration and Science (RAGES) None exist
USAP-DC Basal melt rates of the Ross Ice Shelf near the Whillans Ice Stream grounding line None exist
USAP-DC Paleogene marine and terrestrial development of the West Antarctic Rift System: Biomarker Data Set None exists
USAP-DC Paleogene marine and terrestrial development of the West Antarctic Rift System: Palynomorph Data Set None exists
USAP-DC Radar Studies of Subglacial Lake Whillans and the Whillans Ice Stream Grounding Zone None exist
Publications
  1. Muto, A., Christianson, K., Horgan, H. J., Anandakrishnan, S., & Alley, R. B. (2013). Bathymetry and geological structures beneath the Ross Ice Shelf at the mouth of Whillans Ice Stream, West Antarctica, modeled from ground-based gravity measurements. Journal of Geophysical Research: Solid Earth, 118(8), 4535–4546. (doi:10.1002/jgrb.50315)
  2. Walter, J. I., Svetlizky, I., Fineberg, J., Brodsky, E. E., Tulaczyk, S., Grace Barcheck, C., & Carter, S. P. (2015). Rupture speed dependence on initial stress profiles: Insights from glacier and laboratory stick-slip. Earth and Planetary Science Letters, 411, 112–120. (doi:10.1016/j.epsl.2014.11.025)
  3. Vick-Majors, T. J., Mitchell, A. C., Achberger, A. M., Christner, B. C., Dore, J. E., … Michaud, A. B. (2016). Physiological Ecology of Microorganisms in Subglacial Lake Whillans. Frontiers in Microbiology, 7. (doi:10.3389/fmicb.2016.01705)
  4. Rack, F. R. (2016). Enabling clean access into Subglacial Lake Whillans: development and use of the WISSARD hot water drill system. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2059), 20140305. (doi:10.1098/rsta.2014.0305)
  5. Vick‐Majors, T. J., Michaud, A. B., Skidmore, M. L., Turetta, C., Barbante, C., Christner, B. C., … Priscu, J. C. (2020). Biogeochemical Connectivity Between Freshwater Ecosystems beneath the West Antarctic Ice Sheet and the Sub‐Ice Marine Environment. Global Biogeochemical Cycles, 34(3). (doi:10.1029/2019gb006446)
  6. Christianson, K., Parizek, B. R., Alley, R. B., Horgan, H. J., Jacobel, R. W., Anandakrishnan, S., … Muto, A. (2013). Ice sheet grounding zone stabilization due to till compaction. Geophysical Research Letters, 40(20), 5406–5411. (doi:10.1002/2013gl057447)
  7. Christianson, K., Jacobel, R. W., Horgan, H. J., Alley, R. B., Anandakrishnan, S., Holland, D. M., & DallaSanta, K. J. (2016). Basal conditions at the grounding zone of Whillans Ice Stream, West Antarctica, from ice-penetrating radar. Journal of Geophysical Research: Earth Surface, 121(11), 1954–1983. (doi:10.1002/2015jf003806)
  8. Luthra, T., Anandakrishnan, S., Winberry, J. P., Alley, R. B., & Holschuh, N. (2016). Basal characteristics of the main sticky spot on the ice plain of Whillans Ice Stream, Antarctica. Earth and Planetary Science Letters, 440, 12–19. (doi:10.1016/j.epsl.2016.01.035)
  9. Horgan, H. J., van Haastrecht, L., Alley, R. B., Anandakrishnan, S., Christianson, K., & Muto, A. (2020). Grounding zone subglacial properties from calibrated active source seismic methods. (doi:10.5194/tc-2020-147)
  10. Neuhaus, S. U., Tulaczyk, S. M., Stansell, N. D., Coenen, J. J., Scherer, R. P., Mikucki, J. A., & Powell, R. D. (2020). Did Holocene climate changes drive West Antarctic grounding line retreat and re-advance? (doi:10.5194/tc-2020-308)
