[{"awards": "2437938 Goodge, John", "bounds_geometry": "POLYGON((155 -82,156 -82,157 -82,158 -82,159 -82,160 -82,161 -82,162 -82,163 -82,164 -82,165 -82,165 -82.3,165 -82.6,165 -82.9,165 -83.2,165 -83.5,165 -83.8,165 -84.1,165 -84.4,165 -84.7,165 -85,164 -85,163 -85,162 -85,161 -85,160 -85,159 -85,158 -85,157 -85,156 -85,155 -85,155 -84.7,155 -84.4,155 -84.1,155 -83.8,155 -83.5,155 -83.2,155 -82.9,155 -82.6,155 -82.3,155 -82))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 16 Jan 2025 00:00:00 GMT", "description": "Non-Technical Abstract This project will examine ancient Antarctic rocks to understand the continent\u2019s early history, including how Antarctica was once connected to other continents. By studying rock samples from the Nimrod Complex, the project will gather data on the age and makeup of these rocks, showing how Antarctica\u0027s crust formed and changed over time. This work will not only expand scientific knowledge about Earth\u0027s history but also provide valuable training for college students at multiple universities, helping to grow a diverse community of researchers who can tackle big questions in Earth science. Technical Abstract This project seeks to unravel the origin, evolution, and geological significance of the Nimrod Complex in Antarctica\u2019s East Antarctic craton through detailed age and isotopic analysis of its igneous and metamorphic rocks. Using U-Pb zircon geochronology along with O-isotope, Hf-isotope, and trace element analyses, we will construct a comprehensive petrochronological profile of these Mesoarchean to Paleoproterozoic rocks to reveal their magmatic sources, metamorphic history, and role in the broader tectonic framework. The project aims to trace sediment sources and tectonic influences across sedimentary units spanning the Paleoproterozoic to lower Paleozoic eras, adding crucial data to supercontinent reconstructions (Columbia, Rodinia, and Gondwana) and Antarctic tectonic models. Broader impacts include collaborations between universities to develop a diverse STEM workforce, inter-laboratory partnerships, and a robust isotopic dataset that will contribute to models of Antarctic crustal evolution and its implications for ice sheet stability. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 165.0, "geometry": "POINT(160 -83.5)", "instruments": null, "is_usap_dc": true, "keywords": "ISOTOPES; Miller Range; Geologists Range; Zircon; Transantarctic Mountains; FIELD INVESTIGATION", "locations": "Transantarctic Mountains; Miller Range; Geologists Range", "north": -82.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "ARCHAEAN \u003e MESOARCHEAN; ARCHAEAN \u003e NEOARCHEAN; PROTEROZOIC \u003e MESOPROTEROZOIC; PROTEROZOIC \u003e PALEOPROTEROZOIC; PROTEROZOIC \u003e NEOPROTEROZOIC", "persons": "Goodge, John; Kylander-Clark, Andrew; Bell, Elizabeth; Pecha, Mark", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": -85.0, "title": "The Nimrod Complex, an Ancient Window into East Antarctic Crustal Evolution", "uid": "p0010495", "west": 155.0}, {"awards": "8020002 Kyle, Philip", "bounds_geometry": "POLYGON((163.6 -73,163.76 -73,163.92 -73,164.07999999999998 -73,164.23999999999998 -73,164.39999999999998 -73,164.56 -73,164.72 -73,164.88 -73,165.04 -73,165.2 -73,165.2 -73.05,165.2 -73.1,165.2 -73.15,165.2 -73.2,165.2 -73.25,165.2 -73.3,165.2 -73.35,165.2 -73.4,165.2 -73.45,165.2 -73.5,165.04 -73.5,164.88 -73.5,164.72 -73.5,164.56 -73.5,164.39999999999998 -73.5,164.23999999999998 -73.5,164.07999999999998 -73.5,163.92 -73.5,163.76 -73.5,163.6 -73.5,163.6 -73.45,163.6 -73.4,163.6 -73.35,163.6 -73.3,163.6 -73.25,163.6 -73.2,163.6 -73.15,163.6 -73.1,163.6 -73.05,163.6 -73))", "dataset_titles": "Mount Overlord, northern Victoria Land. Age, mineralogical and geochemical data", "datasets": [{"dataset_uid": "601799", "doi": "10.15784/601799", "keywords": "Antarctica; Cryosphere; Geochemistry; Mount Overlord", "people": "Kyle, Philip", "repository": "USAP-DC", "science_program": null, "title": "Mount Overlord, northern Victoria Land. Age, mineralogical and geochemical data", "url": "https://www.usap-dc.org/view/dataset/601799"}], "date_created": "Tue, 29 Oct 2024 00:00:00 GMT", "description": "Not Available", "east": 165.2, "geometry": "POINT(164.39999999999998 -73.25)", "instruments": null, "is_usap_dc": true, "keywords": "Victoria Land; LAVA COMPOSITION/TEXTURE; FIELD INVESTIGATION; FIELD SURVEYS; GEOCHEMISTRY", "locations": "Victoria Land", "north": -73.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kyle, Philip", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -73.5, "title": "Petrogenesis of the McMurdo Volcanic Group and the Nature of the Subcontinental Mantle in Victoria Land, Antarctica", "uid": "p0010487", "west": 163.6}, {"awards": "1443522 Wannamaker, Philip", "bounds_geometry": "POLYGON((166 -77.15,166.34 -77.15,166.68 -77.15,167.02 -77.15,167.36 -77.15,167.7 -77.15,168.04 -77.15,168.38 -77.15,168.72 -77.15,169.06 -77.15,169.4 -77.15,169.4 -77.22500000000001,169.4 -77.30000000000001,169.4 -77.375,169.4 -77.45,169.4 -77.525,169.4 -77.60000000000001,169.4 -77.67500000000001,169.4 -77.75,169.4 -77.825,169.4 -77.9,169.06 -77.9,168.72 -77.9,168.38 -77.9,168.04 -77.9,167.7 -77.9,167.36 -77.9,167.02 -77.9,166.68 -77.9,166.34 -77.9,166 -77.9,166 -77.825,166 -77.75,166 -77.67500000000001,166 -77.60000000000001,166 -77.525,166 -77.45,166 -77.375,166 -77.30000000000001,166 -77.22500000000001,166 -77.15))", "dataset_titles": "Erebus volcano/Ross Island Magnetotelluric (MT) data", "datasets": [{"dataset_uid": "601493", "doi": "10.15784/601493", "keywords": "Antarctica; Mantle Melting; Mount Erebus", "people": "Wannamaker, Philip; Hill, Graham", "repository": "USAP-DC", "science_program": null, "title": "Erebus volcano/Ross Island Magnetotelluric (MT) data", "url": "https://www.usap-dc.org/view/dataset/601493"}], "date_created": "Mon, 05 Feb 2024 00:00:00 GMT", "description": "General Description: This project is intended to reveal the magma source regions, staging areas, and eruptive pathways within the active volcano Mount Erebus. This volcano is an end-member type known as phonolitic, which refers to the lava composition, and is almost purely carbon-dioxide-bearing and occurs in continental rift settings. It is in contrast to the better known water-bearing volcanoes which occur at plate boundary settings (such as Mount St Helens or Mount Fuji). Phonolitic volcanic eruptions elsewhere such as Tamboro or Vesuvius have caused more than 50,000 eruption related fatalities. Phonolites are also associated with rare earth element deposits, giving them economic interest. To illuminate the inner workings of Mount Erebus, we will cover the volcano with a dense network of geophysical probes based on magnetotelluric (MT) measurements. MT makes use of naturally occurring electromagnetic (EM) waves generated mainly by the sun as sources to provide images of the electrical conductivity structure of the Earth\u0027s interior. Conductivity is sensitive to the presence of fluids and melts in the Earth and so is well suited to understanding volcanic processes. The project is a cooperative effort between scientists from the United States, New Zealand, Japan and Canada. It implements new technology developed by the lead investigator and associates that allows such measurements to be taken on snow-covered terrains. This has applicability for frozen environments generally, such as resource exploration in the Arctic. The project supports a new post-doctoral researcher, and leverages imaging and measurement methods developed through support by other agencies and interfaced with commercial platforms. Technical Description: The investigators propose to test magmatic evolution models for Mount Erebus volcano, Antarctica, using the magnetotelluric (MT) method. The phonolite lava flow compositions on Mount Erebus are uncommon, but provide a window into the range of upper mantle source compositions and melt differentiation paths. Explosive phonolite eruptions have been known worldwide for devastating eruptions such as Tambora and Vesuvius, and commonly host rare earth element deposits. In the MT method, temporal variations in the Earth\u0027s natural electromagnetic (EM) field are used as source fields to probe the electrical resistivity structure in the depth range of 1 to 100 kilometers. This effort will consist of approximately 100 MT sites, with some concentration in the summit area. Field acquisition will take place over two field seasons. The main goals are to 1) confirm the existence and the geometry of the uppermost magma chamber thought to reside at 5-10 kilometer depths; 2) attempt to identify, in the deeper resistivity structure, the magma staging area near the crust-mantle boundary; 3) image the steep, crustal-scale, near-vertical conduit carrying magma from the mantle; 4) infer the physical and chemical state from geophysical properties of a CO2-dominated mafic shield volcano; and 5) constrain the relationships between structural and magmatic/ hydrothermal activity related to the Terror Rift. Tomographic imaging of the interior resistivity will be performed using a new inversion platform developed at Utah, based on the deformable edge finite element method, that is the best available for accommodating the steep topography of the study area. The project is an international cooperation between University of Utah, GNS Science Wellington New Zealand (G. Hill, Co-I), and Tokyo Institute of Technology Japan (Y. Ogawa, Co-I), plus participation by University of Alberta (M. Unsworth) and Missouri State University (K. Mickus). Instrument deployments will be made exclusively by helicopter. The project implements new technology that allows MT measurements to be taken on snow-covered terrains. The project supports a new post-doctoral researcher, and leverages imaging and measurement methods developed through support by other agencies and interfaced with commercial platforms.", "east": 169.4, "geometry": "POINT(167.7 -77.525)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS", "is_usap_dc": true, "keywords": "MAGNETIC FIELD; FIELD SURVEYS; Ross Island; Magnetotelluric; Mount Erebus", "locations": "Ross Island; Mount Erebus", "north": -77.15, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Wannamaker, Philip", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Magma Sources, Residence and Pathways of Mount Erebus Phonolitic Volcano, Antarctica, from Magnetotelluric Resistivity Structure", "uid": "p0010444", "west": 166.0}, {"awards": "2224760 Gooseff, Michael", "bounds_geometry": "POINT(162.87 -77)", "dataset_titles": "EDI Data Portal: McMurdo Dry Valleys LTER", "datasets": [{"dataset_uid": "200379", "doi": "", "keywords": null, "people": null, "repository": "Environmental Data Initiative (EDI)", "science_program": null, "title": "EDI Data Portal: McMurdo Dry Valleys LTER", "url": "https://portal.edirepository.org/nis/browseServlet?searchValue=MCM"}], "date_created": "Tue, 14 Nov 2023 00:00:00 GMT", "description": "Non-technical Abstract The McMurdo Dry Valleys LTER seeks to understand how changes in the temporal variability of ecological connectivity interact with existing landscape legacies to alter the structure and functioning of this extreme polar desert ecosystem. This research has broad implications, as it will help us to understand how natural ecosystems respond to ongoing anthropogenic global change. At the same time, this project also serves an important educational and outreach function, providing immersive research and educational experiences to students and artists from diverse backgrounds, and helping to ensure a diverse and well-trained next generation of leaders in polar ecosystem science and stewardship. Ultimately, the results of this project will help us to better understand and prepare for the effects of climate change and develop scientific insights that are relevant far beyond Antarctic ecosystems. The McMurdo Dry Valleys (MDVs) make up an extreme polar desert ecosystem in the largest ice-free region of Antarctica. The organisms in this ecosystem are generally small. Bacteria, microinvertebrates, cyanobacterial mats, and phytoplankton can be found across the streams, soils, glaciers, and ice-covered lakes. These organisms have adapted to the cold and arid conditions that prevail outside of lakes for all but a brief period in the austral summer when the ecosystem is connected by liquid water. In the summer when air temperatures rise barely above freezing, soils warm and glacial meltwater flows through streams into the open moats of lakes. Most biological activity across the landscape occurs in summer. Through the winter, or polar night (6 months of darkness), glaciers, streams, and soil biota are inactive until sufficient light, heat, and liquid water return, while lake communities remain active all year. Over the past 30 years, the MDVs have been disturbed by cooling, heatwaves, floods, rising lake levels, as well as permafrost and lake ice thaw. Considering the clear ecological responses to this variation in physical drivers, and climate models predicting further warming and more precipitation, the MDV ecosystem sits at a threshold between the current extreme cold and dry conditions and an uncertain future. This project seeks to determine how important the legacy of past events and conditions versus current physical and biological interactions shape the current ecosystem. Four hypotheses will be tested, related to 1) whether the status of specific organisms are indicative ecosystem stability, 2) the relationship between legacies of past events to current ecosystem resilience (resistance to big changes), 3) carryover of materials between times of high ecosystem connectivity and activity help to maintain ecosystem stability, and 4) changes in disturbances affect how this ecosystem persists through the annual polar night (i.e., extended period of dark and cold). Technical Abstract In this iteration of the McMurdo LTER project (MCM6), the project team will test ecological connectivity and stability theory in a system subject to strong physical drivers (geological legacies, extreme seasonality, and contemporary climate change) and driven by microbial organisms. Since microorganisms regulate most of the world\u2019s critical biogeochemical functions, these insights will be relevant far beyond polar ecosystems and will inform understanding and expectations of how natural and managed ecosystems respond to ongoing anthropogenic global change. MCM6 builds on previous foundational research, both in Antarctica and within the LTER network, to consider the temporal aspects of connectivity and how it relates to ecosystem stability. The project will examine how changes in the temporal variability of ecological connectivity interact with the legacies of the existing landscape that have defined habitats and biogeochemical cycling for millennia. The project team hypothesizes that the structure and functioning of the MDV ecosystem is dependent upon legacies and the contemporary frequency, duration, and magnitude of ecological connectivity. This hypothesis will be tested with new and continuing monitoring, experiments, and analyses of long-term datasets to examine: 1) the stability of these ecosystems as reflected by sentinel taxa, 2) the relationship between ecological legacies and ecosystem resilience, 3) the importance of material carryover during periods of low connectivity to maintaining biological activity and community stability, and 4) how changes in disturbance dynamics disrupt ecological cycles through the polar night. Tests of these hypotheses will occur in field and modeling activities using new and long-term datasets already collected. New datasets resulting from field activities will be made freely available via widely-known online databases (MCM LTER and EDI). The project team has also developed six Antarctic Core Ideas that encompass themes from data literacy to polar food webs and form a consistent thread across the education and outreach activities. Building on past success, collaborations will be established with teachers and artists embedded within the science teams, who will work to develop educational modules with science content informed by direct experience and artistic expression. Undergraduate mentoring efforts will incorporate computational methods through a new data-intensive scientific training program for MCM REU students. The project will also establish an Antarctic Research Experience for Community College Students at CU Boulder, to provide an immersive educational and research experience for students from diverse backgrounds in community colleges. MCM LTER will continue its mission of training and mentoring students, postdocs, and early career scientists as the next generation of leaders in polar ecosystem science and stewardship. Historically underrepresented participation will be expanded at each level of the project. To aid in these efforts, the project has established Education \u0026 Outreach and Diversity, Equity, and Inclusion committees to lead, coordinate, support, and integrate these activities through all aspects of MCM6. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 162.87, "geometry": "POINT(162.87 -77)", "instruments": null, "is_usap_dc": true, "keywords": "COMMUNITY DYNAMICS; ABLATION ZONES/ACCUMULATION ZONES; SOIL TEMPERATURE; DIATOMS; FIELD INVESTIGATION; PERMANENT LAND SITES; BUOYS; GROUND-BASED OBSERVATIONS; SEDIMENTS; SNOW WATER EQUIVALENT; SPECIES/POPULATION INTERACTIONS; WATER-BASED PLATFORMS; FIXED OBSERVATION STATIONS; VIRUSES; PHYTOPLANKTON; ACTIVE LAYER; FIELD SURVEYS; RADIO TRANSMITTERS; DATA COLLECTIONS; ECOLOGICAL DYNAMICS; LANDSCAPE; GROUND WATER; SNOW/ICE CHEMISTRY; LAND-BASED PLATFORMS; ANIMALS/INVERTEBRATES; ECOSYSTEM FUNCTIONS; HUMIDITY; GEOCHEMISTRY; SURFACE WINDS; RIVERS/STREAM; GLACIER MASS BALANCE/ICE SHEET MASS BALANCE; SNOW; LAND RECORDS; ATMOSPHERIC PRESSURE; SURFACE TEMPERATURE; ATMOSPHERIC RADIATION; BACTERIA/ARCHAEA; AIR TEMPERATURE; GLACIERS; SNOW/ICE TEMPERATURE; SOIL CHEMISTRY; METEOROLOGICAL STATIONS; WATER QUALITY/WATER CHEMISTRY; TERRESTRIAL ECOSYSTEMS; MOORED; PROTISTS; STREAMFLOW STATION; Dry Valleys; LAKE/POND; LAKE ICE; SNOW DEPTH; AQUATIC ECOSYSTEMS; SNOW DENSITY; FIELD SITES", "locations": "Dry Valleys", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Integrated System Science", "paleo_time": null, "persons": "Gooseff, Michael N.; Adams, Byron; Barrett, John; Diaz, Melisa A.; Doran, Peter; Dugan, Hilary A.; Mackey, Tyler; Morgan-Kiss, Rachael; Salvatore, Mark; Takacs-Vesbach, Cristina; Zeglin, Lydia H.", "platforms": "LAND-BASED PLATFORMS; LAND-BASED PLATFORMS \u003e FIELD SITES; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e DATA COLLECTIONS; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e RADIO TRANSMITTERS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e METEOROLOGICAL STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e STREAMFLOW STATION; WATER-BASED PLATFORMS; WATER-BASED PLATFORMS \u003e BUOYS; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED \u003e BUOYS", "repo": "Environmental Data Initiative (EDI)", "repositories": "Environmental Data Initiative (EDI)", "science_programs": "LTER", "south": -77.0, "title": "LTER: MCM6 - The Roles of Legacy and Ecological Connectivity in a Polar Desert Ecosystem", "uid": "p0010440", "west": 162.87}, {"awards": "0944018 Lazzara, Matthew; 0943952 Cassano, John", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctic Automatic Weather Stations", "datasets": [{"dataset_uid": "200375", "doi": "https://doi.org/10.48567/1hn2-nw60", "keywords": null, "people": null, "repository": "Antarctic Meteorological Research and Data Center", "science_program": null, "title": "Antarctic Automatic Weather Stations", "url": "https://amrdcdata.ssec.wisc.edu/dataset?q=0944018+"}], "date_created": "Fri, 20 Oct 2023 00:00:00 GMT", "description": "The Antarctic Automatic Weather Station (AWS) network, first commenced in 1978, is the most extensive meteorological observing system on the Antarctic continent, approaching its 30th year at many of its key sites. Its prime focus as a long term observational record is vital to the measurement of the near surface climatology of the Antarctic atmosphere. AWS units measure air-temperature, pressure, wind speed and direction at a nominal surface height of 3m. Other parameters such as relative humidity and snow accumulation may also be taken. Observational data from the AWS are collected via the DCS Argos system aboard either NOAA or MetOp polar orbiting satellites and thus made available globally, in near real time via the GTS (Global Telecommunications System), to operational and synoptic weather forecasters. The surface observations from the AWS network also are often used to check on satellite and remote sensing observations, and the simulations of Global Climate Models (GCMs). Research instances of its use in this project include continued development of the climatology of the Antarctic atmosphere and surface wind studies of the Ross Ice Shelf. The AWS observations benefit the broader earth system science community, supporting research activities ranging from paleoclimate studies to penguin phenology.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; DATA COLLECTIONS; SURFACE PRESSURE; HUMIDITY; AIR TEMPERATURE; FIELD SITES; LAND-BASED PLATFORMS; SURFACE WINDS; WEATHER STATIONS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew; Cassano, John", "platforms": "LAND-BASED PLATFORMS; LAND-BASED PLATFORMS \u003e FIELD SITES; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e DATA COLLECTIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e WEATHER STATIONS", "repo": "Antarctic Meteorological Research and Data Center", "repositories": "Antarctic Meteorological Research and Data Center", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Antarctic Automatic Weather Station Program", "uid": "p0010438", "west": -180.0}, {"awards": "2035078 Giometto, Marco; 2034874 Salesky, Scott", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 08 Sep 2023 00:00:00 GMT", "description": "1. A non-technical explanation of the project\u0027s broader significance and importance, that serves as a public justification for NSF funding. This part should be understandable to an educated reader who is not a scientist or engineer. Katabatic or drainage winds, carry high-density air from a higher elevation down a slope under the force of gravity. Although katabatic flows are ubiquitous in alpine and polar regions, a surface-layer similarity theory is currently lacking for these flows, undermining the accuracy of numerical weather and climate prediction models. This project is interdisciplinary, and will give graduate and undergraduate students valuable experience interacting with researchers outside their core discipline. Furthermore, this project will broaden participating in science through recruitment of students from under-represented groups at OU and CU through established programs. The Antarctic Ice Sheet drives many processes in the Earth system through its modulation of regional and global atmospheric and oceanic circulations, storage of fresh water, and effects on global albedo and climate. An understanding of the surface mass balance of the ice sheets is critical for predicting future sea level rise and for interpreting ice core records. Yet, the evolution of the ice sheets through snow deposition, erosion, and transport in katabatic winds (which are persistent across much of the Antarctic) remains poorly understood due to the lack of an overarching theoretical framework, scarcity of in situ observational datasets, and a lack of accurate numerical modeling tools. Advances in the fundamental understanding and modeling capabilities of katabatic transport processes are urgently needed in view of the future climatic and snowfall changes that are projected to occur within the Antarctic continent. This project will leverage the expertise of a multidisciplinary team of investigators (with backgrounds spanning cryospheric science, environmental fluid mechanics, and atmospheric science) to address these knowledge gaps. 2. A technical description of the project that states the problem to be studied, the goals and scope of the research, and the methods and approaches to be used. In many cases, the technical project description may be a modified version of the project summary submitted with the proposal. Using field observations and direct numerical simulations of katabatic flow, this project is expected--- for the first time---to lead to a surface-layer similarity theory for katabatic flows relating turbulent fluxes to mean vertical gradients. The similarity theory will be used to develop surface boundary conditions for large eddy simulations (LES), enabling the first accurate LES of katabatic flow. The numerical tools that the PIs will develop will allow them to investigate how the partitioning between snow redistribution, transport, and sublimation depends on the environmental parameters typically encountered in Antarctica (e.g. atmospheric stratification, surface sloping angles, and humidity profiles), and to develop simple models to infer snow transport based on satellite remote sensing and regional climate models This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "TURBULENCE; ATMOSPHERIC RADIATION; DATA COLLECTIONS; SNOW/ICE; SNOW; FIELD INVESTIGATION; AIR TEMPERATURE; HUMIDITY", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Salesky, Scott; Giometto, Marco; Das, Indrani", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e DATA COLLECTIONS; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Snow Transport in Katabatic Winds and Implications for the Antarctic Surface Mass Balance: Observations, Theory, and Numerical Modeling", "uid": "p0010433", "west": null}, {"awards": "1841844 Steig, Eric; 1841858 Souney, Joseph; 1841879 Aydin, Murat", "bounds_geometry": "POINT(-105 -86)", "dataset_titles": null, "datasets": null, "date_created": "Mon, 06 Feb 2023 00:00:00 GMT", "description": "The goal of this project is to drill and recover an ice core from Hercules Dome, Antarctica. The geographic setting of Hercules Dome makes it well-situated to investigate changes in the size of the West Antarctic ice sheet over long time periods. The base of the West Antarctic ice sheet lies below sea level, which makes this part of Antarctica vulnerable to melting from the relatively warm deep water of the Southern Ocean. An important research question is whether the West Antarctic Ice Sheet collapsed during Earth\u0027s last prolonged warm period, about 125,000 years ago, when the ocean was warmer and sea level was several meters higher than today. Evidence for or against such a collapse will be recorded in the chemistry and physical properties of the ice. The Hercules Dome ice core will be obtained over three to four field seasons in Antarctica using efficient drilling technology. This grant includes support for project management, pre-drilling science community engagement, ice-core recovery, and education and outreach activities. Hercules Dome is located at the edge of the East Antarctic ice sheet, south of the Transantarctic Mountains at 86 degrees South, 105 degrees West. Glaciological conditions at Hercules Dome are simple, with well-defined layering to the bed, optimal for the recovery of a deep ice core reaching to the last interglacial period at depths between 1600 and 2800 meters. An ice core from Hercules Dome will provide a research opportunity for ice-core analysts and others to make progress on a number of science priorities, including the environmental conditions of the last interglacial period, the history of gases and aerosols, and the magnitude and timing of changes in temperature and snow accumulation over the last 150,000 years. Together with the network of ice cores obtained by U.S. and international researchers over the last few decades, results from Hercules Dome will yield improved estimates of the boundary conditions necessary for the implementation and validation of ice-sheet models critical to the projection of future Antarctic ice-sheet change and sea level. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -105.0, "geometry": "POINT(-105 -86)", "instruments": null, "is_usap_dc": true, "keywords": "ICE SHEETS; Hercules Dome; FIELD SURVEYS; AIR TEMPERATURE; SNOW/ICE CHEMISTRY; GLACIER ELEVATION/ICE SHEET ELEVATION; PALEOCLIMATE RECONSTRUCTIONS", "locations": "Hercules Dome", "north": -86.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Steig, Eric J.; Fudge, T. J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": "Hercules Dome Ice Core", "south": -86.0, "title": "Collaborative Research: An Ice Core from Hercules Dome, East Antarctica", "uid": "p0010401", "west": -105.0}, {"awards": "1625904 TBD", "bounds_geometry": "POLYGON((166 -77.5,166.4 -77.5,166.8 -77.5,167.2 -77.5,167.6 -77.5,168 -77.5,168.4 -77.5,168.8 -77.5,169.2 -77.5,169.6 -77.5,170 -77.5,170 -77.75,170 -78,170 -78.25,170 -78.5,170 -78.75,170 -79,170 -79.25,170 -79.5,170 -79.75,170 -80,169.6 -80,169.2 -80,168.8 -80,168.4 -80,168 -80,167.6 -80,167.2 -80,166.8 -80,166.4 -80,166 -80,166 -79.75,166 -79.5,166 -79.25,166 -79,166 -78.75,166 -78.5,166 -78.25,166 -78,166 -77.75,166 -77.5))", "dataset_titles": "Sarah PCWS unmodified ten-minute observational data, 2020 - present (ongoing).; Skomik PCWS unmodified ten-minute observational data, 2022 - present (ongoing).", "datasets": [{"dataset_uid": "200340", "doi": "https://doi.org/10.48567/h6qx-0613", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Skomik PCWS unmodified ten-minute observational data, 2022 - present (ongoing).", "url": "https://amrdcdata.ssec.wisc.edu/dataset/skomik-pcws-unmodified-ten-minute-observational-data-2022-present-ongoing"}, {"dataset_uid": "200341", "doi": "https://doi.org/10.48567/q4eh-nm67", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Sarah PCWS unmodified ten-minute observational data, 2020 - present (ongoing).", "url": "https://amrdcdata.ssec.wisc.edu/dataset/sarah-pcws-unmodified-ten-minute-observational-data-2022-present-ongoing"}], "date_created": "Mon, 12 Dec 2022 00:00:00 GMT", "description": "Our knowledge of Antarctic weather and climate relies on only a handful of direct observing stations located on this harsh and remote continent. This observing system reports meteorological measurements from an existing network of automatic weather stations (AWS) spread across a vast area. This MRI project will enable the development, testing and eventual deployment of a next generation of polar automatic climate and weather observing stations for unattended use in the Antarctic. The proposed new Automatic Weather Station (AWS) system will enhance the capabilities and accuracy of the meteorological observations, enabling climate quality measurements. This project will involve development of a more capable instrumentation core, with two major goals. The first goal is to lower the cost for an AWS electronic core to 3 times less than currently employed systems. The second is to enable an onboard temperature calibration capability, an innovative development for the Antarctic AWS. The capability for onboard calibration will add confidence in the critical climate measure of ambient temperature, along with other standard meteorological parameters. Observations made by a modernized AWS network will inform and extend future numerical climate modeling efforts, improve operational weather forecasts, capture weather phenomena, and support environmental science research in other disciplines. A theme of the project is the inclusion of community college students in all aspects of the effort. With an eye on training the next generation of research instrumentation expertise, while involving other science, technology, engineering and mathematics (STEM) fields, undergraduate students will be involved in the development, testing and deployment of new AWS systems. As well as reporting, data analysis and publication of scientific knowledge, students intending to transfer to a 4-year university, as well as those pursuing electronics or electrical engineering associate degrees will be introduced to weather and climate topics. This MRI award was supported with funds from the Division of Polar Programs and the Division of Atmospheric and Geospace Sciences, both of the Directorate of Geosciences.", "east": 170.0, "geometry": "POINT(168 -78.75)", "instruments": null, "is_usap_dc": true, "keywords": "ATMOSPHERIC WINDS; Madison Area Technical College; SNOW/ICE; SURFACE PRESSURE; ATMOSPHERIC RADIATION; HUMIDITY; AIR TEMPERATURE; METEOROLOGICAL STATIONS; WEATHER STATIONS", "locations": "Madison Area Technical College", "north": -77.5, "nsf_funding_programs": null, "paleo_time": null, "persons": "Lazzara, Matthew; Cassano, John; L\u0027\u0027Ecuyer, Tristan; Kulie, Mark", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e METEOROLOGICAL STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e WEATHER STATIONS", "repo": "AMRDC", "repositories": "AMRDC", "science_programs": null, "south": -80.0, "title": "MRI: Development of a Modern Polar Climate and Weather Automated Observing System", "uid": "p0010396", "west": 166.0}, {"awards": "1916982 Teyssier, Christian; 1917176 Siddoway, Christine; 1917009 Thomson, Stuart", "bounds_geometry": "POLYGON((-160.16 -67.15,-154.572 -67.15,-148.984 -67.15,-143.39600000000002 -67.15,-137.808 -67.15,-132.22 -67.15,-126.632 -67.15,-121.04400000000001 -67.15,-115.456 -67.15,-109.868 -67.15,-104.28 -67.15,-104.28 -68.165,-104.28 -69.18,-104.28 -70.19500000000001,-104.28 -71.21000000000001,-104.28 -72.225,-104.28 -73.24,-104.28 -74.255,-104.28 -75.27,-104.28 -76.285,-104.28 -77.3,-109.868 -77.3,-115.456 -77.3,-121.044 -77.3,-126.632 -77.3,-132.22 -77.3,-137.808 -77.3,-143.396 -77.3,-148.98399999999998 -77.3,-154.572 -77.3,-160.16 -77.3,-160.16 -76.285,-160.16 -75.27,-160.16 -74.255,-160.16 -73.24,-160.16 -72.225,-160.16 -71.21000000000001,-160.16 -70.19500000000001,-160.16 -69.18,-160.16 -68.165,-160.16 -67.15))", "dataset_titles": "Apatite fission track thermochronology data for detrital minerals, offshore clasts, and bedrock; U-Pb detrital zircon geochronological data, obtained by LA-ICP-MS", "datasets": [{"dataset_uid": "200333", "doi": "", "keywords": null, "people": null, "repository": "in progress", "science_program": null, "title": "Apatite fission track thermochronology data for detrital minerals, offshore clasts, and bedrock", "url": ""}, {"dataset_uid": "200332", "doi": "", "keywords": null, "people": null, "repository": "in progress", "science_program": null, "title": "U-Pb detrital zircon geochronological data, obtained by LA-ICP-MS", "url": ""}], "date_created": "Wed, 19 Oct 2022 00:00:00 GMT", "description": "Sediment records off the coast of Marie Byrd Land (MBL), Antarctica suggest frequent and dramatic changes in the size of the West Antarctic Ice Sheet (WAIS) over short (tens of thousands of years) and long (millions of years) time frames in the past. WAIS currently overrides much of MBL and covers the rugged and scoured bedrock landscape. The ice sheet carved narrow linear troughs that reach depths of two to three thousand meters below sea level as outlet glaciers flowed from the interior of the continent to the oceans. As a result, large volumes of fragmented continental bedrock were carried out to the seabed. The glaciers cut downward into a region of crystalline rocks (i.e. granite) whose temperature change as a function of rock depth happens to be significant. This strong geothermal gradient in the bedrock is favorable for determining when the bedrock experienced rapid exhumation or \"uncovering\". Analyzing the chemistry of minerals (zircon and apatite) within the eroded rocks will provide information about the rate and timing of the glacier removal of bedrock from the Antarctic continent. The research addresses the following questions: When did the land become high enough for a large ice sheet to form? What was the regional pre-glacial topography? Under what climate conditions, and at what point in the growth of an ice sheet, did glaciers begin to cut sharply into bedrock to form the narrow troughs that flow seaward? The research will lead to greater understanding of past Antarctic ice sheet fluctuations and identify precise timing of glacial incision. These results will refine ice sheet history and aid the international societal response to contemporary ice sheet change and its global consequences. The project will contribute to the training of two graduate and two undergraduate students in STEM. The objective is to clarify the onset of WAIS glacier incision and assess the evolution of Cenozoic paleo-topography. Low-temperature (T) thermochronology and Pecube 3-D thermo-kinematic modeling will be applied to date and characterize episodes of glacial erosional incision. Single-grain double- and triple-dating of zircon and apatite will reveal the detailed crustal thermal evolution of the region enabling the research team to determine the comparative topographic influences on glaciation versus bedrock uplift induced by Eocene to present tectonism/magmatism. High-T mineral thermochronometers across Marie Byrd Land (MBL) record rapid extension-related cooling at ~100 Ma from temperatures of \u003e800 degrees C to \u0026#8804; 300 degrees C. This signature forms a reference horizon, or paleogeotherm, through which the Cenozoic landscape history using low-T thermochronometers can be explored. MBL\u0027s elevated geothermal gradient, sustained during the Cenozoic, created favorable conditions for sensitive apatite and zircon low-T thermochronometers to record bedrock cooling related to glacial incision. Students will be trained to use state-of-the-art analytical facilities in Arizona and Minnesota, expanding the geo- and thermochronologic history of MBL from bedrock samples and offshore sedimentary deposits. The temperature and time data they acquire will provide constraints on paleotopography, isostasy, and the thermal evolution of MBL that will be modeled in 3D using Pecube model simulations. Within hot crust, less incision is required to expose bedrock containing the distinct thermochronometric profile; a prediction that will be tested with inverse Pecube 3-D models of the thermal field through which bedrock and detrital samples cooled. Using results from Pecube, the ICI-Hot team will examine time-varying topography formed in response to changes in erosion rates, topographic relief, geothermal gradient and/or flexural isostatic rigidity. These effects are manifestations of dynamic processes in the WAIS, including ice sheet loading, ice volume fluctuations, relative motion upon crustal faults, and magmatism-related elevation increase across the MBL dome. The project makes use of pre-existing sample collections housed at the US Polar Rock Repository, IODP\u0027s Gulf Coast Core Repository, and the Antarctic Marine Geology Research Facility. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -104.28, "geometry": "POINT(-132.22 -72.225)", "instruments": null, "is_usap_dc": true, "keywords": "Marie Byrd Land; GLACIERS/ICE SHEETS; Zircon; Subglacial Topography; FIELD SURVEYS; TECTONICS; Ice Sheet; Thermochronology; Apatite; ROCKS/MINERALS/CRYSTALS; Erosion; United States Of America; LABORATORY", "locations": "United States Of America; Marie Byrd Land", "north": -67.15, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC", "persons": "Siddoway, Christine; Thomson, Stuart; Teyssier, Christian", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "in progress", "repositories": "in progress", "science_programs": null, "south": -77.3, "title": "Collaborative Research: Ice sheet erosional interaction with hot geotherm in West Antarctica", "uid": "p0010386", "west": -160.16}, {"awards": "2020728 Huber, Brian; 2026648 Tobin, Thomas; 2025724 Harwood, David", "bounds_geometry": "POLYGON((-56.93 -64.2,-56.894 -64.2,-56.858 -64.2,-56.822 -64.2,-56.786 -64.2,-56.75 -64.2,-56.714 -64.2,-56.678 -64.2,-56.642 -64.2,-56.606 -64.2,-56.57 -64.2,-56.57 -64.214,-56.57 -64.22800000000001,-56.57 -64.242,-56.57 -64.256,-56.57 -64.27000000000001,-56.57 -64.284,-56.57 -64.298,-56.57 -64.312,-56.57 -64.32600000000001,-56.57 -64.34,-56.606 -64.34,-56.642 -64.34,-56.678 -64.34,-56.714 -64.34,-56.75 -64.34,-56.786 -64.34,-56.822 -64.34,-56.858 -64.34,-56.894 -64.34,-56.93 -64.34,-56.93 -64.32600000000001,-56.93 -64.312,-56.93 -64.298,-56.93 -64.284,-56.93 -64.27000000000001,-56.93 -64.256,-56.93 -64.242,-56.93 -64.22800000000001,-56.93 -64.214,-56.93 -64.2))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 15 Sep 2022 00:00:00 GMT", "description": "Non-technical description: This 4-year project is evaluating evidence of extinction patterns and depositional conditions from a high southern latitude Cretaceous-Paleogene (K-Pg) outcrop section found on Seymore Island, in the Western Antarctic Peninsula. The team is using sediment samples collected below the weathering horizon to evaluate detailed sedimentary structures, geochemistry, and microfossils in targeted stratigraphic intervals. The study will help determine if the K-Pg mass extinction was a single or double phased event and whether Seymour Island region in the geological past was a restricted, suboxic marine environment or an open well-mixed shelf. The award includes an integrated plan for student training at all levels, enhanced by a highlighted partnership with a high school earth sciences teacher working in a school serving underrepresented students. Technical description: The proposed research is applying multiple techniques to address an overarching research question for which recent studies are in disagreement: Is the fossil evidence from a unique outcropping on Seymour Island, Antarctica consistent with a single or double phased extinction? In a two-phased model, the first extinction would affect primarily benthic organisms and would have occurred ~150 kiloyears prior to a separate extinction at the K-Pg boundary. However, this early extinction could plausibly be explained by an unrecognized facies control that is obscured by surficial weathering. This team is using microfossil evidence with detailed sedimentary petrology and geochemistry data to evaluate if the fossil evidence from Seymour Island is consistent with a single or double phased extinction process. The team is using detailed sedimentary petrology and geochemistry methods to test for facies changes across the K-PG interval that would explain the apparent early extinction. Samples of core sedimentary foraminifera, siliceous microfossils, and calcareous nannofossils are being evaluated to provide a high-resolution stratigraphic resolution and to evaluate whether evidence for an early extinction is present. Additionally, the team is using multiple geochemical methods to evaluate whether there is evidence for intermittent anoxia or euxinia and/or physical restriction of the Seymore region basin. Data from this analysis will indicate if this region was a restricted, suboxic marine environment or an open well-mixed shelf. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -56.57, "geometry": "POINT(-56.75 -64.27000000000001)", "instruments": null, "is_usap_dc": true, "keywords": "Seymour Island; PALEOCLIMATE RECONSTRUCTIONS; SEDIMENTARY ROCKS; MICROFOSSILS; FIELD INVESTIGATION", "locations": "Seymour Island", "north": -64.2, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Earth Sciences", "paleo_time": null, "persons": "Tobin, Thomas; Totten, Rebecca", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": -64.34, "title": "Collaborative Research: Coring Seymour Island (CSI) Antarctica: Evaluating Causes and Effects of the End Cretaceous Mass Extinction", "uid": "p0010377", "west": -56.93}, {"awards": "2146068 Kienle, Sarah", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 12 Sep 2022 00:00:00 GMT", "description": "The leopard seal (Hydrurga leptonyx) is an enigmatic apex predator in the rapidly changing Southern Ocean. As top predators, leopard seals play a disproportionately large role in ecosystem functioning and act as sentinel species that can track habitat changes. How leopard seals respond to a warming environment depends on their adaptive capacity, that is a species\u2019 ability to cope with environmental change. However, leopard seals are one of the least studied apex predators on Earth, hindering our ability to predict how the species is responding to polar environmental changes. Investigating the adaptability of Antarctic biota in a changing system aligns with NSF\u2019s Strategic Vision for Investments in Antarctic and Southern Ocean Research. This research, which is tightly integrated with educational and outreach activities, will increase diversity in STEM and Antarctic science by recruiting students from historically underrepresented groups in STEM and providing training, mentoring, and educational opportunities at an emerging Hispanic Serving Institution and a Historically Black Colleges and Universities campus. This project will improve STEM education and science literacy via museum collaborations, creation of informational videos and original artwork depicting the research. The proposal supports data and sample reuse in polar research and long-term reuse of scientific data, thereby maximizing NSF\u2019s investment in previous field research and reducing operational costs. The researchers will investigate leopard seals adaptive capacity to the warming Southern Ocean by quantifying their ability to move (dispersal ability), adapt (genetic diversity), and change (plasticity). Aim 1 of the research will determine leopard seals\u2019 dispersal ability by assessing their distribution and movement patterns. Aim 2 will quantify genetic diversity by analyzing genetic variability and population structure and Aim 3 will examine phenotypic plasticity by evaluating changes in their ecological niche and physiological responses. The international, multidisciplinary team will analyze existing data (e.g., photographs, census data, life history data, tissue samples, body morphometrics) collected from leopard seals across the Southern Ocean over the last decade. Additionally, land- and ship-based field efforts will generate comparable data from unsampled regions in the Southern Ocean. The research project will analyze these historical and contemporary datasets to evaluate the adaptive capacity of leopard seals against the rapidly warming Southern Ocean. This research is significant because changes in the distribution, genetic diversity, and ecophysiology of leopard seals can dramatically restructure polar and subpolar communities. Further, the research will expand understanding of leopard seals\u2019 ecological role, likely characterizing the species as flexible polar and subpolar predators throughout the Southern Hemisphere. The findings of this research will be relevant for use in ecosystem-based management decisions\u2014including the design of Marine Protected Areas\u2014 across three continents. This study will highlight intrinsic traits that determine species\u2019 adaptive capacity, as well as showcase the dynamic links between polar and subpolar ecosystems. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; SPECIES/POPULATION INTERACTIONS; MARINE ECOSYSTEMS; MAMMALS; Southern Ocean", "locations": "Southern Ocean", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Kienle, Sarah; Trumble, Stephen J; Bonin, Carolina", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": null, "title": "Move, Adapt, or Change: Examining the Adaptive Capacity of a Southern Ocean Apex Predator, the Leopard Seal", "uid": "p0010375", "west": null}, {"awards": "1543367 Shubin, Neil", "bounds_geometry": "POLYGON((158.3 -77.5,158.54000000000002 -77.5,158.78 -77.5,159.02 -77.5,159.26 -77.5,159.5 -77.5,159.74 -77.5,159.98 -77.5,160.22 -77.5,160.45999999999998 -77.5,160.7 -77.5,160.7 -77.605,160.7 -77.71,160.7 -77.815,160.7 -77.92,160.7 -78.025,160.7 -78.13,160.7 -78.235,160.7 -78.34,160.7 -78.445,160.7 -78.55,160.45999999999998 -78.55,160.22 -78.55,159.98 -78.55,159.74 -78.55,159.5 -78.55,159.26 -78.55,159.02 -78.55,158.78 -78.55,158.54000000000002 -78.55,158.3 -78.55,158.3 -78.445,158.3 -78.34,158.3 -78.235,158.3 -78.13,158.3 -78.025,158.3 -77.92,158.3 -77.815,158.3 -77.71,158.3 -77.605,158.3 -77.5))", "dataset_titles": "Vertebrate Fossils from the Aztec Siltstone (Mid-Late Devonian); Vertebrate Fossils from the Aztec Siltstone (Mid-Late Devonian) 2 (2018-2019)", "datasets": [{"dataset_uid": "601580", "doi": "10.15784/601580", "keywords": "Acanthodii; Antarctica; Chondrichthyes; Early Vertebrates; Osteolepiformes; Paleontology; Placodermi; Transantarctic Mountains; Vertebrate Evolution", "people": "Daeschler, Ted", "repository": "USAP-DC", "science_program": null, "title": "Vertebrate Fossils from the Aztec Siltstone (Mid-Late Devonian)", "url": "https://www.usap-dc.org/view/dataset/601580"}, {"dataset_uid": "601584", "doi": "10.15784/601584", "keywords": "Acanthodii; Antarctica; Chondrichthyes; Early Vertebrates; Osteolepiformes; Paleontology; Placodermi; Transantarctic Mountains; Vertebrate Evolution", "people": "Daeschler, Ted", "repository": "USAP-DC", "science_program": null, "title": "Vertebrate Fossils from the Aztec Siltstone (Mid-Late Devonian) 2 (2018-2019)", "url": "https://www.usap-dc.org/view/dataset/601584"}], "date_created": "Fri, 17 Jun 2022 00:00:00 GMT", "description": "This research will provide new insights into the relationships and history of sharks, fish and limbed animals. Understanding these relationships forms the backbone for both basic and applied science because fish often serve as models of human traits and diseases. Some of the main lines of evidence for these relationships come from fossils in rocks over 380 million years old that were originally deposited as ancient rivers and streams. Because rocks of this type and age are abundantly exposed along a number of the dry valleys and mountains of Antarctica, the investigation of these areas holds exceptional promise for discoveries that can have a broad impact. The fieldwork will involve geological mapping and assessment of the rocks with detailed reconnaissance for the fossils that they may hold. Fossil discoveries form the backbone for public communication of the methods and results of scientific research-- these studies will be used as vehicles for training of students at multiple levels as well as communication of science to the broader non-science citizen base. The discovery, description, and analysis of Middle to Late Devonian (390-355 Million years ago) vertebrates and depositional environments provide important data on the emergence of novel anatomical structures, faunas, and habitats during a critical interval in the history of life and earth. Biological innovation during this time includes the early evolution of freshwater fish, the origins of major groups of vertebrates (e.g., sharks, lobe and ray-finned fish, tetrapods), and the expansion and elaboration of non-marine ecosystems. Accordingly, expanding our knowledge of vertebrate diversity during the Middle and Late Devonian will provide new evidence on the relationships of the major groups of vertebrates, the assembly of novelties that ultimately enabled tetrapods to invade land, the origin and early evolution of sharks and their relatives, and the assembly and expansion of non-marine ecosystems generally. The Aztec Siltstone of Antarctica Middle-Late Devonian; Givetian-Frasnian Stages) has exceptional potential to produce new paleontological evidence of these events and to illuminate the temporal, ecological, and geographic context in which they occurred. It is essentially fossiliferous throughout its known exposure range, something that is rare for Middle-Late Devonian non-marine rocks anywhere in the world. In addition, fine-grained meandering stream deposits are abundantly exposed in the Aztec Siltstone and are recognized as an important locus for the discovery of well-preserved Devonian fish, including stem tetrapods and their relatives. Given the exceedingly fossiliferous nature of the Aztec Siltstone, the large number of taxa known only from partial material, and the amount of promising exposure yet to be worked, a dedicated reconnaissance, collection, and research effort is designed to recover important new fossil material and embed it in a stratigraphic and sedimentological context. The first major objective of this study is the recovery, preparation, and description of Middle-Late Devonian fossil taxa. Ensuing investigation of the phylogenetic affinities, taphonomic occurrence, and stratigraphic position of fossil assemblages will allow both local and global comparisons of biotic diversity. These analyses will inform: 1) higher level phylogenetic hypotheses of jawed vertebrates, 2) biostratigraphic and biogeographic analysis of the distribution of the Middle-Late Devonian fish, and 3) paleobiological investigation of the elaboration of terrestrial and freshwater habitats. The broader impacts are derived from the utility of paleontology and Antarctic expeditionary science as educational tools with powerful narratives. Specific goals include affiliations with local urban secondary schools (using established relationships for broadening participation) and collegiate and graduate training. Wider dissemination of knowledge to the general public is a direct product of ongoing interactions with national and international media (print, television, internet).", "east": 160.7, "geometry": "POINT(159.5 -78.025)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; AMD; FIELD INVESTIGATION; Transantarctic Mountains; USA/NSF; MACROFOSSILS; Fossils; USAP-DC", "locations": "Transantarctic Mountains", "north": -77.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e PALEOZOIC \u003e DEVONIAN", "persons": "Shubin, Neil; Daeschler, Edward B", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.55, "title": "Middle-Late Devonian Vertebrates of Antarctica", "uid": "p0010340", "west": 158.3}, {"awards": "2201129 Fischer, Karen", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Crustal thicknesses in Antarctica from Sp receiver functions; Lithospheric thicknesses in Antarctica from Sp receiver functions", "datasets": [{"dataset_uid": "601899", "doi": "10.15784/601899", "keywords": "Antarctica; Cryosphere; LAB; Lithosphere; Lithospheric Thickness", "people": "Fischer, Karen; Brown, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Lithospheric thicknesses in Antarctica from Sp receiver functions", "url": "https://www.usap-dc.org/view/dataset/601899"}, {"dataset_uid": "601898", "doi": "10.15784/601898", "keywords": "Antarctica; Crust; Cryosphere; Moho", "people": "Fischer, Karen; Brown, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Crustal thicknesses in Antarctica from Sp receiver functions", "url": "https://www.usap-dc.org/view/dataset/601898"}], "date_created": "Tue, 14 Jun 2022 00:00:00 GMT", "description": "The western portion of the Antarctic continent is very active in terms of plate tectonic processes that can produce significant variations in the Earths mantle temperature as well as partial melting of the mantle. In addition to these internal processes, the ice sheet in western Antarctica is melting due to Earths warming climate and adding water to the ocean. These changes in ice mass cause adjustments in rocks within the Earth\u0027s crust, allowing the surface to rebound in some locations and fall in others, altering the geographical pattern of sea-level change. However, the solid Earth response depends strongly on the strength of the rocks at a wide range of timescales which is not well-known and varies with temperature and other rock properties. This project has three primary goals. (1) It will assess how processes such as rifting, mantle upwelling and lithospheric instability have altered the lithosphere and underlying asthenosphere of western Antarctica, contributing to a planet-wide understanding of these processes. (2) It will use new measurements of mantle and crust properties to estimate the rate at which heat from the solid Earth flows into the base of the ice, which is important for modeling the rates at which the ice melts and flows. (3) It will places bounds on mantle viscosity, which is key for modeling the interaction of the solid Earth with changing ice and water masses and their implications for sea-level rise. To accomplish these goals, new resolution of crust and mantle structure will be obtained by analyzing seismic waves from distant earthquakes that have been recorded at numerous seismic stations in Antarctica. These analyses will include new combinations of seismic wave data that provide complementary information about mantle temperature, heat flow and viscosity. This project will provide educational and career opportunities to a Brown University graduate student, undergraduates from groups underrepresented in science who will come to Brown University for a summer research program, and other undergraduates. The project will bring together faculty and students for a seminar at Brown that explores the connections between the solid Earth and ice processes in Antarctica. Project research will be incorporated in outreach to local public elementary schools and high schools. This research addresses key questions about mantle processes and properties in western Antarctica. What are the relative impacts of rifting, mantle plumes, and lithospheric delamination in the evolution of the lithosphere and asthenosphere? Where is topography isostatically compensated, and where are dynamic processes such as plate flexure or tractions from 3-D mantle flow required? What are the bounds on heat flow and mantle viscosity, which represent important inputs to models of ice sheet evolution and its feedback from the solid Earth? To address these questions, this project will measure mantle and crust properties using seismic tools that have not yet been applied in Antarctica: regional-scale measurement of mantle attenuation from surface waves; Sp body wave phases to image mantle velocity gradients such as the lithosphere-asthenosphere boundary; and surface wave amplification and ellipticity. The resulting models of seismic attenuation and velocity will be jointly interpreted to shed new light on temperature, bulk composition, volatile content, and partial melt, using a range of laboratory-derived constitutive laws, while considering data from mantle xenoliths. To test the relative roles of rifting, mantle plumes, and delamination, and to assess isostatic support for Antarctic topography, the predictions of these processes will be compared to the new models of crust and mantle properties. To improve bounds on western Antarctic heat flow, seismic attenuation and velocity will be used in empirical comparisons and in direct modeling of vertical temperature gradients. To better measure mantle viscosity at the timescales of glacial isostatic adjustment, frequency-dependent viscosity will be estimated from the inferred mantle conditions. This project will contribute to the education and career development of the following: a Brown University Ph.D. student, Brown undergraduates, and undergraduates from outside the university will be involved through the Department of Earth, Environmental and Planetary Sciences (DEEPS) Leadership Alliance NSF Research Experience for Undergraduates (REU) Site which focuses on geoscience summer research experiences for underrepresented students. The project will be the basis for a seminar at Brown that explores the connections between the solid Earth and cryosphere in Antarctica and will contribute to outreach in local public elementary and high schools. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": true, "keywords": "USAP-DC; West Antarctica; USA/NSF; SEISMIC SURFACE WAVES; AMD; PLATE TECTONICS; Amd/Us; GLACIERS/ICE SHEETS; FIELD INVESTIGATION", "locations": "West Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Fischer, Karen; Dalton, Colleen", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Probing the Western Antarctic Lithosphere and Asthenosphere with New Approaches to Imaging Seismic Wave Attenuation and Velocity", "uid": "p0010339", "west": -180.0}, {"awards": "1745082 Beilman, David; 1745068 Booth, Robert", "bounds_geometry": "POLYGON((-64.4 -62.4,-63.910000000000004 -62.4,-63.42 -62.4,-62.93000000000001 -62.4,-62.440000000000005 -62.4,-61.95 -62.4,-61.46 -62.4,-60.97 -62.4,-60.480000000000004 -62.4,-59.99 -62.4,-59.5 -62.4,-59.5 -62.7,-59.5 -63,-59.5 -63.3,-59.5 -63.6,-59.5 -63.900000000000006,-59.5 -64.2,-59.5 -64.5,-59.5 -64.80000000000001,-59.5 -65.10000000000001,-59.5 -65.4,-59.99 -65.4,-60.480000000000004 -65.4,-60.97 -65.4,-61.46 -65.4,-61.95 -65.4,-62.440000000000005 -65.4,-62.93000000000001 -65.4,-63.42 -65.4,-63.910000000000004 -65.4,-64.4 -65.4,-64.4 -65.10000000000001,-64.4 -64.80000000000001,-64.4 -64.5,-64.4 -64.2,-64.4 -63.900000000000006,-64.4 -63.6,-64.4 -63.3,-64.4 -63,-64.4 -62.7,-64.4 -62.4))", "dataset_titles": "LMG2002 Expedtition Data", "datasets": [{"dataset_uid": "200222", "doi": "10.7284/908802", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "LMG2002 Expedtition Data", "url": "https://www.rvdata.us/search/cruise/LMG2002"}], "date_created": "Fri, 10 Jun 2022 00:00:00 GMT", "description": "Warming on the western Antarctic Peninsula in the later 20th century has caused widespread changes in the cryosphere (ice and snow) and terrestrial ecosystems. These recent changes along with longer-term climate and ecosystem histories will be deciphered using peat deposits. Peat accumulation can be used to assess the rate of glacial retreat and provide insight into ecological processes on newly deglaciated landscapes in the Antarctic Peninsula. This project builds on data suggesting recent ecosystem transformations that are linked to past climate of the western Antarctic Peninsula and provide a timeline to assess the extent and rate of recent glacial change. The study will produce a climate record for the coastal low-elevation terrestrial region, which will refine the major climate shifts of up to 6 degrees C in the recent past (last 12,000 years). A novel terrestrial record of the recent glacial history will provide insight into observed changes in climate and sea-ice dynamics in the western Antarctic Peninsula and allow for comparison with off-shore climate records captured in sediments. Observations and discoveries from this project will be disseminated to local schools and science centers. The project provides training and career development for a postdoctoral scientist as well as graduate and undergraduate students. The research presents a new systematic survey to reconstruct ecosystem and climate change for the coastal low-elevation areas on the western Antarctic Peninsula (AP) using proxy records preserved in late Holocene peat deposits. Moss and peat samples will be collected and analyzed to generate a comprehensive data set of late-Holocene climate change and ecosystem dynamics. The goal is to document and understand the transformations of landscape and terrestrial ecosystems on the western AP during the late Holocene. The testable hypothesis is that coastal regions have experienced greater climate variability than evidenced in ice-core records and that past warmth has facilitated dramatic ecosystem and cryosphere response. A primary product of the project is a robust reconstruction of late Holocene climate changes for coastal low-elevation terrestrial areas using multiple lines of evidence from peat-based biological and geochemical proxies, which will be used to compare with climate records derived from marine sediments and ice cores from the AP region. These data will be used to test several ideas related to novel peat-forming ecosystems (such as Antarctic hairgrass bogs) in past warmer climates and climate controls over ecosystem establishment and migration to help assess the nature of the Little Ice Age cooling and cryosphere response. The chronology of peat cores will be established by radiocarbon dating of macrofossils and Bayesian modeling. The high-resolution time series of ecosystem and climate changes will help put the observed recent changes into a long-term context to bridge climate dynamics over different time scales. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -59.5, "geometry": "POINT(-61.95 -63.900000000000006)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS", "is_usap_dc": true, "keywords": "ECOSYSTEM FUNCTIONS; ISOTOPES; USAP-DC; PALEOCLIMATE RECONSTRUCTIONS; SEDIMENTS; Amd/Us; FIELD INVESTIGATION; Antarctic Peninsula; AMD; TERRESTRIAL ECOSYSTEMS; USA/NSF; RADIOCARBON", "locations": "Antarctic Peninsula", "north": -62.4, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Beilman, David; Booth, Robert", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.4, "title": "Collaborative Research: Reconstructing Late Holocene Ecosystem and Climate Shifts from Peat Records in the Western Antarctic Peninsula", "uid": "p0010337", "west": -64.4}, {"awards": "1951090 Stukel, Michael", "bounds_geometry": "POLYGON((-80 -63,-78.2 -63,-76.4 -63,-74.6 -63,-72.8 -63,-71 -63,-69.2 -63,-67.4 -63,-65.6 -63,-63.8 -63,-62 -63,-62 -63.7,-62 -64.4,-62 -65.1,-62 -65.8,-62 -66.5,-62 -67.2,-62 -67.9,-62 -68.6,-62 -69.3,-62 -70,-63.8 -70,-65.6 -70,-67.4 -70,-69.2 -70,-71 -70,-72.8 -70,-74.6 -70,-76.4 -70,-78.2 -70,-80 -70,-80 -69.3,-80 -68.6,-80 -67.9,-80 -67.2,-80 -66.5,-80 -65.8,-80 -65.1,-80 -64.4,-80 -63.7,-80 -63))", "dataset_titles": "BCO-DMO Project Page", "datasets": [{"dataset_uid": "200294", "doi": null, "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "BCO-DMO Project Page", "url": "https://www.bco-dmo.org/project/838048"}], "date_created": "Fri, 03 Jun 2022 00:00:00 GMT", "description": "Algae in the surface ocean convert carbon dioxide into organic carbon through photosynthesis. The biological carbon pump transports this organic carbon from the atmosphere to the deep ocean where it can be stored for tens to hundreds of years. Annually, the amount transported is similar to that humans are currently emitting by burning fossil fuels. However, at present we cannot predict how this important process will change with a warming ocean. These investigators plan to develop a 15+ year time-series of vertical carbon transfer for the Western Antarctic Peninsula; a highly productive Antarctic ecosystem. This region is also rapid transition to warmer temperatures leading to reduced sea ice coverage. This work will help researchers better understand how the carbon cycle in the Western Antarctic Peninsula will respond to climate change. The researchers will develop the first large-scale time-series of carbon flux anywhere in the ocean. This research will also support the education and training of a graduate student and support the integration of concepts in Antarctic research into two undergraduate courses designed for non-science majors and advanced earth science students. The researchers will also develop educational modules for introducing elementary and middle-school age students to important concepts such as gross and net primary productivity, feedbacks in the marine and atmospheric systems, and the differences between correlation and causation. Results from this proposal will also be incorporated into a children\u2019s book, \u201cPlankton do the Strangest Things\u201d, that is targeted at 5-7 year olds and is designed to introduce them to the incredible diversity and fascinating adaptations of microscopic marine organisms. This research seeks to leverage 6 years (2015-2020) of 234Th samples collected on Palmer LTER program, 5 years of prior measurements (2009-2010, 2012-2014), and upcoming cruises (2021-2023) to develop a time-series of summertime particle flux in the WAP that stretches for 15 years. The 238U-234Th disequilibrium approach utilizes changes in the activity of the particle-active radio-isotope 234Th relative to its parent nuclide 238U to quantify the flux of sinking carbon out of the surface ocean (over a time-scale of ~one month). This proposal will fund 234Th analyses from nine years\u2019 worth of cruises (2015-2023) and extensive analyses designed to investigate the processes driving inter-annual variability in the BCP. These include: 1) physical modeling to quantify the importance of advection and diffusion in the 234Th budget, 2) time-series analyses of particle flux, and 3) statistical modeling of the relationships between particle flux and multiple presumed drivers (biological, chemical, physical, and climate indices) measured by collaborators in the Palmer LTER program. This multi-faceted approach is critical for linking the measurements to models and for predicting responses to climate change. It will also test the hypothesis that export flux is decreasing in the northern WAP, increasing in the southern WAP, and increasing when integrated over the entire region as a result of earlier sea ice retreat and a larger ice-free zone. The project will also investigate relationships between carbon export and multiple potentially controlling factors including: primary productivity, algal biomass and taxonomic composition, biological oxygen saturation, zooplankton biomass and taxonomic composition, bacterial production, temperature, wintertime sea ice extent, date of sea ice retreat, and climate modes. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -62.0, "geometry": "POINT(-71 -66.5)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; AMD; FIELD INVESTIGATION; Palmer Station; USAP-DC; BIOGEOCHEMICAL CYCLES; USA/NSF", "locations": "Palmer Station", "north": -63.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Stukel, Michael", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "BCO-DMO", "repositories": "BCO-DMO", "science_programs": null, "south": -70.0, "title": "Quantifying Processes Driving Interannual Variability in the Biological Carbon Pump in the Western Antarctic Peninsula", "uid": "p0010332", "west": -80.0}, {"awards": "2055455 Duhaime, Melissa", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 03 Jun 2022 00:00:00 GMT", "description": "Part 1: Non-technical description: It is well known that the Southern Ocean plays an important role in global carbon cycling and also receives a disproportionately large influence of climate change. The role of marine viruses on ocean productivity is largely understudied, especially in this global region. This team proposes to use combination of genomics, flow cytometry, and network modeling to test the hypothesis that viral biogeography, infection networks, and viral impacts on microbial metabolism can explain variations in net community production (NCP) and carbon cycling in the Southern Ocean. The project includes the training of a postdoctoral scholar, graduate students and undergraduate students. It also includes the development of a new Polar Sci ReachOut program in partnership with the University of Michigan Museum of Natural History especially targeted to middle-school students and teachers and the general public. The team will also produce a Science for Tomorrow (SFT) program for use in middle schools in metro-Detroit communities and lead a summer Research Experience for Teachers (RET) fellows. Part 2: Technical description: The study will leverage hundreds of existing samples collected for microbes and viruses from the Antarctic Circumpolar Expedition (ACE). These samples provide the first contiguous survey of viral diversity and microbial communities around Antarctica. Viral networks are being studied in the context of biogeochemical data to model community networks and predict net community production (NCP), which will provide a way to evaluate the role of viruses in Southern Ocean carbon cycling. Using cutting edge molecular and flow cytometry approaches, this project addresses the following questions: 1) How/why are Southern Ocean viral populations distributed across environmental gradients? 2a) Do viruses interfere with \"keystone\" metabolic pathways and biogeochemical processes of microbial communities in the Southern Ocean? 2b) Does nutrient availability or other environmental variables drive changes in virus-microbe infection networks in the Southern Ocean? Results will be used to develop and evaluate generative models of NCP predictions that incorporate the importance of viral traits and virus-host interactions. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Southern Ocean; Amd/Us; AMD; FIELD INVESTIGATION; USA/NSF; AQUATIC SCIENCES; BACTERIA/ARCHAEA; MARINE ECOSYSTEMS; VIRUSES; USAP-DC", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Duhaime, Melissa; Zaman, Luis", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": -90.0, "title": "ANT LIA - Viral Ecogenomics of the Southern Ocean: Unifying Omics and Ecological Networks to Advance our Understanding of Antarctic Microbial Ecosystem Function", "uid": "p0010333", "west": -180.0}, {"awards": "1443637 Zakon, Harold", "bounds_geometry": null, "dataset_titles": "Evolutionary analysis of transient receptor potential (TRP) channels in notothenioid fishes; Functional characterization of temperature activated ion channels from Antarctic fishes; TagSeq tissue specific expression data for Antarctic Harpagifer antarcticus and tropical African cichlid Astatotilapia (Haplochromis) burtoni", "datasets": [{"dataset_uid": "200292", "doi": "10.18738/T8/NXGNEI", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "Evolutionary analysis of transient receptor potential (TRP) channels in notothenioid fishes", "url": "https://doi.org/10.18738/T8/NXGNEI"}, {"dataset_uid": "601695", "doi": "10.15784/601695", "keywords": "Antarctica; Notothenioid; Southern Ocean", "people": "York, Julia", "repository": "USAP-DC", "science_program": null, "title": "Functional characterization of temperature activated ion channels from Antarctic fishes", "url": "https://www.usap-dc.org/view/dataset/601695"}, {"dataset_uid": "200293", "doi": "", "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "TagSeq tissue specific expression data for Antarctic Harpagifer antarcticus and tropical African cichlid Astatotilapia (Haplochromis) burtoni", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA758918"}], "date_created": "Fri, 03 Jun 2022 00:00:00 GMT", "description": "This project studies how the proteins of the nerves and muscles of fish that live in Antarctica function in the cold, which should provide information on the function of these same proteins in all animals, including humans. These proteins, called ion channels, open and close to allow ions (atoms or molecules with electrical charge) to flow into or out of cells which causes the electrical activity of nerves and muscles. Mutations that influence this process are the basis of numerous human disorders such as epilepsy, heart arrhythmias, and muscle paralysis. Thus, it is important to understand what parts of the proteins govern these transitions. The speed with which channels open and close depends on temperature. Human ion channels transition slowly when we are cold, which is why we become numb in the cold. Yet Antarctic fish, called icefish, are active at freezing temperatures that drastically limit the activity of human ion channels. The investigators have evidence that specific alterations in the icefishs\u0027 ion channels allow their channels to operate differently in the cold and they will use gene discovery and biophysical methods to test how these changes alter the transitions of icefish proteins at different temperatures. The project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. The gene discovery analysis will be done by undergraduate students including those from a minority-serving university and the investigators will develop a new course which will also serve students at that institution and elsewhere. In addition, the investigators will participate in educational outreach events with the general public as well as with groups with special needs. Notothenioid fishes are one of the most successful groups of vertebrates in Antarctica. Notothens have adaptations to the freezing water they inhabit and this project will study how their voltage-gated ion channels (VGICs) function in the cold. The molecular movements of ion channels are severely impaired by cold, yet notothens function at temperatures that would paralyze the nerves and muscles of \"cold-blooded\" temperate zone animals. Surprisingly, no biophysical or molecular investigations have been conducted on notothen VGICs. The investigators have preliminary data that amino acid substitutions occur at sites in VGICs that are evolutionarily conserved from fruit flies to humans. Some of these sites are known to impact channel function and the role of others in channel transitioning are unknown. The results from studying them will provide novel information also applicable to non-notothen, perhaps even human, VGICs as well as providing insights into how VGICs adapt to the cold. The project will biophysically characterize notothen VGICs using voltage-clamp techniques will and compare their properties over a range of temperatures to the same channel from two temperate zone fish. The role of unique notothen amino acid substitutions will be characterized by mutagenesis. One specific aim will be a project in which undergraduates mine notothen sequence databases to identify other potential amino acid substitutions in VGICs that might facilitate adaptation to the cold.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; USAP-DC; USA/NSF; FIELD INVESTIGATION; AMD; FISHERIES", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Zakon, Harold", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "Texas Data Repository", "repositories": "GenBank; Texas Data Repository; USAP-DC", "science_programs": null, "south": null, "title": "Analysis of Voltage-gated Ion Channels in Antarctic Fish", "uid": "p0010331", "west": null}, {"awards": "2141555 Brooks, Cassandra", "bounds_geometry": "POLYGON((-180 -71.5,-177.1 -71.5,-174.2 -71.5,-171.3 -71.5,-168.4 -71.5,-165.5 -71.5,-162.6 -71.5,-159.7 -71.5,-156.8 -71.5,-153.9 -71.5,-151 -71.5,-151 -72.25,-151 -73,-151 -73.75,-151 -74.5,-151 -75.25,-151 -76,-151 -76.75,-151 -77.5,-151 -78.25,-151 -79,-153.9 -79,-156.8 -79,-159.7 -79,-162.6 -79,-165.5 -79,-168.4 -79,-171.3 -79,-174.2 -79,-177.1 -79,180 -79,178.1 -79,176.2 -79,174.3 -79,172.4 -79,170.5 -79,168.6 -79,166.7 -79,164.8 -79,162.9 -79,161 -79,161 -78.25,161 -77.5,161 -76.75,161 -76,161 -75.25,161 -74.5,161 -73.75,161 -73,161 -72.25,161 -71.5,162.9 -71.5,164.8 -71.5,166.7 -71.5,168.6 -71.5,170.5 -71.5,172.4 -71.5,174.3 -71.5,176.2 -71.5,178.1 -71.5,-180 -71.5))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 27 May 2022 00:00:00 GMT", "description": "The Ross Sea, Antarctica, is one of the last large intact marine ecosystems left in the world, yet is facing increasing pressure from commercial fisheries and environmental change. It is the most productive stretch of the Southern Ocean, supporting an array of marine life, including Antarctic toothfish \u2013 the region\u2019s top fish predator. While a commercial fishery for toothfish continues to grow in the Ross Sea, fundamental knowledge gaps remain regarding toothfish ecology and the impacts of toothfish fishing on the broader Ross Sea ecosystem. Recognizing the global value of the Ross Sea, a large (\u003e2 million km2) marine protected area was adopted by the multi-national Commission for the Conservation of Antarctic Marine Living Resources in 2016. This research will fill a critical gap in the knowledge of Antarctic toothfish and deepen understanding of biological-physical interactions for fish ecology, while contributing to knowledge of impacts of fishing and environmental change on the Ross Sea system. This work will further provide innovative tools for studying connectivity among geographically distinct fish populations and for synthesizing and assessing the efficacy of a large-scale marine protected area. In developing an integrated research and education program in engaged scholarship, this project seeks to train the next generation of scholars to engage across the science-policy-public interface, engage with Southern Ocean stakeholders throughout the research process, and to deepen the public\u2019s appreciation of the Antarctic. A major research priority among Ross Sea scientists is to better understand the life history of the Antarctic toothfish and test the efficacy of the Ross Sea Marine Protected Area (MPA) in protecting against the impacts of overfishing and climate change. Like growth rings of a tree, fish ear bones, called otoliths, develop annual layers of calcium carbonate that incorporates elements from their environment. Otoliths offer information on the fish\u2019s growth and the surrounding ocean conditions. Hypothesizing that much of the Antarctic toothfish life cycle is structured by ocean circulation, this research employs a multi-disciplinary approach combining age and growth work with otolith chemistry testing, while also utilizing GIS mapping. The project will measure life history parameters as well as trace elements and stable isotopes in otoliths in three distinct sets collected over the last four decades in the Ross Sea. The information will be used to quantify the transport pathways Antarctic toothfish use across their life history, and across time, in the Ross Sea. The project will assess if toothfish populations from the Ross Sea are connected more widely across the Antarctic. By comparing life history and otolith chemistry data across time, the researchers will assess change in life history parameters and spatial dynamics and seek to infer if these changes are driven by fishing or climate change. Spatially mapping of these data will allow an assessment of the efficacy of the Ross Sea MPA in protecting toothfish and where further protections might be needed. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -151.0, "geometry": "POINT(-175 -75.25)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; USA/NSF; FIELD INVESTIGATION; USAP-DC; AMD; FISHERIES; Ross Sea", "locations": "Ross Sea", "north": -71.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Brooks, Cassandra", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": -79.0, "title": "CAREER: Using Otolith Chemistry to Reveal the Life History of Antarctic Toothfish in the Ross Sea, Antarctica: Testing Fisheries and Climate Change Impacts on a Top Fish Predator", "uid": "p0010329", "west": 161.0}, {"awards": "2037598 Alberto, Filipe; 2037670 Heine, John", "bounds_geometry": "POLYGON((162 -76,162.8 -76,163.6 -76,164.4 -76,165.2 -76,166 -76,166.8 -76,167.6 -76,168.4 -76,169.2 -76,170 -76,170 -76.3,170 -76.6,170 -76.9,170 -77.2,170 -77.5,170 -77.8,170 -78.1,170 -78.4,170 -78.7,170 -79,169.2 -79,168.4 -79,167.6 -79,166.8 -79,166 -79,165.2 -79,164.4 -79,163.6 -79,162.8 -79,162 -79,162 -78.7,162 -78.4,162 -78.1,162 -77.8,162 -77.5,162 -77.2,162 -76.9,162 -76.6,162 -76.3,162 -76))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 23 May 2022 00:00:00 GMT", "description": "Climate change is changing the number of sea-ice free days in coastal polar environments, which is impacting Antarctic communities. This study will evaluate the change in macroalgae (seaweed) communities to increased light availability in order to predict if macroalgae will be able to spread to newly ice-free locations faster than invertebrates (e.g., sponges, bryozoans, tunicates, and polychaetes) in shallow underwater rocky habitats. Study sites will include multiple locations in McMurdo Sound, Ross Sea, Antarctica. This study will establish patterns in plant properties, genetic diversity and reproductive characteristics of two species of seaweeds, Phyllophora antarctica and Iridaea cordata in relation to depth and light. Long-term changes will be assesed by comparing to results from a survey in 1980. This will be the first study in the region to estimate the potential effects of climate, in particular reductions in annual sea ice cover and resulting increase in light intensity and duration, on shifts in macroalgal communities in McMurdo Sound. Three-dimensional photogrammetry will also be used to evaluate benthic community structure on the newly discovered offshore Dellbridge Seamount. Visualization from the video footage will be shared with web-based interactive applications to engage and educate the public in polar ecology and factors causing changes in marine community ecosystem structure in this important region. This project is evaluating macroalgae biogeography in Antarctic coastal waters near McMurdo Sound, a relatively understudied region that is experiencing large changes in fast sea ice coverage. The population ecology and genetic diversity of nearshore shallow and deeper offshore benthic macroalgal communities of Phyllophora antarctica and Iridaea cordata will be assessed for percentage cover, biomass, blade length, and reproductive characteristics at seven locations: Cape Royds, Cape Evans, Little Razorback Islands, Turtle Rock, Arrival Heights, Granite Harbor, and Dellbridge Seamount in McMurdo Sound, Antarctica. The team is also assessing differential reproductive successes at different depths and comparing results to populations surveyed in 1980. The genetic diversity of the two species is being estimated using a combination of whole genome sequencing and species-specific microsatellite genetic markers. Samples from this study will be compared to samples collected from other regions in Antarctica such as the South Shetland Islands and Antarctic Peninsula. In addition, a macroalgal assemblage and 3D models of the community structure will be generated using photogrammetry from the newly discovered Dellbridge Seamount that is located 2 km offshore in McMurdo Sound. With the addition of photogrammetry and 3D visualization to this research, web-based applications will be used to engage and educate the public in subtidal polar ecology, population genetics, and the importance of Antarctic science to their lives. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 170.0, "geometry": "POINT(166 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; McMurdo Sound; USAP-DC; Amd/Us; COMMUNITY DYNAMICS; FIELD INVESTIGATION; MACROALGAE (SEAWEEDS); USA/NSF", "locations": "McMurdo Sound", "north": -76.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Heine, John; Goldberg, Nisse; Alberto, Filipe", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": -79.0, "title": "Collaborative Research: Biogeography, Population Genetics, and Ecology of two Common Species of Fleshy Red Algae in McMurdo Sound", "uid": "p0010322", "west": 162.0}, {"awards": "2019719 Brook, Edward", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "2019-2020 Allan Hills Field Report; 2022-23 Allan Hills Intermediate Ice Core Site Selection Field Report; 2023-2024 Allan Hills End-of-Season Science Report; Airborne Radar Data: 2022-23 (CXA1) flight based HDF5/matlab format data; Airborne Radar Data: 2022-23 (CXA1) transect based (science organized) unfocused data; Airborne Radar Data: 2023-24 (CXA2) flight based data HDF5/matlab format; Airborne Radar Data: 2023-24 (CXA2) transect based (science organized) unfocused data; ALHIC2201 and ALHIC2302 3D ECM and Layer Orientations; Allan Hills 2022-23 Shallow Ice Core Field Report; Allan Hills CMC3 ice core d18Oatm, d15N, dO2/N2, dAr/N2, d40/36Ar, d40/38Ar 2021 \u0026 2022; Allan Hills I-188 Field Season Report 2022-2023; Allan Hills ice water stable isotope record for dD, d18O; Basal Ice Unit Thickness Mapped by the NSF COLDEX MARFA Ice Penetrating Radar; CO2 and CH4 from Allan Hills ice cores ALHIC1901, 1902, and 1903; COLDEX VHF MARFA Open Polar Radar radargrams; Concentration and flux of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area; Heavy noble gases (Ar/Xe/Kr) from ALHIC1901, 1902, and 1903; I-165-M GPR Field Report 2019-2020; MOT data (Xe/Kr) from Allan Hills ice cores ALHIC1901, 1902, and 1903; NSF COLDEX 2022-23 Level 2 Basal Specularity Content Profiles; NSF COLDEX 2022-23 Riegl Laser Altimeter Level 2 Geolocated Surface Elevation Triplets; NSF COLDEX 2023-24 Level 2 Basal Specularity Content Profiles; NSF COLDEX 2023-24 Riegl Laser Altimeter Level 2 Geolocated Surface Elevation Triplets; NSF COLDEX Ice Penetrating Radar Derived Grids of the Southern Flank of Dome C; NSF COLDEX/Open Polar Radar Example Delay Doppler Classification of Englacial Reflectors; NSF COLDEX Raw MARFA Ice Penetrating Radar data; Oxygen and hydrogen isotope compositions and associated d-excess of ice from ALHIC1903 drilled at the Allan Hills Blue Ice Area; Rare earth elemental concentrations of leached ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area; Replicate O-17-excess by continuous flow laser spectroscopy for an ice core section at Summit, Greenland; Rising Seas: Representations of Antarctica, Climate Change, and Sea Level Rise in U.S. Newspaper Coverage; Snapshot record of CO2 and CH4 from the Allan Hills, Antarctica, ranging from 400,000 to 3 million years old; Social network analysis to understand participant engagement in transdisciplinary team science: a large U.S. science and technology center case study; Strontium and neodymium isotope compositions of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "datasets": [{"dataset_uid": "601863", "doi": null, "keywords": "Allan Hills; Antarctica; Cryosphere; Isotope Data", "people": "Kurbatov, Andrei V.; Mayewski, Paul A.; Brook, Edward; Introne, Douglas; Higgins, John; Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills ice water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601863"}, {"dataset_uid": "601896", "doi": "10.15784/601896", "keywords": "Allan Hills; Antarctica; Ch4; CO2; Cryosphere; Glaciology; Glaciology; Ice Core Data; Ice Core Records", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "CO2 and CH4 from Allan Hills ice cores ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601896"}, {"dataset_uid": "601897", "doi": "10.15784/601897", "keywords": "Allan Hills; Antarctica; Cryosphere; Glaciology; Ice Core Data; MOT; Ocean Temperature; Paleoclimate; Xe/Kr", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "MOT data (Xe/Kr) from Allan Hills ice cores ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601897"}, {"dataset_uid": "601878", "doi": "10.15784/601878", "keywords": "Allan Hills; Antarctica; Blue Ice; Carbon Dioxide; Cryosphere; Methane", "people": "Shackleton, Sarah; Marks Peterson, Julia; Brook, Edward; Kalk, Michael; Severinghaus, Jeffrey P.; Hishamunda, Valens", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Snapshot record of CO2 and CH4 from the Allan Hills, Antarctica, ranging from 400,000 to 3 million years old", "url": "https://www.usap-dc.org/view/dataset/601878"}, {"dataset_uid": "601863", "doi": null, "keywords": "Allan Hills; Antarctica; Cryosphere; Isotope Data", "people": "Higgins, John; Severinghaus, Jeffrey P.; Introne, Douglas; Mayewski, Paul A.; Brook, Edward; Kurbatov, Andrei V.", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Allan Hills ice water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601863"}, {"dataset_uid": "601912", "doi": "10.15784/601912", "keywords": "Antarctica; Coldex; Cryosphere; East Antarctica; East Antarctic Plateau; Glaciology; Radar Echo Sounder", "people": "Singh, Shivangini; Vega Gonzalez, Alejandra; Young, Duncan A.; Yan, Shuai; Blankenship, Donald D.; Kerr, Megan", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Basal Ice Unit Thickness Mapped by the NSF COLDEX MARFA Ice Penetrating Radar", "url": "https://www.usap-dc.org/view/dataset/601912"}, {"dataset_uid": "601697", "doi": "10.15784/601697", "keywords": "Allan Hills; Antarctica; Apres; Ice Core; Ice Penetrating Radar; Temperature Profiles", "people": "Brook, Edward J.; Conway, Howard", "repository": "USAP-DC", "science_program": "COLDEX", "title": "2022-23 Allan Hills Intermediate Ice Core Site Selection Field Report", "url": "https://www.usap-dc.org/view/dataset/601697"}, {"dataset_uid": "601854", "doi": "10.15784/601854", "keywords": "Allan Hills; Antarctica; Cryosphere", "people": "Shackleton, Sarah; Kirkpatrick, Liam; Carter, Austin; Fudge, T. J.; Marks Peterson, Julia", "repository": "USAP-DC", "science_program": "COLDEX", "title": "ALHIC2201 and ALHIC2302 3D ECM and Layer Orientations", "url": "https://www.usap-dc.org/view/dataset/601854"}, {"dataset_uid": "200419", "doi": "", "keywords": null, "people": null, "repository": "University Digital Conservancy", "science_program": null, "title": "Rising Seas: Representations of Antarctica, Climate Change, and Sea Level Rise in U.S. Newspaper Coverage", "url": "https://hdl.handle.net/11299/265195"}, {"dataset_uid": "200420", "doi": "10.18738/T8/J38CO5", "keywords": null, "people": null, "repository": "OPR", "science_program": null, "title": "Airborne Radar Data: 2022-23 (CXA1) flight based HDF5/matlab format data", "url": "https://data.cresis.ku.edu/data/rds/2022_Antarctica_BaslerMKB/"}, {"dataset_uid": "200421", "doi": "10.18738/T8/J38CO5", "keywords": null, "people": null, "repository": "OPR", "science_program": null, "title": "Airborne Radar Data: 2023-24 (CXA2) flight based data HDF5/matlab format", "url": "https://data.cresis.ku.edu/data/rds/2023_Antarctica_BaslerMKB/"}, {"dataset_uid": "601826", "doi": "10.15784/601826", "keywords": "Allan Hills; Antarctica; Cryosphere", "people": "Manos, John-Morgan; Epifanio, Jenna; Conway, Howard; Shaya, Margot; Horlings, Annika", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Allan Hills I-188 Field Season Report 2022-2023", "url": "https://www.usap-dc.org/view/dataset/601826"}, {"dataset_uid": "601824", "doi": "10.15784/601824", "keywords": "Allan Hills; Antarctica; Coldex; Cryosphere", "people": "Epifanio, Jenna; Marks Peterson, Julia; Higgins, John; Brook, Edward J.; Shackleton, Sarah; Carter, Austin; Manos, John-Morgan; Hudak, Abigail; Banerjee, Asmita; Morton, Elizabeth; Jayred, Michael; Goverman, Ashley; Mayo, Emalia", "repository": "USAP-DC", "science_program": "COLDEX", "title": "2023-2024 Allan Hills End-of-Season Science Report", "url": "https://www.usap-dc.org/view/dataset/601824"}, {"dataset_uid": "601819", "doi": "10.15784/601819", "keywords": "Allan Hills; Antarctica; Cryosphere", "people": "Nesbitt, Ian; Carter, Austin; Higgins, John; Shackleton, Sarah; Morgan, Jacob; Epifanio, Jenna; Kuhl, Tanner; Morton, Elizabeth; Zajicek, Anna", "repository": "USAP-DC", "science_program": "COLDEX", "title": "2019-2020 Allan Hills Field Report", "url": "https://www.usap-dc.org/view/dataset/601819"}, {"dataset_uid": "200432", "doi": "10.18738/T8/XPMLCC", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "Airborne Radar Data: 2022-23 (CXA1) transect based (science organized) unfocused data", "url": "https://dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T8/XPMLCC"}, {"dataset_uid": "200433", "doi": "10.18738/T8/FV6VNT", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "Airborne Radar Data: 2023-24 (CXA2) transect based (science organized) unfocused data", "url": "https://dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T8/FV6VNT"}, {"dataset_uid": "200434", "doi": "10.18738/T8/99IEOG", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX 2022-23 Riegl Laser Altimeter Level 2 Geolocated Surface Elevation Triplets", "url": "https://doi.org/10.18738/T8/99IEOG"}, {"dataset_uid": "200435", "doi": "10.18738/T8/PNBFOL", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX 2023-24 Riegl Laser Altimeter Level 2 Geolocated Surface Elevation Triplets", "url": "https://doi.org/10.18738/T8/PNBFOL"}, {"dataset_uid": "601768", "doi": "10.15784/601768", "keywords": "Antarctica; Coldex; East Antarctic Plateau; Glaciology; Radar Echo Sounder", "people": "Ng, Gregory; Kempf, Scott D.; Chan, Kristian; Kerr, Megan; Greenbaum, Jamin; Blankenship, Donald D.; Young, Duncan A.; Buhl, Dillon", "repository": "USAP-DC", "science_program": "COLDEX", "title": "NSF COLDEX Raw MARFA Ice Penetrating Radar data", "url": "https://www.usap-dc.org/view/dataset/601768"}, {"dataset_uid": "200452", "doi": "https://hdl.handle.net/11299/270020", "keywords": null, "people": null, "repository": "UMN University Digital Conservancy", "science_program": null, "title": "Social network analysis to understand participant engagement in transdisciplinary team science: a large U.S. science and technology center case study", "url": "https://hdl.handle.net/11299/270020"}, {"dataset_uid": "200470", "doi": "doi:10.15784/601822", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "Oxygen and hydrogen isotope compositions and associated d-excess of ice from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "url": "https://www.usap-dc.org/view/dataset/601822"}, {"dataset_uid": "200469", "doi": "https://doi.org/10.15784/601821", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "Rare earth elemental concentrations of leached ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "url": "https://www.usap-dc.org/view/dataset/601821"}, {"dataset_uid": "601620", "doi": "10.15784/601620", "keywords": "18O; Allan Hills; Allan Hills Blue Ice; Antarctica; Blue Ice; Delta 15N; Delta 18O; Dole Effect; Firn Thickness; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Chronology; Ice Core Records", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills CMC3 ice core d18Oatm, d15N, dO2/N2, dAr/N2, d40/36Ar, d40/38Ar 2021 \u0026 2022", "url": "https://www.usap-dc.org/view/dataset/601620"}, {"dataset_uid": "601696", "doi": "10.15784/601696", "keywords": "Allan Hills; Antarctica; Ice Core", "people": "Brook, Edward J.; Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills 2022-23 Shallow Ice Core Field Report", "url": "https://www.usap-dc.org/view/dataset/601696"}, {"dataset_uid": "601669", "doi": "10.15784/601669", "keywords": "Allan Hills; Antarctica; GPR; Ice Core; Report", "people": "Nesbitt, Ian; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "I-165-M GPR Field Report 2019-2020", "url": "https://www.usap-dc.org/view/dataset/601669"}, {"dataset_uid": "200468", "doi": "https://doi.org/10.15784/601820", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "Strontium and neodymium isotope compositions of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "url": "https://www.usap-dc.org/view/dataset/601820"}, {"dataset_uid": "601895", "doi": "10.15784/601895", "keywords": "Allan Hills; Antarctica; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Noble Gas", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Heavy noble gases (Ar/Xe/Kr) from ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601895"}, {"dataset_uid": "200461", "doi": "10.18738/T8/6T5JS6", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX 2022-23 Level 2 Basal Specularity Content Profiles", "url": "https://doi.org/10.18738/T8/6T5JS6"}, {"dataset_uid": "200467", "doi": "doi:10.15784/601825", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "Concentration and flux of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "url": "https://www.usap-dc.org/view/dataset/601825"}, {"dataset_uid": "601659", "doi": "10.15784/601659", "keywords": "Antarctica; Continuous Flow; Glaciology; Greenland; Ice Core Data; Laser Spectroscopy; Oxygen Isotope; Triple Oxygen Isotopes", "people": "Davidge, Lindsey", "repository": "USAP-DC", "science_program": "Hercules Dome Ice Core", "title": "Replicate O-17-excess by continuous flow laser spectroscopy for an ice core section at Summit, Greenland", "url": "https://www.usap-dc.org/view/dataset/601659"}, {"dataset_uid": "200465", "doi": "10.18738/T8/DM10IG", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "COLDEX VHF MARFA Open Polar Radar radargrams", "url": "https://doi.org/10.18738/T8/DM10IG"}, {"dataset_uid": "200464", "doi": "10.18738/T8/DM10IG", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX/Open Polar Radar Example Delay Doppler Classification of Englacial Reflectors", "url": "https://doi.org/10.18738/T8/DM10IG"}, {"dataset_uid": "200463", "doi": "10.18738/T8/M77ANK", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX Ice Penetrating Radar Derived Grids of the Southern Flank of Dome C", "url": "https://doi.org/10.18738/T8/M77ANK"}, {"dataset_uid": "200462", "doi": "10.18738/T8/KHUT1U", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX 2023-24 Level 2 Basal Specularity Content Profiles", "url": "https://doi.org/10.18738/T8/KHUT1U"}], "date_created": "Sat, 21 May 2022 00:00:00 GMT", "description": "Cores drilled through the Antarctic ice sheet provide a remarkable window on the evolution of Earth\u2019s climate and unique samples of the ancient atmosphere. The clear link between greenhouse gases and climate revealed by ice cores underpins much of the scientific understanding of climate change. Unfortunately, the existing data do not extend far enough back in time to reveal key features of climates warmer than today. COLDEX, the Center for Oldest Ice Exploration, will solve this problem by exploring Antarctica for sites to collect the oldest possible record of past climate recorded in the ice sheet. COLDEX will provide critical information for understanding how Earth\u2019s near-future climate may evolve and why climate varies over geologic time. New technologies will be developed for exploration and analysis that will have a long legacy for future research. An archive of old ice will stimulate new research for the next generations of polar scientists. COLDEX programs will galvanize that next generation of polar researchers, bring new results to other scientific disciplines and the public, and help to create a more inclusive and diverse scientific community. Knowledge of Earth\u2019s climate history is grounded in the geologic record. This knowledge is gained by measuring chemical, biological and physical properties of geologic materials that reflect elements of climate. Ice cores retrieved from polar ice sheets play a central role in this science and provide the best evidence for a strong link between atmospheric carbon dioxide and climate on geologic timescales. The goal of COLDEX is to extend the ice-core record of past climate to at least 1.5 million years by drilling and analyzing a continuous ice core in East Antarctica, and to much older times using discontinuous ice sections at the base and margin of the ice sheet. COLDEX will develop and deploy novel radar and melt-probe tools to rapidly explore the ice, use ice-sheet models to constrain where old ice is preserved, conduct ice coring, develop new analytical systems, and produce novel paleoclimate records from locations across East Antarctica. The search for Earth\u2019s oldest ice also provides a compelling narrative for disseminating information about past and future climate change and polar science to students, teachers, the media, policy makers and the public. COLDEX will engage and incorporate these groups through targeted professional development workshops, undergraduate research experiences, a comprehensive communication program, annual scientific meetings, scholarships, and broad collaboration nationally and internationally. COLDEX will provide a focal point for efforts to increase diversity in polar science by providing field, laboratory, mentoring and networking experiences for students and early career scientists from groups underrepresented in STEM, and by continuous engagement of the entire COLDEX community in developing a more inclusive scientific culture. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; AMD; Antarctica; Amd/Us; Coldex; USAP-DC; FIELD SURVEYS; ICE DEPTH/THICKNESS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Polar Special Initiatives; Antarctic Glaciology", "paleo_time": null, "persons": "Brook, Edward J.; Neff, Peter", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "OPR; Texas Data Repository; UMN University Digital Conservancy; University Digital Conservancy; USAP-DC", "science_programs": "COLDEX", "south": -90.0, "title": "Center for Oldest Ice Exploration", "uid": "p0010321", "west": -180.0}, {"awards": "1543305 Lazzara, Matthew", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctic Automatic Weather Station", "datasets": [{"dataset_uid": "200291", "doi": "https://doi.org/10.48567/1hn2-nw60", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Antarctic Automatic Weather Station", "url": "https://amrdcdata.ssec.wisc.edu/group/about/automatic-weather-station-project"}], "date_created": "Mon, 16 May 2022 00:00:00 GMT", "description": "The Antarctic Automatic Weather Station (AWS) network is the most extensive ground meteorological network in the Antarctic, approaching its 30th year at several of its installations. Its prime focus as a long term observational record is to measure the near surface weather and climatology of the Antarctic atmosphere. AWS stations measure air-temperature, pressure, wind speed and direction at a nominal surface height of ~ 2-3m. Other parameters such as relative humidity and snow accumulation may also be taken. Observational data from the AWS are collected via Iridium network, or DCS Argos aboard either NOAA or MetOp polar orbiting satellites and thus made available in near real time to operational and synoptic weather forecasters. The surface observations from the AAWS network are important records for recent climate change and meteorological processes. The surface observations from the AAWS network are also used operationally, and in the planning of field work. The surface observations made from the AAWS network have been used to check on satellite and remote sensing observations. This project proposes to use the surface conditions observed by the AWS network to determine how large-scale modes of climate variability impact Antarctic weather and climate, how the surface observations from the AWS network are linked to surface layer and boundary layer processes, and to quantify the impact of snowfall and blowing snow events. Specifically, this project proposes to improve our understanding of the processes that lead to unusual weather events and how these events are related to large-scale modes of climate variability. This project will fill a gap in knowledge of snowfall distribution, and distinguishing between snowfall and blowing snow events using a suite of precipitation sensors near McMurdo Station.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "HUMIDITY; SURFACE PRESSURE; ATMOSPHERIC TEMPERATURE; AMD; ATMOSPHERIC PRESSURE; USA/NSF; AIR TEMPERATURE; Antarctica; USAP-DC; Amd/Us; SURFACE WINDS; SURFACE AIR TEMPERATURE; ATMOSPHERIC PRESSURE MEASUREMENTS; WEATHER STATIONS; ATMOSPHERIC WINDS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e WEATHER STATIONS", "repo": "AMRDC", "repositories": "AMRDC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Antarctic Automatic Weather Station Program 2016-2019", "uid": "p0010319", "west": -180.0}, {"awards": "2053726 Hofmann, Gretchen", "bounds_geometry": "POLYGON((163 -77,163.4 -77,163.8 -77,164.2 -77,164.6 -77,165 -77,165.4 -77,165.8 -77,166.2 -77,166.6 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.6 -78,166.2 -78,165.8 -78,165.4 -78,165 -78,164.6 -78,164.2 -78,163.8 -78,163.4 -78,163 -78,163 -77.9,163 -77.8,163 -77.7,163 -77.6,163 -77.5,163 -77.4,163 -77.3,163 -77.2,163 -77.1,163 -77))", "dataset_titles": "Analyses combining ATAC-seq, RRBS, and RNA-seq data for purple urchins", "datasets": [{"dataset_uid": "200288", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Analyses combining ATAC-seq, RRBS, and RNA-seq data for purple urchins", "url": "https://github.com/snbogan/Sp_RRBS_ATAC"}], "date_created": "Thu, 14 Apr 2022 00:00:00 GMT", "description": "Part 1: Non-technical description: With support from the Office of Polar Programs, this project will evaluate how an important part of the food web in the coastal ocean of Antarctica will respond to climate change. The focal study organism in the plankton is a shelled mollusk, the Antarctic pteropod, Limacina helicina antarctica, an Southern Ocean organism that this known to respond to climate driven changes in ocean acidification and ocean warming. Ocean acidification, the lowering of ocean pH via the absorption of atmospheric carbon dioxide in the surface of the ocean, is a change in the ocean that is expected to cross deleterious thresholds of pH within decades. This study will improve understanding of how pteropods will respond, which will provide insight into predicting the resilience of the Antarctic marine ecosystem during future changes, one of the planet\u2019s last marine wildernesses. The project will use tools of molecular biology to examine specifically how gene expression is modulated in the pteropods, and further, how the changes and regulation of genes act to resist the stress of low pH and high temperature. In addition, this project supports the training of Ph.D. graduate students and advances the goal of inclusive excellence in STEM and in marine sciences, in particular. The students involved in this project are from groups traditionally under-represented in marine science including first-generation college students. Overall, the project contributes to the development of the U.S. work force and contributes to diversity and inclusive excellence in the geosciences. Part 2: Technical description: The overarching goal of this project is to investigate the molecular response of the Antarctic thecosome pteropod, Limacina helicina antarctica to ocean acidification (OA) and ocean warming. The project will investigate changes in the epigenome of juvenile L. h. antarctica, by assessing the dynamics of DNA methylation in response to three scenarios of environmental conditions that were simulated in laboratory mesocosm CO2 experiments: (1) present-day pCO2 conditions for summer and winter, (2) future ocean acidification expected within 10-15 years, and (3) a multiple stressor experiment to investigate synergistic interaction of OA and high temperature stress. Recent lab-based mesocosm experiment research showed significant changes in the dynamics of global DNA methylation in the pteropod genome, along with variation in gene expression in response to abiotic changes. Thus, it is clear that juvenile L. h. antarctica are capable of mounting a substantial epigenetic response to ocean acidification. However, it is not known how DNA methylation, as an epigenetic process, is modulating changes in the transcriptome. In order to address this gap in the epigenetic knowledge regarding pteropods, the project will use next-generation sequencing approaches (e.g., RNA sequencing and reduced representation bisulfite sequencing) to integrate changes in methylation status with changes in gene expression in juvenile pteropods. Overall, this investigation is an important step in exploring environmental transcriptomics and phenotypic plasticity of an ecologically important member of Southern Ocean macrozoooplankton in response to anthropogenic climate change. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 167.0, "geometry": "POINT(165 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; McMurdo Sound; Amd/Us; FIELD INVESTIGATION; USA/NSF; AMD; MARINE ECOSYSTEMS; ANIMALS/INVERTEBRATES", "locations": "McMurdo Sound", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Hofmann, Gretchen", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "GitHub", "repositories": "GitHub", "science_programs": null, "south": -78.0, "title": "The Role of the Epigenetic Mechanism, DNA Methylation, in the Tolerance and Resistance of Antarctic Pteropods to Ocean Acidification and Warming", "uid": "p0010313", "west": 163.0}, {"awards": "1341429 Ball, Becky", "bounds_geometry": "POLYGON((-68.205783 -60.706633,-65.9444531 -60.706633,-63.6831232 -60.706633,-61.4217933 -60.706633,-59.1604634 -60.706633,-56.8991335 -60.706633,-54.6378036 -60.706633,-52.3764737 -60.706633,-50.1151438 -60.706633,-47.8538139 -60.706633,-45.592484 -60.706633,-45.592484 -62.1204014,-45.592484 -63.5341698,-45.592484 -64.9479382,-45.592484 -66.3617066,-45.592484 -67.775475,-45.592484 -69.1892434,-45.592484 -70.6030118,-45.592484 -72.0167802,-45.592484 -73.4305486,-45.592484 -74.844317,-47.8538139 -74.844317,-50.1151438 -74.844317,-52.3764737 -74.844317,-54.6378036 -74.844317,-56.8991335 -74.844317,-59.1604634 -74.844317,-61.4217933 -74.844317,-63.6831232 -74.844317,-65.9444531 -74.844317,-68.205783 -74.844317,-68.205783 -73.4305486,-68.205783 -72.0167802,-68.205783 -70.6030118,-68.205783 -69.1892434,-68.205783 -67.775475,-68.205783 -66.3617066,-68.205783 -64.9479382,-68.205783 -63.5341698,-68.205783 -62.1204014,-68.205783 -60.706633))", "dataset_titles": "Climatic and environmental constraints on aboveground-belowground linkages and diversity across a latitudinal gradient in Antarctica", "datasets": [{"dataset_uid": "200289", "doi": "", "keywords": null, "people": null, "repository": "OSF - Center for Open Science", "science_program": null, "title": "Climatic and environmental constraints on aboveground-belowground linkages and diversity across a latitudinal gradient in Antarctica", "url": "https://osf.io/8xfrc/"}], "date_created": "Thu, 14 Apr 2022 00:00:00 GMT", "description": "The Antarctic Peninsula is experiencing rapid environmental changes, which will influence the community of organisms that live there. However, we know very little about the microscopic organisms living in the soil in this region. Soil biology (including bacteria, fungi, and invertebrates) are responsible for many important processes that sustain ecosystems, such as nutrient recycling. Without understanding the environmental conditions that influence soil biodiversity along the Antarctic Peninsula, our ability to predict the consequences of global change is strongly limited. This project will identify the soil community at many sites along the Antarctic Peninsula to discover how the community changes with environmental conditions from north to south. The project will also identify how the soil community at each site differs under different types of plants. Understanding more about the ways in which plant cover and climate conditions influence soil biodiversity will allow predictions of how communities will respond to future changes such as climate warming and invasive plant species. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. The investigators will engage with outreach to K-12 students and the general public both directly and through a blog and will participate in workshops for K-12 teachers. Additionally, the project will provide the opportunity for many undergraduate and graduate students of diverse backgrounds to be trained in interdisciplinary research. The investigators will determine the nature and strength of plant-soil linkages in influencing soil community composition and diversity over a latitudinal gradient of environmental and climatic conditions. The goals are to (1) increase our understanding of current biogeography and diversity by providing in-depth knowledge of soil community composition and complexity as it relates to environmental and climatic characteristics; and (2) determine the nature of aboveground-belowground community linkages over varying spatial scales. The team will identify the composition and diversity of soil communities under key habitat types (grass, moss, algae, etc.). Microbial communities (bacteria, fungi, archaea) will be investigated using pyrosequencing for community composition analysis and metagenomic sequencing to identify functional capabilities. Invertebrates (nematodes, tardigrades, rotifers, microarthropods) will be extracted and identified to the lowest possible taxonomic level. Soil chemistry (pH, nutrient content, soil moisture, etc.) and climate conditions will be measured to determine the relationship between soil communities and physical and chemical properties. Structural equation modeling will be used to identify aboveground-belowground linkage pathways and quantify link strengths under varying environmental conditions.", "east": -45.592484, "geometry": "POINT(-56.8991335 -67.775475)", "instruments": null, "is_usap_dc": true, "keywords": "FUNGI; FIELD INVESTIGATION; AMD; Amd/Us; TERRESTRIAL ECOSYSTEMS; USA/NSF; ANIMALS/INVERTEBRATES; SOIL CHEMISTRY; BACTERIA/ARCHAEA; Antarctic Peninsula; ECOSYSTEM FUNCTIONS; USAP-DC", "locations": "Antarctic Peninsula", "north": -60.706633, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ball, Becky; Van Horn, David", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "OSF - Center for Open Science", "repositories": "OSF - Center for Open Science", "science_programs": null, "south": -74.844317, "title": "Collaborative Research: Climatic and Environmental Constraints on Aboveground-Belowground Linkages and Diversity across a Latitudinal Gradient in Antarctica", "uid": "p0010314", "west": -68.205783}, {"awards": "1932876 Ball, Becky", "bounds_geometry": "POLYGON((-59.666116 -62.15,-59.5128377 -62.15,-59.3595594 -62.15,-59.2062811 -62.15,-59.0530028 -62.15,-58.8997245 -62.15,-58.7464462 -62.15,-58.5931679 -62.15,-58.4398896 -62.15,-58.2866113 -62.15,-58.133333 -62.15,-58.133333 -62.1731502,-58.133333 -62.1963004,-58.133333 -62.2194506,-58.133333 -62.2426008,-58.133333 -62.265751,-58.133333 -62.2889012,-58.133333 -62.3120514,-58.133333 -62.3352016,-58.133333 -62.3583518,-58.133333 -62.381502,-58.2866113 -62.381502,-58.4398896 -62.381502,-58.5931679 -62.381502,-58.7464462 -62.381502,-58.8997245 -62.381502,-59.0530028 -62.381502,-59.2062811 -62.381502,-59.3595594 -62.381502,-59.5128377 -62.381502,-59.666116 -62.381502,-59.666116 -62.3583518,-59.666116 -62.3352016,-59.666116 -62.3120514,-59.666116 -62.2889012,-59.666116 -62.265751,-59.666116 -62.2426008,-59.666116 -62.2194506,-59.666116 -62.1963004,-59.666116 -62.1731502,-59.666116 -62.15))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 14 Apr 2022 00:00:00 GMT", "description": "Part I: Non-technical summary The Antarctic Peninsula warmed very rapidly in the late part of the 20th century, much faster than the global average, and this warming is predicted to resume and continue over the rest of the 21st century. One consequence of this rapid warming is the melting and subsequent retreat of glaciers, leading to an increase in newly-exposed land on the Peninsula that was previously covered with ice. Once new terrain is exposed, the process of ecological succession begins, with the arrival of early-colonizing plants, such as moss and lichens, and soil organisms - a process commonly referred to as the \u201cgreening\u201d of Antarctica. Early stages of succession will be an increasingly common feature on the Antarctic Peninsula, but the mechanisms by which they occur on the Antarctic continent is not well understood. Once the plants have established on the newly-exposed soil, they can change many important properties, such as water dynamics, nutrient recycling, soil development, and habitat for microscopic organisms, which will ultimately determine the structure and functioning of the future ecosystem as it develops. These relationships between vegetation, soil, and the associated microorganisms, referred to as \u201cplant-soil\u201d interactions, are something we know virtually nothing about. This project will be the first to make a comprehensive study of how the type of colonizing plant, and the expansion of those plants from climate change, will influence terrestrial ecosystems in Antarctica. Understanding these processes is critical to understanding how the greening Antarctica is occurring and how soil communities and processes are influenced by these expanding plant communities. Through this work the research team, will also be intensively training undergraduate and graduate students, including training of students from underrepresented groups and collaborative training of students from Chile and the US. Additionally, the research groups will continue their focus on scientific outreach with K-12 schools and the general public to expand awareness of the effects of climate change in Antarctica. Part II: Technical summary In this study, the researchers will use surveys across succession sites along the Antarctic Peninsula and Scotia Arc as well as a manipulative field experiment at glacier succession sites to test how species-specific plant functional traits impact soil properties and associated microbial and invertebrate communities in a greening Antarctica. In doing so, they will pursue three integrated aims to understand how Antarctic plant functional traits alter their soil environment and soil communities during succession after glacial retreat. AIM 1) Characterize six fundamental plant functional traits (thermal conductivity, water holding capacity, albedo, decomposability, tissue nutrient content, and secondary chemistry) among diverse Antarctica flora; AIM 2) Measure the relative effects of fundamental plant functional traits on soil physical properties and soil biogeochemistry across glacial succession gradients in Antarctica; and AIM 3) Measure the relative effects of fundamental plant functional traits on soil microbial and invertebrate communities across glacial succession gradients in Antarctica. They will explore how early-colonizing plants, especially mosses and lichens, alter soil physical, biogeochemical, and biological components, potentially impacting later patterns of succession. The researhcers will use intensive surveys of plant-soil interactions across succession sites and a manipulative transplant experiment in the South Shetland Islands, Antarctica to address their aims. The investigators will collect data on plant functional traits and their effects on soil physical properties, biogeochemistry, biotic abundance, and microbial metagenomics. The data collected will be the first comprehensive measures of the relative importance of plant functional types during glacial retreat and vegetative expansion from climate change in Antarctica, aiding our understanding of how plant functional group diversity and abundance are changing in a greening Antarctica. