Project Information
SGER - ?Raman Analysis of Ice-Core Samples

This award supports a Small Grant for Exploratory Research (SGER) for a project to conduct a limited scope, proof-of-concept study of the application of Raman spectroscopy to the analysis of ice cores. As a non-destructive analytical tool with high spatial resolution, Raman spectroscopy has found widespread application in situations where water is a major constituent in the sample, including marine science and the analysis of clathrates in ice-cores themselves. Raman can provide information at high enough sensitivity (ppm to ppb) to make its use as a non-destructive survey tool for ice core samples attractive. Laser-based techniques such as Raman can be used to obtain chemical information at near diffraction-limited resolution allowing particulates on the order of 1micron or less to be characterized. Preliminary work has demonstrated the selectivity of Raman spectroscopy for determining related polyatomic species (ions and compounds), and the ability to discern oxidation state from such analysis. In spite of the potential of this technique, instrumentation necessary to analyze ice core samples using micro-Raman spectroscopy with UV excitation is not readily available. Even with visible excitation, libraries of Raman spectra necessary for mixture de-convolution are not available. The proposed effort is a novel extension of Raman into the area of polar and climatic research, providing data on chemical speciation hitherto unavailable, of critical importance to the understanding of the biology present in glacial ice as well as the sources of particulate material found in ice cores. Since the availability of ice-core material at critical horizons is limited, this non-destructive technique will help to maximize the information obtained from these samples. The broader impacts of the work are that it will bring a new researcher into the field of polar ice core analysis and it has the potential to also bring a new non-destructive technique into the field. Finally, the research will take place at a predominately undergraduate institution in South Alabama with a large proportion (24% of undergraduates) of minority students. The proposed effort is high-risk because, although based upon established principles of vibrational spectroscopy, the application to the analytical problems of trace environmental analysis are unique, and the precision requirements are stringent. Moreover, this work will demonstrate the feasibility of an integrated approach to ice core analysis, while addressing specific problems in glaciology.
Person Role
Barletta, Robert Investigator
Antarctic Glaciology Award # 0828786
AMD - DIF Record(s)
Data Management Plan
None in the Database