  11. Barcheck, G., Brodsky, E. E., Fulton, P. M., King, M. A., Siegfried, M. R., & Tulaczyk, S. (2021). Migratory earthquake precursors are dominant on an ice stream fault. Science Advances, 7(6), eabd0105. (doi:10.1126/sciadv.abd0105)
  12. Horgan, H. J., van Haastrecht, L., Alley, R. B., Anandakrishnan, S., Beem, L. H., Christianson, K., … Siegfried, M. R. (2021). Grounding zone subglacial properties from calibrated active-source seismic methods. The Cryosphere, 15(4), 1863–1880. (doi:10.5194/tc-15-1863-2021)
  13. Fisher, A. T., Mankoff, K. D., Tulaczyk, S. M., Tyler, S. W., & Foley, N. (2015). High geothermal heat flux measured below the West Antarctic Ice Sheet. Science Advances, 1(6), e1500093. (doi:10.1126/sciadv.1500093)
  14. Siegfried, M. R., Fricker, H. A., Carter, S. P., & Tulaczyk, S. (2016). Episodic ice velocity fluctuations triggered by a subglacial flood in West Antarctica. Geophysical Research Letters, 43(6), 2640–2648. (doi:10.1002/2016gl067758)
  15. Begeman, C. B., Tulaczyk, S. M., Marsh, O. J., Mikucki, J. A., Stanton, T. P., Hodson, T. O., … King, M. A. (2018). Ocean Stratification and Low Melt Rates at the Ross Ice Shelf Grounding Zone. Journal of Geophysical Research: Oceans, 123(10), 7438–7452. (doi:10.1029/2018jc013987)
  16. Venturelli, R. A., Siegfried, M. R., Roush, K. A., Li, W., Burnett, J., Zook, R., … Rosenheim, B. E. (2020). Mid‐Holocene Grounding Line Retreat and Readvance at Whillans Ice Stream, West Antarctica. Geophysical Research Letters, 47(15). (doi:10.1029/2020gl088476)
  17. Begeman, C. B., Tulaczyk, S. M., & Fisher, A. T. (2017). Spatially Variable Geothermal Heat Flux in West Antarctica: Evidence and Implications. Geophysical Research Letters, 44(19), 9823–9832. (doi:10.1002/2017gl075579)
  18. Hodson, T. O., Powell, R. D., Brachfeld, S. A., Tulaczyk, S., & Scherer, R. P. (2016). Physical processes in Subglacial Lake Whillans, West Antarctica: Inferences from sediment cores. Earth and Planetary Science Letters, 444, 56–63. (doi:10.1016/j.epsl.2016.03.036)
  19. Siegfried, M. R., Medley, B., Larson, K. M., Fricker, H. A., & Tulaczyk, S. (2017). Snow accumulation variability on a West Antarctic ice stream observed with GPS reflectometry, 2007–2017. Geophysical Research Letters, 44(15), 7808–7816. (doi:10.1002/2017gl074039)
  20. Neuhaus, S. U., Tulaczyk, S. M., Stansell, N. D., Coenen, J. J., Scherer, R. P., Mikucki, J. A., & Powell, R. D. (2021). Did Holocene climate changes drive West Antarctic grounding line retreat and readvance? The Cryosphere, 15(10), 4655–4673. (doi:10.5194/tc-15-4655-2021)
  21. Coenen, J. J., Scherer, R. P., Baudoin, P., Warny, S., Castañeda, I. S., & Askin, R. (2020). Paleogene Marine and Terrestrial Development of the West Antarctic Rift System. Geophysical Research Letters, 47(3). (doi:10.1029/2019gl085281)
  22. Damsgaard, A., Egholm, D. L., Beem, L. H., Tulaczyk, S., Larsen, N. K., Piotrowski, J. A., & Siegfried, M. R. (2016). Ice flow dynamics forced by water pressure variations in subglacial granular beds. Geophysical Research Letters, 43(23). (doi:10.1002/2016gl071579)

This project has been viewed 141 times since May 2019 (based on unique date-IP combinations)