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -58.133333, "geometry": "POINT(-58.8997245 -62.265751)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; FIELD SURVEYS; ECOLOGICAL DYNAMICS; USA/NSF; SOIL CHEMISTRY; 25 De Mayo/King George Island; Antarctic Peninsula; PLANTS; Amd/Us; FUNGI; ANIMALS/INVERTEBRATES; USAP-DC; TERRESTRIAL ECOSYSTEMS; BACTERIA/ARCHAEA", "locations": "25 De Mayo/King George Island; Antarctic Peninsula", "north": -62.15, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ball, Becky", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -62.381502, "title": "Collaborative Research: Exploring the Functional Role of Antarctic Plants during Terrestrial Succession", "uid": "p0010315", "west": -59.666116}, {"awards": "1643917 Fricker, Helen", "bounds_geometry": "POLYGON((-163.646 -84.186,-162.58715 -84.186,-161.5283 -84.186,-160.46945 -84.186,-159.4106 -84.186,-158.35175 -84.186,-157.2929 -84.186,-156.23405 -84.186,-155.1752 -84.186,-154.11635 -84.186,-153.0575 -84.186,-153.0575 -84.20871,-153.0575 -84.23142,-153.0575 -84.25413,-153.0575 -84.27684,-153.0575 -84.29955,-153.0575 -84.32226,-153.0575 -84.34497,-153.0575 -84.36768,-153.0575 -84.39039,-153.0575 -84.4131,-154.11635 -84.4131,-155.1752 -84.4131,-156.23405 -84.4131,-157.2929 -84.4131,-158.35175 -84.4131,-159.4106 -84.4131,-160.46945 -84.4131,-161.5283 -84.4131,-162.58715 -84.4131,-163.646 -84.4131,-163.646 -84.39039,-163.646 -84.36768,-163.646 -84.34497,-163.646 -84.32226,-163.646 -84.29955,-163.646 -84.27684,-163.646 -84.25413,-163.646 -84.23142,-163.646 -84.20871,-163.646 -84.186))", "dataset_titles": "Wideband magnetotelluric responses from Whillans Ice Stream, West Antarctica", "datasets": [{"dataset_uid": "601526", "doi": "10.15784/601526", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Stream; Magnetotelluric; Subglacial; Whillans Ice Stream", "people": "Fricker, Helen; Gustafson, Chloe; Key, Kerry; Siegfried, Matthew", "repository": "USAP-DC", "science_program": null, "title": "Wideband magnetotelluric responses from Whillans Ice Stream, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/601526"}], "date_created": "Sat, 26 Feb 2022 00:00:00 GMT", "description": "The Antarctic ice sheet is underlain by a dynamic water system that lubricates the flow of ice streams and outlet glaciers, provides a habitat for a diverse microbial ecosystem, and delivers freshwater and nutrients to the Southern Ocean. However, imaging this subglacial environment is difficult: Antarctica is a vast continent with ice up to four kilometers (2.5 miles) thick. To detect water at the ice-bed interface and in deeper groundwater reservoirs, this project will adapt a technique called electromagnetic sounding that is well-established on land and in the ocean for imaging fluids beneath the surface. Groundwater is estimated to be a significant part of the subglacial water budget in Antarctica, yet previous observational approaches have been unable to characterize its volume and distribution. This project will thus yield critical information about how ice-rock-water-ocean systems interact and inform our understanding of ice-sheet processes, global nutrient cycles, and freshwater flux to the ocean. The project will provide cross-disciplinary training for a graduate student and postdoctoral scientist, and develop an educational outreach program through the Birch Aquarium. Standard geophysical surveying techniques used in glaciology to image subglacial water (radio-echo sounding and active-source seismology) are not directly sensitive to water content. In contrast, ground-based electromagnetic (EM) methods are sensitive to water content through its impact on bulk conductivity. Although EM methods are well-established for high-precision mapping of hydrology in other geological environments, their application on ice sheets is in its infancy. The proposed work will adapt both passive- and active-source EM techniques to glaciological questions to quantify the three-dimensional structure of subglacial water beneath an ice stream and in a grounding zone. The project will perform a suite of synthetic inversion studies to determine the range of applications of EM techniques in glaciology and execute a field experiment on the Whillans Ice Plain to investigate two hypotheses about the subglacial water system based on previous observational and modeling results: (1) Subglacial Lake Whillans is underlain by a deep, saline groundwater reservoir; and (2) there is an estuary-like zone of mixing between fresh subglacial water and seawater near, and possibly landward, of the grounding line.", "east": -153.0575, "geometry": "POINT(-158.35175 -84.29955)", "instruments": null, "is_usap_dc": true, "keywords": "Whillans Ice Stream; GROUND WATER; USA/NSF; USAP-DC; AMD; GEOMAGNETIC INDUCTION; Amd/Us; FIELD SURVEYS", "locations": "Whillans Ice Stream", "north": -84.186, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Key, Kerry; Fricker, Helen; Siegfried, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.4131, "title": "Mapping Antarctic Subglacial Water with Novel Electromagnetic Techniques", "uid": "p0010300", "west": -163.646}, {"awards": "0342484 Harwood, David", "bounds_geometry": "POINT(167.083333 -77.888889)", "dataset_titles": "Particle-size measurements at 3-m intervals for AND-2A sediment core, McMurdo Sound", "datasets": [{"dataset_uid": "601451", "doi": "10.15784/601451", "keywords": "Andrill; Antarctica; Continental Shelf; Diamict; McMurdo Sound; Miocene; Paleoclimate; Particle Size", "people": "Passchier, Sandra; Candice, Falk", "repository": "USAP-DC", "science_program": "ANDRILL", "title": "Particle-size measurements at 3-m intervals for AND-2A sediment core, McMurdo Sound", "url": "https://www.usap-dc.org/view/dataset/601451"}], "date_created": "Fri, 04 Feb 2022 00:00:00 GMT", "description": "ANDRILL is a scientific drilling program to investigate Antarctica\u0027s role in global climate change over the last sixty million years. The approach integrates geophysical surveys, new drilling technology, multidisciplinary core analysis, and ice sheet modeling to address four scientific themes: (1) the history of Antarctica\u0027s climate and ice sheets; (2) the evolution of polar biota and ecosystems; (3) the timing and nature of major tectonic and volcanic episodes; and (4) the role of Antarctica in the Earth\u0027s ocean-climate system. \u003cbr/\u003e\u003cbr/\u003eThis award initiates what may become a long-term program with drilling of two previously inaccessible sediment records beneath the McMurdo Ice Shelf and in South McMurdo Sound. These stratigraphic records cover critical time periods in the development of Antarctica\u0027s major ice sheets. The McMurdo Ice Shelf site focuses on the Ross Ice Shelf, whose size is a sensitive indicator of global climate change. It has recently undergone major calving events, and there is evidence of a thousand-kilometer contraction since the last glacial maximum. As a generator of cold bottom water, the shelf may also play a key role in ocean circulation. The core obtained from this site will also offer insight into sub-ice shelf sedimentary, biologic, and oceanographic processes; the history of Ross Island volcanism; and the flexural response of the lithosphere to volcanic loading, which is important for geophysical and tectonic studies of the region.\u003cbr/\u003e\u003cbr/\u003eThe South McMurdo Sound site is located adjacent to the Dry Valleys, and focuses on the major ice sheet overlying East Antarctica. A debate persists regarding the stability of this ice sheet. Evidence from the Dry Valleys supports contradictory conclusions; a stable ice sheet for at least the last fifteen million years or an active ice sheet that cycled through expansions and contractions as recently as a few millions of years ago. Constraining this history is critical to deep-time models of global climate change. The sediment cores will be used to construct an overall glacial and interglacial history for the region; including documentation of sea-ice coverage, sea level, terrestrial vegetation, and melt-water discharge events. The core will also provide a general chronostratigraphic framework for regional seismic studies and help unravel the area\u0027s complex tectonic history.\u003cbr/\u003e\u003cbr/\u003eThe broader impacts of this project include formal and informal education, new research infrastructure, various forms of collaboration, and improving society\u0027s understanding of global climate change. Education is supported at the postdoctoral, graduate, undergraduate, and K-12 levels. Teachers and curriculum specialists are integrated into the research program, and a range of video resources will be produced, including a science documentary for television release. New research infrastructure includes equipment for core analysis and ice sheet modeling, as well as development of a unique drilling system to penetrate ice shelves. Drill development and the overall project are co-supported by international collaboration with scientists and the National Antarctic programs of New Zealand, Germany, and Italy. The program also forges new collaborations between research and primarily undergraduate institutions within the United States. \u003cbr/\u003e\u003cbr/\u003eAs key factors in sea-level rise and oceanic and atmospheric circulation, Antarctica\u0027s ice sheets are important to society\u0027s understanding of global climate change. ANDRILL offers new data on marine and terrestrial temperatures, and changes our understanding of extreme climate events like the formation of polar ice caps. Such data are critical to developing accurate models of the Earth\u0027s climatic future.", "east": 167.083333, "geometry": "POINT(167.083333 -77.888889)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; USAP-DC; FIELD SURVEYS; ICE SHEETS; USA/NSF; Amd/Us; PALEOCLIMATE RECONSTRUCTIONS; Ross Ice Shelf; SEDIMENTS", "locations": "Ross Ice Shelf", "north": -77.888889, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Harwood, David; Levy, Richard", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ANDRILL", "south": -77.888889, "title": "Collaborative Research: ANDRILL - - Investigating Antarcticas Role in Cenozoic Global Environmental Change", "uid": "p0010297", "west": 167.083333}, {"awards": "1744954 Lubin, Dan", "bounds_geometry": "POINT(-148.81 -81.65)", "dataset_titles": "Siple Dome Surface Energy Flux", "datasets": [{"dataset_uid": "601540", "doi": "10.15784/601540", "keywords": "Antarctica; Siple Dome; Spectroscopy", "people": "Lubin, Dan; Ghiz, Madison", "repository": "USAP-DC", "science_program": null, "title": "Siple Dome Surface Energy Flux", "url": "https://www.usap-dc.org/view/dataset/601540"}], "date_created": "Wed, 02 Feb 2022 00:00:00 GMT", "description": "Atmospheric warming has been a major factor in the loss of ice shelves on the Antarctic Peninsula. In West Antarctica, oceanic warming is presently regarded as the largest source of stress on both the ice-shelves and at the grounding lines of the ice sheets. The loss of ice shelf buttressing and grounding line retreat may have already induced irreversible loss of Thwaites Glacier. To advance predictive models more data is needed regarding both water-induced fracturing on an ice shelf and marine ice cliff instability near the grounding line. This project will help advance understanding of atmospheric circulation and solar radiation over West Antarctica and the Ross Ice Shelf that lead to surface melting. In support of this project, and incorporating Antarctic science from this work, UCSD educators will sponsor a workshop series for exemplary middle and/or high school science teachers designed to address this need. Teacher participants will be carefully selected for their demonstrated leadership skills and will eventually become part of an cadre of \"master\" science teachers who will serve as local leaders in disseminating strategies and tools for addressing the NGSS (Ca Next Gen. of Sci. Eng. Stds.) to teachers throughout the county. For the summer field seasons requested, UCSD scientists will deploy a suite instruments to measure downwelling and net shortwave and longwave fluxes, sensible and latent heat fluxes, and near-surface meteorology. This suite of instruments will be self-reliant with power requirements and will be supportable in the field with a single Twin Otter aircraft. The investigators plan to deploy this suite as a remote ice camp with a field party of 2-3 personnel, making measurements for at up to one month during each of the sampled summer field seasons. These measurements will be analyzed and interpreted to determine mesoscale conditions that govern surface melt in West Antarctica, in the context of improving coupled climate model parameterizations. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -148.81, "geometry": "POINT(-148.81 -81.65)", "instruments": null, "is_usap_dc": true, "keywords": "ICE SHEETS; Siple Dome; USAP-DC; ATMOSPHERIC RADIATION; AMD; FIELD SURVEYS; Amd/Us; USA/NSF", "locations": "Siple Dome", "north": -81.65, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lubin, Dan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -81.65, "title": "Surface Energy Balance on West Antarctica and the Ross Ice Shelf", "uid": "p0010296", "west": -148.81}, {"awards": "2127632 Rowe, Penny; 2127633 ZOU, XUN", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 01 Feb 2022 00:00:00 GMT", "description": "This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). The Western Antarctic Peninsula (WAP; AP) has been warming faster than the global average since the mid-1960s. Concurrent mobilization of ice shelves has been associated with glacial discharge into the ocean, with important implications for global sea level rise. This work will enhance our understanding of the contributions of clouds, water vapor and surface radiation to warming over the WAP. Processes governing phase partitioning and amounts of supercooled liquid water are crucial for understanding surface melt, and will be explored. In addition, the role of clouds and moisture during foehn and atmospheric river (AR) events, will be characterized. Clouds and atmospheric water vapor have strong radiative signals that vary seasonally and with cloud properties. This work will lead to a better understanding of how clouds are impacting surface melt on the AP in the changing climate. In addition, the proposed work will include several undergraduate research projects. Finally, broader impacts include public outreach through participation in GeoWeek at Ohio State University and Polar Science Weekend at the Pacific Science Center in Seattle, WA. It is crucial to human welfare to understand mechanisms responsible for the rapid pace of Antarctic ice loss. This work will lead to a better understanding of how clouds are impacting surface melt on the WAP in the changing climate. The project will use surface- and satellite-based measurements to characterize clouds and humidity. The project maximizes value by using a variety of previous, ongoing, and planned measurements made by an international group of collaborators, along with measurements and model (AMPS, Polar-WRF) results. These will be used to quantify clouds, water vapor, and radiation and their effects on the surface energy balance at three strategically-located stations: Rothera (upwind of the WAP), Marambio (downwind of the WAP) and Escudero (north of the WAP), in order to provide a detailed characterization of cloud radiative and precipitation-formation properties and their role in surface warming and melt events. These mechanisms lead to the following hypotheses: 1) Through their effect on the surface energy balance, clouds play an important role in surface warming on the AP; this role is seasonally varying and sensitive to cloud thermodynamic phase, 2) Radiative heating during foehn events is an important contributor to warming at the northern AP, and 3) The radiative effects of clouds and water vapor have strong influences on heating before and during AR events, with significant differences on the two sides of the WAP. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; FIELD SURVEYS; AMD; USA/NSF; SURFACE TEMPERATURE; Amd/Us; ATMOSPHERIC RADIATION; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Zou, Xun", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: Cloud Radiative Impact on the Surface Energy Budget of the Antarctic Peninsula", "uid": "p0010295", "west": -180.0}, {"awards": "1946326 Doran, Peter", "bounds_geometry": "POLYGON((161 -77.4,161.3 -77.4,161.6 -77.4,161.9 -77.4,162.2 -77.4,162.5 -77.4,162.8 -77.4,163.1 -77.4,163.4 -77.4,163.7 -77.4,164 -77.4,164 -77.46,164 -77.52,164 -77.58,164 -77.64,164 -77.7,164 -77.76,164 -77.82,164 -77.88,164 -77.94,164 -78,163.7 -78,163.4 -78,163.1 -78,162.8 -78,162.5 -78,162.2 -78,161.9 -78,161.6 -78,161.3 -78,161 -78,161 -77.94,161 -77.88,161 -77.82,161 -77.76,161 -77.7,161 -77.64,161 -77.58,161 -77.52,161 -77.46,161 -77.4))", "dataset_titles": "EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers: Infrared Stimulated Luminescence data; EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers: in situ 14C data", "datasets": [{"dataset_uid": "601520", "doi": "10.15784/601520", "keywords": "Antarctica; Sample/collection Description; Sample/Collection Description; Sample Location; Taylor Valley", "people": "Doran, Peter; Stone, Michael", "repository": "USAP-DC", "science_program": "LTER", "title": "EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers: Infrared Stimulated Luminescence data", "url": "https://www.usap-dc.org/view/dataset/601520"}, {"dataset_uid": "601521", "doi": "10.15784/601521", "keywords": "Antarctica; Carbon-14; Sample/collection Description; Sample/Collection Description; Sample Location; Taylor Valley", "people": "Doran, Peter; Stone, Michael", "repository": "USAP-DC", "science_program": null, "title": "EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers: in situ 14C data", "url": "https://www.usap-dc.org/view/dataset/601521"}], "date_created": "Mon, 31 Jan 2022 00:00:00 GMT", "description": "Correlating ecosystem responses to past climate forcing is highly dependent on the use of reliable techniques for establishing the age of events (dating techniques). In Antarctic dry regions (land areas without glaciers), carbon-14 dating has been used to assess the ages of organic deposits left behind by ancient lakes. However, the reliability of the ages is debatable because of possible contamination with \"old carbon\" from the surrounding landscape. The proposed research will attempt to establish two alternate dating techniques, in situ carbon-14 cosmogenic radionuclide exposure dating and optically stimulated luminescence (OSL), as reliable alternate dating methods for lake history in Antarctic dry areas that are not contaminated by the old carbon. The end goal will be to increase scientific understanding of lake level fluctuation in the lakes of Taylor Valley, Antarctica so that inference about past climate, glacier, and ecosystem response can be inferred. The results of this study will provide a coarse-scale absolute chronology for lake level history in Taylor Valley, demonstrate that exposure dating and OSL are effective means to understand the physical dynamics of ancient water bodies, and increase the current understanding of polar lacustrine and ice sheet responses to past and present climatic changes. These chronologies will allow polar lake level fluctuations to be correlated with past changes in global and regional climate, providing information critical for understanding and modeling the physical responses of these environments to modern change. This research supports a PhD student; the student will highlight this work with grade school classes in the United States. This research aims to establish in situ carbon-14 exposure dating and OSL as reliable alternate (to carbon-14 of organic lake deposits) geochronometers that can be used to settle the long-disputed lacustrine history and chronology of Taylor Valley, Antarctica and elsewhere. Improved lake level history will have significant impacts for the McMurdo Dry Valleys Long Term Ecological Research (MCM LTER) site as the legacy of fluctuating lake levels of the past affects the distribution of organic matter and nutrients, and impacts biological connectivity valley-wide. This work will provide insight into the carbon reservoir of large glacial lakes in the late Holocene and have implications for previously reported radiocarbon chronologies. OSL samples will be analyzed in the Desert Research Institute Luminescence Laboratory in Reno, NV. For the in situ carbon-14 work, rock samples extracted from boulders and bedrock surfaces will be prepared at Tulane University. The prepared in situ carbon-14 samples will be analyzed at the National Ocean Sciences Accelerator Mass Spectrometry laboratory in Woods Hole, MA. The two datasets will be combined to produce a reliable, coarse scale chronology for late Quaternary lake level fluctuations in Taylor Valley. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 164.0, "geometry": "POINT(162.5 -77.7)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; Amd/Us; Taylor Valley; AGE DETERMINATIONS; USA/NSF; AMD; USAP-DC", "locations": "Taylor Valley", "north": -77.4, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Earth Sciences", "paleo_time": null, "persons": "Doran, Peter", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LTER", "south": -78.0, "title": "EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers", "uid": "p0010294", "west": 161.0}, {"awards": "2031554 Chartier, Alex; 2032421 Kim, Hyomin", "bounds_geometry": "POLYGON((-180 -75,-144 -75,-108 -75,-72 -75,-36 -75,0 -75,36 -75,72 -75,108 -75,144 -75,180 -75,180 -76.5,180 -78,180 -79.5,180 -81,180 -82.5,180 -84,180 -85.5,180 -87,180 -88.5,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -88.5,-180 -87,-180 -85.5,-180 -84,-180 -82.5,-180 -81,-180 -79.5,-180 -78,-180 -76.5,-180 -75))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 31 Dec 2021 00:00:00 GMT", "description": "This award is funded in whole or part under the American Rescue Plan Act of 2021 (Public Law 117-2). The Geospace environment comprises a complex system of the incoming solar wind plasma flow interacting with the Earth\u0027s magnetic field and transferring its energy and momentum into the magnetosphere. This interaction takes place mainly on the Earth\u0027s dayside, where reconnecting geomagnetic field line might be \"open\" and directly connected to the interplanetary magnetic field lines, thus providing direct pathways for the solar wind energy to be transferred down to the ionosphere and upper atmosphere. The spatial extent of the polar cap areas controlled by the ionospheric plasma convection demarcate the so-called \"Open-Closed Boundary\" where solar wind particles reach down polar ionospheres. Observations of that boundary serve the important role in validating geomagnetic field modeling and help studying space weather. Motivated by the compelling Geospace research in the polar regions, this award will allow scientists to investigate magnetosphere-ionosphere coupling processes and ionospheric irregularities inside the polar caps and their space weather impacts by establishing a new ground-based network that will be deployed in the Antarctic polar cap region. This will be achieved using three new instrumented platforms (next generation of Automatic Geophysical Observatories) along the snow traverse route from the Korean Antarctic Station Jang Bogo toward to the Concordia Station at Dome C by the Korea Polar Research Institute\u0027s (KOPRI) team. Geospace data collected by these three platforms will be shared by the U.S. and Korean researchers, as well as will be made available to other scientists. The research involves early-career researchers, as well as train students who will build and operate remote Antarctic platforms, as well as analyze collected data to investigate space weather events and validate models. This project expands the U.S. institutions partnership with the KOPRI scientists and logistical support personnel. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; USA/NSF; Jang Bogo Station; Jang Bogo Station And A Traverse Route On The Antarctic Plateau; USAP-DC; FIELD SURVEYS; MAGNETIC FIELDS/MAGNETIC CURRENTS; AURORAE; AMD", "locations": "Jang Bogo Station And A Traverse Route On The Antarctic Plateau; Jang Bogo Station", "north": -75.0, "nsf_funding_programs": "Antarctic Instrumentation and Facilities; Antarctic Astrophysics and Geospace Sciences; Antarctic Astrophysics and Geospace Sciences", "paleo_time": null, "persons": "Kim, Hyomin; Perry, Gareth; Chartier, Alex", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: Investigation of Deep Polar Cap Dynamics Using an Autonomous Instrument Network", "uid": "p0010288", "west": -180.0}, {"awards": "1847067 Levy, Joseph", "bounds_geometry": "POLYGON((161 -76,161.35 -76,161.7 -76,162.05 -76,162.4 -76,162.75 -76,163.1 -76,163.45 -76,163.8 -76,164.15 -76,164.5 -76,164.5 -76.2,164.5 -76.4,164.5 -76.6,164.5 -76.8,164.5 -77,164.5 -77.2,164.5 -77.4,164.5 -77.6,164.5 -77.8,164.5 -78,164.15 -78,163.8 -78,163.45 -78,163.1 -78,162.75 -78,162.4 -78,162.05 -78,161.7 -78,161.35 -78,161 -78,161 -77.8,161 -77.6,161 -77.4,161 -77.2,161 -77,161 -76.8,161 -76.6,161 -76.4,161 -76.2,161 -76))", "dataset_titles": "Biogeochemical measurements of water tracks and adjacent dry soils from the McMurdo Dry Valleys; Surface Water Geochemistry from the McMurdo Dry Valleys", "datasets": [{"dataset_uid": "601684", "doi": "10.15784/601684", "keywords": "Antarctica; Cation Exchange; Chemistry:soil; Chemistry:Soil; Dry Valleys; Organic Matter; Salt; Soil", "people": "Levy, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Biogeochemical measurements of water tracks and adjacent dry soils from the McMurdo Dry Valleys", "url": "https://www.usap-dc.org/view/dataset/601684"}, {"dataset_uid": "601703", "doi": "10.15784/601703", "keywords": "Antarctica; Dry Valleys", "people": "Levy, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Surface Water Geochemistry from the McMurdo Dry Valleys", "url": "https://www.usap-dc.org/view/dataset/601703"}], "date_created": "Fri, 24 Dec 2021 00:00:00 GMT", "description": "Antarctic groundwater drives the regional carbon cycle and can accelerate permafrost thaw shaping Antarctic surface features. However, groundwater extent, flow, and processes on a continent virtually locked in ice are poorly understood. The proposed work investigates the interplay between groundwater, sediment, and ice in Antarctica\u0027s cold desert landscape to determine when, where, and why Antarctic groundwater is flowing, and how it may evolve Antarctic frozen deserts from dry and stable to wet and dynamic. Mapping the changing extent of Antarctic near-surface groundwater requires the ability to measure soil moisture rapidly and repeatedly over large areas. The research will capture changes in near-surface groundwater distribution through an unmanned aerial vehicle (UAV) mapping approach. The project integrates a diverse range of sensors with new UAV technologies to provide a higher-resolution and more frequent assessment of Antarctic groundwater extent and composition than can be accomplished using satellite observations alone. To complement the research objectives, the PI will develop a new UAV summer field school, the Geosciences UAV Academy, focused on training undergraduate-level UAV pilots in conducting novel earth sciences research using cutting edge imaging tools. The integration of research and technology will prepare students for careers in UAV-related industries and research. The project will deliver new UAV tools and workflows for soil moisture mapping relevant to arid regions including Antarctica as well as temperate desert and dryland systems and will train student research pilots to tackle next generation airborne challenges. Water tracks are the basic hydrological unit that currently feeds the rapidly-changing permafrost and wetlands in the Antarctic McMurdo Dry Valleys (MDV). Despite the importance of water tracks in the MDV hydrologic cycle and their influence on biogeochemistry, little is known about how these water tracks control the unique brine processes operating in Antarctic ice-free areas. Both groundwater availability and geochemistry shape Antarctic microbial communities, connecting soil geology and hydrology to carbon cycling and ecosystem functioning. The objectives of this CAREER proposal are to 1) map water tracks to determine the spatial distribution and seasonal magnitude of groundwater impacts on the MDV near-surface environment to determine how near-surface groundwater drives permafrost thaw and enhances chemical weathering and biogeochemical cycling; 2) establish a UAV academy training earth sciences students to answer geoscience questions using drone-based platforms and remote sensing techniques; and 3) provide a formative step in the development of the PI as a teacher-scholar. UAV-borne hyperspectral imaging complemented with field soil sampling will determine the aerial extent and timing of inundation, water level, and water budget of representative water tracks in the MDV. Soil moisture will be measured via near-infrared reflectance spectroscopy while bulk chemistry of soils and groundwater will be analyzed via ion chromatography and soil x-ray fluorescence. Sedimentological and hydrological properties will be determined via analysis of intact core samples. These data will be used to test competing hypotheses regarding the origin of water track solutions and water movement through seasonal wetlands. The work will provide a regional understanding of groundwater sources, shallow groundwater flux, and the influence of regional hydrogeology on solute export to the Southern Ocean and on soil/atmosphere linkages in earth\u0027s carbon budget. The UAV school will 1) provide comprehensive instruction at the undergraduate level in both how and why UAVs can advance geoscience research and learning; and 2) provide educational infrastructure for an eventual self-sustaining summer program for undergraduate UAV education. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 164.5, "geometry": "POINT(162.75 -77)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; Amd/Us; USA/NSF; AMD; USAP-DC; FROZEN GROUND; Taylor Valley", "locations": "Taylor Valley", "north": -76.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Levy, Joseph", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Linking Antarctic Cold Desert Groundwater to Thermokarst \u0026 Chemical Weathering in Partnership with the Geoscience UAV Academy", "uid": "p0010286", "west": 161.0}, {"awards": "2039419 Swanger, Kate", "bounds_geometry": "POLYGON((161 -77.3,161.2 -77.3,161.4 -77.3,161.6 -77.3,161.8 -77.3,162 -77.3,162.2 -77.3,162.4 -77.3,162.6 -77.3,162.8 -77.3,163 -77.3,163 -77.35,163 -77.4,163 -77.45,163 -77.5,163 -77.55,163 -77.6,163 -77.65,163 -77.7,163 -77.75,163 -77.8,162.8 -77.8,162.6 -77.8,162.4 -77.8,162.2 -77.8,162 -77.8,161.8 -77.8,161.6 -77.8,161.4 -77.8,161.2 -77.8,161 -77.8,161 -77.75,161 -77.7,161 -77.65,161 -77.6,161 -77.55,161 -77.5,161 -77.45,161 -77.4,161 -77.35,161 -77.3))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 16 Dec 2021 00:00:00 GMT", "description": "The McMurdo Dry Valleys are the largest ice-free region in Antarctica and home to a seasonally active hydrologic system, with streams and saline lakes. Streams are fed by summer meltwater from local glaciers and snowbanks. Therefore, streamflow is tied to summer climate conditions such as air temperatures, ground temperatures, winds, and incoming solar radiation. Based on 50 years of monitoring, summer stream activity has been observed to change, and it likely varied during the geologic past in response to regional climate change and fluctuating glaciers. Thus, deposits from these streams can address questions about past climate, meltwater, and lake level changes in this region. How did meltwater streamflow respond to past climate change? How did streamflow vary during periods of glacial advance and retreat? At what times did large lakes fill many of the valleys and what was their extent? The researchers plan to acquire a record of stream activity for the Dry Valleys that will span the three largest valleys and a time period of about 100,000 years. This record will come from a series of active and ancient alluvial fans that were deposited by streams as they flowed from valley sidewalls onto valley floors. The study will provide a long-term context with which to assess recent observed changes to stream activity and lake levels. The research will be led by two female mid-career investigators and contribute significantly to student research opportunities and education. The research will contribute to graduate and undergraduate education by including students in both field and laboratory research, as well as incorporating data and results into the classroom. The research will be disseminated to K-12 and non-scientific communities through outreach that includes professional development training for K-12 teachers in eastern Massachusetts, development of hands-on activities, visits to K-12 classrooms, and STEM education and literacy activities in North Carolina. The PIs propose to constrain rates of fluvial deposition and periods of increased fluvial activity in the McMurdo Dry Valleys during the Holocene and late Pleistocene. During 50 years of hydrologic monitoring in the Dry Valleys, scientists have observed that streams exhibit significant response to summer conditions. Previous studies of glacial and lacustrine deposits indicate regional glacier advance in the Dry Valleys during recent interglacial periods and high lake levels during and after the Last Glacial Maximum (LGM), with potentially significant low and high stands during the Holocene. However, the geologic record of meltwater activity is poorly constrained. The PIs seek to develop the first spatially-extensive record of stream deposition in the Dry Valleys by analyzing and dating alluvial fans. Given that alluvial fans are deposited by summer meltwater streams in a relatively stable tectonic setting, this record will serve as a proxy of regional summer climate conditions. Meltwater streams are an important component of the regional hydrologic system, connecting glaciers to lakes and affecting ecosystems and soils. A record of fluvial deposition is key to understanding the relationship between past climate change and regional hydrology. The proposed research will include remote- and field-based mapping of alluvial fans, stream channels, and meltwater sources as well as modeling potential incoming solar radiation to the fans and moisture sources during the austral summer. In the field, the PIs will document stratigraphy, collect near-surface sediments from 25 fans across four valleys (Taylor, Pearse, Wright, and Victoria), and collect 2- to 3-m vertical cores of ice-cemented sediments from three alluvial fan complexes. The PIs will then conduct depositional dating of fluvial sands via optically stimulated luminescence, and analyze mineralogy and bulk major element chemistry with X-ray powder diffraction and X-ray fluorescence. From these analyses, the PIs propose to (1) determine the timing of local- to regional-scale periods of high fluvial deposition, (2) calculate depositional rates, and (3) constrain depositional environments and sediment provenance. Given that many of the alluvial fans occur below the hypothesized maximum extents of glacially-dammed lakes in Wright and Victoria valleys, detailed stratigraphy, sediment provenance, and OSL dating of these fans could shed light on ongoing debates regarding the timing and extent of LGM and post-LGM lakes. The work will support a postdoctoral researcher, a PhD student, and many undergraduate and master\u2019s students in cross-disciplinary research that spans stratigraphy, geochemistry, paleoclimatology and physics. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 163.0, "geometry": "POINT(162 -77.55)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; Amd/Us; SEDIMENTS; USA/NSF; AMD; Dry Valleys; USAP-DC", "locations": "Dry Valleys", "north": -77.3, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Swanger, Kate", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -77.8, "title": "Collaborative Research: Holocene and Late Pleistocene Stream Deposition in the McMurdo Dry Valleys, Antarctica as a Proxy for Glacial Meltwater and Paleoclimate", "uid": "p0010285", "west": 161.0}, {"awards": "1951500 Jenouvrier, Stephanie", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Data from: Individual life histories: Neither slow nor fast, just diverse; Evo-Demo Hyperstate Matrix Model Code Repository; Hyperstate matrix model reveals the influence of personality on demography; Individual life histories: neither slow nor fast, just diverse; Plastic Behaviour Buffers Climate Variability in the Wandering Albatross; Strong winds reduce foraging success in albatrosses; Subtropical anticyclone impacts life-history traits of a marine top predator; The impact of boldness on demographic rates and lifehistory outcomes in the wandering albatross", "datasets": [{"dataset_uid": "601770", "doi": "10.15784/601770", "keywords": "Antarctica; Cryosphere; Demography; Sub-Antarctic", "people": "Joanie, Van de Walle; Jenouvrier, Stephanie", "repository": "USAP-DC", "science_program": null, "title": "The impact of boldness on demographic rates and lifehistory outcomes in the wandering albatross", "url": "https://www.usap-dc.org/view/dataset/601770"}, {"dataset_uid": "200459", "doi": "https://doi.org/10.5281/zenodo.13881532", "keywords": null, "people": null, "repository": "ZENODO", "science_program": null, "title": "Strong winds reduce foraging success in albatrosses", "url": "https://zenodo.org/records/13881532"}, {"dataset_uid": "200458", "doi": "https://doi.org/10.5061/dryad.3bk3j9kpm", "keywords": null, "people": null, "repository": "DRYAD", "science_program": null, "title": "Individual life histories: neither slow nor fast, just diverse", "url": "https://doi.org/10.6084/m9.figshare.c.6181063."}, {"dataset_uid": "200453", "doi": "10.5061/dryad.3bk3j9kpm", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Data from: Individual life histories: Neither slow nor fast, just diverse", "url": "https://doi.org/10.5061/dryad.3bk3j9kpm"}, {"dataset_uid": "200455", "doi": "", "keywords": null, "people": null, "repository": "GITHUB", "science_program": null, "title": "Hyperstate matrix model reveals the influence of personality on demography", "url": "https://github.com/fledge-whoi/HyperstateWApopulationmodel"}, {"dataset_uid": "200456", "doi": "", "keywords": null, "people": null, "repository": "GITHUB", "science_program": null, "title": "Subtropical anticyclone impacts life-history traits of a marine top predator", "url": "https://github.com/fledge-whoi/Alba_Mascarene-High"}, {"dataset_uid": "200457", "doi": " https://zenodo.org/doi/10.5281/zenodo.10887354", "keywords": null, "people": null, "repository": "ZENODO", "science_program": null, "title": "Plastic Behaviour Buffers Climate Variability in the Wandering Albatross", "url": "https://zenodo.org/records/14290546"}, {"dataset_uid": "200454", "doi": "", "keywords": null, "people": null, "repository": "GITHUB", "science_program": null, "title": "Evo-Demo Hyperstate Matrix Model Code Repository", "url": "https://github.com/fledge-whoi/Eco-EvoHyperstateModel"}], "date_created": "Wed, 08 Dec 2021 00:00:00 GMT", "description": "Part I: Nontechnical description: This award represents a collaborative geoscience research effort between US NSF and UK Natural Environment Research Council (NERC) researchers with efforts in each nation funded by their respective countries (Dear Colleague Letter NSF 16-132). The research will focus on understanding the links between behavior, ecology, and evolution in a Southern Ocean wandering albatross population in response to global changes in climate and in exploitation of natural resources. The most immediate response of animals to global change typically is behavioral, and this work will provide a more comprehensive understanding of how differences individual bird behavior affect evolution and adaptation for the population under changing environments. Characterization of albatross personality, life-history traits, and population dynamics collected over long time scales will be used to develop robust forecasting of species persistence in the face of future global changes. The results of this project will feed into conservation and management decisions for endangered Southern Ocean species. The work will also be used to provide specific research training at all levels, including a postdoctoral scholar, graduate students and K-12 students. It will also support education for the public about impacts from human-induced activities on our polar ecosystems using animations, public lectures, printed and web media. Part II: Technical description Past research has shown that individual animal personalities range over a continuum of behavior, such that some individuals are consistently more aggressive, more explorative, and bolder than others. How the phenotypic distributions of personality and foraging behavior types within a population is created and maintained by ecological (demographic and phenotypic plasticity) and evolutionary (heritability) processes remain an open question. Differences in personality traits determine how individuals acquire resources and how they allocate these to reproduction and survival. Although some studies have found different foraging behaviors or breeding performances between personality types, none have established the link between personality differences in foraging behaviors and life histories (both reproduction and survival, and their covariations) in the context of global change. Furthermore, plasticity in foraging behaviors is not considered in the pace-of-life syndrome, which has potentially hampered our ability to find covariation between personality and life history trade-off. This project will fill these knowledge gaps and develop an eco-evolutionary model of the complex interactions among individual personality and foraging plasticity, heritability of personality and foraging behaviors, life history strategies, population dynamics in a changing environment (fisheries and climate) using a long-term database consisting of ~1,800 tagged wandering albatross seabirds (Diomedea exulans) with defined individual personalities and life history traits breeding in the Southern Ocean. Climate projections from IPCC atmospheric-oceanic global circulation models will be used to provide projections of population structure under future global change conditions. Specifically, the team will (1) characterize the differences in life history strategies along the shy-bold continuum of personalities and across environmental conditions; (2) develop the link between phenotypic plasticity in foraging effort and personality; (3) characterize the heritability of personality and foraging behaviors; (4) develop a stochastic eco-evolutionary model to predict population growth rates in a changing environment. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; AMD; ECOLOGICAL DYNAMICS; OCEAN TEMPERATURE; USA/NSF; Antarctica; FIELD INVESTIGATION; SPECIES/POPULATION INTERACTIONS; PENGUINS; Amd/Us", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Jenouvrier, Stephanie; Patrick, Samantha", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "Dryad; DRYAD; GITHUB; USAP-DC; ZENODO", "science_programs": null, "south": -90.0, "title": "NSFGEO-NERC: Integrating Individual Personality Differences in the Evolutionary Ecology of a Seabird in the Rapidly Changing Polar Environment", "uid": "p0010283", "west": -180.0}, {"awards": "1744785 Barrett, John", "bounds_geometry": "POLYGON((-180 -77.62,-145.683 -77.62,-111.366 -77.62,-77.049 -77.62,-42.732 -77.62,-8.415 -77.62,25.902 -77.62,60.219 -77.62,94.536 -77.62,128.853 -77.62,163.17 -77.62,163.17 -77.618,163.17 -77.616,163.17 -77.614,163.17 -77.612,163.17 -77.61,163.17 -77.608,163.17 -77.606,163.17 -77.604,163.17 -77.602,163.17 -77.6,128.853 -77.6,94.536 -77.6,60.219 -77.6,25.902 -77.6,-8.415 -77.6,-42.732 -77.6,-77.049 -77.6,-111.366 -77.6,-145.683 -77.6,180 -77.6,178.319 -77.6,176.638 -77.6,174.957 -77.6,173.276 -77.6,171.595 -77.6,169.914 -77.6,168.233 -77.6,166.552 -77.6,164.871 -77.6,163.19 -77.6,163.19 -77.602,163.19 -77.604,163.19 -77.606,163.19 -77.608,163.19 -77.61,163.19 -77.612,163.19 -77.614,163.19 -77.616,163.19 -77.618,163.19 -77.62,164.871 -77.62,166.552 -77.62,168.233 -77.62,169.914 -77.62,171.595 -77.62,173.276 -77.62,174.957 -77.62,176.638 -77.62,178.319 -77.62,-180 -77.62))", "dataset_titles": "McMurdo Dry Valleys LTER: Microbial mat biomass and Normalized Difference Vegetation Index (NDVI) values from Lake Fryxell Basin, Antarctica", "datasets": [{"dataset_uid": "200260", "doi": "doi:10.6073/pasta/9acbbde9abc1e013f8c9fd9c383327f4", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "McMurdo Dry Valleys LTER: Microbial mat biomass and Normalized Difference Vegetation Index (NDVI) values from Lake Fryxell Basin, Antarctica", "url": "https://doi.org/10.6073/pasta/9acbbde9abc1e013f8c9fd9c383327f4"}], "date_created": "Tue, 30 Nov 2021 00:00:00 GMT", "description": "Microbial mats are found throughout the McMurdo Dry Valleys where summer snowmelt provides liquid water that allows these mats to flourish. Researchers have long studied the environmental conditions microbial mats need to grow. Despite these efforts, it has been difficult to develop a broad picture of these unique ecosystems. Recent advances in satellite technology now provide researchers an exciting new tool to study these special Antarctic ecosystems from space using the unique spectral signatures associated with microbial mats. This new technology not only offers the promise that microbial mats can be mapped and studied from space, this research will also help protect these delicate environments from potentially harmful human impacts that can occur when studying them from the ground. This project will use satellite imagery and spectroscopic techniques to identify and map microbial mat communities and relate their properties and distributions to both field and lab-based measurements. This research provides an exciting new tool to help document and understand the distribution of a major component of the Antarctic ecosystem in the McMurdo Dry Valleys. The goal of this project is to establish quantitative relationships between spectral signatures derived from orbit and the physiological status and biogeochemical properties of microbial mat communities in Taylor Valley, Antarctica, as measured by field and laboratory analyses on collected samples. The goal wioll be met by (1) refining atmospheric correction techniques using in situ radiometric rectification to derive accurate surface spectra; (2) collecting multispectral orbital images concurrent with in situ sampling and spectral measurements in the field to ensure temporal comparability; (3) measuring sediment, water, and microbial mat samples for organic and inorganic carbon content, essential biogeochemical nutrients, and chlorophyll-a to determine relevant mat characteristics; and (4) quantitatively associating these laboratory-derived characteristics with field-derived and orbital spectral signatures and parameters. The result of this work will be a more robust quantitative link between the distribution of microbial mat communities and their biogeochemical properties to landscape-scale spectral signatures. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 163.19, "geometry": "POINT(-16.82 -77.61)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; ECOSYSTEM FUNCTIONS; FIELD SURVEYS; USAP-DC; USA/NSF; Taylor Valley; Amd/Us", "locations": "Taylor Valley", "north": -77.6, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Barrett, John; Salvatore, Mark", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "EDI", "repositories": "EDI", "science_programs": null, "south": -77.62, "title": "Collaborative Research: Remote characterization of microbial mats in Taylor Valley, Antarctica through in situ sampling and spectral validation", "uid": "p0010281", "west": 163.17}, {"awards": "2040048 Ballard, Grant; 2040571 Smith, Walker; 2040199 Ainley, David", "bounds_geometry": "POLYGON((164 -74,165.6 -74,167.2 -74,168.8 -74,170.4 -74,172 -74,173.6 -74,175.2 -74,176.8 -74,178.4 -74,180 -74,180 -74.4,180 -74.8,180 -75.2,180 -75.6,180 -76,180 -76.4,180 -76.8,180 -77.2,180 -77.6,180 -78,178.4 -78,176.8 -78,175.2 -78,173.6 -78,172 -78,170.4 -78,168.8 -78,167.2 -78,165.6 -78,164 -78,164 -77.6,164 -77.2,164 -76.8,164 -76.4,164 -76,164 -75.6,164 -75.2,164 -74.8,164 -74.4,164 -74))", "dataset_titles": "Seaglider data from the Western Ross Sea, Antarctica, November 2022-January 2023", "datasets": [{"dataset_uid": "200418", "doi": "10.5285/0a1c43b9-4738-75e0-e063-6c86abc0ea24", "keywords": null, "people": null, "repository": "BODC", "science_program": null, "title": "Seaglider data from the Western Ross Sea, Antarctica, November 2022-January 2023", "url": "\r\nhttps://www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/0a1c43b9-4738-75e0-e063-6c86abc0ea24\r\n"}], "date_created": "Mon, 25 Oct 2021 00:00:00 GMT", "description": "NSFGEO-NERC Collaborative Research: P2P: Predators to Plankton \u2013 Biophysical controls in Antarctic polynyas Part I: Non-technical description: The Ross Sea, a globally important ecological hotspot, hosts 25% to 45% of the world populations of Ad\u00e9lie and Emperor penguins, South Polar skuas, Antarctic petrels, and Weddell seals. It is also one of the few marine protected areas within the Southern Ocean, designed to protect the workings of its ecosystem. To achieve conservation requires participation in an international research and monitoring program, and more importantly integration of what is known about penguin as predators and the biological oceanography of their habitat. The project will acquire data on these species\u2019 role within the local food web through assessing of Ad\u00e9lie penguin feeding grounds and food choices, while multi-sensor ocean gliders autonomously quantify prey abundance and distribution as well as ocean properties, including phytoplankton, at the base of the food web. Additionally, satellite imagery will quantify sea ice and whales, known penguin competitors, within the penguins\u2019 foraging area. Experienced and young researchers will be involved in this project, as will a public outreach program that reaches more than 200 school groups per field season, and with an excess of one million visits to a website on penguin ecology. Lessons about ecosystem change, and how it is measured, i.e. the STEM fields, will be emphasized. Results will be distributed to the world scientific and management communities. Part II: Technical description: This project, in collaboration with the United Kingdom (UK) National Environmental Research Council (NERC), assesses food web structure in the southwestern Ross Sea, a major portion of the recently established Ross Sea Region Marine Protected Area that has been designed to protect the region\u2019s food web structure, dynamics and function. The in-depth, integrated ecological information collected in this study will contribute to the management of this system. The southwestern Ross Sea, especially the marginal ice zone of the Ross Sea Polynya (RSP), supports global populations of iconic and indicator species: 25% of Emperor penguins, 30% of Ad\u00e9lie penguins, 50% of South Polar skuas, and 45% of Weddell seals. However, while individually well researched, the role of these members as predators has been poorly integrated into understanding of Ross Sea food web dynamics and biogeochemistry. Information from multi-sensor ocean gliders, high-resolution satellite imagery, diet analysis and biologging of penguins, when integrated, will facilitate understanding of the \u2018preyscape\u2019 within the intensively investigated biogeochemistry of the RSP. UK collaborators will provide state-of-the-art glider technology, glider programming, ballasting, and operation and expertise to evaluate the oceanographic conditions of the study area. Several young scientists will be involved, as well as an existing outreach program already developed that reaches annually more than 200 K-12 school groups and has more than one million website visits per month. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(172 -76)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; AQUATIC SCIENCES; USA/NSF; Amd/Us; Biologging; AMD; Foraging Ecology; FIELD SURVEYS; Ross Sea; Adelie Penguin", "locations": "Ross Sea", "north": -74.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ainley, David; Santora, Jarrod; Varsani, Arvind; Smith, Walker; Ballard, Grant; Schmidt, Annie", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "BODC", "repositories": "BODC", "science_programs": null, "south": -78.0, "title": "NSFGEO-NERC: Collaborative Research \"P2P: Predators to Plankton -Biophysical Controls in Antarctic Polynyas\"", "uid": "p0010273", "west": 164.0}, {"awards": "1744949 Campbell, Seth; 1744927 Mitrovica, Jerry; 1745015 Zimmerer, Matthew", "bounds_geometry": "POLYGON((-145 -74,-141.6 -74,-138.2 -74,-134.8 -74,-131.4 -74,-128 -74,-124.6 -74,-121.2 -74,-117.8 -74,-114.4 -74,-111 -74,-111 -74.6,-111 -75.2,-111 -75.8,-111 -76.4,-111 -77,-111 -77.6,-111 -78.2,-111 -78.8,-111 -79.4,-111 -80,-114.4 -80,-117.8 -80,-121.2 -80,-124.6 -80,-128 -80,-131.4 -80,-134.8 -80,-138.2 -80,-141.6 -80,-145 -80,-145 -79.4,-145 -78.8,-145 -78.2,-145 -77.6,-145 -77,-145 -76.4,-145 -75.8,-145 -75.2,-145 -74.6,-145 -74))", "dataset_titles": "Mt. Waesche ground-penetrating radar data 2018-2019", "datasets": [{"dataset_uid": "601490", "doi": "10.15784/601490", "keywords": "Antarctica; GPR; Mt. Waesche", "people": "Braddock, Scott", "repository": "USAP-DC", "science_program": null, "title": "Mt. Waesche ground-penetrating radar data 2018-2019", "url": "https://www.usap-dc.org/view/dataset/601490"}], "date_created": "Fri, 22 Oct 2021 00:00:00 GMT", "description": "This study will collect a novel dataset to determine how the West Antarctic Ice Sheet (WAIS) responded to a warmer climate during the last interglacial period (~125,000 years ago) by reconstructing the glacial history at the Mt. Waesche volcano. Reconstructing WAIS geometry when the ice sheet was smaller than present is difficult and data are lacking because the evidence lies beneath the present ice sheet. This study will drill through the ice sheet and recover bedrock that can be analyzed for its surface exposure history to help determine when the surface became overridden by the ice sheet. This study will provide constraints on the past maximum and minimum spatial extent of WAIS during the last glacial-interglacial cycle. Understanding the geometry of a reduced WAIS during intervals when the planet was warmer than present may provide a possible analogue for future environmental conditions given predicted temperature trends. A reduction of WAIS results in rising sea levels which threatens coastal communities across the globe. The data will help improve numerical ice sheet models to better predict WAIS response to current and future climate trends. The project supports a teacher educational workshop and the training of graduate and undergraduate students. The goal of this project is to obtain rock samples from beneath the WAIS through shallow (\u003c80 m) drilling at Mt. Waesche, a volcano in Marie Byrd Land, near an ice dome of WAIS (2000 m elevation). The lithologies of lava flows exposed on the flank of the volcano are well-suited for cosmogenic 3He and 36Cl as well as 40Ar/39Ar measurements which will establish eruption and exposure age. Existing 40Ar/39Ar data indicate basaltic lava flows on the volcano flank as young as 350 ka. Thus, measured cosmogenic nuclides measured in rock cores from beneath the ice surface will be indicative of relatively recent exposure during periods of reduced ice elevation, most likely, during the last interglacial. The first field season is focused on identifying appropriate locations for drilling and a ground penetrating radar (GPR) survey of the subglacial topography \u003c100m under the blue ice area. Mapping and dating the adjacent exposed lava flows will allow tracing of lava flows of known age and composition below the ice margin that will be targeted for drilling the following year. The second field season activities include drilling 8 boreholes (two transects) through blue ice with the Winkie drill near the ice margin to 80 m depth to obtain rock cores from the sub-ice lava flows. 3He exposure ages will constrain the duration and minimum extent of past surface lowering of the WAIS in Marie Byrd Land. Deeper GPR imaging (up to 700 m) will hope to reveal additional evidence of lava/ice interactions that would independently place constraints on lower ice levels during past eruptions. Results from this study will be compared with the modeled ice elevation histories at Mt. Waesche to validate ice sheet modeling efforts. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -111.0, "geometry": "POINT(-128 -77)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; Mt. Waesche; USA/NSF; SNOW/ICE; GLACIER THICKNESS/ICE SHEET THICKNESS; PALEOCLIMATE RECONSTRUCTIONS; LABORATORY; LAVA COMPOSITION/TEXTURE; Amd/Us; AMD; USAP-DC", "locations": "Mt. Waesche", "north": -74.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Braddock, Scott; Campbell, Seth; Ackert, Robert; Zimmerer, Matthew; Mitrovica, Jerry", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.0, "title": "Collaborative Research: Constraining West Antarctic Ice Sheet elevation during the last interglacial", "uid": "p0010272", "west": -145.0}, {"awards": "1921418 Yan, Stephen", "bounds_geometry": null, "dataset_titles": "2019 initial L-band radar data for Dome Concordia; 2019 initial L-band radar data for EGRIP", "datasets": [{"dataset_uid": "601488", "doi": "10.15784/601488", "keywords": "Antarctica; Greenland", "people": "Taylor, Drew; Gogineni, Prasad; Taylor, Ryan; O\u0027Neill, Charles", "repository": "USAP-DC", "science_program": null, "title": "2019 initial L-band radar data for EGRIP", "url": "https://www.usap-dc.org/view/dataset/601488"}, {"dataset_uid": "601489", "doi": "10.15784/601489", "keywords": "Antarctica", "people": "Gogineni, Prasad; Taylor, Ryan; O\u0027Neill, Charles; Taylor, Drew", "repository": "USAP-DC", "science_program": null, "title": "2019 initial L-band radar data for Dome Concordia", "url": "https://www.usap-dc.org/view/dataset/601489"}], "date_created": "Mon, 11 Oct 2021 00:00:00 GMT", "description": "Predicting the response of ice sheets to changing climate and their contribution to sea level requires accurate representation in numerical models of basal conditions under the ice. There remain large data gaps for these basal boundary conditions under the East Antarctic Ice Sheet as well as in West Antarctica, including basal melt rates under ice shelves. This project will develop and test a prototype ground-based radar system to sound and image ice more than 4km thick, detect thin water films at the ice bed, and determine basal melt rates under ice shelves. The team will work with European partners (France, Italy, Germany) at Dome C to conduct deep-field Antarctic testing of the new radar. The project will build and test an L-band radar system (1.2-1.4GHz) with peak transmit power of 2kW. In addition to sounding and imaging thick ice, detection goals include resolving thin water films (\u003e0.5mm). Such a system would target glaciological problems including site selection for ice in the 1.5-million-year age range, basal stress boundary conditions under grounded ice, and melt rates under floating shelves. By demonstrating feasibility, the project aims to influence sensor selection for satellite missions. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "GLACIER TOPOGRAPHY/ICE SHEET TOPOGRAPHY; GLACIER THICKNESS/ICE SHEET THICKNESS; Amd/Us; USAP-DC; AMD; Greenland; USA/NSF; FIELD SURVEYS; Antarctica", "locations": "Antarctica; Greenland", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Science and Technology", "paleo_time": null, "persons": "Gogineni, Prasad; O\u0027Neill, Charles; Yan, Stephen; Taylor, Drew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "EAGER: L-Band Radar Ice Sounder for Measuring Ice Basal Conditions and Ice-Shelf Melt Rate", "uid": "p0010271", "west": null}, {"awards": "2035637 Tabor, Clay; 2035580 Aarons, Sarah", "bounds_geometry": null, "dataset_titles": "Concentration and flux of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area; Oxygen and hydrogen isotope compositions and associated d-excess of ice from ALHIC1903 drilled at the Allan Hills Blue Ice Area.; Rare earth elemental concentrations of leached ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area.; Strontium and neodymium isotope compositions of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area.", "datasets": [{"dataset_uid": "601821", "doi": "10.15784/601821", "keywords": "ALHIC1903; Allan Hills; Antarctica; Blue Ice; Cryosphere; Dust; Leach; Rare Earth Element", "people": "Carter, Austin", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Rare earth elemental concentrations of leached ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area.", "url": "https://www.usap-dc.org/view/dataset/601821"}, {"dataset_uid": "601820", "doi": "10.15784/601820", "keywords": "ALHIC1903; Allan Hills; Antarctica; Cryosphere; Dust; Ice Core Data; Isotope; Nd; Neodymium; Sr; Strontium", "people": "Carter, Austin", "repository": "USAP-DC", "science_program": null, "title": "Strontium and neodymium isotope compositions of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area.", "url": "https://www.usap-dc.org/view/dataset/601820"}, {"dataset_uid": "601822", "doi": "10.15784/601822", "keywords": "ALHIC1903; Allan Hills; Antarctica; Cryosphere; Deuterium; Hydrogen; Ice; Ice Core Data; Isotope; Oxygen; Water", "people": "Carter, Austin", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Oxygen and hydrogen isotope compositions and associated d-excess of ice from ALHIC1903 drilled at the Allan Hills Blue Ice Area.", "url": "https://www.usap-dc.org/view/dataset/601822"}, {"dataset_uid": "601825", "doi": "10.15784/601825", "keywords": "Accumulation Rate; ALHIC1903; Allan Hills; Antarctica; Blue Ice; Concentration; Cryosphere; Dust; Flux", "people": "Carter, Austin", "repository": "USAP-DC", "science_program": null, "title": "Concentration and flux of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "url": "https://www.usap-dc.org/view/dataset/601825"}], "date_created": "Wed, 06 Oct 2021 00:00:00 GMT", "description": "This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). The spatial extent of the West Antarctic Ice Sheet during the last interglacial period (129,000 to 116,000 years ago) is currently unknown, yet this information is fundamental to projections of the future stability of the ice sheet in a warming climate. Paleoclimate records and proxy evidence such as dust can inform on past environmental conditions and ice-sheet coverage. This project will combine new, high-sensitivity geochemical measurements of dust from Antarctic ice collected at Allan Hills with existing water isotope records to document climate and environmental changes through the last interglacial period. These changes will then be compared with Earth-system model simulations of dust and water isotopes to determine past conditions and constrain the sensitivity of the West Antarctic Ice Sheet to warming. The project will test the hypothesis that the uncharacteristically volcanic dust composition observed at another peripheral ice core site at Taylor Glacier during the last interglacial period is related to changes in the spatial extent of the West Antarctic Ice Sheet. This project aims to characterize mineral dust transport during the penultimate glacial-interglacial transition. The team will apply high-precision geochemical techniques to the high-volume, high-resolution ice core drilled at the Allan Hills site in combination with Earth system model simulations to: (1) determine if the volcanic dust signature found in interglacial ice from Taylor Glacier is also found at Allan Hills, (2) determine the likely dust source(s) to this site during the last interglacial, and (3) probe the atmospheric and environmental changes during the last interglacial with a diminished West Antarctic Ice Sheet. The team will develop a suite of measurements on previously drilled ice from Allan Hills, including isotopic compositions of Strontium and Neodymium, trace element concentrations, dust-size distribution, and imaging of ice-core dust to confirm the original signal observed and provide a broader spatial reconstruction of dust transport. In tandem, the team will conduct Earth system modeling with prognostic dust and water-isotope capability to test the sensitivity of dust transport under several plausible ice-sheet and freshwater-flux configurations. By comparing dust reconstruction and model simulations, the team aims to elucidate the driving mechanisms behind dust transport during the last interglacial period. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "MICROPARTICLE CONCENTRATION; FIELD SURVEYS; GEOCHEMISTRY; ICE EXTENT; Amd/Us; USA/NSF; PALEOCLIMATE RECONSTRUCTIONS; AMD; Allan Hills; ICE CORE RECORDS; USAP-DC", "locations": "Allan Hills", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Aarons, Sarah; Tabor, Clay", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Peripheral East Antarctic ice as a unique recorder of climate variability during the Last Interglacial", "uid": "p0010270", "west": null}, {"awards": "1916665 Mahon, Andrew; 1916661 Halanych, Kenneth; 2225144 Halanych, Kenneth", "bounds_geometry": "POLYGON((-72 -61,-69.8 -61,-67.6 -61,-65.4 -61,-63.2 -61,-61 -61,-58.8 -61,-56.6 -61,-54.4 -61,-52.2 -61,-50 -61,-50 -61.8,-50 -62.6,-50 -63.4,-50 -64.2,-50 -65,-50 -65.8,-50 -66.6,-50 -67.4,-50 -68.2,-50 -69,-52.2 -69,-54.4 -69,-56.6 -69,-58.8 -69,-61 -69,-63.2 -69,-65.4 -69,-67.6 -69,-69.8 -69,-72 -69,-72 -68.2,-72 -67.4,-72 -66.6,-72 -65.8,-72 -65,-72 -64.2,-72 -63.4,-72 -62.6,-72 -61.8,-72 -61))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 22 Sep 2021 00:00:00 GMT", "description": "Antarctica is among the most rapidly warming places on the planet, and some reports suggest the Antarctic environment is approaching, or possibly beyond, the tipping point for ice shelf collapse. The loss of ice around Antarctica is dramatically changing habitat availability for marine fauna, particularly benthic marine invertebrate species. Building on past studies, this research will provide insights into how changing climate impacts species distribution and community structure. Geological data suggests that during periods when ice extent was much reduced relative to modern levels, marine seaways connected the Ross and Weddell Seas on either side of Antarctica. However, most theories about the origins of current marine invertebrate distribution patterns fail to consider this transantarctic connection. This research will use molecular genomic tools to probe the DNA of Antarctic marine invertebrates and explore alternative hypotheses about factors that may have shaped current patterns of animal biodiversity in the Southern Ocean. Research will inform predictions about how species distributions may change as Antarctic ice sheets continue to deteriorate and provide critical information on how organisms adjust their ranges in response to environmental change. This work includes several specific outreach activities including presentations in K-8 classrooms, several short-format videos on Antarctic genomics and field work, and two 3-day workshops on bioinformatics approaches. A minimum of 4 graduate students, a postdoc and several undergraduates will also be trained during this project. The overarching goal of this research is to understand environmental factors that have shaped patterns of present-day diversity in Antarctic benthic marine invertebrates. Evidence from sediment cores and modeling suggests ice shelf collapses have occurred multiple times in the last few million years. During these periods, transantarctic seaways connected the Ross and Weddell Seas. This research will assess whether the presence of transantarctic waterways helps explain observed similarities between the Ross and Weddell Seas benthic marine invertebrate fauna better than other current hypotheses (e.g., dispersal by the Antarctic Circumpolar Current, or expansion from common glacial refugia). Seven Antarctic benthic invertebrate taxa will be targeted to test alternative hypothesis about the origins of population genetic structure in the Southern Ocean using Single Nucleotide Polymorphism (SNP) markers that sample thousands of loci across the genome. Additionally, research will test the current paradigm that divergence between closely related, often cryptic, species is the result of population bottlenecks caused by glaciation. Specifically, SNP data will be mapped on to draft genomes of three of our target taxa to assess the degree of genetic divergence and look for signs of selection. Research findings may be applicable to other marine ecosystems around the planet. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -50.0, "geometry": "POINT(-61 -65)", "instruments": null, "is_usap_dc": true, "keywords": "Marguerite Bay; USA/NSF; AMD; Weddell Sea; USAP-DC; FIELD SURVEYS; Amd/Us; MARINE ECOSYSTEMS; ANIMALS/INVERTEBRATES", "locations": "Weddell Sea; Marguerite Bay", "north": -61.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Halanych, Kenneth; Mahon, Andrew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -69.0, "title": "Collaborative Research: Have transantarctic dispersal corridors impacted Antarctic marine biodiversity?", "uid": "p0010266", "west": -72.0}, {"awards": "2049332 Chu, Winnie", "bounds_geometry": "POLYGON((-180 -75,-175 -75,-170 -75,-165 -75,-160 -75,-155 -75,-150 -75,-145 -75,-140 -75,-135 -75,-130 -75,-130 -76.1,-130 -77.2,-130 -78.3,-130 -79.4,-130 -80.5,-130 -81.6,-130 -82.7,-130 -83.8,-130 -84.9,-130 -86,-135 -86,-140 -86,-145 -86,-150 -86,-155 -86,-160 -86,-165 -86,-170 -86,-175 -86,180 -86,177.5 -86,175 -86,172.5 -86,170 -86,167.5 -86,165 -86,162.5 -86,160 -86,157.5 -86,155 -86,155 -84.9,155 -83.8,155 -82.7,155 -81.6,155 -80.5,155 -79.4,155 -78.3,155 -77.2,155 -76.1,155 -75,157.5 -75,160 -75,162.5 -75,165 -75,167.5 -75,170 -75,172.5 -75,175 -75,177.5 -75,-180 -75))", "dataset_titles": "Frozen Legacies - This repository hosts scientific journals and processing codes via Python and MATLab for the historical SPRI-NSF-TUD Campaign in Antarctica.", "datasets": [{"dataset_uid": "200466", "doi": "", "keywords": null, "people": null, "repository": "Frozen Legacies ", "science_program": null, "title": "Frozen Legacies - This repository hosts scientific journals and processing codes via Python and MATLab for the historical SPRI-NSF-TUD Campaign in Antarctica.", "url": "https://github.com/tarzona/frozenlegacies"}], "date_created": "Wed, 15 Sep 2021 00:00:00 GMT", "description": "This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). Ice shelves play a critical role in restricting the seaward flow of grounded glacier ice by providing buttressing at their bases and sides. Processes that affect the long-term stability of ice shelves can therefore influence the future contribution of the Antarctic Ice Sheet to global sea-level rise. The Ross Ice Shelf is the largest ice shelf on Earth, and it buttresses massive areas of West and East Antarctica. Previous studies of modern ice velocity indicated that the Ross Ice Shelf\u2019s mass loss is roughly balanced by its mass gain. However, more recent work that extends further back in time reveals the ice shelf is likely not in steady state, with possible long-term thinning since the late 1990s. Consequently, to accurately interpret modern-day ice-shelf changes, long-term observations are critical to evaluate how these recent variations fit into the historical context of ice-shelf variability. This project will examine more than four decades of historical and modern airborne radar sounding observations of the Ross Ice Shelf (spanning 1971 to 2017) to investigate ice-shelf changes on decadal timescales. The team will process, calibrate, and analyze radar data collected during 1971-79 field campaigns and compare them against modern observations collected between 2011-17. They will estimate basal melt rates by examining changes in ice-shelf thickness, and will determine other important metrics for melt, including ice-shelf roughness, englacial temperature, and marine-ice formation. The project will support the education of a Ph.D. student at each of the three participating institutions. In addition, the project will support the training of undergraduate and high-school researchers in radioglaciology and Antarctic sciences. The project will test the hypothesis that, over decadal timescales, the basal melt rates beneath the Ross Ice Shelf have been low, particularly under shallow ice drafts, leading to overall thickening and increased buttressing potential. The team aims to provide a direct estimate of basal melt rates based on changes in ice-shelf thickness that occurred between 1971 and 2017. This project will extend similar work completed at Thwaites Glacier and improve the calibration methods on the vertical scaling for fast-time and depth conversion. The work will also leverage the dense modern surveys to improve the geolocation of radar film collected on earlier field campaigns to produce a more precise comparison of local shelf thickness with the modern data. In addition, the team will conduct englacial attenuation analysis to calculate englacial temperature to infer the trends in local basal melting. They will also examine the radiometric and scatterometric character of bed echoes at the ice-ocean boundary to characterize changes in ice-shelf basal roughness, marine-ice formation related to local basal freezing, and structural damage from fracture processes. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -130.0, "geometry": "POINT(-167.5 -80.5)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; Antarctic Ice Sheet; GLACIER THICKNESS/ICE SHEET THICKNESS; USAP-DC; AMD; Transantarctic Mountains; Amd/Us; Siple Coast; GLACIER TOPOGRAPHY/ICE SHEET TOPOGRAPHY; FIELD SURVEYS; USA/NSF; Ross Ice Shelf", "locations": "Ross Ice Shelf; Antarctic Ice Sheet; Siple Coast; Transantarctic Mountains", "north": -75.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Chu, Winnie; Schroeder, Dustin; Siegfried, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "Frozen Legacies ", "repositories": "Frozen Legacies ", "science_programs": null, "south": -86.0, "title": "Collaborative Research: Investigating Four Decades of Ross Ice Shelf Subsurface Change with Historical and Modern Radar Sounding Data", "uid": "p0010265", "west": 155.0}, {"awards": "2046240 Khan, Alia", "bounds_geometry": "POLYGON((-75 -62,-73.5 -62,-72 -62,-70.5 -62,-69 -62,-67.5 -62,-66 -62,-64.5 -62,-63 -62,-61.5 -62,-60 -62,-60 -62.85,-60 -63.7,-60 -64.55,-60 -65.4,-60 -66.25,-60 -67.1,-60 -67.95,-60 -68.8,-60 -69.65,-60 -70.5,-61.5 -70.5,-63 -70.5,-64.5 -70.5,-66 -70.5,-67.5 -70.5,-69 -70.5,-70.5 -70.5,-72 -70.5,-73.5 -70.5,-75 -70.5,-75 -69.65,-75 -68.8,-75 -67.95,-75 -67.1,-75 -66.25,-75 -65.4,-75 -64.55,-75 -63.7,-75 -62.85,-75 -62))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 10 Sep 2021 00:00:00 GMT", "description": "________________________________________________________________________________________________ Part I: Non-technical Summary The Antarctic Peninsula is one of the most rapidly warming regions on the planet. This 5-yr time-series program will build on an ongoing international collaboration with scientists from the Chilean Antarctic Program to evaluate the role of temperature, light absorbing particles, snow-algae growth, and their radiative forcing effects on snow and ice melt in the Western Antarctic Peninsula. There is strong evidence that these effects may be intensifying due to a warming climate. Rising temperatures can increase the growth rate of coastal snow algae as well as enhance the input of particles from sources such as the long-range transport of black carbon to the Antarctic continent from intensifying Southern Hemisphere wildfire seasons. Particle and algae feedbacks can have immediate local impacts on snow melt and long-term regional impacts on climate because reduced snow cover alters how the Antarctic continent interacts with the rest of the global climate. A variety of ground-based and remote sensing data collected across multiple spatial scales will be used. Ground measurements will be compared to satellite imagery to develop novel computer algorithms to map ice algal bloom effects under changing climates. The project is expected to fundamentally advance knowledge of the spatial and temporal snow algae growing season, which is needed to quantify impacts on regional snow and ice melt. The program also has a strong partnership with the International Association of Antarctic Tour Operators to involve cruise passengers as citizen scientists for sample collection. Antarctic research results will be integrated into undergraduate curricula and research opportunities through studies to LAPs and snow algae in the Pacific Northwest. The PI will recruit and train a diverse pool of students in cryosphere climate related research methods on Mt. Baker in Western Washington. Trained undergraduate will then serve as instructors for a local Snow School that takes middle school students to Mt. Baker to learn about snow science. Resulting datasets from Antarctica and Mt. Baker will be used in University classes to explore regional effects of climate change. Along with enhancing cryosphere-oriented place-based undergraduate field courses in the Pacific Northwest, the PI will recruit and train a diverse pool of undergraduate students to serve as instructors for the Mt. Baker Snow School program. This award will advance our understanding of cryosphere-climate feedbacks, which are likely changing and will continue to evolve in a warming world, while also increasing under-represented student engagement in the polar geosciences. Part 2: Technical Summary Rapid and persistent climate warming in the Western Antarctic Peninsula is likely resulting in intensified snow-algae growth and an extended bloom season in coastal areas. Similarly, deposition of light absorbing particles (LAPs) onto Antarctica cryosphere surfaces, such as black carbon from intensifying Southern Hemisphere wildfire seasons, and dust from the expansion of ice-free regions in the Antarctic Peninsula, may be increasing. The presence of snow algae blooms and LAPs enhance the absorption of solar radiation by snow and ice surfaces. This positive feedback creates a measurable radiative forcing, which can have immediate local and long-term regional impacts on albedo, snow melt and downstream ecosystems. This project will investigate the spatial and temporal distribution of snow algae, black carbon and dust across the Western Antarctica Peninsula region, their response to climate warming, and their role in regional snow and ice melt. Data will be collected across multiple spatial scales from in situ field measurements and sample collection to imagery from ground-based photos and high resolution multi-spectral satellite sensors. Ground measurements will inform development and application of novel algorithms to map algal bloom extent through time using 0.5-3m spatial resolution multi-spectral satellite imagery. Results will be used to improve snow algae parameterization in a new version of the Snow Ice Aerosol Radiation model (SNICARv3) that includes bio-albedo feedbacks, eventually informing models of ice-free area expansion through incorporation of SNICARv3 in the Community Earth System Model. Citizen scientists will be mentored and engaged in the research through an active partnership with the International Association of Antarctic Tour Operators that frequently visits the region. The cruise ship association will facilitate sampling to develop a unique snow algae observing network to validate remote sensing algorithms that map snow algae with high-resolution multi-spectral satellite imagery from space. These time-series will inform instantaneous and interannual radiative forcing calculations to assess impacts of snow algae and LAPs on regional snow melt. Quantifying the spatio-temporal growing season of snow algae and impacts from black carbon and dust will increase our ability to model their impact on snow melt, regional climate warming and ice-free expansion in the Antarctic Peninsula region. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -60.0, "geometry": "POINT(-67.5 -66.25)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; Antarctic Peninsula; Amd/Us; AMD; SNOW/ICE CHEMISTRY; USA/NSF; USAP-DC; SNOW", "locations": "Antarctic Peninsula", "north": -62.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Khan, Alia", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -70.5, "title": "CAREER: Coastal Antarctic Snow Algae and Light Absorbing Particles: Snowmelt, Climate and Ecosystem Impacts", "uid": "p0010263", "west": -75.0}, {"awards": "2114786 Warnock, Jonathan", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Thu, 09 Sep 2021 00:00:00 GMT", "description": "The potential for future sea level rise from melting and collapse of Antarctic ice sheets and glaciers is concerning. We can improve our understanding of how water is exchanged between Antarctic ice sheets and the ocean by studying how ice sheets behaved in past climates, especially conditions that were similar to or warmer than those at present. For this project, the research team will document Antarctica\u2019s response across an interval when Earth transitioned from the warm Pliocene into the Pleistocene ice ages by combining marine and land evidence for glacier variations from sites near the Antarctic Peninsula, complimented by detailed work on timescales and fossil evidence for environmental change. An important goal is to test whether Antarctica\u2019s glaciers changed at the same time as glaciers in the Northern Hemisphere as Earth\u0027s most recent Ice Age intensified, or alternatively responded to regional climate forcing in the Southern Hemisphere. Eleven investigators from seven US institutions, as well as Argentine collaborators, will study new sediment cores from the International Ocean Discovery Program, as well as legacy cores from that program and on-land outcrops on James Ross Island. The group embraces a vertically integrated research program that allows high school, undergraduate, graduate, post-docs and faculty to work together on the same projects. This structure leverages the benefits of near-peer mentoring and the development of a robust collaborative research network while allowing all participants to take ownership of different parts of the project. All members of the team are firmly committed to attracting researchers from under-represented groups and will do this through existing channels as well as via co-creating programming that centers the perspectives of diverse students in conversations about sea-level rise and climate change. The proposed research seeks to understand phasing between Northern and Southern Hemisphere glacier and climate changes, as a means to understand drivers and teleconnections. The dynamics of past Antarctic glaciation can be studied using the unique isotope geochemical and mineralogic fingerprints from glacial sectors tied to a well-constrained time model for the stratigraphic successions. The proposed work would further refine the stratigraphic context through coupled biostratigraphic and magnetostratigraphic work. The magnitude of iceberg calving and paths of icebergs will be revealed using the flux, geochemical and mineralogic signatures, and 40Ar/39Ar and U-Pb geochronology of ice-rafted detritus. These provenance tracers will establish which sectors of Antarctica\u2019s ice sheets are more vulnerable to collapse, and the timing and pacing of these events will be revealed by their stratigraphic context. Additionally, the team will work with Argentine collaborators to connect the marine and terrestrial records by studying glacier records intercalated with volcanic flows on James Ross Island. These new constraints will be integrated with a state of the art ice-sheet model to link changes in ice dynamics with their underlying causes. Together, these tight stratigraphic constraints, geochemical signatures, and ice-sheet model simulations will provide a means to compare to the global records of climate change, understand their primary drivers, and elucidate the role of the Antarctic ice sheet in a major, global climatic shift from the Pliocene into the Pleistocene. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "MICROFOSSILS; FIELD SURVEYS; Weddell Sea Embayment; USA/NSF; SEA ICE; USAP-DC; PALEOCLIMATE RECONSTRUCTIONS; SEA SURFACE TEMPERATURE; AMD; Amd/Us", "locations": "Weddell Sea Embayment", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Warnock, Jonathan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Linking Marine and Terrestrial Sedimentary Evidence for Plio-pleistocene Variability of Weddell Embayment and Antarctic Peninsula Glaciation", "uid": "p0010260", "west": null}, {"awards": "2020664 Vazquez-Medina, Jose Pablo; 2020706 Hindle, Allyson", "bounds_geometry": "POLYGON((164 -77.2,164.3 -77.2,164.6 -77.2,164.9 -77.2,165.2 -77.2,165.5 -77.2,165.8 -77.2,166.1 -77.2,166.4 -77.2,166.7 -77.2,167 -77.2,167 -77.265,167 -77.33,167 -77.395,167 -77.46,167 -77.525,167 -77.59,167 -77.655,167 -77.72,167 -77.785,167 -77.85,166.7 -77.85,166.4 -77.85,166.1 -77.85,165.8 -77.85,165.5 -77.85,165.2 -77.85,164.9 -77.85,164.6 -77.85,164.3 -77.85,164 -77.85,164 -77.785,164 -77.72,164 -77.655,164 -77.59,164 -77.525,164 -77.46,164 -77.395,164 -77.33,164 -77.265,164 -77.2))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 09 Sep 2021 00:00:00 GMT", "description": "This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). Part I: Non-technical description: The Weddell seal is an iconic Antarctic species and a superb diver, swimming down to 2,000 feet and staying underwater for up to 45 minutes. However, as for any mammal, the low oxygen concentrations in the blood during diving and the recovery once back at the surface are challenges that need to be overcome making their diving ability something unique that has fascinated scientists for decades. This research project will evaluate the underlying processes in Weddell seal\u2019s physiology that protects this species from the consequences of diving. The work will combine laboratory experiments where cells that line the blood vessels will be exposed to conditions of low oxygen, similar to those that will be measured in diving seals in Antarctica. The investigarors will test a new idea that several short-term dives, performed before a long dive, allows seals to condition themselves. Measurements on the chemical compounds released to the blood during dives, combined with experiments on the genes that regulate them will provide clues on the biochemical pathways that help the seals tolerate these extreme conditions. The project allows for documentation of individual seal dives and provisioning of such information to the broader science community that seeks to study these seals, educating graduate and undergraduate students and a post-doctoral researcher and producing a science-outreach comic book for middle-school students to illustrate the project\u0027s science activities, goals and outcomes. Part II: Technical description: The Weddell seal is a champion diver with high natural tolerance for low blood oxygen concentration (hypoxemia) and inadequate blood supply (ischemia). The processes unique to this species protects their tissues from inflammation and oxidative stress observed in other mammalian tissues exposed to such physiological conditions. This project aims to understand the signatures of the processes that protect seals from inflammation and oxidant stress, using molecular, cellular and metabolic tools. Repetitive short dives before long ones are hypothesized to precondition seal tissues and activate the protective processes. The new aspect of this work is the study of endothelial cells, which sense changes in oxygen and blood flow, providing a link between breath-holding and cellular function. The approach is one of laboratory experiments combined with 2-years of field work in an ice camp off McMurdo Station in Antarctica. The study is structured by three main objectives: 1) laboratory experiments with arterial endothelial cells exposed to changes in oxygen and flow to identify molecular pathways responsible for tolerance of hypoxia and ischemia using several physiological, biochemical and genomic tools including CRSPR/Cas9 knochout and knockdown approaches. 2) Metabolomic analyses of blood metabolites produced by seals during long dives. And 3) Metabolomic and genomic determinations of seal physiology during short dives hypothesized to pre-condition tolerance responses. In the field, blood samples will be taken after seals dive in an isolated ice hole and its diving performance recorded. It is expected that the blood will contain metabolites that can be related to molecular pathways identified in lab experiments. Expert collaborators will provide field support, with the ice camp, dive hole for the seals, and telemetry associated with the seals\u2019 dives. The project builds upon previous NSF-funded projects where the seal genome and cellular resources were produced. Undergraduate researchers will be recruited from institutional programs with a track record of attracting underrepresented minorities and a minority-serving institution. To further increase polar literacy training and educational impacts, the field team will include a blog where field experiences are shared and comic book preparation with an artist designed for K-12 students and public outreach. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 167.0, "geometry": "POINT(165.5 -77.525)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; USA/NSF; AMD; MAMMALS; McMurdo Sound; Amd/Us", "locations": "McMurdo Sound", "north": -77.2, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Hindle, Allyson", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -77.85, "title": "Collaborative Research: Role of Endothelial Cell Activation in Hypoxia Tolerance of an Elite Diver, the Weddell Seal", "uid": "p0010257", "west": 164.0}, {"awards": "2436582 Grunow, Anne; 1643713 Grunow, Anne; 1141906 Grunow, Anne; 0739480 Grunow, Anne; 2137467 Grunow, Anne; 0440695 Grunow, Anne; 9910267 Grunow, Anne", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Marine Geoscience Data System - cruise links; Polar Rock Repository; SESAR sample registration", "datasets": [{"dataset_uid": "200243", "doi": "", "keywords": null, "people": null, "repository": "PRR", "science_program": null, "title": "Polar Rock Repository", "url": "https://prr.osu.edu/"}, {"dataset_uid": "200359", "doi": "", "keywords": null, "people": null, "repository": "PRR", "science_program": null, "title": "Polar Rock Repository", "url": "http://research.bpcrc.osu.edu/rr/"}, {"dataset_uid": "200241", "doi": "", "keywords": null, "people": null, "repository": "SESAR", "science_program": null, "title": "SESAR sample registration", "url": "https://www.geosamples.org/about/services#igsnregistration"}, {"dataset_uid": "200242", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "Marine Geoscience Data System - cruise links", "url": "https://www.marine-geo.org/"}], "date_created": "Thu, 09 Sep 2021 00:00:00 GMT", "description": "Non-Technical Abstract: The Polar Rock Repository (PRR) at The Ohio State University provides a unique resource for researchers studying the polar regions by offering free access to geological samples and data. This project seeks support to continue expanding and managing the collection, which is vital for scientific studies and planning fieldwork in Antarctica. Over the next five years, the repository plans to add tens of thousands of new samples and images, making it easier for researchers to study polar geology without the high cost and environmental impact of traveling to remote Antarctic locations. The PRR also supports education and outreach by providing hands-on resources for schools, colleges, and the public, including a \"Polar Rock Box\" program that brings real Antarctic samples into classrooms. This work ensures the preservation of important scientific materials and makes them accessible to a broad community, advancing understanding of our planet\u2019s polar regions. Technical Abstract: The Polar Rock Repository (PRR) at The Ohio State University serves as a critical resource for polar earth science research, offering no-cost loans of geological samples and comprehensive metadata to the scientific community. This proposal seeks funding to support the continued curation, expansion, and management of the PRR, alongside its educational and outreach initiatives. Over the next five years, the PRR anticipates acquiring approximately 15,000 new samples, including those from major drilling operations (RAID, Winkie drill cores) and polar cruises. The repository also aims to significantly grow its archives of images, petrographic thin sections, and mineral separates. By preserving these physical and digital assets in a discoverable online database, the PRR fosters transparency, reproducibility, and accessibility in polar research, fulfilling Antarctic data management mandates. The intellectual merit lies in enabling cutting-edge scientific analyses through freely available samples and metadata. Broader impacts include reduced environmental costs of Antarctic research, enhanced educational opportunities, and outreach to a diverse audience through initiatives like the \"Polar Rock Box\" program. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; FIELD SURVEYS; Pacific Ocean; ROCKS/MINERALS/CRYSTALS; GLACIATION; AMD; Weddell Sea; Scotia Sea; TECTONICS; Antarctica; Southern Ocean; Amd/Us; USA/NSF; Amundsen Sea", "locations": "Pacific Ocean; Amundsen Sea; Scotia Sea; Weddell Sea; Antarctica; Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Grunow, Anne", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "PRR", "repositories": "MGDS; PRR; SESAR", "science_programs": null, "south": -90.0, "title": "Continuing Operations Proposal: \r\nThe Polar Rock Repository as a Resource for Earth Systems Science\r\n", "uid": "p0010259", "west": -180.0}, {"awards": "2039432 Grapenthin, Ronni", "bounds_geometry": "POLYGON((165.5 -77.1,165.91 -77.1,166.32 -77.1,166.73 -77.1,167.14 -77.1,167.55 -77.1,167.96 -77.1,168.37 -77.1,168.78 -77.1,169.19 -77.1,169.6 -77.1,169.6 -77.18,169.6 -77.26,169.6 -77.34,169.6 -77.42,169.6 -77.5,169.6 -77.58,169.6 -77.66,169.6 -77.74,169.6 -77.82,169.6 -77.9,169.19 -77.9,168.78 -77.9,168.37 -77.9,167.96 -77.9,167.55 -77.9,167.14 -77.9,166.73 -77.9,166.32 -77.9,165.91 -77.9,165.5 -77.9,165.5 -77.82,165.5 -77.74,165.5 -77.66,165.5 -77.58,165.5 -77.5,165.5 -77.42,165.5 -77.34,165.5 -77.26,165.5 -77.18,165.5 -77.1))", "dataset_titles": "Erebus GPS timeseries ", "datasets": [{"dataset_uid": "601471", "doi": "10.15784/601471", "keywords": "Antarctica; GPS; Mount Erebus; Ross Island", "people": "Grapenthin, Ronni", "repository": "USAP-DC", "science_program": null, "title": "Erebus GPS timeseries ", "url": "https://www.usap-dc.org/view/dataset/601471"}], "date_created": "Fri, 03 Sep 2021 00:00:00 GMT", "description": "Nontechnical Abstract Mount Erebus volcano on Ross Island, Antarctica, is the southernmost active volcano on the planet. It provides a natural laboratory to study a volcanic system that has been in a continuous state of activity with a persistent lava lake over at least the last 40 years. Worldwide only four other volcanoes with such long-lived lava lakes exist: Erta Ale, Ethiopia; Kilauea, Hawaii; Nyiragongo, Congo; and Ambrym, Vanuatu. These volcanoes are a rare anomaly that provide a window into the underlying magmatic system and behavior. Erebus is of particular interest as it cycles through phases of very explosive activity every 20 thousand years. This project will investigate interactions between the magmatic system, the rift it is located in, and the impact of the gravitational load the volcano imposes on the underlying crust and its own magmatic system. Possible interactions between these factors may explain the changes in activity. The project will analyze geophysical data that have been collected at Erebus over at least the last two decades. The results of this work will be available to the public and scientific community and inform geodynamic models in this region. The project funds an early-career scientist and a graduate student at New Mexico Tech and contributes to the development of the next generation of scientists. Technical Abstract The proposed work targets scientific questions recently formulated by the community during the 2016 NSF-sponsored Scientific Drivers and Future of Mount Erebus Volcano Observatory workshop. The location and geometry of the magmatic plumbing from vent to lower crust system remain poorly constrained, particularly below 1 km depth. The style and causes for changes in volcanic and magmatic activity over the short term (minutes to hours) and on the decadal scale remains enigmatic. Two decades of campaign and continuous GPS data on Ross Island will inform about the longer term dynamics of both, Ross Island growing within the Terror Rift, and Erebus? deeper magmatic system. This project will organize and analyze all existing GPS data for Ross Island, and interpret any anomalies in the resulting time series. These activities require organization, consistent processing and interpretation/modeling of the existing ~20 years of GPS data, which include campaign, continuous, and high-rate GPS observations. We will generate these position time series in a consistent local reference frame and make the results, including models of transient deformation available to the community. Volcanic, tectonic and isostatic adjustment related deformation will be modeled to place Erebus in a broad volcano-tectonic framework of West Antarctica. During the data analysis phase, the utility of existing GPS data for reflection studies of snow and sea-level dynamics will also be evaluated.", "east": 169.6, "geometry": "POINT(167.55 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Ross Island; TECTONICS; USAP-DC; Amd/Us; AMD; CRUSTAL MOTION; USA/NSF; FIELD SURVEYS", "locations": "Ross Island", "north": -77.1, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Instrumentation and Facilities", "paleo_time": null, "persons": "Grapenthin, Ronni", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Collaborative Research: Multi-Parameter Geophysical Constraints on Volcano Dynamics of Mt. Erebus and Ross Island, Antarctica", "uid": "p0010255", "west": 165.5}, {"awards": "1542936 Goehring, Brent; 1542976 Balco, Gregory", "bounds_geometry": "POLYGON((-145.7 -64.195,-113.988 -64.195,-82.276 -64.195,-50.564 -64.195,-18.852 -64.195,12.86 -64.195,44.572 -64.195,76.284 -64.195,107.996 -64.195,139.708 -64.195,171.42 -64.195,171.42 -66.2096,171.42 -68.2242,171.42 -70.2388,171.42 -72.2534,171.42 -74.268,171.42 -76.2826,171.42 -78.2972,171.42 -80.3118,171.42 -82.3264,171.42 -84.341,139.708 -84.341,107.996 -84.341,76.284 -84.341,44.572 -84.341,12.86 -84.341,-18.852 -84.341,-50.564 -84.341,-82.276 -84.341,-113.988 -84.341,-145.7 -84.341,-145.7 -82.3264,-145.7 -80.3118,-145.7 -78.2972,-145.7 -76.2826,-145.7 -74.268,-145.7 -72.2534,-145.7 -70.2388,-145.7 -68.2242,-145.7 -66.2096,-145.7 -64.195))", "dataset_titles": "Interface for viewing observational data related to exposure ages measurements and calculated geologic ages derived therefrom", "datasets": [{"dataset_uid": "200199", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Interface for viewing observational data related to exposure ages measurements and calculated geologic ages derived therefrom", "url": "https://version2.ice-d.org/antarctica/nsf/"}], "date_created": "Fri, 03 Sep 2021 00:00:00 GMT", "description": "The overall goal of this project is to determine the effect of past changes in the size of the Antarctic Ice Sheet on global sea level. At the peak of the last ice age 25,000 years ago, sea level was 120 meters (400 feet) lower than it is at present because water that is now part of the ocean was instead part of expanded glaciers and ice sheets in North America, Eurasia, and Antarctica. Between then and now, melting and retreat of this land ice caused sea level to rise. In this project, we aim to improve our understanding of how changes in the size of the Antarctic Ice Sheet contributed to this process. The overall strategy to accomplish this involves (i) visiting areas in Antarctica that are not now covered by ice; (ii) looking for geological evidence, specifically rock surface and sediment deposits, that indicates that these areas were covered by thicker ice in the past; and (iii) determining the age of these geological surfaces and deposits. This project addresses the final part of this strategy -- determining the age of Antarctic glacial rock surfaces or sediment deposits -- using a relatively new technique that involves measuring trace elements in rock surfaces that are produced by cosmic-ray bombardment after the rock surfaces are exposed by ice retreat. By applying this method to rock samples collected in previous visits to Antarctica, the timing of past expansion and contraction of the ice sheet can be determined. The main scientific outcomes expected from this project are (i) improved understanding of how Antarctic Ice Sheet changes contributed to past global sea level rise; and (ii) improved understanding of modern observed Antarctic Ice Sheet changes in a longer-term context. This second outcome will potentially improve predictions of future ice sheet behavior. Other outcomes of the project include training of individual undergraduate and graduate students, as well as the development of a new course on sea level change to be taught at Tulane University in New Orleans, a city that is being affected by sea level change today. This project will use measurements of in-situ-produced cosmogenic carbon-14 in quartz from existing samples collected at several sites in Antarctica to resolve major ambiguities in existing Last Glacial Maximum to present ice sheet reconstructions. This project is important because of the critical nature of accurate reconstructions of ice sheet change in constraining reconstructions of past sea level change. Although carbon-14 is most commonly exploited as a geochronometer through its production in the upper atmosphere and incorporation into organic materials, it is also produced within the crystal lattice of rocks and minerals that are exposed to the cosmic-ray flux at the Earth\u0027s surface. In this latter case, its concentration is proportional to the duration of surface exposure, and measurements of in-situ-produced carbon-14 can be used to date geological events that form or expose rock surfaces, for example, ice sheet expansion and retreat. Although carbon-14 is one of several trace radionuclides that can be used for this purpose, it is unique among them in that its half-life is short relative to the time scale of glacial-interglacial variations. Thus, in cases where rock surfaces in polar regions have been repeatedly covered and uncovered by ice sheet change during many glacial-interglacial cycles, carbon-14 measurements are uniquely suited to accurately dating the most recent episode of ice sheet advance and retreat. We aim to use this property to improve our understanding of Antarctic Ice Sheet change at a number of critically located sites at which other surface exposure dating methods have yielded ambiguous results. Geographically, these are focused in the Weddell Sea embayment of Antarctica, which is an area where the geometry of the Antarctic continent potentially permits large glacial-interglacial changes in ice volume but where existing geologic records of ice sheet change are particularly ambiguous. In addition, in-situ carbon-14 measurements, applied where independently constrained deglaciation chronologies already exist, can potentially allow us to date the last period of ice sheet advance as well as the most recent retreat.", "east": 171.42, "geometry": "POINT(12.86 -74.268)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; Cosmogenic Dating; GLACIER THICKNESS/ICE SHEET THICKNESS; AMD; USAP-DC; GLACIER ELEVATION/ICE SHEET ELEVATION; GLACIERS/ICE SHEETS; Carbon-14; USA/NSF; Weddell Sea Embayment; LABORATORY; FIELD SURVEYS; GLACIATION", "locations": "Weddell Sea Embayment", "north": -64.195, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Goehring, Brent; Balco, Gregory", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "ICE-D", "repositories": "ICE-D", "science_programs": null, "south": -84.341, "title": "COLLABORATIVE RESEARCH: Resolving Ambiguous Exposure-Age Chronologies of Antarctic Deglaciation with Measurements of In-Situ-Produced Cosmogenic Carbon-14", "uid": "p0010254", "west": -145.7}, {"awards": "0838843 Kurbatov, Andrei; 1745006 Brook, Edward J.; 1744993 Higgins, John; 1744832 Severinghaus, Jeffrey; 1745007 Mayewski, Paul", "bounds_geometry": "POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.719998,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.7,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.673336,159.16667 -76.66667))", "dataset_titles": "Allan Hills 2022-23 Shallow Ice Core Field Report; Allan Hills CMC3 ice core d18Oatm, d15N, dO2/N2, dAr/N2, d40/36Ar, d40/38Ar 2021 \u0026 2022; Allan Hills Stable Water Isotopes; CO2 and CH4 from Allan Hills ice cores ALHIC1901, 1902, and 1903; Heavy noble gases (Ar/Xe/Kr) from ALHIC1901, 1902, and 1903; I-165-M GPR Field Report 2019-2020; MOT data (Xe/Kr) from Allan Hills ice cores ALHIC1901, 1902, and 1903; Snapshot record of CO2 and CH4 from the Allan Hills, Antarctica, ranging from 400,000 to 3 million years old", "datasets": [{"dataset_uid": "601696", "doi": "10.15784/601696", "keywords": "Allan Hills; Antarctica; Ice Core", "people": "Brook, Edward J.; Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills 2022-23 Shallow Ice Core Field Report", "url": "https://www.usap-dc.org/view/dataset/601696"}, {"dataset_uid": "601620", "doi": "10.15784/601620", "keywords": "18O; Allan Hills; Allan Hills Blue Ice; Antarctica; Blue Ice; Delta 15N; Delta 18O; Dole Effect; Firn Thickness; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Chronology; Ice Core Records", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills CMC3 ice core d18Oatm, d15N, dO2/N2, dAr/N2, d40/36Ar, d40/38Ar 2021 \u0026 2022", "url": "https://www.usap-dc.org/view/dataset/601620"}, {"dataset_uid": "601896", "doi": "10.15784/601896", "keywords": "Allan Hills; Antarctica; Ch4; CO2; Cryosphere; Glaciology; Glaciology; Ice Core Data; Ice Core Records", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "CO2 and CH4 from Allan Hills ice cores ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601896"}, {"dataset_uid": "601895", "doi": "10.15784/601895", "keywords": "Allan Hills; Antarctica; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Noble Gas", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Heavy noble gases (Ar/Xe/Kr) from ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601895"}, {"dataset_uid": "601878", "doi": "10.15784/601878", "keywords": "Allan Hills; Antarctica; Blue Ice; Carbon Dioxide; Cryosphere; Methane", "people": "Shackleton, Sarah; Marks Peterson, Julia; Brook, Edward; Kalk, Michael; Severinghaus, Jeffrey P.; Hishamunda, Valens", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Snapshot record of CO2 and CH4 from the Allan Hills, Antarctica, ranging from 400,000 to 3 million years old", "url": "https://www.usap-dc.org/view/dataset/601878"}, {"dataset_uid": "609541", "doi": "10.7265/N5NP22DF", "keywords": "Allan Hills; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Isotope", "people": "Kurbatov, Andrei V.; Introne, Douglas; Mayewski, Paul A.; Spaulding, Nicole", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills Stable Water Isotopes", "url": "https://www.usap-dc.org/view/dataset/609541"}, {"dataset_uid": "601669", "doi": "10.15784/601669", "keywords": "Allan Hills; Antarctica; GPR; Ice Core; Report", "people": "Nesbitt, Ian; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "I-165-M GPR Field Report 2019-2020", "url": "https://www.usap-dc.org/view/dataset/601669"}, {"dataset_uid": "601897", "doi": "10.15784/601897", "keywords": "Allan Hills; Antarctica; Cryosphere; Glaciology; Ice Core Data; MOT; Ocean Temperature; Paleoclimate; Xe/Kr", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "MOT data (Xe/Kr) from Allan Hills ice cores ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601897"}], "date_created": "Fri, 27 Aug 2021 00:00:00 GMT", "description": "Bubbles of ancient air trapped in ice cores have been used to directly reconstruct atmospheric composition, and its links to Antarctic and global climate, over the last 800,000 years. Previous field expeditions to the Allan Hills Blue Ice Area, Antarctica, have recovered ice cores that extend as far back as 2.7 million years, by far the oldest polar ice samples yet recovered. These ice cores extend direct observations of atmospheric carbon dioxide and methane concentrations and indirect records of Antarctic climate into a period of Earth\u0027s climate history that represents a plausible geologic analogue to future anthropogenic climate change. The results demonstrate a smaller glacial-interglacial variability of climate and greenhouse gases, and a persistent linkage between Antarctic climate and atmospheric carbon dioxide, between 1 and 2 million years ago. Through this project, the team will return to the Allan Hills Blue Ice Area to recover additional ice cores that date to 2 million years or older. The climate records developed from these ice cores will provide new insights into the chemical composition of the atmosphere and Antarctic climate during times of comparable or even greater warmth than the present day. Project results will help answer questions about issues associated with anthropogenic change including the relationship between temperature change and the mass balance of Antarctic ice and the relationship between atmospheric greenhouse gases and global climate change. Earth has been cooling, and ice sheets expanding, over the past ~52 million years. Superimposed on this cooling are periodic changes in Earth\u0027s climate system driven by variations in the eccentricity, precession, and obliquity of Earth\u0027s orbit around the Sun. Climate reconstructions based on measurements of oxygen isotopes in foraminiferal calcite indicate that, from ~2.8 to 1.2 million years before present (Ma), Earth\u0027s climate system oscillated between glacial and interglacial states every ~40,000 years (the \"40k world\"). Between 1.2-0.8 Ma and continuing to the present, the period of glacial cycles increased in amplitude and lengthened to ~100,000 years (the \"100k world\"). Ice cores preserve ancient air that allows direct reconstructions of atmospheric carbon dioxide and methane. They also archive proxy records of regional climate, mean ocean temperature, global oxygen cycling, and the aridity of nearby continents. Studies of stratigraphically continuous ice cores, extending to 800,000 years before present, have demonstrated that atmospheric carbon dioxide is strongly linked to climate, and it is of great interest to extend the ice-core record into the 40k world. Recent discoveries of well-preserved ice dating from 1.0 to 2.7 Ma from ice cores drilled in the Allan Hills Blue Ice Area (BIA), Antarctica, demonstrate the potential to retrieve stratigraphically discontinuous old ice at shallow depths (\u003c200 meters). This project will continue this work by retrieving new large-volume ice cores and measuring paleoclimate properties in both new and existing ice from the Allan Hills BIA. The experimental objectives are to more fully characterize fundamental properties of the climate system and the carbon cycle during the 40k world. Project results will have implications for Pleistocene climate change, and will provide new constraints on the processes that regulate atmospheric carbon dioxide, methane, and oxygen on geologic timescales. Given a demonstrated age of the ice at the Allan Hills BIA of at least 2 million years, the team will drill additional cores to prospect for ice that predates the initiation of Northern Hemisphere glaciation at the Plio-Pleistocene transition (~2.8 Ma). This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 159.41667, "geometry": "POINT(159.29167 -76.7)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; USAP-DC; SNOW/ICE; Allan Hills; FIELD SURVEYS; USA/NSF; Amd/Us; LABORATORY", "locations": "Allan Hills", "north": -76.66667, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Mayewski, Paul A.; Kurbatov, Andrei V.; Brook, Edward J.; Severinghaus, Jeffrey P.; Higgins, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73333, "title": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area ", "uid": "p0010253", "west": 159.16667}, {"awards": "2114839 Passchier, Sandra", "bounds_geometry": null, "dataset_titles": "Argon thermochronological data on Pliocene ice-rafted detrital mineral grains from IODP Expedition 379 in the Amundsen Sea sector; Grain-size data for the Pliocene section at IODP Site U1533, Amundsen Sea", "datasets": [{"dataset_uid": "601900", "doi": "10.15784/601900", "keywords": "Amundsen Sea Sector; Antarctica; Cryosphere; Glaciation; Grain Size; Pliocene; Sediment Core Data; Sedimentology", "people": "Passchier, Sandra; Mino-Moreira, Lisbeth", "repository": "USAP-DC", "science_program": null, "title": "Grain-size data for the Pliocene section at IODP Site U1533, Amundsen Sea", "url": "https://www.usap-dc.org/view/dataset/601900"}, {"dataset_uid": "601907", "doi": "10.15784/601907", "keywords": "40Ar/39Ar; Amundsen Sea; Amundsen Sea Sector; Antarctica; Cryosphere; Ice-Rafted Detritus; IODP; Paleoclimate; Pliocene; Provenance; Sedimentology", "people": "Hemming, Sidney R.; Passchier, Sandra", "repository": "USAP-DC", "science_program": null, "title": "Argon thermochronological data on Pliocene ice-rafted detrital mineral grains from IODP Expedition 379 in the Amundsen Sea sector", "url": "https://www.usap-dc.org/view/dataset/601907"}], "date_created": "Wed, 25 Aug 2021 00:00:00 GMT", "description": "The West Antarctic Ice Sheet is the most vulnerable polar ice mass to warming and already a major contributor to global mean sea level rise. Its fate in the light of prolonged warming is a topic of major uncertainty. Accelerated sea level rise from ice mass loss in the polar regions is a major concern as a cause of increased coastal flooding affecting millions of people. This project will disclose a unique geological archive buried beneath the seafloor off the Amundsen Sea, Antarctica, which will reveal how the West Antarctic Ice Sheet behaved in a warmer climate in the past. The data and insights can be used to inform ice-sheet and ocean modeling used in coastal policy development. The project will also support the development of a competitive U.S. STEM workforce. Online class exercises for introductory geology classes will provide a gateway for qualified students into undergraduate research programs and this project will enhance the participation of women in science by funding the education of current female Ph.D. students. The project targets the long-term variability of the West Antarctic Ice Sheet over several glacial-interglacial cycles in the early Pliocene sedimentary record drilled by the International Ocean Discovery Program (IODP) Expedition 379 in the Amundsen Sea. Data collection includes 1) the sand provenance of ice-rafted debris and shelf diamictites and its sources within the Amundsen Sea and Antarctic Peninsula region; 2) sedimentary structures and sortable silt calculations from particle size records and reconstructions of current intensities and interactions; and 3) the bulk provenance of continental rise sediments compared to existing data from the Amundsen Sea shelf with investigations into downslope currents as pathways for Antarctic Bottom Water formation. The results are analyzed within a cyclostratigraphic framework of reflectance spectroscopy and colorimetry (RSC) and X-ray fluorescence scanner (XRF) data to gain insight into orbital forcing of the high-latitude processes. The early Pliocene Climatic Optimum (PCO) ~4.5-4.1 Ma spans a major warm period recognized in deep-sea stable isotope and sea-surface temperature records. This period also coincides with a global mean sea level highstand of \u003e 20 m requiring contributions in ice mass loss from Antarctica. The following hypotheses will be tested: 1) that the West Antarctic Ice Sheet retreated from the continental shelf break through an increase in sub iceshelf melt and iceberg calving at the onset of the PCO ~4.5 Ma, and 2) that dense shelf water cascaded down through slope channels after ~4.5 Ma as the continental shelf became exposed during glacial terminations. The project will reveal for the first time how the West Antarctic Ice Sheet operated in a warmer climate state prior to the onset of the current \u201cicehouse\u201d period ~3.3 Ma. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; TERRIGENOUS SEDIMENTS; Amd/Us; SEDIMENTS; FIELD SURVEYS; Amundsen Sea; USAP-DC; AMD", "locations": "Amundsen Sea", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Passchier, Sandra", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "West Antarctic Ice-sheet Change and Paleoceanography in the Amundsen Sea Across the Pliocene Climatic Optimum", "uid": "p0010252", "west": null}, {"awards": "2046800 Thurber, Andrew", "bounds_geometry": "POLYGON((162 -77,162.6 -77,163.2 -77,163.8 -77,164.4 -77,165 -77,165.6 -77,166.2 -77,166.8 -77,167.4 -77,168 -77,168 -77.1,168 -77.2,168 -77.3,168 -77.4,168 -77.5,168 -77.6,168 -77.7,168 -77.8,168 -77.9,168 -78,167.4 -78,166.8 -78,166.2 -78,165.6 -78,165 -78,164.4 -78,163.8 -78,163.2 -78,162.6 -78,162 -78,162 -77.9,162 -77.8,162 -77.7,162 -77.6,162 -77.5,162 -77.4,162 -77.3,162 -77.2,162 -77.1,162 -77))", "dataset_titles": null, "datasets": null, "date_created": "Sat, 21 Aug 2021 00:00:00 GMT", "description": "Part I: Non-technical description: Methane is one of the more effective atmospheric gases at retaining heat in the lower atmosphere and the earth\u2019s crust contains large quantities of methane. Research that identifies the factors that control methane\u2019s release into the atmosphere is critical to understanding and mitigating climate change. One of the most effective natural processes that inhibits the release of methane from aquatic habitats is a community of bacteria and Archaea (microbes) that use the chemical energy stored in methane, transforming methane into less-climate-sensitive compounds. The amount of methane that may be released in Antarctica is unknown, and it is unclear which microbes consume the methane before it is released from the ocean in Antarctica. This project will study one of the few methane seeps known in Antarctica to advance our understanding of which microbes inhibit the release of methane in marine environments. The research will also identify if methane is a source of energy for other Antarctic organisms. The researchers will analyze the microbial species associated with methane consumption over several years of field and laboratory research based at an Antarctic US station, McMurdo. This project clearly expands the fundamental knowledge of Antarctic systems, biota, and processes outlined as a goal in the Antarctic solicitation. This research communicates and produces educational material for K-12, college, and graduate students to inspire and inform the public about the role Antarctic ecosystems play in the global environment. This project also provides a young professor an opportunity to establish himself as an expert in the field of Antarctic microbial ecology to help solidify his academic career. Part II: Technical description: Microbes act as filter to methane release from the ocean into the atmosphere, where microbial chemosynthetic production harvests the chemical energy stored in this greenhouse gas. In spite of methane reservoirs in Antarctica being as large as Arctic permafrost, we know only a little about the taxa or dominant processes involved in methane consumption in Antarctica. The principal investigator will undertake a genomic and transcriptomic study of microbial communities developed and still developing after initiation of methane seepage in McMurdo Sound. An Antarctic methane seep was discovered at this location in 2012 after it began seeping in 2011. Five years after it began releasing methane, the methane-oxidizing microbial community was underdeveloped and methane was still escaping from the seafloor. This project will be essential in elucidating the response of microbial communities to methane release and identify how methane oxidation occurs within the constraints of the low polar temperatures. This investigation is based on 4 years of field sampling and will establish a time series of the development of cold seep microbial communities in Antarctica. A genome-to-ecosystem approach will establish how the Southern Ocean microbial community is adapted to prevent methane release into the ocean. As methane is an organic carbon source, results from this study will have implications for the Southern Ocean carbon cycle. Two graduate students will be trained and supported with undergraduates participating in laboratory activities. The researcher aims to educate, inspire and communicate about Antarctic methane seeps to a broad community. A mixed-media approach, with videos, art and education in schools will be supported in collaboration with a filmmaker, teachers and a visual artist. Students will be trained in filmmaking and K-12 students from under-represented communities will be introduced to Antarctic science through visual arts. