Project Information
Protein Folding and Embryogenesis in Antarctic Fishes: A Comparative Approach to Environmental Stress
Short Title:
Thermal Stress and Antarctic Fish Embryogenesis
Start Date:
End Date:
Project Location(s)
Western Antarctic Peninsula
Since the advent of Antarctic continental glaciation, the opening of the Drake Passage between South America and the Antarctic Peninsula, and the onset of cooling of the Southern Ocean ~40-25 million years ago, evolution of the Antarctic marine biota has been driven by the development of extreme cold temperatures. As circum-Antarctic coastal temperatures declined during this period from ~20°C to the modern -1.9 to +2.0°C (reached ~8-10 million years ago), the psychrophilic (cold-loving) ectotherms of the Southern Ocean evolved compensatory molecular, cellular, and physiological traits that enabled them to maintain normal metabolic function at cold temperatures. Today, these organisms are threatened by rapid warming of the Southern Ocean over periods measured in centuries (as much as 5°C/100 yr), a timeframe so short that re-adaptation and/or acclimatization to the "new warm" may not be possible. Thus, the long-term goals of this research project are: 1) to understand the biochemical and physiological capacities of the embryos of Antarctic notothenioid fish to resist or compensate for rapid oceanic warming; and 2) to assess the genetic toolkit available to support the acclimatization and adaptation of Antarctic notothenioid embryos to their warming habitat. The specific aims of this work are: 1) to determine the capacity of the chaperonin complex of notothenioid fishes to assist protein folding at temperatures between -4 and +20°C; and 2) to evaluate the genetic responses of notothenioid embryos, measured as global differential gene transcription, to temperature challenge, with -1.9°C as the "normal" control and +4 and +10°C as high temperature insults. The physiology of embryonic development of marine stenotherms under future climate change scenarios is an important but understudied problem. This project will provide valuable insights into the capacity of Antarctic fish embryos to acclimatize and adapt to plausible climate change scenarios by examining multiple levels of biological organization, from the biochemical to the organismal. The results should also be broadly applicable to understanding the impact of global warming on marine biota worldwide. The research will also introduce graduate and undergraduate students to state-of-the-art biochemical, cellular, and molecular-biological research relevant to ecological and environmental issues of the Antarctic marine ecosystem.
Person Role
Detrich, H. William Investigator and contact
Antarctic Organisms and Ecosystems Award # 1247510
AMD - DIF Record(s)
Deployment Type
LMG0806 ship expedition
LMG0807 ship expedition
LMG1003 ship expedition
LMG1004 ship expedition
Data Management Plan
Product Level:
0 (raw data)
  1. Cuellar, J., Yébenes, H., Parker, S. K., Carranza, G., Serna, M., Valpuesta, J. M., Zabala, J. C., & Detrich, H. W., III. (2014) Assisted Protein Folding at Low Temperature: Evolutionary Adaptation of the Antarctic Fish Chaperonin CCT and Its Client Proteins. Biology Open (BiO) 3, 261-270. (doi:10.1242/bio.20147427)
  2. Shin, S. C., Ahn, D. H., Kim, S. J., Pyo, C. W., Lee, H., Kim, M.-K., Lee, J., Lee, J. E., Detrich, H. W., III, Postlethwait, J. H., Edwards, D., Lee, S. G., Lee, J. H., & Park, H. (2014) The Genome Sequence of the Antarctic Bullhead Notothen Reveals Evolutionary Adaptations to a Cold Environment. Genome Biol., 15, 468. (doi:10.1186/s13059-014-0468-1)
  3. Desvignes, T., Detrich, H. W., III, & Postlethwait, J. H. (2016) Genomic Conservation of Erythropoietic MicroRNAs (ErythromiRs) in White-Blooded Antarctic Icefish. Mar. Genomics 30, 27-34. (doi:10.1016/j.margen.2016.04.013)
