Protein Folding and Embryogenesis in Antarctic Fishes: A Comparative Approach to Environmental Stress
Short Title:
Thermal Stress and Antarctic Fish Embryogenesis
Start Date:
2013-06-01
End Date:
2015-05-31
Project Location(s)
Western Antarctic Peninsula
Description/Abstract
Since the advent of Antarctic continental glaciation, the opening of the Drake Passage between South America and the Antarctic Peninsula, and the onset of cooling of the Southern Ocean ~40-25 million years ago, evolution of the Antarctic marine biota has been driven by the development of extreme cold temperatures. As circum-Antarctic coastal temperatures declined during this period from ~20°C to the modern -1.9 to +2.0°C (reached ~8-10 million years ago), the psychrophilic (cold-loving) ectotherms of the Southern Ocean evolved compensatory molecular, cellular, and physiological traits that enabled them to maintain normal metabolic function at cold temperatures. Today, these organisms are threatened by rapid warming of the Southern Ocean over periods measured in centuries (as much as 5°C/100 yr), a timeframe so short that re-adaptation and/or acclimatization to the "new warm" may not be possible. Thus, the long-term goals of this research project are: 1) to understand the biochemical and physiological capacities of the embryos of Antarctic notothenioid fish to resist or compensate for rapid oceanic warming; and 2) to assess the genetic toolkit available to support the acclimatization and adaptation of Antarctic notothenioid embryos to their warming habitat. The specific aims of this work are: 1) to determine the capacity of the chaperonin complex of notothenioid fishes to assist protein folding at temperatures between -4 and +20°C; and 2) to evaluate the genetic responses of notothenioid embryos, measured as global differential gene transcription, to temperature challenge, with -1.9°C as the "normal" control and +4 and +10°C as high temperature insults.
The physiology of embryonic development of marine stenotherms under future climate change scenarios is an important but understudied problem. This project will provide valuable insights into the capacity of Antarctic fish embryos to acclimatize and adapt to plausible climate change scenarios by examining multiple levels of biological organization, from the biochemical to the organismal. The results should also be broadly applicable to understanding the impact of global warming on marine biota worldwide. The research will also introduce graduate and undergraduate students to state-of-the-art biochemical, cellular, and molecular-biological research relevant to ecological and environmental issues of the Antarctic marine ecosystem.
Personnel
Funding
AMD - DIF Record(s)
Deployment
Data Management Plan
Product Level:
0 (raw data)
Datasets
Publications
Keywords
Platforms and Instruments
|
This project has been viewed 49 times since May 2019 (based on unique date-IP combinations)