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 168.0, "geometry": "POINT(165 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; USA/NSF; USAP-DC; BACTERIA/ARCHAEA; McMurdo Sound; BENTHIC; FIELD SURVEYS; Amd/Us; ECOSYSTEM FUNCTIONS", "locations": "McMurdo Sound", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Thurber, Andrew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -78.0, "title": "CAREER: Ecosystem Impacts of Microbial Succession and Production at Antarctic Methane Seeps", "uid": "p0010250", "west": 162.0}, {"awards": "1643871 van Gestel, Natasja; 1947562 van Gestel, Natasja", "bounds_geometry": "POLYGON((-65 -64.5,-64.8 -64.5,-64.6 -64.5,-64.4 -64.5,-64.2 -64.5,-64 -64.5,-63.8 -64.5,-63.6 -64.5,-63.4 -64.5,-63.2 -64.5,-63 -64.5,-63 -64.55,-63 -64.6,-63 -64.65,-63 -64.7,-63 -64.75,-63 -64.8,-63 -64.85,-63 -64.9,-63 -64.95,-63 -65,-63.2 -65,-63.4 -65,-63.6 -65,-63.8 -65,-64 -65,-64.2 -65,-64.4 -65,-64.6 -65,-64.8 -65,-65 -65,-65 -64.95,-65 -64.9,-65 -64.85,-65 -64.8,-65 -64.75,-65 -64.7,-65 -64.65,-65 -64.6,-65 -64.55,-65 -64.5))", "dataset_titles": "2022-2023 Palmer Station terrestrial carbon fluxes - field warming experiment; Soil moisture and soil temperature data (0-5 cm) near Palmer Station, Antarctica", "datasets": [{"dataset_uid": "601877", "doi": "10.15784/601877", "keywords": "Antarctica; Antarctic Peninsula; Conductivity; Cryosphere; Palmer Station; Soil; Temperature", "people": "van Gestel, Natasja", "repository": "USAP-DC", "science_program": null, "title": "Soil moisture and soil temperature data (0-5 cm) near Palmer Station, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601877"}, {"dataset_uid": "601853", "doi": "10.15784/601853", "keywords": "Antarctica; CO2; Cryosphere; Field Investigations; Palmer Station", "people": "van Gestel, Natasja", "repository": "USAP-DC", "science_program": null, "title": "2022-2023 Palmer Station terrestrial carbon fluxes - field warming experiment", "url": "https://www.usap-dc.org/view/dataset/601853"}], "date_created": "Sat, 21 Aug 2021 00:00:00 GMT", "description": "Part I: Non-technical description: Earth\u2019s terrestrial ecosystems have the potential to either slow down or hasten the pace of climate change. The direction depends in part on both plant and microbial responses to warming. This study uses Antarctica as a model ecosystem to study the carbon balance of a simplified ecosystem (simplified compared to terrestrial ecosystems elsewhere) in response to a warming treatment. Carbon balance is dictated by sequestered carbon (through photosynthesis) and released carbon (plant and microbial respiration). Hence, to best assess plant and microbial responses to warming, this study uses a plant gradient that starts at the glacier (no plants, only soil microbes) to an old site entirely covered by plants. Experimental warming in the field is achieved by open-top chambers that warm the air and soil inside. The net ecosystem carbon exchange, the net result of sequestered and released carbon, will be measured in warmed and control plots with a state-of-the art gas exchange machine. Laboratory temperature incubation studies will supplement field work to attribute changes in carbon fluxes to individual plant species and soil microbial taxa (i.e., \u201cspecies\u201d). Data from this study will feed into earth system climate change models. The importance of this study will be shared with the broader community through the production of a video series created by an award-winning science media production company, an Antarctic blog, and through interactions with schools in the United States (on-site through Skype and in-person visits). Part II: Technical description: Responses of the carbon balance of terrestrial ecosystems to warming will feed back to the pace of climate change, but the size and direction of this feedback are poorly constrained. Least known are the effects of warming on carbon losses from soil, and clarifying the major microbial controls is an important research frontier. This study uses a series of experiments and observations to investigate microbial, including autotrophic taxa, and plant controls of net ecosystem productivity in response to warming in intact ecosystems. Field warming is achieved using open-top chambers paired with control plots, arrayed along a productivity gradient. Along this gradient, incoming and outgoing carbon fluxes will be measured at the ecosystem-level. The goal is to tie warming-induced shifts in net ecosystem carbon balance to warming effects on soil microbes and plants. The field study will be supplemented with lab temperature incubations. Because soil microbes dominate biogeochemical cycles in Antarctica, a major focus of this study is to determine warming responses of bacteria, fungi and archaea. This is achieved using a cutting-edge stable isotope technique, quantitative stable isotope probing (qSIP) developed by the proposing research team, that can identify the taxa that are active and involved in processing new carbon. This technique can identify individual microbial taxa that are actively participating in biogeochemical cycling of nutrients (through combined use of 18O-water and 13C-bicarbonate) and thus can be distinguished from those that are simply present (cold-preserved). The study further assesses photosynthetic uptake of carbon by the vegetation and their sensitivity to warming. Results will advance research in climate change, plant and soil microbial ecology, and ecosystem modeling. Science communication will be achieved through an informative video series, a daily Antarctic blog, and online- and in-person visits to schools in the United States. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -63.0, "geometry": "POINT(-64 -64.75)", "instruments": null, "is_usap_dc": true, "keywords": "Palmer Station; TERRESTRIAL ECOSYSTEMS; USA/NSF; AMD; Amd/Us; USAP-DC; FIELD SURVEYS", "locations": "Palmer Station", "north": -64.5, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science", "paleo_time": null, "persons": "van Gestel, Natasja", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Antarctica as a Model System for Responses of Terrestrial Carbon Balance to Warming", "uid": "p0010251", "west": -65.0}, {"awards": "1954241 O\u0027\u0027Brien, Kristin", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 17 Aug 2021 00:00:00 GMT", "description": "Part 1: Non-technical description: Global climate warming is increasing the frequency and severity of low oxygen events in marine and freshwater environments worldwide, and these events threaten the health of aquatic ecosystems and the viability of fish populations. The Southern Ocean surrounding Antarctica has historically been a stable, icy-cold, and oxygen-rich environment, but is now warming at an unprecedented rate and faster than all other regions in the Southern hemisphere. Antarctic fishes have evolved in sub-zero temperatures that have been stable over long periods of time with traits allowing them to thrive in frigid waters, but with diminished resilience to warming temperatures. Presently little is known about the ability of Antarctic fishes to withstand hypoxic, or low-oxygen, conditions that often accompany warming. This research will investigate the hypoxia tolerance of four species of Antarctic fishes, including two species of icefishes that lack the oxygen-carrying protein, hemoglobin, which may compromise their ability to oxygenate tissues under hypoxic conditions. The hypoxia tolerance of four Antarctic fish species will be compared to that of a related fish species inhabiting warmer coastal regions of South America. Physiological and biochemical responses to hypoxia will be evaluated and compared amongst the five species to bolster our predictions of the capacity of Antarctic fishes to cope with a changing environment. This research will provide training opportunities for undergraduate and graduate students, and a postdoctoral research fellow. A year-long seminar series hosted by the Aquarium of the Pacific will feature female scientists who work in Antarctica to inspire youth in the greater Los Angeles area to pursue careers in science. Part 2: Technical description: The overarching hypothesis to be tested in this project is that the long evolution of Antarctic notothenioid fishes in a cold, oxygen-rich environment has reduced their capacity to mount a robust physiological, biochemical, and molecular response to hypoxia compared to related, cold-temperate fish species. Hypoxia tolerance will be compared among the red-blooded Antarctic notothenioids, Notothenia coriiceps and Notothenia rossii; the hemoglobinless Antarctic icefishes, Chaenocephalus aceratus and Chionodraco rastrospinosus; and the basal, cold-temperate notothenioid, Eleginops maclovinus, a species that has never inhabited waters south of the Polar Front. The minimum level of oxygen required to sustain maintenance metabolic requirements (O2crit) will be quantified. Animals will then be exposed to 65% of O2crit for 48 hours, and responses to hypoxia will be evaluated by measuring hematocrit and hemoglobin levels, as well as metabolites in brain, liver, glycolytic and cardiac muscles. Maximal activities of key enzymes of aerobic and anaerobic metabolism will be quantified to assess capacities for synthesizing ATP in hypoxic conditions. Gill remodeling will be analyzed using light and scanning electron microscopy. The molecular response to hypoxia will be characterized in liver and brains by quantifying levels of the master transcriptional regulator of oxygen homeostasis, hypoxia-inducible factor-1 (HIF-1), and hypoxic gene expression will be quantified using RNA-Seq. Cell cultures will be used to determine if a previously identified insertion mutation in notothenioid HIF-1 affects the ability of HIF-1 to drive gene expression and thus, hypoxia tolerance. The results of this project will provide the most comprehensive assessment of the hypoxia tolerance of Antarctic fishes to date. Broader impacts include research training opportunities for undergraduate and graduate students and a postdoctoral research associate, with a focus on involving Native Alaskan students in research. In partnership with the Aquarium of the Pacific, a year-long public seminar series will be held, showcasing the research and careers of 9 women who conduct research in Antarctica. The goal of the series is to cultivate and empower a community of middle and high school students in the greater Los Angeles area to pursue their interests in science and related fields, and to enhance the public engagement capacities of research scientists so that they may better inspire youth and early career scientists in STEM fields. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Palmer Station; FIELD SURVEYS; USAP-DC; AMD; USA/NSF; Amd/Us; FISH", "locations": "Palmer Station", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "O\u0027Brien, Kristin", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": null, "title": "ANT LIA: Hypoxia Tolerance in Notothenioid Fishes", "uid": "p0010246", "west": null}, {"awards": "2046437 Zitterbart, Daniel", "bounds_geometry": "POLYGON((-60 -55,-53 -55,-46 -55,-39 -55,-32 -55,-25 -55,-18 -55,-11 -55,-4 -55,3 -55,10 -55,10 -57.5,10 -60,10 -62.5,10 -65,10 -67.5,10 -70,10 -72.5,10 -75,10 -77.5,10 -80,3 -80,-4 -80,-11 -80,-18 -80,-25 -80,-32 -80,-39 -80,-46 -80,-53 -80,-60 -80,-60 -77.5,-60 -75,-60 -72.5,-60 -70,-60 -67.5,-60 -65,-60 -62.5,-60 -60,-60 -57.5,-60 -55))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 16 Aug 2021 00:00:00 GMT", "description": "Part I: Non-technical description: Understanding human-induced changes on biodiversity is one of the most important scientific challenges we face today. This is especially true for marine environments that are home to much of the world\u2019s biomass and biodiversity. A particularly effective approach to investigate the effects of climate change on marine ecosystems is to monitor top-predator populations such as seabirds or marine mammals. The food web in the Southern Ocean in relatively small and involves few species, therefore climate-induced variations at the prey species level directly affect the predator species level. For example, seabirds, like penguins, are ideal to detect and study these ecosystem changes. This study combines traditional methods to study emperor penguin population dynamics with the use of an autonomous vehicle to conduct the population dynamic measurements with less impact and higher accuracy. This project leverages an existing long-term emperor penguin observatory at the Atka Bay colony which hosts penguins living in the Weddell sea and the Atlantic sector of the Southern Ocean. The study will kickstart the collection of a multi-decadal data set in an area of the Southern Ocean that has been understudied. It will fill important gaps in ecological knowledge on the state of the Emperor penguin and its adaptive capabilities within a changing world. Finally, the project supports NSF goals of training new generations of scientists through collaborative training of undergraduate students and the creation of a new class on robotics for ecosystem study. Emperor penguins are an iconic species that few people will ever see in the wild. Through the technology developed in this proposal, the public can be immersed in real-time into the life of an emperor penguin colony. Public outreach will be achieved by showcasing real-time video and audio footage of emperor penguins from the field as social media science and engineering-themed educational materials. Part II: Technical description: Polar ecosystems currently experience significant impacts due to global changes. Measurable negative effects on polar wildlife have already occurred, such as population decreases of numerous seabird species, including the complete loss of colonies of one of the most emblematic species of the Antarctic, the emperor penguin. These existing impacts on polar species are alarming, especially because many polar species still remain poorly studied due to technical and logistical challenges imposed by the harsh environment and extreme remoteness. Developing technologies and tools for monitoring such wildlife populations is, therefore, a matter of urgency. This project aims to help close major knowledge gaps about the emperor penguin, in particular about their adaptive capability to a changing environment, by the development of next-generation tools to remotely study entire colonies. Specifically, the main goal of this project is to implement and test an autonomous unmanned ground vehicle equipped with Radio-frequency identification (RFID) antennas and wireless mesh communication data-loggers to: 1) identify RFID-tagged emperor penguins during breeding to studying population dynamics without human presence; and 2) receive Global Positioning System-Time Domain Reflectometry (GPS-TDR) datasets from Very High Frequency VHF-GPS-TDR data-loggers without human presence to study animal behavior and distribution at sea. The autonomous vehicles navigation through the colony will be aided by an existing remote penguin observatory (SPOT). Properly implemented, this technology can be used to study of the life history of individual penguins, and therefore gather data for behavioral and population dynamic studies. The new data will contribute to intelligent establishment of marine protected areas in Antarctica. The education objectives of this CAREER project are designed to increase the interest in a STEM education for the next generation of scientists by combining the charisma of the emperor penguin with robotics research. Within this project, a new class on ecosystem robotics will be developed and taught, Robotics boot-camps will allow undergraduate students to remotely participate in Antarctic field trips, and an annual curriculum will be developed that allows K-12 students to follow the life of the emperor penguin during the breeding cycle, powered by real-time data obtained using the unmanned ground vehicle as well as the existing emperor penguin observatory. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 10.0, "geometry": "POINT(-25 -67.5)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; Antarctica; Dronning Maud Land; FIELD SURVEYS; Amd/Us; Atka Bay; MARINE ECOSYSTEMS; USAP-DC; USA/NSF", "locations": "Atka Bay; Antarctica; Dronning Maud Land", "north": -55.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Zitterbart, Daniel", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -80.0, "title": "\r\nCAREER: Development of Unmanned Ground Vehicles for Assessing the Health of Secluded Ecosystems (ECHO)", "uid": "p0010245", "west": -60.0}, {"awards": "1744999 Todgham, Anne", "bounds_geometry": "POLYGON((162 -77,162.8 -77,163.6 -77,164.4 -77,165.2 -77,166 -77,166.8 -77,167.6 -77,168.4 -77,169.2 -77,170 -77,170 -77.1,170 -77.2,170 -77.3,170 -77.4,170 -77.5,170 -77.6,170 -77.7,170 -77.8,170 -77.9,170 -78,169.2 -78,168.4 -78,167.6 -78,166.8 -78,166 -78,165.2 -78,164.4 -78,163.6 -78,162.8 -78,162 -78,162 -77.9,162 -77.8,162 -77.7,162 -77.6,162 -77.5,162 -77.4,162 -77.3,162 -77.2,162 -77.1,162 -77))", "dataset_titles": "A comparative and ontogenetic examination of mitochondrial function in Antarctic notothenioid species; Differential temperature preferences exhibited in the juvenile Antarctic notothenioids Trematomus bernacchii and Trematomus pennellii", "datasets": [{"dataset_uid": "601766", "doi": null, "keywords": "Antarctica; McMurdo Sound", "people": "Todgham, Anne; Mandic, Milica; Frazier, Amanda; Naslund, Andrew", "repository": "USAP-DC", "science_program": null, "title": "A comparative and ontogenetic examination of mitochondrial function in Antarctic notothenioid species", "url": "https://www.usap-dc.org/view/dataset/601766"}, {"dataset_uid": "601765", "doi": null, "keywords": "Antarctica; McMurdo Sound; Ross Sea", "people": "Naslund, Andrew; Todgham, Anne; Zillig, Ken; Mandic, Milica; Frazier, Amanda", "repository": "USAP-DC", "science_program": null, "title": "Differential temperature preferences exhibited in the juvenile Antarctic notothenioids Trematomus bernacchii and Trematomus pennellii", "url": "https://www.usap-dc.org/view/dataset/601765"}], "date_created": "Thu, 12 Aug 2021 00:00:00 GMT", "description": "The Southern Ocean contains an extraordinary diversity of marine life. Many Antarctic marine organisms have evolved in stable, cold ocean conditions and possess limited ability to respond to environmental fluctuations. To date, research on the physiological limits of Antarctic fishes has focused largely on adult life stages. However, early life stages may be more sensitive to environmental change because they may need to prioritize energy to growth and development instead of maintenance of physiological balance and integrity- even under stress conditions. This project will examine the specific mechanisms that young (embryos, larvae and juveniles) Antarctic fishes use to respond to changes in ocean conditions at the molecular, cellular and physiological levels, so that they are able to survive. The aim is to provide a unifying framework for linking environmental change, gene expression, metabolism and organismal performance in different species that have various rates of growth and development. There is a diverse and robust education and outreach program linked with the research effort that will reach students, teachers, young scientists, community members and government officials at local and regions scales. Polar species have already been identified as highly vulnerable to global change. However as yet, there is no unifying framework for linking environmental change to organismal performance, in part because a mechanistic understanding of how stressors interact at the molecular, biochemical and physiological level is underdeveloped is lacking for most species. In the marine environment, this paucity of information limits our capacity to accurately predict the impacts of warming and CO2-acidification on polar species, and therefore prevents linking climate model projections to population health predictions. This research will evaluate whether metabolic capacity (i.e. the ability to match energy supply with energy demand) limits the capacity of Antarctic fishes to acclimate to the simultaneous stressors of ocean warming and CO2-acidification. If species are unable to reestablish metabolic homeostasis following exposure to stressors, increased energetic costs may lead to a decline in physiological performance, organismal fitness, and survival. This energy-mismatch hypothesis will be tested in a multi-species approach that focuses on the early life stages, as growing juveniles are likely more vulnerable to energetic constraints than adults, while different species are targeted in order to understand how differences in phenology and life history traits influence metabolic plasticity. The research will provide a mechanistic integration of gene expression and metabolite patterns, and metabolic responses at the cellular and whole organism levels to broadly understand metabolic plasticity of fishes. The research is aligned with the theme \"Decoding the genomic and transcriptomic bases of biological adaptation and response across Antarctic organisms and ecosystems\" which is one of three major themes identified by the National Academy of Sciences in their document \"A Strategic Vision for NSF Investments in Antarctic and Southern Ocean Research\". Additionally, this project builds environmental stewardship and awareness by increasing science literacy in the broader community in three main ways: First it will increase the diversity of students involved in environmental science research by supporting one PhD student, one postdoctoral scholar and two undergraduate students and promoting the training of young students from groups traditionally underrepresented in environmental biology. Second, the project will participate in UC Davis\u0027s OneClimate initiative, which leverages the community\u0027s expertise to develop broad perspectives regarding climate change, science and society, and engage K-12 students, government officials, and local and statewide communities on topics of Antarctic research, organismal adaptation as well as ongoing and potential future changes at the poles. Lastly, summer workshops will be conducted in collaborations with the NSF-funded education program APPLES (Arctic Plant Phenology: Learning through Engaged Science), to engage teachers and K-12 students in polar science. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 170.0, "geometry": "POINT(166 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; AMD; McMurdo Sound; FISH; USA/NSF; Amd/Us; USAP-DC", "locations": "McMurdo Sound", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Todgham, Anne", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Interacting Stressors: Metabolic Capacity to Acclimate under Ocean Warming and CO2- Acidification in Early Developmental Stages of Antarctic Fishes", "uid": "p0010241", "west": 162.0}, {"awards": "1644155 Twining, Benjamin", "bounds_geometry": "POLYGON((78 -68.4,78.05 -68.4,78.1 -68.4,78.15 -68.4,78.2 -68.4,78.25 -68.4,78.3 -68.4,78.35 -68.4,78.4 -68.4,78.45 -68.4,78.5 -68.4,78.5 -68.419,78.5 -68.438,78.5 -68.457,78.5 -68.476,78.5 -68.495,78.5 -68.514,78.5 -68.533,78.5 -68.552,78.5 -68.571,78.5 -68.59,78.45 -68.59,78.4 -68.59,78.35 -68.59,78.3 -68.59,78.25 -68.59,78.2 -68.59,78.15 -68.59,78.1 -68.59,78.05 -68.59,78 -68.59,78 -68.571,78 -68.552,78 -68.533,78 -68.514,78 -68.495,78 -68.476,78 -68.457,78 -68.438,78 -68.419,78 -68.4))", "dataset_titles": "Flow cytometry enumeration of virus-like and bacteria-like abundance in Ace, Deep, \u0026 Organic lakes (Antarctica)", "datasets": [{"dataset_uid": "601626", "doi": "10.15784/601626", "keywords": "Ace Lake; Antarctica; Deep Lake; Organic Lake; Vestfold Hills", "people": "Martinez-Martinez, Joaquin; Twining, Benjamin", "repository": "USAP-DC", "science_program": null, "title": "Flow cytometry enumeration of virus-like and bacteria-like abundance in Ace, Deep, \u0026 Organic lakes (Antarctica)", "url": "https://www.usap-dc.org/view/dataset/601626"}], "date_created": "Fri, 06 Aug 2021 00:00:00 GMT", "description": "Viruses are prevalent in aquatic environments where they reach up to five hundred million virus particles in a teaspoon of water. Ongoing discovery of viruses seems to confirm current understanding that all forms of life can host and be infected by viruses and that viruses are one of the largest reservoirs of unexplored genetic diversity on Earth. This study aims to better understand interactions between specific viruses and phytoplankton hosts and determine how these viruses may affect different algal groups present within lakes of the Vestfold Hills, Antarctica. These lakes (Ace, Organic and Deep)were originally derived from the ocean and contain a broad range of saline conditions with a similarly broad range of physicochemical characteristics resulting from isolation and low external influence for thousands of years. These natural laboratories allow examination of microbial processes and interactions that would be difficult to characterize elsewhere on earth. The project will generate extensive genomic information that will be made freely available. The project will also leverage the study of viruses and the genomic approaches employed to advance the training of undergraduate students and to engage and foster an understanding of Antarctic science and studies of microbes during a structured informal education program in Maine for the benefit of high school students. By establishing the dynamics and interactions of (primarily) specific dsDNA virus groups in different habitats with different redox conditions throughout seasonal and inter annual cycles the project will learn about the biotic and abiotic factors that influence microbial community dynamics. This project does not require fieldwork in Antarctica. Instead, the investigators will leverage already collected and archived samples from three lakes that have concurrent measures of physicochemical information. Approximately 2 terabyte of Next Generation Sequencing (NGS) (including metagenomes, SSU rRNA amplicons and single virus genomes) will be generated from selected available samples through a Community Science Program (CSP) funded by the Joint Genome Institute. The investigators will employ bioinformatics to interrogate those sequence databases. In particular, they will focus on investigating the presence, phylogeny and co-occurrence of polintons, polinton-like viruses, virophages and large dsDNA phytoplankton viruses as well as of their putative eukaryotic microbial hosts. Bioinformatic analyses will be complemented with quantitative digital PCR and microbial association network analysis to detect specific virus?virus?host interactions from co-occurrence spatial and temporal patterns. Multivariate analysis and network analyses will also be performed to investigate which abiotic factors most closely correlate with phytoplankton and virus abundances, temporal dynamics, and observed virus-phytoplankton associations within the three lakes. The results of this project will improve understanding of phytoplankton and their viruses as vital components of the carbon cycle in Antarctic, marine-derived aquatic environments, and likely in any other aquatic environment. Overall, this work will advance understanding of the genetic underpinnings of adaptations in unique Antarctic environments.", "east": 78.5, "geometry": "POINT(78.25 -68.495)", "instruments": null, "is_usap_dc": true, "keywords": "LABORATORY; AMD; USAP-DC; VIRUSES; Vestfold Hills; Amd/Us; FIELD SURVEYS; USA/NSF", "locations": "Vestfold Hills", "north": -68.4, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Twining, Benjamin; Martinez-Martinez, Joaquin", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -68.59, "title": "Viral control of microbial communities in Antarctic lakes", "uid": "p0010237", "west": 78.0}, {"awards": "1643532 Ponganis, Paul", "bounds_geometry": "POLYGON((163 -77,163.4 -77,163.8 -77,164.2 -77,164.6 -77,165 -77,165.4 -77,165.8 -77,166.2 -77,166.6 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.6 -78,166.2 -78,165.8 -78,165.4 -78,165 -78,164.6 -78,164.2 -78,163.8 -78,163.4 -78,163 -78,163 -77.9,163 -77.8,163 -77.7,163 -77.6,163 -77.5,163 -77.4,163 -77.3,163 -77.2,163 -77.1,163 -77))", "dataset_titles": "Blood oxygen transport and depletion in diving emperor penguins; Emperor penguin air sac oxygen", "datasets": [{"dataset_uid": "200236", "doi": "10.5061/dryad.3tx95x6f5", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Emperor penguin air sac oxygen", "url": "https://doi.org/10.6076/D1H01Z"}, {"dataset_uid": "200409", "doi": "10.5061/dryad.qv9s4mwnp", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Blood oxygen transport and depletion in diving emperor penguins", "url": "https://doi.org/10.5061/dryad.qv9s4mwnp"}], "date_created": "Fri, 30 Jul 2021 00:00:00 GMT", "description": "During exercise, oxygen must be efficiently delivered from the lungs to the working tissues. Birds have a unique respiratory system that includes both air sacs and lungs (called parabronchi) and has a one-way, rather than bidirectional, air flow pattern. This allows a high proportion of the oxygen in inhaled air to be transferred into the blood so that it can be circulated by the cardiovascular system to the tissues. In diving birds such as the emperor penguin, the air sac-to-tissue oxygen delivery is essential to the dive capacity, and is one of the adaptations that allows this species to dive deeper than 500 meters. However, the physiological mechanisms underlying the transfer of oxygen from air sacs to blood and the subsequent distribution of oxygen to tissues are poorly understood. The emperor penguin is ideal for investigation of this oxygen cascade because of its large body size, dive capacity, physiological data base, and the prior development of research techniques and protocols for this species. This study should provide insight into a) the mechanisms underlying the efficiency of the bird oxygen transport system, b) the physiological basis of penguin dive behavior, and the ability of penguins to adapt to environmental change, and c) perhaps, even the design of better therapeutic strategies and tools for treatment of respiratory disease. The project also includes educational exhibits and lecture programs on penguin biology at SeaWorld of San Diego. These educational programs at SeaWorld have outreach to diverse groups of grade school and high school students. One graduate student will also be trained, and participate in Antarctic physiological research. This project will examine the transport of oxygen from air sacs to tissues in a series of studies with temporarily captive emperor penguins that are free-diving at an isolated dive hole research camp in McMurdo Sound. Physiological data will be obtained with application of backpack recorders for the partial pressure of oxygen (PO2) in air sacs and/or blood, and backpack heart rate/stroke rate recorders. This experimental approach will lay the groundwork for future investigations of air sac to lung to blood oxygen transfer during exercise of flying and running birds. Four major topics are examined in this project: a) air sac oxygen distribution/depletion and the movement of air between anterior and posterior air sacs, b) anterior air sac to arterial PO2 differences and parabronchial gas exchange, c) blood oxygen transport and depletion throughout dives, and the nature of the aerobic dive limit, and d) the relationship of venous oxygen depletion patterns to both heart rate and stroke effort during dives. Specific educational outreach goals include a) short video features to be displayed in the Penguin Encounter exhibit at SeaWorld of San Diego, and b) lectures, video presentations, and pre- and post-course evaluations for student campers and participants in SeaWorld\u0027s education programs. Underwater video for exhibits/presentations with be obtained with use of a penguin backpack camera in the Antarctic. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 167.0, "geometry": "POINT(165 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "McMurdo Sound; USAP-DC; FIELD SURVEYS; USA/NSF; Amd/Us; AMD; PENGUINS", "locations": "McMurdo Sound", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ponganis, Paul", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "Dryad", "repositories": "Dryad", "science_programs": null, "south": -78.0, "title": "From Air Sacs to Tissues: Oxygen Transfer and Utilization in Diving Emperor Penguins", "uid": "p0010236", "west": 163.0}, {"awards": "1943550 McDonald, Birgitte", "bounds_geometry": "POLYGON((168 -77,168.3 -77,168.6 -77,168.9 -77,169.2 -77,169.5 -77,169.8 -77,170.1 -77,170.4 -77,170.7 -77,171 -77,171 -77.1,171 -77.2,171 -77.3,171 -77.4,171 -77.5,171 -77.6,171 -77.7,171 -77.8,171 -77.9,171 -78,170.7 -78,170.4 -78,170.1 -78,169.8 -78,169.5 -78,169.2 -78,168.9 -78,168.6 -78,168.3 -78,168 -78,168 -77.9,168 -77.8,168 -77.7,168 -77.6,168 -77.5,168 -77.4,168 -77.3,168 -77.2,168 -77.1,168 -77))", "dataset_titles": "Late chick-rearing foraging ecology of emperor penguins from the Cape Crozier colony; Post-molt emperor penguin foraging ecology", "datasets": [{"dataset_uid": "601688", "doi": "10.15784/601688", "keywords": "Animal Tracking; Antarctica; Biota; Emperor Penguin; GPS; Late Chick Rearing; Ross Sea", "people": "McDonald, Birgitte", "repository": "USAP-DC", "science_program": null, "title": "Late chick-rearing foraging ecology of emperor penguins from the Cape Crozier colony", "url": "https://www.usap-dc.org/view/dataset/601688"}, {"dataset_uid": "601686", "doi": "10.15784/601686", "keywords": "Antarctica; Biota; Emperor Penguin; NBP2302; Post-Molt; Ross Sea", "people": "McDonald, Birgitte", "repository": "USAP-DC", "science_program": null, "title": "Post-molt emperor penguin foraging ecology", "url": "https://www.usap-dc.org/view/dataset/601686"}], "date_created": "Tue, 20 Jul 2021 00:00:00 GMT", "description": "Part I: Non-technical Summary Understanding the mechanisms that animals use to find and acquire food is a fundamental question in ecology. The survival and success of marine predators depends on their ability to locate prey in a variable or changing environment. To do this the predators need to be able to adjust foraging behavior depending on the conditions they encounter. Emperor penguins are ice-dependent, top predators in Antarctica. However, they are vulnerable to environmental changes that alter food web or sea ice coverage, and environmental change may lead to changes in penguin foraging behavior, and ultimately survival and reproduction success. Despite their importance in the Southern Ocean ecosystem, relatively little is known about the specific mechanisms Emperor penguins use to find and acquire food. This study combines a suite of technological and analytical tools to gain essential knowledge on Ross Sea penguin foraging energetics, ecology, and habitat use during critical periods in their life history, especially during late chick-rearing periods. Energy management is particularly crucial during this time as parents need to feed both themselves and their rapidly growing offspring, while being constrained to regions near the colony. Penguin ecology and habitat preference will also be evaluated after the molt and through early reproduction. This study fills important ecological knowledge gaps on the energy balance, diet, and habitat use by penguins during these critical periods. Finally, the project furthers the NSF goals of training new generations of scientists through training of undergraduates, graduate students and a postdoctoral researcher. Public outreach activities will be aligned with another NSF funded project designed to provide science training in afterschool and camp programs that target underrepresented groups. Part II: Technical summary This project will identify behavioral and physiological variability in foraging Emperor penguins that can be directly linked to individual success in the marine environment using an ecological theoretical framework during two critical life history stages. First, this project will investigate the foraging energetics, ecology, and habitat use of Emperor penguins at Cape Crozier using fine-scale movement and video data loggers during the energetically demanding life history phase of late chick-rearing. Specifically, this study will 1) Estimate the relationship of foraging efficiency to foraging behavior and diet using an optimal foraging theory framework to identify what environmental or physiological constraints influence foraging behavior; 2) Investigate the inter- and intra-individual behavioral variability exhibited by emperor penguins, which is essential to predict how resilient these penguins are to environmental change; and 3) Integrate penguin foraging efficiency data with environmental data to identify important habitat. Next the researchers will study the ecology and habitat preference after the molt and through early reproduction using satellite-linked data loggers. The team will: 1) Investigate penguin inter- and intra-individual behavioral variability during the three-month post-molt and early winter foraging trips; and 2) Integrate penguin behavioral data with environmental data to identify which environmental features are indicative of habitat preference when penguins are not constrained to returning to the colony to feed a chick. These fine- and coarse-scale data will be combined with climate predictions to create predictive habitat models. The education objectives of this CAREER project are designed to inspire, engage, and train the next generation of scientists using the data and video generated while investigating Emperor penguins in the Antarctic ecosystem. This includes development of two university courses, training of undergraduate and graduate students, and a collaboration with the NSF funded \u201cPolar Literacy: A model for youth engagement and learning\u201d program to develop after school and camp curriculum that target undeserved and underrepresented groups. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 171.0, "geometry": "POINT(169.5 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; PENGUINS; MARINE ECOSYSTEMS; USA/NSF; Ross Sea; FIELD SURVEYS; USAP-DC; AMD", "locations": "Ross Sea", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "McDonald, Birgitte", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "CAREER: Foraging Ecology and Physiology of Emperor Penguins in the Ross Sea", "uid": "p0010232", "west": 168.0}, {"awards": "1445205 Putkonen, Jaakko", "bounds_geometry": "POLYGON((157.6 -83.2,157.62 -83.2,157.64 -83.2,157.66 -83.2,157.68 -83.2,157.7 -83.2,157.72 -83.2,157.74 -83.2,157.76 -83.2,157.78 -83.2,157.8 -83.2,157.8 -83.21,157.8 -83.22,157.8 -83.23,157.8 -83.24,157.8 -83.25,157.8 -83.26,157.8 -83.27,157.8 -83.28,157.8 -83.29,157.8 -83.3,157.78 -83.3,157.76 -83.3,157.74 -83.3,157.72 -83.3,157.7 -83.3,157.68 -83.3,157.66 -83.3,157.64 -83.3,157.62 -83.3,157.6 -83.3,157.6 -83.29,157.6 -83.28,157.6 -83.27,157.6 -83.26,157.6 -83.25,157.6 -83.24,157.6 -83.23,157.6 -83.22,157.6 -83.21,157.6 -83.2))", "dataset_titles": "Cosmogenic-Nuclide data at ICE-D; Old Ice, Ong Valley, Transantarctic Mountains", "datasets": [{"dataset_uid": "601665", "doi": "10.15784/601665", "keywords": "Antarctica; Buried Ice; Cosmogenic Isotopes; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Old Ice; Ong Valley", "people": "Putkonen, Jaakko; Bergelin, Marie", "repository": "USAP-DC", "science_program": null, "title": "Old Ice, Ong Valley, Transantarctic Mountains", "url": "https://www.usap-dc.org/view/dataset/601665"}, {"dataset_uid": "200295", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic-Nuclide data at ICE-D", "url": "https://version2.ice-d.org/antarctica/nsf/"}], "date_created": "Fri, 16 Jul 2021 00:00:00 GMT", "description": "Putkonen/1445205 This award supports the study of a large body of ice that is buried beneath approximately a meter of debris in the Ong Valley of the Transantarctic Mountains of East Antarctica. Preliminary analyses of this material suggest that it could be over a million years old. Most glacial ice contains tiny air bubbles that have trapped the atmospheric gases and other atmospherically transported materials existing at the time that the ice was deposited such as plant pollen, microbes and mineral dust. Samples will be collected from this buried ice mass, down to a depth of 10 meters, and cosmogenic nuclide concentrations both in the overlying debris and in the till contained in the ice will be measured. This site could contain some of the oldest ice on Earth and studies of the material contained within it may help researchers to better understand the processes involved in its survival for such long periods of time. This work will also help inform scientists about the processes involved in the development of landforms here on earth as well as those on Mars where similar dirt covered glaciers are found today. Samples of the buried ice will be collected in Ong Valley and analyzed to determine the cosmogenic nuclide concentrations in both the overlying debris and in the mineral matter suspended in the ice. The combined analysis of the target cosmogenic nuclides (Beryllium-10, Aluminum-26, and Neon-21) will allow the age of the ice to be uniquely determined and will enable determination of the rate that the ice is sublimating. The intellectual merit of this research is to unequivocally determine the age of the ice and the sublimation rate of the ice in Ong Valley, Antarctica and to better understand if this an uniquely Antarctic process or whether it could exist elsewhere on earth or on other planets. The work may also lead to the recognition of the oldest buried ice ever found on Earth and would provide a source from which direct information about the atmospheric chemistry, ancient life forms, and geology of that time could be measured. The broader impacts of this work are that it will be relevant to researchers in a number of different fields including glaciology, paleoclimatology, planetary geology, and biology. Several students will also participate in the project, conducting Antarctic field work, making measurements in the lab, attending meetings, participating in outreach activities, and producing videos. A graduate student will also write a thesis on this research. The results will be published in scientific journals and presented at conferences. The project requires field work in Antarctica.", "east": 157.8, "geometry": "POINT(157.7 -83.25)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; USA/NSF; FIELD SURVEYS; Transantarctic Mountains; GLACIERS/ICE SHEETS; AMD; Amd/Us", "locations": "Transantarctic Mountains", "north": -83.2, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "putkonen, jaakko; Balco, Gregory; Morgan, Daniel", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "ICE-D; USAP-DC", "science_programs": null, "south": -83.3, "title": "Collaborative Research: Long Term Sublimation/Preservation of Two Separate, Buried Glacier Ice Masses, Ong Valley, Southern Transantarctic Mountains", "uid": "p0010231", "west": 157.6}, {"awards": "1746148 Sirovic, Ana", "bounds_geometry": "POLYGON((140 -65.5,140.8 -65.5,141.6 -65.5,142.4 -65.5,143.2 -65.5,144 -65.5,144.8 -65.5,145.6 -65.5,146.4 -65.5,147.2 -65.5,148 -65.5,148 -65.57,148 -65.64,148 -65.71,148 -65.78,148 -65.85,148 -65.92,148 -65.99,148 -66.06,148 -66.13,148 -66.2,147.2 -66.2,146.4 -66.2,145.6 -66.2,144.8 -66.2,144 -66.2,143.2 -66.2,142.4 -66.2,141.6 -66.2,140.8 -66.2,140 -66.2,140 -66.13,140 -66.06,140 -65.99,140 -65.92,140 -65.85,140 -65.78,140 -65.71,140 -65.64,140 -65.57,140 -65.5))", "dataset_titles": "Passive acoustic recording metadata from East Antarctica, Feb 2019", "datasets": [{"dataset_uid": "601465", "doi": "10.15784/601465", "keywords": "Antarctica; East Antarctica", "people": "Sirovic, Ana", "repository": "USAP-DC", "science_program": null, "title": "Passive acoustic recording metadata from East Antarctica, Feb 2019", "url": "https://www.usap-dc.org/view/dataset/601465"}], "date_created": "Tue, 13 Jul 2021 00:00:00 GMT", "description": "Understanding the interaction between blue whales and their prey is essential for understanding Antarctic ecosystem dynamics. In the austral summer of 2019 an international interdisciplinary research voyage will head to the Antarctic with the overall goal of mapping Antarctic krill and blue whale distributions to determine if foraging preferences of blue whales are dictated in part by the density and shape of Antarctic krill swarms. This research voyage will combine advanced research technologies (including autonomous underwater vehicles, short term-tags, photogrammetry, and ship-based, real-time passive listening and active echosounders) to answer questions about how the density, swarm shape and behavior of Antarctic krill influence Antarctic blue whales. U.S. participation on this voyage on an Australian research vessel will allow collection of concurrent predator and prey data through the use of passive listening and echosounders from a fixed mooring. By coupling moored data collection with the ship-based survey focusing on Antarctic blue whale behavior and krill dynamics, the project will contribute to the understanding of basic questions relating to the dynamics between blue whales and their prey as well as adding to the development of instrumentation and technologies that will enhance current capabilities for in situ observing on the continent and the surrounding ice-covered waters. The project will provide an educational platform for high school students and the general public to virtually experience Antarctica via \"virtual sailing\" through a project website and blog. Students and the general public also will be allowed the opportunity to participate in post-cruise data analysis. The Australian Antarctic Division and the University of Tasmania will lead an international voyage to the Antarctic in the austral summer of 2019. The overall goal of the voyage will be to map Antarctic krill (Euphausia superba) and blue whale (Balaenoptera musculus) distributions to determine if the foraging preferences of blue whales are dictated in part by the density and shape of Antarctic krill swarms. US participation in voyage will entail the deployment of passive and active acoustic instrumentation on a fixed mooring in concert with real-time acoustic and visual tracking and localizing of blue whales that will then allow better directing of ship operations towards aggregations of animals such that fine-scale acoustic tracking and prey field mapping can be achieved. This approach will be the first time such an acoustic system is deployed in Antarctica and used in an integrative fashion to assess foraging behaviors and krill. Thus, the project will advance understanding of the relationships between the acoustic ecology of blue whales, krill abundance, and blue whale densities. The technology deployment and testing will also be used to assess its potential use in ice-covered waters for similar studies in the future. Broader impacts of this project will occur through outreach and education, as well as through the collaborations with the broader international scientific community. The project will provide educational platforms for high school students and general public to virtually experience Antarctica. Research findings will be communicated to both the scientific community and the wider public through peer-reviewed publications, presentations, student lectures, seminars and communication through appropriate media channels by institutional communications teams. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 148.0, "geometry": "POINT(144 -65.85)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; AMD; USAP-DC; SPECIES/POPULATION INTERACTIONS; MAMMALS; PELAGIC; East Antarctica; USA/NSF; ACOUSTIC SCATTERING; FIELD SURVEYS; ARTHROPODS", "locations": "East Antarctica", "north": -65.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Sirovic, Ana; Stafford, Kathleen", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -66.2, "title": "EAGER: Collaborative Research: Acoustic Ecology of Foraging Antarctic Blue Whales in the Vicinity of Antarctic Krill", "uid": "p0010228", "west": 140.0}, {"awards": "1745097 Cassano, John; 1744878 Lazzara, Matthew", "bounds_geometry": "POLYGON((-115 -79,-114.4 -79,-113.8 -79,-113.2 -79,-112.6 -79,-112 -79,-111.4 -79,-110.8 -79,-110.2 -79,-109.6 -79,-109 -79,-109 -79.1,-109 -79.2,-109 -79.3,-109 -79.4,-109 -79.5,-109 -79.6,-109 -79.7,-109 -79.8,-109 -79.9,-109 -80,-109.6 -80,-110.2 -80,-110.8 -80,-111.4 -80,-112 -80,-112.6 -80,-113.2 -80,-113.8 -80,-114.4 -80,-115 -80,-115 -79.9,-115 -79.8,-115 -79.7,-115 -79.6,-115 -79.5,-115 -79.4,-115 -79.3,-115 -79.2,-115 -79.1,-115 -79))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 06 Jul 2021 00:00:00 GMT", "description": "The near surface atmosphere over West Antarctica is one of the fastest warming locations on the planet. This atmospheric warming, along with oceanic forcing, is contributing to ice sheet melt and hence rising global sea levels. An observational campaign, focused on the atmospheric boundary layer over the West Antarctic ice sheet, is envisioned. A robust set of year-round, autonomous, atmospheric and surface measurements, will be made using an instrumented 30-m tall tower at the West Antarctic ice sheet divide field camp. An additional unmanned aerial system field campaign will be conducted during the second year of this project and will supplement the West Antarctic ice sheet tall tower observations by sampling the depths of the boundary layer. The broader subject of the Antarctic ABL clearly supports a range of research activities ranging from the physics of turbulent mixing, its parameterization and constraints on meteorological forecasts, and even climatological effects, such as surface mass and energy balances. With the coming of the Thwaites WAIS program, a suite of metrological observables would be a welcome addition to the joint NSF/NERC (UK) Thwaites field campaigns. The meteorologists of this proposal have pioneered 30-m tall tower (TT) and unmanned aerial system (UAS) development in the Antarctic, and are well positioned to successfully carry out and analyze this work. In turn, the potential for these observations to advance our understanding of how the atmosphere exchanges heat with the ice sheet is high. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -109.0, "geometry": "POINT(-112 -79.5)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; Amd/Us; HUMIDITY; ATMOSPHERIC TEMPERATURE; West Antarctic Ice Sheet; BOUNDARY LAYER TEMPERATURE; USAP-DC; ATMOSPHERIC PRESSURE MEASUREMENTS; FIELD SURVEYS; BOUNDARY LAYER WINDS; USA/NSF", "locations": "West Antarctic Ice Sheet", "north": -79.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Cassano, John; Lazzara, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -80.0, "title": "Collaborative Research: Observing the Atmospheric Boundary over the West Antarctic Ice Sheet", "uid": "p0010225", "west": -115.0}, {"awards": "2001430 Cassano, John", "bounds_geometry": "POLYGON((166 -77,166.4 -77,166.8 -77,167.2 -77,167.6 -77,168 -77,168.4 -77,168.8 -77,169.2 -77,169.6 -77,170 -77,170 -77.1,170 -77.2,170 -77.3,170 -77.4,170 -77.5,170 -77.6,170 -77.7,170 -77.8,170 -77.9,170 -78,169.6 -78,169.2 -78,168.8 -78,168.4 -78,168 -78,167.6 -78,167.2 -78,166.8 -78,166.4 -78,166 -78,166 -77.9,166 -77.8,166 -77.7,166 -77.6,166 -77.5,166 -77.4,166 -77.3,166 -77.2,166 -77.1,166 -77))", "dataset_titles": "Radar Data for Phoenix Airfield (NZFX), 2019", "datasets": [{"dataset_uid": "200358", "doi": "10.48567/wrfx-7c88", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Radar Data for Phoenix Airfield (NZFX), 2019", "url": "https://amrdcdata.ssec.wisc.edu/dataset/radar-data-for-phoenix-airfield-nzfx-2019"}], "date_created": "Tue, 06 Jul 2021 00:00:00 GMT", "description": "Despite several decades of successful Antarctic aviation, centered upon flight operations in the McMurdo (Phoenix Field, Ross Island; RsI) area, systemized description of radar observations such as are normally found essential in operational aviation settings are notably lacking. The Ross Island region of Antarctica is a topographically complex region that results in large variations in the mesoscale high wind and precipitation features across the region. The goals of this project are to increase the understanding of the three-dimensional structure of these mesoscale meteorology features. Of particular interest are those features observed with radar signals. This project will leverage observations from the scanning X-band radar installed during the AWARE field campaign in 2016 and the installation of an EWR Radar Systems X-band scanning radar (E700XD) to be deployed during the 2019-20 field season, at McMurdo. Several science questions and case studies will be addressed during the season. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 170.0, "geometry": "POINT(168 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "SNOW; AMD; FIELD SURVEYS; Amd/Us; McMurdo; USAP-DC; USA/NSF; ATMOSPHERIC WINDS", "locations": "McMurdo", "north": -77.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Cassano, John; Seefeldt, Mark; Kingsmill, David", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "AMRDC", "repositories": "AMRDC", "science_programs": null, "south": -78.0, "title": "RAPID: An Improved Understanding of Mesoscale Wind and Precipitation Variability in the Ross Island Region Based on Radar Observations", "uid": "p0010226", "west": 166.0}, {"awards": "1745041 Lessard, Marc; 1744828 Xu, Zhonghua; 1744861 Kim, Hyomin", "bounds_geometry": "POLYGON((6 -69,14.3 -69,22.6 -69,30.9 -69,39.2 -69,47.5 -69,55.8 -69,64.1 -69,72.4 -69,80.7 -69,89 -69,89 -70.6,89 -72.2,89 -73.8,89 -75.4,89 -77,89 -78.6,89 -80.2,89 -81.8,89 -83.4,89 -85,80.7 -85,72.4 -85,64.1 -85,55.8 -85,47.5 -85,39.2 -85,30.9 -85,22.6 -85,14.3 -85,6 -85,6 -83.4,6 -81.8,6 -80.2,6 -78.6,6 -77,6 -75.4,6 -73.8,6 -72.2,6 -70.6,6 -69))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 01 Jul 2021 00:00:00 GMT", "description": "The Geospace environment comprises a complex system of interlaced domains that interacts with the incoming solar wind plasma flow and transfers its energy and momentum from the Earth\u0027s magnetosphere outer layers down to the ionosphere and upper atmosphere. These physical processes take place mainly on the Earth\u0027s dayside, diverting most of the energy along geomagnetic field lines toward both the northern and southern polar regions. Understanding this complex interaction process that couples both polar ionospheres is important for developing the physical models that can describe and predict space weather disturbances and help mitigate their impacts on humans\u0027 technological systems - from near-Earth space assets down to electrical grids and long pipelines. There is a strong need to collect sufficient geophysical data to investigate the above-mentioned processes, particularly from the southern hemisphere. With this award, the grantees will build and deploy additional ground-based observations platforms in the East Antarctic Plateau, enhancing capabilities of the existing meridional array of already deployed autonomous, low-powered magnetometers. This will make the southern array of magnetometers two-dimensional and geomagnetically conjugate to similar instruments deployed in Greenland and Svalbard, thus making possible a global view of the magnetospheric regions where natural, ultra-low frequency electromagnetic waves are generated. The project involves young scientists who will operate remote Antarctic magnetometers and analyze collected data to investigate space weather events and validate models. This project expands the Virginia Tech\u0027s partnership with the University of New Hampshire, New Jersey Institute of Technology, Polar Research Institute of China, and Technical University of Denmark. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 89.0, "geometry": "POINT(47.5 -77)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; USA/NSF; FIELD SURVEYS; Amd/Us; AMD; USAP-DC; MAGNETIC FIELDS/MAGNETIC CURRENTS; AURORAE", "locations": "Antarctica", "north": -69.0, "nsf_funding_programs": "Antarctic Astrophysics and Geospace Sciences; Antarctic Astrophysics and Geospace Sciences; Antarctic Astrophysics and Geospace Sciences", "paleo_time": null, "persons": "Xu, Zhonghua; Clauer, Calvin", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -85.0, "title": "Collaborative Proposal: A High-Latitude Conjugate Area Array Experiment to Investigate Solar Wind - Magnetosphere - Ionosphere Coupling", "uid": "p0010222", "west": 6.0}, {"awards": "1947040 Postlethwait, John", "bounds_geometry": "POLYGON((-65.3 -63.3,-65 -63.3,-64.7 -63.3,-64.4 -63.3,-64.1 -63.3,-63.8 -63.3,-63.5 -63.3,-63.2 -63.3,-62.9 -63.3,-62.6 -63.3,-62.3 -63.3,-62.3 -63.47,-62.3 -63.64,-62.3 -63.81,-62.3 -63.98,-62.3 -64.15,-62.3 -64.32,-62.3 -64.49,-62.3 -64.66,-62.3 -64.83,-62.3 -65,-62.6 -65,-62.9 -65,-63.2 -65,-63.5 -65,-63.8 -65,-64.1 -65,-64.4 -65,-64.7 -65,-65 -65,-65.3 -65,-65.3 -64.83,-65.3 -64.66,-65.3 -64.49,-65.3 -64.32,-65.3 -64.15,-65.3 -63.98,-65.3 -63.81,-65.3 -63.64,-65.3 -63.47,-65.3 -63.3))", "dataset_titles": "18 SSU rDNA type sequences for Notoxcellia coronata (nov. sp.); 18 SSU rDNA type sequences for Notoxcellia picta (nov. sp.); Expedition Data of LMG1805; Fish pictures and skin pathology of X-cell infection in Trematomus scotti.; Gonad and skin histology of Trematomus loennbergii infected by Notoxcellia sp.; Histopathology of X-cell xenomas in Trematomus scotti and Nototheniops larseni.; In situ hybridization of X-cell and host fish 18S SSU rRNA in alternate sections of tumor xenomas.; Metagenomic analysis of apparently healthy and tumor samples using Kaiju software ; microMRI analyses of Trematomus scotti Tsco_18_08 with X-cell xenomas; Morphological and pathological data of Trematomus scotti specimens captured on May 30th, 2018 in Andvord Bay.; Morphological, fecundity, and age data of Trematomus scotti from Andvord Bay and the Weddell Sea.; Nomenclatural Act for the genus Notoxcellia; Nomenclatural Act for the species Notoxcellia coronata; Nomenclatural Act for the species Notoxcellia picta; Phylogenetic Analysis of Notoxcellia species.; Phylogenetic Analysis of Notoxcellia species, including novel Ross Sea specimen; Raw Illumina sequencing reads from skin tumors and visually healthy skins from Trematomus scotti and Nototheniops larseni; Similarity matrices of Notoxcellia spp.; Temperature profiles at five fishing locations on the West Antarctic Peninsula during austral fall 2018.; Trematomus scotti mt-co1 sequence alignment.; Trematomus scotti with X-cell xenomas", "datasets": [{"dataset_uid": "601916", "doi": "10.15784/601916", "keywords": "Alveolata; Antarctica; Cryosphere; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Ross Sea; Xcellidae", "people": "Desvignes, Thomas; Devine, Jennifer; Postlethwait, John; P\u00e9ron, Clara", "repository": "USAP-DC", "science_program": null, "title": "Gonad and skin histology of Trematomus loennbergii infected by Notoxcellia sp.", "url": "https://www.usap-dc.org/view/dataset/601916"}, {"dataset_uid": "601915", "doi": "10.15784/601915", "keywords": "Alveolata; Antarctic; Cryosphere; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Xcellidae", "people": "Desvignes, Thomas; P\u00e9ron, Clara; Devine, Jennifer; Postlethwait, John", "repository": "USAP-DC", "science_program": null, "title": "Phylogenetic Analysis of Notoxcellia species, including novel Ross Sea specimen", "url": "https://www.usap-dc.org/view/dataset/601915"}, {"dataset_uid": "601917", "doi": "10.15784/601917", "keywords": "Alveolata; Antarctic; Cryosphere; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Xcellidae", "people": "Postlethwait, John; P\u00e9ron, Clara; Devine, Jennifer; Desvignes, Thomas", "repository": "USAP-DC", "science_program": null, "title": "Similarity matrices of Notoxcellia spp.", "url": "https://www.usap-dc.org/view/dataset/601917"}, {"dataset_uid": "200443", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of LMG1805", "url": "https://doi.org/10.7284/907930"}, {"dataset_uid": "200254", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of LMG1805", "url": "https://www.rvdata.us/search/cruise/LMG1805"}, {"dataset_uid": "200262", "doi": "", "keywords": null, "people": null, "repository": "MorphoSource", "science_program": null, "title": "Trematomus scotti with X-cell xenomas", "url": "https://www.morphosource.org/projects/000405843?locale=en"}, {"dataset_uid": "200277", "doi": "", "keywords": null, "people": null, "repository": "NCBI SRA", "science_program": null, "title": "Raw Illumina sequencing reads from skin tumors and visually healthy skins from Trematomus scotti and Nototheniops larseni", "url": "https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA789574"}, {"dataset_uid": "200276", "doi": "", "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "18 SSU rDNA type sequences for Notoxcellia picta (nov. sp.)", "url": "https://www.ncbi.nlm.nih.gov/nuccore/OL630145"}, {"dataset_uid": "200275", "doi": "", "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "18 SSU rDNA type sequences for Notoxcellia coronata (nov. sp.)", "url": "https://www.ncbi.nlm.nih.gov/nuccore/OL630144"}, {"dataset_uid": "200382", "doi": "", "keywords": null, "people": null, "repository": "ZooBank", "science_program": null, "title": "Nomenclatural Act for the genus Notoxcellia", "url": "https://zoobank.org/NomenclaturalActs/5cf9609e-0111-4386-8518-bd50b5bdde0e"}, {"dataset_uid": "200383", "doi": "", "keywords": null, "people": null, "repository": "ZooBank", "science_program": null, "title": "Nomenclatural Act for the species Notoxcellia coronata", "url": "https://zoobank.org/NomenclaturalActs/194d91b2-e268-4238-89e2-385819f2c35b"}, {"dataset_uid": "200384", "doi": "", "keywords": null, "people": null, "repository": "ZooBank", "science_program": null, "title": "Nomenclatural Act for the species Notoxcellia picta", "url": "https://zoobank.org/NomenclaturalActs/31062dd2-7202-47fa-86e0-7be5c55ac0e2"}, {"dataset_uid": "601539", "doi": "10.15784/601539", "keywords": "Alveolata; Antarctica; Antarctic Peninsula; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Xcellidae", "people": "Desvignes, Thomas; Postlethwait, John", "repository": "USAP-DC", "science_program": null, "title": "In situ hybridization of X-cell and host fish 18S SSU rRNA in alternate sections of tumor xenomas.", "url": "https://www.usap-dc.org/view/dataset/601539"}, {"dataset_uid": "601538", "doi": "10.15784/601538", "keywords": "Alveolata; Antarctica; Antarctic Peninsula; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Xcellidae", "people": "Postlethwait, John; Lauridsen, Henrik; Desvignes, Thomas", "repository": "USAP-DC", "science_program": null, "title": "microMRI analyses of Trematomus scotti Tsco_18_08 with X-cell xenomas", "url": "https://www.usap-dc.org/view/dataset/601538"}, {"dataset_uid": "601537", "doi": "10.15784/601537", "keywords": "Alveolata; Antarctica; Antarctic Peninsula; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Xcellidae", "people": "Fontenele, Rafaela S. ; Postlethwait, John; Kraberger, Simona ; Varsani, Arvind; Desvignes, Thomas", "repository": "USAP-DC", "science_program": null, "title": "Metagenomic analysis of apparently healthy and tumor samples using Kaiju software ", "url": "https://www.usap-dc.org/view/dataset/601537"}, {"dataset_uid": "601536", "doi": "10.15784/601536", "keywords": "Alveolata; Antarctica; Antarctic Peninsula; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Xcellidae", "people": "Desvignes, Thomas; Postlethwait, John; Kent, Michael L. ; Murray, Katrina N. ", "repository": "USAP-DC", "science_program": null, "title": "Histopathology of X-cell xenomas in Trematomus scotti and Nototheniops larseni.", "url": "https://www.usap-dc.org/view/dataset/601536"}, {"dataset_uid": "601494", "doi": "10.15784/601494", "keywords": "Andvord Bay; Antarctica; Fish", "people": "Desvignes, Thomas; Postlethwait, John; Lauridsen, Henrik; Le Francois, Nathalie", "repository": "USAP-DC", "science_program": null, "title": "Morphological and pathological data of Trematomus scotti specimens captured on May 30th, 2018 in Andvord Bay.", "url": "https://www.usap-dc.org/view/dataset/601494"}, {"dataset_uid": "601495", "doi": "10.15784/601495", "keywords": "Antarctica; Antarctic Peninsula", "people": "Desvignes, Thomas", "repository": "USAP-DC", "science_program": null, "title": "Temperature profiles at five fishing locations on the West Antarctic Peninsula during austral fall 2018.", "url": "https://www.usap-dc.org/view/dataset/601495"}, {"dataset_uid": "601892", "doi": "10.15784/601892", "keywords": "Antarctica; Biota; CO1; COX1; Cryonotothenioid; Cryosphere; Genetic Sequences; LMG1805; MT-CO1; Nototheniidae; Notothenioid; Population Genetics", "people": "Postlethwait, John; Desvignes, Thomas; Schiavon, Luca ; Papetti, Chiara", "repository": "USAP-DC", "science_program": null, "title": "Trematomus scotti mt-co1 sequence alignment.", "url": "https://www.usap-dc.org/view/dataset/601892"}, {"dataset_uid": "601893", "doi": "10.15784/601893", "keywords": "Age; Antarctica; Biota; Cryonotothenioid; Cryosphere; Fecundity; Growth; Length; Nototheniidae; Oceans; Otolith; Reproduction; Weight", "people": "Valdivieso, Alejandro; Sguotti, Camilla; Cal\u00ec, Federico; Riginella, Emilio; Streeter, Margaret; Grondin, Jacob; Le Francois, Nathalie; Lucassen, Magnus; Mark, Felix C; Detrich, H. William; Papetti, Chiara; Postlethwait, John; La Mesa, Mario; Desvignes, Thomas", "repository": "USAP-DC", "science_program": null, "title": "Morphological, fecundity, and age data of Trematomus scotti from Andvord Bay and the Weddell Sea.", "url": "https://www.usap-dc.org/view/dataset/601893"}, {"dataset_uid": "601496", "doi": "10.15784/601496", "keywords": "Andvord Bay; Antarctica; Fish", "people": "Desvignes, Thomas; Lauridsen, Henrik; Postlethwait, John", "repository": "USAP-DC", "science_program": null, "title": "Fish pictures and skin pathology of X-cell infection in Trematomus scotti.", "url": "https://www.usap-dc.org/view/dataset/601496"}, {"dataset_uid": "601501", "doi": "10.15784/601501", "keywords": "Alveolata; Antarctica; Antarctic Peninsula; Biota; Notoxcellia Coronata; Notoxcellia Picta; Oceans; Perkinsozoa; Xcellidae", "people": "Varsani, Arvind; Desvignes, Thomas; Postlethwait, John", "repository": "USAP-DC", "science_program": null, "title": "Phylogenetic Analysis of Notoxcellia species.", "url": "https://www.usap-dc.org/view/dataset/601501"}], "date_created": "Thu, 01 Jul 2021 00:00:00 GMT", "description": "Antarctica\u2019s native animals face increasing stressors from warming oceans. A key unanswered question is how Antarctic life will respond. If warmer waters contribute to fish disease susceptibility, then iconic Antarctic predators they support, including penguins, seals, and killer whales, will suffer. A recent scientific cruise on the Antarctic peninsula encountered a population of crowned notothen fish that were plagued by pink, wart-like tumors that covered 10% to 30% of the body surface on about a third of the animals. Similar tumors had not previously been reported, suggesting that this might be a new disease that threatens Antarctic fish. The goal of proposed work is to identify the biological origins of the tumor and how it affects cell function and organismal physiology. The work is potentially transformative because it studies what might be a harbinger of Antarctic fish responses to global climate change. The project has several Broader Impacts. First, it will publicize the tumors. Because Antarctic researchers have never reported a tumor epidemic, the community must become aware of the outbreak and the tumor\u2019s distinct diagnostic features. Second, dissemination of project results will stir further research to determine if this is an isolated event or is becoming a general phenomenon, and thus a broad concern for Antarctic ecosystems. Third, assays the project develops to detect the disease will enhance research infrastructure. Finally, work will broaden the nation\u2019s scientific workforce by providing authentic research experiences for high school students and undergraduates from groups underrepresented in scientific research. The overall goal of proposed work is to identify the biological origins of the neoplasia and how it affects cell function and physiology. Aim 1 is to identify the pathogenic agent. Aim 1a is to test the hypothesis that a virus causes the neoplasia by isolating and sequencing viral nucleic acids from neoplasias and from animals that are not visibly affected. Aim 1b is to test neoplasias for bacteria, fungi, protozoa, or invertebrate parasites not present in healthy skin. Aim 2 is to learn how the disease alters the biology of affected cells. Aim 2a is to examine histological sections of affected and control tissues to see if the neoplasias are similar to previously reported skin diseases in temperate water fishes. Aim 2b is to examine the function of neoplastic cells by RNA-seq transcriptomics to identify genes that are differentially expressed in neoplasias and normal skin. Achieving these Aims will advance knowledge by identifying the causes and consequences of an outbreak of neoplasias in Antarctic fish. Proposed work is significant because it is the first to investigate a neoplasia cluster in Antarctic fish. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -62.3, "geometry": "POINT(-63.8 -64.15)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; Andvord Bay; Amd/Us; PROTISTS; BENTHIC; FISH; Dallmann Bay; USAP-DC; NSF/USA; AMD", "locations": "Andvord Bay; Dallmann Bay", "north": -63.3, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Postlethwait, John; Varsani, Arvind; Desvignes, Thomas", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "GenBank; MorphoSource; NCBI SRA; R2R; USAP-DC; ZooBank", "science_programs": null, "south": -65.0, "title": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish ", "uid": "p0010221", "west": -65.3}, {"awards": "2032463 Talghader, Joseph; 2032473 Kurbatov, Andrei", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Visual, thermal, chemical, and stable isotope effects of near-infrared laser cutting on freezer ice", "datasets": [{"dataset_uid": "601753", "doi": "10.15784/601753", "keywords": "Antarctica; Sampling", "people": "Talghader, Joseph; Kurbatov, Andrei V.; Mah, Merlin", "repository": "USAP-DC", "science_program": null, "title": "Visual, thermal, chemical, and stable isotope effects of near-infrared laser cutting on freezer ice", "url": "https://www.usap-dc.org/view/dataset/601753"}], "date_created": "Wed, 30 Jun 2021 00:00:00 GMT", "description": "This project will take initial development steps toward a laser-cut ice-sampling capability in glaciers and ice sheets. The collection of ice samples from the Polar Ice Sheets involves large amounts of time, effort, and expense. However, the most important science data are often retrieved from small sections of an ice core and, while replicate coring can supplement this section of ice core, there is often a need to retrieve additional ice samples based on subsequent scientific findings or borehole logging at a research site. In addition, there are currently no easy methods of extracting ice samples from a borehole drilled by non-coring mechanical drills that are faster, lighter, and less expensive to operate. There are numerous science applications that could potentially benefit from laser-cut ice samples, including sampling ice overlying buried impact craters and bolides, filling critical gaps in chemical records retrieved from damaged ice cores, and obtaining ice samples from sites where coring drills apply stresses that may fracture the ice. This award will explore a laser cutting technology to rapidly extract high-quality ice samples from a borehole wall. The project will investigate and validate the existing technology of laser ice sampling and will use a fiberoptic cable to deliver light pulses to a borehole instrument rather than attempting to assemble a complete laser system in an instrument deployed in a borehole. This offers a new way of retrieving ice samples from a polar ice sheet without the need to drill a borehole to collect ice-core samples (i.e., the hole could be mechanically drilled). This technology could also be used in existing boreholes or those that are made by augering through ice (i.e., not coring) or made with hot water. If successful, this technique would create the ability to rapidly retrieve ice samples with a small logistical footprint and enable science that might not be supportable otherwise. The proposed technology could eventually provide better access to ice-core samples to study past atmospheric composition for understanding past climate and inform on future potential for ice-sheet change. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; Laser Cutting; Ice Core; USA/NSF; AMD; SULFATE; FIELD SURVEYS; OXYGEN COMPOUNDS; USAP-DC; LABORATORY; Sulfate", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Instrumentation and Facilities; Antarctic Instrumentation and Facilities", "paleo_time": null, "persons": "Talghader, Joseph; Kurbatov, Andrei V.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Laser Cutting Technology for Borehole Sampling", "uid": "p0010218", "west": -180.0}, {"awards": "2022920 Zhan, Zhongwen", "bounds_geometry": "POINT(180 -90)", "dataset_titles": null, "datasets": null, "date_created": "Wed, 30 Jun 2021 00:00:00 GMT", "description": "This EAGER award will explore the Distributed Acoustic Sensing emerging technology that transforms a single optical fiber into a massively multichannel seismic array. This technology may provide a scalable and affordable way to deploy dense seismic networks. Experimental Distributed Acoustic Sensing equipment will be tested in the Antarctic exploiting unused (dark) strands in the existing fiber-optic cable that connects the U.S. Amundsen-Scott South Pole Station to the Remote Earth Science and Seismological Observatory (SPRESSO) located about 7.5-km from the main station. Upon processing the seismic signals, the Distributed Acoustic Sensing may provide a new tool to structurally image firn, glacial ice, and glacial bedrock. Learning how Distributed Acoustic Sensing would work on the ice sheet, scientists can then check seismological signals propagating through the Earth\u0027s crust and mantle variously using natural icequakes and earthquakes events in the surrounding area. The investigators propose to convert at least 8 km of pre-existing fiber optic cable at the Amundsen-Scott South Pole station into more than 8000 sensors to explore the potential of Distributed acoustic sensing (DAS) as a breakthrough data engine for polar seismology. The DAS array will operate for about one year, allowing them to (1) evaluate and calibrate the performance of the DAS technology in the extreme cold, very low noise (including during the exceptionally quiet austral winter) polar plateau environment; (2) record and analyze local ambient and transient signals from ice, anthropogenic signals, ocean microseism, atmospheric and other processes, as well as to study local, regional, and teleseismic tectonic events; (3) structurally image the firn, glacial ice, glacial bed, crust, and mantle, variously using active sources, ambient seismic noise, and natural icequake and earthquake events. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(180 -90)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; South Pole Station; GLACIERS/ICE SHEETS; NSF/USA; Amd/Us; SEISMIC SURFACE WAVES; SEISMOLOGICAL STATIONS; USAP-DC", "locations": "South Pole Station", "north": -90.0, "nsf_funding_programs": "Antarctic Instrumentation and Facilities", "paleo_time": null, "persons": "Zhan, Zhongwen", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS", "repositories": null, "science_programs": null, "south": -90.0, "title": "EAGER: Pilot Fiber Seismic Networks at the Amundsen-Scott South Pole Station", "uid": "p0010214", "west": 180.0}, {"awards": "1947094 Sidor, Christian", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 30 Jun 2021 00:00:00 GMT", "description": "Non-technical Abstract Around 252 million years ago, a major mass extinction wiped out over 90% of species on Earth. Coincident with this extinction, the Antarctic portion of the supercontinent of Pangea transitioned to a warmer climatic regime devoid of a permanent ice cap. Compared to lower latitudes, relatively little is known about the survivors of the extinction in Antarctica, although it has been hypothesized that the continents more polar location shielded it from the worst of the extinctions effects. As the result of a NSF-sponsored deep field camp in 2017/2018, a remarkable collection of vertebrate fossils was discovered in the rocks of the Shackleton Glacier region. This collection includes the best preserved and most complete materials of fossil amphibians ever recovered from Antarctica, including two previously undescribed species. This grant supports one postdoctoral researcher with expertise in fossil amphibians to describe and interpret the significance of these fossils, including their identification, relationships, and how they fit into the terrestrial ecosystem of Antarctica and other southern hemisphere terrestrial assemblages in light of the major reorganization of post-extinction environments. Historical collections of fossil amphibians will also be reviewed as part of this work. Undergraduate students at the University of Washington will be actively involved as part of this research and learn skills like hard tissue histology and CT data manipulation. Public engagement in Antarctic science will be accomplished at the University of Washington Burke Museum, which is the Washington State museum of natural history and culture. Specifically, a new exhibit on Antarctic amphibians will be developed as part of the paleontology gallery, which sees over 100,000 visitors per year. Technical Abstract This two-year project will examine the evolution of Triassic temnospondyls based on a remarkable collection of fossils recently recovered from the Shackleton Glacier region of Antarctica. Temnospondyls collected from the middle member of the Fremouw Formation are part of the first collection of identifiable tetrapod fossils from this stratigraphic interval. Thorough anatomical description and comparisons of these fossils will add new faunal information and also aid in determining if this horizon is Early or Middle Triassic in age. Exquisitely preserved temnospondyl material from the lower Fremouw Formation will permit more precise identification than previously possible and will provide insights into the earliest stages of their radiation in the extinction recovery interval. Overall, the Principal Investigator and Postdoctoral Researcher will spearhead an effort to revise the systematics of the Antarctic members of Temnospondyli and properly contextualize them in the framework of Triassic tetrapod evolution. The research team will also take advantage of the climate-sensitive nature of fossil amphibians to better understand patterns of seasonality at high-latitudes during the early Mesozoic by subjecting selected fossils to histological analysis. Preliminary data suggest that temnospondyls were exceptionally diverse and highly endemic immediately after the end-Permian extinction, when compared to their distribution before and after this interval. If confirmed, this macroevolutionary pattern could be used to predict the response of modern amphibians to future climate perturbations. Overall, this research will provide new insights into the vertebrate fauna of the Fremouw Formation, as well as shed light on the evolution of terrestrial ecosystems in southern Pangea in the wake of the Permian-Triassic mass extinction. As part of the broader impacts, the research team will help to develop an exhibit featuring some of the best preserved fossils from Antarctica to explain to the public how paleontologists use fossils and rocks to understand past climates like the Triassic \u0027hot-house\u0027 world that lacked permanent ice caps at the poles. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Temnospondyls; MACROFOSSILS; USA/NSF; FIELD SURVEYS; Permian Extinction; Triassic; Amd/Us; USAP-DC; AMD; ANIMALS/VERTEBRATES; Shackleton Glacier", "locations": "Shackleton Glacier", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e PALEOZOIC \u003e PERMIAN", "persons": "Sidor, Christian", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": null, "title": "A non-amniote perspective on the recovery from the end-Permian extinction at high latitudes: paleobiology of Early Triassic temnospondyls from Antarctica", "uid": "p0010217", "west": null}, {"awards": "1937748 Sumner, Dawn", "bounds_geometry": "POINT(163.183333 -77.616667)", "dataset_titles": "Lake Fryxell 2022-2023 benthic microbial mat thickness and number of laminae", "datasets": [{"dataset_uid": "601839", "doi": "10.15784/601839", "keywords": "Antarctica; Cryosphere; Dry Valleys; Lake Fryxell; Laminae; Microbial Mat; Thickness", "people": "Juarez Rivera, Marisol; Mackey, Tyler; Paul, Ann; Hawes, Ian; Sumner, Dawn", "repository": "USAP-DC", "science_program": null, "title": "Lake Fryxell 2022-2023 benthic microbial mat thickness and number of laminae", "url": "https://www.usap-dc.org/view/dataset/601839"}], "date_created": "Wed, 30 Jun 2021 00:00:00 GMT", "description": "Part I: Non-technical summary: This project focuses on understanding annual changes in microbial life that grows on the bottom of Lake Fryxell, Antarctica. Because of its polar latitude, photosynthesis can only occur during the summer months. During summer, photosynthetic bacteria supply communities with energy and oxygen. However, it is unknown how the microbes behave in the dark winter, when observations are not possible. This project will install environmental monitors and light-blocking shades over parts of these communities. The shades will extend winter conditions into the spring to allow researchers to characterize the winter behavior of the microbial communities. Researchers will measure changes in the water chemistry due to microbial activities when the shades are removed and the mats first receive light. Results are expected to provide insights into how organisms interact with and change their environments. The project includes training of graduate students and early career scientists in fieldwork, including scientific ice diving techniques. In addition, the members of the project team will develop a web-based \u201cGuide to Thrive\u201d, which will compile field tips ranging from basic gear use to advanced environmental protection techniques. This will be a valuable resource for group leaders ranging from undergraduate teaching assistants to Antarctic expedition leaders to lead well-planned and tailored field expeditions. Part II: Technical summary: The research team will measure seasonal metabolic and biogeochemical changes in benthic mats using differential gene expression and geochemical gradients. They will identify seasonal phenotypic differences in microbial communities and ecosystem effects induced by spring oxygen production. To do so, researchers will install environmental sensors and opaque shades over mats at three depths in the lake. The following spring, shaded and unshaded mats will be sampled. The shades will then be removed, and changes in pore water O2, H2S, pH, and redox will be measured using microelectrodes. Mats will also be sampled for transcriptomic gene expression analyses at intervals guided by geochemical changes. Pore water will be sampled for nutrient analyses. Field research will be supplemented with laboratory experiments to refine field techniques, gene expression data analysis, and integration of results into a seasonal model of productivity and nitrogen cycling in Lake Fryxell. Results will provide insights into several key priorities for NSF, including how biotic, abiotic and environmental components of the benthic mats interact to affect Antarctic lakes. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 163.183333, "geometry": "POINT(163.183333 -77.616667)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Amd/Us; AMD; USA/NSF; FIELD SURVEYS; ECOSYSTEM FUNCTIONS; Lake Fryxell; USAP-DC; LAKE/POND", "locations": "Antarctica; Lake Fryxell", "north": -77.616667, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Integrated System Science", "paleo_time": null, "persons": "Sumner, Dawn; Mackey, Tyler", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.616667, "title": "Seasonal Primary Productivity and Nitrogen Cycling in Photosynthetic Mats, Lake Fryxell, McMurdo Dry Valleys", "uid": "p0010219", "west": 163.183333}, {"awards": "1341475 Smith, Nathan; 1341304 Sidor, Christian; 1341645 Makovicky, Peter; 2001033 Makovicky, Peter; 1341376 Tabor, Neil", "bounds_geometry": "POLYGON((-180 -84,-178 -84,-176 -84,-174 -84,-172 -84,-170 -84,-168 -84,-166 -84,-164 -84,-162 -84,-160 -84,-160 -84.3,-160 -84.6,-160 -84.9,-160 -85.2,-160 -85.5,-160 -85.8,-160 -86.1,-160 -86.4,-160 -86.7,-160 -87,-162 -87,-164 -87,-166 -87,-168 -87,-170 -87,-172 -87,-174 -87,-176 -87,-178 -87,180 -87,178.5 -87,177 -87,175.5 -87,174 -87,172.5 -87,171 -87,169.5 -87,168 -87,166.5 -87,165 -87,165 -86.7,165 -86.4,165 -86.1,165 -85.8,165 -85.5,165 -85.2,165 -84.9,165 -84.6,165 -84.3,165 -84,166.5 -84,168 -84,169.5 -84,171 -84,172.5 -84,174 -84,175.5 -84,177 -84,178.5 -84,-180 -84))", "dataset_titles": "Lower Triassic Antarctic vertebrate fossils at Field Museum, Chicago, IL", "datasets": [{"dataset_uid": "601511", "doi": "10.15784/601511", "keywords": "Allan Hills; Antarctica; Fremouw Formation; Lystrosaurus; Permo-Triassic Extinction; Prolacerta; Sample Location; Thrinaxofon; Triassic", "people": "Makovicky, Peter", "repository": "USAP-DC", "science_program": null, "title": "Lower Triassic Antarctic vertebrate fossils at Field Museum, Chicago, IL", "url": "https://www.usap-dc.org/view/dataset/601511"}], "date_created": "Tue, 29 Jun 2021 00:00:00 GMT", "description": "Around 252 million years ago, a major mass extinction wiped out upwards of 90% of species on Earth. Coincident with this extinction, the Antarctic portion of the supercontinent of Pangea transitioned to a warmer climatic regime and became devoid of glaciers. Little is known about the survivors of the extinction in Antarctica, although it has been hypothesized that the continent\u0027s high latitude location shielded it from the worst of the extinction\u0027s effects. The Shackleton Glacier region is the best place to study this extinction in Antarctica because it exposes an abundance of correct age rocks and relevant fossils were found there in the 1960s and 1980s. For this research, paleontologists will study fossil vertebrates that span from about 260 to 240 million years ago to understand how life evolved at high latitudes in the face of massive climate change. In addition, geologists will use fossil soils and fossil plant matter to more precisely reconstruct the climate of Antarctica across this extinction boundary. These data will allow for a more complete understanding of ancient climates and how Antarctic life compared to that at lower latitudes. Undergraduate and graduate students will be actively involved in this research. Public engagement in Antarctic science will be accomplished at several natural history museums. This three-year project will examine the evolution of Permo-Triassic paleoenvironments and their vertebrate communities by conducting fieldwork in the Shackleton Glacier region of Antarctica. The team will characterize the Permo-Triassic boundary within Shackleton area strata and correlate it to other stratigraphic successions in the region (e.g. via stable carbon isotope stratigraphy of fossilized plant organic matter). The researchers will use multiple types of data to assess the paleoenvironment, including: 1) paleosol morphology; 2) paleosol geochemistry; 3) pedogenic organic matter; and 4) fossil wood chronology and stable isotopes. The Fremouw Formation of Antarctica preserves the highest paleolatitude (~70\u00b0 S) tetrapod fauna of the entire Triassic and thus has the potential to shed important light on the evolution of polar life during the early Mesozoic. The biology of Triassic vertebrates from Antarctica will be compared to conspecifics from lower paleolatitudes through analysis of growth in bone and tusk histology. An interdisciplinary approach will be used to address relationships between environmental change, faunal composition, and biogeographic patterns in the context of the high-latitude strata preserved in the Buckley and Fremouw formations in the Shackleton Glacier region.", "east": -160.0, "geometry": "POINT(-177.5 -85.5)", "instruments": null, "is_usap_dc": true, "keywords": "REPTILES; FIELD SURVEYS; USA/NSF; PALEOCLIMATE RECONSTRUCTIONS; Triassic; USAP-DC; TERRESTRIAL ECOSYSTEMS; MACROFOSSILS; Amd/Us; Fossils; Shackleton Glacier; LAND RECORDS; ANIMALS/VERTEBRATES; AMD", "locations": "Shackleton Glacier", "north": -84.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Sidor, Christian; Smith, Nathan; Makovicky, Peter; Tabor, Neil", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.0, "title": "Collaborative Research: Understanding the evolution of high-latitude Permo-Triassic paleoenvironments and their vertebrate communities", "uid": "p0010213", "west": 165.0}, {"awards": "1935672 Ryan, Joseph; 1935635 Santagata, Scott", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 28 Jun 2021 00:00:00 GMT", "description": "The Antarctic benthic marine invertebrate communities are currently experiencing rapid environmental change due to the combined effects of global warming, ocean acidification, and the potential for ice-shelf collapse. Colonial invertebrate animals called bryozoans create specialized \u2018reef-like\u2019 habitats that are reminiscent of the coral reefs found in tropical marine environments. In the Antarctic, these bryozoan communities occupy significant portions of the shallow and deep seafloor, and provide habitat for other marine animals. The bryozoan lineages that make up these communities have undergone dramatic genetic and physiological changes in response to the unique environmental conditions found in Antarctica. Comparison of the DNA data from multiple Antarctic bryozoans to those of related warm-water species will help researchers identify unique and shared adaptations characteristic of bryozoans and other marine organisms that have adapted to the Antarctic environment. Additionally, direct experimental tests of catalytic-related genes (enzymes) will shed light on potential cold-adaption in various cell processes. Workshops will train diverse groups of scientists using computational tools to identify genetic modifications of organisms from disparate environments. Public outreach activities to students, social media, and science journalists are designed to raise awareness and appreciation of the spectacular marine life in the Antarctic and the hidden beauty of bryozoan biology. Understanding the genomic changes underlying adaptations to polar environments is critical for predicting how ecological changes will affect life in these fragile environments. Accomplishing these goals requires looking in detail at genome-scale data across a wide array of organisms in a phylogenetic framework. This study combines multifaceted computational and functional approaches that involves analyzing in the genic evolution of invertebrate organisms, known as the bryozoans or ectoprocts. In addition, the commonality of bryozoan results with those of other taxa will be tested by comparing newly generated data to that produced in previous workshops. The specific aims of this study include: 1) identifying genes involved in adaptation to Antarctic marine environments using transcriptomic and genomic data from bryozoans to test for positively selected genes in a phylogenetic framework, 2) experimentally testing identified candidate enzymes (especially those involved in calcium signaling, glycolysis, the citric acid cycle, and the cytoskeleton) for evidence of cold adaption, and 3) conducting computational workshops aimed at training scientists in techniques for the identification of genetic adaptations to polar and other disparate environments. The proposed work provides critical insights into the molecular rules of life in rapidly changing Antarctic environments, and provides important information for understanding how Antarctic taxa will respond to future environmental conditions. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; USA/NSF; Ross Sea; Ant Lia; ANIMALS/INVERTEBRATES; FIELD SURVEYS; Weddell Sea; Bellingshausen Sea; Amundsen Sea; Antarctic Peninsula; Amd/Us; AMD", "locations": "Amundsen Sea; Antarctic Peninsula; Bellingshausen Sea; Ross Sea; Weddell Sea", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Ryan, Joseph; Santagata, Scott", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -90.0, "title": "ANT LIA Collaborative Research: Interrogating Molecular and Physiological Adaptations in Antarctic Marine Animals.", "uid": "p0010212", "west": -180.0}, {"awards": "1744965 Diao, Minghui; 1744946 Gettelman, Andrew", "bounds_geometry": "POINT(166.7 -77.8)", "dataset_titles": "AWARE_Campaign_Data; Diao, M. (2020). VCSEL 1 Hz Water Vapor Data Version 1.0 for NSF SOCRATES Campaign; Diao, M. (2020). VCSEL 25 Hz Water Vapor Data Version 1.0 for NSF SOCRATES Campaign", "datasets": [{"dataset_uid": "200223", "doi": "10.17632/x6n4r3yxb2.1", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "AWARE_Campaign_Data", "url": "http://dx.doi.org/10.17632/x6n4r3yxb2.1"}, {"dataset_uid": "200225", "doi": "10.26023/V925-2H41-SD0F", "keywords": null, "people": null, "repository": "UCAR", "science_program": null, "title": "Diao, M. (2020). VCSEL 25 Hz Water Vapor Data Version 1.0 for NSF SOCRATES Campaign", "url": "https://data.eol.ucar.edu/dataset/290779"}, {"dataset_uid": "200224", "doi": "10.26023/KFSD-Y8DQ-YC0D", "keywords": null, "people": null, "repository": "UCAR", "science_program": null, "title": "Diao, M. (2020). VCSEL 1 Hz Water Vapor Data Version 1.0 for NSF SOCRATES Campaign", "url": "https://data.eol.ucar.edu/dataset/552.051"}], "date_created": "Mon, 28 Jun 2021 00:00:00 GMT", "description": "Ice supersaturation plays a key role in cloud formation and evolution, and it determines the partitioning among ice, liquid and vapor phases. Over the Southern Ocean and Antarctica, the transition between mixed-phase and ice clouds significantly impacts the radiative effects of clouds. Remote regions such as the Antarctica and Southern Ocean historically have been under-sampled by in-situ observations, especially by airborne observations. Even though more attention has been given to the cloud microphysical properties over these regions, the distribution and characteristics of ice supersaturation and its role in the current and future climate have not been fully investigated at the higher latitudes in the Southern Hemisphere. One of the main objectives of this study is to analyze observations from three recent major field campaigns sponsored by NSF and DOE, which provide intensive in-situ, airborne measurements over the Southern Ocean and ground-based observations at McMurdo station in Antarctica. This project will analyze aircraft-based and ground-based observations over the Southern Ocean and Antarctica, and compare the observations with the Community Earth System Model Version 2 (CESM2) simulations. The focus will be on the observations of ice supersaturation and the relative humidity distribution in mixed-phase and ice clouds, as well as their relationship with cloud micro- and macrophysical properties. Observations will be compared to CESM2 simulations to elucidate model biases. Surface radiation and the precipitation budget at the McMurdo station will be quantified and compared against the CESM2 simulations to improve the fidelity of the representation of Antarctic climate (and climate prediction over Antarctica). Results from our research will be released to the community for improving the understanding of cloud radiative effects and the mass transport of water in the high southern latitudes. Comparisons between the simulations and observations will provide valuable information for improving the next generation CESM model. Two education/outreach projects will be carried out by PI Diao at San Jose State University (SJSU), including a unique undergraduate student research project with hands-on laboratory work on an airborne instrument, and an outreach program that uses social media to broadcast news on polar research to the public. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 166.7, "geometry": "POINT(166.7 -77.8)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; CLIMATE MODELS; USA/NSF; SNOW; Amd/Us; USAP-DC; Chile; ATMOSPHERIC WATER VAPOR; ATMOSPHERIC TEMPERATURE; Antarctica; Southern Ocean; AMD", "locations": "Antarctica; Southern Ocean; Chile", "north": -77.8, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Diao, Minghui; Gettelman, Andrew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e MODELS \u003e CLIMATE MODELS", "repo": "Publication", "repositories": "Publication; UCAR", "science_programs": null, "south": -77.8, "title": "Collaborative Research: Ice Supersaturation over the Southern Ocean and Antarctica, and its Role in Climate", "uid": "p0010209", "west": 166.7}, {"awards": "1643455 Enderlin, Ellyn; 1933764 Enderlin, Ellyn", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Crane Glacier centerline observations and modeling results ; Remotely-sensed iceberg geometries and meltwater fluxes", "datasets": [{"dataset_uid": "601679", "doi": "10.15784/601679", "keywords": "Antarctica; Elevation; Glaciology; Iceberg; Meltwater; Submarine Melt", "people": "Dickson, Adam; Enderlin, Ellyn; Miller, Emily; Dryak, Mariama; Oliver, Caitlin; Aberle, Rainey", "repository": "USAP-DC", "science_program": null, "title": "Remotely-sensed iceberg geometries and meltwater fluxes", "url": "https://www.usap-dc.org/view/dataset/601679"}, {"dataset_uid": "601617", "doi": "10.15784/601617", "keywords": "Antarctica; Antarctic Peninsula; Crane Glacier; Glacier Dynamics; Glacier Mass Discharge; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Modeling; Model Output", "people": "Marshall, Hans-Peter; Aberle, Rainey; Enderlin, Ellyn; Kopera, Michal; Meehan, Tate", "repository": "USAP-DC", "science_program": null, "title": "Crane Glacier centerline observations and modeling results ", "url": "https://www.usap-dc.org/view/dataset/601617"}], "date_created": "Mon, 28 Jun 2021 00:00:00 GMT", "description": "Enderlin/1643455 This award supports a project that will use a novel remote sensing method, which was initially developed to investigate melting of icebergs around Greenland, to examine spatial and temporal variations in ocean forcing around the Antarctic ice sheet periphery. Nearly three-quarters of the Antarctic ice sheet is fringed by regions of floating glacier ice called ice shelves. These ice shelves play an important role in modulating the flow of ice from the ice sheet interior towards the coast, similar to how dams regulate the downstream flow of water from reservoirs. Therefore, a reduction in ice shelf size due to changing air and ocean temperatures can have serious implications for the flux of glacier ice reaching the Antarctic coast, and thus, sea level change. Observations of recent ocean warming in the Amundsen Sea, thinning of the ice shelves, and increased ice flux from the West Antarctic ice sheet interior suggests that ice shelf destabilization triggered by ocean warming may already be underway in some regions. Although detailed observations are available in the Amundsen Sea region, our understanding of spatial and temporal variations in ocean conditions and their influence on ice shelf stability is limited by the scarceness of observations spanning the ice sheet periphery. The project will yield insights into variability in the submarine melting of ice shelves and will help advance the career of a female early-career scientist in a male-dominated field. The project will use repeat, very high-resolution (~0.5 m pixel width and length) satellite images acquired by the WorldView satellites, to estimate rates of iceberg melting in key coastal regions around Antarctica. The satellite images will be used to construct maps of iceberg surface elevation, which will be differenced in time to derive time series of iceberg volume change and area-averaged melt rates. Where ocean data are available, the melt rates will be compared to these data to assess whether variations in ocean temperature can explain observed iceberg melt variability. Large spatial gradients in melt rates will be compared to estimates of iceberg drift rates, which will be inferred from the repeat satellite images as well as numerically modeled drift rates produced by (unfunded) collaborators, to quantify the effects of water shear on iceberg melt rates. Spatial and temporal patterns in iceberg melting will also be compared to independently derived ice shelf thickness datasets. Overall, the analysis should yield insights into the effects of changes in ocean forcing on the submarine melting of Antarctic ice shelves and icebergs. The project does not require field work in Antarctica.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Amery Ice Shelf; FIELD SURVEYS; Totten Glacier; GLACIER MASS BALANCE/ICE SHEET MASS BALANCE; USAP-DC; Antarctic Peninsula; ICEBERGS; Mertz Glacier; OCEAN TEMPERATURE; USA/NSF; Amd/Us; Amundsen Sea; Ronne Ice Shelf; Filchner Ice Shelf; AMD", "locations": "Antarctic Peninsula; Totten Glacier; Ronne Ice Shelf; Filchner Ice Shelf; Amery Ice Shelf; Mertz Glacier; Amundsen Sea", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Enderlin, Ellyn", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Antarctic Submarine Melt Variability from Remote Sensing of Icebergs", "uid": "p0010210", "west": -180.0}, {"awards": "1914668 Aschwanden, Andy; 1914698 Hansen, Samantha; 1914767 Winberry, Paul; 1914743 Becker, Thorsten", "bounds_geometry": "POLYGON((90 -65,99 -65,108 -65,117 -65,126 -65,135 -65,144 -65,153 -65,162 -65,171 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,171 -90,162 -90,153 -90,144 -90,135 -90,126 -90,117 -90,108 -90,99 -90,90 -90,90 -87.5,90 -85,90 -82.5,90 -80,90 -77.5,90 -75,90 -72.5,90 -70,90 -67.5,90 -65))", "dataset_titles": "East Antarctic Seismicity from different Automated Event Detection Algorithms; Full Waveform Ambient Noise Tomography for East Antarctica", "datasets": [{"dataset_uid": "601762", "doi": "10.15784/601762", "keywords": "Antarctica; Geoscientificinformation; Machine Learning; Seismic Event Detection; Seismology; Seismometer", "people": "Walter, Jacob; Hansen, Samantha; Ho, Long", "repository": "USAP-DC", "science_program": null, "title": "East Antarctic Seismicity from different Automated Event Detection Algorithms", "url": "https://www.usap-dc.org/view/dataset/601762"}, {"dataset_uid": "601763", "doi": "10.15784/601763", "keywords": "Ambient Noise; Antarctica; East Antarctica; Geoscientificinformation; Seismic Tomography; Seismology", "people": "Hansen, Samantha; Emry, Erica", "repository": "USAP-DC", "science_program": null, "title": "Full Waveform Ambient Noise Tomography for East Antarctica", "url": "https://www.usap-dc.org/view/dataset/601763"}], "date_created": "Fri, 25 Jun 2021 00:00:00 GMT", "description": "Part I: Nontechnical Earths warming climate has the potential to drive widespread collapse of glaciers and ice sheets across the planet, driving global sea-level rise. Understanding both the rate and magnitude of such changes is essential for predicting future sea-level and how it will impact infrastructure and property. Collapse of the ice sheets of Antarctica has the potential to raise global sea-level by up to 60 meters. However, not all regions of Antarctica are equally suspectable to collapse. One area with potential for collapse is the Wilkes Subglacial Basin in East Antarctica, a region twice the size of California\u0027s Central Valley. Geologic evidence indicates that the ice-sheet in this region has retreated significantly in response to past global warming events. While the geologic record clearly indicates ice-sheets in this area are vulnerable, the rate and magnitude of any future retreat will be influenced significantly by geology of the region. In particular, ice-sheets sitting above warm Earth will collapse more quickly during warming climate. Constraining the geologic controls on the stability of the ice-sheets of the Wilkes Subglacial Basin remains challenging since the ice-sheet hides the geology beneath kilometers of ice. As a step in understanding the potential for future ice loss in the Wilkes Subglacial Basin this project will conduct geophysical analysis of existing data to better constrain the geology of the region. These results will constrain new models designed to understand the tectonics that control the behavior of the ice-sheets in the region. These new models will highlight the geological properties that exert the most significant control on the future of the ice-sheets of the Wilkes Subglacial Basin. Such insights are critical to guide future efforts aimed at collecting in-situ observations needed to more fully constrain Antarctica\u0027s potential for future sea-level. Part II: Technical Description In polar environments, inward-sloping marine basins are susceptible to an effect known as the marine ice-sheet instability (MISI): run-away ice stream drainage caused by warm ocean water eroding the ice shelf from below. The magnitude and time-scale of the ice-sheet response strongly depend on the physical conditions along the ice-bed interface, which are, to a first order, controlled by the tectonic evolution of the basin. Topography, sedimentology, geothermal heat flux, and mantle viscosity all play critical roles in ice-sheet stability. However, in most cases, these solid-Earth parameters for regions susceptible to the MISI are largely unknown. One region with potential susceptibility to MISI is the Wilkes Subglacial Basin of East Antarctica. The project will provide an integrated investigation of the Wilkes Subglacial Basin, combining geophysical analyses with both mantle flow and ice-sheet modeling to understand the stability of the ice sheet in this region, and the associated potential sea level rise. The work will be focused on four primary objectives: (1) to develop an improved tectonic model for the region based on existing seismic observations as well as existing geophysical and geological data; (2) to use the new tectonic model and seismic data to estimate the thermal, density, and viscosity structure of the upper mantle and to develop a heat flow map for the WSB; (3) to simulate mantle flow and to assess paleotopography based on our density and viscosity constraints; and (4) to assess ice-sheet behavior by modeling (a) past ice-sheet stability using our paleotopography estimates and (b) future ice-sheet stability using our heat flow and mantle viscosity estimates. Ultimately, the project will generate improved images of the geophysical structure beneath the WSB that will allow us to assess the geodynamic origin for this region and to assess the influence of geologic parameters on past, current, and future ice-sheet behavior. These efforts will then highlight areas and geophysical properties that should be the focus of future geophysical deployments. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(135 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "TECTONICS; AMD; Wilkes Subglacial Basin; ICE SHEETS; USA/NSF; Amd/Us; SEISMOLOGICAL STATIONS; SEISMIC SURFACE WAVES; East Antarctica; USAP-DC", "locations": "East Antarctica; Wilkes Subglacial Basin", "north": -65.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Becker, Thorsten; Binder, April; Hansen, Samantha; Aschwanden, Andy; Winberry, Paul", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Resolving earth structure influence on ice-sheet stability in the Wilkes\r\nSubglacial Basin (RESISSt)", "uid": "p0010204", "west": 90.0}, {"awards": "1643877 Friedlaender, Ari", "bounds_geometry": "POLYGON((-65 -63.5,-64.5 -63.5,-64 -63.5,-63.5 -63.5,-63 -63.5,-62.5 -63.5,-62 -63.5,-61.5 -63.5,-61 -63.5,-60.5 -63.5,-60 -63.5,-60 -63.73,-60 -63.96,-60 -64.19,-60 -64.42,-60 -64.65,-60 -64.88,-60 -65.11,-60 -65.34,-60 -65.57,-60 -65.8,-60.5 -65.8,-61 -65.8,-61.5 -65.8,-62 -65.8,-62.5 -65.8,-63 -65.8,-63.5 -65.8,-64 -65.8,-64.5 -65.8,-65 -65.8,-65 -65.57,-65 -65.34,-65 -65.11,-65 -64.88,-65 -64.65,-65 -64.42,-65 -64.19,-65 -63.96,-65 -63.73,-65 -63.5))", "dataset_titles": "Motion-sensing biologging data from Antarctic minke whales, West Antarctic Peninsula", "datasets": [{"dataset_uid": "601542", "doi": "10.15784/601542", "keywords": "Antarctica; Antarctic Peninsula; Biologging; Foraging; Ice; Minke Whales", "people": "Friedlaender, Ari", "repository": "USAP-DC", "science_program": null, "title": "Motion-sensing biologging data from Antarctic minke whales, West Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601542"}], "date_created": "Fri, 25 Jun 2021 00:00:00 GMT", "description": "The Antarctic Peninsula is warming and one of the consequences is a decrease in sea ice cover. Antarctic minke whales are the largest ice-obligate krill predator in the region, yet- little is known about their foraging behavior and ecology. The goals of the project are to use a suite of new technological tools to measure the underwater behavior of the whales and better understand how they exploit the sea ice habitat. Using video-recording motion-sensing tags, the underwater movements of the whales can be reconstructed and it can be determine where and when they feed. UAS (unmanned aerial systems) will be used to generate real-time images of sea ice cover that will be linked with tag data to determine how much time whales spend in sea ice versus open water, and how the behavior of the whales changes between these two habitats. Lastly, scientific echosounders will be used to characterize the prey field that the whales are exploiting and differences in krill availability inside and out of the ice will be investigated. All of this information is critical to understand the ecological role of Antarctic minke whales so that better predictions can be made regarding impacts of climate change not only on these animals, but on the structure and function of the Antarctic marine ecosystem. The project will promote the progress of science by elucidating the ecological role of a poorly known Antarctic predator and using this information to better understand the impact of changes that are occurring in Polar Regions. The educational and outreach program will increase awareness and understanding of minke whales, Antarctic marine ecosystems, sea ice, and the dynamics of climate change through the use of film, social media, and curriculum development for formal STEM educators. To understand how changes in sea ice will manifest in the demography of predators that rely on sea ice habitat requires knowledge of their behavior and ecology. The largest ice-dependent krill predator and most abundant cetacean in the Southern Ocean is the Antarctic minke whale (AMW)- yet, virtually nothing is known of its foraging behavior or ecological role. Thus, the knowledge to understand how climate-driven changes will affect these animals and therefore the dynamics of the ecosystem as a whole is lacking. The project will use multi-sensor and video recording tags, fisheries acoustics, and unmanned aerial systems to study the foraging behavior and ecological role of minke whales in the waters of the Antarctic Peninsula. The following research questions will be posed: 1. What is the feeding performance of AMWs? 2. How important is sea ice to the foraging behavior of AMW? 3. How do AMWs feed directly under sea ice? Proven tagging and analytical approaches to characterize the underwater feeding behavior and kinematics of minke whales will be used. Combined with quantitative measurements of the prey field, the energetic costs of feeding will be measured and it will be determined how minke whales optimize energy gain. Using animal-borne video recording tags and UAS technology it will also be determined how much feeding occurs directly under sea ice and how this mode differs from open water feeding. This knowledge will: (1) significantly enhance knowledge of the least-studied Antarctic krill predator; and (2) be made directly available to international, long-term efforts to understand how climate-driven changes will affect the structure and function of the Antarctic marine ecosystem. The educational and outreach efforts aim to increase awareness and understanding of: (i) the ecological role of minke whales around the Antarctic Peninsula; (ii) the effects of environmental change on an abundant but largely unstudied marine predator; (iii) the advanced methods and technologies used by whale researchers to study these cryptic animals and their prey; and (iv) the variety of careers in the ocean sciences by sharing the experiences of scientists and students. These educational aims will be achieved by delivering continuous near-real-time delivery of project events and data to informal audiences through social media channels as well as curricula and professional development programs that will provide formal STEM educators with specific standards-compliant lesson plans.", "east": -60.0, "geometry": "POINT(-62.5 -64.65)", "instruments": null, "is_usap_dc": true, "keywords": "Andvord Bay; USAP-DC; MARINE ECOSYSTEMS; AMD; FIELD INVESTIGATION; Amd/Us; USA/NSF", "locations": "Andvord Bay", "north": -63.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Friedlaender, Ari", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.8, "title": "Foraging Behavior and Ecological Role of the Least Studied Antarctic Krill Predator, the Antarctic Minke Whale (Balaenoptera Bonaerensis)", "uid": "p0010207", "west": -65.0}, {"awards": "1840941 Murphy, David; 1840927 Weissburg, Marc; 1840949 Fields, David", "bounds_geometry": null, "dataset_titles": "", "datasets": [{"dataset_uid": "200473", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "", "url": "https://www.bco-dmo.org/project/898124"}], "date_created": "Fri, 25 Jun 2021 00:00:00 GMT", "description": "Antarctic krill (Euphausia superba) are an ecologically important component of the Southern Ocean\u0027s food web, yet little is known about their behavior in response to many features of their aquatic environment. This project will improve understanding of krill swimming and schooling behavior by examining individual responses to light levels, water flow rates, the presence of attractive and repulsive chemical cues. Flow, light and chemical conditions will be controlled and altered in specialized tanks outfitted with high speed digital camera systems so that individual krill responses to these factors can be measured in relevant schooling settings. This analysis will be used to predict preferred environments, define the capacity of krill to detect and move to them (and away from unfavorable ones). Such information will then be used to improve models that estimate the energetic costs of behaviors associated with different types of environments. Linking individual behavior to those of larger krill aggregations will also improve acoustic assessments of krill densities. Understanding the capacity of krill to respond to environmental perturbations will improve our understanding of the ecology of high latitude ecosystems and provide relevant information for the management of krill fisheries. The project will support graduate and undergraduate students and provide training for as post-doctoral associate. Curricular materials and public engagement activities will be based on the project\u0027s aims and activities. Project investigators will share model results and predictions of krill movements and school structure with experts interested in krill conservation and management. The project will use horizontal and vertical laminar flow tunnels to examine krill behavior under naturally relevant conditions. Horizontal (1-10 cm per second) and vertical (1-3 mm per second) flow velocities mimic naturally relevant current patterns, while light levels and spectral quality will be varied from complete darkness to intensities experienced across the depth range inhabited by krill. Attractive phytoplankton odor will be created by dosing the flumes to obtain background chlorophyll a levels approximating average and bloom conditions, while repulsive cues will be generated from penguin guano. Behavior of individual krill in all conditions will be video recorded with cameras visualizing X-Y and Y-Z planes, and 3D movements will be reconstructed by video motion analysis at a 5 Hz sampling rate. The distribution of horizontal and vertical swimming angles and velocities will be used to create an individual based model (IBM) of krill movement in response to each condition, where krill behavior at each model time step is based on random draws from the velocity and angular distributions. Since krill commonly travel in groups, further experiments will examine the behavior of small krill schools in these same conditions to further parameterize variables such as individual spacing. Researchers will examine krill aggregation structure from 3D video records of krill swimming in a specially designed kriesel tank, and compute nearest neighbor distances (NND) and correlations of swimming angles among individuals within the aggregation. Krill movements in the IBM will be constrained to adhere to observed NND and angular correlations. Large scale oceanographic models will be used to define spatial environments in which the modelled krill will be allowed to move using simulated schools of 1000-100,000 krill. Model output will include the school swimming speed, direction and structure (packing density, NND). Researchers will compare available acoustic data sets of krill schools in measured flow and phytoplankton abundance to evaluate the model predictions. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "ANIMAL ECOLOGY AND BEHAVIOR; AMD; FIELD INVESTIGATION; Amd/Us; USAP-DC; Palmer Station; USA/NSF", "locations": "Palmer Station", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science", "paleo_time": null, "persons": "Record, Nicholas ; Weissburg, Marc; Murphy, David", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "BCO-DMO", "repositories": "BCO-DMO", "science_programs": null, "south": null, "title": "Collaborative Research: Individual Based Approaches to Understanding Krill Distributions and Aggregations", "uid": "p0010202", "west": null}, {"awards": "1640481 Rotella, Jay", "bounds_geometry": "POLYGON((162 -75,162.8 -75,163.6 -75,164.4 -75,165.2 -75,166 -75,166.8 -75,167.6 -75,168.4 -75,169.2 -75,170 -75,170 -75.38,170 -75.76,170 -76.14,170 -76.52,170 -76.9,170 -77.28,170 -77.66,170 -78.03999999999999,170 -78.42,170 -78.8,169.2 -78.8,168.4 -78.8,167.6 -78.8,166.8 -78.8,166 -78.8,165.2 -78.8,164.4 -78.8,163.6 -78.8,162.8 -78.8,162 -78.8,162 -78.42,162 -78.03999999999999,162 -77.66,162 -77.28,162 -76.9,162 -76.52,162 -76.14,162 -75.76,162 -75.38,162 -75))", "dataset_titles": "Demographic data for Weddell Seal colonies in Erebus Bay through the 2017 Antarctic field season; Demographic data for Weddell Seal colonies in Erebus Bay through the 2023 Antarctic field season", "datasets": [{"dataset_uid": "601837", "doi": "10.15784/601837", "keywords": "AMD; Amd/Us; Antarctica; Cryosphere; McMurdo Sound; Population Dynamics; USA/NSF; USAP-DC; Weddell Seal", "people": "Rotella, Jay", "repository": "USAP-DC", "science_program": null, "title": "Demographic data for Weddell Seal colonies in Erebus Bay through the 2023 Antarctic field season", "url": "https://www.usap-dc.org/view/dataset/601837"}, {"dataset_uid": "200300", "doi": " https://doi.org/10.15784/601125 ", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "Demographic data for Weddell Seal colonies in Erebus Bay through the 2017 Antarctic field season", "url": "https://www.usap-dc.org/view/dataset/601125"}], "date_created": "Thu, 24 Jun 2021 00:00:00 GMT", "description": "The consequences of variation in maternal effects on the ability of offspring to survive, reproduce, and contribute to future generations has rarely been evaluated in polar marine mammals. This is due to the challenges of having adequate data on the survival and reproductive outcomes for numerous offspring born in diverse environmental conditions to mothers with known and diverse sets of traits. This research project will evaluate the survival and reproductive consequences of early-life environmental conditions and variation in offspring traits that are related to maternal attributes (e.g. birth date, birth mass, weaning mass, and swimming behavior) in a population of individually marked Weddell seals in the Ross Sea. Results will allow an evaluation of the importance of different types of individuals to the Weddell Seal\u0027s population sustenance and better assessments of factors contributing to the population dynamics in the past and into the future. The project allows for documentation of specific individual seal\u0027s unique histories and provisioning of such information to the broader science community that seeks to study these seals, educating graduate and undergraduate ecology students, producing science-outreach videos, and developing a multi-media iBook regarding the project\u0027s science activities, goals and outcomes. The research has the broad objective of evaluating the importance of diverse sources of variation in pup characteristics to survival and reproduction. The study will (1) record birth dates, body mass metrics, and time spent in the water for multiple cohorts of pups (born to known-age mothers) in years with different environmental conditions; (2) mark all pups born in the greater Erebus Bay study area and conduct repeated surveys to monitor fates of these pups through the age of first reproduction; and (3) use analyses specifically designed for data on animals that are individually marked and resighted each year to evaluate hypotheses about how variation in birth dates, pup mass, time spent in the water by pups, and environmental conditions relate to variation in early-life survival and recruitment for those pups. The research will also allow the documentation of the population status that will contribute to the unique long-term database for the local population that dates back to 1978.", "east": 170.0, "geometry": "POINT(166 -76.9)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; ANIMAL ECOLOGY AND BEHAVIOR; Amd/Us; FIELD INVESTIGATION; Ross Sea; USA/NSF; USAP-DC", "locations": "Ross Sea", "north": -75.