  4. Hu, Y., Ghigliotti, L., Vacchi, M., Pisano, E., Detrich, H. W., III, & Albertson, R.C. (2016) Evolution in an Extreme Environment: Developmental Biases and Phenotypic Integration in the Adaptive Radiation of Antarctic Notothenioids. BMC Evol. Biol. 16, 142. (doi:10.1186/s12862-016-0704-2)
  5. Postlethwait, J. H., Yan, Y.-L., Desvignes, T., Allard, C., Titus, T., Le François, N. R., & Detrich, H. W., III. (2016) Embryogenesis and Early Skeletogenesis in the Antarctic Bullhead Notothen, Notothenia coriiceps. Dev. Dyn. 245, 1066-1080. (doi:10.1002/ DVDY.24437)
  6. Amores, A., Wilson, C. A., Allard, C. A. H., Detrich, H. W., III, & Postlethwait, J. H. (2017) Cold Fusion: Massive Karyotype Evolution in the Antarctic Bullhead Notothen Notothenia coriiceps. G3: Genes, Genomes, Genetics 7, 2195-2207. (doi:10.1534/g3.117.040063)
  7. Voskoboinikova, O., Detrich, H. W., III, Albertson, R. C., Postlethwait, J. H., Ghigliotti, L., & Pisano, E. (2017) Evolution Reshaped Life for the Water Column: The Skeleton of the Antarctic Silverfish Pleuragramma antarctica (Boulenger 1902). In: The Antarctic Silverfish. A Keystone Species in a Changing Ecosystem (Vacchi, M., Pisano, E., & Ghigliotti, L., Eds.), Advances in Polar Ecology 3, Springer International Publishing, pp. 3-26. (doi:10.1007/978-3-319-55893-6_1)
  8. Le François N. R., Sheehan, E., Desvignes, T., Belzile, C., Postlethwait, J. H., Detrich, H. W., III. (2017) Characterization and Husbandry of Wild Broodstock of the Blackfin Icefish Chaenocephalus aceratus (Lönnberg 1906) from the Palmer Archipelago (Southern Ocean) for Breeding Purposes. Polar Biol. 40, 2499-2516. (doi:10.1007/s00300-017-2161-9)
  9. Peters, M. J., Parker, S. K., Grim, J., Allard, C. A. H., Levin, J., & Detrich, H. W., III. (2018) Divergent hemogen Genes of Teleosts and Mammals Share Conserved Roles in Erythropoiesis: Analysis Using Transgenic and Mutant Zebrafish. Biology Open (BiO) 7, bio035576. (doi:10.1242/bio.035576)
  10. Berthelot, C., Clarke, J., Desvignes, T., Detrich, H. W., III, Flicek, P., Peck, L. S., Peters, M. J., Postlethwait, J. H., & Clark, M. S. (2018) Global Analysis of Protein Cold Adaptation in Antarctic Fish: An Important Role for Methionine? Genome Biol. Evol., evy262. (doi:10.1093/gbe/evy262)
  11. Kim, B.-M., Amores, A., Kang, S., Ahn, D.-H., Kim, J.-H., Kim, I.-C., Lee, J. H., Lee, S. G., Lee, H., Lee, J., Kim, H.-W., Desvignes, T., Batzel, P., Sydes, J., Titus, T., Wilson, C., Catchen, J. M., Warren, W. C., Schartl, M., Detrich, H. W., III, Postlethwait, J. H., & Park, H. (2019) Antarctic Blackfin Icefish Genome Reveals Adaptations to Extreme Environments. Nat. Ecol. Evol. 3, 469-478. (doi:10.1038/s41559-019-0812-7)
  12. Le François, N. R., Desvignes, T., Sheehan, E., Belzile, C., Savoie, A., Beirão, J., … Detrich, W. H. (2020). Toward controlled breeding of the blackfin icefish Chaenocephalus aceratus (Lönnberg 1906): determination of spermatozoa concentration and evaluation of short- and long-term preservation of semen. Polar Biology, 43(10), 1583–1593. (doi:10.1007/s00300-020-02729-9)
  13. Postlethwait, J. H., Yan, Y., Desvignes, T., Allard, C., Titus, T., Le François, N. R., & Detrich, H. W. (2016). Embryogenesis and early skeletogenesis in the antarctic bullhead notothen, Notothenia coriiceps. Developmental Dynamics, 245(11), 1066–1080. (doi:10.1002/dvdy.24437)
  14. Auvinet, J., Graça, P., Dettai, A., Amores, A., Postlethwait, J. H., Detrich, H. W., … Higuet, D. (2020). Multiple independent chromosomal fusions accompanied the radiation of the Antarctic teleost genus Trematomus (Notothenioidei:Nototheniidae). BMC Evolutionary Biology, 20(1). (doi:10.1186/s12862-020-1600-3)
Platforms and Instruments

This project has been viewed 30 times since May 2019 (based on unique date-IP combinations)