IEDA
Project Information
Quaternary Glacial History and Paleoenvironments of the East Antarctic Margin
Start Date:
2000-07-01
End Date:
2003-12-31
Description/Abstract
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a multi-institutional, international (US - Australia) marine geologic and geophysical investigation of Prydz Bay and the MacRobertson Shelf, to be completed during an approximately 60-day cruise aboard the RVIB N.B. Palmer. The primary objective is to develop a record of climate and oceanographic change during the Quaternary, using sediment cores collected via kasten and jumbo piston coring. Core sites will be selected based on seismic profiling (Seabeam 2112 and Bathy2000). Recognition of the central role of the Antarctic Ice Sheet to global oceanic and atmospheric systems is based primarily on data collected along the West Antarctic margin, while similar extensive and high resolution data sets from the much more extensive East Antarctic margin are sparse. Goals of this project include (1) development of a century- to millennial-scale record of Holocene paleoenvironments, and (2) testing of hypotheses concerning the sedimentary record of previous glacial and interglacial events on the shelf, and evaluation of the timing and extent of maximum glaciation along this 500 km stretch of the East Antarctic margin.

High-resolution seismic mapping and coring of sediments deposited in inner shelf depressions will be used to reconstruct Holocene paleoenvironments. In similar depositional settings in the Antarctic Peninsula and Ross Sea, sedimentary records demonstrate millennial- and century- scale variability in primary production and sea-ice extent during the Holocene, which have been linked to chronological periodicities in radiocarbon distribution, suggesting the possible role of solar variability in driving some changes in Holocene climate. Similar high-resolution Holocene records from the East Antarctic margin will be used to develop a circum-Antarctic suite of data regarding the response of southern glacial and oceanographic systems to late Quaternary climate change. In addition, these data will help us to evaluate the response of the East Antarctic margin to global warming.

Initial surveys of the Prydz Channel - Amery Depression region reveal sequences deposited during previous Pleistocene interglacials. The upper Holocene and lower (undated) siliceous units can be traced over 15,000 km2 of the Prydz Channel, but more sub-bottom seismic reflection profiling in conjunction with dense coring over this region is needed to define the spatial distribution and extent of the units. Chronological work will determine the timing and duration of previous periods of glacial marine sedimentation on the East Antarctic margin during the late Pleistocene.

Analyses will focus on detailed sedimentologic, geochemical, micropaleontological, and paleomagnetic techniques. This multi-parameter approach is the most effective way to extract a valuable paleoenvironmental signal in these glacial marine sediments. These results are expected to lead to a significant advance in understanding of the behavior of the Antarctic ice-sheet and ocean system in the recent geologic past.

The combination of investigators, all with many years of experience working in high latitude marine settings, will provide an effective team to complete the project. University and College faculty (Principal Investigators on this project) will supervise a combination of undergraduate and post-graduate students involved in all stages of the project so that educational objectives will be met in tandem with the research goals of the project.
Personnel
Person Role
Leventer, Amy Investigator
Funding
Antarctic Earth Sciences Award # 9909367
AMD - DIF Record(s)
Data Management Plan
None in the Database
Publications
  1. Scherer, R.P., 1994. A new method for the determination of absolute abundance of diatoms and other silt-sized sedimentary particles. Journal of Paleolimnology, 12(2), 71-179 (doi:10.1007/BF00678093)