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Rotella, Jay; Garrott, Robert", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.8, "title": "The consequences of maternal effects and environmental conditions on offspring success in an Antarctic predator", "uid": "p0010198", "west": 162.0}, {"awards": "1739027 Tulaczyk, Slawek", "bounds_geometry": "POLYGON((-125 -73,-122.1 -73,-119.2 -73,-116.3 -73,-113.4 -73,-110.5 -73,-107.6 -73,-104.7 -73,-101.8 -73,-98.9 -73,-96 -73,-96 -73.7,-96 -74.4,-96 -75.1,-96 -75.8,-96 -76.5,-96 -77.2,-96 -77.9,-96 -78.6,-96 -79.3,-96 -80,-98.9 -80,-101.8 -80,-104.7 -80,-107.6 -80,-110.5 -80,-113.4 -80,-116.3 -80,-119.2 -80,-122.1 -80,-125 -80,-125 -79.3,-125 -78.6,-125 -77.9,-125 -77.2,-125 -76.5,-125 -75.8,-125 -75.1,-125 -74.4,-125 -73.7,-125 -73))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 24 Jun 2021 00:00:00 GMT", "description": "This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Collapse of the West Antarctic Ice Sheet (WAIS) could raise the global sea level by about 5 meters (16 feet) and the scientific community considers it the most significant risk for coastal environments and cities. The risk arises from the deep, marine setting of WAIS. Although scientists have been aware of the precarious setting of this ice sheet since the early 1970s, it is only now that the flow of ice in several large drainage basins is undergoing dynamic change consistent with a potentially irreversible disintegration. Understanding WAIS stability and enabling more accurate prediction of sea-level rise through computer simulation are two of the key objectives facing the polar science community today. This project will directly address both objectives by: (1) using state-of-the-art technologies to observe rapidly deforming parts of Thwaites Glacier that may have significant control over the future evolution of WAIS, and (2) using these new observations to improve ice-sheet models used to predict future sea-level rise. This project brings together a multidisciplinary team of UK and US scientists. This international collaboration will result in new understanding of natural processes that may lead to the collapse of the WAIS and will boost infrastructure for research and education by creating a multidisciplinary network of scientists. This team will mentor three postdoctoral researchers, train four Ph.D. students and integrate undergraduate students in this research project. The project will test the overarching hypothesis that shear-margin dynamics may exert powerful control on the future evolution of ice flow in Thwaites Drainage Basin. To test the hypothesis, the team will set up an ice observatory at two sites on the eastern shear margin of Thwaites Glacier. The team argues that weak topographic control makes this shear margin susceptible to outward migration and, possibly, sudden jumps in response to the drawdown of inland ice when the grounding line of Thwaites retreats. The ice observatory is designed to produce new and comprehensive constraints on englacial properties, including ice deformation rates, ice crystal fabric, ice viscosity, ice temperature, ice water content and basal melt rates. The ice observatory will also establish basal conditions, including thickness and porosity of the till layer and the deeper marine sediments, if any. Furthermore, the team will develop new knowledge with an emphasis on physical processes, including direct assessment of the spatial and temporal scales on which these processes operate. Seismic surveys will be carried out in 2D and 3D using wireless geophones. A network of broadband seismometers will identify icequakes produced by crevassing and basal sliding. Autonomous radar systems with phased arrays will produce sequential images of rapidly deforming internal layers in 3D while potentially also revealing the geometry of a basal water system. Datasets will be incorporated into numerical models developed on different spatial scales. One will focus specifically on shear-margin dynamics, the other on how shear-margin dynamics can influence ice flow in the whole drainage basin. Upon completion, the project aims to have confirmed whether the eastern shear margin of Thwaites Glacier can migrate rapidly, as hypothesized, and if so what the impacts will be in terms of sea-level rise in this century and beyond. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -96.0, "geometry": "POINT(-110.5 -76.5)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; GLACIER MOTION/ICE SHEET MOTION; Thwaites Glacier; USAP-DC; USA/NSF; Magmatic Volatiles; AMD; GLACIER MASS BALANCE/ICE SHEET MASS BALANCE; ICE SHEETS; Amd/Us", "locations": "Thwaites Glacier", "north": -73.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Instrumentation and Support; Antarctic Integrated System Science", "paleo_time": null, "persons": "Tulaczyk, Slawek", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": "Thwaites (ITGC)", "south": -80.0, "title": "NSF-NERC: Thwaites Interdisciplinary Margin Evolution (TIME): The Role of Shear Margin Dynamics in the Future Evolution of the Thwaites Drainage Basin", "uid": "p0010199", "west": -125.0}, {"awards": "1643119 Zabotin, Nikolay", "bounds_geometry": "POLYGON((-180 -73,-177 -73,-174 -73,-171 -73,-168 -73,-165 -73,-162 -73,-159 -73,-156 -73,-153 -73,-150 -73,-150 -74.2,-150 -75.4,-150 -76.6,-150 -77.8,-150 -79,-150 -80.2,-150 -81.4,-150 -82.6,-150 -83.8,-150 -85,-153 -85,-156 -85,-159 -85,-162 -85,-165 -85,-168 -85,-171 -85,-174 -85,-177 -85,180 -85,178 -85,176 -85,174 -85,172 -85,170 -85,168 -85,166 -85,164 -85,162 -85,160 -85,160 -83.8,160 -82.6,160 -81.4,160 -80.2,160 -79,160 -77.8,160 -76.6,160 -75.4,160 -74.2,160 -73,162 -73,164 -73,166 -73,168 -73,170 -73,172 -73,174 -73,176 -73,178 -73,-180 -73))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 22 Jun 2021 00:00:00 GMT", "description": "Recent theoretical and experimental studies indicated that over a wide range of altitudes and for periods from a few minutes to several hours a significant portion of the waves activity observed in the upper atmosphere/thermosphere is due to acoustic gravity waves radiated by infragravity waves generated in the ocean. Studying this impressive gravity wave activity over the Antarctic, where proximity of the Ross Ice Shelf makes it very special, is the goal of this project. The ocean\u0027s infragravity waves can excite the fundamental mode and low-order oscillations of the Ross Ice Shelf at its resonance frequencies, thus creating standing wave structures throughout the entire atmosphere. It is likely that this effect was recently detected using LIDAR observations at McMurdo. This project will support the training and education of a graduate student. This award will allow scientists to study the wave coupling of the Southern Ocean (via the Ross Ice Shelf) to the upper atmosphere/thermosphere. This study will involve theoretical assessment of the coupling phenomena and comparing theory with data collected by a unique combination of instruments deployed in the Ross Ice Shelf area: the NSF-supported network of seismographs and microbarometers on the Ross Ice Shelf, the infrasound station near McMurdo, and the Dynasonde recently installed at the Korean Antarctic Station Jang Bogo.", "east": -150.0, "geometry": "POINT(-175 -79)", "instruments": null, "is_usap_dc": true, "keywords": "Ronne Ice Shelf; USA/NSF; Amd/Us; AMD; SEA ICE MOTION; FIELD INVESTIGATION; USAP-DC", "locations": "Ronne Ice Shelf", "north": -73.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Astrophysics and Geospace Sciences", "paleo_time": null, "persons": "Godin, Oleg; Zabotin, Nikolay", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": -85.0, "title": "Resonance Properties of the Ross Ice Shelf, Antarctica, as a Factor in Regional Wave Interaction between Ocean and Atmosphere", "uid": "p0010195", "west": 160.0}, {"awards": "1744970 Shevenell, Amelia", "bounds_geometry": "POLYGON((120 -66,120.1 -66,120.2 -66,120.3 -66,120.4 -66,120.5 -66,120.6 -66,120.7 -66,120.8 -66,120.9 -66,121 -66,121 -66.1,121 -66.2,121 -66.3,121 -66.4,121 -66.5,121 -66.6,121 -66.7,121 -66.8,121 -66.9,121 -67,120.9 -67,120.8 -67,120.7 -67,120.6 -67,120.5 -67,120.4 -67,120.3 -67,120.2 -67,120.1 -67,120 -67,120 -66.9,120 -66.8,120 -66.7,120 -66.6,120 -66.5,120 -66.4,120 -66.3,120 -66.2,120 -66.1,120 -66))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 22 Jun 2021 00:00:00 GMT", "description": "Glacial retreat in West Antarctica is correlated with ocean warming; however, less is known about the ocean\u0027s effect on East Antarctica\u0027s glaciers including Totten Glacier located on the Sabrina Coast. The retreat of Totten Glacier has global significance as the glacier drains a sector of the East Antarctic Ice Sheet that contains enough ice to raise global sea levels by as much as 3.5 meters. This study looks to determine the influence of ocean temperatures on East Antarctic glaciers, including Totten Glacier, over the last ~18,000 years by studying seafloor sediment around Antarctica. These sediments, or muds, include the remains of microscopic marine organisms as well as tiny particles originating from eroded Antarctic bedrock. These muds provide a record of past environmental changes including ocean temperatures and the advance and retreat of glaciers. Scientists use a variety of physical and chemical analyses to determine how long ago this mud was deposited, the temperature of the ocean at that location through time, and the relative location of glacial ice. In this project, researchers will refine and test new methods for measuring ocean temperature from the sediments to better understand the influence of ocean temperatures on East Antarctic glacier response. Results will be integrated into ice sheet and climate models to improve the accuracy of ice sheet modeling efforts and subsequent sea level predictions. Results from this project will be disseminated at scientific conferences, in the scientific literature, and more broadly to the general public via the St. Petersburg Science Festival and at the Oceanography Camp for Girls. The influence of ocean temperatures on East Antarctic glaciers is largely unknown. This research focuses on ice-proximal Antarctic margin paleoceanographic proxy calibration and validation, which will improve understanding of past ocean-ice sheet interactions on a variety of timescales. In this project, researchers from the University of South Florida will (1) further develop and refine two ocean temperature proxies, foraminifer Mg/Ca and TEX86, for use in ice-proximal Antarctic continental margin sediments and (2) investigate deglacial to present (~18-0 ka) ocean-ice interactions at the outlet of the climatically sensitive Aurora Subglacial Basin. The proposed research utilizes sediment trap, sediment core, and physical oceanographic data previously collected from the Sabrina Coast continental shelf during NSF-funded cruise NBP14-02. Studies of existing sediment cores will integrate multiple paleotemperature, meltwater/salinity, nutrient, bottom water oxygen, and sea ice proxies with geophysical and lithologic data to understand past regional ocean-ice interactions. While the recent international Antarctic research focus has been on understanding the drivers of West Antarctic Ice Sheet retreat, models suggest it would be imprudent to ignore the East Antarctic Ice Sheet, which is proving more sensitive to climate perturbations than previously realized. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 121.0, "geometry": "POINT(120.5 -66.5)", "instruments": null, "is_usap_dc": true, "keywords": "SEDIMENTS; FIELD INVESTIGATION; USA/NSF; USAP-DC; PALEOCLIMATE RECONSTRUCTIONS; Sabrina Coast; AMD; Amd/Us", "locations": "Sabrina Coast", "north": -66.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Shevenell, Amelia", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": -67.0, "title": "Deglacial to Recent Paleoceanography of the Sabrina Coast, East Antarctica: A Multi-proxy Study of Ice-ocean Interactions at the Outlet of the Aurora Subglacial Basin", "uid": "p0010194", "west": 120.0}, {"awards": "1848887 McClintock, James", "bounds_geometry": "POINT(-64.0527 -64.77423)", "dataset_titles": "2020 and 2023 Underwater video transect community analysis data; 2020 daily seawater carbonate chemistry; 2023 daily seawater carbonate chemistry; Amphipod counts from 2020 ocean acidification experiment; Feeding of Gondogeneia antarctica maintained under ambient and low pH treatments; Palatability of Desmarestia menziesii extracts from ambient and low pH treatments; Palatability of Palmaria decipiens thallus from ambient and low pH treatments; Underwater transect videos used for 2020 and 2023 community analyses", "datasets": [{"dataset_uid": "601787", "doi": "10.15784/601787", "keywords": "Antarctica; Antarctic Peninsula; Biota; Cryosphere; Species Abundance; Video Transects", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "2020 and 2023 Underwater video transect community analysis data", "url": "https://www.usap-dc.org/view/dataset/601787"}, {"dataset_uid": "601791", "doi": "10.15784/601791", "keywords": "Antarctica; Cryosphere; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Palatability of Desmarestia menziesii extracts from ambient and low pH treatments", "url": "https://www.usap-dc.org/view/dataset/601791"}, {"dataset_uid": "601792", "doi": "10.15784/601792", "keywords": "Antarctica; Cryosphere; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Palatability of Palmaria decipiens thallus from ambient and low pH treatments", "url": "https://www.usap-dc.org/view/dataset/601792"}, {"dataset_uid": "601793", "doi": "10.15784/601793", "keywords": "Antarctica; Cryosphere; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Feeding of Gondogeneia antarctica maintained under ambient and low pH treatments", "url": "https://www.usap-dc.org/view/dataset/601793"}, {"dataset_uid": "601796", "doi": "10.15784/601796", "keywords": "Antarctica; Biota; Cryosphere; Oceans; Southern Ocean; Video Transects", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Underwater transect videos used for 2020 and 2023 community analyses", "url": "https://www.usap-dc.org/view/dataset/601796"}, {"dataset_uid": "601700", "doi": "10.15784/601700", "keywords": "Antarctica; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "2020 daily seawater carbonate chemistry", "url": "https://www.usap-dc.org/view/dataset/601700"}, {"dataset_uid": "601702", "doi": "10.15784/601702", "keywords": "Antarctica; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Amphipod counts from 2020 ocean acidification experiment", "url": "https://www.usap-dc.org/view/dataset/601702"}, {"dataset_uid": "601701", "doi": "10.15784/601701", "keywords": "Antarctica; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "2023 daily seawater carbonate chemistry", "url": "https://www.usap-dc.org/view/dataset/601701"}], "date_created": "Mon, 21 Jun 2021 00:00:00 GMT", "description": "Undersea forests of seaweeds dominate the shallow waters of the central and northern coast of the western Antarctic Peninsula and provide critical structural habitat and carbon resources (food) for a host of marine organisms. Most of the seaweeds are chemically defended against herbivores yet support very high densities of herbivorous shrimp-like grazers (crustaceans, primarily amphipods) which greatly benefit their hosts by consuming filamentous and microscopic algae that otherwise overgrow the seaweeds. The amphipods benefit from the association with the chemically defended seaweeds by gaining an associational refuge from fish predation. The project builds on recent work that has demonstrated that several species of amphipods that are key members of crustacean assemblages associated with the seaweeds suffer significant mortality when chronically exposed to increased seawater acidity (reduced pH) and elevated temperatures representative of near-future oceans. By simulating these environmental conditions in the laboratory at Palmer Station, Antarctica, the investigators will test the overall hypothesis that ocean acidification and ocean warming will play a significant role in structuring crustacean assemblages associated with seaweeds. Broader impacts include expanding fundamental knowledge of the impacts of global climate change by focusing on a geographic region of the earth uniquely susceptible to climate change. This project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. This includes training graduate students and early career scientists with an emphasis on diversity, presentations to K-12 groups and the general public, and a variety of social media-based outreach programs. The project will compare population and assemblage-wide impacts of natural (ambient), carbon dioxide enriched, and elevated temperature seawater on assemblages of seaweed-associated crustacean grazers. Based on prior results, it is likely that some species will be relative \"winners\" and some will be relative \"losers\" under the changed conditions. The project will then aim to carry out measurements of growth, calcification, mineralogy, the incidence of molts, and biochemical and energetic body composition for two key amphipod \"winners\" and two key amphipod \"losers\". These measurements will allow an assessment of what factors drive species-specific enhanced or diminished performance under conditions of ocean acidification and sea surface warming. The project will expand on what little is known about prospective impacts of changing conditions on benthic marine Crustacea, in Antarctica, a taxonomic group that faces the additional physiological stressor of molting. The project is likely to provide additional insight on the indirect regulation of the seaweeds that comprise Antarctic undersea forests that provide key architectural components of the coastal marine ecosystem. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -64.0527, "geometry": "POINT(-64.0527 -64.77423)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; Amd/Us; AMD; COASTAL; BENTHIC; USAP-DC; Palmer Station; ANIMALS/INVERTEBRATES; FIELD INVESTIGATION; MACROALGAE (SEAWEEDS)", "locations": "Palmer Station", "north": -64.77423, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Amsler, Charles; McClintock, James", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.77423, "title": "Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica", "uid": "p0010193", "west": -64.0527}, {"awards": "2045611 Rasbury, Emma; 2042495 Blackburn, Terrence", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": " Subglacial Precipitates Record Antarctic Ice Sheet Response to Pleistocene Millennial Climate Cycles; Subglacial precipitates record Antarctic ice sheet response to Southern Ocean warming ; Thermogenic Methane Production in Antarctic Subglacial Hydrocarbon Seeps; U-Th isotopes and major elements in sediments from Taylor Valley, Antarctica", "datasets": [{"dataset_uid": "601918", "doi": "10.15784/601918", "keywords": "Antarctica; Carbon Isotopes; Cryosphere; East Antarctica; Elephant Moraine; Geochronology; Isotope Data; Subglacial", "people": "Piccione, Gavin", "repository": "USAP-DC", "science_program": null, "title": "Thermogenic Methane Production in Antarctic Subglacial Hydrocarbon Seeps", "url": "https://www.usap-dc.org/view/dataset/601918"}, {"dataset_uid": "601594", "doi": "10.15784/601594", "keywords": "Antarctica; East Antarctica", "people": "Piccione, Gavin; Blackburn, Terrence", "repository": "USAP-DC", "science_program": null, "title": " Subglacial Precipitates Record Antarctic Ice Sheet Response to Pleistocene Millennial Climate Cycles", "url": "https://www.usap-dc.org/view/dataset/601594"}, {"dataset_uid": "601911", "doi": null, "keywords": "Antarctica; Cryosphere", "people": "Gagliardi, Jessica", "repository": "USAP-DC", "science_program": null, "title": "Subglacial precipitates record Antarctic ice sheet response to Southern Ocean warming ", "url": "https://www.usap-dc.org/view/dataset/601911"}, {"dataset_uid": "601806", "doi": "10.15784/601806", "keywords": "Antarctica; Cryosphere; Erosion; Isotope Data; Major Elements; Soil; Taylor Glacier; Taylor Valley", "people": "Piccione, Gavin; Tulaczyk, Slawek; Blackburn, Terrence; Edwards, Graham", "repository": "USAP-DC", "science_program": null, "title": "U-Th isotopes and major elements in sediments from Taylor Valley, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601806"}], "date_created": "Fri, 18 Jun 2021 00:00:00 GMT", "description": "Over the past century, climate science has constructed an extensive record of Earth\u2019s ice age cycles through the chemical and isotopic characterization of various geologic archives such as polar ice cores, deep-ocean sediments, and cave speleothems. These climatic archives provide an insightful picture of ice age cycles and of the related large global sea level fluctuations triggered by these significant climate rhythms. However, such records still provide limited insight as to how or which of Earth\u2019s ice sheets contributed to higher sea levels during past warm climate periods. This is of particular importance for our modern world: the Antarctic ice sheet is currently the world\u2019s largest freshwater reservoir, which, if completely melted, would raise the global sea level by over 60 meters (200 feet). Yet, geologic records of Antarctic ice sheet sensitivity to warm climates are particularly limited and difficult to obtain, because the direct records of ice sheet geometry smaller than the modern one are still buried beneath the mile-thick ice covering the continent. Therefore, it remains unclear how much this ice sheet contributed to past sea level rise during warm climate periods or how it will respond to the anticipated near-future climate warming. In the proposed research we seek to develop sub-ice chemical precipitates\u2014minerals that form in lakes found beneath the ice sheet\u2014as a climatic archive, one that records how the Antarctic ice sheet responded to past climatic change. These sub-ice mineral formations accumulated beneath the ice for over a hundred thousand years, recording the changes in chemical and isotopic subglacial properties that occur in response to climate change. Eventually these samples were eroded by the ice sheet and moved to the Antarctic ice margin where they were collected and made available to study. This research will utilize advanced geochemical, isotopic and geochronologic techniques to develop record of the Antarctica ice sheet\u2019s past response to warm climate periods, directly informing efforts to understand how Antarctica will response to future warming. Efforts to improve sea level forecasting on a warming planet have focused on determining the temperature, sea level and extent of polar ice sheets during Earth\u2019s past warm periods. Large uncertainties, however, in reconstructions of past and future sea levels, result from the poorly constrained climate sensitivity of the Antarctic Ice sheet (AIS). This research project aims to develop the use of subglacial precipitates as an archive the Antarctic ice sheet (AIS) past response to climate change. The subglacial precipitates from East Antarctica form in water bodies beneath Antarctic ice and in doing so provide an entirely new and unique measure of how the AIS responds to climate change. In preliminary examination of these precipitates, we identified multiple samples consisting of cyclic opal and calcite that spans hundreds of thousands of years in duration. Our preliminary geochemical characterization of these samples indicates that the observed mineralogic changes result from a cyclic change in subglacial water compositions between isotopically and chemically distinct waters. Opal-forming waters are reduced (Ce* \u003c1 and high Fe/Mn) and exhibit elevated 234U/238U compositions similar to the saline groundwater brines found at the periphery of the AIS. Calcite-forming waters, are rather, oxidized and exhibit \u03b418O compositions consistent with derivation from the depleted polar plateau (\u003c -50 \u2030). 234U-230Th dates permit construction of a robust timeseries describing these mineralogic and compositional changes through time. Comparisons of these time series with other Antarctic climate records (e.g., ice core records) reveal that calcite forming events align with millennial scale changes in local temperature or \u201cAntarctic isotopic maximums\u201d, which represent Southern Hemisphere warm periods resulting in increased Atlantic Meridional overturing circulation. Ultimately, this project seeks to develop a comprehensive model as to how changes in the thermohaline cycle induce a glaciologic response which in turn induces a change in the composition of subglacial waters and the mineralogic phase recorded within the precipitate archive. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; FIELD INVESTIGATION; AMD; USA/NSF; Amd/Us; USAP-DC; East Antarctica", "locations": "East Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Blackburn, Terrence; Tulaczyk, Slawek; Hain, Mathis; Rasbury, Troy", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Reconstructing East Antarctica\u2019s Past Response to Climate using Subglacial Precipitates", "uid": "p0010192", "west": -180.0}, {"awards": "1745130 Moran, Amy", "bounds_geometry": "POLYGON((163 -76,163.3 -76,163.6 -76,163.9 -76,164.2 -76,164.5 -76,164.8 -76,165.1 -76,165.4 -76,165.7 -76,166 -76,166 -76.2,166 -76.4,166 -76.6,166 -76.8,166 -77,166 -77.2,166 -77.4,166 -77.6,166 -77.8,166 -78,165.7 -78,165.4 -78,165.1 -78,164.8 -78,164.5 -78,164.2 -78,163.9 -78,163.6 -78,163.3 -78,163 -78,163 -77.8,163 -77.6,163 -77.4,163 -77.2,163 -77,163 -76.8,163 -76.6,163 -76.4,163 -76.2,163 -76))", "dataset_titles": "Benthic seawater temperature and conductivity measurements at six sites in McMurdo Sound; Effect of temperature on cleavage rate of Antarctic invertebrates; Effect of temperature on oxygen consumption rates of larvae of four Antarctic marine invertebrates; Egg diameters of Colossendeis megalonyx; Survey Metadata. All counts of Odontaster validus from SSWS surveys at the McMurdo Intake Jetty and Cinder Cones.; Temperature acclimation and acclimatization of sea spider larvae; Temperature effects on proximal composition and development rate of embryos and larvae of four Antarctic invertebrates; Video of Colossendeis megalonyx behavior around egg mass", "datasets": [{"dataset_uid": "601888", "doi": "10.15784/601888", "keywords": "Antarctica; Cryosphere; McMurdo; Temperature", "people": "Lobert, Graham; Toh, MIng Wei Aaron; Moran, Amy", "repository": "USAP-DC", "science_program": null, "title": "Effect of temperature on oxygen consumption rates of larvae of four Antarctic marine invertebrates", "url": "https://www.usap-dc.org/view/dataset/601888"}, {"dataset_uid": "601889", "doi": "10.15784/601889", "keywords": "Antarctica; Cryosphere; McMurdo; Temperature", "people": "Moran, Amy; Lobert, Graham; Toh, MIng Wei Aaron", "repository": "USAP-DC", "science_program": null, "title": "Temperature acclimation and acclimatization of sea spider larvae", "url": "https://www.usap-dc.org/view/dataset/601889"}, {"dataset_uid": "601869", "doi": null, "keywords": "Antarctica; Cryosphere; McMurdo; McMurdo Sound", "people": "Thurber, Andrew; Moran, Amy", "repository": "USAP-DC", "science_program": null, "title": "Survey Metadata. All counts of Odontaster validus from SSWS surveys at the McMurdo Intake Jetty and Cinder Cones.", "url": "https://www.usap-dc.org/view/dataset/601869"}, {"dataset_uid": "601886", "doi": "10.15784/601886", "keywords": "Antarctica; Cryosphere; McMurdo; Temperature", "people": "Toh, Ming Wei Aaron; Lobert, Graham; Moran, Amy", "repository": "USAP-DC", "science_program": null, "title": "Temperature effects on proximal composition and development rate of embryos and larvae of four Antarctic invertebrates", "url": "https://www.usap-dc.org/view/dataset/601886"}, {"dataset_uid": "601870", "doi": "10.15784/601870", "keywords": "Antarctica; Cryosphere; McMurdo Sound; Salinity; Temperature", "people": "Moran, Amy", "repository": "USAP-DC", "science_program": null, "title": "Benthic seawater temperature and conductivity measurements at six sites in McMurdo Sound", "url": "https://www.usap-dc.org/view/dataset/601870"}, {"dataset_uid": "601716", "doi": "10.15784/601716", "keywords": "Antarctica; McMurdo; Pycnogonida; Sea Spider", "people": "Moran, Amy; Lobert, Graham", "repository": "USAP-DC", "science_program": null, "title": "Video of Colossendeis megalonyx behavior around egg mass", "url": "https://www.usap-dc.org/view/dataset/601716"}, {"dataset_uid": "601717", "doi": "10.15784/601717", "keywords": "Antarctica; McMurdo", "people": "Moran, Amy", "repository": "USAP-DC", "science_program": null, "title": "Egg diameters of Colossendeis megalonyx", "url": "https://www.usap-dc.org/view/dataset/601717"}, {"dataset_uid": "601887", "doi": "10.15784/601887", "keywords": "Antarctica; Cryosphere; McMurdo; Temperature", "people": "Moran, Amy; Lobert, Graham; Toh, Ming Wei Aaron", "repository": "USAP-DC", "science_program": null, "title": "Effect of temperature on cleavage rate of Antarctic invertebrates", "url": "https://www.usap-dc.org/view/dataset/601887"}], "date_created": "Wed, 09 Jun 2021 00:00:00 GMT", "description": "Cold-blooded animals in the Antarctic ocean have survived in near-constant, extreme cold conditions for millions of years and are very sensitive to even small changes in water temperature. However, the consequences of this extreme thermal sensitivity for the energetics, development, and survival of developing embryos is not well understood. This award will investigate the effect of temperature on the metabolism, growth rate, developmental rate, and developmental energetics of embryos and larvae of Antarctic marine ectotherms. The project will also measure annual variation in temperature and oxygen at different sites in McMurdo Sound, and compare embryonic and larval metabolism in winter and summer to determine the extent to which these life stages can acclimate to seasonal shifts. This research will provide insight into the ability of polar marine animals and ecosystems to withstand warming polar ocean conditions. Antarctic marine ectotherms exhibit universally slow growth, low metabolic rates, and extended development, yet many of their rate processes related to physiology and metabolism are highly thermally sensitive. This suggests that small changes in temperature may result in dramatic changes to energy metabolism, growth, and the rate and duration of development. This project will measure the effects of temperature on metabolism, developmental rate, and the energetic cost of development of four common and ecologically important species of benthic Antarctic marine invertebrates. These effects will be measured over the functional ranges of the organisms and in the context of environmentally relevant seasonal shifts in temperature around McMurdo Sound. Recent data show that seasonal warming of ~1 deg C near McMurdo Station is accompanied by long-lasting hyperoxic events that impact the benthos in the nearshore boundary layer. This research will provide a more comprehensive understanding of both annual variation in environmental oxygen and temperature across the Sound, and whether this variation drives changes in developmental rate and energetics that are consistent with physiological acclimatization. These data will provide key information about potential impacts of warming Antarctic ectotherms. In addition, this project will support undergraduate and graduate research and partner with large-enrollment undergraduate courses and REU programs at an ANNH and AANAPISI Title III minority-serving institution. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 166.0, "geometry": "POINT(164.5 -77)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; Amd/Us; McMurdo Sound; AMD; BENTHIC; USA/NSF; FIELD INVESTIGATION", "locations": "McMurdo Sound", "north": -76.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Moran, Amy", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Thermal Sensitivity of Antarctic Embryos and Larvae: Effects of Temperature on Metabolism, Developmental Rate, and the Metabolic Cost of Development ", "uid": "p0010187", "west": 163.0}, {"awards": "1443556 Thomson, Stuart; 1443342 Licht, Kathy", "bounds_geometry": null, "dataset_titles": "Apatite (U-Th)/He and TREE Data Central Transantarctic Mountains", "datasets": [{"dataset_uid": "601462", "doi": "10.15784/601462", "keywords": "Antarctica; Beardmore Glacier; Erosion; Landscape Evolution; Shackleton Glacier; Transantarctic Mountains; (U-Th)/He", "people": "Licht, Kathy; Thomson, Stuart; He, John; Reiners, Peter; Hemming, Sidney R.", "repository": "USAP-DC", "science_program": null, "title": "Apatite (U-Th)/He and TREE Data Central Transantarctic Mountains", "url": "https://www.usap-dc.org/view/dataset/601462"}], "date_created": "Wed, 09 Jun 2021 00:00:00 GMT", "description": "Antarctica is almost entirely covered by ice, in places over two miles thick. This ice hides a landscape that is less well known than the surface of Mars and represents one of Earth\u0027s last unexplored frontiers. Ice-penetrating radar images provide a remote glimpse of this landscape including ice-buried mountains larger than the European Alps and huge fjords twice as deep as the Grand Canyon. The goal of this project is to collect sediment samples derived from these landscapes to determine when and under what conditions these features formed. Specifically, the project seeks to understand the landscape in the context of the history and dynamics of the overlying ice sheet and past mountain-building episodes. This project accomplishes this goal by analyzing sand collected during previous sea-floor drilling expeditions off the coast of Antarctica. This sand was supplied from the continent interior by ancient rivers when it was ice-free over 34 million year ago, and later by glaciers. The project will also study bedrock samples from rare ice-free parts of the Transantarctic Mountains. The primary activity is to apply multiple advanced dating techniques to single mineral grains contained within this sand and rock. Different methods and minerals yield different dates that provide insight into how Antarctica?s landscape has eroded over the many tens of millions of years during which sand was deposited offshore. The dating techniques that are being developed and enhanced for this study have broad application in many branches of geoscience research and industry. The project makes cost-effective use of pre-existing sample collections housed at NSF facilities including the US Polar Rock Repository, the Gulf Coast Core Repository, and the Antarctic Marine Geology Research Facility. The project will contribute to the STEM training of two graduate and two undergraduate students, and includes collaboration among four US universities as well as international collaboration between the US and France. The project also supports outreach in the form of a two-week open workshop giving ten students the opportunity to visit the University of Arizona to conduct STEM-based analytical work and training on Antarctic-based projects. Results from both the project and workshop will be disseminated through presentations at professional meetings, peer-reviewed publications, and through public outreach and media. The main objective of this project is to reconstruct a chronology of East Antarctic subglacial landscape evolution to understand the tectonic and climatic forcing behind landscape modification, and how it has influenced past ice sheet inception and dynamics. Our approach focuses on acquiring a record of the cooling and erosion history contained in East Antarctic-derived detrital mineral grains and clasts in offshore sediments deposited both before and after the onset of Antarctic glaciation. Samples will be taken from existing drill core and marine sediment core material from offshore Wilkes Land (100\u00b0E-160\u00b0E) and the Ross Sea. Multiple geo- and thermo-chronometers will be employed to reconstruct source region cooling history including U-Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar. This offshore record will be augmented and tested by applying the same methods to onshore bedrock samples in the Transantarctic Mountains obtained from the US Polar Rock Repository and through fieldwork. The onshore work will additionally address the debated incision history of the large glacial troughs that cut the range, now occupied by glaciers draining the East Antarctic Ice Sheet. This includes collection of samples from several age-elevation transects, apatite 4He/3He thermochronometry, and Pecube thermo-kinematic modeling. Acquiring an extensive geo- and thermo-chronologic database will also provide valuable new information on the poorly known ice-hidden geology and tectonics of subglacial East Antarctica that has implications for improving supercontinent reconstructions and understanding continental break-up.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "LABORATORY; LANDSCAPE; AGE DETERMINATIONS; FIELD INVESTIGATION; GLACIAL PROCESSES; Transantarctic Mountains; USA/NSF; Thermochronology; Amd/Us; USAP-DC; TRACE ELEMENTS; Provenance Analysis; AMD; LANDFORMS; GLACIAL LANDFORMS", "locations": "Transantarctic Mountains", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Thomson, Stuart; Reiners, Peter; Licht, Kathy", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: East Antarctic Glacial Landscape Evolution (EAGLE): A Study using Combined Thermochronology, Geochronology and Provenance Analysis", "uid": "p0010188", "west": null}, {"awards": "1745135 Walter, Jacob; 1543286 Walter, Jacob; 1543399 Peng, Zhigang", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 19 May 2021 00:00:00 GMT", "description": "The continent of Antarctica has approximately the same surface area as the continental United States, though we know significantly less about its underlying geology and seismic activity. Multinational investments in geophysical infrastructure over the last few decades, especially broadband seismometers operating for several years, are allowing us to observe many interesting natural phenomena, including iceberg calving, ice stream slip, and tectonic earthquakes. To specifically leverage those past investments, we will analyze past and current data to gain a better understanding of Antarctic seismicity. Our recent research revealed that certain large earthquakes occurring elsewhere in the world triggered ice movement near various stations throughout Antarctica. We plan to conduct an exhaustive search of the terabytes of available data, using cutting-edge computational techniques, to uncover additional evidence for ice crevassing, ice stream slip, and earth movement during earthquakes. One specific focus of our research will include investigating whether some of these phenomena may be triggered by external influences, including passing surface waves from distant earthquakes, ocean tides, or seasonal melt. We plan to produce a catalog of the identified activity and share it publicly, so the public and researchers can easily access it. To reach a broader audience, we will present talks to high school classes, including Advanced Placement classes, in the Austin, Texas and Atlanta, Georgia metropolitan areas with emphasis on general aspects of seismic hazard, climate variability, and the geographies of Antarctica. This project will provide research opportunities for undergraduates, training for graduate students, and support for an early-career scientist. In recent years, a new generation of geodetic and seismic instrumentation has been deployed as permanent stations throughout Antarctica (POLENET), in addition to stations deployed for shorter duration (less than 3 years) experiments (e.g. AGAP/TAMSEIS). These efforts are providing critical infrastructure needed to address fundamental questions about both crustal-scale tectonic structures and ice sheets, and their interactions. We plan to conduct a systematic detection of tectonic and icequake activities in Antarctica, focusing primarily on background seismicity, remotely-triggered seismicity, and glacier slip events. Our proposed tasks include: (1) Identification of seismicity throughout the Antarctic continent for both tectonic and ice sources. (2) An exhaustive search for additional triggered events in Antarctica during the last ~15 years of global significant earthquakes. (3) Determination of triggered source mechanisms and whether those triggered events also occur at other times, by analyzing years of data using a matched-filter analysis (where the triggered local event is used to detect similar events). (4) Further analysis of GPS measurements over a ~5.5 year period from Whillans Ice Plain, which suggests that triggering of stick-slip events occurred after the largest earthquakes. An improved knowledge of how the Antarctic ice sheet responds to external perturbations such as dynamic stresses from large distant earthquakes and recent ice unloading could lead to a better understanding of ice failure and related dynamic processes. By leveraging the vast logistical investment to install seismometers in Antarctica over the last decade, our project will build an exhaustive catalog of tectonic earthquakes, icequakes, calving events, and any other detectable near-surface seismic phenomena.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; GLACIERS/ICE SHEETS; USA/NSF; TECTONICS; Amd/Us; AMD; USAP-DC; SEISMOLOGICAL STATIONS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Walter, Jacob; Peng, Zhigang", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: Triggering of Antarctic Icequakes, Slip Events, and other Tectonic Phenomena by Distant Earthquakes", "uid": "p0010182", "west": -180.0}, {"awards": "1543344 Soreghan, Gerilyn", "bounds_geometry": null, "dataset_titles": "Data and metadata for \"Quantifying surface area in muds from the Antarctic Dry Valleys: Implications for weathering in glacial systems\"", "datasets": [{"dataset_uid": "601599", "doi": "10.15784/601599", "keywords": "Antarctica; Anza Borrego; Iceland; McMurdo Dry Valleys; Norway; Peru; Puerto Rico; Taylor Valley; Washington; Wright Valley", "people": "Demirel-Floyd, Cansu", "repository": "USAP-DC", "science_program": null, "title": "Data and metadata for \"Quantifying surface area in muds from the Antarctic Dry Valleys: Implications for weathering in glacial systems\"", "url": "https://www.usap-dc.org/view/dataset/601599"}], "date_created": "Tue, 18 May 2021 00:00:00 GMT", "description": "As glaciers creep across the landscape, they can act as earthmovers, plucking up rocks and grinding them into fine sediments. Glaciers have moved across the Antarctic landscape over thousands to millions of years, leaving these ground-up sediments in their wake. This study builds on pilot discoveries by the investigators that revealed remarkably large and variable measurements of surface area in glacially-derived fine-grained sediments found in the McMurdo Dry Valleys (MDV), one of the few landscapes on the Antarctic continent not currently covered by ice. Surface area is key to chemical weathering, the process by which rock is converted to soils as ions are carried away in streams and groundwater. These chemical weathering processes are also one of the primary means by which the Earth system naturally removes carbon dioxide from the atmosphere. Hence, high surface areas observed in sediments implies high \"weatherability\" which in turn translates to more potential carbon dioxide removed from the atmosphere. Therefore, chemical weathering in high surface area glacial sediments may have significant impacts on Earth\u0027s carbon cycle. The researchers will measure the chemical and physical properties of sediments previously collected from the Dry Valleys to understand what factors lead to production of sediment with high-surface area and potential \"weather ability\" and investigate how sediment produced in these glacial systems could ultimately impact Earth\u0027s carbon budget. Results from this research will help scientists (including modelers) refine predictions of the effects of melting glaciers- and attendant exposure of glacial sediment? on atmospheric carbon levels. These results may also contribute to applied research efforts on development of carbon-dioxide removal technologies utilizing principles of rock weathering. In addition to the scientific benefits, this research will involve several students at the undergraduate, graduate, and post-doctoral levels, including science education undergraduates, thus contributing to training of the next-generation STEM workforce. Physical weathering produces fresh surfaces, greatly enhancing specific surface area (SSA) and reactive surface area (RSA) of primary minerals. Quantifying SSA and RSA of sediments is key to determining dissolution and leaching rates during natural weathering, but few data exist on distribution of sediment SA, particularly in glacial and fluvial systems. Pilot data from glacial stream systems in Taylor Valley and Wright Valley (located in the MDV) exhibit remarkably high and variable values in both SSA and RSA, values that in some cases greatly exceed values from muds in temperate glacial systems. This discovery motivates the current research, which aims to investigate the hypothesis that high and variable SAs of muds within Wright and Taylor Valleys reflect textural and/or compositional inheritance from the differing depositional settings within the MDV, biologic controls, dust additions, and/or pedogenic processes. These hypotheses will be tested by sedimentologically, mineralogically, and geochemically characterizing muds from glacially derived sediment deposited in various environments (cold vs. wet based glaciation; fluvial, lacustrine, dust, and drift deposits) and of varying age (Miocene to Modern) from the MDV and quantifying variation of SA and reactivity. Comparisons with analyzed muds from temperate glacial systems will enable polar-temperate comparisons. Analyses will focus on muds of previously collected sediment from the MDVs. Grain size and SSA will be measured by Laser Analysis and N2 adsorption BET, respectively. After carbonate removal, samples will be re-analyzed for SSA, and muds characterized geochemically. Mineralogy and bulk chemistry will also be assessed on co-occurring sand fractions, and textural attributes documented. SSA-normalized dissolution experiments will be used to compare solutes released from sediments to determine RSAs. Results will be integrated with the various sedimentologic and geochemical analyses to test the posed hypotheses. Ultimately, this research should shed light on how weathering in Antarctic systems contributes to global carbon cycling.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; AMD; FIELD INVESTIGATION; USA/NSF; Dry Valleys; SEDIMENT CHEMISTRY; Amd/Us; Antarctica; Weathering", "locations": "Antarctica; Dry Valleys", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Soreghan, Gerilyn; Elwood Madden, Megan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Quantifying surface area in muds from the Antarctic Dry Valleys: Implications for weathering in glacial systems", "uid": "p0010181", "west": null}, {"awards": "1834986 Ballard, Grant", "bounds_geometry": "POLYGON((165 -77,165.5 -77,166 -77,166.5 -77,167 -77,167.5 -77,168 -77,168.5 -77,169 -77,169.5 -77,170 -77,170 -77.1,170 -77.2,170 -77.3,170 -77.4,170 -77.5,170 -77.6,170 -77.7,170 -77.8,170 -77.9,170 -78,169.5 -78,169 -78,168.5 -78,168 -78,167.5 -78,167 -78,166.5 -78,166 -78,165.5 -78,165 -78,165 -77.9,165 -77.8,165 -77.7,165 -77.6,165 -77.5,165 -77.4,165 -77.3,165 -77.2,165 -77.1,165 -77))", "dataset_titles": "Orthomosaics of Ross Island Penguin Colonies 2019 - 2021", "datasets": [{"dataset_uid": "601612", "doi": "10.15784/601612", "keywords": "Aerial Imagery; Aerial Survey; Antarctica; Biota; Geotiff; Penguin; Photo/video; Photo/Video; Population Count; Ross Island; UAV", "people": "Shah, Kunal; Schmidt, Annie; Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Orthomosaics of Ross Island Penguin Colonies 2019 - 2021", "url": "https://www.usap-dc.org/view/dataset/601612"}], "date_created": "Wed, 12 May 2021 00:00:00 GMT", "description": "New methodologies for the deployment of coordinated unmanned aerial vehicles will be developed with the aim of attaining whole-colony imagery that can be used to characterize nesting habitats of Adelie penguins at Cape Crozier, on Ross Island, Antarctica. This information will be used to test hypotheses regarding relationships between terrain characteristics, nesting density, and breeding success. This population, potentially the largest in the world and at the southern limit of the species\u0027 range, has doubled in size over the past 20 years while most other colonies in the region have remained stable or declined. New information gained from this project will be useful in understanding the potential ofclimate-driven changes in terrestrial nesting habitats for impacting Adelie penguins in the future. The project will produce, and document, open-source software tools to help automate image processing for automated counting of Adelie penguins. The project will train graduate and undergraduate students and contribute materials to ongoing educational outreach programs based on related penguin science projects. Information gained from this project will contribute towards building robust, cost-effective protocols for monitoring Adelie penguin populations, a key ecosystem indicator identified in the draft Ross Sea Marine Protected Area Research and Monitoring Plan. Adelie penguins are important indicators of ecosystem function and change in the Southern Ocean. In addition to facing rapid changes in sea ice and other factors in their pelagic environment, their terrestrial nesting habitat is also changing. Understanding the species\u0027 response to such changes is critical for assessing its ability to adapt to the changing climate. The objective of this project is to test several hypotheses about the influence of fine-scale nesting habitat, nest density, and breeding success of Adelie penguins in the Ross Sea region. To accomplish this, the project will develop algorithms to improve efficiency and safety of surveys by unmanned aerial systems and develop and disseminate an automated image processing workflow. Images collected during several UAV surveys will be used to estimate the number of nesting adults and chicks produced, as well as estimate nesting density in different parts of two colonies on Ross Island, Antarctica, that differ in size by two orders of magnitude. Imagery will be used to generate high resolution digital surface/elevation models that will allow terrain variables like flood risk and terrain complexity to be derived. Combining the surface model with the nest and chick counts at the two colonies will provide relationships between habitat covariates, nest density, and breeding success. The approaches developed will enable Adelie penguin population sizes and potentially several other indicators in the Ross Sea Marine Protected Area Research and Monitoring Plan to be determined and evaluated. The flight control algorithms developed have the potential to be used for many types of surveys, especially when large areas need to be covered in a short period with extreme weather potential and difficult landing options. Aerial images and video will be used to create useable materials to be included in outreach and educational programs. The automated image processing workflow and classification models will be developed as open source software and will be made freely available for others addressing similar wildlife monitoring challenges. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 170.0, "geometry": "POINT(167.5 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "UAS; Ross Island; USA/NSF; FIELD INVESTIGATION; AMD; UAV; MARINE ECOSYSTEMS; USAP-DC; Amd/Us; Penguin", "locations": "Ross Island", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ballard, Grant; Schmidt, Annie; Schwager, Mac; McKown, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Does Nest Density Matter? Using Novel Technology to Collect Whole-colony Data on Adelie Penguins.", "uid": "p0010178", "west": 165.0}, {"awards": "1935901 Dugger, Katie; 1935870 Ballard, Grant", "bounds_geometry": "POLYGON((-180 -60,-177 -60,-174 -60,-171 -60,-168 -60,-165 -60,-162 -60,-159 -60,-156 -60,-153 -60,-150 -60,-150 -61.8,-150 -63.6,-150 -65.4,-150 -67.2,-150 -69,-150 -70.8,-150 -72.6,-150 -74.4,-150 -76.2,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178.5 -78,177 -78,175.5 -78,174 -78,172.5 -78,171 -78,169.5 -78,168 -78,166.5 -78,165 -78,165 -76.2,165 -74.4,165 -72.6,165 -70.8,165 -69,165 -67.2,165 -65.4,165 -63.6,165 -61.8,165 -60,166.5 -60,168 -60,169.5 -60,171 -60,172.5 -60,174 -60,175.5 -60,177 -60,178.5 -60,-180 -60))", "dataset_titles": "Adelie penguin resighting data 1997-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "datasets": [{"dataset_uid": "601444", "doi": "10.15784/601444", "keywords": "Adelie Penguin; Antarctica; Biota; Demography; Mark-Recapture; Monitoring; Penguin; Ross Island", "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin resighting data 1997-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "url": "https://www.usap-dc.org/view/dataset/601444"}], "date_created": "Wed, 12 May 2021 00:00:00 GMT", "description": "Part 1: Non-technical description Polar regions are experiencing some of the most dramatic effects of climate change resulting in large-scale changes in sea ice cover. Despite this, there are relatively few long-term studies on polar species that evaluate the full scope of these effects. Over the last two decades, this team has conducted globally unique demographic studies of Ad\u00e9lie penguins in the Ross Sea, Antarctica, to explore several potential mechanisms for population change. This five-year project will use penguin-borne sensors to evaluate foraging conditions and behavior and environmental conditions on early life stages of Ad\u00e9lie penguins. Results will help to better understand population dynamics and how populations might respond to future environmental change. To promote STEM literacy, education and public outreach efforts will include multiple activities. The PenguinCam and PenguinScience.com website (impacts of \u003e1 million hits per month and use by \u003e300 classrooms/~10,000 students) will be continued. Each field season will also have \u2018Live From the Penguins\u2019 Skype calls to classes (~120/season). Classroom-ready activities that are aligned with Next Generation Science Standards will be developed with media products and science journal papers translated to grade 5-8 literacy level. The project will also train early career scientists, postdoctoral scholars, graduate students and post-graduate interns. Finally, in partnership with an Environmental Leadership Program, the team will host 2-year Roger Arliner Young Conservation Fellow, which is a program designed to increase opportunities for recent college graduates of color to learn about, engage with, and enter the environmental conservation sector. Part II: Technical description: Leveraging 25 years of data on marked individuals from two Ad\u00e9lie penguin colonies in the Ross Sea, combined with new biologging tags that track detailed penguin foraging efforts and environmental conditions, researchers will accomplish three major goals: 1) assess the quality of natal conditions by determining how environmental conditions, relative prey availability, and diet composition influence parental foraging behavior, chick provisioning, and fledging mass; 2) determine the spatial distribution and foraging behavior of juvenile Ad\u00e9lie penguins and the relative influence of natal versus post-fledging environmental conditions on their survival; and 3) determine the role of natal and post-fledging conditions in shaping individual life history traits and colony growth. Data from several types of penguin-borne biologging devices will be used to provide multiple lines of evidence for how early-life conditions and penguin behavior relate to penguin energetics and population size. This study is the first to integrate salinity, temperature, light level, depth, accelerometry, video loggers, and GPS data with longitudinal demographic information, providing an unprecedented ability to understand how penguins use the environment and enabling new insights from previously collected data. Changes in salinity due to increased glacial melt have important implications for sea ice formation, ocean circulation and productivity of the Southern Ocean, and potentially global temperature change. The penguin-borne sensors deployed in this study will support the NSF Office of Polar Programs priority: How does society more efficiently observe and measure the polar regions? It represents only the second study to track juvenile Ad\u00e9lie penguins at sea, the first in the Ross Sea region, the first with substantial sample sizes, and the first to assess juvenile survival rates directly, integrating early life factors and environmental conditions to better understand colony growth trajectories. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -150.0, "geometry": "POINT(-172.5 -69)", "instruments": null, "is_usap_dc": true, "keywords": "Ross Island; AMD; MARINE ECOSYSTEMS; Amd/Us; Adelie Penguin; USAP-DC; USA/NSF; FIELD SURVEYS", "locations": "Ross Island", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ballard, Grant; Schmidt, Annie; Varsani, Arvind; Dugger, Katie; Orben, Rachael", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Population Growth at the Southern Extreme: Effects of Early Life Conditions on Adelie penguin Individuals and Colonies", "uid": "p0010179", "west": 165.0}, {"awards": "1852617 Carlstrom, John", "bounds_geometry": "POINT(0 -90)", "dataset_titles": null, "datasets": null, "date_created": "Tue, 11 May 2021 00:00:00 GMT", "description": "This award is to support measurements of the 14-billion-year cosmic microwave background (CMB) light with the South Pole Telescope (SPT) to address some of the most basic and compelling questions in cosmology: What is the origin of the Universe? What is the Universe made of? What is the mass scale of the neutrinos? When did the first stars and galaxies form and how was the Universe reionized? What is the Dark Energy that is accelerating the expansion of the Universe? The SPT plays a unique role in the pursuit of these questions. Its siting is ideal for ultra-low-noise imaging surveys of the sky at the millimeter and sub-millimeter radio wavelengths. The SPT is supported by the NSF\u0027s Amundsen-Scott South Pole Station, which is the best operational site on Earth for mm-wave sky surveys. This unique geographical location allows SPT to obtain extremely sensitive 24/7 observations of targeted low Galactic foreground regions of the sky. The telescope\u0027s third-generation, SPT-3G receiver has 16,000 detectors configured for polarization-sensitive observations in three millimeter-wave bands. The proposed operation includes five years of sky surveys to obtain ultra-deep measurements of a 1500 square degree field and to produce and publicly archive essential data products from the survey. The telescope\u0027s CMB temperatures and polarization power spectrum will play a central role in probing the nature of current tensions among cosmological parameter estimations from different data sets and determining if their explanation requires physics beyond the current LCDM model. The data will help constraining the Dark Energy properties that affect the growth of large structures through both the CMB lensing and abundance of galaxy clusters. The proposed operations also support SPT\u0027s critical role in the Event Horizon Telescope (EHT), a global array of telescopes to image the event horizon around the black hole at the center of Milky Way Galaxy. This award addresses and advances the science objectives and goals of the NSF\u0027s \"Windows on the Universe: The Era of Multi-Messenger Astrophysics\" program. The proposed research activity will also contribute to the training of the next generation of scientists by integrating graduate and undergraduate education with the technology development, astronomical observations, and scientific analyses of SPT data. Research and education are integrated by bringing research activities into the undergraduate classroom and sharing of forefront research with non-scientists extending it beyond the university through a well-established educational network that reaches a wide audience at all levels of the educational continuum. Through museum partnerships and new media, the SPT outreach and educational efforts reach large numbers of individuals while personalizing the experience. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 0.0, "geometry": "POINT(0 -90)", "instruments": "SOLAR/SPACE OBSERVING INSTRUMENTS \u003e RADIO WAVE DETECTORS \u003e RADIO TELESCOPES", "is_usap_dc": true, "keywords": "USAP-DC; AMD; Adelie Penguin; THERMAL INFRARED; South Pole Station; Amd/Us; OBSERVATORIES", "locations": "South Pole Station", "north": -90.0, "nsf_funding_programs": "Antarctic Astrophysics and Geospace Sciences; Antarctic Science and Technology; Polar Special Initiatives", "paleo_time": null, "persons": "Carlstrom, John; Holzapfel, William; Benson, Bradford", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e OBSERVATORIES", "repositories": null, "science_programs": null, "south": -90.0, "title": "South Pole Telescope Operations and Data Products", "uid": "p0010176", "west": 0.0}, {"awards": "1543459 Dugger, Katie; 1543498 Ballard, Grant; 1543541 Ainley, David", "bounds_geometry": "POLYGON((-180 -60,-177 -60,-174 -60,-171 -60,-168 -60,-165 -60,-162 -60,-159 -60,-156 -60,-153 -60,-150 -60,-150 -61.8,-150 -63.6,-150 -65.4,-150 -67.2,-150 -69,-150 -70.8,-150 -72.6,-150 -74.4,-150 -76.2,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178.5 -78,177 -78,175.5 -78,174 -78,172.5 -78,171 -78,169.5 -78,168 -78,166.5 -78,165 -78,165 -76.2,165 -74.4,165 -72.6,165 -70.8,165 -69,165 -67.2,165 -65.4,165 -63.6,165 -61.8,165 -60,166.5 -60,168 -60,169.5 -60,171 -60,172.5 -60,174 -60,175.5 -60,177 -60,178.5 -60,-180 -60))", "dataset_titles": "Adelie penguin banding data 1994-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science; Adelie penguin resighting data 1997-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science; Locations of Adelie penguins from geolocating dive recorders 2017-2019; Penguinscience Data Sharing Website", "datasets": [{"dataset_uid": "601482", "doi": "10.15784/601482", "keywords": "Adelie Penguin; Animal Behavior Observation; Antarctica; Biologging; Biota; Foraging Ecology; Geolocator; GPS Data; Migration; Ross Sea; Winter", "people": "Lescroel, Amelie; Ainley, David; Schmidt, Annie; Ballard, Grant; Lisovski, Simeon; Dugger, Katie", "repository": "USAP-DC", "science_program": null, "title": "Locations of Adelie penguins from geolocating dive recorders 2017-2019", "url": "https://www.usap-dc.org/view/dataset/601482"}, {"dataset_uid": "200278", "doi": "", "keywords": null, "people": null, "repository": "California Avian Data Center", "science_program": null, "title": "Penguinscience Data Sharing Website", "url": "https://data.pointblue.org/apps/penguin_science/"}, {"dataset_uid": "601443", "doi": "10.15784/601443", "keywords": "Adelie Penguin; Antarctica; Biota; Demography; Penguin; Ross Sea; Seabirds", "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin banding data 1994-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "url": "https://www.usap-dc.org/view/dataset/601443"}, {"dataset_uid": "601444", "doi": "10.15784/601444", "keywords": "Adelie Penguin; Antarctica; Biota; Demography; Mark-Recapture; Monitoring; Penguin; Ross Island", "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin resighting data 1997-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "url": "https://www.usap-dc.org/view/dataset/601444"}], "date_created": "Tue, 11 May 2021 00:00:00 GMT", "description": "The Ross Sea region of the Southern Ocean is experiencing growing sea ice cover in both extent and duration. These trends contrast those of the well-studied, western Antarctic Peninsula area, where sea ice has been disappearing. Unlike the latter, little is known about how expanding sea ice coverage might affect the regional Antarctic marine ecosystem. This project aims to better understand some of the potential effects of the changing ice conditions on the marine ecosystem using the widely-recognized indicator species - the Ad\u00e9lie Penguin. A four-year effort will build on previous results spanning 19 seasons at Ross Island to explore how successes or failures in each part of the penguin\u0027s annual cycle are effected by ice conditions and how these carry over to the next annual recruitment cycle, especially with respect to the penguin\u0027s condition upon arrival in the spring. Education and public outreach activities will continually be promoted through the PenguinCam and PenguinScience websites (sites with greater than 1 million hits a month) and \"NestCheck\" (a site that is logged-on by \u003e300 classrooms annually that allows students to follow penguin families in their breeding efforts). To encourage students in pursuing educational and career pathways in the Science Technology Engineering and Math fields, the project will also provide stories from the field in a Penguin Journal, develop classroom-ready activities aligned with New Generation Science Standards, increase the availability of instructional presentations as powerpoint files and short webisodes. The project will provide additional outreach activities through local, state and national speaking engagements about penguins, Antarctic science and climate change. The annual outreach efforts are aimed at reaching over 15,000 students through the website, 300 teachers through presentations and workshops, and 500 persons in the general public. The project also will train four interns (undergraduate and graduate level), two post-doctoral researchers, and a science writer/photographer. The project will accomplish three major goals, all of which relate to how Ad\u00e9lie Penguins adapt to, or cope with environmental change. Specifically the project seeks to determine 1) how changing winter sea ice conditions in the Ross Sea region affect penguin migration, behavior and survival and alter the carry-over effects (COEs) to subsequent reproduction; 2) the interplay between extrinsic and intrinsic factors influencing COEs over multiple years of an individual?s lifetime; and 3) how local environmental change may affect population change via impacts to nesting habitat, interacting with individual quality and COEs. Retrospective analyses will be conducted using 19 years of colony based data and collect additional information on individually marked, known-age and known-history penguins, from new recruits to possibly senescent individuals. Four years of new information will be gained from efforts based at two colonies (Cape Royds and Crozier), using radio frequency identification tags to automatically collect data on breeding and foraging effort of marked, known-history birds to explore penguin response to resource availability within the colony as well as between colonies (mates, nesting material, habitat availability). Additional geolocation/time-depth recorders will be used to investigate travels and foraging during winter of these birds. The combined efforts will allow an assessment of the effects of penguin behavior/success in one season on its behavior in the next (e.g. how does winter behavior affect arrival time and body condition on subsequent breeding). It is at the individual level that penguins are responding successfully, or not, to ongoing marine habitat change in the Ross Sea region.", "east": -150.0, "geometry": "POINT(-172.5 -69)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; AMD; Adelie Penguin; Amd/Us; FIELD INVESTIGATION; MARINE ECOSYSTEMS; Ross Island; USAP-DC; Penguin", "locations": "Ross Island", "north": -60.0, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ballard, Grant; Ainley, David; Dugger, Katie", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "California Avian Data Center; USAP-DC", "science_programs": null, "south": -78.0, "title": "A Full Lifecycle Approach to Understanding Ad\u00e9lie Penguin Response to Changing Pack Ice Conditions in the Ross Sea.", "uid": "p0010177", "west": 165.0}, {"awards": "1543325 Landolt, Scott; 1543377 Seefeldt, Mark", "bounds_geometry": "POLYGON((166.918 -77.8675,167.2997 -77.8675,167.6814 -77.8675,168.0631 -77.8675,168.4448 -77.8675,168.8265 -77.8675,169.2082 -77.8675,169.5899 -77.8675,169.9716 -77.8675,170.3533 -77.8675,170.735 -77.8675,170.735 -77.98145,170.735 -78.0954,170.735 -78.20935,170.735 -78.3233,170.735 -78.43725,170.735 -78.5512,170.735 -78.66515,170.735 -78.7791,170.735 -78.89305,170.735 -79.007,170.3533 -79.007,169.9716 -79.007,169.5899 -79.007,169.2082 -79.007,168.8265 -79.007,168.4448 -79.007,168.0631 -79.007,167.6814 -79.007,167.2997 -79.007,166.918 -79.007,166.918 -78.89305,166.918 -78.7791,166.918 -78.66515,166.918 -78.5512,166.918 -78.43725,166.918 -78.3233,166.918 -78.20935,166.918 -78.0954,166.918 -77.98145,166.918 -77.8675))", "dataset_titles": "Precipitation Observations for the Northwest Ross Ice Shelf - 2017-12 to 2019-11", "datasets": [{"dataset_uid": "601441", "doi": "10.15784/601441", "keywords": "Accumulation; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Meteorology; Precipitation; Ross Ice Shelf; Snow; Snow/ice; Snow/Ice; Weatherstation; Weather Station Data", "people": "Seefeldt, Mark", "repository": "USAP-DC", "science_program": null, "title": "Precipitation Observations for the Northwest Ross Ice Shelf - 2017-12 to 2019-11", "url": "https://www.usap-dc.org/view/dataset/601441"}], "date_created": "Tue, 27 Apr 2021 00:00:00 GMT", "description": "Accurately measuring precipitation in Antarctica is important for purposes such as calculating Antarctica?s mass balance and contribution to global sea level rise, interpreting ice core records, and validating model- and satellite-based precipitation estimates. There is a critical need for reliable, autonomous, long-term measurements of Antarctic precipitation in order to better understand its variability in space in time. Such records over time are essentially absent from the continent, despite their importance. This project will deploy and test instrumentation to measure and record rates of snowfall and blowing snow in Antarctica. Project goals are based on installation of four low-power, autonomous Antarctic precipitation systems (APS) co-located at automatic weather station (AWS) sites in the Ross Island region of Antarctica. The APSs are designed with an integrated sensor approach to provide multiple types of observations of snow accumulation types at the test sites. The APSs are designed to construct an accurate timeline of snow accumulation, and to distinguish the water equivalent of fallen precipitation from surface blowing (lofted) snow, a prime confounding factor. The standard suite of instruments to be deployed includes: precipitation gauge with double Alter windshield, laser disdrometer, laser snow height sensor, optical precipitation detector, anemometer at gauge height, and a visible /infrared webcam. These instruments have previously been shown to work well in cold regions applications.", "east": 170.735, "geometry": "POINT(168.8265 -78.43725)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; AMD; Amd/Us; USA/NSF; SNOW; Wind Data; WEATHER STATIONS; Ross Ice Shelf", "locations": "Ross Ice Shelf", "north": -77.8675, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Seefeldt, Mark; Landolt, Scott", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e WEATHER STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.007, "title": "Collaborative Research: Implementing Low-power, Autonomous Observing Systems to Improve the Measurement and Understanding of Antarctic Precipitation", "uid": "p0010173", "west": 166.918}, {"awards": "1246151 Bromirski, Peter; 1246416 Stephen, Ralph", "bounds_geometry": "POLYGON((-180 -77,-179.5 -77,-179 -77,-178.5 -77,-178 -77,-177.5 -77,-177 -77,-176.5 -77,-176 -77,-175.5 -77,-175 -77,-175 -77.4,-175 -77.8,-175 -78.2,-175 -78.6,-175 -79,-175 -79.4,-175 -79.8,-175 -80.2,-175 -80.6,-175 -81,-175.5 -81,-176 -81,-176.5 -81,-177 -81,-177.5 -81,-178 -81,-178.5 -81,-179 -81,-179.5 -81,180 -81,179 -81,178 -81,177 -81,176 -81,175 -81,174 -81,173 -81,172 -81,171 -81,170 -81,170 -80.6,170 -80.2,170 -79.8,170 -79.4,170 -79,170 -78.6,170 -78.2,170 -77.8,170 -77.4,170 -77,171 -77,172 -77,173 -77,174 -77,175 -77,176 -77,177 -77,178 -77,179 -77,-180 -77))", "dataset_titles": "Collaborative Research: Dynamic Response of the Ross Ice Shelf to Wave-Induced Vibrations and Collaborative Research: Mantle Structure and Dynamics of the Ross Sea from a Passive Seismic Deployment on the Ross Ice Shelf. International Federation of Digital Seismograph Networks. ; Dynamic Response of the Ross Ice Shelf to Wave-induced Vibrations 2015/2016, UNAVCO, Inc., GPS/GNSS Observations Dataset", "datasets": [{"dataset_uid": "200207", "doi": "10.7914/SN/XH_2014", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Collaborative Research: Dynamic Response of the Ross Ice Shelf to Wave-Induced Vibrations and Collaborative Research: Mantle Structure and Dynamics of the Ross Sea from a Passive Seismic Deployment on the Ross Ice Shelf. International Federation of Digital Seismograph Networks. ", "url": "http://www.fdsn.org/networks/detail/XH_2014/"}, {"dataset_uid": "200209", "doi": "10.7283/58E3-GA46", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Dynamic Response of the Ross Ice Shelf to Wave-induced Vibrations 2015/2016, UNAVCO, Inc., GPS/GNSS Observations Dataset", "url": "https://doi.org/10.7283/58E3-GA46"}], "date_created": "Thu, 15 Apr 2021 00:00:00 GMT", "description": "Bromirski/1246151 This award supports a project intended to discover, through field observations and numerical simulations, how ocean wave-induced vibrations on ice shelves in general, and the Ross Ice Shelf (RIS), in particular, can be used (1) to infer spatial and temporal variability of ice shelf mechanical properties, (2) to infer bulk elastic properties from signal propagation characteristics, and (3) to determine whether the RIS response to infragravity (IG) wave forcing observed distant from the front propagates as stress waves from the front or is \"locally\" generated by IG wave energy penetrating the RIS cavity. The intellectual merit of the work is that ocean gravity waves are dynamic elements of the global ocean environment, affected by ocean warming and changes in ocean and atmospheric circulation patterns. Their evolution may thus drive changes in ice-shelf stability by both mechanical interactions, and potentially increased basal melting, which in turn feed back on sea level rise. Gravity wave-induced signal propagation across ice shelves depends on ice shelf and sub-shelf water cavity geometry (e.g. structure, thickness, crevasse density and orientation), as well as ice shelf physical properties. Emphasis will be placed on observation and modeling of the RIS response to IG wave forcing at periods from 75 to 300 s. Because IG waves are not appreciably damped by sea ice, seasonal monitoring will give insights into the year-round RIS response to this oceanographic forcing. The 3-year project will involve a 24-month period of continuous data collection spanning two annual cycles on the RIS. RIS ice-front array coverage overlaps with a synergistic Ross Sea Mantle Structure (RSMS) study, giving an expanded array beneficial for IG wave localization. The ice-shelf deployment will consist of sixteen stations equipped with broadband seismometers and barometers. Three seismic stations near the RIS front will provide reference response/forcing functions, and measure the variability of the response across the front. A linear seismic array orthogonal to the front will consist of three stations in-line with three RSMS stations. Passive seismic array monitoring will be used to determine the spatial and temporal distribution of ocean wave-induced signal sources along the front of the RIS and estimate ice shelf structure, with the high-density array used to monitor and localize fracture (icequake) activity. The broader impacts include providing baseline measurements to enable detection of ice-shelf changes over coming decades which will help scientists and policy-makers respond to the socio-environmental challenges of climate change and sea-level rise. A postdoctoral scholar in interdisciplinary Earth science will be involved throughout the course of the research. Students at Cuyamaca Community College, San Diego County, will develop and manage a web site for the project to be used as a teaching tool for earth science and oceanography classes, with development of an associated web site on waves for middle school students.", "east": 170.0, "geometry": "POINT(177.5 -79)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; GLACIER MOTION/ICE SHEET MOTION; USAP-DC; Amd/Us; AMD; USA/NSF; Iris; Ross Ice Shelf", "locations": "Ross Ice Shelf", "north": -77.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Bromirski, Peter; Gerstoft, Peter; Stephen, Ralph", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "IRIS", "repositories": "IRIS; UNAVCO", "science_programs": null, "south": -81.0, "title": "Collaborative Research: Dynamic Response of the Ross Ice Shelf to Wave-induced Vibrations", "uid": "p0010169", "west": -175.0}, {"awards": "1600823 Halzen, Francis; 2042807 Halzen, Francis; 0639286 Halzen, Francis; 0937462 Halzen, Francis", "bounds_geometry": "POINT(-180 -90)", "dataset_titles": "Amanda 7 Year Data Set; IceCube data releases", "datasets": [{"dataset_uid": "200374", "doi": "", "keywords": null, "people": null, "repository": "IceCube", "science_program": null, "title": "IceCube data releases", "url": "https://icecube.wisc.edu/science/data-releases/"}, {"dataset_uid": "601438", "doi": "10.15784/601438", "keywords": "Amanda-ii; Antarctica; Neutrino; Neutrino Candidate Events; Neutrino Telescope; South Pole", "people": "Halzen, Francis; Riedel, Benedikt", "repository": "USAP-DC", "science_program": "IceCube", "title": "Amanda 7 Year Data Set", "url": "https://www.usap-dc.org/view/dataset/601438"}], "date_created": "Wed, 07 Apr 2021 00:00:00 GMT", "description": "This award funds the continued management and operations (M\u0026O) of the IceCube Neutrino Observatory (ICNO) located at the South Pole Station. The core team of researchers and engineers maintain the existing ICNO infrastructure at the South Pole and home institution, guaranteeing an uninterrupted stream of scientifically unique, high-quality data. The M\u0026O activities are built upon eight highly successful years of managing the overall ICNO operations after the start of science operations in 2008. Construction of ICNO was supported by NSF\u0027s Major Research Equipment and Facilities Construction (MREFC) account and was completed on schedule and within budget in 2010. Effective coordination of efforts by the core M\u0026O personnel and efforts by personnel within the IceCube Collaboration has yielded significant increases in the performance of this cubic-kilometer detector over time. The scientific output from the IceCube Collaboration during the past five years has been outstanding. The broader impacts of the ICNO/M\u0026O activities are strong, involving postdoctoral, graduate, and (in some cases) undergraduate students in the day-today operation \u0026 calibration of the neutrino detector. The extraordinary physics results recently produced by ICNO and its extraordinary location at South Pole have a high potential to excite the imagination of high school children and the public in general at a national and international level. The current ICNO/M\u0026O effort produces better energy and angular resolution information about detected neutrino events, has more efficient data filters and more accurate detector simulations, and enables continuous software development for systems that are needed to acquire and analyze data. This has produced data acquisition and data management systems with high robustness, traceability, and maintainability. The current ICNO/M\u0026O effort includes: (1) resources for both distributed and centrally managed activities, and (2) additional accountability mechanisms for \"in-kind\" and institutional contributions. Both are necessary to ensure that the detector maintains its capability to produce quality scientific data at the level required to achieve the detector\u0027s scientific discovery objectives. Recent ICNO discoveries of cosmic high-energy neutrinos (some reaching energies close to and over 2.5 PeV) and oscillating atmospheric neutrinos in a previously unexplored energy range from 10 to 60 GeV became possible because of the \"state-of-the-art\" detector configuration, excellently supported infrastructure, and cutting-edge science analyses. The ICNO has set limits on Dark Matter annihilations, made precision measurements of the angular distribution of cosmic ray muons, and characterized in detail physical properties of the Antarctic 2.5-km thick ice sheet at South Pole. The discovery of high-energy cosmic neutrinos by IceCube with a flux at the level anticipated for those associated with high-energy gamma- and cosmic-ray accelerators brightens the prospect for identifying the sources of the highest energy particles.", "east": -180.0, "geometry": "POINT(-180 -90)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e ICECUBE", "is_usap_dc": true, "keywords": "USA/NSF; South Pole; OBSERVATORIES; Amd/Us; AMD; GLACIERS/ICE SHEETS; Icecube; Neutrino; USAP-DC", "locations": "South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Astrophysics and Geospace Sciences; Antarctic Astrophysics and Geospace Sciences; Antarctic Astrophysics and Geospace Sciences; Antarctic Astrophysics and Geospace Sciences", "paleo_time": null, "persons": "Halzen, Francis; Karle, Albrecht", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e OBSERVATORIES", "repo": "IceCube", "repositories": "IceCube; USAP-DC", "science_programs": "IceCube", "south": -90.0, "title": "Management and Operations of the IceCube Neutrino Observatory 2021-2026", "uid": "p0010168", "west": -180.0}, {"awards": "2317097 Venturelli, Ryan; 1738989 Venturelli, Ryan", "bounds_geometry": "POLYGON((-114 -74,-112.2 -74,-110.4 -74,-108.6 -74,-106.8 -74,-105 -74,-103.2 -74,-101.4 -74,-99.6 -74,-97.8 -74,-96 -74,-96 -74.2,-96 -74.4,-96 -74.6,-96 -74.8,-96 -75,-96 -75.2,-96 -75.4,-96 -75.6,-96 -75.8,-96 -76,-97.8 -76,-99.6 -76,-101.4 -76,-103.2 -76,-105 -76,-106.8 -76,-108.6 -76,-110.4 -76,-112.2 -76,-114 -76,-114 -75.8,-114 -75.6,-114 -75.4,-114 -75.2,-114 -75,-114 -74.8,-114 -74.6,-114 -74.4,-114 -74.2,-114 -74))", "dataset_titles": "200 MHz ground-penetrating radar from Winkie Nunatak, West Antarctica; Cosmogenic-Nuclide data at ICE-D; Firn and Ice Density at Winkie Nunatak; Ice-penetrating radar data from the northern embayment of the Mt. Murphy massif; Ice-penetrating radar data from the Thwaites Glacier grounding zone; In situ 14C data from a subglacial bedrock core near Pope and Thwaites glaciers; NBP1902 Expedition data; Pine Island Bay Relative Sea-Level Data", "datasets": [{"dataset_uid": "601860", "doi": "10.15784/601860", "keywords": "Antarctica; Cryosphere; Grounding Zone; Ice Penetrating Radar; Thwaites Glacier", "people": "Goehring, Brent; Balco, Greg; Campbell, Seth", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Ice-penetrating radar data from the Thwaites Glacier grounding zone", "url": "https://www.usap-dc.org/view/dataset/601860"}, {"dataset_uid": "601677", "doi": "10.15784/601677", "keywords": "Antarctica; Ice Penetrating Radar; Pine Island Glacier; Subglacial Bedrock", "people": "Braddock, Scott", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "200 MHz ground-penetrating radar from Winkie Nunatak, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/601677"}, {"dataset_uid": "601554", "doi": "10.15784/601554", "keywords": "Antarctica; Pine Island Bay; Radiocarbon; Raised Beaches", "people": "Braddock, Scott; Hall, Brenda", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Pine Island Bay Relative Sea-Level Data", "url": "https://www.usap-dc.org/view/dataset/601554"}, {"dataset_uid": "601834", "doi": "10.15784/601834", "keywords": "Antarctica; Cryosphere; Mount Murphy", "people": "Campbell, Seth; Balco, Greg; Goehring, Brent", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Ice-penetrating radar data from the northern embayment of the Mt. Murphy massif", "url": "https://www.usap-dc.org/view/dataset/601834"}, {"dataset_uid": "601838", "doi": "10.15784/601838", "keywords": "Antarctica; Cryosphere; Density; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Density; Ice Core Records; Snow/ice; Snow/Ice", "people": "Venturelli, Ryan", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Firn and Ice Density at Winkie Nunatak", "url": "https://www.usap-dc.org/view/dataset/601838"}, {"dataset_uid": "200296", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic-Nuclide data at ICE-D", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "601705", "doi": "10.15784/601705", "keywords": "Antarctica; Cosmogenic Radionuclides; Mount Murphy; Subglacial Bedrock", "people": "Balco, Gregory; Venturelli, Ryan; Goehring, Brent", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "In situ 14C data from a subglacial bedrock core near Pope and Thwaites glaciers", "url": "https://www.usap-dc.org/view/dataset/601705"}, {"dataset_uid": "200083", "doi": "10.7284/908147", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1902 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1902"}], "date_created": "Tue, 16 Mar 2021 00:00:00 GMT", "description": "This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. The Thwaites Glacier system dominates the contribution to sea-level rise from Antarctica. Predicting how this system will evolve in coming decades, and thereby its likely contribution to sea level, requires detailed understanding of how it has responded to changes in climate and oceanographic conditions in the past. This project will provide a record of regional sea-level change by establishing chronologies for raised marine beaches as well as the timing and duration of periods of retreat of Thwaites Glacier during the past 10,000 years by sampling and dating bedrock presently covered by Thwaites Glacier via subglacial drilling. Together with climatic and oceanographic conditions from other records, these will provide boundary conditions for past-to-present model simulations as well as those used to predict future glacier changes under a range of climate scenarios. Specifically, the project will test the hypothesis--implied by existing geological evidence from the region--that present rapid retreat of the Thwaites Glacier system is reversible. The team aims to utilize two approaches: 1. To reconstruct relative sea level during the Holocene, it will map and date raised marine and shoreline deposits throughout Pine Island Bay. Chronological constraints on sea-level change will be provided by radiocarbon dating of organic material in landforms and sediments that are genetically related to past sea level, such as shell fragments, bones of marine fauna, and penguin guano. 2. To obtain geological evidence for past episodes of grounding-line retreat, the team will apply cosmogenic-nuclide exposure-dating of subglacial bedrock. Using drill systems recently developed for subglacial bedrock recovery, the team will obtain subglacial bedrock from sites where ice thickness is dynamically linked to grounding-line position in the Thwaites system (specifically in the Hudson Mountains, and near Mount Murphy). Observation of significant cosmogenic-nuclide concentrations--the team will primarily measure Beryllium-10 and in situ Carbon-14--in these samples would provide direct, unambiguous evidence for past episodes of thinning linked to grounding-line retreat as well as constraints on their timing and duration. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -96.0, "geometry": "POINT(-105 -75)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; FIELD INVESTIGATION; GLACIERS/ICE SHEETS; GLACIAL LANDFORMS; LABORATORY; Amd/Us; USAP-DC; GLACIATION; Amundsen Sea; USA/NSF", "locations": "Amundsen Sea", "north": -74.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Goehring, Brent; Hall, Brenda; Campbell, Seth; Venturelli, Ryan A; Balco, Gregory", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "ICE-D; R2R; USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -76.0, "title": "NSF-NERC: Geological History Constraints on the Magnitude of Grounding Line Retreat in the Thwaites Glacier System", "uid": "p0010165", "west": -114.0}, {"awards": "2048351 Lindow, Julia", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 26 Feb 2021 00:00:00 GMT", "description": "Part I: Nontechnical Antarcticas ice sheets constitute the largest ice mass on Earth, with approximately 53 meters of sea level equivalent stored in the East Antarctic Ice Sheet alone. The history of the East Antarctic Ice Sheet is therefore important to understanding and predicting changes in sea level and Earths climate. There is conflicting evidence regarding long-term stability of the East Antarctic Ice Sheet, over the last twenty million years. To better understand past ice sheet changes, together with the history of the Transantarctic Mountains, accurate time scales are needed. One of the few dating methods applicable to the Antarctic glacial deposits, that record past ice sheet changes, is the measurement of rare isotopes produced by cosmic rays in surface rock samples, referred to as cosmogenic nuclides. Whenever a rock surface is exposed/free of cover, cosmic rays produce rare isotopes such as helium-3, beryllium-10, and neon-21within the minerals. This project will involve measurement of all three isotopes in some of the oldest glacial deposits found at high elevation in the Transantarctic Mountains. Because the amount of each isotope is directly linked to the exposure time, this can be used to calculate the age of a surface. This method requires knowledge of the rates that cosmic radiation produces each isotope, which depends upon mineral composition, and is presently a limitation of the method. The goal of this project is to advance and enhance existing measurement methods and expand the range of possibilities in surface dating with new measurements of all three isotopes in pyroxene, a mineral that is commonly found throughout the Transantarctic Mountains. This technological progress will allow a better application of the surface exposure dating method, which in turn will help to reconstruct Antarctic ice sheet history and provide valuable knowledge of former ice-extent. Understanding Antarcticas ice-sheet history is crucial to predict its influence on past and future sea level changes. Part II: Technical Description Measurements of in-situ produced cosmogenic nuclides in Antarctic surficial rock samples provide unique time scales for glacial and landscape evolution processes. However, due to analytical challenges, pyroxene-bearing and widely distributed lithologies like the Ferrar dolerite of the Transantarctic Mountains, are underutilized. This proposal aims to changes this and to improve the cosmogenic nuclide methodologies for stable isotopes (21Ne and 3He) and radioactive nuclides (10Be) in pyroxenes. Proposed methodological improvements will be directly applicable to erosion rates and deposition ages of important glacial deposits, such as the controversial Sirius Group tills, and also to younger glacial features. Bennett Platform is the focus of this study because it is one of the southern-most Sirius Group outcrops along the Transantarctic Mountains, where cosmogenic ages are sparse. Preliminary measurements demonstrate large discrepancies between 3He and 21Ne age determinations in Sirius Group pyroxenes. One possible explanation is composition dependence of the 21Ne production rates. Coupled measurements of 3He, 21Ne, and 10Be in well-characterized pyroxene mineral separates from Ferrar dolerite will be used to better constrain the production rates, major element and trace element dependencies, the assumptions of the method, and ultimately advance the application of cosmogenic nuclides to mafic Antarctic lithologies. The main goals of this study are to improve measurement protocols for 10Be in pyroxene, and the determination of the composition dependence of 21Ne production rates by measuring mineral compositions (by electron microprobe), and nuclide concentrations in mineral pairs from young lava flows. Further aims are the validation of the nucleogenic contributions and the effects of helium diffusive loss through measurements of 3He/21Ne production ratios, combined with measurements of shielded samples of the Ferrar dolerite. Combined measurements of 3He, 21Ne and 10Be in pyroxenes have rarely been published for individual samples in Antarctica. The new and unique measurements of this study will advance the applicability of in-situ produced cosmogenic nuclides to both young and ancient Antarctic surfaces. The study will be performed using existing samples: no field work is requested. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; AMD; FIELD INVESTIGATION; LABORATORY; Transantarctic Mountains; USAP-DC; GLACIAL LANDFORMS; Amd/Us", "locations": "Transantarctic Mountains", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Lindow, Julia; Kurz, Mark D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "New Cosmogenic 21Ne and 10Be Measurements in the Transantarctic Mountains", "uid": "p0010163", "west": null}, {"awards": "1738992 Pettit, Erin C; 1929991 Pettit, Erin C", "bounds_geometry": "POLYGON((-114 -74,-113 -74,-112 -74,-111 -74,-110 -74,-109 -74,-108 -74,-107 -74,-106 -74,-105 -74,-104 -74,-104 -74.2,-104 -74.4,-104 -74.6,-104 -74.8,-104 -75,-104 -75.2,-104 -75.4,-104 -75.6,-104 -75.8,-104 -76,-105 -76,-106 -76,-107 -76,-108 -76,-109 -76,-110 -76,-111 -76,-112 -76,-113 -76,-114 -76,-114 -75.8,-114 -75.6,-114 -75.4,-114 -75.2,-114 -75,-114 -74.8,-114 -74.6,-114 -74.4,-114 -74.2,-114 -74))", "dataset_titles": "AMIGOS-IIIa \"Cavity\" Aquadopp current data Jan 2020 - Mar 2021; AMIGOS-IIIa \"Cavity\" Seabird CTD data Jan 2020 - Dec 2021; AMIGOS-III Cavity and Channel Snow Height and Thermistor Snow Temperature Data; AMIGOS-IIIc \"Channel\" Aquadopp current data Jan 2020 - Mar 2021; AMIGOS-IIIc \"Channel\" Seabird CTD data Jan 2020 - Dec 2021; CTD data from the NBP 19/02 cruise as part of the TARSAN project in the Amundsen Sea during austral summer 2018/2019; Dotson-Crosson Ice Shelf data from a tale of two ice shelves paper; Pinning-point shear-zone fractures in Thwaites Eastern Ice Shelf (2002 - 2022); Sentinel-1-derived monthly-averaged velocity components from Thwaites Eastern Ice Shelf, 2016 - 2022; SIIOS Temporary Deployment; Sub-ice-shelf seafloor elevation derived from point-source active-seismic data on Thwaites Eastern Ice Shelf and Dotson Ice Shelf, December 2019 and January 2020; Thwaites Eastern Ice Shelf GPS displacements; Thwaites Glacier grounding lines for 2014 and 2019/20 from height above flotation; Two-year velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2001-2020; Visala WXT520 weather station data at the Cavity and Channel AMIGOS-III sites; Yearly velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2013-2022", "datasets": [{"dataset_uid": "200321", "doi": "10.5285/e338af5d-8622-05de-e053-6c86abc06489", "keywords": null, "people": null, "repository": "British Oceanographic Data Centre", "science_program": null, "title": "CTD data from the NBP 19/02 cruise as part of the TARSAN project in the Amundsen Sea during austral summer 2018/2019", "url": "https://www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/e338af5d-8622-05de-e053-6c86abc06489/"}, {"dataset_uid": "601549", "doi": "10.15784/601549", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Pine Island Bay; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Visala WXT520 weather station data at the Cavity and Channel AMIGOS-III sites", "url": "https://www.usap-dc.org/view/dataset/601549"}, {"dataset_uid": "601499", "doi": "10.15784/601499", "keywords": "Amundsen Sea; Antarctica; Glaciology; Grounding Line; Ice Shelf; Thwaites Glacier", "people": "Wild, Christian; Scambos, Ted; Truffer, Martin; Muto, Atsu; Pettit, Erin; Alley, Karen", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Thwaites Glacier grounding lines for 2014 and 2019/20 from height above flotation", "url": "https://www.usap-dc.org/view/dataset/601499"}, {"dataset_uid": "601548", "doi": "10.15784/601548", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIc \"Channel\" Aquadopp current data Jan 2020 - Mar 2021", "url": "https://www.usap-dc.org/view/dataset/601548"}, {"dataset_uid": "601547", "doi": "10.15784/601547", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIa \"Cavity\" Aquadopp current data Jan 2020 - Mar 2021", "url": "https://www.usap-dc.org/view/dataset/601547"}, {"dataset_uid": "601552", "doi": "10.15784/601552", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Pine Island Bay; Snow Accumulation; Snow Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-III Cavity and Channel Snow Height and Thermistor Snow Temperature Data", "url": "https://www.usap-dc.org/view/dataset/601552"}, {"dataset_uid": "601545", "doi": "10.15784/601545", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Salinity; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIc \"Channel\" Seabird CTD data Jan 2020 - Dec 2021", "url": "https://www.usap-dc.org/view/dataset/601545"}, {"dataset_uid": "200204", "doi": "https://doi.org/10.7914/SN/1L_2019", "keywords": null, "people": null, "repository": "International Federation of Digital Seismograph Networks", "science_program": null, "title": "SIIOS Temporary Deployment", "url": "http://www.fdsn.org/networks/detail/1L_2019/"}, {"dataset_uid": "601544", "doi": "10.15784/601544", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Salinity; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIa \"Cavity\" Seabird CTD data Jan 2020 - Dec 2021", "url": "https://www.usap-dc.org/view/dataset/601544"}, {"dataset_uid": "601827", "doi": "10.15784/601827", "keywords": "Antarctica; Cryosphere; Dotson Ice Shelf; Thwaites Glacier", "people": "Alley, Karen; Wallin, Bruce; Pomraning, Dale; Wild, Christian; Scambos, Ted; Truffer, Martin; Pettit, Erin; Roccaro, Alexander; Muto, Atsuhiro", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Sub-ice-shelf seafloor elevation derived from point-source active-seismic data on Thwaites Eastern Ice Shelf and Dotson Ice Shelf, December 2019 and January 2020", "url": "https://www.usap-dc.org/view/dataset/601827"}, {"dataset_uid": "601578", "doi": "10.15784/601578", "keywords": "Antarctica; Dotson Ice Shelf; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology", "people": "Wild, Christian; Segabinazzi-Dotto, Tiago", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Dotson-Crosson Ice Shelf data from a tale of two ice shelves paper", "url": "https://www.usap-dc.org/view/dataset/601578"}, {"dataset_uid": "601478", "doi": "10.15784/601478", "keywords": "Antarctica; Glaciology; Ice Shelf; Ice Velocity; Strain Rate; Thwaites Glacier", "people": "Pettit, Erin; Truffer, Martin; Scambos, Ted; Wild, Christian; Klinger, Marin; Wallin, Bruce; Alley, Karen; Muto, Atsu", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Two-year velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2001-2020", "url": "https://www.usap-dc.org/view/dataset/601478"}, {"dataset_uid": "601904", "doi": "10.15784/601904", "keywords": "Antarctica; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Glaciology; Ice Shelf; Remote Sensing; Satellite Imagery; Thwaites; Thwaites Glacier; Velocity", "people": "Banerjee, Debangshu; Lilien, David; Truffer, Martin; Luckman, Adrian; Wild, Christian; Pettit, Erin; Scambos, Ted; Muto, Atsuhiro; Alley, Karen", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Yearly velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2013-2022", "url": "https://www.usap-dc.org/view/dataset/601904"}, {"dataset_uid": "601903", "doi": "10.15784/601903", "keywords": "Antarctica; Cryosphere; Fractures; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Thwaites", "people": "Banerjee, Debangshu; Lilien, David; Truffer, Martin; Luckman, Adrian; Wild, Christian; Pettit, Erin; Scambos, Ted; Muto, Atsuhiro; Alley, Karen", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Pinning-point shear-zone fractures in Thwaites Eastern Ice Shelf (2002 - 2022)", "url": "https://www.usap-dc.org/view/dataset/601903"}, {"dataset_uid": "601925", "doi": "10.15784/601925", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GNSS; Ice Shelf; Ice Velocity; Thwaites Glacier", "people": "Pettit, Erin; Scambos, Ted; Truffer, Martin; Alley, Karen; Wild, Christian", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Thwaites Eastern Ice Shelf GPS displacements", "url": "https://www.usap-dc.org/view/dataset/601925"}, {"dataset_uid": "601914", "doi": null, "keywords": "Antarctica; Cryosphere; Glaciology; Ice Shelf; Thwaites Glacier; Velocity", "people": "Alley, Karen; Muto, Atsuhiro; Wild, Christian; Truffer, Martin; Luckman, Adrian; Banerjee, Debangshu; Lilien, David; Scambos, Ted; Pettit, Erin", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Sentinel-1-derived monthly-averaged velocity components from Thwaites Eastern Ice Shelf, 2016 - 2022", "url": "https://www.usap-dc.org/view/dataset/601914"}], "date_created": "Mon, 22 Feb 2021 00:00:00 GMT", "description": "This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Thwaites and neighboring glaciers in the Amundsen Sea Embayment are rapidly losing mass in response to recent climate warming and related changes in ocean circulation. Mass loss from the Amundsen Sea Embayment could lead to the eventual collapse of the West Antarctic Ice Sheet, raising the global sea level by up to 2.5 meters (8 feet) in as short as 500 years. The processes driving the loss appear to be warmer ocean circulation and changes in the width and flow speed of the glacier, but a better understanding of these changes is needed to refine predictions of how the glacier will evolve. One highly sensitive process is the transitional flow of glacier ice from land onto the ocean to become a floating ice shelf. This flow of ice from grounded to floating is affected by changes in air temperature and snowfall at the surface; the speed and thickness of ice feeding it from upstream; and the ocean temperature, salinity, bathymetry, and currents that the ice flows into. The project team will gather new measurements of each of these local environmental conditions so that it can better predict how future changes in air, ocean, or the ice will affect the loss of ice to the ocean in this region. Current and anticipated near-future mass loss from Thwaites Glacier and nearby Amundsen Sea Embayment region is mainly attributed to reduction in ice-shelf buttressing due to sub-ice-shelf melting by intrusion of relatively warm Circumpolar Deep Water into sub-ice-shelf cavities. Such predictions for mass loss, however, still lack understanding of the dominant processes at and near grounding zones, especially their spatial and temporal variability, as well as atmospheric and oceanic drivers of these processes. This project aims to constrain and compare these processes for the Thwaites and the Dotson Ice Shelves, which are connected through upstream ice dynamics, but influenced by different submarine troughs. The team\u0027s specific objectives are to: 1) install atmosphere-ice-ocean multi-sensor remote autonomous stations on the ice shelves for two years to provide sub-daily continuous observations of concurrent oceanic, glaciologic, and atmospheric conditions; 2) measure ocean properties on the continental shelf adjacent to ice-shelf fronts (using seal tagging, glider-based and ship-based surveys, and existing moored and conductivity-temperature-depth-cast data), 3) measure ocean properties into sub-ice-shelf cavities (using autonomous underwater vehicles) to detail ocean transports and heat fluxes; and 4) constrain current ice-shelf and sub-ice-shelf cavity geometry, ice flow, and firn properties for the ice-shelves (using radar, active-source seismic, and gravimetric methods) to better understand the impact of ocean and atmosphere on the ice-sheet change. The team will also engage the public and bring awareness to this rapidly changing component of the cryosphere through a \"Live from the Ice\" social media campaign in which the public can follow the action and data collection from the perspective of tagged seals and autonomous stations. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -104.0, "geometry": "POINT(-109 -75)", "instruments": null, "is_usap_dc": true, "keywords": "Thwaites Glacier; FIELD SURVEYS; GLACIERS/ICE SHEETS", "locations": "Thwaites Glacier", "north": -74.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Truffer, Martin; Scambos, Ted; Muto, Atsu; Heywood, Karen; Boehme, Lars; Hall, Robert; Wahlin, Anna; Lenaerts, Jan; Pettit, Erin", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "British Oceanographic Data Centre", "repositories": "British Oceanographic Data Centre; International Federation of Digital Seismograph Networks; USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -76.0, "title": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment", "uid": "p0010162", "west": -114.0}, {"awards": "1643353 Christianson, Knut; 1643301 Gerbi, Christopher", "bounds_geometry": null, "dataset_titles": "ImpDAR: an impulse radar processor; SeidarT; South Pole Lake ApRES Radar; South Pole Lake GNSS; South Pole Lake: ground-based ice-penetrating radar", "datasets": [{"dataset_uid": "200203", "doi": "", "keywords": null, "people": null, "repository": "Uni. Washington ResearchWorks Archive", "science_program": null, "title": "South Pole Lake: ground-based ice-penetrating radar", "url": "http://hdl.handle.net/1773/45293"}, {"dataset_uid": "601503", "doi": "10.15784/601503", "keywords": "Antarctica; Apres; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; South Pole; Subglacial Lakes; Vertical Velocity", "people": "Hills, Benjamin", "repository": "USAP-DC", "science_program": null, "title": "South Pole Lake ApRES Radar", "url": "https://www.usap-dc.org/view/dataset/601503"}, {"dataset_uid": "200244", "doi": " https://zenodo.org/badge/latestdoi/382590632", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "SeidarT", "url": "https://github.com/UMainedynamics/SeidarT"}, {"dataset_uid": "601502", "doi": "10.15784/601502", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GNSS; GPS; GPS Data; South Pole; Subglacial Lakes", "people": "Hills, Benjamin", "repository": "USAP-DC", "science_program": null, "title": "South Pole Lake GNSS", "url": "https://www.usap-dc.org/view/dataset/601502"}, {"dataset_uid": "200202", "doi": "http://doi.org/10.5281/zenodo.3833057", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "ImpDAR: an impulse radar processor", "url": "https://www.github.com/dlilien/ImpDAR"}], "date_created": "Wed, 17 Feb 2021 00:00:00 GMT", "description": "Gerbi/1643301 This award supports a project to develop software that will allow researchers considering seismic or radar field surveys to test, ahead of time, whether the data they plan to collect will have sufficient resolution to measure the natural variations in the mechanical properties of ice, which determine the response of flowing ice to changing climatic conditions. The mechanical properties of ice depend largely on the temperature and the orientation of the crystals that make up the ice. The most accurate method for measuring ice crystal orientation and temperature is through drilling and direct analysis of an ice core. However, this method is very costly, time-consuming, and limited in spatial coverage. Geophysical techniques, such as seismic and radar, can cover much more area, but we have little knowledge about the practical limitations of these techniques as they relate to calculating mechanical properties. This project addresses that knowledge gap through construction of a computational toolbox that will allow accurate assessment of the ability of geophysical surveys to image crystal orientation and ice temperature. Researchers can then use these tools to adjust the field survey plans to maximize the return on investment. By working to improve the efficiency and effectiveness of future geophysical work related to glacial flow, this proposal will improve scientists? ability to quantify sea-level variations within the larger context of climate change. The project includes building new user-friendly, publicly accessible software and instructional modules. The work will provide training for graduate and undergraduate students, who will play a role in research and develop instructional materials. Ice viscosity, the resistance of ice to flow, exerts significant control over ice velocity. Therefore, mapping ice viscosity is important for understanding the current and future behavior of glaciers and ice sheets. To do so, scientists must determine the temperature and crystal orientation fabric throughout the ice. Seismic and radar techniques can survey large areas quickly, and thus are promising, yet not fully tested, methods to efficiently measure the thermal and mechanical structure of flowing ice. As part of this project, scientists will develop and use a computational framework to quantify the degree to which seismic and radar techniques can resolve the crystal orientation fabric and temperature of streaming ice, and then test how sensitive ice flow is to the attendant uncertainty. To meet these goals, a numerical toolbox will be built which will allow the glacier/ice stream geometry and physical properties (temperature, crystal orientation fabric, density and acidity) to be varied. The toolbox will be capable of both creating synthetic radar and seismic profiles through forward modeling and inverting synthetic profiles to allow evaluation of how well geophysical techniques can image the original thermal and mechanical structure. These simulated radar and seismic data will allow scientists to better quantify the influence of the variability in mechanical properties of the ice on flow velocities and patterns. The results of this work will guide planning for future field campaigns, making them more effective and efficient. This project does not require fieldwork in the Antarctic.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "United States Of America; GLACIERS/ICE SHEETS; USAP-DC; GLACIER MOTION/ICE SHEET MOTION; GLACIER THICKNESS/ICE SHEET THICKNESS; ICE SHEETS; South Pole; USA/NSF; AMD; GLACIER TOPOGRAPHY/ICE SHEET TOPOGRAPHY; FIELD SURVEYS; Amd/Us", "locations": "South Pole; United States Of America", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Christianson, Knut; Gerbi, Christopher; Campbell, Seth; Vel, Senthil", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "Uni. Washington ResearchWorks Archive", "repositories": "GitHub; Uni. Washington ResearchWorks Archive; USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Computational Methods Supporting Joint Seismic and Radar Inversion for Ice Fabric and Temperature in Streaming Flow", "uid": "p0010160", "west": null}, {"awards": "1443525 Schwartz, Susan", "bounds_geometry": "POLYGON((-165 -83.8,-163 -83.8,-161 -83.8,-159 -83.8,-157 -83.8,-155 -83.8,-153 -83.8,-151 -83.8,-149 -83.8,-147 -83.8,-145 -83.8,-145 -83.92,-145 -84.04,-145 -84.16,-145 -84.28,-145 -84.4,-145 -84.52,-145 -84.64,-145 -84.76,-145 -84.88,-145 -85,-147 -85,-149 -85,-151 -85,-153 -85,-155 -85,-157 -85,-159 -85,-161 -85,-163 -85,-165 -85,-165 -84.88,-165 -84.76,-165 -84.64,-165 -84.52,-165 -84.4,-165 -84.28,-165 -84.16,-165 -84.04,-165 -83.92,-165 -83.8))", "dataset_titles": "YD (2012-2017): Whillians Ice Stream Subglacial Access Research Drilling", "datasets": [{"dataset_uid": "200201", "doi": "https://doi.org/10.7914/SN/YD_2012", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "YD (2012-2017): Whillians Ice Stream Subglacial Access Research Drilling", "url": "http://www.fdsn.org/networks/detail/YD_2012/"}], "date_created": "Fri, 12 Feb 2021 00:00:00 GMT", "description": "This project evaluates the role that water and rock/ice properties at the base of a fast moving glacier, or ice stream, play in controlling its motion. In Antarctica, where surface melting is limited, the speed of ice flow through the grounding zone (where ice on land detaches, and begins to float on ocean water) controls the rate at which glaciers contribute to sea level rise. The velocity of the ice stream is strongly dependent on resistance from the bed, so understanding the processes that control resistance to flow is critical in predicting ice sheet mass balance. In fact, the Intergovernmental Panel on Climate Change (IPCC) recognized this and stated in their 4th assessment report that reliable predictions of future global sea-level rise require improved understanding of ice sheet dynamics, which include basal controls on fast ice motion. Drilling to obtain direct observations of basal properties over substantial regions is prohibitively expensive. This project uses passive source seismology to \"listen to\" and analyze sounds generated by water flow and/or sticky spots at the ice/bed interface to evaluate the role that basal shear stress plays in ice flow dynamics. Because polar science is captivating to both scientists and the general public, it serves as an excellent topic to engage students at all levels with important scientific concepts and processes. In conjunction with this research, polar science educational materials will be developed to be used by students spanning middle school through the University level. Starting in summer 2015, a new polar science class for high school students in the California State Summer School for Mathematics and Science (COSMOS) will be offered at the University of California-Santa Cruz. This curriculum will be shared with the MESA Schools Program, a Santa Cruz and Monterey County organization that runs after-school science clubs led by teachers at several local middle and high schools with largely minority and underprivileged populations. This proposal extends the period of borehole and surface geophysical monitoring of the Whillians Ice Stream (WIS) established under a previous award for an additional 2 years. Data from the WIS network demonstrated that basal heterogeneity, revealed by microseismicity, shows variation over scales of 100\u0027s of meters. An extended observation period will allow detailed seismic characterization of ice sheet bed properties over a crucial length scale comparable to the local ice thickness. Due to the fast ice velocity (\u003e300 m/year), a single instrumented location will move approximately 1 km during the extended 3 year operational period, allowing continuous monitoring of seismic emissions as the ice travels over sticky spots and other features in the bed (e.g., patches of till or subglacial water bodies). Observations over ~1km length scales will help to bridge a crucial gap in current observations of basal conditions between extremely local observations made in boreholes and remote observations of basal shear stress inferred from inversions of ice surface velocity data.", "east": -145.0, "geometry": "POINT(-155 -84.4)", "instruments": null, "is_usap_dc": true, "keywords": "Whillans Ice Stream; GLACIERS/ICE SHEETS; FIELD INVESTIGATION", "locations": "Whillans Ice Stream", "north": -83.8, "nsf_funding_programs": "Antarctic Integrated System Science", "paleo_time": null, "persons": "Tulaczyk, Slawek; Schwartz, Susan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "IRIS", "repositories": "IRIS", "science_programs": "WISSARD", "south": -85.0, "title": "High Resolution Heterogeneity at the Base of Whillans Ice Stream and its Control on Ice Dynamics", "uid": "p0010159", "west": -165.0}, {"awards": "1643795 Mikesell, Thomas", "bounds_geometry": "POLYGON((-134.5 -75,-130.85 -75,-127.2 -75,-123.55 -75,-119.9 -75,-116.25 -75,-112.6 -75,-108.95 -75,-105.3 -75,-101.65 -75,-98 -75,-98 -75.85,-98 -76.7,-98 -77.55,-98 -78.4,-98 -79.25,-98 -80.1,-98 -80.95,-98 -81.8,-98 -82.65,-98 -83.5,-101.65 -83.5,-105.3 -83.5,-108.95 -83.5,-112.6 -83.5,-116.25 -83.5,-119.9 -83.5,-123.55 -83.5,-127.2 -83.5,-130.85 -83.5,-134.5 -83.5,-134.5 -82.65,-134.5 -81.8,-134.5 -80.95,-134.5 -80.1,-134.5 -79.25,-134.5 -78.4,-134.5 -77.55,-134.5 -76.7,-134.5 -75.85,-134.5 -75))", "dataset_titles": "2D shear-wave velocity model across the West Antarctic Rift System from POLENET-ANET seismic data", "datasets": [{"dataset_uid": "601423", "doi": "10.15784/601423", "keywords": "Antarctica; Crust; Moho; Seismic Tomography; Seismology; Seismometer; Shear Wave Velocity; Surface Wave Dispersion; West Antarctica", "people": "Mikesell, Dylan", "repository": "USAP-DC", "science_program": "POLENET", "title": "2D shear-wave velocity model across the West Antarctic Rift System from POLENET-ANET seismic data", "url": "https://www.usap-dc.org/view/dataset/601423"}], "date_created": "Fri, 15 Jan 2021 00:00:00 GMT", "description": "Non-technical description: Global sea-level rise is a significant long-term risk for human population and infrastructure. To mitigate and properly react to this threat, society needs accurate predictions of future sea-level variations. The largest uncertainty in these predictions comes from estimating the amount of ice that melts from polar ice sheets, especially from the West Antarctica ice sheet. Right now, scientists estimate the mass variations of ice sheets in two ways. The first way is using airplanes and repeated flybys to monitor the variation of ice sheet topography and estimate the gain or loss of ice. The second way is using satellite measurements to track gravity fluctuations that correlate with the variation of ice sheet volume. Both techniques work, but both have limitations including cost and resolution. This project uses a passive seismic monitoring method to estimate the change in weight of the ice pressing on the Earth\u0027s crust. One advantage of this seismic method is that vibrations are recorded continuously; therefore, it is possible to monitor the changes of the ice sheet with better temporal resolution. The sensitivity of the seismic waves also provides a picture of the structure of the interface between the ice and the rocks beneath the ice, where most of the dynamics and changes of the ice sheet take place. This information is difficult to obtain with other methods. In this project, the researchers will process and analyze previously acquired seismic data from the POLENET-ANET array, measuring variations in seismic wave speed through time to assess the amount of ice lost or gained. They will also determine important information about the mechanical properties at the ice-rock interface. The project will support a postdoctoral scholar to develop this new branch of seismological research and more generally the field of environmental seismology. This project will also support the education of a PhD student who will work in close collaboration with the postdoctoral scholar and the two researchers. Technical description: The researchers plan to monitor ice-mass variations in the West-Antarctic ice sheet by measuring and interpreting seismic velocity changes in crust beneath the ice sheet. This project will extend similar work already completed on the Greenland ice sheet, where ice-mass fluctuations were found to lead to poroelastic changes in the crust and modify the seismic-wave velocity. This investigation uses a passive seismology method, whereby repetitive seismic noise correlation functions are computed from records of Earth\u0027s ambient seismic noise field. Measurements of the temporal changes in the correlation functions are made and then related to variations of the poroelastic properties of the crust. The physical model for the relationship between ice-mass change and surface-wave velocity change has previously been verified using GRACE satellite data in Greenland. This project will specifically focus on the recent rapid ice loss in Western Antarctica using data from the POLENET-ANET seismic network. A comparison between the ice-sheet behaviors in Greenland and Antarctica will provide clarification about the underlying physical processes responsible for the observed seismic velocity changes. This new method will be a transformative approach to monitor ice sheets with the potential for much higher spatial and temporal resolution than existing methods. The fact that this method relies on seismic waves makes the approach completely independent from other modern ice-sheet monitoring techniques.", "east": -98.0, "geometry": "POINT(-116.25 -79.25)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; SEISMIC SURFACE WAVES; West Antarctica", "locations": "West Antarctica", "north": -75.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Mordret, Aurelien; Mikesell, Dylan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "POLENET", "south": -83.5, "title": "Collaborative Research: Monitoring Antarctic Ice Sheet Changes with Ambient Seismic Noise Methods", "uid": "p0010155", "west": -134.5}, {"awards": "1644196 Cziko, Paul", "bounds_geometry": "POLYGON((163.47 -77.14,163.803 -77.14,164.136 -77.14,164.469 -77.14,164.802 -77.14,165.135 -77.14,165.468 -77.14,165.801 -77.14,166.134 -77.14,166.467 -77.14,166.8 -77.14,166.8 -77.216,166.8 -77.292,166.8 -77.368,166.8 -77.444,166.8 -77.52,166.8 -77.596,166.8 -77.672,166.8 -77.748,166.8 -77.824,166.8 -77.9,166.467 -77.9,166.134 -77.9,165.801 -77.9,165.468 -77.9,165.135 -77.9,164.802 -77.9,164.469 -77.9,164.136 -77.9,163.803 -77.9,163.47 -77.9,163.47 -77.824,163.47 -77.748,163.47 -77.672,163.47 -77.596,163.47 -77.52,163.47 -77.444,163.47 -77.368,163.47 -77.292,163.47 -77.216,163.47 -77.14))", "dataset_titles": "High-resolution nearshore benthic seawater temperature from around McMurdo Sound, Antarctica (2017-2019); Long-Term broadband underwater acoustic recordings from McMurdo Sound, Antarctica (2017-2019); Long-term underwater images from around a single mooring site in McMurdo Sound, Antarctica (2017-2019)", "datasets": [{"dataset_uid": "601420", "doi": "10.15784/601420", "keywords": "Antarctica; Benthic Ecology; CTD; Depth; McMurdo Sound; Oceanography; Oceans; Physical Oceanography; Pressure; Salinity; Seawater Measurements; Seawater Temperature; Supercooling; Tides", "people": "Cziko, Paul", "repository": "USAP-DC", "science_program": null, "title": "High-resolution nearshore benthic seawater temperature from around McMurdo Sound, Antarctica (2017-2019)", "url": "https://www.usap-dc.org/view/dataset/601420"}, {"dataset_uid": "601416", "doi": "10.15784/601416", "keywords": "Antarctica; Bioacoustics; Biota; Hydroacoustics; Killer Whales; Leptonychotes Weddellii; McMurdo Sound; Oceans; Orcinus Orca; Sea Ice; Weddell Seal; Whales", "people": "Cziko, Paul", "repository": "USAP-DC", "science_program": null, "title": "Long-Term broadband underwater acoustic recordings from McMurdo Sound, Antarctica (2017-2019)", "url": "https://www.usap-dc.org/view/dataset/601416"}, {"dataset_uid": "601417", "doi": "10.15784/601417", "keywords": "Antarctica; Benthic Ecology; Benthic Invertebrates; Biota; McMurdo Sound; Notothenioid; Notothenioid Fishes; Photo/video; Photo/Video; Rocky Reef Community; Soft-Bottom Community; Timelaps Images", "people": "Cziko, Paul", "repository": "USAP-DC", "science_program": null, "title": "Long-term underwater images from around a single mooring site in McMurdo Sound, Antarctica (2017-2019)", "url": "https://www.usap-dc.org/view/dataset/601417"}], "date_created": "Tue, 15 Dec 2020 00:00:00 GMT", "description": "Notothenioid fishes live in the world\u0027s coldest marine waters surrounding Antarctica and have evolved strategies to avoid freezing. Past studies have shown that most Antarctic notothenioids produce special antifreeze proteins that prevent the growth of ice crystals that enter the body. While these proteins help prevent individuals from being killed by growing ice crystals, it is unclear how these fish avoid the accumulation of these small ice crystals inside their tissues over time. This project will observe how ice crystal accumulation relates to the harshness of the fish\u0027s habitat and the fish\u0027s behavior within different habitats of McMurdo Sound, Antarctica. The researchers will collect fishes and ocean observations at different field sites that cover a range of habitat severity in terms of temperature and iciness. Researchers will install an underwater ocean observatory near McMurdo Station which will include a HD video camera and hydrophone. The observatory will allow continuous monitoring of ocean conditions and fish behavior that will help explain the conditions and behaviors that contribute to the acquisition and accrual of ice inside the body. Acoustic and video data from the observatory will be available to other scientists and to the public. The project will advance understanding of the many challenges life faces in extreme cold environments. This work continues a line of inquiry that has resulted in the discovery of potential medical and food preservation applications. Hundreds of antifreeze protein (AFP) structure-function studies have been conducted in the laboratory, providing a basic physical understanding of the AFP-ice interaction. How AFPs function within fishes and their range of environments, however, is far from clear. This project will provide an understanding of notothenioid\u0027s freezing avoidance mechanisms, and strategies by quantifying the acquisition, accumulation, and loss of internal ice crystals. Specifically, the goal is to determine if and how habitat severity (as defined by iciness, seawater temperature, and prevalence of supercooled water) and fish behavior influence the abundance of ice crystals in their tissues. Four locations in the McMurdo Sound with different levels of habitat severity will be sampled for oceanographic conditions and ice crystal count within fish tissues. Researchers will use a new technique to count the number of splenic ice crystals, expanding on and simplifying previous methods. Environmental data loggers will be deployed for the duration of the project at the four sites to provide context and real-time assessment of environmental conditions. An oceanographic observatory near McMurdo Station will provide year-round, real-time and archival records of oceanographic conditions, in situ video observations of anchor ice growth and ice-organism interactions, hydroacoustic recordings, and serve as proof-of concept for expanding scientific infrastructure in McMurdo Sound related to monitoring of supercooled waters and oceanographic information.", "east": 166.8, "geometry": "POINT(165.135 -77.52)", "instruments": null, "is_usap_dc": true, "keywords": "Benthic Ecology; ANIMALS/VERTEBRATES; USA/NSF; OCEAN TEMPERATURE; USAP-DC; MAMMALS; FIELD INVESTIGATION; Amd/Us; McMurdo Sound; FISH; AMD", "locations": "McMurdo Sound", "north": -77.14, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Cziko, Paul; DeVries, Arthur", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes", "uid": "p0010147", "west": 163.47}, {"awards": "1842021 Campbell, Seth", "bounds_geometry": "POLYGON((-168 -82,-162.3 -82,-156.6 -82,-150.9 -82,-145.2 -82,-139.5 -82,-133.8 -82,-128.1 -82,-122.4 -82,-116.7 -82,-111 -82,-111 -82.5,-111 -83,-111 -83.5,-111 -84,-111 -84.5,-111 -85,-111 -85.5,-111 -86,-111 -86.5,-111 -87,-116.7 -87,-122.4 -87,-128.1 -87,-133.8 -87,-139.5 -87,-145.2 -87,-150.9 -87,-156.6 -87,-162.3 -87,-168 -87,-168 -86.5,-168 -86,-168 -85.5,-168 -85,-168 -84.5,-168 -84,-168 -83.5,-168 -83,-168 -82.5,-168 -82))", "dataset_titles": "2017 GPR Observations of the Whillans and Mercer Ice Streams; Whillans and Mercer Shear Margin Ice Flow simulation in ISSM", "datasets": [{"dataset_uid": "601403", "doi": "10.15784/601403", "keywords": "Antarctica; Crevasses; Glaciology; GPR; GPS; Ice Sheet Flow Model; Ice Shelf Dynamics; Snow/ice; Snow/Ice; Whillans Ice Stream", "people": "Kaluzienski, Lynn", "repository": "USAP-DC", "science_program": null, "title": "2017 GPR Observations of the Whillans and Mercer Ice Streams", "url": "https://www.usap-dc.org/view/dataset/601403"}, {"dataset_uid": "601404", "doi": "10.15784/601404", "keywords": "Antarctica; Glaciology; Ice Sheet Flow Model; Ice Shelf Dynamics; Mercer Ice Stream; Model Data; Snow/ice; Snow/Ice; Whillans Ice Stream", "people": "Kaluzienski, Lynn", "repository": "USAP-DC", "science_program": null, "title": "Whillans and Mercer Shear Margin Ice Flow simulation in ISSM", "url": "https://www.usap-dc.org/view/dataset/601404"}], "date_created": "Mon, 14 Dec 2020 00:00:00 GMT", "description": "The Siple Coast in West Antarctica has undergone significant glacier changes over the last millenium. Several ice streams--rapidly moving streams of ice bordered by slow-moving ice--exist in this region that feeds into the Ross Ice Shelf. A long-term slowdown of Whillans Ice Stream appears to be occurring, and this is affecting the zone between the Whillans and Mercer Ice Streams. However, the consistency of this slowdown and resulting changes to the shear margin between the two ice streams are unknown. The goal of this project is to quantify the observed changes over the past decade and understand the dynamic processes that cause them. A collateral benefit of and driver for this as a RAPID project is to test a method for assessing where crevassing will develop in this zone of steep velocity gradients. Such a method may benefit not only near-term field-project planning in the 2018-19 field season, but also planning for future fieldwork and traverses. The team will use remote sensing feature-tracking techniques to determine transient velocity patterns and shifts in the shear-zone location over the last 10-plus years. This velocity time series will be incorporated into a large-scale ice-sheet model to estimate ice-sheet susceptibility to changing boundary conditions over the next century based on likely regional ice-flux scenarios. This approach is an extension of recent work conducted by the team that shows promise for predicting areas of changing high strain rates indicative of an active glacier shear margin. The ultimate objectives are to characterize the flow field of merging ice streams over time and investigate lateral boundary migration. This will provide a better understanding of shear-margin control on ice-shelf and up-glacier stability. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -111.0, "geometry": "POINT(-139.5 -84.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "FIELD SURVEYS; Whillans Ice Stream; USAP-DC; Amd/Us; USA/NSF; GLACIER MOTION/ICE SHEET MOTION; MODELS; AMD", "locations": "Whillans Ice Stream", "north": -82.0, "nsf_funding_programs": "Polar Special Initiatives; Antarctic Glaciology", "paleo_time": null, "persons": "Campbell, Seth; Koons, Peter", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e MODELS \u003e MODELS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.0, "title": "RAPID Proposal: Constraining kinematics of the Whillans/Mercer Ice Stream Confluence", "uid": "p0010145", "west": -168.0}, {"awards": "1543539 Liwanag, Heather", "bounds_geometry": null, "dataset_titles": "metabolic measurements; Sedation dose and response; TDR and weather data", "datasets": [{"dataset_uid": "601631", "doi": "10.15784/601631", "keywords": "Antarctica; McMurdo Sound; Weddell Seal", "people": "Pearson, Linnea", "repository": "USAP-DC", "science_program": null, "title": "Sedation dose and response", "url": "https://www.usap-dc.org/view/dataset/601631"}, {"dataset_uid": "601435", "doi": "10.15784/601435", "keywords": "Antarctica; McMurdo Sound; Weddell Seal", "people": "Weitzner, Emma; Pearson, Linnea; Liwanag, Heather", "repository": "USAP-DC", "science_program": null, "title": "TDR and weather data", "url": "https://www.usap-dc.org/view/dataset/601435"}, {"dataset_uid": "601524", "doi": "10.15784/601524", "keywords": "Antarctica; McMurdo Sound; Metabolic Rate; Thermoregulation; Weddell Seal", "people": "Pearson, Linnea", "repository": "USAP-DC", "science_program": null, "title": "metabolic measurements", "url": "https://www.usap-dc.org/view/dataset/601524"}], "date_created": "Sat, 12 Dec 2020 00:00:00 GMT", "description": "The transition of young from parental care to independence is a critical stage in the life of many animals. Surviving this stage can be especially challenging for polar mammals where the extreme cold requires extra energy to keep warm, rather than using the majority of energy for growth, development and physical activities. Young Weddell seals (Leptonychotes weddellii) have only weeks to develop the capabilities to survive both on top of the sea ice and within the -1.9\u00b0C seawater where they can forage for food. The project seeks to better understand how Weddell seal pups rapidly develop (within weeks) the capacity to transition between these two extreme environments (that differ greatly in their abilities to conduct heat) and how they budget their energy during the transition. Though the biology and physiology of adult Weddell seals is well studied, the energetic and physiological strategies of pups during development is still unclear. Understanding factors that may affect survival at critical life history events is essential for better understanding factors that might affect marine mammal populations. Weddell seals are the southernmost breeding mammal and are easily recognizable as quintessential Antarctic seals. Determining potential vulnerabilities at critical life stages to change in the Antarctic environment will facilitate the researchers\u0027 ability to not only gain public interest but also communicate how research is revealing ways in which changes are occurring at the poles and how these changes may affect polar ecosystems. By collaborating with the Marine Mammal Center, the project will directly reach the public, through curricular educational materials and public outreach that will impact over 100,000 visitors annually. To elucidate the physiological strategies that facilitate the survival of Weddell seal pups from birth to independence, the proposed study examines the development of their thermoregulation and diving capability. To achieve this, the project will determine the mechanisms that Weddell seal pups use to maintain a stable, warm body temperature in air and in water and then examine the development of diving capability as the animals prepare for independent foraging. The researchers will take a fully integrative approach- making assessments from proteins to tissues to the whole-animal level- when investigating both these objectives. To assess the development of thermoregulatory capability, researchers will quantify body insulation, resting metabolic rates in air and in water, muscle thermogenesis (shivering), and body surface temperatures in the field. The project will also assess the development of dive capability by quantifying oxygen storage capacities and measuring early dive behavior. To identify possible cellular mechanisms for how Weddell seals navigate this trade-off during development, the program will quantify several key developmental regulators of increased hypoxic capacity (HIF, VEGF and EPO) using qPCR, as well as follow the proteomic changes of adipose and muscle tissue, which will include abundance changes of metabolic, antioxidant, cytoskeletal, and Ca2+-regulating proteins. The study of the physiological development leading up to the transition to independence in pinnipeds will help researchers better predict the effects of climate change on the distribution and abundance of this species and how this will affect other trophic levels. Environmental changes that alter habitat suitability have been shown to decrease population health, specifically because of declines in juvenile survival.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "MAMMALS; FIELD INVESTIGATION; McMurdo Sound", "locations": "McMurdo Sound", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Liwanag, Heather; Pearson, Linnea; Tomanek, Lars", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "RUI: Growing Up on Ice: Physiological Adaptations and Developmental Plasticity in Weddell Seal Pups Across Two Extreme Physical Environments", "uid": "p0010144", "west": null}, {"awards": "1341736 Adams, Byron", "bounds_geometry": "POLYGON((-177.4099 -84.4661,-177.08229 -84.4661,-176.75468 -84.4661,-176.42707 -84.4661,-176.09946 -84.4661,-175.77185 -84.4661,-175.44424 -84.4661,-175.11663000000001 -84.4661,-174.78902 -84.4661,-174.46141 -84.4661,-174.1338 -84.4661,-174.1338 -84.56828,-174.1338 -84.67045999999999,-174.1338 -84.77264,-174.1338 -84.87482,-174.1338 -84.977,-174.1338 -85.07918,-174.1338 -85.18136,-174.1338 -85.28354,-174.1338 -85.38571999999999,-174.1338 -85.4879,-174.46141 -85.4879,-174.78902 -85.4879,-175.11663000000001 -85.4879,-175.44424 -85.4879,-175.77185 -85.4879,-176.09946 -85.4879,-176.42707 -85.4879,-176.75468 -85.4879,-177.08229 -85.4879,-177.4099 -85.4879,-177.4099 -85.38571999999999,-177.4099 -85.28354,-177.4099 -85.18136,-177.4099 -85.07918,-177.4099 -84.977,-177.4099 -84.87482,-177.4099 -84.77264,-177.4099 -84.67045999999999,-177.4099 -84.56828,-177.4099 -84.4661))", "dataset_titles": "Dataset DS-TAMS: Genetic diversity of Collembola from the Transantarctic Mountains; GenBank accession numbers MN619477 to MN619610; Meteoric 10Be data of soils from the Shackleton Glacier region; Shackleton Glacier region soil water-soluble geochemical data; Shackleton Glacier region water-soluble salt isotopes; Soil invertebrate surveys from the Shackleton Glacier region of Antarctica during the 2017-2018 austral summer", "datasets": [{"dataset_uid": "601419", "doi": "10.15784/601419", "keywords": "Antarctica; Geochemistry; Nitrate; Shackleton Glacier; Stable Isotopes; Sulfate; Transantarctic Mountains", "people": "Gardner, Christopher B.; Lyons, W. Berry; Diaz, Melisa A.", "repository": "USAP-DC", "science_program": null, "title": "Shackleton Glacier region water-soluble salt isotopes", "url": "https://www.usap-dc.org/view/dataset/601419"}, {"dataset_uid": "200174", "doi": "10.5883/DS-TAMS", "keywords": null, "people": null, "repository": "Barcode of Life Datasystems (BOLD)", "science_program": null, "title": "Dataset DS-TAMS: Genetic diversity of Collembola from the Transantarctic Mountains", "url": "http://dx.doi.org/10.5883/DS-TAMS"}, {"dataset_uid": "200175", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "GenBank accession numbers MN619477 to MN619610", "url": "https://www.ncbi.nlm.nih.gov/nuccore/MN619477"}, {"dataset_uid": "200258", "doi": "doi:10.6073/pasta/7959821e5f6f8d56d94bb6a26873b3ae", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "Soil invertebrate surveys from the Shackleton Glacier region of Antarctica during the 2017-2018 austral summer", "url": "https://doi.org/10.6073/pasta/7959821e5f6f8d56d94bb6a26873b3ae"}, {"dataset_uid": "601418", "doi": "10.15784/601418", "keywords": "Antarctica; Geochemistry; Shackleton Glacier", "people": "Diaz, Melisa A.; Lyons, W. Berry; Gardner, Christopher B.", "repository": "USAP-DC", "science_program": null, "title": "Shackleton Glacier region soil water-soluble geochemical data", "url": "https://www.usap-dc.org/view/dataset/601418"}, {"dataset_uid": "601421", "doi": "10.15784/601421", "keywords": "Antarctica; Be-10; Beryllium-10; Cosmogenic Radionuclides; Geochemistry; Geomorphology; Shackleton Glacier; Surface Exposure Dates", "people": "Diaz, Melisa A.", "repository": "USAP-DC", "science_program": null, "title": "Meteoric 10Be data of soils from the Shackleton Glacier region", "url": "https://www.usap-dc.org/view/dataset/601421"}], "date_created": "Mon, 02 Nov 2020 00:00:00 GMT", "description": "The project will characterize the functional, taxonomic, biotic and abiotic drivers of soil ecosystems in the Trans Antarctic Mountains (one of the most remote and harsh terrestrial landscapes on the planet). The work will utilize new high-throughput DNA and RNA sequencing technologies to identify members of the microbial communities and determine if the microbial community structures are independent of local environmental heterogeneities. In addition the project will determine if microbial diversity and function are correlated with time since the last glacial maximum (LGM). The expected results will greatly contribute to our knowledge regarding rates of microbial succession and help define the some of the limits to life and life-maintaining processes on Earth. The project will analyze genomes and RNA derived from these genomes to describe the relationships between biodiversity and ecosystem functioning from soils above and below LGM elevations and to correlate these with the environmental drivers associated with their development during the last ~18,000 years. The team will identify the taxonomic diversity and the functional genetic composition within a broad suite of soil biota and examine their patterns of assembly and distribution within the framework of their geological legacies. The project will mentor participants from undergraduate students to postdoctoral researchers and prepare them to effectively engage in research to meet their career aspirations. The project will contribute to ongoing public education efforts through relationships with K-12 teachers and administrators- to include University-Public School partnerships. Less formal activities include public lecture series and weblogs aimed at providing information on Antarctic polar desert ecosystems to the general public. Targeted classrooms near each PI\u0027s institution will participate in online, real-time discussions about current topics in Antarctic ecosystems research.", "east": -174.1338, "geometry": "POINT(-175.77185 -84.977)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; LABORATORY; AMD; Amd/Us; USA/NSF; TERRESTRIAL ECOSYSTEMS; Transantarctic Mountains; USAP-DC", "locations": "Transantarctic Mountains", "north": -84.4661, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Adams, Byron; Fierer, Noah; Wall, Diana; Diaz, Melisa A.; Gardner, Christopher B.; Lyons, W. Berry", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "Barcode of Life Datasystems (BOLD); EDI; NCBI GenBank; USAP-DC", "science_programs": null, "south": -85.4879, "title": "Collaborative Research: The Role of Glacial History on the Structure and Functioning of Ecological Communities in the Shackleton Glacier Region of the Transantarctic Mountains", "uid": "p0010140", "west": -177.4099}, {"awards": "1643798 Emry, Erica; 1643873 Hansen, Samantha", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "GEOSCOPE Network; IU: Global Seismograph Network; Shear Wave Velocity of the Antarctic Upper Mantle from Full Waveform Inversion and Long Period Ambient Seismic Noise; XP (2000-2004): A Broadband Seismic Investigation of Deep Continental Structure Across the East-West Antarctic Boundary ; YT (2007-2023): IPY POLENET-Antarctica: Investigating links between geodynamics and ice sheets; ZJ (2012-2015): Transantarctic Mountains Northern Network ; ZM (2007-2013): A Broadband Seismic Experiment to Image the Lithosphere beneath the Gamburtsev Mountains, East Antarctica", "datasets": [{"dataset_uid": "200168", "doi": "10.18715/GEOSCOPE.G", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "GEOSCOPE Network", "url": "http://geoscope.ipgp.fr/networks/detail/G/"}, {"dataset_uid": "200172", "doi": "10.7914/SN/ZM_2007", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": " ZM (2007-2013): A Broadband Seismic Experiment to Image the Lithosphere beneath the Gamburtsev Mountains, East Antarctica", "url": "http://www.fdsn.org/networks/detail/ZM_2007/"}, {"dataset_uid": "200169", "doi": "10.7914/SN/IU", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IU: Global Seismograph Network", "url": "http://www.fdsn.org/networks/detail/IU/"}, {"dataset_uid": "200171", "doi": "10.7914/SN/YT_2007", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "YT (2007-2023): IPY POLENET-Antarctica: Investigating links between geodynamics and ice sheets", "url": "http://www.fdsn.org/networks/detail/YT_2007/"}, {"dataset_uid": "601909", "doi": "10.15784/601909", "keywords": "Ambient Seismic Noise; Antarctica; Cryosphere; Full-Waveform Inversion; Seismic Tomography; Shear Wave Velocity", "people": "Emry, Erica; Hansen, Samantha", "repository": "USAP-DC", "science_program": null, "title": "Shear Wave Velocity of the Antarctic Upper Mantle from Full Waveform Inversion and Long Period Ambient Seismic Noise", "url": "https://www.usap-dc.org/view/dataset/601909"}, {"dataset_uid": "200170", "doi": "10.7914/SN/XP_2000", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "XP (2000-2004): A Broadband Seismic Investigation of Deep Continental Structure Across the East-West Antarctic Boundary ", "url": "http://www.fdsn.org/networks/detail/XP_2000/"}, {"dataset_uid": "200173", "doi": "10.7914/SN/ZJ_2012", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "ZJ (2012-2015): Transantarctic Mountains Northern Network ", "url": "http://www.fdsn.org/networks/detail/ZJ_2012/"}], "date_created": "Thu, 15 Oct 2020 00:00:00 GMT", "description": "Nontechnical description of proposed research: This project will apply cutting-edge seismic imaging methods to existing seismic data to study the three-dimensional structure of the Earth beneath the ice-covered Antarctic continent. The study will improve understanding of Earth structure and hotspots and geologically recent and ancient rift systems. The results will be useful for models of ice movement and bedrock elevation changes due to variation in ice sheet thickness. The results will also help guide future seismic data collection. The researchers will transfer existing software from the high-performance computers at The University of Rhode Island to the Alabama supercomputer facilities. The project will also broaden public understanding of scientific research in Antarctica by engaging with the students and teachers in Socorro County, New Mexico to discuss career opportunities in science, technology, engineering, and mathematics (STEM), the Earth Sciences, and the importance of computers in scientific research. Project personnel from Alabama will visit Socorro and share research with students at New Mexico Tech and at the Socorro High School. The project will also train undergraduate and graduate students in the expanding field of computational seismology, by applying these approaches to study Antarctic geology. Technical description of proposed research: The project seeks to better resolve the three-dimensional Antarctic mantle structure and viscosity and to identify locations of ancient rifts within the stable East Antarctic lithosphere. To accomplish this, the researchers will utilize full-waveform tomographic inversion techniques that combine long-period ambient noise data with earthquake constraints to more accurately resolve structure than traditional tomographic approaches. The proposed research will be completed using the Alabama supercomputer facilities and the programs and methodology developed at The University of Rhode Island. The new tomographic results will be useful in assessing lithospheric structure beneath Dronning Maud Land as well as the Wilkes and Aurora Subglacial Basins in East Antarctica, where previous rifting episodes and mid-lithospheric discontinuities will be explored. In West Antarctica, the work will elucidate the easternmost extent of the West Antarctic Rift System as well as rifted structure and possible compositional variations within the Weddell Sea. The accuracy of existing Antarctic seismic models will be quantified through model validation approaches. The researchers will highlight regions of Antarctica where tomographic resolution is still lacking and where future deployments would improve resolution.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": true, "keywords": "SEISMIC SURFACE WAVES; USA/NSF; USAP-DC; SEISMOLOGICAL STATIONS; Amd/Us; AMD; POLNET; TECTONICS; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Emry, Erica; Hansen, Samantha", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS", "repo": "IRIS", "repositories": "IRIS; USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Imaging Seismic Heterogeneity within the Antarctic Mantle with Full Waveform Ambient Noise Tomography", "uid": "p0010139", "west": -180.0}, {"awards": "1542885 Dunham, Eric", "bounds_geometry": null, "dataset_titles": "Earthquake Sequence Dynamics at the Interface Between an Elastic Layer and Underlying Half-Space in Antiplane Shear", "datasets": [{"dataset_uid": "601320", "doi": "10.15784/601320", "keywords": "Antarctica; Computer Model; Glaciology; Model Data; Shear Stress; Solid Earth; Whillans Ice Stream", "people": "Abrahams, Lauren", "repository": "USAP-DC", "science_program": null, "title": "Earthquake Sequence Dynamics at the Interface Between an Elastic Layer and Underlying Half-Space in Antiplane Shear", "url": "https://www.usap-dc.org/view/dataset/601320"}], "date_created": "Fri, 09 Oct 2020 00:00:00 GMT", "description": "This project investigates a rapidly moving section of the West Antarctic Ice Sheet known as the Whillans Ice Stream. Ice streams and outlet glaciers are the major pathways for ice discharge from ice sheets into the ocean. Consequently, understanding ice stream dynamics, specifically the processes controlling the frictional resistance of ice sliding on sediments at its base, is essential for predictive modeling of how Earth\u0027s ice sheets will respond to a changing climate. Rather than flowing smoothly, Whillans Ice Stream advances in stick-slip cycles: brief periods of rapid sliding, equivalent to magnitude 7 earthquakes, alternating with much longer periods of repose. The PIs will perform simulations of these stick-slip cycles using computer codes originally developed for modeling tectonic earthquakes. By matching observed ice motions, the PIs will constrain the range of frictional processes acting at the base of the ice stream. An additional focus of the project is on brittle fracture processes in ice, expressed through seismic waves radiated by faulting and/or crevassing episodes that accompany the large-scale sliding events. An understanding of ice fracture provides a basis for assessing the susceptibility of ice shelves to rifting and catastrophic disintegration. Project results will be incorporated into outreach activities (from elementary school to community college events) as well as a polar science class for the California State Summer School for Mathematics and Science (COSMOS) program for high school students. Simulations of the stick-slip cycle will employ 3D dynamic rupture models that simultaneously solve for the seismic wavefield and rupture process, consistent with elastodynamic material response and friction laws on the ice stream bed. Stresses and frictional properties will be varied to achieve consistency with surface GPS and broadband seismic data as well as borehole seismograms from the WISSARD project. The results will be interpreted using laboratory till friction experiments, which link velocity-weakening/strengthening behavior to temperature and water content, and to related experiments quantifying basal drag from ice flow over rough beds. The source mechanism of seismicity accompanying the slip events (shear faulting versus crevassing) will be determined using 3D waveform modeling in conjunction with mechanical models of the seismic source processes. This proposal does not require fieldwork in the Antarctic.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": true, "keywords": "SEISMIC PROFILE; AMD; Antarctica; GROUND-BASED OBSERVATIONS; USA/NSF; USAP-DC; Amd/Us", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Dunham, Eric", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Characterizing Brittle Failure and Fracture Propagation in Fast Ice Sliding with Dynamic Rupture Models based on Whillans Ice Stream Seismic/Geodetic Data", "uid": "p0010138", "west": null}, {"awards": "1341500 Ryberg, Patricia", "bounds_geometry": null, "dataset_titles": "Images of Fossil Plants of Antarctica", "datasets": [{"dataset_uid": "601066", "doi": "10.15784/601066", "keywords": "Antarctica; Biota; Fossil; Sample/collection Description; Sample/Collection Description; Transantarctic Mountains", "people": "Ryberg, Patricia", "repository": "USAP-DC", "science_program": null, "title": "Images of Fossil Plants of Antarctica", "url": "https://www.usap-dc.org/view/dataset/601066"}], "date_created": "Fri, 09 Oct 2020 00:00:00 GMT", "description": "This project will involve examination of Glossopteridales, fossil plants from Upper Permian deposits, in samples from the central Transantarctic Mountains and Southern Victoria Land, Antarctica. The glossopterids are an important fossil group because they are possible ancestors to the flowering plants. Permian sedimentary rocks (295-270 Ma before present) are important because they record a time of rapid biotic change, as the Late Paleozoic Age ended and the Mesozoic greenhouse environment began. The proposed research will rely entirely on specimens collected during recent field excursions to the central Transantarctic Mountains (CTM; 2010?2011) and southern Victoria Land (SVL; 2012?2013). Only a few of the specimens have been studied, but already have yielded anatomically well-preserved glossopterids with a complete pollen cone, which has never been found before. Additionally, several seed-bearing structures, which have never before been observed in Antarctica, have been found in both CTM and SVL. The project will allow comparison of whole-plant fossil glossopterids from the CTM with other paleo-latitudes, and will document the floral diversity within and between two depositional basins (CTM \u0026 SVL) during a time of global change, with the overall goal of linking environmental changes with fossil morphology. Broader impacts: The Broader Impacts of this project will include mentoring undergraduates in research projects, at an institution with a substantial minority enrollment. Public outreach will focus on involving middle/high school students through the ?Expanding Your Horizons? programs in Kansas and Missouri, as well as interactive presentations at schools in the Kansas City Area. The lead PI is an early-career scientist at an institution that serves minorities.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; AMD; PLANTS; Victoria Land Basin; Transantarctic Mountains; Amd/Us; USA/NSF; Fossils; SEDIMENTS; FIELD INVESTIGATION; USAP-DC", "locations": "Antarctica; Transantarctic Mountains; Victoria Land Basin", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Ryberg, Patricia", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "RUI: Antarctic Paleobotany: Permian Floral Characteristics in a Sedimentary Setting", "uid": "p0010134", "west": null}, {"awards": "1644197 Simms, Alexander", "bounds_geometry": "POLYGON((-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-60 -61,-59 -61,-58 -61,-57 -61,-56 -61,-55 -61,-55 -61.4,-55 -61.8,-55 -62.2,-55 -62.6,-55 -63,-55 -63.4,-55 -63.8,-55 -64.2,-55 -64.6,-55 -65,-56 -65,-57 -65,-58 -65,-59 -65,-60 -65,-61 -65,-62 -65,-63 -65,-64 -65,-65 -65,-65 -64.6,-65 -64.2,-65 -63.8,-65 -63.4,-65 -63,-65 -62.6,-65 -62.2,-65 -61.8,-65 -61.4,-65 -61))", "dataset_titles": "Electron Microprobe Analysis of feldspar separates from rock and sediment OSL samples from Joinville and Livingston Island Beaches; Granulometry of Joinville and Livingston Island beaches; Ground-Penetrating Radar data from Livingston Island in the Antarctic Peninsula; Ground Penetrating Radar Profiles from Beaches on Joinville Island, Antarctic Peninsula; Joinville and Livingston Islands - rock and sediment OSL ages; OSL data - Joinville and Livingston Islands - Raw data; Radiocarbon Ages from Beaches on Joinville Island, Antarctic Peninsula", "datasets": [{"dataset_uid": "601634", "doi": "10.15784/601634", "keywords": "Antarctica; Joinville Island; Raised Beaches; Sea Level", "people": "Simms, Alexander", "repository": "USAP-DC", "science_program": null, "title": "Radiocarbon Ages from Beaches on Joinville Island, Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601634"}, {"dataset_uid": "601632", "doi": "10.15784/601632", "keywords": "Antarctica; Joinville Island", "people": "Simms, Alexander", "repository": "USAP-DC", "science_program": null, "title": "Ground Penetrating Radar Profiles from Beaches on Joinville Island, Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601632"}, {"dataset_uid": "601633", "doi": "10.15784/601633", "keywords": "Antarctica; Joinville Island", "people": "Simms, Alexander", "repository": "USAP-DC", "science_program": null, "title": "Ground-Penetrating Radar data from Livingston Island in the Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601633"}, {"dataset_uid": "601531", "doi": "10.15784/601531", "keywords": "Antarctica; Geochronology; Joinville Island; Livingston Island; OSL dating; Raised Beaches", "people": "DeWitt, Regina", "repository": "USAP-DC", "science_program": null, "title": "Electron Microprobe Analysis of feldspar separates from rock and sediment OSL samples from Joinville and Livingston Island Beaches", "url": "https://www.usap-dc.org/view/dataset/601531"}, {"dataset_uid": "601534", "doi": "10.15784/601534", "keywords": "Antarctica; Geochronology; Joinville Island; Livingston Island; OSL dating; Raised Beaches", "people": "DeWitt, Regina", "repository": "USAP-DC", "science_program": null, "title": "Joinville and Livingston Islands - rock and sediment OSL ages", "url": "https://www.usap-dc.org/view/dataset/601534"}, {"dataset_uid": "601532", "doi": "10.15784/601532", "keywords": "Antarctica; Geochronology; Joinville Island; Livingston Island; OSL dating; Raised Beaches", "people": "DeWitt, Regina", "repository": "USAP-DC", "science_program": null, "title": "OSL data - Joinville and Livingston Islands - Raw data", "url": "https://www.usap-dc.org/view/dataset/601532"}, {"dataset_uid": "601400", "doi": "10.15784/601400", "keywords": "Antarctica; Grain Size; Granulometry; Joinville Island; Livingston Island; LMG0412; Raised Beaches", "people": "Simms, Alexander; Theilen, Brittany", "repository": "USAP-DC", "science_program": null, "title": "Granulometry of Joinville and Livingston Island beaches", "url": "https://www.usap-dc.org/view/dataset/601400"}], "date_created": "Thu, 08 Oct 2020 00:00:00 GMT", "description": "Nontechnical Description Glacier ice loss from Antarctica has the potential to lead to a significant rise in global sea level. One line of evidence for accelerated glacier ice loss has been an increase in the rate at which the land has been rising across the Antarctic Peninsula as measured by GPS receivers. However, GPS observations of uplift are limited to the last two decades. One goal of this study is to determine how these newly observed rates of uplift compare to average rates of uplift across the Antarctic Peninsula over a longer time interval. Researchers will reconstruct past sea levels using the age and elevation of ancient beaches now stranded above sea level on the low-lying coastal hills of the Antarctica Peninsula to determine the rate of uplift over the last 5,000 years. The researchers will also analyze the structure of the beaches using ground-penetrating radar and the characteristics of beach sediments to understand how sea-level rise and past climate changes are recorded in beach deposits. The benefits of these new records will be threefold: (1) they will help determine the natural variability of the Antarctic Ice Sheet and relative sea level (2) they will provide new insight about uplift and the structure of the Earth\u0027s interior; and 3) they will help researchers refine the methods used to determine the age of geologic deposits. The study results will be shared in outreach events at K-12 schools and with visitors of the Santa Barbara Natural History Museum. Three graduate students will be supported through this project. Technical description Paleo sea-level data is critical for reconstructing the size and extent of past ice sheets, documenting increased uplift following glacial retreat, and correcting gravity-based measurements of ice-mass loss for the impacts of post-glacial rebound. However, there are only 14 sites with relative sea-level data for Antarctica compared to over 500 sites used in a recent study of the North American Ice-Sheet complex. The purpose of this project is to use optically stimulated luminescence to date a series of newly discovered raised beaches along the eastern Antarctic Peninsula and an already known, but only preliminarily dated, series of raised beaches in the South Shetland Islands. Data to be collected at the raised beaches include the age and elevation, ground-penetrating radar profiles, and the roundness of cobbles and the lithology of ice-rafted debris. The study will test three hypotheses: (1) uplift rates have increased in modern times relative to the late Holocene across the Antarctic Peninsula, (2) the sea-level history at the northern tip of the Antarctic Peninsula is distinctly different than that of the South Shetland Islands, and (3) cobble roundness and the source of ice-rafted debris on raised beaches varied systematically through time reflecting the climate history of the northern Antarctic Peninsula.", "east": -55.0, "geometry": "POINT(-60 -63)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "Antarctic Peninsula; COASTAL LANDFORMS/PROCESSES; USAP-DC; SEA LEVEL RECONSTRUCTION; South Shetland Islands; AMD; FIELD INVESTIGATION; Amd/Us; USA/NSF", "locations": "South Shetland Islands; Antarctic Peninsula", "north": -61.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Simms, Alexander; DeWitt, Regina", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Collaborative Research: New Constraints on Post-Glacial Rebound and Holocene Environmental History along the Northern Antarctic Peninsula from Raised Beaches", "uid": "p0010132", "west": -65.0}, {"awards": "1724670 Williams, Trevor", "bounds_geometry": "POLYGON((-70 -60,-65 -60,-60 -60,-55 -60,-50 -60,-45 -60,-40 -60,-35 -60,-30 -60,-25 -60,-20 -60,-20 -62.5,-20 -65,-20 -67.5,-20 -70,-20 -72.5,-20 -75,-20 -77.5,-20 -80,-20 -82.5,-20 -85,-25 -85,-30 -85,-35 -85,-40 -85,-45 -85,-50 -85,-55 -85,-60 -85,-65 -85,-70 -85,-70 -82.5,-70 -80,-70 -77.5,-70 -75,-70 -72.5,-70 -70,-70 -67.5,-70 -65,-70 -62.5,-70 -60))", "dataset_titles": "Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment", "datasets": [{"dataset_uid": "601378", "doi": "10.15784/601378", "keywords": "40Ar/39Ar Thermochronology; Antarctica; Argon; Chemistry:sediment; Chemistry:Sediment; Detrital Minerals; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marine Sediments; Mass Spectrometer; Provenance; R/v Polarstern; Sediment Core Data; Subglacial Till; Till; Weddell Sea", "people": "Williams, Trevor", "repository": "USAP-DC", "science_program": null, "title": "Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment", "url": "https://www.usap-dc.org/view/dataset/601378"}, {"dataset_uid": "601379", "doi": "10.15784/601379", "keywords": "40Ar/39Ar Thermochronology; Antarctica; Argon; Chemistry:sediment; Chemistry:Sediment; Detrital Minerals; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marine Geoscience; Mass Spectrometer; Provenance; R/v Polarstern; Sediment Core Data; Subglacial Till; Till; Weddell Sea", "people": "Williams, Trevor", "repository": "USAP-DC", "science_program": null, "title": "Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment", "url": "https://www.usap-dc.org/view/dataset/601379"}, {"dataset_uid": "601377", "doi": "10.15784/601377", "keywords": "40Ar/39Ar Thermochronology; Antarctica; Argon; Chemistry:sediment; Chemistry:Sediment; Detrital Minerals; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marine Sediments; Mass Spectrometer; Provenance; R/v Polarstern; Sediment Core Data; Subglacial Till; Till; Weddell Sea", "people": "Williams, Trevor", "repository": "USAP-DC", "science_program": null, "title": "Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment", "url": "https://www.usap-dc.org/view/dataset/601377"}], "date_created": "Thu, 10 Sep 2020 00:00:00 GMT", "description": "Abstract for the general public: The margins of the Antarctic ice sheet have advanced and retreated repeatedly over the past few million years. Melting ice from the last retreat, from 19,000 to 9,000 years ago, raised sea levels by 8 meters or more, but the extents of previous retreats are less well known. The main goal of this project is to understand how Antarctic ice retreats: fast or slow, stepped or steady, and which parts of the ice sheet are most prone to retreat. Antarctica loses ice by two main processes: melting of the underside of floating ice shelves and calving of icebergs. Icebergs themselves are ephemeral, but they carry mineral grains and rock fragments that have been scoured from Antarctic bedrock. As the icebergs drift and melt, this \u0027iceberg-rafted debris\u0027 falls to the sea-bed and is steadily buried in marine sediments to form a record of iceberg activity and ice sheet retreat. The investigators will read this record of iceberg-rafted debris to find when and where Antarctic ice destabilized in the past. This information can help to predict how Antarctic ice will behave in a warming climate. The study area is the Weddell Sea embayment, in the Atlantic sector of Antarctica. Principal sources of icebergs are the nearby Antarctic Peninsula and Weddell Sea embayment, where ice streams drain about a quarter of Antarctic ice. The provenance of the iceberg-rafted debris (IRD), and the icebergs that carried it, will be found by matching the geochemical fingerprint (such as characteristic argon isotope ages) of individual mineral grains in the IRD to that of the corresponding source area. In more detail, the project will: 1. Define the geochemical fingerprints of the source areas of the glacially-eroded material using samples from each major ice stream entering the Weddell Sea. Existing data indicates that the hinterland of the Weddell embayment is made up of geochemically distinguishable source areas, making it possible to apply geochemical provenance techniques to determine the origin of Antarctica icebergs. Few samples of onshore tills are available from this area, so this project includes fieldwork to collect till samples to characterize detritus supplied by the Recovery and Foundation ice streams. 2. Document the stratigraphic changes in provenance of iceberg-rafted debris (IRD) and glacially-eroded material in two deep water sediment cores in the NW Weddell Sea. Icebergs calved from ice streams in the embayment are carried by the Weddell Gyre and deposit IRD as they pass over the core sites. The provenance information identifies which groups of ice streams were actively eroding and exporting detritus to the ocean (via iceberg rafting and bottom currents), and the stratigraphy of the cores shows the relative sequence of ice stream activity through time. A further dimension is added by determining the time lag between fine sediment erosion and deposition, using a new method of uranium-series isotope measurements in fine grained material. Technical abstract: The behavior of the Antarctic ice sheets and ice streams is a critical topic for climate change and future sea level rise. The goal of this proposal is to constrain ice sheet response to changing climate in the Weddell Sea during the three most recent glacial terminations, as analogues for potential future warming. The project will also examine possible contributions to Meltwater Pulse 1A, and test the relative stability of the ice streams draining East and West Antarctica. Much of the West Antarctic ice may have melted during the Eemian (130 to 114 Ka), so it may be an analogue for predicting future ice drawdown over the coming centuries. Geochemical provenance fingerprinting of glacially eroded detritus provides a novel way to reconstruct the location and relative timing of glacial retreat during these terminations in the Weddell Sea embayment. The two major objectives of the project are to: 1. Define the provenance source areas by characterizing Ar, U-Pb, and Nd isotopic signatures, and heavy mineral and Fe-Ti oxide compositions of detrital minerals from each major ice stream entering the Weddell Sea, using onshore tills and existing sediment cores from the Ronne and Filchner Ice Shelves. Pilot data demonstrate that detritus originating from the east and west sides of the Weddell Sea embayment can be clearly distinguished, and published data indicates that the hinterland of the embayment is made up of geochemically distinguishable source areas. Few samples of onshore tills are available from this area, so this project includes fieldwork to collect till to characterize detritus supplied by the Recovery and Foundation ice streams. 2. Document the stratigraphic changes in provenance of iceberg-rafted debris (IRD) and glacially-eroded material in two deep water sediment cores in the NW Weddell Sea. Icebergs calved from ice streams in the embayment are carried by the Weddell Gyre and deposit IRD as they pass over the core sites. The provenance information will identify which ice streams were actively eroding and exporting detritus to the ocean (via iceberg rafting and bottom currents). The stratigraphy of the cores will show the relative sequence of ice stream activity through time. A further time dimension is added by determining the time lag between fine sediment erosion and deposition, using U-series comminution ages.", "east": -20.0, "geometry": "POINT(-45 -72.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "TERRIGENOUS SEDIMENTS; Subglacial Till; USAP-DC; ICEBERGS; AMD; USA/NSF; ISOTOPES; AGE DETERMINATIONS; Argon; Provenance; Till; Amd/Us; R/V POLARSTERN; FIELD INVESTIGATION; SEDIMENT CHEMISTRY; Weddell Sea; Antarctica; LABORATORY", "locations": "Weddell Sea; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Williams, Trevor; Hemming, Sidney R.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V POLARSTERN", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.0, "title": "Collaborative Research: Deglacial Ice Dynamics in the Weddell Sea Embayment using Sediment Provenance", "uid": "p0010128", "west": -70.0}, {"awards": "1738913 Scambos, Ted", "bounds_geometry": "POLYGON((-118 -70,-116 -70,-114 -70,-112 -70,-110 -70,-108 -70,-106 -70,-104 -70,-102 -70,-100 -70,-98 -70,-98 -71,-98 -72,-98 -73,-98 -74,-98 -75,-98 -76,-98 -77,-98 -78,-98 -79,-98 -80,-100 -80,-102 -80,-104 -80,-106 -80,-108 -80,-110 -80,-112 -80,-114 -80,-116 -80,-118 -80,-118 -79,-118 -78,-118 -77,-118 -76,-118 -75,-118 -74,-118 -73,-118 -72,-118 -71,-118 -70))", "dataset_titles": "Profile CTD Data During Installation of AMIGOS-III Cavity and Channel On-Ice Moorings", "datasets": [{"dataset_uid": "601623", "doi": "10.15784/601623", "keywords": "Amundsen Sea; Antarctica; CTD; Ice Shelf", "people": "SCAMBOS, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Profile CTD Data During Installation of AMIGOS-III Cavity and Channel On-Ice Moorings", "url": "https://www.usap-dc.org/view/dataset/601623"}], "date_created": "Wed, 09 Sep 2020 00:00:00 GMT", "description": "This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. The Science Coordination Office will facilitate planning and coordination of the science and broader impacts of several international research projects studying Thwaites Glacier--one of the largest glaciers in Antarctica. The glacier is located on the Pacific coast of the Antarctic continent. It is flowing almost twice as fast now as in the 1970s, and is one of the largest likely contributors to sea-level rise over the coming decades to centuries. Many of the factors that will affect the speed and retreat of Thwaites Glacier will be addressed by the set of projects funded by the Thwaites initiative. The Science Coordination Office comprises a US-UK science and communications team that will work with each project\u0027s scientists and students, logistics planners, and NSF and NERC to ensure the overall success of the project. The Office will maintain an informative website, and will produce content to explain the activities of the scientists and highlight the results of the work. The role of the Science Coordination Office will be to enhance integration and coordination among the science projects selected for the joint NSF-NERC Thwaites initiative to achieve maximum collective scientific and societal impact. The Office will facilitate scientific and logistical planning; facilitate data management, sharing, and discovery; and facilitate and support web content, outreach, and education for this high-profile research endeavor. The Office\u0027s role will be key to enabling the program to achieve its scientific goals and for the program to be broadly recognized and valued by scientists, the public, and policymakers. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -98.0, "geometry": "POINT(-108 -75)", "instruments": null, "is_usap_dc": true, "keywords": "OCEAN TEMPERATURE; GLACIER MOTION/ICE SHEET MOTION; BATHYMETRY; FIELD INVESTIGATION; FIELD SURVEYS; SNOW; SEDIMENTS; Antarctic Ice Sheet; WATER MASSES; GLACIER MASS BALANCE/ICE SHEET MASS BALANCE; GLACIERS/ICE SHEETS; MARINE GEOPHYSICS", "locations": "Antarctic Ice Sheet", "north": -70.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Scambos, Ted; Vaughan, David G.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.0, "title": "NSF-NERC The Future of Thwaites Glacier and its Contribution to Sea-level Rise Science Coordination Office", "uid": "p0010127", "west": -118.0}, {"awards": "1745116 Scambos, Ted", "bounds_geometry": "POLYGON((-75 -69,-74 -69,-73 -69,-72 -69,-71 -69,-70 -69,-69 -69,-68 -69,-67 -69,-66 -69,-65 -69,-65 -69.5,-65 -70,-65 -70.5,-65 -71,-65 -71.5,-65 -72,-65 -72.5,-65 -73,-65 -73.5,-65 -74,-66 -74,-67 -74,-68 -74,-69 -74,-70 -74,-71 -74,-72 -74,-73 -74,-74 -74,-75 -74,-75 -73.5,-75 -73,-75 -72.5,-75 -72,-75 -71.5,-75 -71,-75 -70.5,-75 -70,-75 -69.5,-75 -69))", "dataset_titles": "Density, hydrology and geophysical measurements from the Wilkins Ice Shelf firn aquifer; Weather, Firn Core, and Ground-penetrating radar data from southern Wilkins and George VI ice shelves, 2018-2019", "datasets": [{"dataset_uid": "601905", "doi": "10.15784/601905", "keywords": "AMIGOS; Antarctica; Cryosphere; George VI Ice Shelf; Glaciology; Ground Penetrating Radar; Ice Core Data; Ice Shelf; Wilkins Ice Shelf", "people": "Scambos, Ted; Miller, Julie; Miege, Clement; Montgomery, Lynn; Wallin, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Weather, Firn Core, and Ground-penetrating radar data from southern Wilkins and George VI ice shelves, 2018-2019", "url": "https://www.usap-dc.org/view/dataset/601905"}, {"dataset_uid": "601390", "doi": "10.15784/601390", "keywords": "Airborne Radar; Antarctica; Antarctic Peninsula; Firn; Firn Aquifer; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Hydrology; Snow/ice; Snow/Ice; Wilkins Ice Shelf", "people": "Forster, Richard; Solomon, Kip; Miller, Olivia; Miller, Julie; Scambos, Ted; Mi\u00e8ge, Cl\u00e9ment; Montgomery, Lynn; Wallin, Bruce; Koenig, Lora", "repository": "USAP-DC", "science_program": null, "title": "Density, hydrology and geophysical measurements from the Wilkins Ice Shelf firn aquifer", "url": "https://www.usap-dc.org/view/dataset/601390"}], "date_created": "Tue, 08 Sep 2020 00:00:00 GMT", "description": "Snow or firn aquifers are areas of subsurface meltwater storage that form in glaciated regions experiencing intense summer surface melting and high snowfall. Aquifers can induce hydrofracturing, and thereby accelerate flow or trigger ice-shelf instability leading to increased ice-sheet mass loss. Widespread aquifers have recently been discovered in Greenland. These have been modelled and mapped using new satellite and airborne remote-sensing techniques. In Antarctica, a series of catastrophic break-ups at the Wilkins Ice Shelf on the Antarctic Peninsula that was previously attributed to effects of surface melting and brine infiltration is now recognized as being consistent with a firn aquifer--possibly stimulated by long-period ocean swell--that enhanced ice-shelf hydrofracture. This project will verify inferences (from the same mapping approach used in Greenland) that such aquifers are indeed present in Antarctica. The team will survey two high-probability sites: the Wilkins Ice Shelf, and the southern George VI Ice Shelf. This two-year study will characterize the firn at the two field sites, drill shallow (~60 m maximum) ice cores, examine snow pits (~2 m), and install two AMIGOS (Automated Met-Ice-Geophysics Observing System) stations that include weather, GPS, and firn temperature sensors that will collect and transmit measurements for at least a year before retrieval. Ground-penetrating radar survey in areas surrounding the field sites will track aquifer extent and depth variations. Ice and microwave model studies will be combined with the field-observed properties to further explore the range of firn aquifers and related upper-snow-layer conditions. This study will provide valuable experience for three early-career scientists. An outreach effort through field blogging, social media posts, K-12 presentations, and public lectures is planned to engage the public in the team?s Antarctic scientific exploration and discovery. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -65.0, "geometry": "POINT(-70 -71.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": true, "keywords": "USAP-DC; Firn Aquifer; USA/NSF; FIELD INVESTIGATION; AMD; GLACIERS/ICE SHEETS; Wilkens Ice Shelf; Antarctic Peninsula; Amd/Us", "locations": "Antarctic Peninsula; Wilkens Ice Shelf", "north": -69.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Scambos, Ted", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -74.0, "title": "Antarctic Firn Aquifers: Extent, Characteristics, and Comparison with Greenland Occurrences", "uid": "p0010126", "west": -75.0}, {"awards": "1753101 Bernard, Kim", "bounds_geometry": "POLYGON((-65 -64,-64.7 -64,-64.4 -64,-64.1 -64,-63.8 -64,-63.5 -64,-63.2 -64,-62.9 -64,-62.6 -64,-62.3 -64,-62 -64,-62 -64.1,-62 -64.2,-62 -64.3,-62 -64.4,-62 -64.5,-62 -64.6,-62 -64.7,-62 -64.8,-62 -64.9,-62 -65,-62.3 -65,-62.6 -65,-62.9 -65,-63.2 -65,-63.5 -65,-63.8 -65,-64.1 -65,-64.4 -65,-64.7 -65,-65 -65,-65 -64.9,-65 -64.8,-65 -64.7,-65 -64.6,-65 -64.5,-65 -64.4,-65 -64.3,-65 -64.2,-65 -64.1,-65 -64))", "dataset_titles": "2019 Krill Carbon Content; 2019 Krill Morphometrics; CAREER: \"The Omnivores Dilemma\": The Effect of Autumn Diet on Winter Physiology and Condition of Juvenile Antarctic Krill; Expedition of NBP2205; Feeding Experiment - Krill Lipid Classes; Gerlache Strait Krill Demographics", "datasets": [{"dataset_uid": "601708", "doi": "10.15784/601708", "keywords": "Antarctica; Antarctic Krill; Palmer Station; Winter", "people": "Bernard, Kim", "repository": "USAP-DC", "science_program": null, "title": "2019 Krill Morphometrics", "url": "https://www.usap-dc.org/view/dataset/601708"}, {"dataset_uid": "601707", "doi": "10.15784/601707", "keywords": "Antarctica; Antarctic Krill; Palmer Station; Winter", "people": "Bernard, Kim", "repository": "USAP-DC", "science_program": null, "title": "Feeding Experiment - Krill Lipid Classes", "url": "https://www.usap-dc.org/view/dataset/601707"}, {"dataset_uid": "601706", "doi": "10.15784/601706", "keywords": "Abundance; Antarctica; Antarctic Krill", "people": "Bernard, Kim", "repository": "USAP-DC", "science_program": null, "title": "Gerlache Strait Krill Demographics", "url": "https://www.usap-dc.org/view/dataset/601706"}, {"dataset_uid": "601709", "doi": "10.15784/601709", "keywords": "Antarctica; Antarctic Krill; Palmer Station; Winter", "people": "Bernard, Kim", "repository": "USAP-DC", "science_program": null, "title": "2019 Krill Carbon Content", "url": "https://www.usap-dc.org/view/dataset/601709"}, {"dataset_uid": "200369", "doi": "10.7284/909918", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition of NBP2205", "url": "https://www.rvdata.us/search/cruise/NBP2205"}, {"dataset_uid": "200368", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "CAREER: \"The Omnivores Dilemma\": The Effect of Autumn Diet on Winter Physiology and Condition of Juvenile Antarctic Krill", "url": "https://www.bco-dmo.org/project/824760"}], "date_created": "Mon, 31 Aug 2020 00:00:00 GMT", "description": "Antarctic krill are essential in the Southern Ocean as they support vast numbers of marine mammals, seabirds and fishes, some of which feed almost exclusively on krill. Antarctic krill also constitute a target species for industrial fisheries in the Southern Ocean. The success of Antarctic krill populations is largely determined by the ability of their young to survive the long, dark winter, where food is extremely scarce. To survive the long-dark winter, young Antarctic krill must have a high-quality diet in autumn. However, warming in certain parts of Antarctica is changing the dynamics and quality of the polar food web, resulting in a shift in the type of food available to young krill in autumn. It is not yet clear how these dynamic changes are affecting the ability of krill to survive the winter. This project aims to fill an important gap in current knowledge on an understudied stage of the Antarctic krill life cycle, the 1-year old juveniles. The results derived from this work will contribute to the development of improved bioenergetic, population and ecosystem models, and will advance current scientific understanding of this critical Antarctic species. This CAREER project\u0027s core education and outreach objectives seek to enhance education and increase diversity within STEM fields. An undergraduate course will be developed that will integrate undergraduate research and writing in way that promotes authentic scientific inquiry and analysis of original research data by the students, and that enhances their communication skills. A graduate course will be developed that will promote students\u0027 skills in communicating their own research to a non-scientific audience. Graduate students will be supported through the proposed study and will gain valuable research experience. Traditionally underserved undergraduate students will be recruited to conduct independent research under the umbrella of the larger project. Throughout each field season, the research team will maintain a weekly blog that will include short videos, photographs and text highlighting the research, as well as their experiences living and working in Antarctica. The aim of the blog will be to engage the public and increase awareness and understanding of Antarctic ecosystems and the impact of warming, and of the scientific process of research and discovery. In this 5-year CAREER project, the investigator will use a combination of empirical and theoretical techniques to assess the effects of diet on 1-year old krill in autumn-winter. The research is centered on four hypotheses: (H1) autumn diet affects 1-year old krill physiology and condition at the onset of winter; (H2) autumn diet has an effect on winter physiology and condition of 1-year old krill under variable winter food conditions; (H3) the rate of change in physiology and condition of 1-year old krill from autumn to winter is dependent on autumn diet; and (H4) the winter energy budget of 1-year old krill will vary between years and will be dependent on autumn diet. Long-term feeding experiments and in situ sampling will be used to measure changes in the physiology and condition of krill in relation to their diet and feeding environment. Empirically-derived data will be used to develop theoretical models of growth rates and energy budgets to determine how diet will influence the overwinter survival of 1-year old krill. The research will be integrated with an education and outreach plan to (1) develop engaging undergraduate and graduate courses, (2) train and develop young scientists for careers in polar research, and (3) engage the public and increase their awareness and understanding. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -62.0, "geometry": "POINT(-63.5 -64.5)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctic Peninsula; AMD; FIELD INVESTIGATION; ANIMALS/INVERTEBRATES; PELAGIC; Anvers Island; Amd/Us; USAP-DC; NSF/USA", "locations": "Antarctic Peninsula; Anvers Island", "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Bernard, Kim", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "BCO-DMO; R2R; USAP-DC", "science_programs": null, "south": -65.0, "title": "CAREER: \"The Omnivore\u0027s Dilemma\": The Effect of Autumn Diet on Winter Physiology and Condition of Juvenile Antarctic Krill", "uid": "p0010124", "west": -65.0}, {"awards": "1935755 Lamp, Jennifer; 1935907 Balco, Gregory; 1935945 Tremblay, Marissa", "bounds_geometry": "POLYGON((160 -77.25,160.4 -77.25,160.8 -77.25,161.2 -77.25,161.6 -77.25,162 -77.25,162.4 -77.25,162.8 -77.25,163.2 -77.25,163.6 -77.25,164 -77.25,164 -77.325,164 -77.4,164 -77.475,164 -77.55,164 -77.625,164 -77.7,164 -77.775,164 -77.85,164 -77.925,164 -78,163.6 -78,163.2 -78,162.8 -78,162.4 -78,162 -78,161.6 -78,161.2 -78,160.8 -78,160.4 -78,160 -78,160 -77.925,160 -77.85,160 -77.775,160 -77.7,160 -77.625,160 -77.55,160 -77.475,160 -77.4,160 -77.325,160 -77.25))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 25 Aug 2020 00:00:00 GMT", "description": ". ______________________________________________________________________________________________________________ Part I: Nontechnical Description Scientists study the Earth\u0027s past climate in order to understand how the climate will respond to ongoing global change in the future. One of the best analogs for future climate might the period that occurred approximately 3 million years ago, during an interval known as the mid-Pliocene Warm Period. During this period, the concentration of carbon dioxide in the atmosphere was similar to today\u0027s and sea level was 15 or more meters higher, due primarily to warming and consequent ice sheet melting in polar regions. However, the temperatures in polar regions during the mid-Pliocene Warm Period are not well determined, in part because we do not have records like ice cores that extend this far back in time. This project will provide constraints on surface temperatures in Antarctica during the mid-Pliocene Warm Period using a new type of climate substitute, known as cosmogenic noble gas paleothermometry. This project focuses on an area of Antarctica called the McMurdo Dry Valleys. In this area, climate models suggest that temperatures were more than 10 C warmer during the mid-Pliocene than they are today, but indirect geologic observations suggest that temperatures may have been similar to today. The McMurdo Dry Valleys are also a place where rocks have been exposed to Earth surface conditions for several million years, and where this new climate substitute can be readily applied. The team will reconstruct temperatures in the McMurdo Dry Valleys during the mid-Pliocene Warm Period in order to resolve the discrepancy between models and indirect geologic observations and provide much-needed constraints on the sensitivity of Antarctic ice sheets to warming temperatures. The temperature reconstructions generated in this project will have scientific impact in multiple disciplines, including climate science, glaciology, geomorphology, and planetary science. In addition, the project will (1) broaden the participation of underrepresented groups by supporting two early-career female principal investigators, (2) build STEM talent through the education and training of a graduate student, (3) enhance infrastructure for research via publication of a publicly-accessible, open-source code library, and (4) be broadly disseminated via social media, blog posts, publications, and conference presentations. Part II: Technical Description The mid-Pliocene Warm Period (3-3.3 million years ago) is the most recent interval of the geologic past when atmospheric CO2 concentrations exceeded 400 ppm and is widely considered an analog for how Earth\u2019s climate system will respond to current global change. Climate models predict polar amplification - the occurrence of larger changes in temperatures at high latitudes than the global average due to a radiative forcing - both during the mid-Pliocene Warm Period and due to current climate warming. However, the predicted magnitude of polar amplification is highly uncertain in both cases. The magnitude of polar amplification has important implications for the sensitivity of ice sheets to warming and the contribution of ice sheet melting to sea level change. Proxy-based constraints on polar surface air temperatures during the mid-Pliocene Warm Period are sparse to non-existent. In Antarctica, there is only indirect evidence for the magnitude of warming during this time. This project will provide constraints on surface temperatures in the McMurdo Dry Valleys of Antarctica during the mid-Pliocene Warm Period using a newly developed technique called cosmogenic noble gas (CNG) paleothermometry. CNG paleothermometry utilizes the diffusive behavior of cosmogenic 3He in quartz to quantify the temperatures rocks experience while exposed to cosmic-ray particles within a few meters of the Earth\u2019s surface. The very low erosion rates and subzero temperatures characterizing the McMurdo Dry Valleys make this region uniquely suited for the application of CNG paleothermometry for addressing the question: what temperatures characterized the McMurdo Dry Valleys during the mid-Pliocene Warm Period? To address this question, the team will collect bedrock samples at several locations in the McMurdo Dry Valleys where erosion rates are known to be low enough that cosmic ray exposure extends into the mid-Pliocene or earlier. They will pair cosmogenic 3He measurements, which will record the thermal histories of our samples, with measurements of cosmogenic 10Be, 26Al, and 21Ne, which record samples exposure and erosion histories. We will also make in situ measurements of rock and air temperatures at sample sites in order to quantify the effect of radiative heating and develop a statistical relationship between rock and air temperatures, as well as conduct diffusion experiments to quantify the kinetics of 3He diffusion specific to each sample. This suite of observations will be used to model permissible thermal histories and place constraints on temperatures during the mid-Pliocene Warm Period interval of cosmic-ray exposure. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 164.0, "geometry": "POINT(162 -77.625)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; AMD; LABORATORY; USA/NSF; Amd/Us; ISOTOPES; Dry Valleys; AIR TEMPERATURE RECONSTRUCTION; GEOCHEMISTRY; USAP-DC", "locations": "Dry Valleys", "north": -77.25, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Tremblay, Marissa; Granger, Darryl; Balco, Gregory; Lamp, Jennifer", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -78.0, "title": "Collaborative \r\nResearch: Reconstructing Temperatures during the Mid-Pliocene Warm \r\nPeriod in the McMurdo Dry Valleys with Cosmogenic Noble Gases", "uid": "p0010123", "west": 160.0}, {"awards": "1543450 Countway, Peter", "bounds_geometry": "POLYGON((-66 -63,-65.7 -63,-65.4 -63,-65.1 -63,-64.8 -63,-64.5 -63,-64.2 -63,-63.9 -63,-63.6 -63,-63.3 -63,-63 -63,-63 -63.3,-63 -63.6,-63 -63.9,-63 -64.2,-63 -64.5,-63 -64.8,-63 -65.1,-63 -65.4,-63 -65.7,-63 -66,-63.3 -66,-63.6 -66,-63.9 -66,-64.2 -66,-64.5 -66,-64.8 -66,-65.1 -66,-65.4 -66,-65.7 -66,-66 -66,-66 -65.7,-66 -65.4,-66 -65.1,-66 -64.8,-66 -64.5,-66 -64.2,-66 -63.9,-66 -63.6,-66 -63.3,-66 -63))", "dataset_titles": "Biogenic Sulfur Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments; Dissolved Inorganic Nutrient Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments ; Dissolved Organic Carbon (DOC) and Total Dissolved Nitrogen (TDN) Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments; Flow Cytometry Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments; Heterotrophic Bacterial Production Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments; Western Antarctic Peninsula plankton raw sequence reads", "datasets": [{"dataset_uid": "601644", "doi": "10.15784/601644", "keywords": "3H-Leu; Antarctica; Bacteria; Biota; DMSP; Heterotrophic Bacterial Production; Palmer Station", "people": "Countway, Peter; Matrai, Patricia", "repository": "USAP-DC", "science_program": null, "title": "Heterotrophic Bacterial Production Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments", "url": "https://www.usap-dc.org/view/dataset/601644"}, {"dataset_uid": "200337", "doi": "", "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Western Antarctic Peninsula plankton raw sequence reads", "url": "https://dataview.ncbi.nlm.nih.gov/object/PRJNA870587?reviewer=bmud2tbbrqbus79i2n2hb83uio"}, {"dataset_uid": "601645", "doi": "10.15784/601645", "keywords": "Antarctica; Nitrate; Nitrite; Palmer Station; Phosphate", "people": "Countway, Peter; Matrai, Patricia", "repository": "USAP-DC", "science_program": null, "title": "Dissolved Inorganic Nutrient Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments ", "url": "https://www.usap-dc.org/view/dataset/601645"}, {"dataset_uid": "601648", "doi": "10.15784/601648", "keywords": "Antarctica; Biota; Dimethyl Sulfide; Dimethylsulfoniopropionate; Dimethylsulfoxide; DMSP; DMSP Lyase; Palmer Station", "people": "Matrai, Patricia; Countway, Peter", "repository": "USAP-DC", "science_program": null, "title": "Biogenic Sulfur Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments", "url": "https://www.usap-dc.org/view/dataset/601648"}, {"dataset_uid": "601646", "doi": "10.15784/601646", "keywords": "Antarctica; Carbon; Dissolved Organic Carbon; Nitrogen; Palmer Station; TDN; Total Dissolved Nitrogen", "people": "Countway, Peter; Matrai, Patricia", "repository": "USAP-DC", "science_program": null, "title": "Dissolved Organic Carbon (DOC) and Total Dissolved Nitrogen (TDN) Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments", "url": "https://www.usap-dc.org/view/dataset/601646"}, {"dataset_uid": "601647", "doi": "10.15784/601647", "keywords": "Antarctica; Palmer Station; Phytoplankton", "people": "Countway, Peter; Matrai, Patricia", "repository": "USAP-DC", "science_program": null, "title": "Flow Cytometry Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments", "url": "https://www.usap-dc.org/view/dataset/601647"}], "date_created": "Sat, 01 Aug 2020 00:00:00 GMT", "description": "The Southern Ocean in the vicinity of Antarctica is a region characterized by seasonally-driven marine phytoplankton blooms that are often dominated by microalgal species which produce large amounts of dimethylsulfoniopropionate (DMSP). DMSP can be converted to the compound dimethylsulfide (DMS) which is a molecule that can escape into the atmosphere where it is known to have strong condensation properties that are involved in regional cloud formation. Production of DMSP can influence the diversity and composition of microbial assemblages in seawater and the types and activities of microbes in the seawater will likely affect the magnitude of DMSP\\DMS production. The proposal aims to examine the role of DMSP in structuring the microbial communities in Antarctic waters and how this structuring may influence DMSP cycling. The project will leverage the Antarctic research to introduce concepts and data linking microbial diversity and biogeochemistry to a range of audiences (including high school and undergraduate students in Maine). The project will also engage teacher and students in rural K-8 schools and will allow a collaboration with a science writer and illustrator who will join the team in the field. The writer will use the southern ocean experience as the setting for a poster and a book about the proposed research and the scientists studying extreme environments. The project will examine (1) the extent to which the cycling of DMSP in southern ocean waters influences the composition and diversity of bacterial and protistan assemblages; (2) conversely, whether the composition and diversity of southern ocean protistan and bacterial assemblages influence the magnitude and rates of DMSP cycling; (3) the expression of DMSP degradation genes by marine bacteria seasonally and in response to additions of DMSP; and, to synthesize these results by quantifying (4) the microbial networks resulting from the presence of DMSP-producers and DMSP-consumers along with their predators, all involved in the cycling of DMSP in southern ocean waters. The work will be accomplished by conducting continuous growth experiments with DMSP-amended natural samples during field sampling of different microbial communities present in summer and fall. Data from the molecular (such as 16S/ 18S tag sequences, DMSP-cycle gene transcripts) and biogeochemical (such as biogenic sulfur cycling, bacterial production, microbial biomass) investigations will be integrated via network analysis.", "east": -63.0, "geometry": "POINT(-64.5 -64.5)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; COMMUNITY DYNAMICS; FIELD INVESTIGATION; AMD; PLANKTON; Amd/Us; BIOGEOCHEMICAL CYCLES; Palmer Station; USA/NSF", "locations": "Palmer Station", "north": -63.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Countway, Peter", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "GenBank; USAP-DC", "science_programs": null, "south": -66.0, "title": "Microbial Community Structure and Expression of Functional Genes Involved in the Seasonal Cycling of DMSP in the Southern Ocean", "uid": "p0010120", "west": -66.0}, {"awards": "1543347 Rosenheim, Brad; 1543396 Christner, Brent; 1543405 Leventer, Amy; 1543453 Lyons, W. Berry; 1543537 Priscu, John; 1543441 Fricker, Helen", "bounds_geometry": "POLYGON((-163.611 -84.33543,-162.200034 -84.33543,-160.789068 -84.33543,-159.378102 -84.33543,-157.967136 -84.33543,-156.55617 -84.33543,-155.145204 -84.33543,-153.734238 -84.33543,-152.323272 -84.33543,-150.912306 -84.33543,-149.50134 -84.33543,-149.50134 -84.3659157,-149.50134 -84.3964014,-149.50134 -84.4268871,-149.50134 -84.4573728,-149.50134 -84.4878585,-149.50134 -84.5183442,-149.50134 -84.5488299,-149.50134 -84.5793156,-149.50134 -84.6098013,-149.50134 -84.640287,-150.912306 -84.640287,-152.323272 -84.640287,-153.734238 -84.640287,-155.145204 -84.640287,-156.55617 -84.640287,-157.967136 -84.640287,-159.378102 -84.640287,-160.789068 -84.640287,-162.200034 -84.640287,-163.611 -84.640287,-163.611 -84.6098013,-163.611 -84.5793156,-163.611 -84.5488299,-163.611 -84.5183442,-163.611 -84.4878585,-163.611 -84.4573728,-163.611 -84.4268871,-163.611 -84.3964014,-163.611 -84.3659157,-163.611 -84.33543))", "dataset_titles": "Antarctica - PI Continuous - GZ01-WIS_GroundingZone_01 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - GZ13-WIS_GroundingZone_13 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - LA02-WIS_LAKES_02 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - LA06-WIS_LAKES_06 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - LA07-WIS_LAKES_07 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - LA09-WIS_LAKES_09 P.S. - GPS/GNSS Observations Dataset; Bistatic Radar Sounding of Whillans Ice Stream, Antarctica and Store Glacier, Greenland; CTD data from Mercer Subglacial Lake and access borehole; Discrete bulk sediment properties data from Mercer Subglacial Lake; Isotopic data from Whillans Ice Stream grounding zone, West Antarctica; Mercer Subglacial Lake radiocarbon and stable isotope data ; Mercer Subglacial Lake (SLM) microbial composition: 16S rRNA genes (Sequence Read Archive; BioProject: PRJNA790995); Mercer Subglacial Lake (SLM) noble gas and isotopic data; Mercer Subglacial Lake water column viral metagenomic sequencing; Salsa sediment cores; Sediment porewater properties data from Mercer Subglacial Lake; Water column biogeochemical data from Mercer Subglacial Lake", "datasets": [{"dataset_uid": "200342", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Mercer Subglacial Lake water column viral metagenomic sequencing", "url": "https://www.ncbi.nlm.nih.gov/biosample/32811410"}, {"dataset_uid": "200214", "doi": "10.7283/YW8Z-TK03", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - LA02-WIS_LAKES_02 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/YW8Z-TK03"}, {"dataset_uid": "200246", "doi": "", "keywords": null, "people": null, "repository": "OSU-MGR", "science_program": null, "title": "Salsa sediment cores", "url": "https://osu-mgr.org"}, {"dataset_uid": "200215", "doi": "10.7283/C503-KS23", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - LA06-WIS_LAKES_06 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/C503-KS23"}, {"dataset_uid": "601663", "doi": "10.15784/601663", "keywords": "Antarctica; Carbon; Cell Counts; Geochemistry; Glacier; Glaciers/ice Sheet; Glaciers/Ice Sheet; Mercer Subglacial Lake; Microbes; Nutrients; SALSA; Stable Isotopes; Trace Elements; West Antarctic Ice Sheet", "people": "Priscu, John; Dore, John; Skidmore, Mark; Hawkings, Jon; Steigmeyer, August; Li, Wei; Barker, Joel; Tranter, Martyn; Science Team, SALSA", "repository": "USAP-DC", "science_program": null, "title": "Water column biogeochemical data from Mercer Subglacial Lake", "url": "https://www.usap-dc.org/view/dataset/601663"}, {"dataset_uid": "200216", "doi": "10.7283/F8NH-CV04", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - LA07-WIS_LAKES_07 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/F8NH-CV04"}, {"dataset_uid": "601672", "doi": "10.15784/601672", "keywords": "Antarctica; Isotope; Mercer Subglacial Lake; Radiocarbon; Subglacial Lake", "people": "Rosenheim, Brad; Venturelli, Ryan", "repository": "USAP-DC", "science_program": null, "title": "Mercer Subglacial Lake radiocarbon and stable isotope data ", "url": "https://www.usap-dc.org/view/dataset/601672"}, {"dataset_uid": "200213", "doi": "10.7283/F7BB-JH05", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - GZ13-WIS_GroundingZone_13 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/F7BB-JH05"}, {"dataset_uid": "200282", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Mercer Subglacial Lake (SLM) microbial composition: 16S rRNA genes (Sequence Read Archive; BioProject: PRJNA790995)", "url": "https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA790995"}, {"dataset_uid": "601661", "doi": "10.15784/601661", "keywords": "Antarctica; Carbon; Glacier; Glaciers/ice Sheet; Glaciers/Ice Sheet; Iron; Mercer Subglacial Lake; Mineralogy; Particle Size; Physical Properties; SALSA; Sediment Core; Sulfur; West Antarctic Ice Sheet", "people": "Campbell, Timothy; Michaud, Alexander; Hawkings, Jon; Skidmore, Mark; Tranter, Martyn; Venturelli, Ryan A; Dore, John; Science Team, SALSA", "repository": "USAP-DC", "science_program": null, "title": "Discrete bulk sediment properties data from Mercer Subglacial Lake", "url": "https://www.usap-dc.org/view/dataset/601661"}, {"dataset_uid": "200212", "doi": "10.7283/PT0Q-JB95", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - GZ01-WIS_GroundingZone_01 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/PT0Q-JB95"}, {"dataset_uid": "601360", "doi": "10.15784/601360", "keywords": "Antarctica; Radiocarbon; Sediment; Whillans Ice Stream", "people": "Venturelli, Ryan A", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Isotopic data from Whillans Ice Stream grounding zone, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/601360"}, {"dataset_uid": "601472", "doi": "10.15784/601472", "keywords": "Antarctica; Bistatic Radar; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS Data; Greenland; Lake Whillans; Radar; Store Glacier; Whillans Ice Stream; WISSARD", "people": "Schroeder, Dustin; Siegfried, Matthew; Peters, Sean; MacKie, Emma; Dawson, Eliza; Christoffersen, Poul; Bienert, Nicole", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Bistatic Radar Sounding of Whillans Ice Stream, Antarctica and Store Glacier, Greenland", "url": "https://www.usap-dc.org/view/dataset/601472"}, {"dataset_uid": "601498", "doi": "10.15784/601498", "keywords": "Antarctica; Mercer Subglacial Lake; Noble Gas", "people": "Lyons, W. Berry; Gardner, Christopher B.", "repository": "USAP-DC", "science_program": null, "title": "Mercer Subglacial Lake (SLM) noble gas and isotopic data", "url": "https://www.usap-dc.org/view/dataset/601498"}, {"dataset_uid": "601657", "doi": "10.15784/601657", "keywords": "Antarctica; Conductivity; CTD; Depth; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hot Water Drill; Mercer Subglacial Lake; Physical Properties; SALSA; Subglacial Lake; Temperature", "people": "Leventer, Amy; Dore, John; Priscu, John; Rosenheim, Brad", "repository": "USAP-DC", "science_program": null, "title": "CTD data from Mercer Subglacial Lake and access borehole", "url": "https://www.usap-dc.org/view/dataset/601657"}, {"dataset_uid": "200217", "doi": "10.7283/3JMY-Y504", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - LA09-WIS_LAKES_09 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/3JMY-Y504"}, {"dataset_uid": "601664", "doi": "10.15784/601664", "keywords": "Antarctica; Gas; Geochemistry; Glacier; Glaciology; Mercer Subglacial Lake; Methane; SALSA; Sediment Core; West Antarctic Ice Sheet", "people": "Skidmore, Mark; Science Team, SALSA; Steigmeyer, August; Tranter, Martyn; Michaud, Alexander; Dore, John", "repository": "USAP-DC", "science_program": null, "title": "Sediment porewater properties data from Mercer Subglacial Lake", "url": "https://www.usap-dc.org/view/dataset/601664"}], "date_created": "Thu, 16 Jul 2020 00:00:00 GMT", "description": "The Antarctic subglacial environment remains one of the least explored regions on Earth. This project will examine the physical and biological characteristics of Subglacial Lake Mercer, a lake that lies 1200m beneath the West Antarctic Ice Sheet. This study will address key questions relating to the stability of the ice sheet, the subglacial hydrological system, and the deep-cold subglacial biosphere. The education and outreach component aims to widely disseminate results to the scientific community and to the general public through short films, a blog, and a website. Subglacial Lake Mercer is one of the larger hydrologically active lakes in the southern basin of the Whillans Ice Plain, West Antarctica. It receives about 25 percent of its water from East Antarctica with the remainder originating from West Antarctica, is influenced by drain/fill cycles in a lake immediately upstream (Subglacial Lake Conway), and lies about 100 km upstream of the present grounding line of the Ross Ice Shelf. This site will yield information on the history of the Whillans and Mercer Ice Streams, and on grounding line migration. The integrated study will include direct sampling of basal ice, water, and sediment from the lake in concert with surface geophysical surveys over a three-year period to define the hydrological connectivity among lakes on the Whillans Ice Plain and their flow paths to the sea. The geophysical surveys will furnish information on subglacial hydrology, aid the site selection for hot-water drilling, and provide spatial context for interpreting findings. The hot-water-drilled boreholes will be used to collect basal ice samples, provide access for direct measurement of subglacial physical, chemical, and biological conditions in the water column and sediments, and to explore the subglacial water cavities using a remotely operated vehicle equipped with sensors, cameras, and sampling equipment. Data collected from this study will address the overarching hypothesis \"Contemporary biodiversity and carbon cycling in hydrologically-active subglacial environments associated with the Mercer and Whillans ice streams are regulated by the mineralization and cycling of relict marine organic matter and through interactions among ice, rock, water, and sediments\". The project will be undertaken by a collaborative team of scientists, with expertise in microbiology, biogeochemistry, hydrology, geophysics, glaciology, marine geology, paleoceanography, and science communication.", "east": -149.50134, "geometry": "POINT(-156.55617 -84.4878585)", "instruments": null, "is_usap_dc": true, "keywords": "SEDIMENTS; Antarctica; ISOTOPES; Subglacial Lake; USAP-DC; VIRUSES; PALEOCLIMATE RECONSTRUCTIONS; BACTERIA/ARCHAEA; LABORATORY; Radiocarbon; Whillans Ice Stream; AMD; SALSA; ECOSYSTEM FUNCTIONS; RADIOCARBON; FIELD INVESTIGATION; ICE MOTION; Mercer Ice Stream; Amd/Us; USA/NSF; GLACIERS/ICE SHEETS", "locations": "Antarctica; Mercer Ice Stream; Whillans Ice Stream", "north": -84.33543, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Instrumentation and Support; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Glaciology; Antarctic Integrated System Science", "paleo_time": null, "persons": "Rosenheim, Brad; Fricker, Helen; Priscu, John; Leventer, Amy; Dore, John; Lyons, W. Berry; Christner, Brent", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "GenBank", "repositories": "GenBank; NCBI GenBank; OSU-MGR; UNAVCO; USAP-DC", "science_programs": null, "south": -84.640287, "title": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments", "uid": "p0010119", "west": -163.611}, {"awards": "1443482 Mak, John", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Carbon monoxide mixing ratios and stable isotopic values, SPICE", "datasets": [{"dataset_uid": "601356", "doi": "10.15784/601356", "keywords": "Antarctica; CO; Delta 13C; Delta 18O; South Pole; SPICEcore", "people": "Mak, John", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Carbon monoxide mixing ratios and stable isotopic values, SPICE", "url": "https://www.usap-dc.org/view/dataset/601356"}], "date_created": "Thu, 09 Jul 2020 00:00:00 GMT", "description": "Mak/1443482 This project will compare current atmospheric conditions with those of the remote past prior to human influence. This is important in order to understand the impact of human activities on Earth\u0027s atmosphere, and to determine the stability of the composition of the atmosphere in the past. How humans have impacted Earth?s atmospheric composition is important for developing accurate predictions of future global atmospheric conditions. In addition to training students, the investigators will support continuing education of high school science teachers on Long Island through specifically tailored, interactive seminars on various topics in earth science, atmospheric sciences, physics and biology. A pilot program at Mount Sinai School District, near Stony Brook University will be the first implementation of this program. The investigators plan to reconstruct historical variations in the sources of atmospheric carbon monoxide (CO) from measurements of the concentration and stable isotopic abundance of carbon monoxide ([CO], 13CO and C18O) in the South Pole Ice Core, which is being drilled in 2014-2016. The goal is to strategically sample and reconstruct the relative variations in CO source strengths over the past 20,000 years. These will be the first measurements to extend the CO record beyond 650 years before present, back to the last glacial maximum. Both atmospheric chemical processes and variations in CO sources can impact the CO budget, and variations in the CO budget are useful in identifying and quantifying chemistry-climate interactions.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "LABORATORY; TRACE GASES/TRACE SPECIES; FIELD INVESTIGATION; South Pole", "locations": "South Pole", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Mak, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: Using Stable Isotopes to Constrain the Atmospheric Carbon Monoxide Budget over the Last 20,000 Years", "uid": "p0010117", "west": -180.0}, {"awards": "0125252 Padman, Laurence; 0125602 Padman, Laurence", "bounds_geometry": "POLYGON((-180 -40.231,-144 -40.231,-108 -40.231,-72 -40.231,-36 -40.231,0 -40.231,36 -40.231,72 -40.231,108 -40.231,144 -40.231,180 -40.231,180 -45.2079,180 -50.1848,180 -55.1617,180 -60.1386,180 -65.1155,180 -70.0924,180 -75.0693,180 -80.0462,180 -85.0231,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -85.0231,-180 -80.0462,-180 -75.0693,-180 -70.0924,-180 -65.1155,-180 -60.1386,-180 -55.1617,-180 -50.1848,-180 -45.2079,-180 -40.231))", "dataset_titles": "Antarctic Tide Gauge Database, version 1; AntTG_Database_Tools; CATS2008: Circum-Antarctic Tidal Simulation version 2008; CATS2008_v2023: Circum-Antarctic Tidal Simulation 2008, version 2023; pyTMD; TMD_Matlab_Toolbox_v2.5", "datasets": [{"dataset_uid": "200158", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "pyTMD", "url": "https://github.com/tsutterley/pyTMD"}, {"dataset_uid": "601772", "doi": "10.15784/601772", "keywords": "Antarctica; Cryosphere; Inverse Modeling; Model Data; Ocean Currents; Oceans; Sea Surface; Southern Ocean; Tide Model; Tides", "people": "Sutterley, Tyler; Howard, Susan L.; Greene, Chad A.; Padman, Laurence; Erofeeva, Svetlana", "repository": "USAP-DC", "science_program": null, "title": "CATS2008_v2023: Circum-Antarctic Tidal Simulation 2008, version 2023", "url": "https://www.usap-dc.org/view/dataset/601772"}, {"dataset_uid": "200156", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "AntTG_Database_Tools", "url": "https://github.com/EarthAndSpaceResearch/AntTG_Database_Tools"}, {"dataset_uid": "601235", "doi": "10.15784/601235", "keywords": "Antarctica; Inverse Modeling; Model Data; Ocean Currents; Sea Surface; Tidal Models; Tides", "people": "Howard, Susan L.; Padman, Laurence; Erofeeva, Svetlana", "repository": "USAP-DC", "science_program": null, "title": "CATS2008: Circum-Antarctic Tidal Simulation version 2008", "url": "https://www.usap-dc.org/view/dataset/601235"}, {"dataset_uid": "200157", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "TMD_Matlab_Toolbox_v2.5", "url": "https://github.com/EarthAndSpaceResearch/TMD_Matlab_Toolbox_v2.5"}, {"dataset_uid": "601358", "doi": "10.15784/601358", "keywords": "Antarctica; Oceans; Sea Surface Height; Tide Gauges; Tides", "people": "Howard, Susan L.; Padman, Laurence; King, Matt", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Tide Gauge Database, version 1", "url": "https://www.usap-dc.org/view/dataset/601358"}], "date_created": "Tue, 07 Jul 2020 00:00:00 GMT", "description": "The ocean tide is a large component of total variability of ocean surface height and currents in the seas surrounding Antarctica, including under the floating ice shelves. Maximum tidal height range exceeds 7 m (near the grounding line of Rutford Ice Stream) and maximum tidal currents exceed 1 m/s (near the shelf break in the northwest Ross Sea). Tides contribute to several important climate and ecosystems processes including: ocean mixing, production of dense bottom water, flow of warm Circumpolar Deep Water onto the continental shelves, melting at the bases of ice shelves, fracturing of the ice sheet near a glacier or ice stream\u2019s grounding line, production and decay of sea ice, and sediment resuspension. Tide heights and, in particular, currents can change as the ocean background state changes, and as the geometry of the coastal margins of the Antarctic Ice Sheet varies through ice shelf thickness changes and ice-front and grounding-line advances or retreats. For satellite-based studies of ocean surface height and ice shelf thickness changes, tide heights are a source of substantial noise that must be removed. Similarly, tidal currents can also be a substantial noise signal when trying to estimate mean ocean currents from short-term measurements such as from acoustic Doppler current profilers mounted on ships and CTD rosettes. Therefore, tide models play critical roles in understanding current and future ocean and ice states, and as a method for removing tides in various measurements. A paper in Reviews of Geophysics (Padman, Siegfried and Fricker, 2018, see list of project-related publications below) provides a detailed review of tides and tidal processes around Antarctica.\r\n\nThis project provides a gateway to tide models and a database of tide height coefficients at the Antarctic Data Center, and links to toolboxes to work with these models and data.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e GAUGES \u003e TIDE GAUGES", "is_usap_dc": true, "keywords": "Tide Gauges; OCEAN CURRENTS; Sea Surface Height; USAP-DC; GLACIER MOTION/ICE SHEET MOTION; Tides; Antarctica; MODELS; FIELD INVESTIGATION", "locations": "Antarctica", "north": -40.231, "nsf_funding_programs": "Arctic System Science; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Howard, Susan L.; Padman, Laurence; Erofeeva, Svetlana; King, Matt", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e MODELS \u003e MODELS", "repo": "GitHub", "repositories": "GitHub; USAP-DC", "science_programs": null, "south": -90.0, "title": "Ocean Tides around Antarctica and in the Southern Ocean", "uid": "p0010116", "west": -180.0}, {"awards": "1341658 Mukhopadhyay, Sujoy", "bounds_geometry": "POLYGON((-116.45 -84.786,-116.443 -84.786,-116.436 -84.786,-116.429 -84.786,-116.422 -84.786,-116.415 -84.786,-116.408 -84.786,-116.401 -84.786,-116.394 -84.786,-116.387 -84.786,-116.38 -84.786,-116.38 -84.7864,-116.38 -84.7868,-116.38 -84.7872,-116.38 -84.7876,-116.38 -84.788,-116.38 -84.7884,-116.38 -84.7888,-116.38 -84.7892,-116.38 -84.7896,-116.38 -84.79,-116.387 -84.79,-116.394 -84.79,-116.401 -84.79,-116.408 -84.79,-116.415 -84.79,-116.422 -84.79,-116.429 -84.79,-116.436 -84.79,-116.443 -84.79,-116.45 -84.79,-116.45 -84.7896,-116.45 -84.7892,-116.45 -84.7888,-116.45 -84.7884,-116.45 -84.788,-116.45 -84.7876,-116.45 -84.7872,-116.45 -84.7868,-116.45 -84.7864,-116.45 -84.786))", "dataset_titles": "Ohio Range Subglacial rock core cosmogenic nuclide data", "datasets": [{"dataset_uid": "601351", "doi": "10.15784/601351", "keywords": "Aluminum-26; Antarctica; Beryllium-10; Cosmogenic Dating; Cosmogenic Radionuclides; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Fluctuations; Ohio Range; Rocks", "people": "Mukhopadhyay, Sujoy", "repository": "USAP-DC", "science_program": null, "title": "Ohio Range Subglacial rock core cosmogenic nuclide data", "url": "https://www.usap-dc.org/view/dataset/601351"}], "date_created": "Sun, 28 Jun 2020 00:00:00 GMT", "description": "Modeling fluctuations in the extent of the West Antarctic Ice Sheet (WAIS) over time is a principal goal of the glaciological community. These models will provide a critical basis for predictions of future sea level change, and therefore this work great societal relevance. The mid-Pliocene time interval is of particular interest, as it is the most recent period in which global temperatures were warmer and atmospheric CO2 concentrations may have been higher than current levels. However, observational constraints on fluctuations in the WAIS older than the last glacial maximum are rare. The investigators propose to collect geochemical data from the Ohio Range and Scott Glacier to quantify past variability in the height of the WAIS. Limited available cosmogenic nuclide data are broadly consistent with a model indicating that Pliocene WAIS elevations and volumes were smaller than at present, and that WAIS collapse was common. The PIs will use geologic observations and cosmogenic nuclide concentrations from bedrock samples at multiple locations and at multiple elevations, including sub-ice samples, to constrain WAIS ice volume changes in a \"dipstick\" like fashion. Data obtained from the proposed research will provide targets for data-ice sheet model comparisons to accurately characterize Plio-Pleistocene and future WAIS behavior. As part of this project, the investigators will work with the Natural History Museum and the Earth \u0026 Planetary Science department at Harvard to develop an exhibit that will become part of the Museum\u0027s recently opened Earth and Planetary Science Gallery. The project involves mentoring of a female graduate student as well as an undergraduate student.", "east": -116.38, "geometry": "POINT(-116.415 -84.788)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ROCK CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e AMS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Ice Sheet Fluctuations; ALUMINUM-26 ANALYSIS; BERYLLIUM-10 ANALYSIS; Cosmogenic Radionuclides; USAP-DC; FIELD INVESTIGATION; AMD; Ohio Range; GLACIER THICKNESS/ICE SHEET THICKNESS; ICE SHEETS; LABORATORY", "locations": "Ohio Range", "north": -84.786, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Mukhopadhyay, Sujoy", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.79, "title": "Constraining Plio-Pleistocene West Antarctic Ice Sheet Behavior from the Ohio Range and Scott Glacier", "uid": "p0010113", "west": -116.45}, {"awards": "1745341 Sumner, Dawn", "bounds_geometry": "POLYGON((161.595 -77.527,161.5953 -77.527,161.5956 -77.527,161.5959 -77.527,161.5962 -77.527,161.5965 -77.527,161.5968 -77.527,161.5971 -77.527,161.5974 -77.527,161.5977 -77.527,161.598 -77.527,161.598 -77.5271,161.598 -77.5272,161.598 -77.5273,161.598 -77.5274,161.598 -77.5275,161.598 -77.5276,161.598 -77.5277,161.598 -77.5278,161.598 -77.5279,161.598 -77.528,161.5977 -77.528,161.5974 -77.528,161.5971 -77.528,161.5968 -77.528,161.5965 -77.528,161.5962 -77.528,161.5959 -77.528,161.5956 -77.528,161.5953 -77.528,161.595 -77.528,161.595 -77.5279,161.595 -77.5278,161.595 -77.5277,161.595 -77.5276,161.595 -77.5275,161.595 -77.5274,161.595 -77.5273,161.595 -77.5272,161.595 -77.5271,161.595 -77.527))", "dataset_titles": "GP0191362, Gp0191371; JAAXLU000000000, JAAXLT000000000", "datasets": [{"dataset_uid": "200151", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "JAAXLU000000000, JAAXLT000000000", "url": "https://www.ncbi.nlm.nih.gov/nuccore/JAAXLU000000000"}, {"dataset_uid": "200152", "doi": "", "keywords": null, "people": null, "repository": "IMG Gold", "science_program": null, "title": "GP0191362, Gp0191371", "url": "https://gold.jgi.doe.gov/study?id=Gs0127369"}], "date_created": "Mon, 22 Jun 2020 00:00:00 GMT", "description": "Atmospheric oxygen rose suddenly approximately 2.4 billion years ago after Cyanobacteria evolved the ability to produce oxygen through photosynthesis (oxygenic photosynthesis). This change permanently altered the future of life on Earth, yet little is known about the evolutionary processes leading to it. The Melainabacteria were first discovered in 2013 and are closely related non-photosynthetic relatives of the first group of organisms capable of oxygenic photosynthesis. This project will utilize existing data on metagenomes from microbial mats in Lake Vanda, an ice-covered lake in Antarctica where many sequences of Melainabacteria have been previously identified. From this genetic information, the project aims to assess the metabolic capabilities of these Melainabacteria and identify their potential ecological roles. The project will additionally evaluate the evolutionary relationships among the Cyanobacteria and Melainabacteria and closely related organisms that will allow an advancement in understanding of the evolutionary path that lead to oxygenic photosynthesis on Earth. The project will focus on extracting evolutionary information from the genomic data of Melainabacteria and Sericytochromatia, recently-described groups closely related to but basal to the Cyanobacteria. The characterization of novel members of these groups in samples from Lake Vanda, Antarctica, will provide insights into the path and processes involved in the evolution of oxygenic photosynthesis. The research will focus on assessing the metabolic capabilities of Melainabacteri, deriving the evolutionary relationships among Melainabacteria and Cyanobacteria and reconstructing potential evolutionary pathways leading to oxygenic photosynthesis. The project will focus on 12 metagenomes where the researchers expect to obtain genomes for at least the eight most abundant Melainabacteria in the dataset. Melainabacteria bins will be annotated and preliminary metabolic pathways will be constructed. The project will utilize full-length sequences of marker genes from across the bacterial domain with a particular focus on taxa that are oxygenic or anoxygenic phototrophs and use the marker genes, to build a rooted \"backbone\" tree. Incomplete or short sequences from the metagenomes will be added to the tree using the Evolutionary Placement Algorithm. The researchers will also build a corresponding phylogenetic tree using a Bayesian framework and compare their topologies. By doing so, the project aims to improve the understanding of the evolution of oxygenic photosynthesis, which caused the most significant change in Earth\u0027s surface chemistry. Specifically, they will document a significantly broader metabolic diversity within the Melainabacteria than has been previously identified, gain significant insights into their metabolic evolution, their evolutionary relationships with the Cyanobacteria, and the evolutionary steps leading to the origin of oxygenic photosynthesis. This research will have the overall effect of constraining key evolutionary processes in the origin of oxygenic photosynthesis. It will provide the foundation for future studies by indicating where a genomic record of the evolution of oxygenic photosynthesis may be preserved. Results will also be shared with middle school children through the development of scientific lesson plans in collaboration with teachers. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 161.598, "geometry": "POINT(161.5965 -77.5275)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; FIELD INVESTIGATION; CYANOBACTERIA (BLUE-GREEN ALGAE); Lake Vanda; LABORATORY; LAKE/POND; Genetic Analysis", "locations": "Lake Vanda", "north": -77.527, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Sumner, Dawn; Eisen, Jonathan; Tazi, Loubna", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "NCBI GenBank", "repositories": "IMG Gold; NCBI GenBank", "science_programs": null, "south": -77.528, "title": "Evolution of Oxygenic Photosynthesis as Preserved in Melainabacterial Genomes from Lake Vanda, Antarctica", "uid": "p0010112", "west": 161.595}, {"awards": "1246465 Brook, Edward J.", "bounds_geometry": "POINT(-112.1115 -79.481)", "dataset_titles": "WAIS Divide Ice Core Marine Isotope Stage 3 CO2 record", "datasets": [{"dataset_uid": "601337", "doi": "10.15784/601337", "keywords": "Antarctica; Carbon Cycle; CO2; Gas Chromatograph; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; WAIS Divide", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core Marine Isotope Stage 3 CO2 record", "url": "https://www.usap-dc.org/view/dataset/601337"}], "date_created": "Mon, 22 Jun 2020 00:00:00 GMT", "description": "Brook/1246465 This award supports a project to measure the carbon dioxide (CO2) concentration in the WAIS Divide ice core covering the time period 25,000 to 60,000 years before present, and to analyze the isotopic composition of CO2 in selected time intervals. The research will improve understanding of how and why atmospheric CO2 varied during the last ice age, focusing particularly on abrupt transitions in the concentration record that are associated with abrupt climate change. These events represents large perturbations to the global climate system and better information about the CO2 response should inform our understanding of carbon cycle-climate feedbacks and radiative forcing of climate. The research will also improve analytical methods in support of these goals, including completing development of sublimation methods to replace laborious mechanical crushing of ice to release air for analysis. The intellectual merit of the proposed work is that it will increase knowledge about the magnitude and timing of atmospheric CO2 variations during the last ice age, and their relationship to regional climate in Antarctica, global climate history, and the history of abrupt climate change in the Northern Hemisphere. The temporal resolution of the proposed record will in most intervals be ~ 4 x higher than previous data sets for this time period, and for selected intervals up to 8-10 times higher. Broader impacts of the proposed work include a significant addition to the amount of data documenting the history of the most important long-lived greenhouse gas in the atmosphere and more information about carbon cycle-climate feedbacks - important parameters for predicting future climate change. The project will contribute to training a postdoctoral researcher, research experience for an undergraduate and a high school student, and outreach to local middle school and other students. It will also improve the analytical infrastructure at OSU, which will be available for future projects.", "east": -112.1115, "geometry": "POINT(-112.1115 -79.481)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Carbon Cycle; Ice Core Records; USAP-DC; CO2; FIELD INVESTIGATION; CARBON DIOXIDE; LABORATORY; WAIS Divide", "locations": "WAIS Divide", "north": -79.481, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Completing the WAIS Divide Ice Core CO2 record", "uid": "p0010110", "west": -112.1115}, {"awards": "1907974 Saltzman, Eric", "bounds_geometry": "POLYGON((129.26 -89.86,130.261 -89.86,131.262 -89.86,132.263 -89.86,133.264 -89.86,134.265 -89.86,135.266 -89.86,136.267 -89.86,137.268 -89.86,138.269 -89.86,139.27 -89.86,139.27 -89.861,139.27 -89.862,139.27 -89.863,139.27 -89.864,139.27 -89.865,139.27 -89.866,139.27 -89.867,139.27 -89.868,139.27 -89.869,139.27 -89.87,138.269 -89.87,137.268 -89.87,136.267 -89.87,135.266 -89.87,134.265 -89.87,133.264 -89.87,132.263 -89.87,131.262 -89.87,130.261 -89.87,129.26 -89.87,129.26 -89.869,129.26 -89.868,129.26 -89.867,129.26 -89.866,129.26 -89.865,129.26 -89.864,129.26 -89.863,129.26 -89.862,129.26 -89.861,129.26 -89.86))", "dataset_titles": "H2 in South Pole firn air", "datasets": [{"dataset_uid": "601332", "doi": "10.15784/601332", "keywords": "Antarctica; Firn; Glaciology; Hydrogen; Ice Core Records; Snow/ice; Snow/Ice; South Pole", "people": "Saltzman, Eric", "repository": "USAP-DC", "science_program": null, "title": "H2 in South Pole firn air", "url": "https://www.usap-dc.org/view/dataset/601332"}], "date_created": "Tue, 09 Jun 2020 00:00:00 GMT", "description": "Hydrogen (H2) is one of the most abundant trace gases in the atmosphere, with a mean level of 500 ppb and an atmospheric lifetime of about two years. Hydrogen has an impact on both air quality and climate, due to its role as a precursor for tropospheric ozone and stratospheric water vapor. Projections indicate that a future \"hydrogen economy\" would increase hydrogen emissions. Understanding of the atmospheric hydrogen budget is largely based on a 30-year record of surface air measurements, but there are no long-term records with which to assess either: 1) the influence of climate change on atmospheric hydrogen, or 2) the extent to which humans have impacted the hydrogen budget. Polar ice core records of hydrogen will advance our understanding of the atmospheric hydrogen cycle and provide a stronger basis for projecting future changes to atmospheric levels of hydrogen and their impacts. The research will involve laboratory work to enable the collection and analysis of hydrogen in polar ice cores. Hydrogen is a highly diffusive molecule and, unlike most other atmospheric gases, diffusion of hydrogen in ice is so rapid that ice samples must be stored in impermeable containers immediately upon drilling and recovery. This project will: 1) construct a laboratory system for extracting and analyzing hydrogen in polar ice, 2) develop and test materials and construction designs for vessels to store ice core samples in the field, and 3) test the method on samples of opportunity previously stored in the field. The goal of this project is a proven, cost-effective design for storage flasks to be fabricated for use on future polar ice coring projects. This project will support the dissertation research of a graduate student in the UC Irvine Department of Earth System Science. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 139.27, "geometry": "POINT(134.265 -89.865)", "instruments": null, "is_usap_dc": true, "keywords": "LABORATORY; Firn; TRACE GASES/TRACE SPECIES; South Pole; FIELD INVESTIGATION; USAP-DC", "locations": "South Pole", "north": -89.86, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Instrumentation and Support; Antarctic Instrumentation and Facilities", "paleo_time": null, "persons": "Saltzman, Eric", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -89.87, "title": "EAGER: Feasibility of Reconstructing the Atmospheric History of Molecular Hydrogen from Antarctic Ice", "uid": "p0010106", "west": 129.26}, {"awards": "1443576 Panter, Kurt", "bounds_geometry": "POLYGON((-154.1 -86.9,-154.03 -86.9,-153.96 -86.9,-153.89 -86.9,-153.82 -86.9,-153.75 -86.9,-153.68 -86.9,-153.61 -86.9,-153.54 -86.9,-153.47 -86.9,-153.4 -86.9,-153.4 -86.92,-153.4 -86.94,-153.4 -86.96,-153.4 -86.98,-153.4 -87,-153.4 -87.02,-153.4 -87.04,-153.4 -87.06,-153.4 -87.08,-153.4 -87.1,-153.47 -87.1,-153.54 -87.1,-153.61 -87.1,-153.68 -87.1,-153.75 -87.1,-153.82 -87.1,-153.89 -87.1,-153.96 -87.1,-154.03 -87.1,-154.1 -87.1,-154.1 -87.08,-154.1 -87.06,-154.1 -87.04,-154.1 -87.02,-154.1 -87,-154.1 -86.98,-154.1 -86.96,-154.1 -86.94,-154.1 -86.92,-154.1 -86.9))", "dataset_titles": "Volcanological and Petrological measurements on Mt. Early and Sheridan Bluff volcanoes, upper Scott Glacier, Antarctica ", "datasets": [{"dataset_uid": "601331", "doi": "10.15784/601331", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochronology; Glacial Volcanism; Magma Differentiation; Major Elements; Mantle Melting; Solid Earth; Trace Elements; Transantarctic Mountains", "people": "Panter, Kurt", "repository": "USAP-DC", "science_program": null, "title": "Volcanological and Petrological measurements on Mt. Early and Sheridan Bluff volcanoes, upper Scott Glacier, Antarctica ", "url": "https://www.usap-dc.org/view/dataset/601331"}], "date_created": "Fri, 05 Jun 2020 00:00:00 GMT", "description": "Predictions of future sea level rise require better understanding of the changing dynamics of the Greenland and Antarctic ice sheets. One way to better understand the past history of the ice sheets is to obtain records from inland ice for past geological periods, particularly in Antarctica, the world?s largest remaining ice sheet. Such records are exceedingly rare, and can be acquired at volcanic outcrops in the La Gorce Mountains of the central Transantarctic Mountains. Volcanoes now exposed within the La Gorce Mountains erupted beneath the East Antarctic ice sheet and the data collected will record how thick the ice sheet was in the past. In addition, information will be used to determine the thermal conditions at the base of the ice sheet, which impacts ice sheet stability. The project will also investigate the origin of volcanic activity in Antarctica and links to the West Antarctic Rift System (WARS). The WARS is a broad area of extended (i.e. stretched) continental crust, similar to that found in East Africa, and volcanism is wide spread and long-lived (65 million years to currently active) and despite more than 50 years of research, the fundamental cause of volcanism and rifting in Antarctica is still vigorously debated. The results of this award therefore also potentially impact the study of oceanic volcanism in the entire southwestern Pacific region (e.g., New Zealand and Australia), where volcanic fields of similar composition and age have been linked by common magma sources and processes. The field program includes a graduate student who will work on the collection, analysis, and interpretation of petrological data as part of his/her Masters project. The experience and specialized analytical training being offered will improve the quality of the student?s research and optimize their opportunities for their future. The proposed work fosters faculty and student national and international collaboration, including working with multi-user facilities that provide advanced technological mentoring of science students. Results will be broadly disseminated in peer-reviewed journals, public presentations at science meetings, and in outreach activities. Petrologic and geochemical data will be disseminated to be the community through the Polar Rock Repository. The study of subglacially erupted volcanic rocks has been developed to the extent that it is now the most powerful proxy methodology for establishing precise ?snapshots? of ice sheets, including multiple critical ice parameters. Such data should include measurements of ice thickness, surface elevation and stability, which will be used to verify, or reject, published semi-empirical models relating ice dynamics to sea level changes. In addition to establishing whether East Antarctic ice was present during the formation of the volcanoes, data will be used to derive the coeval ice thicknesses, surface elevations and basal thermal regime(s) in concert with a precise new geochronology using the 40Ar/39Ar dating method. Inferences from measurement of standard geochemical characteristics (major, trace elements and Sr, Nd, Pb, O isotopes) will be used to investigate a possible relationship between the volcanoes and the recently discovered subglacial ridge under the East Antarctic ice, which may be a rift flank uplift. The ridge has never been sampled, is undated and its significance is uncertain. The data will provide important new information about the deep Earth and geodynamic processes beneath this mostly ice covered and poorly understood sector of the Antarctic continent.", "east": -153.4, "geometry": "POINT(-153.75 -87)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; Mantle Melting; Magma Differentiation; Geochronology; Glacial Volcanism; GEOCHEMISTRY; Major Elements; ISOTOPES; Trace Elements; Transantarctic Mountains; LABORATORY; LAVA COMPOSITION/TEXTURE; USAP-DC; LAND RECORDS", "locations": "Transantarctic Mountains", "north": -86.9, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Panter, Kurt", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.1, "title": "Investigating Early Miocene Sub-ice Volcanoes in Antarctica for Improved Modeling and understanding of a Large Magmatic Province", "uid": "p0010105", "west": -154.1}, {"awards": "1419979 Severinghaus, Jeffrey", "bounds_geometry": "POLYGON((166.65 -78.62,166.654 -78.62,166.658 -78.62,166.662 -78.62,166.666 -78.62,166.67 -78.62,166.674 -78.62,166.678 -78.62,166.682 -78.62,166.686 -78.62,166.69 -78.62,166.69 -78.6205,166.69 -78.621,166.69 -78.6215,166.69 -78.622,166.69 -78.6225,166.69 -78.623,166.69 -78.6235,166.69 -78.624,166.69 -78.6245,166.69 -78.625,166.686 -78.625,166.682 -78.625,166.678 -78.625,166.674 -78.625,166.67 -78.625,166.666 -78.625,166.662 -78.625,166.658 -78.625,166.654 -78.625,166.65 -78.625,166.65 -78.6245,166.65 -78.624,166.65 -78.6235,166.65 -78.623,166.65 -78.6225,166.65 -78.622,166.65 -78.6215,166.65 -78.621,166.65 -78.6205,166.65 -78.62))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 18 May 2020 00:00:00 GMT", "description": "The PIs will design and build a new rapid access ice drill (RAID) for use in Antarctica. This drill will have the ability to rapidly drill through ice up to 3300 m thick and then collect samples of the ice, ice-sheet bed interface, and bedrock substrate below. This drilling technology will provide a new way to obtain in situ measurements and samples for interdisciplinary studies in geology, glaciology, paleoclimatology, microbiology, and astrophysics. The RAID drilling platform will give the scientific community access to records of geologic and climatic change on a variety of timescales, from the billion-year rock record to thousand-year ice and climate histories. Successful development of the RAID system will provide a research tool that is currently unavailable. Development of this platform will enable scientists to address critical questions about the deep interface between the Antarctic ice sheets and the substrate below. Development of RAID will provide a way to address many of the unknowns associated with general stability of the Antarctic ice sheets in the face of changing climate and sea level rise. The scientific rationale for RAID was reviewed in a previous proposal (Goodge 1242027). The PIs were granted ?Phase I? funding to develop a more detailed conceptual design for the RAID drill that would provide a better understanding of construction costs as well as operation and maintenance costs for RAID once it is constructed. Phase I support also allowed the PIs to work with the research community to develop more detailed science requirements for the drill. This proposal requests continued funding (Phase II) to construct, assemble and test the RAID drilling platform, through to staging it in Antarctic for future scientific operations.", "east": 166.69, "geometry": "POINT(166.67 -78.6225)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "WAIS Divide Ice Core; ICE CORE AIR BUBBLES; FIELD INVESTIGATION; USAP-DC; Minna Bluff", "locations": "Minna Bluff", "north": -78.62, "nsf_funding_programs": "Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": -78.625, "title": "Collaborative Research: Phase 2 Development of A Rapid Access Ice Drilling (RAID) Platform for Research in Antarctica", "uid": "p0010099", "west": 166.65}, {"awards": "1142035 Obbard, Rachel; 1142167 Pettit, Erin", "bounds_geometry": "POLYGON((-112.3 -79.2,-112.2 -79.2,-112.1 -79.2,-112 -79.2,-111.9 -79.2,-111.8 -79.2,-111.7 -79.2,-111.6 -79.2,-111.5 -79.2,-111.4 -79.2,-111.3 -79.2,-111.3 -79.23,-111.3 -79.26,-111.3 -79.29,-111.3 -79.32,-111.3 -79.35,-111.3 -79.38,-111.3 -79.41,-111.3 -79.44,-111.3 -79.47,-111.3 -79.5,-111.4 -79.5,-111.5 -79.5,-111.6 -79.5,-111.7 -79.5,-111.8 -79.5,-111.9 -79.5,-112 -79.5,-112.1 -79.5,-112.2 -79.5,-112.3 -79.5,-112.3 -79.47,-112.3 -79.44,-112.3 -79.41,-112.3 -79.38,-112.3 -79.35,-112.3 -79.32,-112.3 -79.29,-112.3 -79.26,-112.3 -79.23,-112.3 -79.2))", "dataset_titles": "ApRES Firn Density Study; ApRES Vertical Strain Study; GPS Horizontal Strain Network; South Pole (SPICEcore) Borehole Deformation; WAIS Divide Borehole Deformation", "datasets": [{"dataset_uid": "601314", "doi": "10.15784/601314", "keywords": "Acoustic Televiewer; Anisotropy; Antarctica; Borehole Logging; Deformation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Flow; WAIS Divide; WAIS Divide Ice Core", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Borehole Deformation", "url": "https://www.usap-dc.org/view/dataset/601314"}, {"dataset_uid": "601322", "doi": "10.15784/601322", "keywords": "Antarctica; Firn; Firn Density; Glaciology; Ice Penetrating Radar; Phase Sensitive Radar; Radar; Snow/ice; Snow/Ice; WAIS Divide", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "ApRES Firn Density Study", "url": "https://www.usap-dc.org/view/dataset/601322"}, {"dataset_uid": "601323", "doi": "10.15784/601323", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Penetrating Radar; Ice Strain; Phase Sensitive Radar; Radar; Snow/ice; Snow/Ice; WAIS Divide", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "ApRES Vertical Strain Study", "url": "https://www.usap-dc.org/view/dataset/601323"}, {"dataset_uid": "200141", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "GPS Horizontal Strain Network", "url": ""}, {"dataset_uid": "601315", "doi": "10.15784/601315", "keywords": "Acoustic Televiewer; Anisotropy; Antarctica; Borehole Logging; Deformation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Flow; Snow/ice; Snow/Ice; South Pole; SPICEcore", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole (SPICEcore) Borehole Deformation", "url": "https://www.usap-dc.org/view/dataset/601315"}], "date_created": "Fri, 15 May 2020 00:00:00 GMT", "description": "1142167/Pettit This award supports a project to develop a better understanding of the relation between ice microstructure, impurities, and ice flow and their connection to climate history for the West Antarctic Ice Sheet (WAIS) ice core site. This work builds on several ongoing studies at Siple Dome in West Antarctica and Dome C in East Antarctica. It is well known that the microstructure of ice evolves with depth and time in an ice sheet. This evolution of microstructure depends on the ice flow field, temperature, and impurity content. The ice flow field, in turn, depends on microstructure, leading to feedbacks that create layered variation in microstructure that relates to climate and flow history. The research proposed here focuses on developing a better understanding of: 1) how ice microstructure evolves with time and stress in an ice sheet and how that relates to impurity content, temperature, and strain rate; 2) how variations in ice microstructure and impurity content affect ice flow patterns near ice divides (on both small (1cm to 1m) and large (1m to 100km) scales); and 3) in what ways is the spatial variability of ice microstructure and its effect on ice flow important for interpretation of climate history in the WAIS Divide ice core. The study will integrate existing ice core and borehole data with a detailed study of ice microstructure using Electron Backscatter Diffraction (EBSD) techniques and measurements of borehole deformation through time using Acoustic Televiewers. This will be the first study to combine these two novel techniques for studying the relation between microstructure and deformation and it will build on other data being collected as part of other WAIS Divide borehole logging projects (e.g. sonic velocity, optical dust logging, temperature and other measurements on the ice core including fabric measurements from thin section analyses as well as studies of ice chemistry and stable isotopes. The intellectual merit of the work is that it will improve interpretation of ice core data (especially information on past accumulation) and overall understanding of ice flow. The broader impacts are that the work will ultimately contribute to a better interpretation of ice core records for both paleoclimate studies and for ice flow history, both of which connect to the broader questions of the role of ice in the climate system. The work will also advance the careers of two early-career female scientists, including one with a hearing impairment disability. This project will support a PhD student at the UAF and provide research and field experience for two or three undergraduates at Dartmouth. The PIs plan to include a teacher on their field team and collaborate with UAF\u0027s \"From STEM to STEAM\" toward enhancing the connection between art and science.", "east": -111.3, "geometry": "POINT(-111.8 -79.35)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR", "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; GLACIERS/ICE SHEETS; WAIS Divide; ICE CORE RECORDS; USAP-DC; GLACIER MOTION/ICE SHEET MOTION; Radar", "locations": "WAIS Divide", "north": -79.2, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Pettit, Erin; Obbard, Rachel", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "UNAVCO; USAP-DC", "science_programs": "WAIS Divide Ice Core; SPICEcore", "south": -79.5, "title": "Collaborative Research: VeLveT Ice - eVoLution of Fabric and Texture in Ice at WAIS Divide, West Antarctica", "uid": "p0010098", "west": -112.3}, {"awards": "1142158 Cheng, Chi-Hing; 0231006 DeVries, Arthur", "bounds_geometry": "POLYGON((163 -76.5,163.5 -76.5,164 -76.5,164.5 -76.5,165 -76.5,165.5 -76.5,166 -76.5,166.5 -76.5,167 -76.5,167.5 -76.5,168 -76.5,168 -76.63,168 -76.76,168 -76.89,168 -77.02,168 -77.15,168 -77.28,168 -77.41,168 -77.54,168 -77.67,168 -77.8,167.5 -77.8,167 -77.8,166.5 -77.8,166 -77.8,165.5 -77.8,165 -77.8,164.5 -77.8,164 -77.8,163.5 -77.8,163 -77.8,163 -77.67,163 -77.54,163 -77.41,163 -77.28,163 -77.15,163 -77.02,163 -76.89,163 -76.76,163 -76.63,163 -76.5))", "dataset_titles": "High-resolution benthic seawater temperature record 1999-2012 (25-40m depth) from near intake jetty at McMurdo Station, Antarctica; Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae)", "datasets": [{"dataset_uid": "601811", "doi": null, "keywords": "Antarctica; Bellingshausen Sea; Cryosphere; Southern Ocean", "people": "Biesack, Ellen; Corso, Andrew; Desvignes, Thomas; McDowell, Jan; Cheng, Chi-Hing; Steinberg, Deborah; Hilton, Eric", "repository": "USAP-DC", "science_program": "LTER", "title": "Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae)", "url": "https://www.usap-dc.org/view/dataset/601811"}, {"dataset_uid": "601275", "doi": null, "keywords": "Antarctica; Benthic; McMurdo Sound; Mcmurdo Station; Oceans; Physical Oceanography; Temperature Probe; Water Temperature", "people": "Cziko, Paul; Devries, Arthur; Cheng, Chi-Hing", "repository": "USAP-DC", "science_program": null, "title": "High-resolution benthic seawater temperature record 1999-2012 (25-40m depth) from near intake jetty at McMurdo Station, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601275"}], "date_created": "Wed, 08 Apr 2020 00:00:00 GMT", "description": "Antarctic notothenioid fishes exhibit two adaptive traits to survive in frigid temperatures. The first of these is the production of anti-freeze proteins in their blood and tissues. The second is a system-wide ability to perform cellular and physiological functions at extremely cold temperatures.The proposal goals are to show how Antarctic fishes use these characteristics to avoid freezing, and which additional genes are turned on, or suppressed in order for these fishes to maintain normal physiological function in extreme cold temperatures. Progressively colder habitats are encountered in the high latitude McMurdo Sound and Ross Shelf region, along with somewhat milder near?shore water environments in the Western Antarctic Peninsula (WAP). By quantifying the extent of ice crystals invading and lodging in the spleen, the percentage of McMurdo Sound fish during austral summer (Oct-Feb) will be compared to the WAP intertidal fish during austral winter (Jul-Sep) to demonstrate their capability and extent of freeze avoidance. Resistance to ice entry in surface epithelia (e.g. skin, gill and intestinal lining) is another expression of the adaptation of these fish to otherwise lethally freezing conditions. The adaptive nature of a uniquely characteristic polar genome will be explored by the study of the transcriptome (the set of expressed RNA transcripts that constitutes the precursor to set of proteins expressed by an entire genome). Three notothenioid species (E.maclovinus, D. Mawsoni and C. aceratus) will be analysed to document evolutionary genetic changes (both gain and loss) shaped by life under extreme chronic cold. A differential gene expression (DGE) study will be carried out on these different species to evaluate evolutionary modification of tissue-wide response to heat challenges. The transcriptomes and other sequencing libraries will contribute to de novo ice-fish genome sequencing efforts.", "east": 168.0, "geometry": "POINT(165.5 -77.15)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD", "is_usap_dc": true, "keywords": "McMurdo Sound; MARINE ECOSYSTEMS; Water Temperature; AQUATIC SCIENCES; OCEAN TEMPERATURE; FIELD INVESTIGATION; USAP-DC", "locations": "McMurdo Sound", "north": -76.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Cheng, Chi-Hing; Devries, Arthur", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.8, "title": "Antarctic Notothenioid Fish Freeze Avoidance and Genome-wide Evolution for Life in the Cold", "uid": "p0010091", "west": 163.0}, {"awards": "1840058 Jenouvrier, Stephanie", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Causes and consequences of pair-bond disruption in a sex-skewed population of a long-lived monogamous seabird: the wandering Albatross; Demographic outputs and their variances for three life history complexes for the Southern Fulmar across contrasted sea ice conditions.; Impact of Climate Change on Pair-Bond Dynamics of Snow Petrels (Pagodroma nivea); Supplementary material from \"Boldness predicts divorce rates in wandering albatrosses", "datasets": [{"dataset_uid": "601585", "doi": "10.15784/601585", "keywords": "Antarctica; Biota; Birds; East Antarctica; Southern Fulmar", "people": "Jenouvrier, Stephanie", "repository": "USAP-DC", "science_program": null, "title": "Demographic outputs and their variances for three life history complexes for the Southern Fulmar across contrasted sea ice conditions.", "url": "https://www.usap-dc.org/view/dataset/601585"}, {"dataset_uid": "601832", "doi": "10.15784/601832", "keywords": "Antarctica; Climate Change; Cryosphere; Ile des Petrels, Pointe Geologie Archipelago (66\u25e640\u2032 S, 140\u25e601\u2032 106 E), Terre Adelie, Antarctica.", "people": "jenouvrier, stephanie", "repository": "USAP-DC", "science_program": null, "title": "Impact of Climate Change on Pair-Bond Dynamics of Snow Petrels (Pagodroma nivea)", "url": "https://www.usap-dc.org/view/dataset/601832"}, {"dataset_uid": "200372", "doi": "https://rs.figshare.com/collections/Supplementary_material_from_Boldness_predicts_divorce_rates_in_wandering_albatrosses_i_Diomedea_exulans_i_/6181063", "keywords": null, "people": null, "repository": "https://rs.figshare.com/", "science_program": null, "title": "Supplementary material from \"Boldness predicts divorce rates in wandering albatrosses", "url": "https://rs.figshare.com/collections/Supplementary_material_from_Boldness_predicts_divorce_rates_in_wandering_albatrosses_i_Diomedea_exulans_i_/6181063"}, {"dataset_uid": "601518", "doi": "10.15784/601518", "keywords": "Antarctica; Biota; Wandering Albatross", "people": "Sun, Ruijiao; Barbraud, Christophe; Delord, Karine; Jenouvrier, Stephanie", "repository": "USAP-DC", "science_program": null, "title": "Causes and consequences of pair-bond disruption in a sex-skewed population of a long-lived monogamous seabird: the wandering Albatross", "url": "https://www.usap-dc.org/view/dataset/601518"}], "date_created": "Wed, 01 Apr 2020 00:00:00 GMT", "description": "Many animals, from crustaceans to humans, engage in long-term relationships. The demographic consequences of divorce or widowhood for monogamous species are poorly understood. This research seeks to advance understanding of the drivers of partner loss and quantify its resulting effects on individual fitness and population dynamics in polar species that form life-long relationships. The project will focus on pair disruption in two seabirds that form long-last pair bonds: the wandering albatross and the snow petrel. Unique long-term individual mark-recapture data sets exist for these iconic polar species, allowing for a comprehensive study of the rates, causes and consequences of pair disruption and how they may differ among Antarctic species. Insights might be gained regarding the effects of changing environmental regimes as well as by direct and indirect effects of fisheries as a by-product of this research. The aim of the project is to better understand the implications of different drivers of pair disruption and quantify its resulting effects on individual fitness components and population growth rate and structure for two procellariiformes breeding in the Southern Ocean. The project will focus on the wandering albatross and the snow petrel, which both form long-lasting pair bonds. The unique long-term individual mark-recapture data sets allow for a study of the rates, causes and consequences of pair disruption and how they differ among species with different life histories as well as expected differences in mechanisms and rates of pair disruptions. The study will result in a detailed analysis of the impact of social monogamy and long-term pair bonds on individual fitness components (vital rates: survival, recruitment and fecundity; life-history outcomes: life expectancy, age at 1st breeding and lifetime reproductive success; and occupancy times: duration of pair bond or widowhood) and population growth and structure (e.g, sex ratio of individuals available for mating). Specifically, the project will assess: 1. Variations in pair disruption rates, and if they are related to global change (by-catch in the case of albatross widowing, and climate in the case of petrel divorce) by developing a statistical multievent mark-recapture model. 2. Impacts of pair disruption on vital rates, specifically whether i) greater familiarity and better coordination within pairs improves breeding performance and survival, ii) mating costs reduce the probability of breeding and iii) divorce is more likely to occur after a breeding failure. 3. Impacts of pair disruption on life-history outcomes and occupancy times using Markov chain stochastic life cycle models. 4. Impacts of pair disruption on population dynamics by developing a novel non-linear two-sex matrix population model. The research will include sensitivity and Life Table Response Experiment analyses to examine the respective effects of fisheries, climate, vital rates, and pair-disruption rates on life-history outcomes, occupancy times, and population growth and structure, and their variations among year and species This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e VISUAL OBSERVATIONS", "is_usap_dc": true, "keywords": "ECOLOGICAL DYNAMICS; FIELD INVESTIGATION; East Antarctica; USAP-DC", "locations": "East Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Jenouvrier, Stephanie", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "https://rs.figshare.com/; USAP-DC", "science_programs": null, "south": -90.0, "title": "Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics", "uid": "p0010090", "west": -180.0}, {"awards": "1341602 Crockett, Elizabeth; 1341663 O\u0027Brien, Kristin", "bounds_geometry": null, "dataset_titles": "Acclimation of cardiovascular function in Notothenia coriiceps; Adrenergic and adenosinergic regulation of the cardiovascular system in the Antarctic icefish Chaenocephalus aceratus; Cardiac metabolism in Antarctic fishes in response to an acute increase in temperature; Chaenocephalus aceratus HIF-1A mRNA, complete cds; Chionodraco rastrospinosus HIF-1A mRNA, partial cds; Effects of acute warming on cardiovascular performance of Antarctic fishes; Eleginops maclovinus HIF-1A mRNA, partial cds; Gymnodraco acuticeps HIF-1A mRNA, partial cds; Hypoxia response of hearts of Antarctic fishes; Maximum cardiac performance of Antarctic fishes that lack haemoglobin and myoglobin: exploring the effect of warming on nature\u2019s natural knockouts; Measurements of splenic contraction in Antarctic fishes; Mitochondrial membranes in cardiac muscle from Antarctic notothenioid fishes vary in phospholipid composition and membrane fluidity; Notothenia coriiceps HIF-1A mRNA, complete cds; Parachaenichthys charcoti HIF-1A mRNA, partial cds; Physical, chemical, and functional properties of neuronal membranes vary between species of Antarctic notothenioids differing in thermal tolerance; Thermal sensitivity of membrane fluidity and integrity in hearts of Antarctic fishes that vary in expression of hemoglobin and myoglobin", "datasets": [{"dataset_uid": "601406", "doi": "10.15784/601406", "keywords": "Antarctica; Antarctic Peninsula", "people": "O\u0027Brien, Kristin", "repository": "USAP-DC", "science_program": null, "title": "Hypoxia response of hearts of Antarctic fishes", "url": "https://www.usap-dc.org/view/dataset/601406"}, {"dataset_uid": "601405", "doi": "10.15784/601405", "keywords": "Antarctica; Antarctic Peninsula", "people": "O\u0027Brien, Kristin", "repository": "USAP-DC", "science_program": null, "title": "Cardiac metabolism in Antarctic fishes in response to an acute increase in temperature", "url": "https://www.usap-dc.org/view/dataset/601405"}, {"dataset_uid": "200192", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Chionodraco rastrospinosus HIF-1A mRNA, partial cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/kx950831"}, {"dataset_uid": "200185", "doi": "10.5061/dryad.k90h35k", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Mitochondrial membranes in cardiac muscle from Antarctic notothenioid fishes vary in phospholipid composition and membrane fluidity", "url": "https://doi.org/10.5061/dryad.k90h35k"}, {"dataset_uid": "200186", "doi": "10.5061/dryad.qm0b25h", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Physical, chemical, and functional properties of neuronal membranes vary between species of Antarctic notothenioids differing in thermal tolerance", "url": "https://doi.org/10.5061/dryad.qm0b25h"}, {"dataset_uid": "200187", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Chaenocephalus aceratus HIF-1A mRNA, complete cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/KX950828"}, {"dataset_uid": "200188", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Notothenia coriiceps HIF-1A mRNA, complete cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/KX950829"}, {"dataset_uid": "200189", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Eleginops maclovinus HIF-1A mRNA, partial cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/KX950830"}, {"dataset_uid": "601410", "doi": "10.15784/601410", "keywords": "Antarctica; Antarctic Peninsula; Biota; Fish", "people": "O\u0027Brien, Kristin; Crockett, Elizabeth; Egginton, Stuart; Axelsson, Michael; Farrell, Anthony; Joyce, William", "repository": "USAP-DC", "science_program": null, "title": "Effects of acute warming on cardiovascular performance of Antarctic fishes", "url": "https://www.usap-dc.org/view/dataset/601410"}, {"dataset_uid": "601409", "doi": "10.15784/601409", "keywords": "Antarctica; Antarctic Peninsula", "people": "Joyce, Michael; Axelsson, Michael; Farrell, Anthony; Egginton, Stuart; O\u0027Brien, Kristin", "repository": "USAP-DC", "science_program": null, "title": "Adrenergic and adenosinergic regulation of the cardiovascular system in the Antarctic icefish Chaenocephalus aceratus", "url": "https://www.usap-dc.org/view/dataset/601409"}, {"dataset_uid": "601408", "doi": "10.15784/601408", "keywords": "Antarctica; Antarctic Peninsula", "people": "Crockett, Elizabeth; Joyce, William; Farrell, Anthony; Egginton, Stuart; Axelsson, Michael; O\u0027Brien, Kristin", "repository": "USAP-DC", "science_program": null, "title": "Acclimation of cardiovascular function in Notothenia coriiceps", "url": "https://www.usap-dc.org/view/dataset/601408"}, {"dataset_uid": "601407", "doi": "10.15784/601407", "keywords": "Antarctica; Antarctic Peninsula", "people": "Axelsson, Michael; O\u0027Brien, Kristin; Joyce, William", "repository": "USAP-DC", "science_program": null, "title": "Measurements of splenic contraction in Antarctic fishes", "url": "https://www.usap-dc.org/view/dataset/601407"}, {"dataset_uid": "200191", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Gymnodraco acuticeps HIF-1A mRNA, partial cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/kx950832"}, {"dataset_uid": "601414", "doi": "10.15784/601414", "keywords": "Antarctica; Antarctic Peninsula", "people": "Crockett, Elizabeth; O\u0027Brien, Kristin; Evans, Elizabeth; Farnoud, Amir", "repository": "USAP-DC", "science_program": null, "title": "Thermal sensitivity of membrane fluidity and integrity in hearts of Antarctic fishes that vary in expression of hemoglobin and myoglobin", "url": "https://www.usap-dc.org/view/dataset/601414"}, {"dataset_uid": "200190", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Parachaenichthys charcoti HIF-1A mRNA, partial cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/KX950833"}, {"dataset_uid": "200184", "doi": "10.5061/dryad.83vc5", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Maximum cardiac performance of Antarctic fishes that lack haemoglobin and myoglobin: exploring the effect of warming on nature\u2019s natural knockouts", "url": "https://doi.org/10.5061/dryad.83vc5"}], "date_created": "Wed, 26 Feb 2020 00:00:00 GMT", "description": "The ocean surrounding Antarctica is home to an extraordinary assemblage of fishes, dominated by a single group that are extremely well-suited to life in icy waters and which are of significant ecological importance there. Of great concern is the capacity of these fishes to withstand increases in temperature as the region of the Western Antarctic Peninsula warms at a rate faster than any other area in the Southern hemisphere. One particular group of Antarctic fishes, known as the icefishes, are particularly vulnerable to increases in temperature because unlike all other vertebrates on earth, icefishes are white-blooded due to their lack of the oxygen-binding protein hemoglobin. This greatly reduces their capacity to transport and deliver oxygen to tissues compared to red-blooded Antarctic fishes. Previous studies have shown that icefishes are indeed less tolerant to elevations in temperature but the underlying factors are completely unknown. Additionally, it is not understood if red- or white-blooded Antarctic fishes can adjust, or acclimate, to modest increases in temperature, similar to those changes in temperature the animals might experience as the earth warms. The investigators will determine if heart function and/or nervous system function limits thermal tolerance of Antarctic fishes, and will determine their capacity to acclimate to warmer temperatures. The project will further the NSF goal of training new generations of scientists by training graduate and undergraduate students. In addition, the project will collaborate with a high school biology teacher from a school which serves a largely minority student body. The students will learn about the marine environment, and will construct a camera to be used in the field to learn more about Antarctic fishes. Two students and the teacher will also attend a summer marine biology internship program. Antarctic fishes within the suborder Notothenioidei (called \"notothenioids\") are among the organisms on earth least able to deal with changes in temperature. The hemoglobinless icefish are even less able to withstand temperature changes than are red-blooded notothenioids. While this is well documented, the underlying physiological and biochemical mechanisms responsible are unknown. The investigators will test the hypotheses that cardiac work is significantly greater in icefishes compared to red-blooded species, and that as temperature increases, the greater cardiac work of icefishes, coupled with reduced blood oxygen-carrying capacity, results in cardiac failure at a lower temperature compared to red-blooded species. They also hypothesize that neuronal function limits thermal tolerance of red-blooded notothenioids. These hypotheses will be tested using a wide variety of experiments. For example, the investigators will measure heart rate concurrently with critical thermal maximum. They will also characterize metabolic and gene-expression responses to elevated temperature and determine if mitochondrial function contributes to thermal tolerance using a variety of techniques. To determine if neuronal function limits thermal tolerance they will quantify behavioral responses to warming of whole animals and to warming of only the brain area. They will also determine if acclimation to warmer temperatures impacts heart function and they will measure activities of a variety of enzymes from central metabolic pathways.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Amd/Us; FISH; USA/NSF; FIELD INVESTIGATION; AMD; Antarctic Peninsula; LABORATORY; USAP-DC", "locations": "Antarctica; Antarctic Peninsula", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Crockett, Elizabeth; O\u0027Brien, Kristin", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "Dryad; GenBank; USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes", "uid": "p0010084", "west": null}, {"awards": "1341494 Gao, Yuan", "bounds_geometry": "POINT(-64.05 -64.77)", "dataset_titles": "Concentrations and Particle Size Distributions of Aerosol Trace Elements; Particle sizes of aerosol iron", "datasets": [{"dataset_uid": "601257", "doi": "10.15784/601257", "keywords": "Aerosol Concentration; Antarctica; Chemistry:gas; Chemistry:Gas; Iron; Palmer Station; Particle Size", "people": "Gao, Yuan", "repository": "USAP-DC", "science_program": null, "title": "Particle sizes of aerosol iron", "url": "https://www.usap-dc.org/view/dataset/601257"}, {"dataset_uid": "601370", "doi": "10.15784/601370", "keywords": "Antarctica; Antarctic Peninsula; Palmer Station; Trace Elements", "people": "Gao, Yuan", "repository": "USAP-DC", "science_program": null, "title": "Concentrations and Particle Size Distributions of Aerosol Trace Elements", "url": "https://www.usap-dc.org/view/dataset/601370"}], "date_created": "Thu, 20 Feb 2020 00:00:00 GMT", "description": "The research seeks to further quantify the input of atmospheric Fe into the sparsely sampled Southern Ocean (SO), specifically in the vicinity of the West Antarctic Peninsula (WAP) and adjacent continental shelf waters in the Drake Passage. This is typically a high nutrient low chlorophyll region where surface trace metal and primary productivity data are suggestive of Fe limitation. The WAP is characterized by high productivity in the austral summer, and at this time may be in the path of northern dust (aeolian Fe) input or subject to melt influx of elevated Fe accumulated from glacial and present-day sea ice sources. Primary scientific questions are: (1) to what extent does atmospheric Fe contribute to nutrient cycles and ecosystem dynamics in the SO? (2) How is warming climate occurring in the WAP affecting the aerosol composition of the maritime atmosphere. The primary productivity of the Southern Ocean is key to understanding oceanic uptake of anthropogenic greenhouse gases such as carbon dioxide.", "east": -64.05, "geometry": "POINT(-64.05 -64.77)", "instruments": null, "is_usap_dc": true, "keywords": "Aerosol Concentration; TRACE GASES/TRACE SPECIES; Particle Size; Palmer Station; FIELD INVESTIGATION; Trace Elements; Iron; AEROSOL OPTICAL DEPTH/THICKNESS; USAP-DC", "locations": "Palmer Station", "north": -64.77, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Gao, Yuan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.77, "title": "Quantifying Atmospheric Iron Properties over West Antarctic Peninsula", "uid": "p0010082", "west": -64.05}, {"awards": "1644020 Sims, Kenneth W.; 1644027 Wallace, Paul; 1644013 Gaetani, Glenn", "bounds_geometry": "POLYGON((164.1 -77.1,164.65 -77.1,165.2 -77.1,165.75 -77.1,166.3 -77.1,166.85 -77.1,167.4 -77.1,167.95 -77.1,168.5 -77.1,169.05 -77.1,169.6 -77.1,169.6 -77.235,169.6 -77.37,169.6 -77.505,169.6 -77.64,169.6 -77.775,169.6 -77.91,169.6 -78.045,169.6 -78.18,169.6 -78.315,169.6 -78.45,169.05 -78.45,168.5 -78.45,167.95 -78.45,167.4 -78.45,166.85 -78.45,166.3 -78.45,165.75 -78.45,165.2 -78.45,164.65 -78.45,164.1 -78.45,164.1 -78.315,164.1 -78.18,164.1 -78.045,164.1 -77.91,164.1 -77.775,164.1 -77.64,164.1 -77.505,164.1 -77.37,164.1 -77.235,164.1 -77.1))", "dataset_titles": "G170 Electron Microprobe Analyses of Melt Inclusions and Host Olivines; G170 Raman Spectroscopy \u0026 Tomography Volumes of Melt Inclusions and Vapor Bubbles; G170 Sample Locations Ross Island \u0026 Discovery Province; G170 Secondary Ion Mass Spectrometry Analses of Melt Inclusion Volatiles; G170 Secondary Ion Mass Spectrometry Analyses of Melt Inclusion Hydrogen Isotopes; Location and Description of Tephra Samples from the Erebus and Discovery Sub-provinces", "datasets": [{"dataset_uid": "601505", "doi": "10.15784/601505", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Electron Microprobe Analyses; Olivine; Petrography; Ross Island", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Electron Microprobe Analyses of Melt Inclusions and Host Olivines", "url": "https://www.usap-dc.org/view/dataset/601505"}, {"dataset_uid": "601506", "doi": "10.15784/601506", "keywords": "Antarctica; Ion Mass Spectrometry; Ross Island; Volatiles", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Secondary Ion Mass Spectrometry Analses of Melt Inclusion Volatiles", "url": "https://www.usap-dc.org/view/dataset/601506"}, {"dataset_uid": "601507", "doi": "10.15784/601507", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Hydrogen; Ion Mass Spectrometry; Ross Island", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Secondary Ion Mass Spectrometry Analyses of Melt Inclusion Hydrogen Isotopes", "url": "https://www.usap-dc.org/view/dataset/601507"}, {"dataset_uid": "601250", "doi": "10.15784/601250", "keywords": "Antarctica; Hut Point Peninsula; Mt. Bird; Mt. Morning; Mt. Terror; Ross Island; Turks Head; Turtle Rock", "people": "Gaetani, Glenn; Pamukcu, Ayla", "repository": "USAP-DC", "science_program": null, "title": "Location and Description of Tephra Samples from the Erebus and Discovery Sub-provinces", "url": "https://www.usap-dc.org/view/dataset/601250"}, {"dataset_uid": "601508", "doi": "10.15784/601508", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Melt Inclusions; Raman Spectroscopy; Ross Island; Vapor Bubbles; Volcanic", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Raman Spectroscopy \u0026 Tomography Volumes of Melt Inclusions and Vapor Bubbles", "url": "https://www.usap-dc.org/view/dataset/601508"}, {"dataset_uid": "601504", "doi": "10.15784/601504", "keywords": "Antarctica; Ross Island; Sample/collection Description; Sample/Collection Description; Sample Location", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Sample Locations Ross Island \u0026 Discovery Province", "url": "https://www.usap-dc.org/view/dataset/601504"}], "date_created": "Sat, 08 Feb 2020 00:00:00 GMT", "description": "Nontechnical project description Globally, 500 million people live near and are threatened by active volcanoes. An important step in mitigating volcanic hazards is understanding the variables that influence the explosivity of eruptions. The rate at which a magma ascends from the reservoir within the Earth to the surface is one such variable. However, magma ascent rates are particularly difficult to determine because of the lack of reliable methods for investigating the process. This research applies a new approach to study magma storage depths and ascent rates at the Erebus volcanic province of Antarctica, one of Earth\u0027s largest alkaline volcanic centers. Small pockets of magma that become trapped within growing olivine crystals are called melt inclusions. The concentrations of water and carbon dioxide in these melt inclusions preserve information on the depth of magma reservoirs. Changes to the concentration and isotopic composition of water in the inclusions provide information on how long it took for the host magma to rise to the surface. In combination, these data from samples of olivine-rich volcanic deposits in the Erebus volcanic province will be used to determine the depths at which magmas are stored and their ascent rates. The project results will provide a framework for understanding volcanic hazards associated with alkaline volcanism worldwide. In addition, this project facilitates collaboration among three institutions, and provides an important educational opportunity for a postdoctoral researcher. Technical project description The depths at which magmas are stored, their pre-eruptive volatile contents, and the rates at which they ascend to the Earth\u0027s surface are important controls on the dynamics of volcanic eruptions. Basaltic magmas are likely to be vapor undersaturated as they begin their ascent from the mantle through the crust, but volatile solubility drops with decreasing pressure. Once vapor saturation is achieved and the magma begins to degas, its pre-eruptive volatile content is determined largely by the depth at which it resides within the crust. Magma stored in deeper reservoirs tend to experience less pre-eruptive degassing and to be richer in volatiles than magma shallower reservoirs. Eruptive style is influenced by the rate at which a magma ascends from the reservoir to the surface through its effect on the efficiency of vapor bubble nucleation, growth, and coalescence. The proposed work will advance our understanding of pre-eruptive storage conditions and syn-eruptive ascent rates through a combined field and analytical research program. Volatile measurements from olivine-hosted melt inclusions will be used to systematically investigate magma storage depths and ascent rates associated with alkaline volcanism in the Erebus volcanic province. A central goal of the project is to provide a spatial and temporal framework for interpreting results from studies of present-day volcanic processes at Mt Erebus volcano. The Erebus volcanic province of Antarctica is especially well suited to this type of investigation because: (1) there are many exposed mafic scoria cones, fissure vents, and hyaloclastites (exposed in sea cliffs) that produced rapidly quenched, olivine-rich tephra; (2) existing volatile data for Ross Island MIs show that magma storage was relatively deep compared to many mafic volcanic systems; (3) some of the eruptive centers ejected mantle xenoliths, allowing for comparison of ascent rates for xenolith-bearing and xenolith-free eruptions, and comparison of ascent rates for those bearing xenoliths with times estimated from settling velocities; and (4) the cold, dry conditions in Antarctica result in excellent tephra preservation compared to tropical and even many temperate localities. The project provides new tools for assessing volcanic hazards, facilitates collaboration involving researchers from three different institutions (WHOI, U Wyoming, and U Oregon), supports the researchers\u0027 involvement in teaching, advising, and outreach, and provides an educational opportunity for a promising young postdoctoral researcher. Understanding the interrelationships among magma volatile contents, reservoir depths, and ascent rates is vital for assessing volcanic hazards associated with alkaline volcanism across the globe.", "east": 169.6, "geometry": "POINT(166.85 -77.775)", "instruments": null, "is_usap_dc": true, "keywords": "Tephra; Turtle Rock; USA/NSF; Amd/Us; LABORATORY; AMD; Ross Island; Turks Head; Hut Point Peninsula; LAVA SPEED/FLOW; USAP-DC; Mt. Morning; Mt. Terror; ROCKS/MINERALS/CRYSTALS; Mt. Bird; FIELD INVESTIGATION", "locations": "Ross Island; Mt. Morning; Mt. Bird; Mt. Terror; Hut Point Peninsula; Turtle Rock; Turks Head", "north": -77.1, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Gaetani, Glenn; Le Roux, Veronique; Sims, Kenneth; Wallace, Paul", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.45, "title": "Collaborative Research: Determining Magma Storage Depths and Ascent Rates for the Erebus Volcanic Province, Antarctica Using Diffusive Water Loss from Olivine-hosted Melt Inclusion", "uid": "p0010081", "west": 164.1}, {"awards": "1643864 Talghader, Joseph", "bounds_geometry": "POINT(-112.085 -79.467)", "dataset_titles": " Automated c-axis stage images of WDC-06A 420 vertical thin section from WAIS Divide, Antarctica", "datasets": [{"dataset_uid": "601254", "doi": "10.15784/601254", "keywords": "Antarctica; C-axis; Ice; Microscopy; Thin Sections", "people": "Talghader, Joseph; Mah, Merlin", "repository": "USAP-DC", "science_program": null, "title": " Automated c-axis stage images of WDC-06A 420 vertical thin section from WAIS Divide, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601254"}], "date_created": "Sat, 08 Feb 2020 00:00:00 GMT", "description": "Part I: Nontechnical One of the most interesting historical records that science can provide is contained in the ice of Antarctica. Layer by layer over hundreds of thousands of years, snow has precipitated on the ice sheet, become compacted, and turned into additional ice. Any dust or other impurities in the air or snow have been precipitated as well and thus each snowfall leaves a snapshot record of the atmosphere that existed at or near the time of deposition. A detailed chronology of volcanic eruptions can be obtained from the ice layers where ash and other volcanic products were deposited. Normally, the analysis of volcanic layers requires the physical extraction of a core from the ice sheet; however, chronologies from cores have discontinuities and are difficult, time-consuming, and expensive to obtain. Borehole logging is a measurement method where one lowers instrumentation into a drilled hole in the ice, whether or not core has been retrieved. To date, this technology has only been used to measure optical systems to identify volcanic ash and other impurity layers. In this program, a profiling technology will be developed that measures the conductivity of the ice. A radio-frequency emitter lowered into the borehole will create a return signal that changes depending on the local conductivity, which depends on the concentration of dissolved ions. For example, dissolved sulfates are a critical marker of volcanic activity that may not be coincident with deposited ash. Other dissolved ions, such as chloride, can be indicative of other processes. It is expected that this borehole profiling instrument will be able to help rapidly identify volcanic eruptions that had potentially global impact, distinguish between different dissolved ions via their frequency dependencies, and assist in establishing chronologies between different ice cores and boreholes. Part II: Technical Description Borehole logging of the polar ice sheets is one of the most important methods that earth scientists have to identify and date volcanic eruptions. However, current technology only indicates the presence and depth of ash from an eruption. In order to extract more detailed information, one must obtain an ice core, and laboriously measure each section in the laboratory using electrical conductivity or dielectric measurements to determine the presence or absence of dissolved sulfate and its location relative to the corresponding ash, if any. This program will investigate and demonstrate a borehole logging-compatible radio-frequency dielectric sensor to detect and measure spikes in dissolved major ions chemistry in ice, particularly in intervals corresponding to volcanically produced sulfates. The sulfate layers are one of the primary signatures of volcanic products. However, other ions, such as chlorides, calcium, and others are also commonly seen in ice, and the dielectric logging technology of this program would also measure these. It is expected that certain sets of ions will be distinguishable by their frequency dependencies. This technique could guide other investigators, who are using conventional core scanning and sampling methods, to regions of special interest in corresponding core. We plan to construct a ring-based electrode system and test this system on a variety of artificial ice boreholes and ice cores. This unit will not include a pressure vessel or other borehole logger packing. We will test different means of applying electrical signals including short pulses and periodic waves. We will further utilize differential measurements with low noise circuits and filters to achieve maximum sensitivity. We will correlate the signals extracted with known molarities of sulfates and other ions and measured ECM records. We will perform scaled-down experiments using real ice cores stored in Bay?s lab at UC Berkeley. This will permit testing of different designs in ice with natural impurities and polycrystalline structure. This small collection includes cores from a variety of locations in Antarctica and Greenland, and a variety of ages as old as a million years.", "east": -112.085, "geometry": "POINT(-112.085 -79.467)", "instruments": null, "is_usap_dc": true, "keywords": "WAIS Divide; USAP-DC; Amd/Us; GLACIERS/ICE SHEETS; USA/NSF; FIELD INVESTIGATION; Ice Core; AMD", "locations": "WAIS Divide", "north": -79.467, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Instrumentation and Facilities", "paleo_time": null, "persons": "Talghader, Joseph", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Collaborative Research: Borehole Logging to Classify Volcanic Signatures in Antarctic Ice", "uid": "p0010080", "west": -112.085}, {"awards": "1643550 Sletten, Ronald", "bounds_geometry": "POLYGON((160.5 -77.3,160.67 -77.3,160.84 -77.3,161.01 -77.3,161.18 -77.3,161.35 -77.3,161.52 -77.3,161.69 -77.3,161.86 -77.3,162.03 -77.3,162.2 -77.3,162.2 -77.35,162.2 -77.4,162.2 -77.45,162.2 -77.5,162.2 -77.55,162.2 -77.6,162.2 -77.65,162.2 -77.7,162.2 -77.75,162.2 -77.8,162.03 -77.8,161.86 -77.8,161.69 -77.8,161.52 -77.8,161.35 -77.8,161.18 -77.8,161.01 -77.8,160.84 -77.8,160.67 -77.8,160.5 -77.8,160.5 -77.75,160.5 -77.7,160.5 -77.65,160.5 -77.6,160.5 -77.55,160.5 -77.5,160.5 -77.45,160.5 -77.4,160.5 -77.35,160.5 -77.3))", "dataset_titles": "Timelapse photography of Don Juan Pond and surrounding basin", "datasets": [{"dataset_uid": "601487", "doi": "10.15784/601487", "keywords": "Antarctica; Brine; CaCl2; Don Juan Pond; Dry Valleys; Salt", "people": "Toner, Jonathan; Sletten, Ronald S.; Mushkin, Amit", "repository": "USAP-DC", "science_program": null, "title": "Timelapse photography of Don Juan Pond and surrounding basin", "url": "https://www.usap-dc.org/view/dataset/601487"}], "date_created": "Thu, 21 Nov 2019 00:00:00 GMT", "description": "This study aims to better understand salt accumulation in cold deserts and develop a model of salt transport by groundwater. Cold deserts, like the Antarctic McMurdo Dry Valleys (MDV), are similar to hot deserts in that they accumulate high concentrations of salts because there is not enough water to flush the salts out of the soils into the ocean. The accumulation of salt allows for the creation of brine-rich groundwater that freezes at much lower temperatures. Field work will focus on several groundwater features in the MDV including Don Juan Pond, a shallow lake that accumulates extremely high levels of salts and does not freeze until the temperature reaches -51 degrees C (-60 degrees F). The setting offers the potential to better understand this unique water environment including life at its extremes. It also serves as an analog environment for Mars, a planet that is entirely underlain by permafrost, similar to the MDV. This project will support a doctoral student at the University of Washington Department of Earth and Space Sciences, who will be trained in chemical analysis, chemical and physical modeling, and remote field work in a polar desert environment. Past research suggests that the movement of soluble ions in sediment and soil is controlled by the water activity, permeability, and the thermal regime; however, processes controlling the ionic redistribution in Antarctic environments are poorly constrained. This project aims to better understand the formation, salt redistribution, and water activity of pervasive brine-rich groundwater that is enriched in calcium chloride. A primary goal is to develop a brine thermal;reactive;transport model for the MDV region using data collected from the field to constrain model inputs and ground-truth model outputs. The model will develop a Pitzer-type thermodynamic, reactive transport model and couple it to a ground temperature model. The model will test mechanisms of groundwater formation in the MDV and the properties (e.g. composition, temperature, and water activity) of widespread shallow brine-rich waters. Water is an essential ingredient for life and defining processes that control the availability of water is critical for understanding the habitability of extreme environments, including Mars.", "east": 162.2, "geometry": "POINT(161.35 -77.55)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERA", "is_usap_dc": true, "keywords": "Amd/Us; AMD; Antarctica; USA/NSF; USAP-DC; SOIL CHEMISTRY; FIELD INVESTIGATION", "locations": "Antarctica", "north": -77.3, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Sletten, Ronald S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.8, "title": "Formation and Characteristics of Brine-rich Water in the Dry Valleys, Antarctica", "uid": "p0010069", "west": 160.5}, {"awards": "1443105 Steig, Eric", "bounds_geometry": "POINT(0 -90)", "dataset_titles": "Continuous-flow measurements of the complete water isotope ratios (D/H, 17O/16O, 18O/16) from the South Pole ice core; South Pole high resolution ice core water stable isotope record for dD, d18O; South Pole Ice Core Holocene Major Ion Dataset; South Pole Ice Core Sea Salt and Major Ions; SP19 Gas Chronology; Temperature, accumulation rate, and layer thinning from the South Pole ice core (SPC14)", "datasets": [{"dataset_uid": "601380", "doi": "10.15784/601380", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Core Stratigraphy; Methane; South Pole; SPICEcore", "people": "Epifanio, Jenna", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SP19 Gas Chronology", "url": "https://www.usap-dc.org/view/dataset/601380"}, {"dataset_uid": "601429", "doi": "10.15784/601429", "keywords": "Antarctica; Climate; Deuterium; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hydrogen; Ice; Ice Core; Ice Core Chemistry; Oxygen; Paleoclimate; Snow/ice; Snow/Ice; South Pole; Stable Isotopes", "people": "Jones, Tyler R.; White, James; Vaughn, Bruce; Morris, Valerie; Kahle, Emma; Schauer, Andrew; Steig, Eric J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Continuous-flow measurements of the complete water isotope ratios (D/H, 17O/16O, 18O/16) from the South Pole ice core", "url": "https://www.usap-dc.org/view/dataset/601429"}, {"dataset_uid": "601239", "doi": "10.15784/601239", "keywords": "Antarctica; Cavity Ring Down Spectrometers; Delta 18O; Delta Deuterium; Deuterium Isotopes; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core; Ice Core Chemistry; Ice Core Data; Oxygen Isotope; Snow/ice; Snow/Ice; Stable Isotopes", "people": "Steig, Eric J.; Schauer, Andrew; Kahle, Emma; Vaughn, Bruce; Morris, Valerie; Jones, Tyler R.; White, James", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole high resolution ice core water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601239"}, {"dataset_uid": "601851", "doi": "10.15784/601851", "keywords": "Antarctica; Cryosphere; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "people": "Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Sea Salt and Major Ions", "url": "https://www.usap-dc.org/view/dataset/601851"}, {"dataset_uid": "601850", "doi": "10.15784/601850", "keywords": "Antarctica; Cryosphere; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "people": "Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Holocene Major Ion Dataset", "url": "https://www.usap-dc.org/view/dataset/601850"}, {"dataset_uid": "601396", "doi": "10.15784/601396", "keywords": "Accumulation; Antarctica; Diffusion Length; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Dynamic; Layer Thinning; Oxygen Isotope; South Pole; SPICEcore; Temperature", "people": "Conway, Howard; Stevens, Max; Steig, Eric J.; Schauer, Andrew; Vaughn, Bruce; Morris, Valerie; Kahle, Emma; Koutnik, Michelle; Fudge, T. J.; Buizert, Christo; White, James; Epifanio, Jenna; Jones, Tyler R.; Waddington, Edwin D.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Temperature, accumulation rate, and layer thinning from the South Pole ice core (SPC14)", "url": "https://www.usap-dc.org/view/dataset/601396"}], "date_created": "Sun, 17 Nov 2019 00:00:00 GMT", "description": "This project will develop a record of the stable-isotope ratios of water from an ice core at the South Pole, Antarctica. Water-isotope ratio measurements provide a means to determine variability in temperature through time. South Pole is distinct from most other locations in Antarctica in showing no warming in recent decades, but little is known about temperature variability in this location prior to the installation of weather stations in 1957. The measurements made as part of this project will result in a much longer temperature record, extending at least 40,000 years, aiding our ability to understand what controls Antarctic climate, and improving projections of future Antarctic climate change. Data from this project will be critical to other investigators working on the South Pole ice core, and of general interest to other scientists and the public. Data will be provided rapidly to other investigators and made public as soon as possible. This project will obtain records of the stable-isotope ratios of water on the ice core currently being obtained at South Pole. The core will reach a depth of 1500 m and an age of 40,000 years. The project will use laser spectroscopy to obtain both an ultra-high-resolution record of oxygen 18/16 and deuterium-hydrogen ratios, and a lower-resolution record of oxygen 17/16 ratios. The high-resolution measurements will be used to aid in dating the core, and to provide estimates of isotope diffusion that constrain the process of firn densification. The novel 17/16 measurement provides additional constraints on the isotope fractionation due to the temperature-dependent supersaturation ratio, which affects the fractionation of water during the liquid-solid condensate transition. Together, these techniques will allow for improved accuracy in the use of the water isotope ratios as proxies for ice-sheet temperature, sea-surface temperature, and atmospheric circulation. The result will be a record of decadal through centennial and millennial scale climate change in a climatically distinct region in East Antarctica that has not been previously sampled by deep ice coring. The project will support a graduate student who will be co-advised by faculty at the University of Washington and the University of Colorado, and will be involved in all aspects of the work.", "east": 0.0, "geometry": "POINT(0 -90)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "SPICEcore; D18O; LABORATORY; OXYGEN ISOTOPE ANALYSIS; Oxygen Isotope; South Pole; USAP-DC; GLACIERS/ICE SHEETS; Antarctica; AMD; FIELD INVESTIGATION; Ice Core", "locations": "Antarctica; South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Steig, Eric J.; White, James", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: Record of the Triple-oxygen Isotope and Hydrogen Isotope Composition of Ice from an Ice Core at South Pole", "uid": "p0010065", "west": 0.0}, {"awards": "1443578 Schmidt, Steven", "bounds_geometry": "POLYGON((161.5 -77.5,161.7 -77.5,161.9 -77.5,162.1 -77.5,162.3 -77.5,162.5 -77.5,162.7 -77.5,162.9 -77.5,163.1 -77.5,163.3 -77.5,163.5 -77.5,163.5 -77.53,163.5 -77.56,163.5 -77.59,163.5 -77.62,163.5 -77.65,163.5 -77.68,163.5 -77.71,163.5 -77.74,163.5 -77.77,163.5 -77.8,163.3 -77.8,163.1 -77.8,162.9 -77.8,162.7 -77.8,162.5 -77.8,162.3 -77.8,162.1 -77.8,161.9 -77.8,161.7 -77.8,161.5 -77.8,161.5 -77.77,161.5 -77.74,161.5 -77.71,161.5 -77.68,161.5 -77.65,161.5 -77.62,161.5 -77.59,161.5 -77.56,161.5 -77.53,161.5 -77.5))", "dataset_titles": "16S and 18S amplicon sequencing of Antarctic cryoconite holes; Genomes of Antarctic ssDNA viruses (GenBank accession numbers MN311489-MN311492 and MN328267-MN328291); Metadata from samples (in the process of submitting to EDI; will update with DOI once completed); Microbial species-area relationships in Antarctic cryoconite holes; Soil microbial communities of a mountain landscape, McMurdo Dry Valleys, Antarctica", "datasets": [{"dataset_uid": "200084", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Genomes of Antarctic ssDNA viruses (GenBank accession numbers MN311489-MN311492 and MN328267-MN328291)", "url": ""}, {"dataset_uid": "200279", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Metadata from samples (in the process of submitting to EDI; will update with DOI once completed)", "url": "https://github.com/pacificasommers/Cryoconite-metadata"}, {"dataset_uid": "200280", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Soil microbial communities of a mountain landscape, McMurdo Dry Valleys, Antarctica", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA721735/"}, {"dataset_uid": "200281", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Microbial species-area relationships in Antarctic cryoconite holes", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA668398/"}, {"dataset_uid": "200081", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "16S and 18S amplicon sequencing of Antarctic cryoconite holes", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA480849/"}], "date_created": "Fri, 01 Nov 2019 00:00:00 GMT", "description": "Cryoconite holes are pockets of life completely encased in otherwise barren glacial ice. These pockets of life form when dust blown onto the ice melts a small, largely isolated hole that can function as its own tiny ecosystem. This dust can contain microorganisms such as bacteria, algae, or microscopic animals. The microorganisms within the hole interact and carry out functions typical of a larger ecosystem, such as a forest. Cryoconite holes are especially important in extreme cold environments such as the Antarctic Dry Valleys, where they function as repositories of life. Because cryoconite holes are mostly enclosed and persist for years, they can be tracked over time to test fundamental scientific questions about how communities of interacting organisms develop to become fully functioning ecosystems. This project will sample existing and experimentally created cryoconite holes to understand how these ecosystems develop and to what degree random processes (such as which organisms get there first) affect the final community composition and functioning. The results will not only improve our understanding of how microbial communities assemble and affect the functioning of microecosystems such as cryoconite holes, but also how the processes of community assembly affect functioning of larger ecosystems, such as forests. A better understanding of community establishment, development, and response to abiotic factors are essential to forecasting ecological responses to environmental change. It is essential to unravel the links between community assembly, biodiversity, and nutrient cycling across numerous ecosystems because these are critical factors determining ecological responses to environmental change. The unique, largely isolated nature of cryoconite holes provides an experimental system that will advance fundamental understanding of the processes (e.g., stochastic dynamics such as dispersal limitation, assembly order, and ecological drift) driving community assembly. This project will use a field sampling campaign and a number of manipulative experiments to test a hypothesis that unites theory in community and ecosystem ecology: the degree to which stochastic processes guide microbial community assembly and affects regional patterns in biodiversity and ecosystem processes. Cryoconite holes will be sampled to compare community composition, environmental factors, and ecosystem functioning between hydrologically connected and isolated holes. New cryoconite holes will also be constructed and monitored over the course of two growing seasons to specifically alter assembly order and community size, thereby pairing a unique manipulative experiment with field surveys to address questions with relevance to the Antarctic and beyond. Amplicon sequencing, metagenomics, microscopy, sensitive environmental chemistry methods, and photosynthesis and respiration measurements will be used to test a series of sub-hypotheses that relate stochasticity to patterns in regional biodiversity, heterogeneity in environmental factors, and ecosystem processes.", "east": 163.5, "geometry": "POINT(162.5 -77.65)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "GLACIERS; Antarctica; USAP-DC; FIELD INVESTIGATION", "locations": "Antarctica", "north": -77.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Schmidt, Steven; Cawley, Kaelin; Fountain, Andrew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "NCBI GenBank", "repositories": "GitHub; NCBI GenBank", "science_programs": null, "south": -77.8, "title": "Collaborative Research: Stochasticity and Cryoconite Community Assembly and Function", "uid": "p0010063", "west": 161.5}, {"awards": "1142517 Aydin, Murat; 1141839 Steig, Eric; 1142646 Twickler, Mark", "bounds_geometry": "POINT(90 -90)", "dataset_titles": "South Pole Ice Core Holocene Major Ion Dataset; South Pole Ice Core Sea Salt and Major Ions; South Pole ice core (SPC14) discrete methane data; South Pole Ice Core (SPICEcore) SPC14 Core Quality Versus Depth; SP19 Gas Chronology; Temperature, accumulation rate, and layer thinning from the South Pole ice core (SPC14)", "datasets": [{"dataset_uid": "601396", "doi": "10.15784/601396", "keywords": "Accumulation; Antarctica; Diffusion Length; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Dynamic; Layer Thinning; Oxygen Isotope; South Pole; SPICEcore; Temperature", "people": "Conway, Howard; Stevens, Max; Steig, Eric J.; Schauer, Andrew; Vaughn, Bruce; Morris, Valerie; Kahle, Emma; Koutnik, Michelle; Fudge, T. J.; Buizert, Christo; White, James; Epifanio, Jenna; Jones, Tyler R.; Waddington, Edwin D.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Temperature, accumulation rate, and layer thinning from the South Pole ice core (SPC14)", "url": "https://www.usap-dc.org/view/dataset/601396"}, {"dataset_uid": "601380", "doi": "10.15784/601380", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Core Stratigraphy; Methane; South Pole; SPICEcore", "people": "Epifanio, Jenna", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SP19 Gas Chronology", "url": "https://www.usap-dc.org/view/dataset/601380"}, {"dataset_uid": "601381", "doi": "10.15784/601381", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Methane; South Pole; SPICEcore", "people": "Aydin, Murat; Severinghaus, Jeffrey P.; Kennedy, Joshua A.; Ferris, David G.; Kalk, Michael; Hood, Ekaterina; Fudge, T. J.; Osterberg, Erich; Winski, Dominic A.; Steig, Eric J.; Kahle, Emma; Sowers, Todd A.; Edwards, Jon S.; Kreutz, Karl; Buizert, Christo; Brook, Edward J.; Epifanio, Jenna", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole ice core (SPC14) discrete methane data", "url": "https://www.usap-dc.org/view/dataset/601381"}, {"dataset_uid": "601851", "doi": "10.15784/601851", "keywords": "Antarctica; Cryosphere; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "people": "Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Sea Salt and Major Ions", "url": "https://www.usap-dc.org/view/dataset/601851"}, {"dataset_uid": "601221", "doi": "10.15784/601221", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Depth; Ice Core Records; Snow/ice; Snow/Ice; SPICEcore", "people": "Fudge, T. J.; Kahle, Emma; Nicewonger, Melinda R.; Hargreaves, Geoff; Nunn, Richard; Steig, Eric J.; Aydin, Murat; Casey, Kimberly A.; Fegyveresi, John; Twickler, Mark; Souney, Joseph Jr.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core (SPICEcore) SPC14 Core Quality Versus Depth", "url": "https://www.usap-dc.org/view/dataset/601221"}, {"dataset_uid": "601850", "doi": "10.15784/601850", "keywords": "Antarctica; Cryosphere; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "people": "Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Holocene Major Ion Dataset", "url": "https://www.usap-dc.org/view/dataset/601850"}], "date_created": "Wed, 30 Oct 2019 00:00:00 GMT", "description": "1142517/Saltzman This proposal requests support for a project to drill and recover a new ice core from South Pole, Antarctica. The South Pole ice core will be drilled to a depth of 1500 m, providing an environmental record spanning approximately 40 kyrs. This core will be recovered using a new intermediate drill, which is under development by the U.S. Ice Drilling Design and Operations (IDDO) group in collaboration with Danish scientists. This proposal seeks support to provide: 1) scientific management and oversight for the South Pole ice core project, 2) personnel for ice core drilling and core processing, 3) data management, and 3) scientific coordination and communication via scientific workshops. The intellectual merit of the work is that the analysis of stable isotopes, atmospheric gases, and aerosol-borne chemicals in polar ice has provided unique information about the magnitude and timing of changes in climate and climate forcing through time. The international ice core research community has articulated the goal of developing spatial arrays of ice cores across Antarctica and Greenland, allowing the reconstruction of regional patterns of climate variability in order to provide greater insight into the mechanisms driving climate change. The broader impacts of the project include obtaining the South Pole ice core will support a wide range of ice core science projects, which will contribute to the societal need for a basic understanding of climate and the capability to predict climate and ice sheet stability on long time scales. Second, the project will help train the next generation of ice core scientists by providing the opportunity for hands-on field and core processing experience for graduate students and postdoctoral researchers. A postdoctoral researcher at the University of Washington will be directly supported by this project, and many other young scientists will interact with the project through individual science proposals. Third, the project will result in the development of a new intermediate drill which will become an important resource to US ice core science community. This drill will have a light logistical footprint which will enable a wide range of ice core projects to be carried out that are not currently feasible. Finally, although this project does not request funds for outreach activities, the project will run workshops that will encourage and enable proposals for coordinated outreach activities involving the South Pole ice core science team.", "east": 90.0, "geometry": "POINT(90 -90)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "USAP-DC; Amd/Us; Antarctica; ANALYTICAL LAB; USA/NSF; AMD; South Pole; ICE CORE RECORDS; FIELD INVESTIGATION; Ice Core", "locations": "Antarctica; South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Twickler, Mark; Souney, Joseph Jr.; Aydin, Murat; Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e ANALYTICAL LAB", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: A 1500m Ice Core from South Pole", "uid": "p0010060", "west": 90.0}, {"awards": "1826712 McMahon, Kelton; 1443386 Emslie, Steven; 1443585 Polito, Michael; 1443424 McMahon, Kelton", "bounds_geometry": "POLYGON((-180 -60,-166 -60,-152 -60,-138 -60,-124 -60,-110 -60,-96 -60,-82 -60,-68 -60,-54 -60,-40 -60,-40 -61.8,-40 -63.6,-40 -65.4,-40 -67.2,-40 -69,-40 -70.8,-40 -72.6,-40 -74.4,-40 -76.2,-40 -78,-54 -78,-68 -78,-82 -78,-96 -78,-110 -78,-124 -78,-138 -78,-152 -78,-166 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -76.2,160 -74.4,160 -72.6,160 -70.8,160 -69,160 -67.2,160 -65.4,160 -63.6,160 -61.8,160 -60,162 -60,164 -60,166 -60,168 -60,170 -60,172 -60,174 -60,176 -60,178 -60,-180 -60))", "dataset_titles": "Amino acid nitrogen isotope values of modern and ancient Ad\u00e9lie penguin eggshells from the Ross Sea and Antarctic Peninsula regions; Amino acid nitrogen isotope values of penguins from the Antarctic Peninsula region 1930s to 2010s; Ancient Adelie penguin colony revealed by snowmelt at Cape Irizar, Ross Sea, Antarctica; Carbon and nitrogen stable isotope values of Antarctic Krill from the South Shetland Islands and the northern Antarctic Peninsula 2007 and 2009; Radiocarbon dates from pygoscelid penguin tissues excavated at Stranger Point, King George Island, Antarctic Peninsula; Radiocarbon dating and stable isotope values of penguin and seal tissues recovered from ornithogenic soils on Platter Island, Danger Islands Archipelago, Antarctic Peninsula in December 2015.; Radioisotope dates and carbon (\u03b413C) and nitrogen (\u03b415N) stable isotope values from modern and mummified Ad\u00e9lie Penguin chick carcasses and tissue from the Ross Sea, Antarctica; Radiometric dating, geochemical proxies, and predator biological remains obtained from aquatic sediment cores on South Georgia Island.; Receding ice drove parallel expansions in Southern Ocean penguin; SNP data from \"Receding ice drove parallel expansions in Southern Ocean penguins\".; Stable isotope analysis of multiple tissues from chick carcasses of three pygoscelid penguins in Antarctica; Stable isotopes of Adelie Penguin chick bone collagen; The rise and fall of an ancient Adelie penguin \u0027supercolony\u0027 at Cape Adare, Antarctica", "datasets": [{"dataset_uid": "601327", "doi": "10.15784/601327", "keywords": "Adelie Penguin; Antarctica; Biota; Cape Adare; East Antarctica; Population Movement; Pygoscelis Adeliae; Radiocarbon; Ross Sea; Sea Level Rise; Stable Isotopes", "people": "Patterson, William; McKenzie, Ashley; Emslie, Steven D.", "repository": "USAP-DC", "science_program": null, "title": "The rise and fall of an ancient Adelie penguin \u0027supercolony\u0027 at Cape Adare, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601327"}, {"dataset_uid": "601212", "doi": "10.15784/601212", "keywords": "Abandoned Colonies; Antarctica; Antarctic Peninsula; Beach Deposit; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Holocene; Penguin; Radiocarbon; Radiocarbon Dates; Snow/ice; Snow/Ice; Stranger Point", "people": "Emslie, Steven D.", "repository": "USAP-DC", "science_program": null, "title": "Radiocarbon dates from pygoscelid penguin tissues excavated at Stranger Point, King George Island, Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601212"}, {"dataset_uid": "601210", "doi": "10.15784/601210", "keywords": "Antarctica; Antarctic Krill; Antarctic Peninsula; Biota; Carbon Isotopes; Isotope Data; Krill; Nitrogen Isotopes; Oceans; Southern Ocean; Stable Isotope Analysis", "people": "Polito, Michael", "repository": "USAP-DC", "science_program": null, "title": "Carbon and nitrogen stable isotope values of Antarctic Krill from the South Shetland Islands and the northern Antarctic Peninsula 2007 and 2009", "url": "https://www.usap-dc.org/view/dataset/601210"}, {"dataset_uid": "601232", "doi": "10.15784/601232", "keywords": "Amino Acids; Antarctica; Antarctic Peninsula; Biota; Isotope Data; Nitrogen Isotopes; Oceans; Penguin; Southern Ocean; Stable Isotope Analysis", "people": "Polito, Michael; McMahon, Kelton", "repository": "USAP-DC", "science_program": null, "title": "Amino acid nitrogen isotope values of penguins from the Antarctic Peninsula region 1930s to 2010s", "url": "https://www.usap-dc.org/view/dataset/601232"}, {"dataset_uid": "601374", "doi": "10.15784/601374", "keywords": "Adelie Penguin; Antarctica; Cape Irizar; Drygalski Ice Tongue; Ross Sea; Stable Isotopes", "people": "Emslie, Steven D.", "repository": "USAP-DC", "science_program": null, "title": "Ancient Adelie penguin colony revealed by snowmelt at Cape Irizar, Ross Sea, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601374"}, {"dataset_uid": "601382", "doi": "10.15784/601382", "keywords": "25 De Mayo/King George Island; Antarctica; Biota; Delta 13C; Delta 15N; Dietary Shifts; Opportunistic Sampling; Penguin; Pygoscelis Penguins; Stranger Point", "people": "Emslie, Steven D.; Ciriani, Yanina", "repository": "USAP-DC", "science_program": null, "title": "Stable isotope analysis of multiple tissues from chick carcasses of three pygoscelid penguins in Antarctica", "url": "https://www.usap-dc.org/view/dataset/601382"}, {"dataset_uid": "601913", "doi": "10.15784/601913", "keywords": "Adelie Penguin; Antarctica; Cryosphere; Foraging; Polynya; Pygoscelis Adeliae; Ross Sea; Stable Isotopes", "people": "Powers, Shannon; Emslie, Steven D.; Reaves, Megan", "repository": "USAP-DC", "science_program": null, "title": "Stable isotopes of Adelie Penguin chick bone collagen", "url": "https://www.usap-dc.org/view/dataset/601913"}, {"dataset_uid": "601509", "doi": "10.15784/601509", "keywords": "Antarctica; Antarctic Fur Seal; Elemental Concentrations; King Penguin; Population Dynamics; South Atlantic Ocean; South Georgia Island; Stable Isotope Analysis; Sub-Antarctic", "people": "Polito, Michael; McMahon, Kelton; Maiti, Kanchan; Kristan, Allyson", "repository": "USAP-DC", "science_program": null, "title": "Radiometric dating, geochemical proxies, and predator biological remains obtained from aquatic sediment cores on South Georgia Island.", "url": "https://www.usap-dc.org/view/dataset/601509"}, {"dataset_uid": "601760", "doi": "10.15784/601760", "keywords": "Adelie Penguin; Amino Acids; Antarctica; Antarctic Peninsula; Ross Sea; Stable Isotope Analysis; Trophic Position", "people": "Patterson, William; Emslie, Steven D.; Michelson, Chantel; Polito, Michael; Wonder, Michael; McCarthy, Matthew; McMahon, Kelton", "repository": "USAP-DC", "science_program": null, "title": "Amino acid nitrogen isotope values of modern and ancient Ad\u00e9lie penguin eggshells from the Ross Sea and Antarctic Peninsula regions", "url": "https://www.usap-dc.org/view/dataset/601760"}, {"dataset_uid": "200181", "doi": "10.6084/m9.figshare.c.4475300.v1", "keywords": null, "people": null, "repository": "Figshare", "science_program": null, "title": "SNP data from \"Receding ice drove parallel expansions in Southern Ocean penguins\".", "url": "https://doi.org/10.6084/m9.figshare.c.4475300.v1"}, {"dataset_uid": "601263", "doi": "10.15784/601263", "keywords": "Abandoned Colonies; Antarctica; Holocene; Penguin; Ross Sea; Stable Isotope Analysis", "people": "Patterson, William; Emslie, Steven D.; Kristan, Allyson", "repository": "USAP-DC", "science_program": null, "title": "Radioisotope dates and carbon (\u03b413C) and nitrogen (\u03b415N) stable isotope values from modern and mummified Ad\u00e9lie Penguin chick carcasses and tissue from the Ross Sea, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601263"}, {"dataset_uid": "601364", "doi": "10.15784/601364", "keywords": "Antarctica; Antarctic Peninsula; Arctocephalus Gazella; Carbon; Holocene; Nitrogen; Paleoecology; Penguin; Pygoscelis Spp.; Stable Isotope Analysis; Weddell Sea", "people": "Herman, Rachael; Kalvakaalva, Rohit; Clucas, Gemma; Polito, Michael", "repository": "USAP-DC", "science_program": null, "title": "Radiocarbon dating and stable isotope values of penguin and seal tissues recovered from ornithogenic soils on Platter Island, Danger Islands Archipelago, Antarctic Peninsula in December 2015.", "url": "https://www.usap-dc.org/view/dataset/601364"}, {"dataset_uid": "200180", "doi": "", "keywords": null, "people": null, "repository": "NCBI BioProject", "science_program": null, "title": "Receding ice drove parallel expansions in Southern Ocean penguin", "url": "https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA589336"}], "date_created": "Thu, 08 Aug 2019 00:00:00 GMT", "description": "The Antarctic marine ecosystem is highly productive and supports a diverse range of ecologically and commercially important species. A key species in this ecosystem is Antarctic krill, which in addition to being commercially harvested, is the principle prey of a wide range of marine organisms including penguins, seals and whales. The aim of this study is to use penguins and other krill predators as sensitive indicators of past changes in the Antarctic marine food web resulting from climate variability and the historic harvesting of seals and whales by humans. Specifically this study will recover and analyze modern (\u003c20 year old), historic (20-200 year old) and ancient (200-10,000 year old) penguin and other krill predator tissues to track their past diets and population movements relative to shifts in climate and the availability of Antarctic krill. Understanding how krill predators were affected by these factors in the past will allow us to better understand how these predators, the krill they depend on, and the Antarctic marine ecosystem as a whole will respond to current challenges such as global climate change and an expanding commercial fishery for Antarctic krill. The project will further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. This project will support the cross-institutional training of undergraduate and graduate students in advanced analytical techniques in the fields of ecology and biogeochemistry. In addition, this project includes educational outreach aimed encouraging participation in science careers by engaging K-12 students in scientific issues related to Antarctica, penguins, marine ecology, biogeochemistry, and global climate change. This research will help place recent ecological changes in the Southern Ocean into a larger historical context by examining decadal and millennial-scale shifts in the diets and population movements of Antarctic krill predators (penguins, seals, and squid) in concert with climate variability and commercial harvesting. This will be achieved by coupling advanced stable and radio isotope techniques, particularly compound-specific stable isotope analysis, with unprecedented access to modern, historical, and well-preserved paleo-archives of Antarctic predator tissues dating throughout the Holocene. This approach will allow the project to empirically test if observed shifts in Antarctic predator bulk tissue stable isotope values over the past millennia were caused by climate-driven shifts at the base of the food web in addition to, or rather than, shifts in predator diets due to a competitive release following the historic harvesting of krill eating whale and seals. In addition, this project will track the large-scale abandonment and reoccupation of penguin colonies around Antarctica in response to changes in climate and sea ice conditions over the past several millennia. These integrated field studies and laboratory analyses will provide new insights into the underlying mechanisms that influenced past shifts in the diets and population movements of charismatic krill predators such as penguins. This will allow for improved projections of the ecosystem consequences of future climate change and anthropogenic harvesting scenarios in the Antarctica that are likely to affect the availability of Antarctic krill.", "east": -40.0, "geometry": "POINT(-120 -69)", "instruments": null, "is_usap_dc": true, "keywords": "ANIMAL ECOLOGY AND BEHAVIOR; South Shetland Islands; Penguin; Stable Isotopes; Polar; Ross Sea; USA/NSF; Weddell Sea; AMD; MARINE ECOSYSTEMS; USAP-DC; Antarctica; PENGUINS; Southern Hemisphere; FIELD INVESTIGATION; Amd/Us; Krill; MACROFOSSILS", "locations": "Southern Hemisphere; Ross Sea; South Shetland Islands; Weddell Sea; Polar; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Polito, Michael; Kelton, McMahon; Patterson, William; McCarthy, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "Figshare; NCBI BioProject; USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators", "uid": "p0010047", "west": 160.0}, {"awards": "1643901 Zhang, Weifeng; 1643735 Li, Yun; 2021245 Li, Yun", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Dynamic fine-scale sea-icescape shapes adult emperor penguin foraging habitat in East Antarctica; Monthly Stratification Climatology (1978-2021) in Antarctic Coastal Polynyas", "datasets": [{"dataset_uid": "601628", "doi": "10.15784/601628", "keywords": "Antarctic; Antarctica; Antarctic Coastal Polynyas; Polynya", "people": "Zhang, Weifeng; Li, Yun; Shunk, Nathan", "repository": "USAP-DC", "science_program": null, "title": "Monthly Stratification Climatology (1978-2021) in Antarctic Coastal Polynyas", "url": "https://www.usap-dc.org/view/dataset/601628"}, {"dataset_uid": "601209", "doi": "10.15784/601209", "keywords": "Animal Behavior Observation; Antarctica; Biota; East Antarctica; GPS; Oceans; Penguin; Southern Ocean", "people": "Kirkwood, Roger; Ropert-Coudert, Yan; Resinger, Ryan; Jonsen, Ian; Porter-Smith, Rick; Barbraud, Christophe; Wienecke, Barbara; Bost, Charles-Andr\u00e9; Ji, Rubao; Pinaud, David; Jenouvrier, Stephanie; Tamura, Takeshi; Sumner, Michael; Fraser, Alexander; Labrousse, Sara", "repository": "USAP-DC", "science_program": null, "title": "Dynamic fine-scale sea-icescape shapes adult emperor penguin foraging habitat in East Antarctica", "url": "https://www.usap-dc.org/view/dataset/601209"}], "date_created": "Wed, 07 Aug 2019 00:00:00 GMT", "description": "During winter, sea-ice coverage along the Antarctic coast is punctuated by numerous polynyas--isolated openings of tens to hundreds of kilometer wide. These coastal polynyas are hotspots of sea ice production and the primary source regions of the bottom water in the global ocean. They also host high levels of biological activities and are the feeding grounds of Emperor penguins and marine mammals. The polynyas are a key component of the Antarctic coastal system and crucial for the survival of penguins and many other species. These features also differ dramatically from each other in timing of formation, duration, phytoplankton growth season, and overall biological productivity. Yet, the underlying reasons for differences among them are largely unknown. This project studies the fundamental biophysical processes at a variety of polynyas, examines the connection between the physical environment and the phytoplankton and penguin ecology, and investigates the mechanisms behind polynya variability. The results of this interdisciplinary study will provide a context for interpretation of field measurements in Antarctic coastal polynyas, set a baseline for future polynya studies, and examine how polynya ecosystems may respond to local and large-scale environmental changes. The project will include educational and outreach activities that convey scientific messages to a broad audience. It aims to increase public awareness of the interconnection between large-scale environmental change and Antarctic coastal systems. The main objectives of this study are to form a comprehensive understanding of the temporal and spatial variability of Antarctic coastal polynyas and the physical controls of polynya ecosystems. The project takes an interdisciplinary approach and seeks to establish a modeling system centered on the Regional Ocean Modeling System. This system links the ice and ocean conditions to the plankton ecology and penguin population. Applications of the modeling system in representative polynyas, in conjunction with analysis of existing observations, will determine the biophysical influences of individual forcing factors. In particular, this study will test a set of hypothesized effects of winds, offshore water intrusion, ice-shelf melting, sea-ice formation, glacier tongues, and ocean stratification on the timing of polynya phytoplankton bloom and the overall polynya biological productivity. The project will also examine how changing polynya state affects penguin breeding success, adult survival, and population growth. The team will conduct idealized sensitivity analysis to explore implications of forcing variability, including local and large-scale environmental change, on Antarctic coastal ecosystems.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Southern Ocean; Animal Behavior; Penguin; FIELD INVESTIGATION; USAP-DC; COASTAL; PENGUINS; SEA ICE; Antarctica; OCEAN MIXED LAYER", "locations": "Southern Ocean; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Zhang, Weifeng; Ji, Rubao; Jenouvrier, Stephanie; Maksym, Edward; Li, Yun", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Polynyas in Coastal Antarctica (PICA): Linking Physical Dynamics to Biological Variability", "uid": "p0010044", "west": -180.0}, {"awards": "1744849 Sokol, Eric; 1744785 Barrett, John; 1745053 Salvatore, Mark", "bounds_geometry": "POLYGON((162.92 -77.56,162.971 -77.56,163.022 -77.56,163.073 -77.56,163.124 -77.56,163.175 -77.56,163.226 -77.56,163.277 -77.56,163.328 -77.56,163.379 -77.56,163.43 -77.56,163.43 -77.571,163.43 -77.582,163.43 -77.593,163.43 -77.604,163.43 -77.615,163.43 -77.626,163.43 -77.637,163.43 -77.648,163.43 -77.659,163.43 -77.67,163.379 -77.67,163.328 -77.67,163.277 -77.67,163.226 -77.67,163.175 -77.67,163.124 -77.67,163.073 -77.67,163.022 -77.67,162.971 -77.67,162.92 -77.67,162.92 -77.659,162.92 -77.648,162.92 -77.637,162.92 -77.626,162.92 -77.615,162.92 -77.604,162.92 -77.593,162.92 -77.582,162.92 -77.571,162.92 -77.56))", "dataset_titles": "McMurdo Dry Valleys LTER: Microbial mat biomass and Normalized Difference Vegetation Index (NDVI) values from Lake Fryxell Basin, Antarctica, January 2018", "datasets": [{"dataset_uid": "200344", "doi": "10.6073/pasta/9acbbde9abc1e013f8c9fd9c383327f4", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "McMurdo Dry Valleys LTER: Microbial mat biomass and Normalized Difference Vegetation Index (NDVI) values from Lake Fryxell Basin, Antarctica, January 2018", "url": "https://portal.edirepository.org/nis/mapbrowse?packageid=knb-lter-mcm.263.1"}], "date_created": "Wed, 03 Jul 2019 00:00:00 GMT", "description": "Microbial mats are found throughout the McMurdo Dry Valleys where summer snowmelt provides liquid water that allows these mats to flourish. Researchers have long studied the environmental conditions microbial mats need to grow. Despite these efforts, it has been difficult to develop a broad picture of these unique ecosystems. Recent advances in satellite technology now provide researchers an exciting new tool to study these special Antarctic ecosystems from space using the unique spectral signatures associated with microbial mats. This new technology not only offers the promise that microbial mats can be mapped and studied from space, this research will also help protect these delicate environments from potentially harmful human impacts that can occur when studying them from the ground. This project will use satellite imagery and spectroscopic techniques to identify and map microbial mat communities and relate their properties and distributions to both field and lab-based measurements. This research provides an exciting new tool to help document and understand the distribution of a major component of the Antarctic ecosystem in the McMurdo Dry Valleys. The goal of this project is to establish quantitative relationships between spectral signatures derived from orbit and the physiological status and biogeochemical properties of microbial mat communities in Taylor Valley, Antarctica, as measured by field and laboratory analyses on collected samples. The goal wioll be met by (1) refining atmospheric correction techniques using in situ radiometric rectification to derive accurate surface spectra; (2) collecting multispectral orbital images concurrent with in situ sampling and spectral measurements in the field to ensure temporal comparability; (3) measuring sediment, water, and microbial mat samples for organic and inorganic carbon content, essential biogeochemical nutrients, and chlorophyll-a to determine relevant mat characteristics; and (4) quantitatively associating these laboratory-derived characteristics with field-derived and orbital spectral signatures and parameters. The result of this work will be a more robust quantitative link between the distribution of microbial mat communities and their biogeochemical properties to landscape-scale spectral signatures. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 163.43, "geometry": "POINT(163.175 -77.615)", "instruments": null, "is_usap_dc": true, "keywords": "RIVERS/STREAM; CYANOBACTERIA (BLUE-GREEN ALGAE); USAP-DC; Taylor Valley; INFRARED IMAGERY; WORLDVIEW-2; WORLDVIEW-3; Antarctica; FIELD INVESTIGATION; Amd/Us; ACTIVE LAYER", "locations": "Antarctica; Taylor Valley", "north": -77.56, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Salvatore, Mark; Barrett, John; Sokol, Eric", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e WORLDVIEW \u003e WORLDVIEW-2; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e WORLDVIEW \u003e WORLDVIEW-3", "repo": "EDI", "repositories": "EDI", "science_programs": null, "south": -77.67, "title": "COLLABORATIVE RESEARCH: Remote Characterization of Microbial Mats in Taylor Valley, Antarctica, through In Situ Sampling and Spectral Validation", "uid": "p0010036", "west": 162.92}, {"awards": "1745036 Marchetti, Adrian; 1744760 Hopkinson, Brian", "bounds_geometry": "POLYGON((-77 -61,-75.2 -61,-73.4 -61,-71.6 -61,-69.8 -61,-68 -61,-66.2 -61,-64.4 -61,-62.6 -61,-60.8 -61,-59 -61,-59 -62.1,-59 -63.2,-59 -64.3,-59 -65.4,-59 -66.5,-59 -67.6,-59 -68.7,-59 -69.8,-59 -70.9,-59 -72,-60.8 -72,-62.6 -72,-64.4 -72,-66.2 -72,-68 -72,-69.8 -72,-71.6 -72,-73.4 -72,-75.2 -72,-77 -72,-77 -70.9,-77 -69.8,-77 -68.7,-77 -67.6,-77 -66.5,-77 -65.4,-77 -64.3,-77 -63.2,-77 -62.1,-77 -61))", "dataset_titles": "Photosynthetic physiological data of Proteorhodopsin containing diatoms under differing iron availabilities", "datasets": [{"dataset_uid": "601530", "doi": "10.15784/601530", "keywords": "Antarctica; Diatom", "people": "Plumb, Kaylie; Hopkinson, Brian; Marchetti, Adrian; Andrew, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Photosynthetic physiological data of Proteorhodopsin containing diatoms under differing iron availabilities", "url": "https://www.usap-dc.org/view/dataset/601530"}], "date_created": "Sun, 16 Jun 2019 00:00:00 GMT", "description": "Proteorhodopsins are proteins that are embedded in membranes that can act as light-driven proton pumps to generate energy for metabolism and growth. The discovery of proteorhodopsins in many diverse marine prokaryotic microbes has initiated extensive investigation into their distributions and functional roles. Recently, a proton-pumping, rhodopsin-like gene was identified in diatoms, a group of marine phytoplankton that dominates the base of the food web in much of the Southern Ocean. Since this time, proteorhodopsins have been identified in many, but not all, diatom species. The proteorhodopsin gene is more frequently found in diatoms residing in cold, iron-limited regions of the ocean, including the Southern Ocean, than in diatoms from other regions. It is thought that proteorhodopsin is especially suited for use energy production in the Southern Ocean since it uses no iron and its reaction rate is insensitive to temperature (unlike conventional photosynthesis). The overall objective of the project is to characterize Antarctic diatom-proteorhodopsin and determine its role in the adaptation of these diatoms to low iron concentrations and extremely low temperatures found in Antarctic waters. This research will provide new information on the genetic underpinnings that contribute to the success of diatoms in the Southern Ocean and how this unique molecule may play a pivotal role in providing energy to the base of the Antarctic food web. Broader impact activities are aimed to promote the teaching and learning of polar marine-sciences related topics by translating research objectives into readily accessible educational materials for middle-school students. This project will combine molecular, biochemical and physiological measurements to determine the role and importance of proteorhodopsin in diatom isolates from the Western Antarctic Peninsula region. Proton-pumping characteristics and pumping rates of proteorhodopsin as a function of light intensity and temperature, the resultant proteorhodopsin-linked intracellular ATP production rates, and the cellular localization of the protein will be determined. The project will examine the environmental conditions where Antarctic diatom-proteorhodopsin is most highly expressed and construct a cellular energy budget that includes diatom-proteorhodopsin when grown under these different environmental conditions. Estimates of the energy flux generated by proteorhodopsin will be compared to total energy generation by the photosynthetic light reactions and metabolically coupled respiration rates. Finally, the characteristics and gene expression of diatom-proteorhodopsin in Antarctic diatoms and a proteorhodopsin-containing diatom isolates from temperate regions will be compared in order to determine if there is a preferential dependence on energy production through proteorhodopsin in diatoms residing in cold, iron-limited regions of the ocean. Educational activities will be performed in collaboration with the Morehead Planetarium and Science Center who co-ordinates the SciVentures program, a popular summer camp for middle-school students from Chapel Hill and surrounding areas. In collaboration with the Planetarium, the researchers will develop activities that focus on phytoplankton and the important role they play within polar marine food webs for the SciVentures participants. Additionally, a teaching module on Antarctic phytoplankton will be developed for classrooms and made available to educational networking websites and presented at workshops for science educators nationwide. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -59.0, "geometry": "POINT(-68 -66.5)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; NSF/USA; Southern Ocean; AMD; Amd/Us; LABORATORY; USAP-DC; BIOGEOCHEMICAL CYCLES", "locations": "Southern Ocean", "north": -61.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Marchetti, Adrian; Septer, Alecia; Hopkinson, Brian", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -72.0, "title": "Collaborative research: Antarctic diatom proteorhodopsins: Characterization and a potential role in the iron-limitation response", "uid": "p0010033", "west": -77.0}, {"awards": "1443552 Paul Winberry, J.; 1443356 Conway, Howard", "bounds_geometry": "POLYGON((-175 -82.7,-173.9 -82.7,-172.8 -82.7,-171.7 -82.7,-170.6 -82.7,-169.5 -82.7,-168.4 -82.7,-167.3 -82.7,-166.2 -82.7,-165.1 -82.7,-164 -82.7,-164 -82.77,-164 -82.84,-164 -82.91,-164 -82.98,-164 -83.05,-164 -83.12,-164 -83.19,-164 -83.26,-164 -83.33,-164 -83.4,-165.1 -83.4,-166.2 -83.4,-167.3 -83.4,-168.4 -83.4,-169.5 -83.4,-170.6 -83.4,-171.7 -83.4,-172.8 -83.4,-173.9 -83.4,-175 -83.4,-175 -83.33,-175 -83.26,-175 -83.19,-175 -83.12,-175 -83.05,-175 -82.98,-175 -82.91,-175 -82.84,-175 -82.77,-175 -82.7))", "dataset_titles": "2015_Antarctica_Ground; Geophysical data from Crary Ice Rise, Ross Sea Embayment", "datasets": [{"dataset_uid": "200177", "doi": "", "keywords": null, "people": null, "repository": "CReSIS/ku.edu", "science_program": null, "title": "2015_Antarctica_Ground", "url": "https://data.cresis.ku.edu/data/accum/2015_Antarctica_Ground/"}, {"dataset_uid": "601181", "doi": "10.15784/601181", "keywords": "Antarctica; Bed Elevation; Crary Ice Rise; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Ice Penetrating Radar; Ice Sheet Elevation; Ice Shelf; Ice Thickness; Internal Stratigraphy; Radar; Ross Ice Shelf; Snow/ice; Snow/Ice; Surface Elevation", "people": "Winberry, Paul; Conway, Howard; Koutnik, Michelle; Paden, John", "repository": "USAP-DC", "science_program": null, "title": "Geophysical data from Crary Ice Rise, Ross Sea Embayment", "url": "https://www.usap-dc.org/view/dataset/601181"}], "date_created": "Mon, 06 May 2019 00:00:00 GMT", "description": "Recent observations and model results suggest that collapse of the Amundsen Sea sector of West Antarctica may already be underway. However, the timeline of collapse and the effects of ongoing climatic and oceanographic changes are key unanswered questions. Complete disintegration of the ice sheet would raise global sea level by more than 3 m, which would have significant societal impacts. Improved understanding of the controls on ice-sheet evolution is needed to make better predictions of ice-sheet behavior. Results from numerical models show that buttressing from surrounding ice shelves and/or from small-scale grounded ice rises should act to slow the retreat and discharge of ice from the interior ice sheet. However, there are very few field observations with which to develop and validate models. Field observations conducted in the early 1980s on Crary Ice Rise in the Ross Sea Embayment are a notable exception. This project will revisit Crary Ice Rise with new tools to make a suite of measurements designed to address questions about how the ice rise affects ice discharge from the Ross Sea sector of West Antarctica. The team will include a graduate and undergraduate student, and will participate in a range of outreach activities. New tools including radar, seismic, and GPS instruments will be used to conduct targeted geophysical measurements both on Crary Ice Rise and across its grounding line. The project will use these new measurements, together with available ancillary data to inform a numerical model of grounding line dynamics. The model and measurements will be used to address the (1) How has the ice rise evolved over timescales ranging from: the past few decades; the past millennia after freeze-on; and through the deglaciation? (2) What history of ice dynamics is preserved in the radar-detected internal stratigraphy? (3) What dynamical effect does the presence/absence of the ice rise have on discharge of the Ross Ice Streams today? (4) How is it contributing to the slow-down of the proximal Whillans and Mercer ice streams? (5) What dynamical response will the ice rise have under future environmental change?", "east": -164.0, "geometry": "POINT(-169.5 -83.05)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS", "is_usap_dc": true, "keywords": "Amd/Us; FIELD SURVEYS; Antarctica; USA/NSF; AMD; USAP-DC; Radar; GLACIERS/ICE SHEETS", "locations": "Antarctica", "north": -82.7, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Conway, Howard; Koutnik, Michelle; Winberry, Paul", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "CReSIS/ku.edu", "repositories": "CReSIS/ku.edu; USAP-DC", "science_programs": null, "south": -83.4, "title": "Collaborative Research: Grounding Line Dynamics: Crary Ice Rise Revisited", "uid": "p0010026", "west": -175.0}, {"awards": "1341339 Baker, Bill; 1341333 McClintock, James", "bounds_geometry": "POLYGON((-65 -65,-64.8 -65,-64.6 -65,-64.4 -65,-64.2 -65,-64 -65,-63.8 -65,-63.6 -65,-63.4 -65,-63.2 -65,-63 -65,-63 -64.9,-63 -64.8,-63 -64.7,-63 -64.6,-63 -64.5,-63 -64.4,-63 -64.3,-63 -64.2,-63 -64.1,-63 -64,-63.2 -64,-63.4 -64,-63.6 -64,-63.8 -64,-64 -64,-64.2 -64,-64.4 -64,-64.6 -64,-64.8 -64,-65 -64,-65 -64.1,-65 -64.2,-65 -64.3,-65 -64.4,-65 -64.5,-65 -64.6,-65 -64.7,-65 -64.8,-65 -64.9,-65 -65))", "dataset_titles": "Data from Amsler et al. 2019 Antarctic Science; Plocamium cartilagineum field chemotyping; Plocamium reproductive system data and R code; Plocamium transect and transplant data; Raw gastropod collection data from Amsler et al. 2022 Antarctic Science; Supplementary information provided with Murray et al.: Discovery of an Antarctic ascidian-associated uncultivated Verrucomicrobia with antimelanoma palmerolide biosynthetic potential; Synoicum adareanum sampling underwater video Mar 2011 Palmer Station Antarctica; The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2010 experimental data; The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2010 field data; The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2011 Clad Outplant; The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2013 Chemo Phylo data", "datasets": [{"dataset_uid": "601533", "doi": "10.15784/601533", "keywords": "Antarctica; Benthos; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Raw gastropod collection data from Amsler et al. 2022 Antarctic Science", "url": "https://www.usap-dc.org/view/dataset/601533"}, {"dataset_uid": "601622", "doi": "10.15784/601622", "keywords": "Antarctica; Benthic; Biota; Macroalgae; Population Genetics", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Plocamium reproductive system data and R code", "url": "https://www.usap-dc.org/view/dataset/601622"}, {"dataset_uid": "600046", "doi": "10.15784/600046", "keywords": "Antarctica; Biota; Oceans; Southern Ocean", "people": "McClintock, James; Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2010 field data", "url": "https://www.usap-dc.org/view/dataset/600046"}, {"dataset_uid": "601215", "doi": "10.15784/601215", "keywords": "Algae; Antarctica; Biota; Chemical Ecology; Chemotyping; Halogenated Monoterpenes; Natural Products; Oceans; Palmer Station; Plocamium Cartilagineum; Southern Ocean; Terpenes", "people": "Baker, Bill", "repository": "USAP-DC", "science_program": null, "title": "Plocamium cartilagineum field chemotyping", "url": "https://www.usap-dc.org/view/dataset/601215"}, {"dataset_uid": "601159", "doi": "601159", "keywords": "Antarctica; Benthic; Biota; Macroalgae; Mesograzer; Microscopy; Oceans; Zooplankton", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Data from Amsler et al. 2019 Antarctic Science", "url": "https://www.usap-dc.org/view/dataset/601159"}, {"dataset_uid": "600096", "doi": "10.15784/600096", "keywords": "Algae; Antarctica; Antarctic Peninsula; Biota; Oceans; Southern Ocean", "people": "Baker, Bill", "repository": "USAP-DC", "science_program": null, "title": "The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2013 Chemo Phylo data", "url": "https://www.usap-dc.org/view/dataset/600096"}, {"dataset_uid": "600095", "doi": "10.15784/600095", "keywords": "Algae; Antarctica; Antarctic Peninsula; Biota; Oceans; Southern Ocean", "people": "Amsler, Charles; McClintock, James", "repository": "USAP-DC", "science_program": null, "title": "The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2011 Clad Outplant", "url": "https://www.usap-dc.org/view/dataset/600095"}, {"dataset_uid": "200357", "doi": "10.5061/dryad.gxd2547gw", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Synoicum adareanum sampling underwater video Mar 2011 Palmer Station Antarctica", "url": "https://datadryad.org/stash/dataset/doi:10.5061/dryad.gxd2547gw"}, {"dataset_uid": "200356", "doi": "10.5061/dryad.8sf7m0cpp", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Supplementary information provided with Murray et al.: Discovery of an Antarctic ascidian-associated uncultivated Verrucomicrobia with antimelanoma palmerolide biosynthetic potential", "url": "https://datadryad.org/stash/dataset/doi:10.5061/dryad.8sf7m0cpp"}, {"dataset_uid": "600047", "doi": "10.15784/600047", "keywords": "Antarctica; Biota; Oceans; Southern Ocean", "people": "Baker, Bill", "repository": "USAP-DC", "science_program": null, "title": "The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2010 experimental data", "url": "https://www.usap-dc.org/view/dataset/600047"}, {"dataset_uid": "601621", "doi": "10.15784/601621", "keywords": "Antarctica; Benthic; Biota; Macroalgae; Mesograzer; Microscopy; Oceans; Secondary Metabolites", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Plocamium transect and transplant data", "url": "https://www.usap-dc.org/view/dataset/601621"}], "date_created": "Tue, 05 Mar 2019 00:00:00 GMT", "description": "The coastal environments of the western Antarctic Peninsula harbor rich assemblages of marine animals and algae. The importance of the interactions between these groups of organisms in the ecology of coastal Antarctica are well known and often mediated by chemical defenses in the tissues of the algae. These chemicals are meant to deter feeding by snails and other marine animals making the Antarctic Peninsula an excellent place to ask important questions about the functional and evolutionary significance of chemical compound diversity for marine communities. This project will focus on three main objectives: the first objective is to expand the current understanding of the relationship between algae and their associated marine animals. The second objective focuses on the diversity of chemical compounds used to defend algae from being consumed. The third objective seeks to understand how marine animals can benefit from these compounds by consuming the algae that contain them, and then using those compounds to chemically deter predators. The field components of this research will be performed during three expeditions to the US Palmer Station, Antarctica. During these expeditions, a variety of laboratory feeding bioassays, manipulative field and laboratory experiments, and on-site chemical analyses will be performed. The investigators will also foster opportunities to integrate their NSF research with a variety of educational activities. As in the past they will support undergraduate research, both through NSF programs as well as home, university-based, programs, and they will also continue to support and foster graduate education. Through their highly successful University of Alabama in Antarctica interactive web program (two time recipient of awards of excellence from the US Council for Advancement and Support of Education), they will continue to involve large numbers of teachers, K-12 students, and other members of the community at large in their scientific endeavors in Antarctica. In addition, the investigators have hosted K-12 teachers on their Antarctic field teams through the former NSF Teachers Experiencing Antarctica and the Arctic program and will pursue participation in PolarTREC, the successor to this valuable program. Moreover, they will actively participate in outreach efforts by presenting numerous talks on their research to local school and community groups. The near shore environments of the western Antarctic Peninsula harbor rich assemblages of macroalgae and macroinvertebrates. The importance of predator-prey interactions and chemical defenses in mediating community-wide trophic interactions makes the western Antarctic Peninsula an excellent place to ask important questions about the functional and evolutionary significance of defensive compound diversity for marine communities. This project will focus on three main objectives which are a direct outcome of the past studies of the chemical ecology of shallow-water marine macroalgae and invertebrates on the Antarctic Peninsula by this group of investigators. The first objective is to expand the current understanding of a community-wide mutualism between macroalgae and their associated amphipods to include gastropods, which are also abundant on many macroalgae. The second objective focuses on the diversity of chemical compounds used to defend macroalgae from being consumed, particularly in the common red alga Plocamium cartilagineum. The third objective seeks to understand the relationship between P. cartilagineum and the amphipod Paradexamine fissicauda, including the ecological benefits and costs to P. fissicauda resulting from the ability to consume P. cartilagineum and other chemically defended red algae. The investigators will focus on the costs and benefits related to the ability of P. fissicauda to sequester defensive compounds from the alga P. cartilagineum and use those chemicals to defend itself from predation. The field components of this research will be performed during three expeditions to Palmer Station, Antarctica. During these expeditions, a variety of laboratory feeding bioassays, manipulative field and laboratory experiments, and on-site chemical analyses will be performed. Phylogenetic analyses, detailed secondary metabolite chemical analyses and purifications, and other data analyses will also be performed at the investigators\u0027 home institutions between and after their field seasons.", "east": -63.0, "geometry": "POINT(-64 -64.5)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; Antarctica; BENTHIC; USAP-DC", "locations": "Antarctica", "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Amsler, Charles; Baker, Bill; McClintock, James", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "Dryad; USAP-DC", "science_programs": null, "south": -65.0, "title": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing", "uid": "p0010016", "west": -65.0}, {"awards": "1443464 Sowers, Todd; 1443472 Brook, Edward J.; 1443710 Severinghaus, Jeffrey", "bounds_geometry": "POINT(0 -90)", "dataset_titles": "South Pole CH4 data for termination; South Pole Ice Core Isotopes of N2 and Ar; South Pole ice core (SPC14) discrete methane data; South Pole ice core total air content; South Pole (SPICECORE) 15N, 18O, O2/N2 and Ar/N2; SP19 Gas Chronology", "datasets": [{"dataset_uid": "601152", "doi": "10.15784/601152", "keywords": "Antarctica; Antarctic Ice Sheet; Chemistry:gas; Chemistry:Gas; Chemistry:ice; Chemistry:Ice; Delta 18O; Dole Effect; Firn Thickness; Gas Isotopes; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Gravitational Settling; Ice; Ice Core Chemistry; Ice Core Data; Ice Core Gas Records; Ice Core Records; Inert Gases; Nitrogen; Nitrogen Isotopes; Oxygen; Oxygen Isotope; Snow/ice; Snow/Ice; South Pole; SPICEcore", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole (SPICECORE) 15N, 18O, O2/N2 and Ar/N2", "url": "https://www.usap-dc.org/view/dataset/601152"}, {"dataset_uid": "601380", "doi": "10.15784/601380", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Core Stratigraphy; Methane; South Pole; SPICEcore", "people": "Epifanio, Jenna", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SP19 Gas Chronology", "url": "https://www.usap-dc.org/view/dataset/601380"}, {"dataset_uid": "601517", "doi": "10.15784/601517", "keywords": "Antarctica; Argon; Argon Isotopes; Firn; Firn Temperature Gradient; Firn Thickness; Gas Isotopes; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Nitrogen; Nitrogen Isotopes; South Pole; SPICEcore", "people": "Severinghaus, Jeffrey P.; Morgan, Jacob", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Isotopes of N2 and Ar", "url": "https://www.usap-dc.org/view/dataset/601517"}, {"dataset_uid": "601230", "doi": "10.15784/601230", "keywords": "Antarctica; Atmospheric CH4; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Data; Methane; Methane Concentration; Snow/ice; Snow/Ice; South Pole; SPICEcore", "people": "Sowers, Todd A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole CH4 data for termination", "url": "https://www.usap-dc.org/view/dataset/601230"}, {"dataset_uid": "601231", "doi": "10.15784/601231", "keywords": "Air Content; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Snow/ice; Snow/Ice; South Pole; SPICEcore", "people": "Sowers, Todd A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole ice core total air content", "url": "https://www.usap-dc.org/view/dataset/601231"}, {"dataset_uid": "601381", "doi": "10.15784/601381", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Methane; South Pole; SPICEcore", "people": "Aydin, Murat; Severinghaus, Jeffrey P.; Kennedy, Joshua A.; Ferris, David G.; Kalk, Michael; Hood, Ekaterina; Fudge, T. J.; Osterberg, Erich; Winski, Dominic A.; Steig, Eric J.; Kahle, Emma; Sowers, Todd A.; Edwards, Jon S.; Kreutz, Karl; Buizert, Christo; Brook, Edward J.; Epifanio, Jenna", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole ice core (SPC14) discrete methane data", "url": "https://www.usap-dc.org/view/dataset/601381"}], "date_created": "Sat, 02 Feb 2019 00:00:00 GMT", "description": "Gases trapped in ice cores have revealed astonishing things about the greenhouse gas composition of the past atmosphere, including the fact that carbon dioxide concentrations never rose above 300 parts per million during the last 800,000 years. This places today\u0027s concentration of 400 parts per million in stark contrast. Furthermore, these gas records show that natural sources of greenhouse gas such as oceans and ecosystems act as amplifiers of climate change by increasing emissions of gases during warmer periods. Such amplification is expected to occur in the future, adding to the human-produced gas burden. The South Pole ice core will build upon these prior findings by expanding the suite of gases to include, for the first time, those potent trace gases that both trapped heat and depleted ozone during the past 40,000 years. The present project on inert gases and methane in the South Pole ice core will improve the dating of this crucial record, to unprecedented precision, so that the relative timing of events can be used to learn about the mechanism of trace gas production and destruction, and consequent climate change amplification. Ultimately, this information will inform predictions of future atmospheric chemical cleansing mechanisms and climate in the context of our rapidly changing atmosphere. This award also engages young people in the excitement of discovery and polar research, helping to entrain the next generations of scientists and educators. Education of graduate students, a young researcher (Buizert), and training of technicians, will add to the nation?s human resource base. This award funds the construction of the gas chronology for the South Pole 1500m ice core, using measured inert gases (d15N and d40Ar--Nitrogen and Argon isotope ratios, respectively) and methane in combination with a next-generation firn densification model that treats the stochastic nature of air trapping and the role of impurities on densification. The project addresses fundamental gaps in scientific understanding that limit the accuracy of gas chronologies, specifically a poor knowledge of the controls on ice-core d15N and the possible role of layering and impurities in firn densification. These gaps will be addressed by studying the gas enclosure process in modern firn at the deep core site. The work will comprise the first-ever firn air pumping experiment that has tightly co-located measurements of firn structural properties on the core taken from the same borehole. The project will test the hypothesis that the lock-in horizon as defined by firn air d15N, CO2, and methane is structurally controlled by impermeable layers, which are in turn created by high-impurity content horizons in which densification is enhanced. Thermal signals will be sought using the inert gas measurements, which improve the temperature record with benefits to the firn densification modeling. Neon, argon, and oxygen will be measured in firn air and a limited number of deep core samples to test whether glacial period layering was enhanced, which could explain low observed d15N in the last glacial period. Drawing on separate volcanic and methane synchronization to well-dated ice cores to create independent ice and gas tie points, independent empirical estimates of the gas age-ice age difference will be made to check the validity of the firn densification model-inert gas approach to calculating the gas age-ice age difference. These points will also be used to test whether the anomalously low d15N seen during the last glacial period in east Antarctic ice cores is due to deep air convection in the firn, or a missing impurity dependence in the firn densification models. The increased physical understanding gained from these studies, combined with new high-precision measurements, will lead to improved accuracy of the gas chronology of the South Pole ice core, which will enhance the overall science return from this gas-oriented core. This will lead to clarification of timing of atmospheric gas variations and temperature, and aid in efforts to understand the biogeochemical feedbacks among trace gases. These feedbacks bear on the future response of the Earth System to anthropogenic forcing. Ozone-depleting substances will be measured in the South Pole ice core record, and a precise gas chronology will add value. Lastly, by seeking a better understanding of the physics of gas entrapment, the project aims to have an impact on ice-core science in general.", "east": 0.0, "geometry": "POINT(0 -90)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "USAP-DC; AMD; LABORATORY; Antarctica; NITROGEN ISOTOPES; USA/NSF; METHANE; Amd/Us; FIELD INVESTIGATION", "locations": "Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.; Sowers, Todd A.; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core", "uid": "p0010005", "west": 0.0}, {"awards": "1443263 Higgins, John; 1443306 Mayewski, Paul", "bounds_geometry": null, "dataset_titles": "Allan Hills ice water stable isotope record for dD, d18O; Carbon dioxide concentration and its stable carbon isotope composition in Allan Hills ice cores; Elemental and isotopic composition of heavy noble gases in Allan Hills ice cores; Elemental and isotopic composition of nitrogen, oxygen, and argon in Allan Hills ice cores; Greenhouse gas composition in the Allan Hills S27 ice core; Methane concentration in Allan Hills ice cores; Stable isotope composition of the trapped air in the Allan Hills S27 ice core; Stable water isotope data for the AH-1502 ice core drilled at the Allan Hills Blue ice area; Stable water isotope data for the AH-1503 ice core drilled at the Allan Hills Blue ice area; Stable water isotope data for the surface samples collected at the Allan Hills Blue ice area", "datasets": [{"dataset_uid": "601203", "doi": "10.15784/601203", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Chemistry:ice; Chemistry:Ice; Gas Chromatography; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenhouse Gas; Ice; Ice Core Data; Ice Core Gas Records; Methane; Snow/ice; Snow/Ice", "people": "Bender, Michael; Brook, Edward J.; Yan, Yuzhen; Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Methane concentration in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601203"}, {"dataset_uid": "601201", "doi": "10.15784/601201", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Argon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Data; Ice Core Gas Records; Krypton; Mass Spectrometer; Noble Gas; Snow/ice; Snow/Ice; Xenon", "people": "Yan, Yuzhen; Ng, Jessica; Higgins, John; Severinghaus, Jeffrey P.; Bender, Michael", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Elemental and isotopic composition of heavy noble gases in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601201"}, {"dataset_uid": "601128", "doi": "10.15784/601128", "keywords": "Allan Hills; Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope Record; Mass Spectrometry; Stable Water Isotopes", "people": "Kurbatov, Andrei V.; Mayewski, Paul A.; Introne, Douglas; Yan, Yuzhen", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable water isotope data for the AH-1503 ice core drilled at the Allan Hills Blue ice area", "url": "https://www.usap-dc.org/view/dataset/601128"}, {"dataset_uid": "601129", "doi": "10.15784/601129", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Blue Ice; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Isotope Data; Oxygen; Snow/ice; Snow/Ice; Stable Water Isotopes; Transantarctic Mountains", "people": "Kurbatov, Andrei V.; Mayewski, Paul A.; Introne, Douglas; Yan, Yuzhen", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable water isotope data for the AH-1502 ice core drilled at the Allan Hills Blue ice area", "url": "https://www.usap-dc.org/view/dataset/601129"}, {"dataset_uid": "601130", "doi": "10.15784/601130", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; Delta 18O; Delta Deuterium; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Gas Records; Ice Core Records; Oxygen; Snow/ice; Snow/Ice; Stable Water Isotopes; Transantarctic Mountains", "people": "Introne, Douglas; Kurbatov, Andrei V.; Mayewski, Paul A.; Yan, Yuzhen", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable water isotope data for the surface samples collected at the Allan Hills Blue ice area", "url": "https://www.usap-dc.org/view/dataset/601130"}, {"dataset_uid": "601483", "doi": "10.15784/601483", "keywords": "Allan Hills; Antarctica; Argon; Ice; Ice Core Data; Ice Core Gas Records; Isotope; Mass Spectrometry; Nitrogen; Oxygen", "people": "Higgins, John; Bender, Michael; Yan, Yuzhen", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Elemental and isotopic composition of nitrogen, oxygen, and argon in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601483"}, {"dataset_uid": "601863", "doi": null, "keywords": "Allan Hills; Antarctica; Cryosphere; Isotope Data", "people": "Higgins, John; Severinghaus, Jeffrey P.; Introne, Douglas; Mayewski, Paul A.; Brook, Edward; Kurbatov, Andrei V.", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Allan Hills ice water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601863"}, {"dataset_uid": "601863", "doi": null, "keywords": "Allan Hills; Antarctica; Cryosphere; Isotope Data", "people": "Kurbatov, Andrei V.; Mayewski, Paul A.; Brook, Edward; Introne, Douglas; Higgins, John; Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills ice water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601863"}, {"dataset_uid": "601512", "doi": "10.15784/601512", "keywords": "Allan Hills; Antarctica; Blue Ice; Ice Core; Ice Core Gas Records; Isotope; Nitrogen; Oxygen", "people": "Yan, Yuzhen; Higgins, John; Bender, Michael", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable isotope composition of the trapped air in the Allan Hills S27 ice core", "url": "https://www.usap-dc.org/view/dataset/601512"}, {"dataset_uid": "601425", "doi": "10.15784/601425", "keywords": "Allan Hills; Antarctica; Blue Ice; Carbon Dioxide; Ice Core; Methane", "people": "Brook, Edward J.; Yan, Yuzhen", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Greenhouse gas composition in the Allan Hills S27 ice core", "url": "https://www.usap-dc.org/view/dataset/601425"}, {"dataset_uid": "601202", "doi": "10.15784/601202", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Carbon Dioxide; Carbon Isotopes; Chemistry:ice; Chemistry:Ice; CO2; Gas Chromatography; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Gas Records; Ice Core Records; Mass Spectrometer; Mass Spectrometry; Methane; Snow/ice; Snow/Ice", "people": "Brook, Edward J.; Bender, Michael; Yan, Yuzhen; Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Carbon dioxide concentration and its stable carbon isotope composition in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601202"}], "date_created": "Thu, 18 Oct 2018 00:00:00 GMT", "description": "Bubbles of ancient air trapped in ice cores permit the direct reconstruction of atmospheric composition and allow us to link greenhouse gases and global climate over the last 800,000 years. Previous field expeditions to the Allan Hills blue ice area, Antarctica, have recovered ice cores that date to one million years, the oldest ice cores yet recovered from Antarctica. These records have revealed that interglacial CO2 concentrations decreased by 800,000 years ago and that, in the warmer world 1 million years ago, CO2 and Antarctic temperature were linked as during the last 800,000 years. This project will return to the Allan Hills blue ice area to recover additional ice cores that date to 1 million years or older. The climate records developed from the drilled ice cores will provide new insights into the chemical composition of the atmosphere and Antarctic climate during times of comparable or even greater warmth than the present day. Our results will help answer questions about issues associated with anthropogenic change. These include the relationship between temperature change and the mass balance of Antarctic ice; precipitation and aridity variations associated with radiatively forced climate change; and the climate significance of sea ice extent. The project will entrain two graduate students and a postdoctoral scholar, and will conduct outreach including workshops to engage teachers in carbon science and ice cores. Between about 2.8-0.9 million years ago, Earth\u0027s climate was characterized by 40,000-year cycles, driven or paced by changes in the tilt of Earth\u0027s spin axis. Much is known about the \"40,000-year\" world from studies of deep-sea sediments, but our understanding of climate change during this period is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of ancient ice from the Main Ice Field, Allan Hills, Antarctica. During previous field seasons we recovered ice extending, discontinuously, from 0.1-1.0 million years old. Ice was dated by measuring the 40Ar/38Ar (Argon) ratio of the trapped gases. Our discovery of million year-old ice demonstrates that there is gas-record-quality ice from the 40,000-year world in the Allan Hills Main Ice Field. We have identified two different sites, each overlying bedrock at ~ 200 m depth, that are attractive targets for coring ice dating to 1 million years and older. This project aims to core the ice at these two sites, re-occupy a previous site with million year-old ice and drill it down to the bedrock, and generate 10-20 short (~10-meter) cores in areas where our previous work and terrestrial meteorite ages suggest ancient surface ice. We plan to date the ice using the 40Ar/38Ar ages of trapped Argon. We also plan to characterize the continuity of our cores by measuring the deuterium and oxygen isotope ratios in the ice, methane, ratios of Oxygen and Argon to Nitrogen in trapped gas, the Nitrogen-15 isotope (d15N) of Nitrogen, and the Oxygen-18 isotope (d18O) of Oxygen. As the ice may be stratigraphically disturbed, these measurements will provide diagnostic properties for assessing the continuity of the ice-core records. Successful retrieval of ice older than one million years will provide the opportunity for follow-up work to measure the CO2 concentration and other properties within the ice to inform on the temperature history of the Allan Hills region, dust sources and source-area aridity, moisture sources, densification conditions, global average ocean temperature, and greenhouse gas concentrations. We will analyze the data in the context of leading hypotheses of the 40,000-year world and the Mid-Pleistocene Transition to the 100,000-year world. We expect to advance understanding of climate dynamics during these periods.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Amd/Us; AMD; Allan Hills; USA/NSF; FIELD INVESTIGATION; USAP-DC; Ice Core; LABORATORY", "locations": "Allan Hills", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Mayewski, Paul A.; Kurbatov, Andrei V.; Higgins, John; Bender, Michael", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": null, "title": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area", "uid": "p0000760", "west": null}, {"awards": "0838763 Anandakrishnan, Sridhar; 0839059 Powell, Ross; 0839107 Powell, Ross; 0839142 Tulaczyk, Slawek; 0838855 Jacobel, Robert; 0838947 Tulaczyk, Slawek; 0838764 Anandakrishnan, Sridhar", "bounds_geometry": null, "dataset_titles": "Basal melt rates of the Ross Ice Shelf near the Whillans Ice Stream grounding line; Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats in W Antarctica - Lake and Ice Stream Subglacial Access Research Drilling (LISSARD); Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats - Robotic Access to Grounding-zones for Exploration and Science (RAGES); IRIS ID#s 201035, 201162, 201205; IRIS offers free and open access to a comprehensive data store of raw geophysical time-series data collected from a large variety of sensors, courtesy of a vast array of US and International scientific networks, including seismometers (permanent and temporary), tilt and strain meters, infrasound, temperature, atmospheric pressure and gravimeters, to support basic research aimed at imaging the Earth\u0027s interior.; Paleogene marine and terrestrial development of the West Antarctic Rift System: Biomarker Data Set; Paleogene marine and terrestrial development of the West Antarctic Rift System: Palynomorph Data Set; Radar Studies of Subglacial Lake Whillans and the Whillans Ice Stream Grounding Zone; The IRIS DMC archives and distributes data to support the seismological research community.; UNAVCO ID#s WHL1, WHL2, LA02, LA09 (full data link not provided)", "datasets": [{"dataset_uid": "609594", "doi": "10.7265/N54J0C2W", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; GPS; Radar; Whillans Ice Stream", "people": "Jacobel, Robert", "repository": "USAP-DC", "science_program": null, "title": "Radar Studies of Subglacial Lake Whillans and the Whillans Ice Stream Grounding Zone", "url": "https://www.usap-dc.org/view/dataset/609594"}, {"dataset_uid": "601122", "doi": "10.15784/601122", "keywords": "Antarctica; Flexure Zone; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Ice-Shelf Basal Melting; Ice-Shelf Strain Rate", "people": "Begeman, Carolyn", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Basal melt rates of the Ross Ice Shelf near the Whillans Ice Stream grounding line", "url": "https://www.usap-dc.org/view/dataset/601122"}, {"dataset_uid": "000148", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IRIS ID#s 201035, 201162, 201205", "url": "http://ds.iris.edu/"}, {"dataset_uid": "001405", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IRIS offers free and open access to a comprehensive data store of raw geophysical time-series data collected from a large variety of sensors, courtesy of a vast array of US and International scientific networks, including seismometers (permanent and temporary), tilt and strain meters, infrasound, temperature, atmospheric pressure and gravimeters, to support basic research aimed at imaging the Earth\u0027s interior.", "url": "http://www.iris.edu/hq/data_and_software"}, {"dataset_uid": "000150", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "UNAVCO ID#s WHL1, WHL2, LA02, LA09 (full data link not provided)", "url": "http://www.unavco.org/"}, {"dataset_uid": "601245", "doi": "10.15784/601245", "keywords": "Antarctica; Pollen; West Antarctica; WISSARD", "people": "Warny, Sophie; Casta\u00f1eda, Isla; Coenen, Jason; Askin, Rosemary; Baudoin, Patrick; Scherer, Reed Paul", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Paleogene marine and terrestrial development of the West Antarctic Rift System: Palynomorph Data Set", "url": "https://www.usap-dc.org/view/dataset/601245"}, {"dataset_uid": "601234", "doi": "10.15784/601234", "keywords": "ACL; Antarctica; Biomarker; BIT Index; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Stream; Whillans Ice Stream; WISSARD", "people": "Scherer, Reed Paul; Baudoin, Patrick; Warny, Sophie; Casta\u00f1eda, Isla; Coenen, Jason; Askin, Rosemary", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Paleogene marine and terrestrial development of the West Antarctic Rift System: Biomarker Data Set", "url": "https://www.usap-dc.org/view/dataset/601234"}, {"dataset_uid": "600155", "doi": "10.15784/600155", "keywords": "Antarctica; Glaciology; Oceans; Southern Ocean; WISSARD", "people": "Powell, Ross", "repository": "USAP-DC", "science_program": null, "title": "Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats - Robotic Access to Grounding-zones for Exploration and Science (RAGES)", "url": "https://www.usap-dc.org/view/dataset/600155"}, {"dataset_uid": "001406", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "The IRIS DMC archives and distributes data to support the seismological research community.", "url": "http://ds.iris.edu/ds/nodes/dmc/"}, {"dataset_uid": "600154", "doi": "10.15784/600154", "keywords": "Antarctica; Biota; Diatom; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Lake Whillans; Paleoclimate; Ross Sea; Southern Ocean; Subglacial Lake; WISSARD", "people": "Powell, Ross", "repository": "USAP-DC", "science_program": null, "title": "Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats in W Antarctica - Lake and Ice Stream Subglacial Access Research Drilling (LISSARD)", "url": "https://www.usap-dc.org/view/dataset/600154"}], "date_created": "Mon, 10 Sep 2018 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The LISSARD project (Lake and Ice Stream Subglacial Access Research Drilling) is one of three research components of the WISSARD integrative initiative (Whillans Ice Stream Subglacial Access Research Drilling) that is being funded by the Antarctic Integrated System Science Program of NSF\u0027s Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The LISSARD component of WISSARD focuses on the role of active subglacial lakes in determining how fast the West Antarctic ice sheet loses mass to the global ocean and influences global sea level changes. The importance of Antarctic subglacial lakes has only been recently recognized, and the lakes have been identified as high priority targets for scientific investigations because of their unknown contributions to ice sheet stability under future global warming scenarios. LISSARD has several primary science goals: A) To provide an observational basis for improving treatments of subglacial hydrological and mechanical processes in models of ice sheet mass balance and stability; B) To reconstruct the past history of ice stream stability by analyzing archives of past basal water and ice flow variability contained in subglacial sediments, porewater, lake water, and basal accreted ice; C) To provide background understanding of subglacial lake environments to benefit RAGES and GBASE (the other two components of the WISSARD project); and D) To synthesize data and concepts developed as part of this project to determine whether subglacial lakes play an important role in (de)stabilizing Antarctic ice sheets. We propose an unprecedented synthesis of approaches to studying ice sheet processes, including: (1) satellite remote sensing, (2) surface geophysics, (3) borehole observations and measurements and, (4) basal and subglacial sampling. \u003cbr/\u003e\u003cbr/\u003eINTELLECTUAL MERIT: The latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations. \u003cbr/\u003e\u003cbr/\u003eBROADER IMPACTS: Societal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS", "is_usap_dc": true, "keywords": "USAP-DC; Ice Penetrating Radar; Antarctic; Subglacial Lake; Subglacial Hydrology; Grounding Line; Sea Level Rise; Bed Reflectivity; Ice Sheet Stability; Stability; Radar; Sub-Ice-Shelf; Geophysics; Biogeochemical; LABORATORY; Sediment; Sea Floor Sediment; Ice Thickness; Model; Ice Stream Stability; Basal Ice; SATELLITES; Ice Sheet Thickness; Subglacial; Antarctica; NOT APPLICABLE; Antarctic Ice Sheet; Ice Sheet; FIELD SURVEYS; Surface Elevation; Geochemistry; FIELD INVESTIGATION; Not provided", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Tulaczyk, Slawek; Fisher, Andrew; Powell, Ross; Anandakrishnan, Sridhar; Jacobel, Robert; Scherer, Reed Paul", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES", "repo": "USAP-DC", "repositories": "IRIS; UNAVCO; USAP-DC", "science_programs": "WISSARD", "south": null, "title": "Collaborative Research: Integrative Study of Marine Ice Sheet Stability \u0026 Subglacial Life Habitats in W Antarctica - Lake \u0026 Ice Stream Subglacial Access Research Drilling (LISSARD)", "uid": "p0000105", "west": null}, {"awards": "1443126 MacAyeal, Douglas", "bounds_geometry": "POLYGON((166.1631 -77.9007,166.19736 -77.9007,166.23162 -77.9007,166.26588 -77.9007,166.30014 -77.9007,166.3344 -77.9007,166.36866 -77.9007,166.40292 -77.9007,166.43718 -77.9007,166.47144 -77.9007,166.5057 -77.9007,166.5057 -77.90423,166.5057 -77.90776,166.5057 -77.91129,166.5057 -77.91482,166.5057 -77.91835,166.5057 -77.92188,166.5057 -77.92541,166.5057 -77.92894,166.5057 -77.93247,166.5057 -77.936,166.47144 -77.936,166.43718 -77.936,166.40292 -77.936,166.36866 -77.936,166.3344 -77.936,166.30014 -77.936,166.26588 -77.936,166.23162 -77.936,166.19736 -77.936,166.1631 -77.936,166.1631 -77.93247,166.1631 -77.92894,166.1631 -77.92541,166.1631 -77.92188,166.1631 -77.91835,166.1631 -77.91482,166.1631 -77.91129,166.1631 -77.90776,166.1631 -77.90423,166.1631 -77.9007))", "dataset_titles": "McMurdo Ice Shelf AWS data; McMurdo Ice Shelf GPS survey of vertical motion; Supraglacial Lake Depths on McMurdo Ice Shelf, Antarctica; Time-lapse video of McMurdo Ice Shelf surface melting and hydrology", "datasets": [{"dataset_uid": "601107", "doi": "10.15784/601107", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ice Flow Velocity; Ice Shelf; Ice-Shelf Flexure; Snow/ice; Snow/Ice; Surface Melt", "people": "MacAyeal, Douglas; Banwell, Alison", "repository": "USAP-DC", "science_program": null, "title": "McMurdo Ice Shelf GPS survey of vertical motion", "url": "https://www.usap-dc.org/view/dataset/601107"}, {"dataset_uid": "601116", "doi": "10.15784/601116", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Snow/ice; Snow/Ice; Subglacial And Supraglacial Water Depth; Supraglacial Lake; Supraglacial Meltwater; Water Depth", "people": "MacAyeal, Douglas; Banwell, Alison", "repository": "USAP-DC", "science_program": null, "title": "Supraglacial Lake Depths on McMurdo Ice Shelf, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601116"}, {"dataset_uid": "601106", "doi": "10.15784/601106", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hydrology; Ice Shelf; Snow/ice; Snow/Ice; Surface Hydrology; Surface Mass Balance; Weather Station Data", "people": "MacAyeal, Douglas; Banwell, Alison", "repository": "USAP-DC", "science_program": null, "title": "McMurdo Ice Shelf AWS data", "url": "https://www.usap-dc.org/view/dataset/601106"}, {"dataset_uid": "601113", "doi": "10.15784/601113", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Photo/video; Photo/Video; Supraglacial Meltwater", "people": "Banwell, Alison; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Time-lapse video of McMurdo Ice Shelf surface melting and hydrology", "url": "https://www.usap-dc.org/view/dataset/601113"}], "date_created": "Tue, 24 Jul 2018 00:00:00 GMT", "description": "Meltwater lakes that sit on top of Antarctica\u0027s floating ice shelves have likely contributed to the dramatic changes seen in Antarctica\u0027s glacial ice cover over the past two decades. In 2002, the 1,600-square-kilometer Larsen B Ice Shelf located on the Eastern side of the Antarctic Peninsula, for example, broke into thousands of small icebergs, which subsequently floated away as a result of the formation of more than 2,000 meltwater lakes on its surface over the prior decade. Our research project addresses the reasons why surface lakes form on Antarctic ice shelves and how these surface lakes subsequently contribute to the forces that may contribute to ice-shelf breakup like that of the Larsen B. Our project focuses primarily on making precise global positioning system (GPS) measurements of ice-shelf bending in response to the filling and draining of a surface lake on the McMurdo Ice Shelf. The observed vertical displacements (on the order of tens of centimeters) in response to lake filling will be used to calibrate and test computer simulation models that predict the response of ice shelves to surface lakes more generally and in a variety of future climate conditions. Our project will make hourly measurements of both vertical ice-shelf movements (using GPS surveying instruments) and of temperature and sunlight conditions (that drive melting) around a surface lake located close to the McMurdo Station airfield. Following this initial data-gathering effort, computer simulations and other more theoretical analysis will be undertaken to determine the suitability of the chosen McMurdo Ice Shelf surface lake as a field-laboratory for continued study. Ultimately, the research will contribute to understanding of the glaciological processes that link climate change to rising sea level. A successful outcome of the research will allow glaciologists to better assess the processes that promote or erode the influence Antarctic ice shelves have in controlling the transfer of ice from the interior of Antarctica into the ocean. The project will undertake two outreach activities: (1) web-posting of a field-activity journal and (2) establishing an open-access glaciological teaching and outreach web-sharing site for the International Glaciological Society. The proposed project seeks to experimentally verify a theory of ice-shelf instability proposed to explain the explosive break-up of Larsen B Ice Shelf in 2002. This theory holds that the filling and draining of supraglacial lakes on floating ice shelves induces sufficient flexure stress within the ice to (a) induce upward/downward propagating fractures originating at the base/surface of the ice shelf that (b) dissect the ice shelf into fragments that tend to have widths less than about half the ice thickness. The significance of narrow widths is that they promote capsize of the ice-shelf fragments during the break-up process. This capsize releases large amounts of gravitational potential energy (comparable to thousands of kilotons of TNT for the Larsen B Ice Shelf) thereby promoting explosiveness of the Larsen B event. The observational motivation for experimentally verifying the surface-lake mechanism for ice-shelf breakup is based on the fact that \u003e2,000 surface lakes developed on the Larsen B Ice Shelf in the decade prior to its break up, and that these lakes were observed (via satellite imagery) to drain in a coordinated fashion during the day prior to the initiation of the break up. The field-observation component of the project will focus on a supraglacial lake on the McMurdo Ice Shelf where there is persistent summer season surface melting. The lake will be studied during a single provisional field season to determine whether grooming of surrounding surface streams and shorelines with heavy construction equipment will allow surface water to be manually encouraged to fill the lake. If successfully encouraged to develop, the McMurdo Ice Shelf surface lake will allow measurements of key ice-shelf flexure and stress variables needed to develop the theory of ice-shelf surface lakes without having to access the much more logistically demanding surface lakes of ice-shelves located elsewhere in Antarctica. Data to be gathered during the 6-week provisional field season include: energy- and water-balance parameters determining how the surface lake grows and fills, and various global positioning system measurements of the vertical bending of the ice sheet in response to the changing meltwater load contained within the surface lake. These data will be used to (1) constrain a computer model of viscoelastic flexure and possible fracture of the ice shelf in response to the increasing load of meltwater in the lake, and (2) determine whether continued study of the incipient surface-meltwater lake features on the McMurdo Ice Shelf provides a promising avenue for constraining the more-general behavior of surface meltwater lakes on other ice shelves located in warmer parts of Antarctica. Computer models constrained by the observational data obtained from the field project will inform energy- and water-balance models of ice shelves in general, and allow more accurate forecasts of changing ice-shelf conditions surrounding the inland ice of Antarctica. The project will create the first-ever ground-based observations useful for spawning the development of models capable of predicting viscoelastic and fracture behavior of ice shelves in response to supraglacial lake evolution, including slow changes due to energy balance effects, as well as fast changes due to filling and draining.", "east": 166.5057, "geometry": "POINT(166.3344 -77.91835)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS", "is_usap_dc": true, "keywords": "USAP-DC; AWOS", "locations": null, "north": -77.9007, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "MacAyeal, Douglas", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e AWOS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.936, "title": "Impact of Supraglacial Lakes on Ice-Shelf Stability", "uid": "p0000138", "west": 166.1631}, {"awards": "1443341 Hawley, Robert; 1443471 Koutnik, Michelle", "bounds_geometry": "POLYGON((110 -89,117 -89,124 -89,131 -89,138 -89,145 -89,152 -89,159 -89,166 -89,173 -89,180 -89,180 -89.1,180 -89.2,180 -89.3,180 -89.4,180 -89.5,180 -89.6,180 -89.7,180 -89.8,180 -89.9,180 -90,173 -90,166 -90,159 -90,152 -90,145 -90,138 -90,131 -90,124 -90,117 -90,110 -90,110 -89.9,110 -89.8,110 -89.7,110 -89.6,110 -89.5,110 -89.4,110 -89.3,110 -89.2,110 -89.1,110 -89))", "dataset_titles": "7MHz radar in the vicinity of South Pole; Firn density and compaction rates 50km upstream of South Pole; Firn temperatures 50km upstream of South Pole; Shallow radar near South Pole; South Pole area GPS velocities; SPICEcore Advection", "datasets": [{"dataset_uid": "601369", "doi": "10.15784/601369", "keywords": "Antarctica; Ice Sheet", "people": "Waddington, Edwin D.; Fudge, T. J.; Koutnik, Michelle; Lilien, David; Conway, Howard; Stevens, Max", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "7MHz radar in the vicinity of South Pole", "url": "https://www.usap-dc.org/view/dataset/601369"}, {"dataset_uid": "601100", "doi": "10.15784/601100", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ice Velocity", "people": "Fudge, T. J.; Waddington, Edwin D.; Koutnik, Michelle; Lilien, David; Conway, Howard", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole area GPS velocities", "url": "https://www.usap-dc.org/view/dataset/601100"}, {"dataset_uid": "601099", "doi": "10.15784/601099", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Radar; Snow Accumulation; Snow/ice; Snow/Ice", "people": "Waddington, Edwin D.; Fudge, T. J.; Koutnik, Michelle; Lilien, David; Conway, Howard", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Shallow radar near South Pole", "url": "https://www.usap-dc.org/view/dataset/601099"}, {"dataset_uid": "601525", "doi": "10.15784/601525", "keywords": "Antarctica; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Snow/ice; Snow/Ice; South Pole; SPICEcore; Temperature", "people": "Stevens, Christopher Max; Lilien, David; Conway, Howard; Koutnik, Michelle; Waddington, Edwin D.; Fudge, T. J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Firn temperatures 50km upstream of South Pole", "url": "https://www.usap-dc.org/view/dataset/601525"}, {"dataset_uid": "601680", "doi": "10.15784/601680", "keywords": "Antarctica; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Snow/ice; Snow/Ice; South Pole; Temperature", "people": "Stevens, Christopher Max; Waddington, Edwin D.; Lilien, David; Conway, Howard; Fudge, T. J.; Koutnik, Michelle", "repository": "USAP-DC", "science_program": null, "title": "Firn density and compaction rates 50km upstream of South Pole", "url": "https://www.usap-dc.org/view/dataset/601680"}, {"dataset_uid": "601266", "doi": "10.15784/601266", "keywords": "Antarctica; Ice Core Data; South Pole; SPICEcore", "people": "Fudge, T. J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SPICEcore Advection", "url": "https://www.usap-dc.org/view/dataset/601266"}], "date_created": "Thu, 14 Jun 2018 00:00:00 GMT", "description": "Ice-core records are critical to understanding past climate variations. An Antarctic ice core currently being drilled at the South Pole will allow detailed investigation of atmospheric gases and fill an important gap in understanding the pattern of climate variability across Antarctica. Critical to the interpretation of any ice core are: 1) accurate chronologies for both the ice and the trapped gas and 2) demonstration that records from the ice core reliably reflect climate. The proposed research will improve the ice and gas chronologies by making measurements of snow compaction in the upstream catchment in order to constrain age models of the ice. These measurements will be a key data set needed for better understanding and predicting time-varying conditions in the upper part of the ice sheet. The research team will measure the modern spatial gradients in accumulation rate, surface temperature, and water stable isotopes from shallow ice cores in the upstream catchment in order to determine the climate history from the ice-core record. The new ice-flow measurements will make it possible to define the path of ice from upstream to the South Pole ice-core drill site to assess spatial gradients in snowfall and to infer histories of snowfall from internal layers within the ice sheet. The project will be led by an early-career scientist, provide broad training to graduate students, and engage in public outreach on polar science. Ice-core records of stable isotopes, aerosol-born particles, and atmospheric gases are critical to understanding past climate variations. The proposed research will improve the ice and gas chronologies in the South Pole ice core by making in situ measurements of firn compaction in the upstream catchment to constrain models of the gas-age ice-age difference. The firn measurements will be a key data set needed to form a constitutive relationship for firn, and will drive better understanding and prediction of transient firn evolution. The research team will measure the modern gradients in accumulation rate, surface temperature, and water stable isotopes in the upstream catchment to separate spatial (advection) variations from temporal (climate) variations in the ice-core records. The ice-flow measurements will define the flowline upstream of the drill site, assess spatial gradients in accumulation, and infer histories of accumulation from radar-observed internal layers. Results will directly enhance interpretation of South Pole ice-core records, and also advance understanding of firn densification and drive next-generation firn models.", "east": 180.0, "geometry": "POINT(145 -89.5)", "instruments": null, "is_usap_dc": true, "keywords": "FIRN; Firn; USAP-DC; South Pole; Radar; FIELD SURVEYS; ICE CORE RECORDS", "locations": "South Pole", "north": -89.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Koutnik, Michelle; Conway, Howard; Waddington, Edwin D.; Fudge, T. J.; Hawley, Robert L.; Osterberg, Erich", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: Characterization of Upstream Ice and Firn Dynamics affecting the South Pole Ice Core", "uid": "p0000200", "west": 110.0}, {"awards": "0944021 Brook, Edward J.; 0943466 Hawley, Robert; 0944307 Conway, Howard", "bounds_geometry": "POLYGON((-163 -79,-162.8 -79,-162.6 -79,-162.4 -79,-162.2 -79,-162 -79,-161.8 -79,-161.6 -79,-161.4 -79,-161.2 -79,-161 -79,-161 -79.05,-161 -79.1,-161 -79.15,-161 -79.2,-161 -79.25,-161 -79.3,-161 -79.35,-161 -79.4,-161 -79.45,-161 -79.5,-161.2 -79.5,-161.4 -79.5,-161.6 -79.5,-161.8 -79.5,-162 -79.5,-162.2 -79.5,-162.4 -79.5,-162.6 -79.5,-162.8 -79.5,-163 -79.5,-163 -79.45,-163 -79.4,-163 -79.35,-163 -79.3,-163 -79.25,-163 -79.2,-163 -79.15,-163 -79.1,-163 -79.05,-163 -79))", "dataset_titles": "Roosevelt Island Borehole Firn temperatures; Roosevelt Island Borehole Optical Televiewer logs; Roosevelt Island Ice Core Time Scale and Associated Data; Roosevelt Island: Radar and GPS", "datasets": [{"dataset_uid": "601070", "doi": "10.15784/601070", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; GPS Data; Ice Velocity; Navigation; Radar; Roosevelt Island; Ross Sea", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island: Radar and GPS", "url": "https://www.usap-dc.org/view/dataset/601070"}, {"dataset_uid": "601359", "doi": "10.15784/601359", "keywords": "Antarctica; CO2; Ice Core; Roosevelt Island", "people": "Brook, Edward J.; Lee, James", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Ice Core Time Scale and Associated Data", "url": "https://www.usap-dc.org/view/dataset/601359"}, {"dataset_uid": "601086", "doi": "10.15784/601086", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Roosevelt Island; Snow/ice; Snow/Ice", "people": "Clemens-Sewall, David; Hawley, Robert L.", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Borehole Optical Televiewer logs", "url": "https://www.usap-dc.org/view/dataset/601086"}, {"dataset_uid": "601085", "doi": "10.15784/601085", "keywords": "Antarctica; Borehole; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Records; Ice Fabric; Optical Images; Roosevelt Island; Snow/ice; Snow/Ice; Temperature", "people": "Hawley, Robert L.; Clemens-Sewall, David; Giese, Alexandra", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Borehole Firn temperatures", "url": "https://www.usap-dc.org/view/dataset/601085"}], "date_created": "Fri, 16 Feb 2018 00:00:00 GMT", "description": "This award supports a project to use the Roosevelt Island ice core as a glaciological dipstick for the eastern Ross Sea. Recent attention has focused on the eastern Ross Embayment, where there are no geological constraints on ice thickness changes, due to the lack of protruding rock \"dipsticks\" where the ice sheet can leave datable records of high stands. Recent work has shown how dated ice cores can be used as dipsticks to derive ice-thickness histories. Partners from New Zealand and Denmark will extract an ice core from Roosevelt Island during the 2010-2011 and 2011-12 austral summers. Their science objective is to contribute to understanding of climate variability over the past 40kyr. The science goal of this project is not the climate record, but rather the history of deglaciation in the Ross Sea. The new history from the eastern Ross Sea will be combined with the glacial histories from the central Ross Sea (Siple Dome and Byrd) and existing and emerging histories from geologic and marine records along the western Ross Sea margin and will allow investigators to establish an updated, self-consistent model of the configuration and thickness of ice in the Ross Embayment during the LGM, and the timing of deglaciation. Results from this work will provide ground truth for new-generation ice-sheet models that incorporate ice streams and fast-flow dynamics. Realistic ice-sheet models are needed not only for predicting the response to future possible environments, but also for investigating past behaviors of ice sheets. This research contributes to the primary goals of the West Antarctic Ice Sheet Initiative as well as the IPY focus on ice-sheet history and dynamics. It also contributes to understanding spatial and temporal patterns of climate change and climate dynamics over the past 40kyr, one of the primary goals of the International Partnerships in Ice Core Sciences (IPICS). The project will help to develop the next generation of scientists and will contribute to the education and training of two Ph.D. students. All participants will benefit from the international collaboration, which will expose them to different field and laboratory techniques and benefit future collaborative work. All participants are involved in scientific outreach and undergraduate education, and are committed to fostering diversity. Outreach will be accomplished through regularly scheduled community and K-12 outreach events, talks and popular writing by the PIs, as well as through University press offices.", "east": -161.0, "geometry": "POINT(-162 -79.25)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "AMD; FIELD INVESTIGATION; Amd/Us; Deglaciation; USAP-DC; USA/NSF; NOT APPLICABLE; Ice Core; Not provided; Ross Sea Embayment", "locations": "Ross Sea Embayment", "north": -79.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Conway, Howard; Brook, Edward J.; Hawley, Robert L.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.5, "title": "Collaborative Research: Deglaciation of the Ross Sea Embayment - constraints from Roosevelt Island", "uid": "p0000272", "west": -163.0}, {"awards": "0732711 Smith, Craig; 0732655 Mosley-Thompson, Ellen; 0732983 Vernet, Maria; 0732651 Gordon, Arnold; 0732625 Leventer, Amy; 0732602 Truffer, Martin", "bounds_geometry": "POLYGON((-68 -57.8,-66.78 -57.8,-65.56 -57.8,-64.34 -57.8,-63.12 -57.8,-61.9 -57.8,-60.68 -57.8,-59.46 -57.8,-58.24 -57.8,-57.02 -57.8,-55.8 -57.8,-55.8 -58.8,-55.8 -59.8,-55.8 -60.8,-55.8 -61.8,-55.8 -62.8,-55.8 -63.8,-55.8 -64.8,-55.8 -65.8,-55.8 -66.8,-55.8 -67.8,-57.02 -67.8,-58.24 -67.8,-59.46 -67.8,-60.68 -67.8,-61.9 -67.8,-63.12 -67.8,-64.34 -67.8,-65.56 -67.8,-66.78 -67.8,-68 -67.8,-68 -66.8,-68 -65.8,-68 -64.8,-68 -63.8,-68 -62.8,-68 -61.8,-68 -60.8,-68 -59.8,-68 -58.8,-68 -57.8))", "dataset_titles": "Abrupt Environmental Change in the Larsen Ice Shelf System (LARISSA) - Marine Ecosystems; Biology Species Abundance from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expeditions NBP1001 and NBP1203; Bruce Plateau Accumulation O18 2009-1900; Easten Antarctic Peninsula Surface Sediment Diatom Data; LMG13-11 JKC-1 Paleoceanographic data; Macrofauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001; Megafauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001; NBP1001 cruise data; NBP1203 cruise data; Processed CTD Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001; Processed CTD Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203; Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001; Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203; Radioisotope data (C-14 and Pb-210) from bulk sediments, Larsen A Ice Shelf; Sediment samples (full data link not provided)", "datasets": [{"dataset_uid": "601345", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; CTD; CTD Data; LARISSA; Larsen Ice Shelf; NBP1001; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Temperature", "people": "Gordon, Arnold; Huber, Bruce", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Processed CTD Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601345"}, {"dataset_uid": "601347", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Current Measurements; LADCP; LARISSA; Larsen Ice Shelf; NBP1203; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer", "people": "Gordon, Arnold; Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203", "url": "https://www.usap-dc.org/view/dataset/601347"}, {"dataset_uid": "000142", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1001 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP1001"}, {"dataset_uid": "601348", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; CTD; CTD Data; LARISSA; Larsen Ice Shelf; NBP1203; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Temperature", "people": "Gordon, Arnold; Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Processed CTD Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203", "url": "https://www.usap-dc.org/view/dataset/601348"}, {"dataset_uid": "000143", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1203 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP1203"}, {"dataset_uid": "000145", "doi": "", "keywords": null, "people": null, "repository": "AMGRF", "science_program": null, "title": "Sediment samples (full data link not provided)", "url": "http://arf.fsu.edu/"}, {"dataset_uid": "601336", "doi": "10.15784/601336", "keywords": "Antarctica; Carbon-14; Larsen Ice Shelf; Lead-210; Marine Sediments; Radioisotope Analysis", "people": "Taylor, Richard; DeMaster, David", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Radioisotope data (C-14 and Pb-210) from bulk sediments, Larsen A Ice Shelf", "url": "https://www.usap-dc.org/view/dataset/601336"}, {"dataset_uid": "601485", "doi": "10.15784/601485", "keywords": "Antarctica; Antarctic Peninsula; Delta 13C; Delta 18O; Paleoceanography; Temperature", "people": "Shevenell, Amelia", "repository": "USAP-DC", "science_program": "LARISSA", "title": "LMG13-11 JKC-1 Paleoceanographic data", "url": "https://www.usap-dc.org/view/dataset/601485"}, {"dataset_uid": "600073", "doi": "10.15784/600073", "keywords": "Antarctica; Antarctic Peninsula; Araon1304; Biota; LARISSA; Larsen B Ice Shelf; NBP1001; NBP1203; Oceans; Physical Oceanography; Southern Ocean; Weddell Sea", "people": "Vernet, Maria", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Abrupt Environmental Change in the Larsen Ice Shelf System (LARISSA) - Marine Ecosystems", "url": "https://www.usap-dc.org/view/dataset/600073"}, {"dataset_uid": "000226", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "Biology Species Abundance from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expeditions NBP1001 and NBP1203", "url": "https://doi.org/10.1594/ieda/320821"}, {"dataset_uid": "601306", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Biota; Box Corer; LARISSA; Larsen Ice Shelf; Macrofauna; NBP1001; Oceans; R/v Nathaniel B. Palmer; Seafloor Sampling; Species Abundance", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Macrofauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601306"}, {"dataset_uid": "601305", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Biota; Box Corer; LARISSA; Larsen Ice Shelf; Macrofauna; Megafauna; NBP1001; Oceans; R/v Nathaniel B. Palmer; Seafloor Sampling; Species Abundance", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Megafauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601305"}, {"dataset_uid": "601211", "doi": "10.15784/601211", "keywords": "Antarctica; Antarctic Peninsula; Benthos; Biota; Diatom; Geology/Geophysics - Other; LMG0502; Marine Geoscience; Marine Sediments; Microscope; NBP0003; NBP0107; NBP0603; NBP1203; R/v Nathaniel B. Palmer; Surface Sediment", "people": "Leventer, Amy", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Easten Antarctic Peninsula Surface Sediment Diatom Data", "url": "https://www.usap-dc.org/view/dataset/601211"}, {"dataset_uid": "600167", "doi": "10.15784/600167", "keywords": "Antarctica; Antarctic Peninsula; Bruce Plateau; Glaciology; Ice Core Records; Isotope; LARISSA; Paleoclimate; Sample/collection Description; Sample/Collection Description; Snow Accumulation", "people": "Mosley-Thompson, Ellen; Thompson, Lonnie G.", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Bruce Plateau Accumulation O18 2009-1900", "url": "https://www.usap-dc.org/view/dataset/600167"}, {"dataset_uid": "601346", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Current Measurements; LADCP; Larsen Ice Shelf; NBP1001; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer", "people": "Huber, Bruce; Gordon, Arnold", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601346"}], "date_created": "Thu, 01 Feb 2018 00:00:00 GMT", "description": "Like no other region on Earth, the northern Antarctic Peninsula represents a spectacular natural laboratory of climate change and provides the opportunity to study the record of past climate and ecological shifts alongside the present-day changes in one of the most rapidly warming regions on Earth. This award supports the cryospheric and oceano-graphic components of an integrated multi-disciplinary program to address these rapid and fundamental changes now taking place in Antarctic Peninsula (AP). By making use of a marine research platform (the RV NB Palmer and on-board helicopters) and additional logistical support from the Argentine Antarctic program, the project will bring glaciologists, oceanographers, marine geologists and biologists together, working collaboratively to address fundamentally interdisciplinary questions regarding climate change. The project will include gathering a new, high-resolution paleoclimate record from the Bruce Plateau of Graham Land, and using it to compare Holocene- and possibly glacial-epoch climate to the modern period; investigating the stability of the remaining Larsen Ice Shelf and rapid post-breakup glacier response ? in particular, the roles of surface melt and ice-ocean interactions in the speed-up and retreat; observing the contribution of, and response of, oceanographic systems to ice shelf disintegration and ice-glacier interactions. Helicopter support on board will allow access to a wide range of glacial and geological areas of interest adjacent to the Larsen embayment. At these locations, long-term in situ glacial monitoring, isostatic uplift, and ice flow GPS sites will be established, and high-resolution ice core records will be obtained using previously tested lightweight drilling equipment. Long-term monitoring of deep water outflow will, for the first time, be integrated into changes in ice shelf extent and thickness, bottom water formation, and multi-level circulation by linking near-source observations to distal sites of concentrated outflow. The broader impacts of this international, multidisciplinary effort are that it will significantly advance our understanding of linkages amongst the earth\u0027s systems in the Polar Regions, and are proposed with international participation (UK, Spain, Belgium, Germany and Argentina) and interdisciplinary engagement in the true spirit of the International Polar Year (IPY). It will also provide a means of engaging and educating the public in virtually all aspects of polar science and the effects of ongoing climate change. The research team has a long record of involving undergraduates in research, educating high-performing graduate students, and providing innovative and engaging outreach products to the K-12 education and public media forums. Moreover, forging the new links both in science and international Antarctic programs will provide a continuing legacy, beyond IPY, of improved understanding and cooperation in Antarctica.", "east": -55.8, "geometry": "POINT(-61.9 -62.8)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e BOX CORE; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ICE AUGERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SNOW DENSITY CUTTER", "is_usap_dc": true, "keywords": "Paleoclimate; Megafauna; USAP-DC; AMD; Amd/Us; Antarctica; Climate Change; LABORATORY; Climate Variability; Multi-Disciplinary; Cryosphere; NBP1001; FIELD SURVEYS; Not provided; Antarctic Peninsula; R/V NBP; FIELD INVESTIGATION; USA/NSF; Ice Core; Holocene", "locations": "Antarctica; Antarctic Peninsula", "north": -57.8, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Truffer, Martin; Gordon, Arnold; Huber, Bruce; Mosley-Thompson, Ellen; Leventer, Amy; Vernet, Maria; Smith, Craig; Thompson, Lonnie G.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "AMGRF; MGDS; R2R; USAP-DC", "science_programs": "LARISSA", "south": -67.8, "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans", "uid": "p0000101", "west": -68.0}, {"awards": "1245737 Cassano, John; 1245663 Lazzara, Matthew", "bounds_geometry": "POLYGON((161.714 -77.522,162.6077 -77.522,163.5014 -77.522,164.3951 -77.522,165.2888 -77.522,166.1825 -77.522,167.0762 -77.522,167.9699 -77.522,168.8636 -77.522,169.7573 -77.522,170.651 -77.522,170.651 -77.6702,170.651 -77.8184,170.651 -77.9666,170.651 -78.1148,170.651 -78.263,170.651 -78.4112,170.651 -78.5594,170.651 -78.7076,170.651 -78.8558,170.651 -79.004,169.7573 -79.004,168.8636 -79.004,167.9699 -79.004,167.0762 -79.004,166.1825 -79.004,165.2888 -79.004,164.3951 -79.004,163.5014 -79.004,162.6077 -79.004,161.714 -79.004,161.714 -78.8558,161.714 -78.7076,161.714 -78.5594,161.714 -78.4112,161.714 -78.263,161.714 -78.1148,161.714 -77.9666,161.714 -77.8184,161.714 -77.6702,161.714 -77.522))", "dataset_titles": "SUMO unmanned aerial system (UAS) atmospheric data", "datasets": [{"dataset_uid": "601054", "doi": "10.15784/601054", "keywords": "Antarctica; Atmosphere; Meteorology; Navigation; UAS", "people": "Cassano, John", "repository": "USAP-DC", "science_program": null, "title": "SUMO unmanned aerial system (UAS) atmospheric data", "url": "https://www.usap-dc.org/view/dataset/601054"}], "date_created": "Wed, 22 Nov 2017 00:00:00 GMT", "description": "The Antarctic Automatic Weather Station (AAWS) network, first commenced in 1978, is the most extensive ground meteorological network in the Antarctic, approaching its 30th year at several of its installations. Its prime focus as a long term observational record is to measure the near surface weather and climatology of the Antarctic atmosphere. AWS sites measure air-temperature, pressure, wind speed and direction at a nominal surface height of 3m. Other parameters such as relative humidity and snow accumulation may also be measured. Observational data from the AWS are collected via the DCS Argos system aboard either NOAA or MetOp polar orbiting satellites and thus made available in near real time to operational and synoptic weather forecasters. The surface observations from the AAWS network are important records for recent climate change and meteorological processes. The surface observations from the AAWS network are also used operationally, and in the planning of field work. The surface observations from the AAWS network have been used to check on satellite and remote sensing observations.", "east": 170.651, "geometry": "POINT(166.1825 -78.263)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e GAUGES \u003e ADG; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e BAROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HUMIDITY SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e SNOWPACK TEMPERATURE PROBE; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e RADIO \u003e ARGOS", "is_usap_dc": true, "keywords": "Automated Weather Station; Antarctica; AWS; FIXED OBSERVATION STATIONS", "locations": "Antarctica", "north": -77.522, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew; Cassano, John; Costanza, Carol", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.004, "title": "Collaborative Research: Antarctic Automatic Weather Station Program 2013-2017", "uid": "p0000363", "west": 161.714}, {"awards": "1246170 Hall, Brenda; 1246110 Stone, John", "bounds_geometry": "POLYGON((154 -79.75,154.7 -79.75,155.4 -79.75,156.1 -79.75,156.8 -79.75,157.5 -79.75,158.2 -79.75,158.9 -79.75,159.6 -79.75,160.3 -79.75,161 -79.75,161 -79.8,161 -79.85,161 -79.9,161 -79.95,161 -80,161 -80.05,161 -80.1,161 -80.15,161 -80.2,161 -80.25,160.3 -80.25,159.6 -80.25,158.9 -80.25,158.2 -80.25,157.5 -80.25,156.8 -80.25,156.1 -80.25,155.4 -80.25,154.7 -80.25,154 -80.25,154 -80.2,154 -80.15,154 -80.1,154 -80.05,154 -80,154 -79.95,154 -79.9,154 -79.85,154 -79.8,154 -79.75))", "dataset_titles": "Darwin and Hatherton Glaciers; Hatherton Glacier Radiocarbon Data", "datasets": [{"dataset_uid": "601063", "doi": "10.15784/601063", "keywords": "Antarctica; Geochronology; Hatherton Glacier; Radiocarbon; Sample/collection Description; Sample/Collection Description; Transantarctic Mountains", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Hatherton Glacier Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601063"}, {"dataset_uid": "200038", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Darwin and Hatherton Glaciers", "url": "https://version2.ice-d.org/antarctica/nsf/"}], "date_created": "Mon, 23 Oct 2017 00:00:00 GMT", "description": "Hall/1246170 This award supports a project to reconstruct past ice-surface elevations from detailed glacial mapping and dating of moraines (using 14C dates of algae from former ice-marginal ponds and 10Be surface exposure ages) in the region of the Darwin-Hatherton Glaciers in Antarctica in order to try and resolve very different interpretations that currently exist about the glacial history in the region. The results will be integrated with existing climate and geophysical data into a flow-line model to gain insight into glacier response to climate and ice-dynamics perturbations during the Late Glacial Maximum (LGM) in Antarctica. The work will contribute to a better understanding of both LGM ice thickness and whether or not there is any evidence that Antarctica contributed to Meltwater Pulse (MWP)-1A a very controversial topic in Antarctic glacial geology. The intellectual merit of the work relates to the fact that reconstructing past fluctuations of the Antarctic Ice Sheet (AIS) is critical for understanding the sensitivity of ice volume to sea-level and climatic change. Constraints on past behavior help put ongoing changes into context and provide a basis for predicting future sea-level rise. Broader impacts include the support of two graduate and two undergraduate students, as well as a female early-career investigator. Graduate students will be involved in all stages of the project from planning and field mapping to geochronological analyses, interpretation, synthesis and reporting. Two undergraduates will work on lab-based research from the project. The project also will include visits to K-12 classrooms to talk about glaciers and climate change, correspondence with teachers and students from the field, and web-based outreach. This award has field work in Antarctica.", "east": 161.0, "geometry": "POINT(157.5 -80)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; FIELD INVESTIGATION; Antarctica", "locations": "Antarctica", "north": -79.75, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Hall, Brenda; Stone, John; Conway, Howard", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "ICE-D; USAP-DC", "science_programs": null, "south": -80.25, "title": "Collaborative Research: Assessing the Antarctic Contribution to Sea-level Changes during the Last Deglaciation: Constraints from Darwin Glacier", "uid": "p0000304", "west": 154.0}, {"awards": "1246463 Burns, Jennifer", "bounds_geometry": "POINT(149 -80)", "dataset_titles": "1970s - 1980s Kooyman-Billups TDR Dive Records from Weddell Seals in McMurdo Sound; Cortisol levels in Weddell seal fur; Seasonal Dive Data ; Specimen logs and observations from Weddell Seal colonies in Erebus Bay, 2013-2017; Weddell Seal Heat Flux Dataset; Weddell seal iron dynamics and oxygen stores across lactation; Weddell seal metabolic hormone data; Weddell Seal Molt Phenology Dataset; Weddell Seal Molt Survey Data; Weddell seal summer diving behavior", "datasets": [{"dataset_uid": "601027", "doi": "10.15784/601027", "keywords": "Antarctica; Biota; McMurdo Sound; Oceans; Ross Sea; Sample/collection Description; Sample/Collection Description; Seals", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Specimen logs and observations from Weddell Seal colonies in Erebus Bay, 2013-2017", "url": "https://www.usap-dc.org/view/dataset/601027"}, {"dataset_uid": "601338", "doi": "10.15784/601338", "keywords": "Animal Behavior Observation; Antarctica; Biota; McMurdo Sound; Ross Sea; Seal Dive Data; Weddell Seal", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Seasonal Dive Data ", "url": "https://www.usap-dc.org/view/dataset/601338"}, {"dataset_uid": "601131", "doi": "10.15784/601131", "keywords": "Antarctica; B-292-M; Biota; Ross Sea; Seals; Southern Ocean; Weddell Seal", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Weddell Seal Molt Phenology Dataset", "url": "https://www.usap-dc.org/view/dataset/601131"}, {"dataset_uid": "601271", "doi": "10.15784/601271", "keywords": "Antarctica; Heat Flux; Infrared Thermography; Physiological Conditions; Surface Temperatures; Thermoregulation; Weddell Seal", "people": "Walcott, Skyla", "repository": "USAP-DC", "science_program": null, "title": "Weddell Seal Heat Flux Dataset", "url": "https://www.usap-dc.org/view/dataset/601271"}, {"dataset_uid": "601587", "doi": "10.15784/601587", "keywords": "Aerobic; Antarctica; Dive Capacity; Iron; McMurdo Sound; Weddell Seal", "people": "Shero, Michelle", "repository": "USAP-DC", "science_program": null, "title": "Weddell seal iron dynamics and oxygen stores across lactation", "url": "https://www.usap-dc.org/view/dataset/601587"}, {"dataset_uid": "601560", "doi": "10.15784/601560", "keywords": "Antarctica; Biota; Diving Behavior; McMurdo Sound; Weddell Seal", "people": "Tsai, EmmaLi", "repository": "USAP-DC", "science_program": null, "title": "1970s - 1980s Kooyman-Billups TDR Dive Records from Weddell Seals in McMurdo Sound", "url": "https://www.usap-dc.org/view/dataset/601560"}, {"dataset_uid": "601134", "doi": "10.15784/601134", "keywords": "Antarctica; Biota; Cortisol; Fur; Ross Sea; Seals; Southern Ocean; Visual Observations; Weddell Seal", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Cortisol levels in Weddell seal fur", "url": "https://www.usap-dc.org/view/dataset/601134"}, {"dataset_uid": "601840", "doi": "10.15784/601840", "keywords": "Antarctica; Cryosphere; Hormones; McMurdo Sound; Ross Sea; Weddell Seal", "people": "Kirkham, Amy", "repository": "USAP-DC", "science_program": null, "title": "Weddell seal metabolic hormone data", "url": "https://www.usap-dc.org/view/dataset/601840"}, {"dataset_uid": "601137", "doi": "10.15784/601137", "keywords": "Antarctica; Biota; Ross Sea; Seals; Southern Ocean; Weddell Seal", "people": "Beltran, Roxanne; Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Weddell seal summer diving behavior", "url": "https://www.usap-dc.org/view/dataset/601137"}, {"dataset_uid": "601133", "doi": "10.15784/601133", "keywords": "Antarctica; Biota; Ross Sea; Seals; Visual Observations; Weddell Seal", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Weddell Seal Molt Survey Data", "url": "https://www.usap-dc.org/view/dataset/601133"}], "date_created": "Wed, 24 May 2017 00:00:00 GMT", "description": "Marine mammals that inhabit high latitude environments have evolved unique mechanisms to execute a suite of energetically-costly life history events (CLHEs) within a relatively short timeframe when conditions are most favorable. Understanding the intrinsic and extrinsic factors that regulate CLHEs is particularly important in species such as Weddell seals, as both reproduction and molt are associated with large reductions in foraging effort, and the timing and outcome of each appears linked with the other. The long-term mark recapture program on Erebus Bay\u0027s Weddell seals provides a unique opportunity to examine CLHEs in a known-history population. The proposed work will monitor physiological condition, pregnancy status, and behavior at various times throughout the year to determine if molt timing is influenced by prior reproductive outcome, and if it, in turn, influences future reproductive success. These data will then be used to address the demographic consequences of trade-offs between CLHEs in Weddell seals. The impact of environmental conditions and CLHE timing on population health will also be modeled so that results can be extended to other climates and species. An improved understanding of the interactions between CLHEs and the environment is important in predicting the response of organisms from higher trophic levels to climate change. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of graduate students and a post-doctoral researcher and will further foster an extensive public outreach collaboration.", "east": 165.0, "geometry": "POINT(165 -77)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; USAP-DC; Seal Dive Data; Weddell Seal", "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Burns, Jennifer", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals", "uid": "p0000229", "west": 165.0}, {"awards": "1443260 Conway, Howard", "bounds_geometry": "POLYGON((159 -76.68,159.03 -76.68,159.06 -76.68,159.09 -76.68,159.12 -76.68,159.15 -76.68,159.18 -76.68,159.21 -76.68,159.24 -76.68,159.27 -76.68,159.3 -76.68,159.3 -76.697,159.3 -76.714,159.3 -76.731,159.3 -76.748,159.3 -76.765,159.3 -76.782,159.3 -76.799,159.3 -76.816,159.3 -76.833,159.3 -76.85,159.27 -76.85,159.24 -76.85,159.21 -76.85,159.18 -76.85,159.15 -76.85,159.12 -76.85,159.09 -76.85,159.06 -76.85,159.03 -76.85,159 -76.85,159 -76.833,159 -76.816,159 -76.799,159 -76.782,159 -76.765,159 -76.748,159 -76.731,159 -76.714,159 -76.697,159 -76.68))", "dataset_titles": "2015-2016 GPR Field Report for Allan Hills Shallow Ice Coring; Ground-based ice-penetrating radar profiles collected on the Allan Hills blue ice region", "datasets": [{"dataset_uid": "601005", "doi": "10.15784/601005", "keywords": "Allan Hills; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Navigation; Radar", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Ground-based ice-penetrating radar profiles collected on the Allan Hills blue ice region", "url": "https://www.usap-dc.org/view/dataset/601005"}, {"dataset_uid": "601668", "doi": "10.15784/601668", "keywords": "Allan Hills; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; GPR; Ice Core; Report", "people": "MacKay, Sean; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "2015-2016 GPR Field Report for Allan Hills Shallow Ice Coring", "url": "https://www.usap-dc.org/view/dataset/601668"}], "date_created": "Tue, 02 May 2017 00:00:00 GMT", "description": "Marine paleoclimate archives show that approximately one million years ago Earth\u0027s climate transitioned from 40,000-year glacial /interglacial cycles to 100,000-year cycles. This award will support a study designed to map the distribution of one million year-old ice in the Allan Hills Blue Ice Area, Antarctica using state-of-the-art ground penetrating radar. The Allen Hills was demonstrated to contain a continuous record of the past 400,000 years and is also the collection location of the oldest ice samples (990,000 years) yet recovered. The maps resulting from this study will be used to select an ice-core drilling site at which a million-plus year-old continuous record of climate could be recovered. Ice cores contain the only kind of record to directly capture atmospheric gases and aerosols, but no ice-core-based climate record yet extends continuously beyond the past 800,000 years. A million-plus year-old record will allow better understanding of the major mechanisms and driving forces of natural climate variability in a world with 100,000-year glacial/interglacial cycles. The project will support two early career scientists in collaboration with senior scientists, as well as a graduate student, and will conduct outreach to schools and the public. The Allan Hills Blue Ice Area preserves a continuous climate record covering the last 400,000 years along an established glaciological flow line. Two kilometers to the east of this flow line, the oldest ice on Earth (~1 million years old) is found only 120 m below the surface. Meteorites collected in the area are reported to be as old as 1.8 million years, suggesting still older ice may be present. Combined, these data strongly suggest that the Allen Hills area could contain a continuous, well-resolved environmental record, spanning at least the last million years. As such, this area has been selected as an upcoming target for the new Intermediate Depth Ice Core Drill by the US Ice Core Working Group. This drill will recover a higher-quality core than previous dry drilling attempts. This project will conduct a comprehensive ground penetrating radar survey aimed at tracing the signature of the million-year-old ice layer throughout the region. The resulting map will be used to select a drill site from which an ice core containing the million-plus year-old continuous climate record will be collected. The proposed activities are a necessary precursor to the collection of the oldest known ice on Earth. Ice cores provide a robust reconstruction of past climate and extending this record beyond the 800,000 years currently available will open new opportunities to study the climate system. The data collected will also be used to investigate the bedrock and ice flow parameters favorable to the preservation of old ice, which may allow targeted investigation of other blue ice areas in Antarctica.", "east": 159.3, "geometry": "POINT(159.15 -76.765)", "instruments": null, "is_usap_dc": true, "keywords": "Allan Hills; FIELD SURVEYS; ICE SHEETS", "locations": "Allan Hills", "north": -76.68, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Conway, Howard", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.85, "title": "Collaborative Research: Allan HILLs Englacial Site (AHILLES) Selection", "uid": "p0000385", "west": 159.0}, {"awards": "0538049 Steig, Eric; 0538520 Thiemens, Mark", "bounds_geometry": "POINT(-112.085 -79.5)", "dataset_titles": "Multiple Isotope Analysis of Sulfate in the West Antarctic Ice Sheet Divide Ice Core; WAIS Divide sulfate and nitrate isotopes; WAIS ice core isotope data #387, 385 (full data link not provided)", "datasets": [{"dataset_uid": "609479", "doi": "10.7265/N5BG2KXH", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Thiemens, Mark H.", "repository": "USAP-DC", "science_program": null, "title": "Multiple Isotope Analysis of Sulfate in the West Antarctic Ice Sheet Divide Ice Core", "url": "https://www.usap-dc.org/view/dataset/609479"}, {"dataset_uid": "601007", "doi": "10.15784/601007", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Nitrate; Oxygen Isotope; Sulfate; WAIS Divide; WAIS Divide Ice Core", "people": "Steig, Eric J.; Alexander, Becky", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide sulfate and nitrate isotopes", "url": "https://www.usap-dc.org/view/dataset/601007"}, {"dataset_uid": "002512", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "WAIS ice core isotope data #387, 385 (full data link not provided)", "url": "http://www.waisdivide.unh.edu/"}], "date_created": "Tue, 25 Apr 2017 00:00:00 GMT", "description": "0538520\u003cbr/\u003eThiemens\u003cbr/\u003eThis award supports a project to develop the first complete record of multiple isotope ratios of nitrate and sulfate covering the last ~100,000 years, from the deep ice core planned for the central ice divide of the West Antarctic Ice Sheet (WAIS). The WAIS Divide ice core will be the highest resolution long ice core obtained from Antarctica and we can expect important complementary information to be available, including accurate knowledge of past accumulation rates, temperatures, and compounds such as H2O2, CO and CH4. These compounds play significant roles in global atmospheric chemistry and climate. Especially great potential lies in the use of multiple isotope signatures. The unique mass independent fractionation (MIF) 17O signature of ozone is observed in both nitrate and sulfate, due to the interaction of their precursors with ozone. The development of methods to measure the multiple-isotope composition of small samples of sulfate and nitrate makes continuous high resolution measurements on ice cores feasible for the first time. Recent work has shown that such measurements can be used to determine the hydroxyl radial (OH) and ozone (O3) concentrations in the paleoatmosphere as well as to apportion sulfate and nitrate sources. There is also considerable potential in using these isotope measurements to quantify post depositional changes. In the first two years, continuous measurements from the upper ~100-m of ice at WAIS divide will be obtained, to provide a detailed look at seasonal through centennial scale variability. In the third year, measurements will be made throughout the available depth of the deep core (expected to reach ~500 m at this time). The broader impacts of the project include applications to diverse fields including atmospheric chemistry, glaciology, meteorology, and paleoclimatology. Because nitrate and sulfate are important atmospheric pollutants, the results will also have direct and relevance to global environmental policy. This project will coincide with the International Polar Year (2007-2008), and contributes to goals of the IPY, which include the fostering of interdisciplinary research toward enhanced understanding of atmospheric chemistry and climate in the polar regions.", "east": -112.085, "geometry": "POINT(-112.085 -79.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Isotope Ratios; Temperature; Sulfate; West Antarctic; Paleoatmosphere; LABORATORY; Ice Core; Ice Core Data; Mass Independent Fractionation; FIELD SURVEYS; Not provided; Accumulation Rate; Oxygen Isotope; FIELD INVESTIGATION; Ice Core Chemistry; Isotope", "locations": "West Antarctic", "north": -79.5, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Alexander, Becky; Steig, Eric J.; Thiemens, Mark H.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "Project website; USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.5, "title": "Collaborative Research: Multiple-isotope Analysis of Nitrate and Sulfate in the West Antarctic Ice Sheet Divide Ice Core", "uid": "p0000020", "west": -112.085}, {"awards": "0944197 Waddington, Edwin; 0944191 Taylor, Kendrick", "bounds_geometry": "POLYGON((-180 -79,-173.3 -79,-166.6 -79,-159.9 -79,-153.2 -79,-146.5 -79,-139.8 -79,-133.1 -79,-126.4 -79,-119.7 -79,-113 -79,-113 -79.1,-113 -79.2,-113 -79.3,-113 -79.4,-113 -79.5,-113 -79.6,-113 -79.7,-113 -79.8,-113 -79.9,-113 -80,-119.7 -80,-126.4 -80,-133.1 -80,-139.8 -80,-146.5 -80,-153.2 -80,-159.9 -80,-166.6 -80,-173.3 -80,180 -80,150.9 -80,121.8 -80,92.7 -80,63.6 -80,34.5 -80,5.4 -80,-23.7 -80,-52.8 -80,-81.9 -80,-111 -80,-111 -79.9,-111 -79.8,-111 -79.7,-111 -79.6,-111 -79.5,-111 -79.4,-111 -79.3,-111 -79.2,-111 -79.1,-111 -79,-81.9 -79,-52.8 -79,-23.7 -79,5.4 -79,34.5 -79,63.6 -79,92.7 -79,121.8 -79,150.9 -79,-180 -79))", "dataset_titles": "Accumulation Rates from the WAIS Divide Ice Core; WAIS Divide Ice Core Electrical Conductance Measurements, Antarctica; WAIS Divide Multi Track Electrical Measurements; WD2014: Timescale for WAIS Divide Core 2006 A (WDC-06A)", "datasets": [{"dataset_uid": "601172", "doi": "10.15784/601172", "keywords": "Antarctic; Antarctica; Electrical Conductivity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Records; Physical Properties; Snow/ice; Snow/Ice; WAIS Divide; WAIS Divide Ice Core; Wais Project; West Antarctic Ice Sheet", "people": "Fudge, T. J.; Taylor, Kendrick C.", "repository": "USAP-DC", "science_program": null, "title": "WAIS Divide Multi Track Electrical Measurements", "url": "https://www.usap-dc.org/view/dataset/601172"}, {"dataset_uid": "601015", "doi": "10.15784/601015", "keywords": "Antarctica; Depth-Age-Model; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Fudge, T. J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WD2014: Timescale for WAIS Divide Core 2006 A (WDC-06A)", "url": "https://www.usap-dc.org/view/dataset/601015"}, {"dataset_uid": "609591", "doi": "10.7265/N5B56GPJ", "keywords": "Antarctica; Electrical Conductivity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Physical Properties; WAIS Divide; WAIS Divide Ice Core", "people": "Fudge, T. J.; Taylor, Kendrick C.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core Electrical Conductance Measurements, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609591"}, {"dataset_uid": "601004", "doi": "10.15784/601004", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Snow Accumulation; WAIS Divide Ice Core", "people": "Fudge, T. J.; Conway, Howard; Buizert, Christo; Waddington, Edwin D.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Accumulation Rates from the WAIS Divide Ice Core", "url": "https://www.usap-dc.org/view/dataset/601004"}], "date_created": "Tue, 25 Apr 2017 00:00:00 GMT", "description": "This award supports a project to help to establish the depth-age chronology and the histories of accumulation and ice dynamics for the WAIS Divide ice core. The depth-age relationship and the histories of accumulation and ice dynamics are coupled. An accurate age scale is needed to infer histories of accumulation rate and ice-thickness change using ice-flow models. In turn, the accumulation-rate history is needed to calculate the age difference of ice to determine the age of the trapped gases. The accumulation history is also needed to calculate atmospheric concentrations of impurities trapped in the ice and is an important characteristic of climate. The history of ice-thickness change is also fundamental to understanding the stability of the WAIS. The primary goals of the WAIS Divide ice core project are to investigate climate forcing by greenhouse gases, the initiation of climate changes, and the stability of the West Antarctic Ice Sheet (WAIS). An accurate age scale is fundamental for achieving these goals. The first objective of this project is to establish an annually resolved depth-age relationship for the past 40,000 years. This will be done by measuring variations in electrical conductivity along the ice core, which are caused by seasonal variations in chemistry. We expect to be able to resolve annual layers back to 40,000 years before present (3,000 m depth) using this method. The second objective is to search for stratigraphic disturbances in the core that would compromise the paleoclimate record. Irregular layering will be identified by measuring the electrical conductivity of the ice in a vertical plan through the core. The third objective is to derive a preliminary chronology for the entire core. For the deeper ice we will use an ice-flow model to interpolate between known age markers, such as dated volcanic horizons and tie points from the methane gas chronology. The fourth objective is to derive a refined chronology simultaneously with histories of accumulation and ice-sheet thickness. An ice-flow model and all available data will be used to formulate an inverse problem, in which we infer the most appropriate histories of accumulation and ice-thickness, together with estimates of uncertainties. The flow model associated with those preferred histories then produces the best estimate of the chronology. The research contributes directly to the primary goals of the West Antarctic Ice Sheet Initiative. The project will help develop the next generation of scientists through the education and training of one Ph.D. student and several undergraduate students. This project will result in instrumentation for measuring the electrical conductivity of ice cores being available at the National Ice Core Lab for other researchers to use on other projects. All collaborators are committed to fostering diversity and currently participate in scientific outreach and most participate in undergraduate education. Outreach will be accomplished through regularly scheduled community and K-12 outreach events at UW, talks and popular writing by the PIs, as well as through our respective press offices.", "east": -111.0, "geometry": "POINT(-112 -79.5)", "instruments": null, "is_usap_dc": true, "keywords": "Ice Core Depth; National Ice Core Lab; Electrical Conductivity; FIELD INVESTIGATION; Not provided", "locations": null, "north": -79.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Conway, Howard; Fudge, T. J.; Taylor, Kendrick C.; Waddington, Edwin D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -80.0, "title": "Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core", "uid": "p0000026", "west": -113.0}, {"awards": "0539578 Alley, Richard; 0539232 Cuffey, Kurt", "bounds_geometry": "POINT(112.083 -79.467)", "dataset_titles": "Grain Size Full Population Dataset from WDC06A Core; Temperature Profile of the West Antarctic Ice Sheet Divide Deep Borehole; Temperature Reconstruction at the West Antarctic Ice Sheet Divide; Updated (2017) bubble number-density, size, shape, and modeled paleoclimate data; WAIS Divide Ice Core Vertical Thin Section Low-resolution Digital Imagery; WAIS Divide Surface and Snow-pit Data, 2009-2013; WDC 06A Mean Grain Size Data", "datasets": [{"dataset_uid": "601079", "doi": "10.15784/601079", "keywords": "Antarctica; Atmosphere; AWS; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Meteorology; Physical Properties; Snow Pit; Temperature; WAIS Divide; WAIS Divide Ice Core; Weatherstation", "people": "Alley, Richard; Fegyveresi, John", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Surface and Snow-pit Data, 2009-2013", "url": "https://www.usap-dc.org/view/dataset/601079"}, {"dataset_uid": "609656", "doi": "10.7265/N5MC8X08", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Grain Size; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Fitzpatrick, Joan; Cravens, Eric D.", "repository": "USAP-DC", "science_program": null, "title": "WDC 06A Mean Grain Size Data", "url": "https://www.usap-dc.org/view/dataset/609656"}, {"dataset_uid": "600377", "doi": "10.15784/600377", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Nitrogen; Paleoclimate; Temperature; WAIS Divide; WAIS Divide Ice Core", "people": "Cuffey, Kurt M.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Temperature Reconstruction at the West Antarctic Ice Sheet Divide", "url": "https://www.usap-dc.org/view/dataset/600377"}, {"dataset_uid": "609655", "doi": "10.7265/N5VX0DG0", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Grain Size; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Cravens, Eric D.; Fitzpatrick, Joan", "repository": "USAP-DC", "science_program": null, "title": "Grain Size Full Population Dataset from WDC06A Core", "url": "https://www.usap-dc.org/view/dataset/609655"}, {"dataset_uid": "609550", "doi": "10.7265/N5V69GJW", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Temperature; WAIS Divide; WAIS Divide Ice Core", "people": "Clow, Gary D.; Cuffey, Kurt M.", "repository": "USAP-DC", "science_program": null, "title": "Temperature Profile of the West Antarctic Ice Sheet Divide Deep Borehole", "url": "https://www.usap-dc.org/view/dataset/609550"}, {"dataset_uid": "609654", "doi": "10.7265/N5GM858X", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Photo/video; Photo/Video; Thin Sections; WAIS Divide; WAIS Divide Ice Core", "people": "Cravens, Eric D.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core Vertical Thin Section Low-resolution Digital Imagery", "url": "https://www.usap-dc.org/view/dataset/609654"}, {"dataset_uid": "601224", "doi": "10.15784/601224", "keywords": "Antarctic; Antarctica; Bubble Number Density; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Records; NSF-ICF Microtome and Photography Stage; Paleoclimate; Physical Properties; Snow/ice; Snow/Ice; WAIS Divide Ice Core; West Antarctic Ice Sheet", "people": "Voigt, Donald E.; Fegyveresi, John; Fitzpatrick, Joan; Spencer, Matthew; Alley, Richard", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Updated (2017) bubble number-density, size, shape, and modeled paleoclimate data", "url": "https://www.usap-dc.org/view/dataset/601224"}], "date_created": "Thu, 12 Jan 2017 00:00:00 GMT", "description": "0539578\u003cbr/\u003eAlley \u003cbr/\u003eThis award supports a five-year collaborative project to study the physical-properties of the planned deep ice core and the temperature of the ice in the divide region of the West Antarctic Ice Sheet. The intellectual merit of the proposed research is to provide fundamental information on the state of the ice sheet, to validate the integrity of the climate record, to help reconstruct the climate record, and to understand the flow state and history of the ice sheet. This information will initially be supplied to other investigators and then to the public and to appropriate databases, and will be published in the refereed scientific literature. The objectives of the proposed research are to aid in dating of the core through counting of annual layers, to identify any exceptionally warm intervals in the past through counting of melt layers, to learn as much as possible about the flow state and history of the ice through measurement of size, shape and arrangements of bubbles, clathrate inclusions, grains and their c-axes, to identify any flow disturbances through these indicators, and to learn the history of snow accumulation and temperature from analyses of bubbles and borehole temperatures combined with flow modeling and use of data from other collaborators. These results will then be synthesized and communicated. Failure to examine cores can lead to erroneous identification of flow features as climate changes, so careful examination is required. Independent reconstruction of accumulation rate provides important data on climate change, and improves confidence in interpretation of other climate indicators. Borehole temperatures are useful recorders of temperature history. Flow state and history are important in understanding climate history and potential contribution of ice to sea-level change. By contributing to all of these and additional issues, the proposed research will be of considerable value. The broader impacts of the research include making available to the public improved knowledge on societally central questions involving abrupt climate change and sea-level rise. The project will also contribute to the education of advanced students, will utilize results in education of introductory students, and will make vigorous efforts in outreach, informal science education, and supplying information to policy-makers as requested, thus contributing to a more-informed society.", "east": 112.083, "geometry": "POINT(112.083 -79.467)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERA; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS", "is_usap_dc": true, "keywords": "LABORATORY; WAIS Divide; Ice Core; Temperature Profiles; FIELD SURVEYS; Bubble Number Density; GROUND-BASED OBSERVATIONS; Wais Divide-project", "locations": "WAIS Divide", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Fitzpatrick, Joan; Alley, Richard; Fegyveresi, John; Clow, Gary D.; Cuffey, Kurt M.; Cravens, Eric D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Collaborative Research: Physical Properties of the WAIS Divide Deep Core", "uid": "p0000038", "west": 112.083}, {"awards": "0944671 Wiens, Douglas; 0944794 Winberry, J. Paul", "bounds_geometry": "POLYGON((-163 -83.7,-161.9 -83.7,-160.8 -83.7,-159.7 -83.7,-158.6 -83.7,-157.5 -83.7,-156.4 -83.7,-155.3 -83.7,-154.2 -83.7,-153.1 -83.7,-152 -83.7,-152 -83.8,-152 -83.9,-152 -84,-152 -84.1,-152 -84.2,-152 -84.3,-152 -84.4,-152 -84.5,-152 -84.6,-152 -84.7,-153.1 -84.7,-154.2 -84.7,-155.3 -84.7,-156.4 -84.7,-157.5 -84.7,-158.6 -84.7,-159.7 -84.7,-160.8 -84.7,-161.9 -84.7,-163 -84.7,-163 -84.6,-163 -84.5,-163 -84.4,-163 -84.3,-163 -84.2,-163 -84.1,-163 -84,-163 -83.9,-163 -83.8,-163 -83.7))", "dataset_titles": "Geophysical Study of Ice Stream Stick Slip; Whillans Ice Stream Stick-slip", "datasets": [{"dataset_uid": "000169", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Geophysical Study of Ice Stream Stick Slip", "url": "http://ds.iris.edu/mda/2C/?timewindow=2010-2011"}, {"dataset_uid": "609632", "doi": "10.7265/N5PC309V", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Whillans Ice Stream", "people": "Anandakrishnan, Sridhar; Winberry, Paul; Wiens, Douglas; Alley, Richard", "repository": "USAP-DC", "science_program": null, "title": "Whillans Ice Stream Stick-slip", "url": "https://www.usap-dc.org/view/dataset/609632"}], "date_created": "Wed, 16 Nov 2016 00:00:00 GMT", "description": "This award supports a three-year study of the ongoing deceleration and stick-slip motion of Whillans Ice Stream (WIS), West Antarctica. Understanding the dynamic behavior of ice streams is essential for predicting the future of the West Antarctic Ice Sheet (WAIS). Despite being one of the best-studied ice streams in Antarctica, the surprising flow characteristics of WIS continue to demand interdisciplinary research. Recent estimates indicate that the WIS may stagnate within 50 years, resulting in a significant change to the mass balance of the Siple Coast sector of West Antarctica. The reasons for the ongoing stagnation are not well known, and are possibly linked (causally or coincidentally) to the stick-slip behavior. Our recent work on WIS stick-slip motion suggest that all slip events nucleate from a common location on the ice stream, suggesting that a relatively small (approximately 10 km in diameter) region of the exerts fundamental control over the flow of this large ice stream (100s of km long and 100 kilometers wide). We hypothesize that this is a region of increased bed strength and our measurements will address that hypothesis. We will deploy a series of GPS receivers and seismometers on the ice stream to accurately locate the nucleation region so that a comprehensive ground based geophysical survey can be conducted to determine the physical properties of bed at the nucleation point. The ground geophysical program will consist of reflection seismic and ice-penetrating radar studies that will better constrain the properties of both the hypothesized higher-friction nucleation zone and the surrounding regions. Slip events also generate seismic energy that can be recorded 100s of km away from the ice stream, thus, the GPS and seismometer deployment will also aid us in relating seismic waveforms directly with the rapid motion that occurs during slip events. The increased ability to relate rupture processes with seismic emissions will allow us to use archived seismic records to explore changes in the behavior of WIS during the later half of the 20th century. Broader impacts of this study include improved knowledge ice sheet dynamics, which remain a poorly constrained component of the climate system, thus, limiting our ability to predict the Earth\u0027s response to climate change. The scientific work includes the education of two graduate students and continued training of one post-doctoral scholar, thus helping to train the next generation of polar scientists. We will expose the broader public to polar science through interactions with the media and by take advantaging of programs to include K-12 educators in our field work.", "east": -152.0, "geometry": "POINT(-157.5 -84.2)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": true, "keywords": "West Antarctic Ice Sheet; Geodesy; GROUND-BASED OBSERVATIONS; Not provided; Seismic; Geodetic Gps Data", "locations": "West Antarctic Ice Sheet", "north": -83.7, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Winberry, Paul; Anandakrishnan, Sridhar; Alley, Richard; Wiens, Douglas", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided", "repo": "IRIS", "repositories": "IRIS; USAP-DC", "science_programs": null, "south": -84.7, "title": "Collaborative Research: Geophysical Study of Ice Stream Stick-slip Dynamics", "uid": "p0000053", "west": -163.0}, {"awards": "0838817 Kyle, Philip", "bounds_geometry": "POLYGON((167 -77.3,167.05 -77.3,167.1 -77.3,167.15 -77.3,167.2 -77.3,167.25 -77.3,167.3 -77.3,167.35 -77.3,167.4 -77.3,167.45 -77.3,167.5 -77.3,167.5 -77.34,167.5 -77.38,167.5 -77.42,167.5 -77.46,167.5 -77.5,167.5 -77.54,167.5 -77.58,167.5 -77.62,167.5 -77.66,167.5 -77.7,167.45 -77.7,167.4 -77.7,167.35 -77.7,167.3 -77.7,167.25 -77.7,167.2 -77.7,167.15 -77.7,167.1 -77.7,167.05 -77.7,167 -77.7,167 -77.66,167 -77.62,167 -77.58,167 -77.54,167 -77.5,167 -77.46,167 -77.42,167 -77.38,167 -77.34,167 -77.3))", "dataset_titles": "Mount Erebus Volcano Observatory III (MEVO III): Conduit Processes and Surveillance", "datasets": [{"dataset_uid": "600153", "doi": "10.15784/600153", "keywords": "Antarctica; Cable Observatory; Intracontinental Magmatism; IntraContinental Magmatism; MEVO; Mount Erebus; Photo/video; Photo/Video; Ross Sea; Solid Earth; Volcano", "people": "Kyle, Philip", "repository": "USAP-DC", "science_program": "MEVO", "title": "Mount Erebus Volcano Observatory III (MEVO III): Conduit Processes and Surveillance", "url": "https://www.usap-dc.org/view/dataset/600153"}], "date_created": "Thu, 23 Jun 2016 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). Mount Erebus is Antarctica?s most active volcano that has been in a persistent state of activity for at least the last 35 years. It has a unique geochemistry among the Earth\u0027s active volcanoes and is also unique in hosting a persistent convecting lake(s) of anorthclase phonolite magma in its summit crater. The relative simplicity of the magmatic system, consistency of activity, and accessibility of close-range observation make Erebus attractive as a target for extensive studies. Although the Erebus\u0027 seismicity and eruptive activity and processes are becoming increasingly well understood over years of research, there is a near total lack of understanding its deeper magmatic system. The primary goal of this proposal is to continue supporting the Mt. Erebus Volcano Observatory (MEVO III) improving our current understanding of the Erebus eruptive and non-eruptive magmatic system using an integrated approach from geophysical, geochemical and remote sensing observations. This goal can be grouped into the following fundamental research objectives: (a) to sustain year-round surveillance of on-going volcanic activity primarily using geophysical observatories; (b) to understand processes within the convecting conduit which feeds the persistent lava lakes; and (c) to understand the impact of Erebus eruptive activity upon the Antarctic environment. Continued reliance on students provides a broader impact to this proposed research and firmly grounds this effort in its educational mission.", "east": 167.5, "geometry": "POINT(167.25 -77.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS", "is_usap_dc": true, "keywords": "Ice Caves; USAP-DC; Amd/Us; Distributed Temperature Sensing; FIELD SURVEYS; Not provided; AMD; Optical Fiber", "locations": null, "north": -77.3, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kyle, Philip; Curtis, Aaron; Rotman, Holly", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "MEVO", "south": -77.7, "title": "Mount Erebus Volcano Observatory III (MEVO III): Conduit Processes and Surveillance", "uid": "p0000488", "west": 167.0}, {"awards": "0948247 Pettit, Erin", "bounds_geometry": "POINT(-123.35 -75.1)", "dataset_titles": null, "datasets": null, "date_created": "Wed, 06 Jan 2016 00:00:00 GMT", "description": "Pettit/0948247\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to study of the relationship between fabric and climate for the ice near the EPICA Dome C ice core site, East Antarctica. The work builds on an ongoing study at Siple Dome, West Antarctica and takes advantage of collaborations with European scientists and access to the Dome C borehole to make measurements of sonic velocity. The intellectual merit of the project is that a better understanding of how fabric preserves past climate information can improve models of the ice flow near ice core sites and the interpreta-tion of ice core data (particularly paleo-accumulation), and it may allow us to extract climate information directly from fabric data. In addition, because ice deformation is sensitive to the orientation of crystals, ice flow patterns are sensitive to the fabric. Thus, variations in the fabric between glacial and interglacial ice can affect how ice deforms and how fabric in the ice sheet develops. The Dome C site is particularly important for answering these questions, because the ice core shows evidence of eight glacial cycles, not just one as found at Siple Dome or the Greenland sites. The research will improve the understanding of the proxy relationship between sonic-velocity data and fabric; will help to model the pattern of ice flow caused by the fabric variation between glacial and interglacial time periods using these data, existing ice core chemistry and existing and new thin section data, improved surface strain data, and borehole deformation data; and will help to better understand the positive feedback mechanism that enhances fabric (and corresponding rheological) variability through a focused study of several climate transitions and the associated fabric changes. Borehole compressional-wave sonic-velocity will be measured which will complement the sonic-velocity data that already exist for boreholes in Greenland and West Antarctica. These will be the first sonic-velocity measurements in East Antarctica and the first measurements that extend for more than a single glacial/interglacial transition. The project will ultimately contribute to better interpretation of ice core records for both paleoclimate studies and for ice flow history, both of which connect to the broader questions of the role of ice in the climate system. This project will also strengthen the international collaborations within the paleoclimate and ice sheet modeling communities. This project will partially support a graduate student at the University of Alaska Fairbanks who is currently working on modeling ice including anisotropy and it will support the growth of a young scientist through a Post-Doc position. This Post Doc will gain important experience collaborating with the EPICA scientists in studying the climate-fabric relationship. Erin Pettit is active in field-science education for high school students, under-graduates, teachers, and adults. This project will help support the continued development and enhancement of Girls on Ice a program that encourages young women to explore science and the natural world.", "east": -123.35, "geometry": "POINT(-123.35 -75.1)", "instruments": null, "is_usap_dc": false, "keywords": "LABORATORY; Crystals; Deformation; FIELD INVESTIGATION; Model; Sonic Logger; Ice Flow; Rheology; FIELD SURVEYS; Borehole; Climate; Ice Fabric; Antarctica; Interglacial", "locations": "Antarctica", "north": -75.1, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Pettit, Erin; Hansen, Sharon", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -75.1, "title": "The Relationship between Climate and Ice Rheology at Dome C, East Antarctica", "uid": "p0000708", "west": -123.35}, {"awards": "0944659 Kiene, Ronald; 0944686 Kieber, David", "bounds_geometry": "POLYGON((-180 -68,-177 -68,-174 -68,-171 -68,-168 -68,-165 -68,-162 -68,-159 -68,-156 -68,-153 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -77,160 -76,160 -75,160 -74,160 -73,160 -72,160 -71,160 -70,160 -69,160 -68,162 -68,164 -68,166 -68,168 -68,170 -68,172 -68,174 -68,176 -68,178 -68,-180 -68))", "dataset_titles": "Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica", "datasets": [{"dataset_uid": "600150", "doi": "10.15784/600150", "keywords": "Antarctica; Biota; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Oceans; Ross Sea", "people": "Kiene, Ronald", "repository": "USAP-DC", "science_program": null, "title": "Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica", "url": "https://www.usap-dc.org/view/dataset/600150"}, {"dataset_uid": "600117", "doi": "10.15784/600117", "keywords": "Biota; Ross Sea; Southern Ocean", "people": "Kieber, David John", "repository": "USAP-DC", "science_program": null, "title": "Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica", "url": "https://www.usap-dc.org/view/dataset/600117"}], "date_created": "Wed, 16 Dec 2015 00:00:00 GMT", "description": "Spectacular blooms of Phaeocystis antarctica in the Ross Sea, Antarctica are the source of some of the world\u0027s highest concentrations of dimethylsulfoniopropionate (DMSP) and its volatile degradation product, dimethylsulfide (DMS). The flux of DMS from the oceans to the atmosphere in this region and its subsequent gas phase oxidation generates aerosols that have a strong influence on cloud properties and possibly climate. In the oceans, DMS and DMSP are quantitatively significant components of the carbon, sulfur, and energy flows in marine food webs, especially in the Ross Sea. Despite its central role in carbon and sulfur biogeochemistry in the Ross Sea, surprisingly little is known about the physiological functions of DMSP in P. Antarctica. The research will isolate and characterize DMSP lyases from P. antarctica, with the goal of obtaining amino acid and gene sequence information on these important enzymes. The physiological studies will focus on the effects of varying intensities of photosynthetically active radiation, with and without ultraviolet radiation as these are factors that we have found to be important controls on DMSP and DMS dynamics. The research also will examine the effects of prolonged darkness on the dynamics of DMSP and related compounds in P. antarctica, as survival of this species during the dark Antarctic winter and at sub-euphotic depths appears to be an important part of the Phaeocystis? ecology. A unique aspect of this work is the focus on measurements of intracellular MSA, which if detected, would provide strong evidence for in vivo radical scavenging functions for methyl sulfur compounds. The study will advance understanding of what controls DMSP cycling and ultimately DMS emissions from the Ross Sea and also provide information on what makes P. antarctica so successful in this extreme environment. The research will directly benefit and build on several interrelated ocean-atmosphere programs including the International Surface Ocean Lower Atmosphere Study (SOLAS) program. The PIs will participate in several activities involving K-12 education, High School teacher training, public education and podcasting through the auspices of the Dauphin Island Sea Lab Discovery Hall program and SUNY ESF. Two graduate students will be employed full time, and six undergraduates (2 each summer) will be trained as part of this project.", "east": -150.0, "geometry": "POINT(-175 -73)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; Not provided; Ecophysiology; AMD; USAP-DC; FIELD SURVEYS", "locations": null, "north": -68.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Kiene, Ronald; Kieber, David John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica", "uid": "p0000085", "west": 160.0}, {"awards": "1141936 Foreman, Christine", "bounds_geometry": "POINT(112.085 -79.467)", "dataset_titles": "Molecular Level Characterization of Dissolved Organic Carbon and Microbial Diversity in the WAIS Divide Replicate Core", "datasets": [{"dataset_uid": "600133", "doi": "10.15784/600133", "keywords": "Antarctica; Biota; Genetic Sequences; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Foreman, Christine", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Molecular Level Characterization of Dissolved Organic Carbon and Microbial Diversity in the WAIS Divide Replicate Core", "url": "https://www.usap-dc.org/view/dataset/600133"}], "date_created": "Thu, 05 Nov 2015 00:00:00 GMT", "description": "This award supports a detailed, molecular level characterization of dissolved organic carbon and microbes in Antarctic ice cores. Using the most modern biological (genomic), geochemical techniques, and advanced chemical instrumentation researchers will 1) optimize protocols for collecting, extracting and amplifying DNA from deep ice cores suitable for use in next generation pyrosequencing; 2) determine the microbial diversity within the ice core; and 3) obtain and analyze detailed molecular characterizations of the carbon in the ice by ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS). With this pilot study investigators will be able to quantify the amount of material (microbial biomass and carbon) required to perform these characterizations, which is needed to inform future ice coring projects. The ultimate goal will be to develop protocols that maximize the yield, while minimizing the amount of ice required. The broader impacts include education and outreach at both the local and national levels. As a faculty mentor with the American Indian Research Opportunities and BRIDGES programs at Montana State University, Foreman will serve as a mentor to a Native American student in the lab during the summer months. Susan Kelly is an Education and Outreach Coordinator with a MS degree in Geology and over 10 years of experience in science outreach. She will coordinate efforts for comprehensive educational collaboration with the Hardin School District on the Crow Indian Reservation in South-central Montana.", "east": 112.085, "geometry": "POINT(112.085 -79.467)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ADS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Dissolved Organic Carbon; Microbes; Ice Core; Not provided; Pyrosequencing; Microbial Diversity; Molecular; WAIS Divide; LABORATORY; FIELD SURVEYS; Antarctic; FIELD INVESTIGATION; DNA", "locations": "Antarctic; WAIS Divide", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Foreman, Christine", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Molecular Level Characterization of Dissolved Organic Carbon and Microbial Diversity in the WAIS Divide Replicate Core", "uid": "p0000342", "west": 112.085}, {"awards": "1142173 Bay, Ryan; 1142010 Talghader, Joseph", "bounds_geometry": "POINT(112.085 -79.467)", "dataset_titles": "Optical Fabric and Fiber Logging of Glacial Ice (1142010)", "datasets": [{"dataset_uid": "600172", "doi": "10.15784/600172", "keywords": "Antarctica; Ash Layer; Borehole Camera; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Talghader, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Optical Fabric and Fiber Logging of Glacial Ice (1142010)", "url": "https://www.usap-dc.org/view/dataset/600172"}], "date_created": "Thu, 05 Nov 2015 00:00:00 GMT", "description": "1142010/Talghader This award supports a project to combine the expertise of both glaciologists and optical engineers to develop polarization- preserving optical scattering techniques for borehole tools to identify changes in high-resolution crystal structure (fabric) and dust content of glacial ice. The intellectual merit of this work is that the fabric and impurity content of the ice contain details on climate, volcanic activity and ice flow history. Such fabric measurements are currently taken by slicing an ice core into sections after it has started to depressurize which is an extremely time-intensive process that damages the core and does not always preserve the properties of ice in its in-situ state. In addition the ice core usually must be consumed in order to measure the components of the dust. The fabric measurements of this study utilize the concept that singly-scattered light in ice preserves most of its polarization when it is backscattered once from bubbles or dust; therefore, changes to the polarization of singly-backscattered light must originate with the birefringence. Measurements based on this concept will enable this program to obtain continuous records of fabric and correlate them to chronology and dust content. The project will also develop advanced borehole instruments to replace current logging tools, which require optical sources, detectors and power cables to be submerged in borehole fluid and lowered into the ice sheet at temperatures of -50oC. The use of telecommunications fiber will allow all sources and detectors to remain at the surface and enable low-noise signal processing techniques such as lock-in amplification that increase signal integrity and reduce needed power. Further, fiber logging systems would be much smaller and more flexible than current tools and capable of navigating most boreholes without a heavy winch. In order to assess fabric in situ and test fiber-optic borehole tools, field measurements will be made at WAIS Divide and a deep log will also be made at Siple Dome, both in West Antarctica. If successful, the broader impacts of the proposed research would include the development of new analytical methods and lightweight logging tools for ice drilling research that can operate in boreholes drilled in ice. Eventually the work could result in the development of better prehistoric records of glacier flow, atmospheric particulates, precipitation, and climate forcing. The project encompasses a broad base of theoretical, experimental, and design work, which makes it ideal for training graduate students and advanced undergraduates. Collaboration with schools and classroom teachers will help bring aspects of optics, climate, and polar science to an existing Middle School curriculum.", "east": 112.085, "geometry": "POINT(112.085 -79.467)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS", "is_usap_dc": true, "keywords": "Fabric; Optical Scattering; Not provided; FIELD SURVEYS; Ice Core; Siple Dome; Antarctic; Dust; WAIS Divide; LABORATORY; Crystal Structure; Chronology; FIELD INVESTIGATION; Borehole", "locations": "Antarctic; WAIS Divide; Siple Dome", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Talghader, Joseph; Bay, Ryan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.467, "title": "Optical Fabric and Fiber Logging of Glacial Ice", "uid": "p0000339", "west": 112.085}, {"awards": "0739575 Emslie, Steven", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Egg membrane and chick feather THg concentration and stable isotope composition; Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in Antarctica", "datasets": [{"dataset_uid": "600145", "doi": "10.15784/600145", "keywords": "Antarctica; Antarctic Peninsula; Biota; Geochronology; Global; Penguin; Ross Sea; Sample/collection Description; Sample/Collection Description; Scotia Sea; Southern Ocean", "people": "Emslie, Steven D.; Patterson, William; Polito, Michael", "repository": "USAP-DC", "science_program": null, "title": "Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in Antarctica", "url": "https://www.usap-dc.org/view/dataset/600145"}, {"dataset_uid": "601459", "doi": "10.15784/601459", "keywords": "Adelie Penguin; Antarctica; Antarctic Peninsula; Mercury; Penguin", "people": "McKenzie, Ashley", "repository": "USAP-DC", "science_program": null, "title": "Egg membrane and chick feather THg concentration and stable isotope composition", "url": "https://www.usap-dc.org/view/dataset/601459"}], "date_created": "Fri, 25 Sep 2015 00:00:00 GMT", "description": "The research combines interdisciplinary study in geology, paleontology, and biology, using stable isotope and radiocarbon analyses, to examine how climate change and resource utilization have influenced population distribution, movement, and diet in penguins during the mid-to-late Holocene. Previous investigations have demonstrated that abandoned colonies contain well-preserved remains that can be used to examine differential responses of penguins to climate change in various sectors of Antarctica. As such, the research team will investigate abandoned and active pygoscelid penguin (Adelie, Chinstrap, and Gentoo) colonies in the Antarctic Peninsula and Ross Sea regions, and possibly Prydz Bay, in collaboration with Chinese scientists during four field seasons. Stable isotope analyses will be conducted on recovered penguin tissues and prey remains in guano to address hypotheses on penguin occupation history, population movement, and diet in relation to climate change since the late Pleistocene. The study will include one Ph.D., two Masters and 16 undergraduate students in advanced research over the project period. Students will be exposed to a variety of fields, the scientific method, and international scientific research. They will complete field and lab research for individual projects or Honor\u0027s theses for academic credit. The project also will include web-based outreach, lectures to middle school students, and the development of interactive exercises that highlight hypothesis-driven research and the ecology of Antarctica. Two undergraduate students in French and Spanish languages at UNCW will be hired to assist in translating the Web page postings for broader access to this information.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; AMD; USAP-DC; FIELD INVESTIGATION; Amd/Us", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Polito, Michael; Patterson, William", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in Antarctica", "uid": "p0000317", "west": -180.0}, {"awards": "1043421 Severinghaus, Jeffrey; 1043522 Brook, Edward J.", "bounds_geometry": "POINT(-112.09 -79.47)", "dataset_titles": "WAIS Divide Replicate Core Methane Isotopic Data Set", "datasets": [{"dataset_uid": "601059", "doi": "10.15784/601059", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Replicate Core Methane Isotopic Data Set", "url": "https://www.usap-dc.org/view/dataset/601059"}], "date_created": "Mon, 13 Jul 2015 00:00:00 GMT", "description": "1043421/Severinghaus This award supports a project to obtain samples of ice in selected intervals for replication and verification of the validity and spatial representativeness of key results in the WAIS Divide ice core, and to obtain additional ice samples in areas of intense scientific interest where demand is high. The US Ice Core Working Group recommended in 2003 that NSF pursue the means to take replicate samples, termed \"replicate coring\". This recommendation was part of an agreement to reduce the diameter of the (then) new drilling system (the DISC drill) core to 12.2 cm to lighten logistics burdens, and the science community accepted the reduction in ice sample with the understanding that replicate coring would be able to provide extra sample volume in key intervals. The WAIS Divide effort would particularly benefit from replicate coring, because of the unique quality of the expected gas record and the large samples needed for gases and gas isotopes; thus this proposal to employ replicate coring at WAIS Divide. In addition, scientific demand for ice samples has been, and will continue to be, very unevenly distributed, with the ice core archive being completely depleted in depth intervals of high scientific interest (abrupt climate changes, volcanic sulfate horizons, meteor impact horizons, for example). The broader impacts of the proposed research may include identification of leads and lags between Greenland, tropical, and Antarctic climate change, enabling critical tests of hypotheses for the mechanism of abrupt climate change. Improved understanding of volcanic impacts on atmospheric chemistry and climate may also emerge. This understanding may ultimately help improve climate models and prediction of the Earth System feedback response to ongoing human perturbation in coming centuries. Outreach and public education about climate change are integral components of the PIs\u0027 activities and the proposed work will enhance these efforts. Broader impacts also include education and training of 2 postdoctoral scholars and 1 graduate student, and invaluable field experience for the graduate and undergraduate students who will likely make up the core processing team at WAIS Divide.", "east": -112.09, "geometry": "POINT(-112.09 -79.47)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": false, "keywords": "Ice Core Gas Records; Firn Air Isotopes; LABORATORY; FIELD SURVEYS; Mass Spectrometry; Not provided; FIELD INVESTIGATION; Ice Core; WAIS Divide", "locations": "WAIS Divide", "north": -79.47, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.47, "title": "Collaborative Research: Replicate Coring at WAIS Divide to Obtain Additional Samples at Events of High Scientific Interest", "uid": "p0000751", "west": -112.09}, {"awards": "1143619 Severinghaus, Jeffrey", "bounds_geometry": "POINT(-112.09 -79.47)", "dataset_titles": null, "datasets": null, "date_created": "Mon, 13 Jul 2015 00:00:00 GMT", "description": "1143619/Severinghaus This award supports a project to extend the study of gases in ice cores to those gases whose small molecular diameters cause them to escape rapidly from ice samples (the so-called \"fugitive gases\"). The work will employ helium, neon, argon, and oxygen measurements in the WAIS Divide ice core to better understand the mechanism of the gas close-off fractionation that occurs while air bubbles are incorporated into ice. The intellectual merit of the proposed work is that corrections for this fractionation using neon (which is constant in the atmosphere) may ultimately enable the first ice core-based atmospheric oxygen and helium records. Neon may also illuminate the mechanistic link between local insolation and oxygen used for astronomical dating of ice cores. Helium measure-ments in the deepest ~100 m of the core will also shed light on the stratigraphic integrity of the basal ice, and serve as a probe of solid earth-ice interaction at the base of the West Antarctic ice sheet. Past atmospheric oxygen records, currently unavailable prior to 1989 CE, would reveal changes in the size of the terrestrial biosphere carbon pool that accompany climate variations and place constraints on the biogeochemical feedback response to future warming. An atmospheric helium-3/helium-4 record would test the hypothesis that the solar wind (which is highly enriched in helium-3) condensed directly into Earth?s atmosphere during the collapse of the geomagnetic field that occurred 41,000 years ago, known as the Laschamp Event. Fugitive-gas samples will be taken on-site immediately after recovery of the ice core by the PI and one postdoctoral scholar, under the umbrella of an existing project to support replicate coring and borehole deepening. This work will add value to the scientific return from field work activity with little additional cost to logistical resources. The broader impacts of the work on atmospheric oxygen are that it may increase understanding of how terrestrial carbon pools and atmospheric greenhouse gas sources will respond in a feedback sense to the coming warming. Long-term atmospheric oxygen trends are also of interest for understanding biogeochemical regulatory mechanisms and the impact of atmospheric evolution on life. Helium records have value in understanding the budget of this non-renewable gas and its implications for space weather and solar activity. The project will train one graduate student and one postdoctoral scholar. The fascination of linking solid earth, cryosphere, atmosphere, and space weather will help to entrain and excite young scientists and efforts to understand the Earth as a whole interlinked system will provide fuel to outreach efforts at all ages.", "east": -112.09, "geometry": "POINT(-112.09 -79.47)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": false, "keywords": "WAIS Divide; Not provided; Tracers; FIELD INVESTIGATION; Past Biospheric Carbon Storage; LABORATORY; Fugitive Gases; Basal Processes; Neon; Helium; FIELD SURVEYS; Antarctica", "locations": "WAIS Divide; Antarctica", "north": -79.47, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -79.47, "title": "Fugitive Gases (Helium, Neon, and Oxygen) in the WAIS Divide Ice Core as Tracers of Basal Processes and Past Biospheric Carbon Storage", "uid": "p0000441", "west": -112.09}, {"awards": "1245659 Petrenko, Vasilii; 1246148 Severinghaus, Jeffrey; 1245821 Brook, Edward J.", "bounds_geometry": "POINT(162.167 -77.733)", "dataset_titles": "Gas and Dust Measurements for Taylor Glacier and Taylor Dome Ice Cores; Last Interglacial Mean Ocean Temperature; Mean Ocean Temperature in Marine Isotope Stage 4; Measurements of 14CH4 and 14CO in ice from Taylor Glacier: Last Deglaciation; N2O Concentration and Isotope Data for 74-59 ka from Taylor Glacier, Antarctica; Taylor Glacier CO2 Isotope Data 74-59 kyr; Taylor Glacier Noble Gases - Younger Dryas; The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "datasets": [{"dataset_uid": "601398", "doi": "10.15784/601398", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Gas Records; Ice Core Records; Marine Isotope Stage 4; MIS 4; Nitrous Oxide; Pleistocene; Taylor Dome Ice Core; Taylor Glacier", "people": "Shackleton, Sarah; Petrenko, Vasilii; Severinghaus, Jeffrey P.; Dyonisius, Michael; Schilt, Adrian; Brook, Edward J.; Menking, James", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "N2O Concentration and Isotope Data for 74-59 ka from Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601398"}, {"dataset_uid": "601176", "doi": "10.15784/601176", "keywords": "Antarctica; CO2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Methane; Noble Gas; Noble Gas Isotopes; Snow/ice; Snow/Ice; Taylor Glacier; Younger Dryas", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Taylor Glacier Noble Gases - Younger Dryas", "url": "https://www.usap-dc.org/view/dataset/601176"}, {"dataset_uid": "601198", "doi": "10.15784/601198", "keywords": "Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; CO2; Dust; Gas; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Mass Spectrometer; Methane; Nitrogen Isotopes; Oxygen Isotope; Paleoclimate; Snow/ice; Snow/Ice; Taylor Dome; Taylor Dome Ice Core", "people": "Severinghaus, Jeffrey P.; Bauska, Thomas; Rhodes, Rachel; McConnell, Joseph; Petrenko, Vasilii; Dyonisius, Michael; Shackleton, Sarah; Barker, Stephen; Baggenstos, Daniel; Marcott, Shaun; Brook, Edward J.; Menking, James", "repository": "USAP-DC", "science_program": null, "title": "Gas and Dust Measurements for Taylor Glacier and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/601198"}, {"dataset_uid": "601218", "doi": "10.15784/601218", "keywords": "Antarctica; Carbon-14; Carbon Dioxide; Chemistry:ice; Chemistry:Ice; CO2; Dome C Ice Core; Epica; Epica Dome C; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Chemistry; Ice Core Data; Ice Core Gas Records; Ice Core Records; Isotope Data; Last Interglacial; Mass Spectrometer; Mass Spectrometry; Methane; Oxygen; Oxygen Isotope; Paleotemperature; Pleistocene; Snow/ice; Snow/Ice; Taylor Dome Ice Core; Taylor Glacier", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Last Interglacial Mean Ocean Temperature", "url": "https://www.usap-dc.org/view/dataset/601218"}, {"dataset_uid": "601218", "doi": "10.15784/601218", "keywords": "Antarctica; Carbon-14; Carbon Dioxide; Chemistry:ice; Chemistry:Ice; CO2; Dome C Ice Core; Epica; Epica Dome C; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Chemistry; Ice Core Data; Ice Core Gas Records; Ice Core Records; Isotope Data; Last Interglacial; Mass Spectrometer; Mass Spectrometry; Methane; Oxygen; Oxygen Isotope; Paleotemperature; Pleistocene; Snow/ice; Snow/Ice; Taylor Dome Ice Core; Taylor Glacier", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Last Interglacial Mean Ocean Temperature", "url": "https://www.usap-dc.org/view/dataset/601218"}, {"dataset_uid": "601260", "doi": "10.15784/601260", "keywords": "Antarctica; Carbon-14; Cosmogenic; Ice Core; Methane", "people": "Petrenko, Vasilii; Dyonisius, Michael", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Measurements of 14CH4 and 14CO in ice from Taylor Glacier: Last Deglaciation", "url": "https://www.usap-dc.org/view/dataset/601260"}, {"dataset_uid": "601600", "doi": "10.15784/601600", "keywords": "Antarctica; Taylor Glacier", "people": "Barker, Stephen; Menking, James; Petrenko, Vasilii; Dyonisius, Michael; Severinghaus, Jeffrey P.; Menking, Andy; Buffen, Aron; Brook, Edward J.; Shackleton, Sarah; Bauska, Thomas", "repository": "USAP-DC", "science_program": null, "title": "Taylor Glacier CO2 Isotope Data 74-59 kyr", "url": "https://www.usap-dc.org/view/dataset/601600"}, {"dataset_uid": "600163", "doi": "10.15784/600163", "keywords": "Antarctica; Atmosphere; Geochemistry; Ice Core Records; Isotope; Paleoclimate; Taylor Glacier; Transantarctic Mountains", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "url": "https://www.usap-dc.org/view/dataset/600163"}, {"dataset_uid": "601415", "doi": "10.15784/601415", "keywords": "Antarctica; Glaciology; Ice Core Data; Ice Core Records; Paleoclimate; Paleotemperature; Taylor Glacier", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Mean Ocean Temperature in Marine Isotope Stage 4", "url": "https://www.usap-dc.org/view/dataset/601415"}], "date_created": "Mon, 13 Jul 2015 00:00:00 GMT", "description": "1245659/Petrenko This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, \u0026#948;18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, \u0026#948;13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of \u0026#948;13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica.", "east": 162.167, "geometry": "POINT(162.167 -77.733)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Not provided; USAP-DC; FIELD INVESTIGATION; Stratigraphy; FIELD SURVEYS; Antarctica; Paleoenvironment; Methane; Ice Core; Carbon Dioxide; FIXED OBSERVATION STATIONS; Stable Isotopes; Ablation Zone; Taylor Glacier; Nitrous Oxide; USA/NSF; LABORATORY; AMD; Cosmogenic; Amd/Us", "locations": "Taylor Glacier; Antarctica", "north": -77.733, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Petrenko, Vasilii; Brook, Edward J.; Severinghaus, Jeffrey P.; PETRENKO, VASILLI", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": -77.733, "title": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "uid": "p0000283", "west": 162.167}, {"awards": "1043217 Zagorodnov, Victor", "bounds_geometry": null, "dataset_titles": "Fiber-Optic Distributed Temperature Sensing at Windless Bight", "datasets": [{"dataset_uid": "609604", "doi": "10.7265/N5V122QS", "keywords": "Antarctica; Ice Shelf; McMurdo Sound; Mooring; Oceans; Physical Oceanography; Ross Ice Shelf; Southern Ocean", "people": "Holland, David; Zagorodnov, Victor; Tyler, Scott W.", "repository": "USAP-DC", "science_program": null, "title": "Fiber-Optic Distributed Temperature Sensing at Windless Bight", "url": "https://www.usap-dc.org/view/dataset/609604"}], "date_created": "Tue, 05 May 2015 00:00:00 GMT", "description": "Abstract Researchers will explore the use of a distributed temperature sensing monitoring system (DTS), using fiber-optical (FO) technology, as the basis of a sustainable, sub-ice cavity sensing array. FO cable systems, such as may be deployed through a hot-water drilled hole through an ice shelf, passing through the underlying cavity to the sea floor, are capable of measuring temperatures down fiber at 1 meter intervals, and at time frequencies as high as 15 seconds. DTS FO systems operate via optical time domain reflectometry along the fiber waveguide using inelastic backscatter of coherent laser light as a probe beam in the FO environment. The introduction of new technologies to the harsh environmental conditions of the Antarctic are often associated with high risk. However, the potential rewards of this approach (e.g. multiyear capability, minimal submerged mechanical or electrical components that may fail, relative simplicity of deployment and measurement principle, yet yielding distributed real time and spatial observation) are attractive enough to conduct a pilot project at a field-ready location (McMurdo). Current indications are that the instability of some of the world\u0027s largest ice sheets located around the Antarctic and Greenland may be caused by the presence of warming, deep ocean waters, shoaling over continental shelves, and melting the underside of floating ice shelves. Additional knowledge of the temporal and spatial variability of the temperature fields underneath terminal ice shelves, such as those draining the West Antarctic Ice Sheet, are needed to accurately project future global climate effects on ice-shelf ocean interactions, and in order to inform societal and technological aspects of adaption to changing sea-level.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e TEMPERATURE LOGGERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS", "is_usap_dc": true, "keywords": "GROUND STATIONS; Not provided; Conservative Temperature; MOORINGS; Ice Shelf Temperature; Ocean Temperature", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Zagorodnov, Victor; Holland, David; Tyler, Scott W.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED \u003e MOORINGS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Application of Distributed Temperature Sensors (DTS) for Antarctic Ice Shelves and Cavities", "uid": "p0000183", "west": null}, {"awards": "1146554 Rack, Frank", "bounds_geometry": "POLYGON((153.694 -77.89028,155.025433 -77.89028,156.356866 -77.89028,157.688299 -77.89028,159.019732 -77.89028,160.351165 -77.89028,161.682598 -77.89028,163.014031 -77.89028,164.345464 -77.89028,165.676897 -77.89028,167.00833 -77.89028,167.00833 -78.525252,167.00833 -79.160224,167.00833 -79.795196,167.00833 -80.430168,167.00833 -81.06514,167.00833 -81.700112,167.00833 -82.335084,167.00833 -82.970056,167.00833 -83.605028,167.00833 -84.24,165.676897 -84.24,164.345464 -84.24,163.014031 -84.24,161.682598 -84.24,160.351165 -84.24,159.019732 -84.24,157.688299 -84.24,156.356866 -84.24,155.025433 -84.24,153.694 -84.24,153.694 -83.605028,153.694 -82.970056,153.694 -82.335084,153.694 -81.700112,153.694 -81.06514,153.694 -80.430168,153.694 -79.795196,153.694 -79.160224,153.694 -78.525252,153.694 -77.89028))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 27 Apr 2015 00:00:00 GMT", "description": "This award provides support for \"EAGER: Handbook of Hot Water Drill System (HWDS) Design Considerations and Best Practices\" from the Antarctic Integrated System Science within the Office of Polar Programs. More and more science projects are proposing to use hot-water drilling systems (HWDS) to rapidly and/or cleanly access glacial and subglacial systems. To date the hot-water drill systems have been developed in isolation, and no attempt has been made to gather information about the different systems in one place. This proposal requests funds to document existing HWDS, and to then assess the design, testing, and development of a hot-water drill system that will be integrated with the evolving over-ice traverse capability of the USAP program. Intellectual Merit: A working handbook of best practices for hot-water drill design systems, including safety considerations, is long overdue, and will 1) provide suggestions for optimizing current systems; 2) contribute in the very near term to already funded projects such as WISSARD (Whillans Ice Stream Subglacial Access and Research Drilling); and 3) fit the long-term needs of the Antarctic science community who have identified rapid and clean access to glacial and subglaical environments as a top priority for the next decades. The collected information will be used for community education and training, will discuss potential design and operational trade-offs, and will identify ways to optimize the capabilities of an integrated USAP traverse and HWDS infrastructure. EAGER funding for this project is warranted because such a handbook has not been tried before, and needs to be shown to be doable prior to larger investments in such compilations. It fits the AISS (Antarctic Integrated System Science) program as an optimized HWDS will meet the needs of many different Antarctic research disciplines including biology, geology, glaciology, and oceanography. Broader Impacts: The proposed work is being done on behalf of the Antarctic research community, and will seek to capture the knowledge of experienced hot-water drill engineers who are nearing retirement, and to educate the next generation of hot-water drillers and engineers. The PI indicates he will work with the owners of such systems both within the US and abroad. Identification of best practices in hot-water drilling will save several different Antarctic research communities significant time, effort, and funding in the future.", "east": 167.00833, "geometry": "POINT(160.351165 -81.06514)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e GRAVITY CORER; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE TRANSDUCERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e NISKIN BOTTLES; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e FSI; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS", "is_usap_dc": false, "keywords": "Hot Water Drill; Subglacial Lake; Ross Ice Shelf; West Antarctic Ice Sheet; FIELD SURVEYS; TRAVERSE; Clean Access Drilling; Drilling Parameters; FIELD INVESTIGATION; DRILLING PLATFORMS; Not provided; Antarctica; WISSARD; Whillans Ice Stream; FIXED OBSERVATION STATIONS", "locations": "Antarctica; West Antarctic Ice Sheet; Whillans Ice Stream; Ross Ice Shelf", "north": -77.89028, "nsf_funding_programs": "Antarctic Integrated System Science", "paleo_time": null, "persons": "Rack, Frank", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; LAND-BASED PLATFORMS \u003e VEHICLES \u003e TRAVERSE; Not provided; WATER-BASED PLATFORMS \u003e FIXED PLATFORMS \u003e SURFACE \u003e DRILLING PLATFORMS", "repositories": null, "science_programs": null, "south": -84.24, "title": "EAGER: Handbook of Hot Water Drill System (HWDS) Design Considerations and Best Practices.", "uid": "p0000729", "west": 153.694}, {"awards": "0229314 Stone, John", "bounds_geometry": null, "dataset_titles": "Reedy Glacier Exposure Ages, Antarctica", "datasets": [{"dataset_uid": "609601", "doi": "10.7265/N5MG7MF1", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Cosmogenic; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Reedy Glacier; Sample/collection Description; Sample/Collection Description", "people": "Stone, John", "repository": "USAP-DC", "science_program": null, "title": "Reedy Glacier Exposure Ages, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609601"}], "date_created": "Mon, 30 Mar 2015 00:00:00 GMT", "description": "The stability of the marine West Antarctic Ice Sheet (WAIS) remains an important, unresolved problem for predicting future sea level change. Recent studies indicate that the mass balance of the ice sheet today may be negative or positive. The apparent differences may stem in part from short-term fluctuations in flow. By comparison, geologic observations provide evidence of behavior over much longer time scales. Recent work involving glacial-geologic mapping, dating and ice-penetrating radar surveys suggests that deglaciation of both the Ross Sea Embayment and coastal Marie Byrd Land continued into the late Holocene, and leaves open the possibility of ongoing deglaciation and grounding-line retreat. However, previous work in the Ross Sea Embayment was based on data from just three locations that are all far to the north of the present grounding line. Additional data from farther south in the Ross Sea Embayment are needed to investigate whether recession has ended, or if the rate and pattern of deglaciation inferred from our previous study still apply to the present grounding line. This award provides support to reconstruct the evolution of Reedy Glacier, in the southern Transantarctic Mountains, since the Last Glacial Maximum (LGM). Because Reedy Glacier emerges from the mountains above the grounding line, its surface slope and elevation should record changes in thickness of grounded ice in the Ross Sea up to the present day. The deglaciation chronology of Reedy Glacier therefore can indicate whether Holocene retreat of the WAIS ended thousands of years ago, or is still continuing at present. This integrated glaciologic, glacial-geologic, and cosmogenic-isotope exposure- dating project will reconstruct past levels of Reedy Glacier. Over two field seasons, moraines will be mapped, dated and correlated at sites along the length of the glacier. Radar and GPS measurements will be made to supplement existing ice thickness and velocity data, which are needed as input for a model of glacier dynamics. The model will be used to relate geologic measurements to the grounding-line position downstream. Ultimately, the mapping, dating and ice-modeling components of the study will be integrated into a reconstruction that defines changes in ice thickness in the southern Ross Sea since the LGM, and relates these changes to the history of grounding-line retreat. This work directly addresses key goals of the West Antarctic Ice Sheet Initiative, which are to understand the dynamics, recent history and possible future behavior of the West Antarctic Ice Sheet.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "Surface Exposure Dates; FIELD SURVEYS; Aluminum-26; Erosion; Rock Samples; Beryllium-10; Exposure Age", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Stone, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Late Quaternary History of Reedy Glacier", "uid": "p0000029", "west": null}, {"awards": "0944087 Hamilton, Gordon", "bounds_geometry": "POLYGON((145 -80,147 -80,149 -80,151 -80,153 -80,155 -80,157 -80,159 -80,161 -80,163 -80,165 -80,165 -80.035,165 -80.07,165 -80.105,165 -80.14,165 -80.175,165 -80.21,165 -80.245,165 -80.28,165 -80.315,165 -80.35,163 -80.35,161 -80.35,159 -80.35,157 -80.35,155 -80.35,153 -80.35,151 -80.35,149 -80.35,147 -80.35,145 -80.35,145 -80.315,145 -80.28,145 -80.245,145 -80.21,145 -80.175,145 -80.14,145 -80.105,145 -80.07,145 -80.035,145 -80))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 23 Jan 2015 00:00:00 GMT", "description": "This award supports a project to understand the flow dynamics of large, fast-moving outlet glaciers that drain the East Antarctic Ice Sheet. The project includes an integrated field, remote sensing and modeling study of Byrd Glacier which is a major pathway for the discharge of mass from the East Antarctic Ice Sheet (EAIS) to the ocean. Recent work has shown that the glacier can undergo short-lived but significant changes in flow speed in response to perturbations in its boundary conditions. Because outlet glacier speeds exert a major control on ice sheet mass balance and modulate the ice sheet contribution to sea level rise, it is essential that their sensitivity to a range of dynamic processes is properly understood and incorporated into prognostic ice sheet models. The intellectual merit of the project is that the results from this study will provide critically important information regarding the flow dynamics of large EAIS outlet glaciers. The proposed study is designed to address variations in glacier behavior on timescales of minutes to years. A dense network of global positioning satellite (GPS) instruments on the grounded trunk and floating portions of the glacier will provide continuous, high-resolution time series of horizontal and vertical motions over a 26-month period. These results will be placed in the context of a longer record of remote sensing observations covering a larger spatial extent, and the combined datasets will be used to constrain a numerical model of the glacier\u0027s flow dynamics. The broader impacts of the work are that this project will generate results which are likely to be a significant component of next-generation ice sheet models seeking to predict the evolution of the Antarctic Ice Sheet and future rates of sea level rise. The most recent report from the Intergovernmental Panel on Climate Change (IPCC) highlights the imperfect understanding of outlet glacier dynamics as a major obstacle to the production of an accurate sea level rise projections. This project will provide significant research opportunities for several early-career scientists, including the lead PI for this proposal (she is both a new investigator and a junior faculty member at a large research university) and two PhD-level graduate students. The students will be trained in glaciology, geodesy and numerical modeling, contributing to society\u0027s need for experts in those fields. In addition, this project will strengthen international collaboration between polar scientists and geodesists in the US and Spain. The research team will work closely with science educators in the Center for Remote Sensing of Ice Sheets (CReSIS) outreach program to disseminate project results to non-specialist audiences.", "east": 165.0, "geometry": "POINT(155 -80.175)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "Sea Level Rise; FIELD INVESTIGATION; Glacier; LABORATORY; Outlet Glaciers; Boundary Conditions; Model; Numerical Model; FIELD SURVEYS; Antarctica; COMPUTERS; Not provided; Flow Dynamics", "locations": "Antarctica", "north": -80.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Stearns, Leigh; Hamilton, Gordon S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -80.35, "title": "Collaborative Research: Byrd Glacier Flow Dynamics", "uid": "p0000319", "west": 145.0}, {"awards": "0632136 Nyblade, Andrew; 0632322 Wilson, Terry", "bounds_geometry": "POLYGON((-20 -70,-1 -70,18 -70,37 -70,56 -70,75 -70,94 -70,113 -70,132 -70,151 -70,170 -70,170 -72,170 -74,170 -76,170 -78,170 -80,170 -82,170 -84,170 -86,170 -88,170 -90,151 -90,132 -90,113 -90,94 -90,75 -90,56 -90,37 -90,18 -90,-1 -90,-20 -90,-20 -88,-20 -86,-20 -84,-20 -82,-20 -80,-20 -78,-20 -76,-20 -74,-20 -72,-20 -70))", "dataset_titles": "Incorporated Research Institutions for Seismology (IRIS); University NAVSTAR Consortium (UNAVCO)", "datasets": [{"dataset_uid": "000132", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Incorporated Research Institutions for Seismology (IRIS)", "url": "http://www.iris.edu/mda/YT?timewindow=2007-2018"}, {"dataset_uid": "000131", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "University NAVSTAR Consortium (UNAVCO)", "url": "http://www.unavco.org/data/gps-gnss/data-access-methods/dai2/app/dai2.html#groupingMod=contains;grouping=POLENET%20-%20ANET;scope=Station;sampleRate=normal"}], "date_created": "Thu, 22 Jan 2015 00:00:00 GMT", "description": "This project constructs POLENET a network of GPS and seismic stations in West Antarctica to understand how the mass of the West Antarctic ice sheet (WAIS) changes with time. The information is ultimately used to predict sea level rise accompanying global warming and interpret climate change records. The GPS (global positioning system) stations measure vertical and horizontal movements of bedrock, while the seismic stations characterize physical properties of the ice/rock interface, lithosphere, and mantle. Combined with satellite data, this project offers a more complete picture of the ice sheet\u0027s current state, its likely change in the near future, and its overall size during the last glacial maximum. This data will also be used to infer sub-ice sheet geology and the terrestrial heat flux, critical inputs to models of glacier movement. As well, this project improves tomographic models of the earth\u0027s deep interior and core through its location in the Earth\u0027s poorly instrumented southern hemisphere. \u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eBroader impacts of this project are varied. The work is relevant to society for improving our understanding of the impacts of global warming on sea level rise. It also supports education at the postdoctoral, graduate, and undergraduate levels, and outreach to groups underrepresented in the sciences. As an International Polar Year contribution, this project establishes a legacy of infrastructure for polar measurements. It also involves an international collaboration of twenty four countries. For more information see IPY Project #185 at IPY.org. NSF is supporting a complementary Arctic POLENET array being constructed in Greenland under NSF Award #0632320.", "east": 170.0, "geometry": "POINT(75 -80)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "Antarctica; Bedrock; Ice/Rock Interface; Climate Change; Seismic; West Antarctic Ice Sheet; FIELD SURVEYS; LABORATORY; Not provided; FIELD INVESTIGATION; Mass Balance; COMPUTERS; Sub-Ice Sheet Geology; Sea Level; Terrestrial Heat Flux", "locations": "Antarctica; West Antarctic Ice Sheet", "north": -70.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Wilson, Terry; Bevis, Michael; Anandakrishnan, Sridhar; Wiens, Douglas; Aster, Richard; Smalley, Robert; Nyblade, Andrew; Winberry, Paul; Hothem, Larry; Dalziel, Ian W.; Huerta, Audrey D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "IRIS", "repositories": "IRIS; UNAVCO", "science_programs": null, "south": -90.0, "title": "Collaborative Research: IPY: POLENET-Antarctica: Investigating Links Between Geodynamics and Ice Sheets", "uid": "p0000315", "west": -20.0}, {"awards": "0732804 McPhee, Miles; 0732730 Truffer, Martin; 0732869 Holland, David; 0732906 Nowicki, Sophie", "bounds_geometry": "POINT(-100.728 -75.0427)", "dataset_titles": "Automatic Weather Station Pine Island Glacier; Borehole Temperatures at Pine Island Glacier, Antarctica; Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica", "datasets": [{"dataset_uid": "600072", "doi": "10.15784/600072", "keywords": "Antarctica; Atmosphere; McMurdo; Meteorology; Oceans; Ross Island; Southern Ocean", "people": "McPhee, Miles G.", "repository": "USAP-DC", "science_program": null, "title": "Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica", "url": "https://www.usap-dc.org/view/dataset/600072"}, {"dataset_uid": "601216", "doi": "10.15784/601216", "keywords": "Antarctica; Atmosphere; Automated Weather Station; Flux; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Meteorology; Pine Island Glacier; Weather Station Data", "people": "Mojica Moncada, Jhon F.; Holland, David", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Automatic Weather Station Pine Island Glacier", "url": "https://www.usap-dc.org/view/dataset/601216"}, {"dataset_uid": "609627", "doi": "10.7265/N5T151MV", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Pine Island Glacier; Temperature", "people": "Truffer, Martin; Stanton, Timothy", "repository": "USAP-DC", "science_program": null, "title": "Borehole Temperatures at Pine Island Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609627"}], "date_created": "Tue, 30 Dec 2014 00:00:00 GMT", "description": "Collaborative With: McPhee 0732804, Holland 0732869, Truffer 0732730, Stanton 0732926, Anandakrishnan 0732844 \u003cbr/\u003eTitle: Collaborative Research: IPY: Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica\u003cbr/\u003e\u003cbr/\u003eThe Office of Polar Programs, Antarctic Integrated and System Science Program has made this award to support an interdisciplinary study of the effects of the ocean on the stability of glacial ice in the most dynamic region the West Antarctic Ice Sheet, namely the Pine Island Glacier in the Amundsen Sea Embayment. The collaborative project builds on the knowledge gained by the highly successful West Antarctic Ice Sheet program and is being jointly sponsored with NASA. Recent observations indicate a significant ice loss, equivalent to 10% of the ongoing increase in sea-level rise, in this region. These changes are largest along the coast and propagate rapidly inland, indicating the critical impact of the ocean on ice sheet stability in the region. While a broad range of remote sensing and ground-based instrumentation is available to characterize changes of the ice surface and internal structure (deformation, ice motion, melt) and the shape of the underlying sediment and rock bed, instrumentation has yet to be successfully deployed for observing boundary layer processes of the ocean cavity which underlies the floating ice shelf and where rapid melting is apparently occurring. Innovative, mini ocean sensors that can be lowered through boreholes in the ice shelf (about 500 m thick) will be developed and deployed to automatically provide ocean profiling information over at least three years. Their data will be transmitted through a conducting cable frozen in the borehole to the surface where it will be further transmitted via satellite to a laboratory in the US. Geophysical and remote sensing methods (seismic, GPS, altimetry, stereo imaging, radar profiling) will be applied to map the geometry of the ice shelf, the shape of the sub ice-shelf cavity, the ice surface geometry and deformations within the glacial ice. To integrate the seismic, glaciological and oceanographic observations, a new 3-dimensional coupled ice-ocean model is being developed which will be the first of its kind. NASA is supporting satellite based research and the deployment of a robotic-camera system to explore the environment in the ocean cavity underlying the ice shelf and NSF is supporting all other aspects of this study. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: This project is motivated by the potential societal impacts of rapid sea level rise and should result in critically needed improvements in characterizing and predicting the behavior of coupled ocean-ice systems. It is a contribution to the International Polar Year and was endorsed by the International Council for Science as a component of the \"Multidisciplinary Study of the Amundsen Sea Embayment\" proposal #258 of the honeycomb of endorsed IPY activities. The research involves substantial international partnerships with the British Antarctic Survey and the University of Bristol in the UK. The investigators will partner with the previously funded \"Polar Palooza\" education and outreach program in addition to undertaking a diverse set of outreach activities of their own. Eight graduate students and one undergraduate as well as one post doc will be integrated into this research project.", "east": -100.728, "geometry": "POINT(-100.728 -75.0427)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e SEISMIC REFLECTION PROFILERS", "is_usap_dc": true, "keywords": "West Antarctica; Seismic; LABORATORY; Amundsen Sea; Ocean-Ice Interaction; Remote Sensing; COMPUTERS; FIELD SURVEYS; LANDSAT-8; FIELD INVESTIGATION; Ocean Profiling; AUVS; Sea Level Rise; Stability; Not provided; Deformation; SATELLITES; Ice Movement; GROUND-BASED OBSERVATIONS; Ice Temperature; International Polar Year; Borehole", "locations": "West Antarctica; Amundsen Sea", "north": -75.0427, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Truffer, Martin; Stanton, Timothy; Bindschadler, Robert; Behar, Alberto; Nowicki, Sophie; Anandakrishnan, Sridhar; Holland, David; McPhee, Miles G.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e LANDSAT \u003e LANDSAT-8; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES; WATER-BASED PLATFORMS \u003e UNCREWED VEHICLES \u003e SUBSURFACE \u003e AUVS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -75.0427, "title": "Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica", "uid": "p0000043", "west": -100.728}, {"awards": "1441432 Scambos, Ted", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 30 Dec 2014 00:00:00 GMT", "description": "The investigators propose to build and test a multi-sensor, automated measurement station for monitoring Arctic and Antarctic ice-ocean environments. The system, based on a previously successful design, will incorporate weather and climate sensors, camera, snow and firn sensors, instruments to measure ice motion, ice and ocean thermal profilers, hydrophone, and salinity sensors. This new system will have two-way communications for real-time data delivery and is designed for rapid deployment by a small field group. AMIGOS-II will be capable of providing real time information on geophysical processes such as weather, snowmelt, ice motion and strain, fractures and melt ponds, firn thermal profiling, and ocean conditions from multiple levels every few hours for 2-4 years. Project personnel will conduct a field test of the new system at a location with a deep ice-covered lake. Development of AMIGOS-II is motivated by recent calls by the U.S. Antarctic Program Blue-Ribbon Panel to increase Antarctic logistical effectiveness, which cites a need for greater efficiency in logistical operations. Installation of autonomous stations with reduced logistical requirements advances this goal.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e CURRENT METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e TEMPERATURE PROFILERS", "is_usap_dc": false, "keywords": "Ice Ocean Interface; FIELD SURVEYS; Climate; Firn Temperature Measurements; Snowmelt; Strain; Ice Movement; Melt Ponds; LABORATORY; Not provided; Multi-Sensor; FIELD INVESTIGATION", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Scambos, Ted", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "A Low-power, Quick-install Polar Observation System (\u0027AMIGOS-II\u0027) for Monitoring Climate-ice-ocean Interactions", "uid": "p0000443", "west": null}, {"awards": "0838849 Bender, Michael; 0838843 Kurbatov, Andrei", "bounds_geometry": "POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.719998,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.7,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.673336,159.16667 -76.66667))", "dataset_titles": "Allan Hills Stable Water Isotopes; Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "datasets": [{"dataset_uid": "609541", "doi": "10.7265/N5NP22DF", "keywords": "Allan Hills; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Isotope", "people": "Kurbatov, Andrei V.; Introne, Douglas; Mayewski, Paul A.; Spaulding, Nicole", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills Stable Water Isotopes", "url": "https://www.usap-dc.org/view/dataset/609541"}, {"dataset_uid": "600099", "doi": "10.15784/600099", "keywords": "Allan Hills; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Ice Core Records; Paleoclimate; Solid Earth", "people": "Bender, Michael", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "url": "https://www.usap-dc.org/view/dataset/600099"}], "date_created": "Wed, 10 Dec 2014 00:00:00 GMT", "description": "This award supports a project to generate an absolute timescale for the Allan Hills Blue Ice Area (BIA), and then to reconstruct details of past climate changes and greenhouse gas concentrations for certain time periods back to 2.5 Ma. Ice ages will be determined by applying emerging methods for absolute and relative dating of trapped air bubbles (based on Argon-40/Argon-38, delta-18O of O2, and the O2/N2 ratio). To demonstrate the potential of the Allan Hills BIAs as a paleoclimate archive trenches and ice cores will be collected for age intervals corresponding to 110-140 ka, 1 Ma, and 2.5 Ma. During the proposed two field seasons a total of 6x100 m and additional 15 m cores will be combined with trenching. The intellectual merit of the proposed activity is that the results of this work will extend the landmark work of EPICA and other deep ice coring efforts, which give records dating back to 0.8 Ma, and will complement work planned by IPICS to drill a continuous Antarctic ice core extending to 1.5 Ma. The results will help to advance understanding of major climate regimes and transitions that took place between 0-2.5 Ma, including the 40 kyr world and the mid-Pleistocene climate transition. A major long-term scientific goal is to provide a transformative approach to the collection of paleoclimate records by establishing an \"International Climate Park\" in the Allan Hills BIA that would enable sampling of large quantities of known age ice as old as 2.5 Ma, by any interested American or foreign investigator. The broader impacts resulting from the proposed activity include training students who are well versed in advanced field, laboratory and numerical modeling methods combining geochemistry, glaciology, and paleoclimatology. We will include material relevant to our proposed research in our ongoing efforts in local education and in our outreach efforts for media. The University of Maine already has cyberinfrastructure, using state of the art web-based technology, which can provide a wide community of scientists with fast access to the results of our research. The work will contribute to the broad array of climate change studies that is informing worldwide understanding of natural and anthropogenic forced climate change, and the options for responding. This award has field work in Antarctica.", "east": 159.41667, "geometry": "POINT(159.29167 -76.7)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "GROUND-BASED OBSERVATIONS; LABORATORY; Deuterium Isotopes; Not provided; Oxygen Isotope", "locations": null, "north": -76.66667, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Spaulding, Nicole; Introne, Douglas; Bender, Michael; Kurbatov, Andrei V.; Mayewski, Paul A.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73333, "title": "Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "uid": "p0000046", "west": 159.16667}, {"awards": "1043092 Steig, Eric; 1043167 White, James", "bounds_geometry": null, "dataset_titles": "17O excess from WAIS Divide, 0 to 25 ka BP; WAIS Divide Ice Core Discrete CH4 (80-3403m); WAIS Divide WDC06A Oxygen Isotope Record", "datasets": [{"dataset_uid": "601741", "doi": "10.15784/601741", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Methane; WAIS", "people": "Brook, Edward J.; Sowers, Todd A.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core Discrete CH4 (80-3403m)", "url": "https://www.usap-dc.org/view/dataset/601741"}, {"dataset_uid": "601413", "doi": "10.15784/601413", "keywords": "Antarctica; Ice Core; Oxygen Isotope; WAIS Divide", "people": "Schoenemann, Spruce; Steig, Eric J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "17O excess from WAIS Divide, 0 to 25 ka BP", "url": "https://www.usap-dc.org/view/dataset/601413"}, {"dataset_uid": "609629", "doi": "10.7265/N5GT5K41", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Steig, Eric J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide WDC06A Oxygen Isotope Record", "url": "https://www.usap-dc.org/view/dataset/609629"}], "date_created": "Sat, 06 Dec 2014 00:00:00 GMT", "description": "This award supports a project to contribute one of the cornerstone analyses, stable isotopes of ice (Delta-D, Delta-O18) to the ongoing West Antarctic Ice Sheet Divide (WAIS) deep ice core. The WAIS Divide drilling project, a multi-institution project to obtain a continuous high resolution ice core record from central West Antarctica, reached a depth of 2560 m in early 2010; it is expected to take one or two more field seasons to reach the ice sheet bed (~3300 m), plus an additional four seasons for borehole logging and other activities including proposed replicate coring. The current proposal requests support to complete analyses on the WAIS Divide core to the base, where the age will be ~100,000 years or more. These analyses will form the basis for the investigation of a number of outstanding questions in climate and glaciology during the last glacial period, focused on the dynamics of the West Antarctic Ice Sheet and the relationship of West Antarctic climate to that of the Northern polar regions, the tropical Pacific, and the rest of the globe, on time scales ranging from years to tens of thousands of years. One new aspect of this work is the growing expertise at the University of Washington in climate modeling with isotope-tracer-enabled general circulation models, which will aid in the interpretation of the data. Another major new aspect is the completion and use of a high-resolution, semi-automated sampling system at the University of Colorado, which will permit the continuous analysis of isotope ratios via laser spectroscopy, at an effective resolution of ~2 cm or less, providing inter-annual time resolution for most of the core. Because continuous flow analyses of stable ice isotopes is a relatively new measurement, we will complement them with parallel measurements, every ~10-20 m, using traditional discrete sampling and analysis by mass spectrometry at the University of Washington. The intellectual merit and the overarching goal of the work are to see Inland WAIS become the reference ice isotope record for West Antarctica. The broader impacts of the work are that the data generated in this project pertain directly to policy-relevant and immediate questions of the stability of the West Antarctic ice sheet, and thus past and future changes in sea level, as well as the nature of climate change in the high southern latitudes. The project will also contribute to the development of modern isotope analysis techniques using laser spectroscopy, with applications well beyond ice cores. The project will involve a graduate student and postdoc who will work with both P.I.s, and spend time at both institutions. Data will be made available rapidly through the Antarctic Glaciological Data Center, for use by other researchers and the public.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e INFRARED LASER SPECTROSCOPY; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e INFRARED LASER SPECTROSCOPY", "is_usap_dc": true, "keywords": "AMD; ANALYTICAL LAB; USAP-DC; Amd/Us; LABORATORY; ICE CORE RECORDS; Antarctica; Wais Divide-project; FIELD SURVEYS; USA/NSF", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e ANALYTICAL LAB; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "uid": "p0000010", "west": null}, {"awards": "0943935 Isbell, John; 0943934 Taylor, Edith", "bounds_geometry": null, "dataset_titles": "Portal to search geologic sample collections, Polar Rock Repository, Byrd Polar Research Center, The Ohio State University; Portal to search paleobotanical collections, Biodiversity Institute, University of Kansas", "datasets": [{"dataset_uid": "001377", "doi": "", "keywords": null, "people": null, "repository": "PRR", "science_program": null, "title": "Portal to search geologic sample collections, Polar Rock Repository, Byrd Polar Research Center, The Ohio State University", "url": "http://research.bpcrc.osu.edu/rr/"}, {"dataset_uid": "002567", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Portal to search paleobotanical collections, Biodiversity Institute, University of Kansas", "url": "http://biodiversity.ku.edu/paleobotany/collections/collections-search"}, {"dataset_uid": "001402", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Portal to search paleobotanical collections, Biodiversity Institute, University of Kansas", "url": "http://biodiversity.ku.edu/paleobotany/collections/collections-search"}], "date_created": "Tue, 23 Sep 2014 00:00:00 GMT", "description": "Intellectual Merit:\u003cbr/\u003eThe focus of this proposal is to collect fossil plants and palynomorphs from Permian-Triassic (P-T) rocks of the central Transantarctic Mountains (CTM), together with detailed data on sedimentologic and paleoecologic depositional environments. Fossil plants are important climate proxies that offer a unique window into the past, and the CTM fossils are an important source of data on the ways that plants responded to a strongly seasonal, polar light regime during a time of global change. The proposed project uses paleobotanical expertise, integrated with detailed sedimentology and stratigraphy, to reconstruct Permian-Triassic plant communities and their paleoenvironments. This interdisciplinary approach could uncover details of Antarctica?s complex late Paleozoic and Mesozoic environmental and climatic history which included: 1) deglaciation, 2) development and evolution of a post-glacial landscape and biota, 3) environmental and biotic change associated with the end-Permian mass extinction, 4) environmental recovery in the earliest Triassic, 5) strong, possible runaway Triassic greenhouse, and 6) widespread orogenesis and development of a foreland basin system. The PIs will collect compression floras both quantitatively and qualitatively to obtain biodiversity and abundance data. Since silicified wood is also present, the PIs will analyze tree rings and growth in a warm, high-latitude environment for which there is no modern analogue. Fossil plants from the CTM can provide biological and environmental information to: 1) interpret paleoclimate when Gondwana moved from icehouse to greenhouse conditions; 2) trace floral evolution across the P-T boundary; 3) reconstruct Antarctic plant life; 4) further understanding of plant adaptations to high latitudes. The Intellectual Merit of the research includes: 1) tracing floral evolution after the retreat of glaciers; 2) examining floral composition and diversity across the PTB; and 3) obtaining data on the recovery of these ecosystems in the Early Triassic, as well as changes in floral cover and diversity in the Early-Middle Triassic. Antarctica is the only place on Earth that includes extensive outcrops of terrestrial rocks, combined with widespread and well-preserved plant fossils, which spans this crucial time period.\u003cbr/\u003e\u003cbr/\u003eBroader impacts:\u003cbr/\u003eThe broader impacts include public outreach; teaching, and mentoring of women and underrepresented students; mentoring graduate student, postdoctoral, and new faculty women; development of an inquiry-based workshop on Antarctic paleoclimate with the Division of Education, KU Natural History Museum; continuing support of workshops for middle school girls in science via the Expanding Your Horizons Program, Emporia State University, and the TRIO program, KU; exploring Antarctic geosciences through video/computer links from McMurdo Station and satellite phone conferences from the field with K-12 science classes in Wisconsin and Kansas, and through participation in the NSF Research Experiences for Teachers program at the University of Wisconsin.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "FIELD SURVEYS; LABORATORY; Transanatarctic Basin; Paleobotany; Fossil Plants; FIELD INVESTIGATION; Sedimentology; Late Paleozoic Ice Age; Not provided; Central Transantarctic Mountains; Beardmore Glacier", "locations": "Transanatarctic Basin; Central Transantarctic Mountains; Beardmore Glacier", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Instrumentation and Support; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e PALEOZOIC \u003e PERMIAN; PHANEROZOIC \u003e MESOZOIC \u003e TRIASSIC; PHANEROZOIC \u003e PALEOZOIC \u003e PERMIAN; PHANEROZOIC \u003e MESOZOIC \u003e TRIASSIC", "persons": "Isbell, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "PRR", "repositories": "PI website; PRR", "science_programs": null, "south": null, "title": "Collaborative Research: Antarctic Ecosystems across the Permian-Triassic Boundary: Integrating Paleobotany, Sedimentology, and Paleoecology", "uid": "p0000372", "west": null}, {"awards": "0944199 Waddington, Edwin", "bounds_geometry": null, "dataset_titles": "WAIS Divide Sonic Log Data", "datasets": [{"dataset_uid": "609592", "doi": "10.7265/N5T72FD2", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Physical Properties; Sonic Log; WAIS Divide; WAIS Divide Ice Core", "people": "Kluskiewicz, Dan; Waddington, Edwin D.; McCarthy, Michael; Anandakrishnan, Sridhar; Matsuoka, Kenichi", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Sonic Log Data", "url": "https://www.usap-dc.org/view/dataset/609592"}], "date_created": "Wed, 03 Sep 2014 00:00:00 GMT", "description": "0944199/Matsuoka\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to test the hypothesis that abrupt changes in fabric exist and are associated with both climate transitions and volcanic eruptions. It requires depth-continuous measurements of the fabric. By lowering a new logging tool into the WAIS Divide borehole after the completion of the core drilling, this project will measure acoustic-wave speeds as a function of depth and interpret it in terms of ice fabrics. This interpretation will be guided by ice-core-measured fabrics at sparse depths. This project will apply established analytical techniques for the ice-sheet logging and estimate depth profiles of both compressional- and shear-wave speeds at short intervals (~ 1 m). Previous logging projects measured only compressional-wave speeds averaged over typically 5-7 m intervals. Thus the new logger will enable more precise fabric interpretations. Fabric measurements using thin sections have revealed distinct fabric patterns separated by less than several meters; fabric measurements over a shorter period are crucial. At the WAIS Divide borehole, six two-way logging runs will be made with different observational parameters so that multiple wave-propagation modes will be identified, yielding estimates of both compressional- and shear-wave speeds. Each run takes approximately 24 hours to complete; we propose to occupy the boreholes in total eight days. The logging at WAIS Divide is temporarily planned in December 2011, but the timing is not critical. This project?s scope is limited to the completion of the logging and fabric interpretations. Results will be immediately shared with other WAIS Divide researchers. Direct benefits of this data sharing include guiding further thin-section analysis of the fabric, deriving a precise thinning function that retrieves more accurate accumulation history and depth-age scales. The PIs of this project have conducted radar and seismic surveys in this area and this project will provide a ground truth for these regional remote-sensing assessments of the ice interior. In turn, these remote sensing means can extend the results from the borehole to larger parts of the central West Antarctica. This project supports education for two graduate students for geophysics, glaciology, paleoclimate, and polar logistics. The instrument that will be acquired in this project can be used at other boreholes for ice-fabric characterizations and for englacial hydrology (wetness of temperate ice).", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e PROBES", "is_usap_dc": true, "keywords": "WAIS Divide; GROUND STATIONS; Western Divide Core; Antarctic Ice Sheet", "locations": "Antarctic Ice Sheet; WAIS Divide", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Matsuoka, Kenichi; Kluskiewicz, Dan; Anandakrishnan, Sridhar; McCarthy, Michael; Waddington, Edwin D.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Collaborative research: acoustic logging of the WAIS Divide borehole", "uid": "p0000051", "west": null}, {"awards": "0944078 Albert, Mary", "bounds_geometry": "POINT(112.05 79.28)", "dataset_titles": "Firn Permeability and Density at WAIS Divide", "datasets": [{"dataset_uid": "609602", "doi": "10.7265/N57942NT", "keywords": "Antarctica; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; WAIS Divide; WAIS Divide Ice Core", "people": "Albert, Mary R.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Firn Permeability and Density at WAIS Divide", "url": "https://www.usap-dc.org/view/dataset/609602"}], "date_created": "Fri, 15 Aug 2014 00:00:00 GMT", "description": "This award supports a project to investigate the transformations from snow to firn to ice and the underlying physics controlling firn\u0027s ability to store atmospheric samples from the past. Senior researchers, a graduate student, and several undergraduates will make high-resolution measurements of both the diffusivity and permeability profiles of firn cores from several sites in Antarctica and correlate the results with their microstructures quantified using advanced materials characterization techniques (scanning electron microscopy and x-ray computed tomography). The use of cores from different sites will enable us to examine the influence of different local climate conditions on the firn structure. We will use the results to help interpret existing measurements of firn air chemical composition at several sites where firn air measurements exist. There are three closely-linked goals of this project: to quantify the dependence of interstitial transport properties on firn microstructure from the surface down to the pore close-off depth, to determine at what depths bubbles form and entrap air, and investigate the extent to which these features exhibit site-to-site differences, and to use the measurements of firn air composition and firn structure to better quantify the differences between atmospheric composition (present and past), and the air trapped in both the firn and in air bubbles within ice by comparing the results of the proposed work with firn air measurements that have been made at the WAIS Divide and Megadunes sites. The broader impacts of this project are that the study will this study will enable us to elucidate the fundamental controls on the metamorphism of firn microstructure and its impact on processes of gas entrapment that are important to understanding ice core evidence of past atmospheric composition and climate change. The project will form the basis for the graduate research of a PhD student at Dartmouth, with numerous opportunities for undergraduate involvement in cold room measurements and outreach. The investigators have a track record of successfully mentoring women students, and will build on this experience. In conjunction with local earth science teachers, and graduate and undergraduate students will design a teacher-training module on the role of the Polar Regions in climate change. Once developed and tested, this module will be made available to the broader polar research community for their use with teachers in their communities.", "east": -112.05, "geometry": "POINT(-112.05 -79.28)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e MICROTOMOGRAPHY; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES", "is_usap_dc": true, "keywords": "Firn Air; FIELD SURVEYS; Physics; GROUND-BASED OBSERVATIONS; Antarctica; Megadunes; Tomography; Wais Divide-project; Firn Core; FIELD INVESTIGATION; Not provided; Firn Permeability; LABORATORY; Visual Observations; Ice; Firn; WAIS Divide; Microstructure; Density", "locations": "Antarctica; WAIS Divide", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Baker, Ian; Albert, Mary R.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.28, "title": "Firn Metamorphism: Microstructure and Physical Properties", "uid": "p0000049", "west": -112.05}, {"awards": "0087345 Conway, Howard", "bounds_geometry": "POINT(112 79)", "dataset_titles": null, "datasets": null, "date_created": "Fri, 15 Aug 2014 00:00:00 GMT", "description": "This award supports a program of ground-based geophysical measurements to map in detail the spatial variations of ice flow, accumulation rate, internal layering and ice thickness at the sites which have been identified as promising locations to drill the next deep ice core in West Antarctica. The main investigative tools are a high- and low-frequency ice penetrating radar to image the topography of internal layers and the bed, repeat GPS surveys to calculate the present day surface velocity field, synthetic aperture radar (SAR) interferometry to calculate the regional velocity field, and short firn cores to calculate present day accumulation rates. The data which will be collected will be used to as input to time-dependent ice flow and temperature models that will predict depth variation of age, layer thickness, and temperature. As well as yielding an estimate of expected conditions before drilling, the mismatch between the model prediction and data eventually recovered from the core will help infer thinning and climate (accumulation and temperature) histories for the region. The Western Divide, between the Ross Sea Embayment and the Amundsen Sea, has been identified as the region which best satisfies the criteria which have been established for a deep drilling site. Preliminary site selection using airborne geophysical methods has identified several potential drill sites on the Western Divide where the climate record should be best preserved. This work will contribute in a major way to the final site selection for the next deep ice core in West Antarctica.", "east": -112.0, "geometry": "POINT(-112 -79)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e SAR", "is_usap_dc": false, "keywords": "FIELD SURVEYS; Internal Layering; Radar; Accumulation Rate; FIELD INVESTIGATION; LABORATORY; Not provided; Internal Layers; Antarctica; Ice Flow; Interferometry; Ice Thickness", "locations": "Antarctica", "north": -79.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Conway, Howard; Waddington, Edwin D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -79.0, "title": "Collaborative Research: Western Divide West Antarctic Ice Cores (WAISCORES) Site Selection", "uid": "p0000557", "west": -112.0}, {"awards": "0944343 Severinghaus, Jeffrey", "bounds_geometry": "POINT(-112.05 -79.28)", "dataset_titles": null, "datasets": null, "date_created": "Fri, 15 Aug 2014 00:00:00 GMT", "description": "Severinghaus/0944343\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to develop both a record of past local temperature change at the WAIS Divide site, and past mean ocean temperature using solubility effects on atmospheric krypton and xenon. The two sets of products share some of the same measurements, because the local temperature is necessary to make corrections to krypton and xenon, and thus synergistically support each other. Further scientific synergy is obtained by the fact that the mean ocean temperature is constrained to vary rather slowly, on a 1000-yr timescale, due to the mixing time of the deep ocean. Thus rapid changes are not expected, and can be used to flag methodological problems if they appear in the krypton and xenon records. The mean ocean temperature record produced will have a temporal resolution of 500 years, and will cover the entire 3400 m length of the core. This record will be used to test hypotheses regarding the cause of atmospheric carbon dioxide (CO2) variations, including the notion that deep ocean stratification via a cold salty stagnant layer caused atmospheric CO2 drawdown during the last glacial period. The local surface temperature record that results will synergistically combine with independent borehole thermometry and water isotope records to produce a uniquely precise and accurate temperature history for Antarctica, on a par with the Greenland temperature histories. This history will be used to test hypotheses that the ?bipolar seesaw? is forced from the North Atlantic Ocean, which makes a specific prediction that the timing of Antarctic cooling should slightly lag abrupt Greenland warming. The WAIS Divide ice core is expected to be the premier atmospheric gas record of the past 100,000 years for the foreseeable future, and as such, making this set of high precision noble gas measurements adds value to the other gas records because they all share a common timescale and affect each other in terms of physical processes such as gravitational fractionation. Broader impact of the proposed work: The clarification of timing of atmospheric CO2 and Antarctic surface temperature, along with deep ocean temperature, will aid in efforts to understand the feedbacks among CO2, temperature, and ocean circulation. These feedbacks bear on the future response of the Earth System to anthropogenic forcing. A deeper understanding of the mechanism of deglaciation, and the role of atmospheric CO2, will go a long way towards clarifying a topic that has become quite confused in the public mind in the public debate over climate change. Elucidating the role of the bipolar seesaw in ending glaciations and triggering CO2 increases may also provide an important warning that this represents a potential positive feedback, not currently considered by IPCC. Education of one graduate student, and training of one technician, will add to the nation?s human resource base. Outreach activities will be enhanced and will to continue to entrain young people in discovery, and excitement will enhance the training of the next generation of scientists and educators.", "east": -112.05, "geometry": "POINT(-112.05 -79.28)", "instruments": null, "is_usap_dc": false, "keywords": "Noble Gas; FIELD INVESTIGATION; Climate; Xenon; FIELD SURVEYS; Ice Core; Antarctica; Krypton; LABORATORY", "locations": "Antarctica", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -79.28, "title": "Noble Gases in the WAIS Divide Ice Core as Indicators of Local and Mean-ocean Temperature", "uid": "p0000430", "west": -112.05}, {"awards": "0944475 Kaplan, Michael", "bounds_geometry": "POLYGON((-149.7 -84.1,-118.61 -84.1,-87.52 -84.1,-56.43 -84.1,-25.34 -84.1,5.75 -84.1,36.84 -84.1,67.93 -84.1,99.02 -84.1,130.11 -84.1,161.2 -84.1,161.2 -84.43,161.2 -84.76,161.2 -85.09,161.2 -85.42,161.2 -85.75,161.2 -86.08,161.2 -86.41,161.2 -86.74,161.2 -87.07,161.2 -87.4,130.11 -87.4,99.02 -87.4,67.93 -87.4,36.84 -87.4,5.75 -87.4,-25.34 -87.4,-56.43 -87.4,-87.52 -87.4,-118.61 -87.4,-149.7 -87.4,-149.7 -87.07,-149.7 -86.74,-149.7 -86.41,-149.7 -86.08,-149.7 -85.75,-149.7 -85.42,-149.7 -85.09,-149.7 -84.76,-149.7 -84.43,-149.7 -84.1))", "dataset_titles": "Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines", "datasets": [{"dataset_uid": "600115", "doi": "10.15784/600115", "keywords": "Antarctica; Cosmogenic Dating; Sample/collection Description; Sample/Collection Description; Solid Earth; Transantarctic Mountains", "people": "Kaplan, Michael", "repository": "USAP-DC", "science_program": null, "title": "Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines", "url": "https://www.usap-dc.org/view/dataset/600115"}], "date_created": "Thu, 17 Jul 2014 00:00:00 GMT", "description": "The proposed work will investigate changes in the compositional variation of glacial tills over time across two concentric sequences of Pleistocene moraines located adjacent to the heads of East Antarctic outlet glaciers in the Transantarctic Mountains (TAM). The chronologic framework for this work will be generated from cosmogenic exposure ages of boulders on prominent morainal ridges. The PIs hypothesize that variations in till composition may indicate a change in ice flow direction or a change in the composition of the original source area, while ages of the moraines provide a long-term terrestrial perspective on ice sheet dynamics. Both results are vital for modeling experiments that aim to reconstruct the East Antarctic Ice Sheet and assess its role in the global climate system and its potential impact on global sea level rise. The variation of till compositions through time also allows for a more accurate interpretation of sediment cores from the Ross Sea and the Southern Ocean. Additionally, till exposures at the head of some East Antarctic outlet glaciers have been shown to contain subglacial material derived from East Antarctic bedrock, providing a window through the ice to view East Antarctica?s inaccessible bedrock. Till samples will be collected from two well-preserved sequences of moraine crests at Mt. Howe (head of Scott Glacier) and Mt. Achernar (between Beardmore and Nimrod Glaciers). Each size fraction in glacial till provides potentially valuable information, and the PIs will measure the petrography of the clast and sand fractions, quantitative X-ray diffraction on the crushed \u003c2mm fraction, elemental abundance of the silt/clay fraction, and U/Pb of detrital zircons in the sand fraction. Data collection will rely on established methods previously used in this region and the PIs will also explore new methods to assess their efficacy. On the same moraines crests sampled for provenance studies, the PIs will sample for cosmogenic surface exposure analyses to provide a chronologic framework at the sites for provenance changes through time. \u003cbr/\u003e\u003cbr/\u003eBroader Impact \u003cbr/\u003eThe proposed research involves graduate and undergraduate training in a diverse array of laboratory methods. Students and PIs will be make presentations to community and campus groups, as well as conduct interviews with local news outlets. The proposed work also establishes a new, potentially long-term, collaboration between scientists at IUPUI and LDEO and brings a new PI (Kaplan) into the field of Antarctic Earth Sciences.", "east": 161.2, "geometry": "POINT(5.75 -85.75)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION", "locations": null, "north": -84.1, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kaplan, Michael", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.4, "title": "Collaborative Research: Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines", "uid": "p0000459", "west": -149.7}, {"awards": "0839093 McConnell, Joseph; 0839075 Priscu, John; 0839122 Saltzman, Eric", "bounds_geometry": "POINT(112.05 -79.28)", "dataset_titles": "Fluorescence spectroscopy data from the West Antarctic Ice Sheet (WAIS) Divide ice core, WDC06A; Holocene Black Carbon in Antarctica; Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core; Prokaryotic cell concentration record from the WAIS Divide ice core", "datasets": [{"dataset_uid": "601006", "doi": "10.15784/601006", "keywords": "Antarctica; Fluorescence Spectroscopy; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; WAIS Divide; WAIS Divide Ice Core", "people": "D\u0027Andrilli, Juliana; Priscu, John", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Fluorescence spectroscopy data from the West Antarctic Ice Sheet (WAIS) Divide ice core, WDC06A", "url": "https://www.usap-dc.org/view/dataset/601006"}, {"dataset_uid": "601034", "doi": "10.15784/601034", "keywords": "Antarctica; Atmosphere; Black Carbon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph; Arienzo, Monica", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Holocene Black Carbon in Antarctica", "url": "https://www.usap-dc.org/view/dataset/601034"}, {"dataset_uid": "601072", "doi": "10.15784/601072", "keywords": "Antarctica; Biota; Cell Counts; Glaciology; Microbiology; WAIS Divide; WAIS Divide Ice Core", "people": "Santibanez, Pamela; Priscu, John", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Prokaryotic cell concentration record from the WAIS Divide ice core", "url": "https://www.usap-dc.org/view/dataset/601072"}, {"dataset_uid": "601361", "doi": "10.15784/601361", "keywords": "Antarctica; Carbonyl Sulfide; Trace Gases", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/601361"}], "date_created": "Fri, 30 May 2014 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to use the WAIS Divide deep core to investigate the Last Deglaciation at sub-annual resolution through an integrated set of chemical and biological analyses. The intellectual merit of the project is that these analyses, combined with others, will take advantage of the high snow accumulation WAIS Divide site yielding the highest time resolution glacio-biogeochemical and gas record of any deep Antarctic ice core. With other high resolution Greenland cores (GISP2 and GRIP) and lower resolution Antarctic cores, the combined record will yield new insights into worldwide climate dynamics and abrupt change. The proposed chemical, biological, and elemental tracer measurements will also be used to address all of the WAIS Divide science themes. The broader impacts of the project include education and outreach activities such as numerous presentations to local K-12 students; opportunities for student and teacher involvement in the laboratory work; a teacher training program in Earth sciences in the heavily minority Santa Ana, Compton, and Costa Mesa, California school districts; and development of high school curricula. Extensive graduate and undergraduate student involvement also is planned and will include one post doctoral associate, one graduate student, and undergraduate hourly involvement at DRI; a graduate student and undergraduates at University of California, Irvine (UCI); and a post doctoral fellow at MSU. Student recruitment will be made from underrepresented groups building on a long track record of involvement and will include the NSF funded California Alliance for Minority Participation (CAMP) and the Montana American Indian Research Opportunities (AIRO).\u003cbr/\u003e\u003cbr/\u003eThis award does not involve field work in Antarctica.", "east": 112.05, "geometry": "POINT(112.05 -79.28)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e CARBON ANALYZERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e WAS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e ICE CORE MELTER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PHOTOMETERS \u003e SPECTROPHOTOMETERS", "is_usap_dc": true, "keywords": "FIELD SURVEYS; Bacteria Ice Core; LABORATORY; Ice Core; FIELD INVESTIGATION; West Antarctica; Not provided; Dissolved Organic Carbon", "locations": "West Antarctica", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY", "persons": "Foreman, Christine; Skidmore, Mark; Saltzman, Eric; McConnell, Joseph; Priscu, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.28, "title": "Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core", "uid": "p0000273", "west": 112.05}, {"awards": "0839066 Cole-Dai, Jihong", "bounds_geometry": null, "dataset_titles": "Major Ion Chemistry Data of WAIS Divide Ice Core Brittle Ice", "datasets": [{"dataset_uid": "609546", "doi": "10.7265/N5RF5S0D", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ion Chromatograph; WAIS Divide; WAIS Divide Ice Core", "people": "Cole-Dai, Jihong", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Major Ion Chemistry Data of WAIS Divide Ice Core Brittle Ice", "url": "https://www.usap-dc.org/view/dataset/609546"}], "date_created": "Wed, 19 Mar 2014 00:00:00 GMT", "description": "Cole-Dai/0839066\u003cbr/\u003e\u003cbr/\u003eThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to make continuous major ion analyses in the West Antarctica Ice Sheet Divide (WAIS Divide) ice core by sampling the brittle ice zone (approximately from 500 m to 1500 m). The intellectual merit of the project is that these will likely be the only chemical measurements on the brittle ice zone and, therefore, will bridge the gap in the expected continuous records of climate, ice sheet dynamics and biological evolution based on chemical measurements. High resolution sampling and analysis, probably on selected portions and depth intervals in the brittle ice zone, will help with the independent, high-precision dating of the WAIS Divide core and contribute to the achievement of the major objectives of the WAIS Divide project?development of high resolution climate records with which to investigate issues of climate forcing by greenhouse gases and the role of Antarctica and Southern Hemisphere in the global climate system. Planned collaboration with other WAIS Divide investigators will develop the longest and most detailed volcanic record from Antarctica ice cores. The broader impacts of this project include a contribution to enhancing our knowledge of the climate system. Such improvements in understanding of the global climate system and the ability to predict the magnitude and uncertainty of future changes are highly relevant to the global community. The project will support post-doctoral scientists and graduate students, including those from under-represented groups, will contribute to education, an help to train future scientists and promote diversity in research and education. Public outreach activities of this project will contribute to informal science education of school age children in the Eastern South Dakota region.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Paleoclimate; LABORATORY; Ions; GROUND-BASED OBSERVATIONS; WAISCORES; Ion Chromatograph; Not provided; Ice Core", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "NOT APPLICABLE", "persons": "Cole-Dai, Jihong", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Major Ion Chemical Analysis of Brittle Ice in the WAIS Divide Ice Core", "uid": "p0000047", "west": null}, {"awards": "1043619 Hemming, Sidney; 1043572 Licht, Kathy", "bounds_geometry": "POLYGON((-177.982 -63.997,-149.64107 -63.997,-121.30014 -63.997,-92.95921 -63.997,-64.61828 -63.997,-36.27735 -63.997,-7.93642 -63.997,20.40451 -63.997,48.74544 -63.997,77.08637 -63.997,105.4273 -63.997,105.4273 -66.3324,105.4273 -68.6678,105.4273 -71.0032,105.4273 -73.3386,105.4273 -75.674,105.4273 -78.0094,105.4273 -80.3448,105.4273 -82.6802,105.4273 -85.0156,105.4273 -87.351,77.08637 -87.351,48.74544 -87.351,20.40451 -87.351,-7.93642 -87.351,-36.27735 -87.351,-64.61828 -87.351,-92.95921 -87.351,-121.30014 -87.351,-149.64107 -87.351,-177.982 -87.351,-177.982 -85.0156,-177.982 -82.6802,-177.982 -80.3448,-177.982 -78.0094,-177.982 -75.674,-177.982 -73.3386,-177.982 -71.0032,-177.982 -68.6678,-177.982 -66.3324,-177.982 -63.997))", "dataset_titles": "East Antarctic outlet glacier contributions to the Ross Sea from chronology of detrital grains", "datasets": [{"dataset_uid": "600124", "doi": "10.15784/600124", "keywords": "Antarctica; East Antarctica; Geochemistry; Ross Sea; Sample/collection Description; Sample/Collection Description; Solid Earth; Southern Ocean; West Antarctica", "people": "Hemming, Sidney R.", "repository": "USAP-DC", "science_program": null, "title": "East Antarctic outlet glacier contributions to the Ross Sea from chronology of detrital grains", "url": "https://www.usap-dc.org/view/dataset/600124"}], "date_created": "Tue, 18 Feb 2014 00:00:00 GMT", "description": "Intellectual Merit: The PIs proposed a provenance study of glacial deposits in the Ross Embayment that will provide a broad scale geochronologic survey of detrital minerals in till to help characterize bedrock beneath the East Antarctic ice sheet and constrain Antarctica?s glacial history. This project capitalizes on previous investments in field sampling. Analytical tools applied to single mineral grains extracted from existing collections of glacial till will generate ?fingerprints? of East Antarctic outlet glaciers and West Antarctic till to refine paleo-ice flow models for the Ross Embayment during the last glacial maximum, older records from ANDRILL cores, and to assess IRD sources in the Southern Ocean. New provenance tracers will include a suite of geochronological methods that together provide greater insights into the orogenic and erosional history the region. This project will include U/Pb of detrital zircons, (U-Th)/He on a subset of the U/Pb dated zircons, as well as Ar-Ar of detrital hornblende, mica and feldspars. Broader impacts: This research will train one M.S. student at IUPUI, a Ph.D. student at Columbia, and several undergraduates at both institutions. Graduate students involved in the project will be involved in mentoring undergraduate researchers. Incorporation of research discoveries will be brought into the classroom by providing concrete examples and exercises at the appropriate level. Licht and Columbia graduate student E. Pierce are developing outreach projects with local secondary school teachers to investigate the provenance of glacial materials in their local areas. The research will have broad applicability to many fields.", "east": 105.4273, "geometry": "POINT(-36.27735 -75.674)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e LA-ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e PETROGRAPHIC MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS", "is_usap_dc": true, "keywords": "Not provided; FIELD SURVEYS", "locations": null, "north": -63.997, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY", "persons": "Licht, Kathy; Hemming, Sidney R.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.351, "title": "Collaborative Research: East Antarctic outlet glacier contributions to the Ross Sea from chronology of detrital grains", "uid": "p0000333", "west": -177.982}, {"awards": "0934534 Sergienko, Olga", "bounds_geometry": "POLYGON((-106 -70,-105.4 -70,-104.8 -70,-104.2 -70,-103.6 -70,-103 -70,-102.4 -70,-101.8 -70,-101.2 -70,-100.6 -70,-100 -70,-100 -70.6,-100 -71.2,-100 -71.8,-100 -72.4,-100 -73,-100 -73.6,-100 -74.2,-100 -74.8,-100 -75.4,-100 -76,-100.6 -76,-101.2 -76,-101.8 -76,-102.4 -76,-103 -76,-103.6 -76,-104.2 -76,-104.8 -76,-105.4 -76,-106 -76,-106 -75.4,-106 -74.8,-106 -74.2,-106 -73.6,-106 -73,-106 -72.4,-106 -71.8,-106 -71.2,-106 -70.6,-106 -70))", "dataset_titles": "Inverted Basal Shear Stress of Antarctic and Greenland Ice Streams and Glaciers", "datasets": [{"dataset_uid": "609626", "doi": "10.7265/N5XS5SBW", "keywords": "Antarctica; Arctic; Bindschadler Ice Stream; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenland; Lambert Ice Stream; Macayeal Ice Stream; Pine Island Glacier; Thwaites Glacier", "people": "Sergienko, Olga", "repository": "USAP-DC", "science_program": null, "title": "Inverted Basal Shear Stress of Antarctic and Greenland Ice Streams and Glaciers", "url": "https://www.usap-dc.org/view/dataset/609626"}], "date_created": "Thu, 06 Feb 2014 00:00:00 GMT", "description": "Funds are provided to enable applications of powerful mathematical concepts and computational tools for rigorous sensitivity analysis, pseudo-spectra and generalized stability theory, and advanced state estimation in the context of large-scale ice sheet modeling. At the center of the proposal is the generation and application of adjoint model (ADM) and tangent linear model (TLM) components of the new Community Ice Sheet Model (CISM). The goal will be achieved through rigorous use of automatic differentiation (AD) to ensure synchronicity between the ongoing model development and improvement in terms of better representation of higher-order stress terms (which account for crucial fast flow regimes) of the nonlinear forward model (NLM) code and the derivative codes. The adjoint enables extremely efficient computation of gradients of scalar-valued functions in very high-dimensional control spaces. A hierarchy of applications is envisioned: (1) sensitivity calculations in support of the Intergovernmental Panel on Climate Change (IPCC) in order to determine to which control variables the polar ice sheet volumes are most sensitive; based on adjoint sensitivity maps, to establish quantitative estimates of ice sheet volume changes for relevant forcing scenarios; and to assess how sensitivities change when including higher-order stress terms; (2) coupling of the ADM and TLM to calculate pseudo-spectra or singular vectors (SV?s) of relevant ice sheet norms; SV?s provide perturbation patterns which lead to non-normal growth, optimally amplifying norm kernels over finite times; among the many applications of SV?s are optimal initialization of ensembles to assess uncertainties; SV?s are calculated through matrix-free iterative solution of a generalized eigenvalue problem via Lanczos or Arnoldi implicit restart algorithms; (3) a long-term goal is the development of an ice sheet state estimation system based on the adjoint or Lagrange Multiplier Method (LMM) in order to synthesize, in a formal manner, the increasing number and heterogeneous types of observations with a three-dimensional, state-of-the-art ice sheet model; an important requirement is that the adjoint incorporate new schemes that are being developed for CISM to capture crucial, but as yet unrepresented physical processes.", "east": -100.0, "geometry": "POINT(-103 -73)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e VISUAL OBSERVATIONS", "is_usap_dc": true, "keywords": "Not provided; Inverse Modeling; GROUND-BASED OBSERVATIONS; Basal Shear Stress", "locations": null, "north": -70.0, "nsf_funding_programs": "Arctic Natural Sciences", "paleo_time": null, "persons": "Sergienko, Olga", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.0, "title": "COLLABORATIVE RESEARCH: Enabling ice sheet sensitivity and stability analysis with a large-scale higher-order ice sheet model\u0027s adjoint to support sea level change assessment", "uid": "p0000048", "west": -106.0}, {"awards": "1019838 Wendt, Dean", "bounds_geometry": null, "dataset_titles": "Real-Time Characterization of Adelie Penguin Foraging Environment Using an Autonomous Underwater Vehicle", "datasets": [{"dataset_uid": "600120", "doi": "10.15784/600120", "keywords": "Biota; Oceans; Southern Ocean", "people": "Moline, Mark; Wendt, Dean", "repository": "USAP-DC", "science_program": null, "title": "Real-Time Characterization of Adelie Penguin Foraging Environment Using an Autonomous Underwater Vehicle", "url": "https://www.usap-dc.org/view/dataset/600120"}], "date_created": "Mon, 30 Dec 2013 00:00:00 GMT", "description": "Abstract This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The Antarctic Peninsula is among the most rapidly warming regions on earth. Increased heat from the Antarctic Circumpolar Current has elevated the temperature of the 300 m of shelf water below the permanent pycnocline by 0.7 degrees C. This trend has displaced the once dominant cold, dry continental Antarctic climate, and is causing multi-level responses in the marine ecosystem. One striking example of the ecosystem response to warming has been the local declines in ice-dependent Ad\u00e9lie penguins. The changes in these apex predators are thought to be driven by alterations in phytoplankton and zooplankton community composition, and the foraging limitations and diet differences between these species. One of the most elusive questions facing researchers interested in the foraging ecology of the Ad\u00e9lie penguin, namely, what are the biophysical properties that characterize the three dimensional foraging space of this top predator? The research will combine the real-time site and diving information from the Ad\u00e9lie penguin satellite tags with the full characterization of the oceanography and the penguins prey field using an autonomous underwater vehicle (AUV). While some of these changes have been documented over large spatial scales of the WAP, it is now thought that the causal mechanisms that favor of one life history strategy over another may actually operate over much smaller scales than previously thought, specifically on the scale of local breeding sites and over-wintering areas. Characterization of prey fields on these local scales has yet to be done and one that the AUV is ideally suited. The results will have a direct tie to the climate induced changes that are occurring in the West Antarctic Peninsula. This study will also highlight a new approach to linking an autonomous platform to bird behavior that could be expanded to include the other two species of penguins and examine the seasonal differences in their foraging behavior and prey selection. From a vehicle perspective, this effort will inform the AUV user community of new sensor suites and/or data processing approaches that are required to better evaluate foraging habitat. The project also will help transition AUV platforms into routine investigative tools for this region, which is chronically under sampled and will remain difficult to access", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; Amd/Us; USAP-DC; AMD; FIELD INVESTIGATION", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Wendt, Dean; Moline, Mark", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Real-Time Characterization of Adelie Penguin Foraging Environment Using an Autonomous Underwater Vehicle", "uid": "p0000662", "west": null}, {"awards": "1142083 Kyle, Philip", "bounds_geometry": "POINT(167.15334 -77.529724)", "dataset_titles": "Database of Erebus cave field seasons; Icequakes at Erebus volcano, Antarctica; Mount Erebus Observatory GPS data; Mount Erebus Seismic Data; Mount Erebus Thermodynamic model code; Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO); Seismic data used for high-resolution active-source seismic tomography", "datasets": [{"dataset_uid": "200027", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Mount Erebus Observatory GPS data", "url": "https://www.unavco.org/data/gps-gnss/data-access-methods/dai1/monument.php?mid=22083\u0026parent_link=Permanent\u0026pview=original"}, {"dataset_uid": "200033", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Icequakes at Erebus volcano, Antarctica", "url": "http://ds.iris.edu/mda/ZW/?timewindow=2007-2009http://ds.iris.edu/mda/Y4?timewindow=2008-2009http://ds.iris.edu/mda/ZO?timewindow=2011-2012"}, {"dataset_uid": "200032", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Mount Erebus Seismic Data", "url": "http://ds.iris.edu/mda/ER/"}, {"dataset_uid": "200031", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Mount Erebus Thermodynamic model code", "url": "https://github.com/kaylai/Iacovino2015_thermodynamic_model"}, {"dataset_uid": "200034", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Seismic data used for high-resolution active-source seismic tomography", "url": "http://ds.iris.edu/mda/ZW/?timewindow=2007-2009http://ds.iris.edu/mda/Y4?timewindow=2008-2009http://ds.iris.edu/ds/nodes/dmc/forms/assembled-data/?dataset_report_number=09-015"}, {"dataset_uid": "600381", "doi": "10.15784/600381", "keywords": "Antarctica; Cable Observatory; Geology/Geophysics - Other; Infrared Imagery; Intracontinental Magmatism; IntraContinental Magmatism; MEVO; Mount Erebus; Photo/video; Photo/Video; Ross Island; Solid Earth; Thermal Camera; Volcano", "people": "Oppenheimer, Clive; Kyle, Philip", "repository": "USAP-DC", "science_program": "MEVO", "title": "Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO)", "url": "https://www.usap-dc.org/view/dataset/600381"}, {"dataset_uid": "200030", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Database of Erebus cave field seasons", "url": "https://github.com/foobarbecue/troggle"}], "date_created": "Tue, 03 Sep 2013 00:00:00 GMT", "description": "Intellectual Merit: Mt. Erebus is one of only a handful of volcanoes worldwide that have lava lakes with readily observable and nearly continuous Strombolian explosive activity. Erebus is also unique in having a permanent convecting lava lake of anorthoclase phonolite magma. Over the years significant infrastructure has been established at the summit of Mt. Erebus as part of the Mount Erebus Volcano Observatory (MEVO), which serves as a natural laboratory to study a wide range of volcanic processes, especially magma degassing associated with an open convecting magma conduit. The PI proposes to continue operating MEVO for a further five years. The fundamental fundamental research objectives are: to understand diffuse flank degassing by using distributed temperature sensing and gas measurements in ice caves, to understand conduit processes, and to examine the environmental impact of volcanic emissions from Erebus on atmospheric and cryospheric environments. To examine conduit processes the PI will make simultaneous observations with video records, thermal imaging, measurements of gas emission rates and gas compositions, seismic, and infrasound data. Broader impacts: An important aspect of Erebus research is the education and training of students. Both graduate and undergraduate students will have the opportunity to work on MEVO data and deploy to the field site. In addition, this proposal will support a middle or high school science teacher for two field seasons. The PI will also continue working with various media organizations and filmmakers.", "east": 167.15334, "geometry": "POINT(167.15334 -77.529724)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e TIRS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e SPECTROMETERS \u003e FTIR SPECTROMETER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e SPECTROMETERS \u003e DOAS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e LASER RANGING \u003e MOBLAS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e PETROGRAPHIC MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e HRDI; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e TIRS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e INFRASONIC MICROPHONES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e AMS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e XRF; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-ES; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e LASER RANGING \u003e MOBLAS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e IRGA; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE CHAMBERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e SPECTROMETERS \u003e FTIR SPECTROMETER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e MICROTOMOGRAPHY; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e SIMS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Earthquakes; Vesuvius; Cosmogenic Radionuclides; Infrasonic Signals; Icequakes; Magma Shells; Phase Equilibria; Passcal; Correlation; Backscattering; Eruptive History; Degassing; Volatiles; Magma Convection; Thermodynamics; Tremors; Optech; Uv Doas; Energy Partitioning; Erebus; Cronus; Holocene; Lava Lake; Phonolite; Vagrant; Thermal Infrared Camera; Flir; USA/NSF; Mount Erebus; Active Source Seismic; GROUND-BASED OBSERVATIONS; Interferometry; Volatile Solubility; Redox State; Viscosity; Hydrogen Emission; Seismicity; Eruptions; Explosion Energy; FIELD SURVEYS; Radar Spectra; OBSERVATION BASED; Seismic Events; Strombolian Eruptions; Anorthoclase; Ice Caves; Iris; VOLCANO OBSERVATORY; Melt Inclusions; Ftir; Alkaline Volcanism; Tomography; TLS; Volcanic Gases; ANALYTICAL LAB", "locations": "Vesuvius; Cronus; Vagrant; Mount Erebus; Passcal", "north": -77.529724, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Kyle, Philip; Oppenheimer, Clive; Chaput, Julien; Jones, Laura; Fischer, Tobias", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e VOLCANO OBSERVATORY; OTHER \u003e MODELS \u003e OBSERVATION BASED; OTHER \u003e PHYSICAL MODELS \u003e ANALYTICAL LAB", "repo": "UNAVCO", "repositories": "GitHub; IRIS; UNAVCO; USAP-DC", "science_programs": "MEVO", "south": -77.529724, "title": "Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO)", "uid": "p0000383", "west": 167.15334}, {"awards": "0944764 Brook, Edward J.", "bounds_geometry": null, "dataset_titles": "Abrupt Change in Atmospheric CO2 During the Last Ice Age; High-resolution Atmospheric CO2 during 7.4-9.0 ka", "datasets": [{"dataset_uid": "609527", "doi": "10.7265/N5QF8QT5", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core; South Pole; WAISCORES", "people": "Ahn, Jinho; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "High-resolution Atmospheric CO2 during 7.4-9.0 ka", "url": "https://www.usap-dc.org/view/dataset/609527"}, {"dataset_uid": "609539", "doi": "10.7265/N5F47M23", "keywords": "Antarctica; Arctic; Byrd; Chemistry:fluid; Chemistry:Fluid; CO2; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; Siple Dome Ice Core; Taylor Dome; Taylor Dome Ice Core", "people": "Brook, Edward J.; Ahn, Jinho", "repository": "USAP-DC", "science_program": "Byrd Ice Core", "title": "Abrupt Change in Atmospheric CO2 During the Last Ice Age", "url": "https://www.usap-dc.org/view/dataset/609539"}, {"dataset_uid": "609539", "doi": "10.7265/N5F47M23", "keywords": "Antarctica; Arctic; Byrd; Chemistry:fluid; Chemistry:Fluid; CO2; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; Siple Dome Ice Core; Taylor Dome; Taylor Dome Ice Core", "people": "Brook, Edward J.; Ahn, Jinho", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Abrupt Change in Atmospheric CO2 During the Last Ice Age", "url": "https://www.usap-dc.org/view/dataset/609539"}, {"dataset_uid": "609539", "doi": "10.7265/N5F47M23", "keywords": "Antarctica; Arctic; Byrd; Chemistry:fluid; Chemistry:Fluid; CO2; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; Siple Dome Ice Core; Taylor Dome; Taylor Dome Ice Core", "people": "Ahn, Jinho; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Abrupt Change in Atmospheric CO2 During the Last Ice Age", "url": "https://www.usap-dc.org/view/dataset/609539"}], "date_created": "Thu, 08 Aug 2013 00:00:00 GMT", "description": "This award supports a project to create new, unprecedented high-resolution atmospheric carbon dioxide (CO2) records spanning intervals of abrupt climate changes during the last glacial period and the early Holocene. The proposed work will utilize high-precision methods on existing ice cores from high accumulation sites such as Siple Dome and Byrd Station, Antarctica and will improve our understanding of how fast CO2 can change naturally, how its variations are linked with climate, and, combined with a coupled climate-carbon cycle model, will clarify the role of terrestrial and oceanic processes during past abrupt changes of climate and CO2. The intellectual merit of this work is that CO2 is the most important anthropogenic greenhouse gas and understanding its past variations, its sources and sinks, and how they are linked to climate change is a major goal of the climate research community. This project will produce high quality data on centennial to multi-decadal time scales. Such high-resolution work has not been conducted before because of insufficient analytical precision, slow experimental procedures in previous studies, or lack of available samples. The proposed research will complement future high-resolution studies from WAIS Divide ice cores and will provide ice core CO2 records for the target age intervals, which are in the zone of clathrate formation in the WAIS ice cores. Clathrate hydrate is a phase composed of air and ice. CO2 analyses have historically been less precise in clathrate ice than in ?bubbly ice? such as the Siple Dome ice core that will be analyzed in the proposed project. High quality, high-resolution results from specific intervals in Siple Dome that we propose to analyze will provide important data for verifying the WAIS Divide record. The broader impacts of the work are that current models show a large uncertainty of future climate-carbon cycle interactions. The results of this proposed work will be used for testing coupled carbon cycle-climate models and may contribute to reducing this uncertainty. The project will contribute to the training of several undergraduate students and a full-time technician. Both will learn analytical techniques and the basic science involved. Minorities and female students will be highly encouraged to participate in this project. Outreach efforts will include participation in news media interviews, at a local festival celebrating art, science and technology, and giving seminar presentations in the US and foreign countries. The OSU ice core laboratory has begun a collaboration with a regional science museum and is developing ideas to build an exhibition booth to make public be aware of climate change and ice core research. All data will be archived at the National Snow and Ice Data Center and at other similar archives per the OPP data policy.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e CO2 ANALYZERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "GROUND-BASED OBSERVATIONS; CO2 Concentrations; Ice Core Gas Age; CO2 Uncertainty; LABORATORY; Ice Core Depth; Not provided; CH4 Concentrations", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "NOT APPLICABLE; NOT APPLICABLE", "persons": "Ahn, Jinho; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Atmospheric CO2 and Abrupt Climate Change", "uid": "p0000179", "west": null}, {"awards": "9725057 Mayewski, Paul", "bounds_geometry": "POLYGON((-76.1 -77.68,-53.253 -77.68,-30.406 -77.68,-7.559 -77.68,15.288 -77.68,38.135 -77.68,60.982 -77.68,83.829 -77.68,106.676 -77.68,129.523 -77.68,152.37 -77.68,152.37 -78.912,152.37 -80.144,152.37 -81.376,152.37 -82.608,152.37 -83.84,152.37 -85.072,152.37 -86.304,152.37 -87.536,152.37 -88.768,152.37 -90,129.523 -90,106.676 -90,83.829 -90,60.982 -90,38.135 -90,15.288 -90,-7.559 -90,-30.406 -90,-53.253 -90,-76.1 -90,-76.1 -88.768,-76.1 -87.536,-76.1 -86.304,-76.1 -85.072,-76.1 -83.84,-76.1 -82.608,-76.1 -81.376,-76.1 -80.144,-76.1 -78.912,-76.1 -77.68))", "dataset_titles": "US International Trans-Antarctic Scientific Expedition (US ITASE) Glaciochemical Data; US International Trans-Antarctic Scientific Expedition (US ITASE) Glaciochemical Data, Version 1", "datasets": [{"dataset_uid": "601559", "doi": null, "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; ITASE; Paleoclimate; Solid Earth; Wais Project", "people": "Dixon, Daniel A.; Mayewski, Paul A.", "repository": "USAP-DC", "science_program": "ITASE", "title": "US International Trans-Antarctic Scientific Expedition (US ITASE) Glaciochemical Data, Version 1", "url": "https://www.usap-dc.org/view/dataset/601559"}, {"dataset_uid": "609273", "doi": "10.7265/N51V5BXR", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; ITASE; Paleoclimate; Solid Earth; WAIS", "people": "Mayewski, Paul A.; Dixon, Daniel A.", "repository": "USAP-DC", "science_program": "ITASE", "title": "US International Trans-Antarctic Scientific Expedition (US ITASE) Glaciochemical Data", "url": "https://www.usap-dc.org/view/dataset/609273"}], "date_created": "Thu, 11 Jul 2013 00:00:00 GMT", "description": "9725057 Mayewski This award is for support for a Science Management Office (SMO) for the United States component of the International Trans-Antarctic Scientific Expedition (US ITASE). The broad aim of US ITASE is to develop an understanding of the last 200 years of past West Antarctic climate and environmental change. ITASE is a multidisciplinary program that integrates remote sensing, meteorology, ice coring, surface glaciology and geophysics. In addition to the formation of a science management office, this award supports a series of annual workshops to coordinate the science projects that will be involved in ITASE and the logistics base needed to undertake ground-based sampling in West Antarctica.", "east": 152.37, "geometry": "POINT(38.135 -83.84)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "US ITASE; Not provided; ITASE; GROUND STATIONS; GROUND-BASED OBSERVATIONS", "locations": null, "north": -77.68, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Dixon, Daniel A.; Mayewski, Paul A.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": -90.0, "title": "Science Management for the United States Component of the International Trans-Antarctic Expedition", "uid": "p0000221", "west": -76.1}, {"awards": "0838810 Hulbe, Christina", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 01 Jul 2013 00:00:00 GMT", "description": "Hulbe/0838810 \u003cbr/\u003e\u003cbr/\u003eThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThis award supports a modeling study of the processes in West Antarctic grounding zones, the transition from ice resting on bedrock to ice floating on the ocean surface with an eye toward understanding the interrelated causes of rapid change in grounding line configuration and outlet flow. A combination of satellite remote sensing and numerical modeling will be used to investigate both past and ongoing patterns of change. New high-resolution surface elevation maps made from a novel combination of satellite laser altimetry and remotely observed surface shape provide a unique view of grounding zones. These data will be used to diagnose events associated with the shutdown of Kamb Ice Stream, to investigate a recent discharge event on Institute Ice Stream and to investigate ongoing change at the outlet of Whillans Ice Stream, along with other modern processes around the West Antarctic. An existing numerical model of coupled ice sheet, ice stream, and ice shelf flow will be used and improved as part of the research project. The broader impacts of the project relate to the importance of understanding the role of polar ice sheets in global sea level rise. The work will contribute to the next round of deliberations for the Intergovernmental Panel on Climate Change (IPCC). Improved views, interpretations, and insights into the physical processes that govern variability in ice sheet outlet streams will help correct the shortcomings of the last IPCC report that didn?t include the role of ice sheets in sea level rise. The PIs have a strong record of public outreach, involvement in the professional community, and student training.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "LABORATORY; Kamb Ice Stream; Grounding Line; FIELD INVESTIGATION; SATELLITES; Transition Zone; Ice Shelf Flow; Outlet Flow; Ice Sheet; Modeling; COMPUTERS; Antarctica", "locations": "Antarctica; Kamb Ice Stream", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Hulbe, Christina; Fahnestock, Mark", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Mass Transit: Controls on Grounding and Ungrounding at Marine Ice Sheet Outlets", "uid": "p0000371", "west": null}, {"awards": "9615420 Kamb, Barclay", "bounds_geometry": "POINT(-136.404633 -82.39955)", "dataset_titles": "Temperature of the West Antarctic Ice Sheet; Videos of Basal Ice in Boreholes on the Kamb Ice Stream in West Antarctica", "datasets": [{"dataset_uid": "609537", "doi": "10.7265/N5PN93J8", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Temperature", "people": "Engelhardt, Hermann", "repository": "USAP-DC", "science_program": null, "title": "Temperature of the West Antarctic Ice Sheet", "url": "https://www.usap-dc.org/view/dataset/609537"}, {"dataset_uid": "609528", "doi": "10.7265/N5028PFH", "keywords": "Antarctica; Borehole Video; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Kamb Ice Stream; Photo/video; Photo/Video", "people": "Engelhardt, Hermann", "repository": "USAP-DC", "science_program": null, "title": "Videos of Basal Ice in Boreholes on the Kamb Ice Stream in West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609528"}], "date_created": "Thu, 14 Feb 2013 00:00:00 GMT", "description": "This award is for support for a four year program to study the basal conditions of ice stream D using techniques previously applied to ice stream B. The objective is to determine whether the physical conditions and processes to be observed by borehole geophysics at the base of this large ice stream are consistent with what has been observed at ice stream B and to point to a common basal mechanism of ice streaming. This project includes a comparison between two parts of ice stream D, an upstream reach where flow velocities are modest (about 80 meters/year) and a downstream reach of high velocity (about 400 meters/year). The comparison will help to reveal what physical variable or combination of variables is mainly responsible for the streaming flow. The variables to be monitmred by borehole observation include basal water pressure, basal sliding velocity, flow properties and sedimentological characteristics of subglacial till if present, ice temperature profile including basal water transport velocity, connection time to the basal water system, basal melting rate and others.", "east": -136.404633, "geometry": "POINT(-136.404633 -82.39955)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS", "is_usap_dc": true, "keywords": "Raymond Ridge; Kamb Ice Stream; Engelhardt Ridge; Basal Ice; Unicorn; Alley Ice Stream; Borehole Video; Basal Freeze-on; Ice Stream Flow; Basal Freezing; West Antarctic Ice Sheet Instability; GROUND-BASED OBSERVATIONS; Whillans Ice Stream; Basal Debris; Simple Dome; Basal Water; Bindschadler Ice Stream; West Antarctic Ice Sheet", "locations": "Kamb Ice Stream; Alley Ice Stream; Bindschadler Ice Stream; Engelhardt Ridge; Raymond Ridge; Simple Dome; Unicorn; West Antarctic Ice Sheet; Whillans Ice Stream", "north": -82.39955, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Kamb, Barclay; Engelhardt, Hermann", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.39955, "title": "Basal Conditions of Ice Stream D and Related Borehole Studies of Antarctic Ice Stream Mechanics", "uid": "p0000181", "west": -136.404633}, {"awards": "0732946 Steffen, Konrad", "bounds_geometry": null, "dataset_titles": "Larsen C automatic weather station data 2008\u20132011; Mean surface mass balance over Larsen C ice shelf, Antarctica (1979-2014), assimilated to in situ GPR and snow height data", "datasets": [{"dataset_uid": "601056", "doi": "10.15784/601056", "keywords": "Antarctica; Antarctic Peninsula; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Larsen C Ice Shelf; Radar", "people": "McGrath, Daniel; Kuipers Munneke, Peter; Steffen, Konrad", "repository": "USAP-DC", "science_program": null, "title": "Mean surface mass balance over Larsen C ice shelf, Antarctica (1979-2014), assimilated to in situ GPR and snow height data", "url": "https://www.usap-dc.org/view/dataset/601056"}, {"dataset_uid": "601445", "doi": "10.15784/601445", "keywords": "Antarctica; Atmosphere; AWS; Foehn Winds; Ice Shelf; Larsen C Ice Shelf; Larsen Ice Shelf; Meteorology; Weather Station Data", "people": "Bayou, Nicolas; Steffen, Konrad; McGrath, Daniel", "repository": "USAP-DC", "science_program": null, "title": "Larsen C automatic weather station data 2008\u20132011", "url": "https://www.usap-dc.org/view/dataset/601445"}], "date_created": "Wed, 03 Oct 2012 00:00:00 GMT", "description": "This award supports a field experiment, with partners from Chile and the Netherlands, to determine the state of health and stability of Larsen C ice shelf in response to climate change. Significant glaciological and ecological changes are taking place in the Antarctic Peninsula in response to climate warming that is proceeding at 6 times the global average rate. Following the collapse of Larsen A ice shelf in 1995 and Larsen B in 2002, the outlet glaciers that nourished them with land ice accelerated massively, losing a disproportionate amount of ice to the ocean. Further south, the much larger Larsen C ice shelf is thinning and measurements collected over more than a decade suggest that it is doomed to break up. The intellectual merit of the project will be to contribute to the scientific knowledge of one of the Antarctic sectors where the most significant changes are taking place at present. The project is central to a cluster of International Polar Year activities in the Antarctic Peninsula. It will yield a legacy of international collaboration, instrument networking, education of young scientists, reference data and scientific analysis in a remote but globally relevant glaciological setting. The broader impacts of the project will be to address the contribution to sea level rise from Antarctica and to bring live monitoring of climate and ice dynamics in Antarctica to scientists, students, the non-specialized public, the press and the media via live web broadcasting of progress, data collection, visualization and analysis. Existing data will be combined with new measurements to assess what physical processes are controlling the weakening of the ice shelf, whether a break up is likely, and provide baseline data to quantify the consequences of a breakup. Field activities will include measurements using the Global Positioning System (GPS), installation of automatic weather stations (AWS), ground penetrating radar (GPR) measurements, collection of shallow firn cores and temperature measurements. These data will be used to characterize the dynamic response of the ice shelf to a variety of phenomena (oceanic tides, iceberg calving, ice-front retreat and rifting, time series of weather conditions, structural characteristics of the ice shelf and bottom melting regime, and the ability of firn to collect melt water and subsequently form water ponds that over-deepen and weaken the ice shelf). This effort will complement an analysis of remote sensing data, ice-shelf numerical models and control methods funded independently to provide a more comprehensive analysis of the ice shelf evolution in a changing climate.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e TEMPERATURE PROFILERS", "is_usap_dc": false, "keywords": "Climate Warming; Firn; COMPUTERS; Ice Dynamic; USAP-DC; Glaciological; Thinning; Sea Level Rise; FIELD SURVEYS; FIELD INVESTIGATION; USA/NSF; AMD; Ice Edge Retreat; LABORATORY; Climate Change; Antarctic Peninsula; Amd/Us; Melting", "locations": "Antarctic Peninsula", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Steffen, Konrad", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "IPY: Stability of Larsen C Ice Shelf in a Warming Climate", "uid": "p0000087", "west": null}, {"awards": "0632198 Anandakrishnan, Sridhar", "bounds_geometry": "POINT(110 -74)", "dataset_titles": "Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "datasets": [{"dataset_uid": "609619", "doi": "10.7265/N58913TN", "keywords": "Amundsen Sea; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model; Thwaites Glacier", "people": "Blankenship, Donald D.; Dupont, Todd K.; Parizek, Byron R.; Holt, John W.", "repository": "USAP-DC", "science_program": null, "title": "Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "url": "https://www.usap-dc.org/view/dataset/609619"}], "date_created": "Wed, 29 Aug 2012 00:00:00 GMT", "description": "This award supports a project to study ice sheet history and dynamics on the Thwaites Glacier and Pine Island Glacier in the Amundsen Sea sector of the West Antarctic Ice Sheet. The international collaboration that has been established with the British Antarctic Survey will enable a fuller suite of geophysical experiments with more-efficient use of people and logistics than we could achieve individually. This project is one of a number of projects to characterize the Amundsen Sea Embayment, which has been identified in numerous planning documents as perhaps the most important target for ice-dynamical research. Taken together, this \"pulse of activity\" will result in a better understanding of this important part of the global system. Field work will measure the subglacial environment of Thwaites and Pine Island Glaciers using three powerful, but relatively simple tools: reflection seismic imaging, GPS motion monitoring of the tidal forcing, and passive seismic monitoring of the seismicity associated with motion. The results of the field work will feed into ice-sheet modeling efforts that are tuned to the case of an ocean-terminating glacier and will assess the influence of these glaciers on current sea level and project into the future. The broader impacts of the project involve the inclusion of a film- and audio-professional to document the work for informal outreach (public radio and TV; museums). In addition, we will train graduate students in polar geophysical and glaciological research and in numerical modeling techniques. The ultimate goal of this project, of assessing the role of Thwaites Glacier in global sea level change, has broad societal impact in coastal regions and small islands.", "east": -110.0, "geometry": "POINT(-110 -74)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e SEISMIC REFLECTION PROFILERS", "is_usap_dc": false, "keywords": "Pine Island Glacier; Bed Reflectivity; Tidal Forcing; FIELD INVESTIGATION; Not provided; Position; Thwaites; Thickness; Amundsen Sea; LABORATORY; FIELD SURVEYS; Subglacial; Ice Dynamic; Ice Sheet Modeling", "locations": "Thwaites; Pine Island Glacier; Amundsen Sea", "north": -74.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Anandakrishnan, Sridhar", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -74.0, "title": "IPY: Flow Dynamics of the Amundsen Sea Glaciers: Thwaites and Pine Island.", "uid": "p0000699", "west": -110.0}, {"awards": "0537752 Creyts, Timothy; 0538674 Winebrenner, Dale", "bounds_geometry": null, "dataset_titles": "Millennially Averaged Accumulation Rates for Lake Vostok; Modeled Radar Attenuation Rate Profile at the Vostok 5G Ice Core Site, Antarctica", "datasets": [{"dataset_uid": "609500", "doi": "10.7265/N5F769HV", "keywords": "Accumulation Rate; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Lake Vostok", "people": "Matsuoka, Kenichi; Waddington, Edwin D.; Winebrenner, Dale; Studinger, Michael S.; Macgregor, Joseph A.", "repository": "USAP-DC", "science_program": null, "title": "Millennially Averaged Accumulation Rates for Lake Vostok", "url": "https://www.usap-dc.org/view/dataset/609500"}, {"dataset_uid": "609501", "doi": "10.7265/N59K485D", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Lake Vostok; Radar Attenuation Rate; Vostok Ice Core", "people": "Matsuoka, Kenichi; Macgregor, Joseph A.; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "Modeled Radar Attenuation Rate Profile at the Vostok 5G Ice Core Site, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609501"}], "date_created": "Thu, 09 Aug 2012 00:00:00 GMT", "description": "0538674\u003cbr/\u003eMatsuoka\u003cbr/\u003eThis award supports a project to evaluate radio-echo intensities in the available SOAR ice-penetrating radar data along grids covering Lake Vostok, and along four regional tracks from Ridge B toward the lake. The project has two objectives; first, it will examine the upper surface of the lake and reflectors hypothesized to be a boundary between the meteoric and accreted ice. They will provide crucial knowledge on the dynamic evolution of the lake. Second, this project will examine a poorly understood echo-free zone within the deep ice in central East Antarctica. This zone may consist of distorted stagnant ice, while its upper boundary may be a shear zone. The SOAR radar data provide a unique resource to examine spatiotemporal water circulation patterns that should be understood in order to select the best direct-sampling strategy to the lake. The Vostok ice core provides a unique opportunity to do this work. First, the path effects, i.e. propagation loss and birefringence, will be derived at the ice-core site using ice temperature, chemistry, and fabric data. Second, lateral variations of the propagation loss will be estimated by tracking chemistry associated with radar-detected isochronous layers, and by inferring temperatures from an ice-flow model that can replicate those layers. Ice-fabric patterns will be inferred from anisotropy in the reflectivity at about 100 radar-track cross-over sites. In terms of broader impacts, a graduate student will be trained to interpret the radar data in the light of radar theory and glaciological context of Lake Vostok and summer workshops for K-12 teachers will be provided in Seattle and New York. This project will contribute to ongoing efforts to study Lake Vostok and will complement the site selection for a North Vostok ice core, which has been proposed by Russia and France as an IPY program.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LASERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e RADAR ALTIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS", "is_usap_dc": true, "keywords": "Airborne Radar Sounding; DHC-6; Salinity; Lake Vostok; Antarctic Ice Sheet; Modeling; FIELD SURVEYS; Model Output; Accumulation Rate; MODELS; Numerical Model; Ice Sheet; Not provided; Hydrostatic; Aerogeophysical; Subglacial; Attenuation Rate; Radar; FIELD INVESTIGATION; Model; Circulation; LABORATORY", "locations": "Lake Vostok; Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Matsuoka, Kenichi; Winebrenner, Dale; Creyts, Timothy; Macgregor, Joseph A.; Studinger, Michael S.; Waddington, Edwin D.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e MODELS \u003e MODELS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Deciphering the Deep Ice and the Ice-water Interface over Lake Vostok Using Existing Radar Data", "uid": "p0000090", "west": null}, {"awards": "0636584 Creyts, Timothy", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 07 Aug 2012 00:00:00 GMT", "description": "Studinger/0636584\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to estimate the salinity of subglacial Lake Vostok, Lake Concordia and the 90 deg.E lake using existing airborne ice-penetrating radar and laser altimeter data. These lakes have been selected because of the availability of modern aerogeophysical data and because they are large enough for the floating ice to be unaffected by boundary stresses near the grounding lines. The proposed approach is based on the assumption that the ice sheet above large subglacial lakes is in hydrostatic equilibrium and the density and subsequently salinity of the lake\u0027s water can be estimated from the (linear) relationship between ice surface elevation and ice thickness of the floating ice. The goal of the proposed work is to estimate the salinity of Lake Vostok and determine spatial changes and to compare the salinity estimates of 3 large subglacial lakes in East Antarctica. The intellectual merits of the project are that this work will contribute to the knowledge of the physical and chemical processes operating within subglacial lake environments. Due to the inaccessibility of subglacial lakes numerical modeling of the water circulation is currently the only way forward to develop a conceptual understanding of the circulation and melting and freezing regimes in subglacial lakes. Numerical experiments show that the salinity of the lake\u0027s water is a crucial input parameter for the 3-D fluid dynamic models. Improved numerical models will contribute to our knowledge of water circulation in subglacial lakes, its effects on water and heat budgets, stratification, melting and freezing, and the conditions that support life in such extreme environments. The broader impacts of the project are that subglacial lakes have captured the interest of many people, scientists and laymen. The national and international press frequently reports about the research of the Principal Investigator. His Lake Vostok illustrations have been used in math and earth science text books. Lake Vostok will be used for education and outreach in the Earth2Class project. Earth2Class is a highly successful science/math/technology learning resource for K-12 students, teachers, and administrators in the New York metropolitan area. Earth2Class is created through collaboration by research scientists at the Lamont- Doherty Earth Observatory; curriculum and educational technology specialists from Teachers College, Columbia University; and classroom teachers in the New York metropolitan area.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LASERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e RADAR ALTIMETERS", "is_usap_dc": false, "keywords": "Subglacial; Hydrostatic; Not provided; LABORATORY; Aerogeophysical; Numerical Model; FIELD SURVEYS; Salinity; Circulation", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Creyts, Timothy; Studinger, Michael S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "Estimating the Salinity of Subglacial Lakes From Existing Aerogeophysical Data", "uid": "p0000704", "west": null}, {"awards": "0739743 Bay, Ryan", "bounds_geometry": "POINT(123.35 -75.1)", "dataset_titles": "Dome C optical logging data", "datasets": [{"dataset_uid": "000234", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Dome C optical logging data", "url": "http://icecube.berkeley.edu/~bay/edc99/"}], "date_created": "Wed, 27 Jun 2012 00:00:00 GMT", "description": "Bay 0739743\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to make high-resolution logs of dust and ash in the Dome C borehole using an optical dust logger. Logging at 20-50 cm/sec, in a matter of hours, mm-scale depth resolution of dust concentration and volcanic ash layers over the entire 3270 m borehole back to ~800 ka can be provided. The logger probes an area of order m2 of the horizon compared to the ~0.02 m2 core, greatly suppressing depositional noise and making the technique immune to core damage or loss. The method achieves unprecedented resolution of climate variations for matching or comparing ice core records, can detect particulate layers from explosive fallout which are invisible or missing in the core, and often reveals subtle trend changes which can elude standard core analyses. With the highly resolved dust record, it is expected to find new synchronous age markers between East Antarctica, West Antarctica and Greenland. The data could be instrumental in unifying global climate records, or resolving mysteries such as the transition from 41-kyr glacial cycles to apparent 100-kyr cycles. The project will extend previous finding, which make the most convincing case to date for a causal relationship between explosive volcanic events and abrupt climate change on millennial timescales. A search will also be made for evidence that some of the worldwide explosive fallout events that have been identified may have resulted from impacts by comets or asteroids. The investigators will evaluate the reliability of terrestrial impact crater records and the possibility that Earth impacts are considerably more frequent than is generally appreciated. Better understanding of the factors which force abrupt climate changes, the recurrence rate and triggering mechanisms of large volcanic eruptions, and the frequency of Gt to Tt-energy bolide impacts are of vital interest for civilization. The work plan for 2008-11 comprises modifying and testing of existing hardware in year one; logging field work, most likely in year two; data analysis and publication of results in year three. Because the EPICA collaborators will provide a suitable logging winch onsite, the logistical needs of this project are modest and can be accommodated by Twin Otter from McMurdo. The proposal is in the spirit of the International Polar Year (IPY) by forging an international collaboration with potential societal benefit. The project will provide interdisciplinary training to students and postdoctoral fellows from the U.S. and other countries.", "east": 123.35, "geometry": "POINT(123.35 -75.1)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS", "is_usap_dc": false, "keywords": "Ash Layer; LABORATORY; Not provided; FIELD INVESTIGATION; Climate; Antarctica; Ice Core; Bolides; Borehole; Climate Change; Paleoclimate; FIELD SURVEYS; Volcanic", "locations": "Antarctica", "north": -75.1, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bay, Ryan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": -75.1, "title": "Dust Logging at Dome C for Abrupt Climate Changes, Large Volcanic Eruptions and Bolide Impacts", "uid": "p0000717", "west": 123.35}, {"awards": "0631973 Joughin, Ian; 0632031 Das, Sarah", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 20 Jun 2012 00:00:00 GMT", "description": "Joughin 0631973\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to gather data to better understand the mass balance of the West Antarctic Ice Sheet, in the Pine Island and Thwaites region, through the combination of radar altimetry and surface-based ice-core measurements of accumulation. The intellectual merit of the project is that the results of the field work will provide information on decadal-scale average accumulation extending back through the last century and will help constrain a modeling effort to determine how coastal changes propagate inland, to allow better prediction of future change. Comparison of the basin averaged accumulation with ice discharge determined using Interferometric Synthetic Aperture Radar (InSAR) velocity data will provide improved mass-balance estimates. Study of changes in flow speed will produce a record of mass balance over the last three decades. Analysis of the satellite altimeter record in conjunction with annual accumulation estimates also will provide estimates of changes and variability in mass balance. The broader impacts of the work are that it will make a significant contribution to future IPCC estimates of sea level, which are important for projection of the impacts of increased sea level on coastal communities. The research will contribute to the graduate education of students at the Universities of Washington and Kansas and will enrich K-12 education through the direct participation of the PIs in classroom activities. Informal science education includes 4-day glacier flow demonstrations at the Polar Science Weekend held annually at the Pacific Science Center in Seattle. The project also will communicate results through Center for the Remote Sensing of Ice Sheets (CReSIS) outreach effort. All field and remotely-sensed data sets will be archived and distributed by the National Snow and Ice Data Center. This project is relevant to IPY in that the West Antarctic Ice Sheet is losing mass, in large part because of rapid thinning of the Amundsen Coast glaciers so, it will directly address the NSF IPY emphasis on \"ice sheet history and dynamics.\" The project is also international in scope.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": false, "keywords": "Not provided; FIELD INVESTIGATION; Flow Speed; Antarctic; LABORATORY; Ice Sheet Accumulation Rate; Mass Balance; Accumulation; Insar; SATELLITES; FIELD SURVEYS; Ice Core; Radar Altimetry; Ice Velocity", "locations": "Antarctic", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Joughin, Ian; Medley, Brooke; Das, Sarah", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES", "repositories": null, "science_programs": null, "south": null, "title": "IPY: Collaborative Proposal: Constraining the Mass-Balance Deficit of the Amundsen Coast\u0027s Glaciers", "uid": "p0000542", "west": null}, {"awards": "0738658 Price, P. Buford", "bounds_geometry": "POINT(112.1125 -79.4638)", "dataset_titles": "Access to data; data from one of three optical logs we made at WAIS Divide; WAIS Divide Laser Dust Logger Data", "datasets": [{"dataset_uid": "001349", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to data", "url": "http://icecube.berkeley.edu/~bay/wdc/"}, {"dataset_uid": "609540", "doi": "10.7265/N5C53HSG", "keywords": "Antarctica; Atmosphere; Chemistry:ice; Chemistry:Ice; Dust; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Laser Dust Logger; WAIS Divide Ice Core", "people": "Bay, Ryan", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Laser Dust Logger Data", "url": "https://www.usap-dc.org/view/dataset/609540"}, {"dataset_uid": "000188", "doi": "", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "data from one of three optical logs we made at WAIS Divide", "url": "http://icecube.berkeley.edu/~bay/wdc/"}], "date_created": "Tue, 19 Jun 2012 00:00:00 GMT", "description": "This award supports a project to use two new scanning fluorimeters to map microbial concentrations vs depth in the WAIS Divide ice core as portions of it become available at NICL, and selected portions of the GISP2 ice core for inter-hemispheric comparison. Ground-truth calibrations with microbes in ice show that the instruments are sensitive to a single cell and can scan the full length of a 1-meter core at 300-micron intervals in two minutes. The goals of these studies will be to exploit the discovery that microbes are transported onto ice, in clumps, several times per year and that at rare intervals (not periodically) of ~104 years, a much higher flux, sometimes lasting \u003e1 decade, reaches the ice. From variations ranging from seasonal to millennial to glacial scale in the arrival time distribution of phototrophs, methanogens, and total microbes in the Antarctic and Arctic ice, the investigators will attempt to determine oceanic and terrestrial sources of these microbes and will look for correlations of microbial bursts with dust concentration and temperature proxies. In addition the project will follow up on the discovery that the rare instances of very high microbial flux account for some of the\"gas artifacts\" in ice cores - isolated spikes of excess CH4 and N2O that have been discarded by others in previous climate studies. The intellectual merit of this project is that it will exploit scanning fluorimetry of microbes as a powerful new tool for studies ranging from meteorology to climatology to biology, especially when combined with mapping of dust, gases, and major element chemistry in ice cores. In 2010-11 the WAIS Divide borehole will be logged with the latest version of the dust logger. The log will provide mm-scale depth resolution of dust concentration and of volcanic ash layers down the entire depth of the borehole. The locations of ash layers in the ice will be determined and chemical analyses of the ash will be analyzed in order to determine provenance. By comparing data from the WAIS Divide borehole with data from other boreholes and with chemical data (obtained by others) on volcanic layers, the researchers will examine the relationship between the timing of volcanic eruptions and abrupt climate change. Results from this project with the scanning fluorimeters and the dust logger could have applications to planetary missions, borehole oceanography, limnology, meteorology, climate, volcanology, and ancient life in ice. A deeper understanding of the causes of abrupt climate change, including a causal relationship with volcanic explosivity, would enable a better understanding of the adverse effects on climate. The broader impact of the project is that it will provide training to students and post-docs from the U. S. and other countries.", "east": 112.1125, "geometry": "POINT(112.1125 -79.4638)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS", "is_usap_dc": true, "keywords": "Dust Loggers; Dust Concentration; Ice Core; West Antarctic Ice Sheet; LABORATORY; Microbial; Fluorimetry; GROUND-BASED OBSERVATIONS; Meteorology; Climatologymeteorologyatmosphere; Ice", "locations": "West Antarctic Ice Sheet", "north": -79.4638, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bay, Ryan; Price, Buford; Souney, Joseph Jr.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "PI website", "repositories": "PI website; USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.4638, "title": "Climatology, Meteorology, and Microbial Metabolism in Ice with Dust Loggers and Fluorimetry", "uid": "p0000009", "west": 112.1125}, {"awards": "1043313 Spencer, Matthew; 1043528 Alley, Richard", "bounds_geometry": "POINT(112.1166 -79.4666)", "dataset_titles": "Average Annual Layer Thickness of the WAIS Divide Ice Core from Visual Stratigraphy; C-axis Fabric from Physical Properties Samples of the WAIS Divide Ice Core; Updated (2017) bubble number-density, size, shape, and modeled paleoclimate data; WAIS Divide 580m Bubble and Grain Hybrid Data; WAIS Divide Surface and Snow-pit Data, 2009-2013", "datasets": [{"dataset_uid": "601224", "doi": "10.15784/601224", "keywords": "Antarctic; Antarctica; Bubble Number Density; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Records; NSF-ICF Microtome and Photography Stage; Paleoclimate; Physical Properties; Snow/ice; Snow/Ice; WAIS Divide Ice Core; West Antarctic Ice Sheet", "people": "Voigt, Donald E.; Fegyveresi, John; Fitzpatrick, Joan; Spencer, Matthew; Alley, Richard", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Updated (2017) bubble number-density, size, shape, and modeled paleoclimate data", "url": "https://www.usap-dc.org/view/dataset/601224"}, {"dataset_uid": "609605", "doi": "10.7265/N5W093VM", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; WAIS Divide; WAIS Divide Ice Core", "people": "Voigt, Donald E.; Alley, Richard; Fitzpatrick, Joan", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "C-axis Fabric from Physical Properties Samples of the WAIS Divide Ice Core", "url": "https://www.usap-dc.org/view/dataset/609605"}, {"dataset_uid": "601079", "doi": "10.15784/601079", "keywords": "Antarctica; Atmosphere; AWS; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Meteorology; Physical Properties; Snow Pit; Temperature; WAIS Divide; WAIS Divide Ice Core; Weatherstation", "people": "Alley, Richard; Fegyveresi, John", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Surface and Snow-pit Data, 2009-2013", "url": "https://www.usap-dc.org/view/dataset/601079"}, {"dataset_uid": "601087", "doi": "10.15784/601087", "keywords": "Air Bubbles; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Strain; Physical Ice Properties; Snow/ice; Snow/Ice; Strain", "people": "Fegyveresi, John; Alley, Richard", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide 580m Bubble and Grain Hybrid Data", "url": "https://www.usap-dc.org/view/dataset/601087"}, {"dataset_uid": "609603", "doi": "10.7265/N53J39X3", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Spencer, Matthew", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Average Annual Layer Thickness of the WAIS Divide Ice Core from Visual Stratigraphy", "url": "https://www.usap-dc.org/view/dataset/609603"}], "date_created": "Tue, 19 Jun 2012 00:00:00 GMT", "description": "1043528/Alley This award supports a project to complete the physical-properties studies of the WAIS Divide deep ice core, now being collected in West Antarctica. Ongoing work funded by NSF, under a grant that is ending, has produced visible stratigraphy dating, inspection of the core for any melt layers, volcanic horizons, flow disturbances or other features, analysis of bubble number-densities allowing reconstruction of a two-millennial cooling trend in the latter Holocene at the site, characterization of other bubble characteristics (size, etc.), density studies, characterization of snow-surface changes at the site, preliminary c-axis studies, and more. The current proposal seeks to complete this work, once the rest of the core is recovered. The intellectual merit of the proposed activity starts with quality assurance for the core, by visual detection of any evidence of flow disturbances that would disrupt the integrity of the climate record. Inspection will also reveal any melt layers, volcanic horizons, etc. Annual-layer dating will be conducted; thus far, the visible strata have not been as useful as some other indicators, but the possibility (based on experience in Greenland) that visible examination will allow detection of thinner annual layers than other techniques motivates the effort. Bubble number-density will be used to reconstruct temperature changes through the rest of the bubbly part of the core, providing important paleoclimatic data for earlier parts of the Holocene. Coordinated interpretation of c-axis fabrics, grain sizes and shapes, and bubble characteristics will be used to learn about the history of ice flow, the processes of ice flow, and the softness of the ice for additional deformation. Analysis of surface data already collected will improve interpretation of the layering of the core. It is possible that the annual-layer dating will not be sufficiently successful, and that the core will be undisturbed with no melt layers; if so, then these efforts will not yield major publications. However, success of the other efforts should produce improved understanding of the history and stability of the ice sheet, and key processes controlling these, and the quality assurance provided by the visual examination is important for the project as a whole. The broader impacts of the proposed activity include education of a PhD student and multiple undergraduates, and research opportunities for a junior faculty member at an undergraduate institution. The proposed activity will help support an especially vigorous education and outreach effort providing undergraduate instruction for over 1000 students per year, reaching thousands more citizens and many policymakers, and preparing educational materials used at many levels.", "east": 112.1166, "geometry": "POINT(112.1166 -79.4666)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e VISUAL OBSERVATIONS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ACFA; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Antarctic; Antarctica; Annual Layer Thickness; Ice Core; Visual Observations; Bubble; LABORATORY; Bubble Density; FIELD INVESTIGATION; Physical Properties; Stratigraphy; Climate Record; Annual Layers; Ice Fabric; C-axis; Model; WAIS Divide; GROUND-BASED OBSERVATIONS; FIELD SURVEYS; Melt Layers; Wais Divide-project; Not provided", "locations": "WAIS Divide; Antarctica; Antarctic", "north": -79.4666, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Spencer, Matthew; Alley, Richard; Fitzpatrick, Joan; Voigt, Donald E.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.4666, "title": "Collaborative Research: Continued Study of Physical Properties of the WAIS Divide Deep Core", "uid": "p0000027", "west": 112.1166}, {"awards": "0636767 Dunbar, Nelia; 0636740 Kreutz, Karl", "bounds_geometry": "POINT(112.11666 -79.46666)", "dataset_titles": "Microparticle, Conductivity, and Density Measurements from the WAIS Divide Deep Ice Core, Antarctica; Snowpit Chemistry - Methods Comparison, WAIS Divide, Antarctica; Snowpit evidence of the 2011 Puyehue-Cordon Caulle (Chile) eruption in West Antarctica; WAIS Divide Microparticle Concentration and Size Distribution, 0-2400 ka; WAIS Divide Snowpit Chemical and Isotope Measurements, Antarctica; WAIS Divide WDC06A Discrete ICP-MS Chemistry", "datasets": [{"dataset_uid": "609620", "doi": "10.7265/N5Q81B1X", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Trace Elements; WAIS Divide; WAIS Divide Ice Core", "people": "Kreutz, Karl; Koffman, Bess", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Snowpit Chemistry - Methods Comparison, WAIS Divide, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609620"}, {"dataset_uid": "601036", "doi": "10.15784/601036", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Intracontinental Magmatism; IntraContinental Magmatism; Snow Pit; Tephra; WAIS Divide; WAIS Divide Ice Core", "people": "Koffman, Bess; Kreutz, Karl", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Snowpit evidence of the 2011 Puyehue-Cordon Caulle (Chile) eruption in West Antarctica", "url": "https://www.usap-dc.org/view/dataset/601036"}, {"dataset_uid": "601023", "doi": "10.15784/601023", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; ICP-MS; Isotope; WAIS Divide; WAIS Divide Ice Core", "people": "Kreutz, Karl", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide WDC06A Discrete ICP-MS Chemistry", "url": "https://www.usap-dc.org/view/dataset/601023"}, {"dataset_uid": "609506", "doi": "10.7265/N5SJ1HHN", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Isotope; Microparticle Concentration; Snow/ice; Snow/Ice; WAIS Divide; WAIS Divide Ice Core", "people": "Koffman, Bess; Kreutz, Karl", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Snowpit Chemical and Isotope Measurements, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609506"}, {"dataset_uid": "609616", "doi": "10.7265/N5KK98QZ", "keywords": "Antarctica; Dust; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Particle Size; WAIS Divide; WAIS Divide Ice Core", "people": "Koffman, Bess; Kreutz, Karl", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Microparticle Concentration and Size Distribution, 0-2400 ka", "url": "https://www.usap-dc.org/view/dataset/609616"}, {"dataset_uid": "609499", "doi": "10.7265/N5K07264", "keywords": "Antarctica; Density; Electrical Conductivity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Microparticle Concentration; Physical Properties; WAIS Divide; WAIS Divide Ice Core", "people": "Kreutz, Karl; Hamilton, Gordon S.; Koffman, Bess; Breton, Daniel", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Microparticle, Conductivity, and Density Measurements from the WAIS Divide Deep Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609499"}], "date_created": "Tue, 19 Jun 2012 00:00:00 GMT", "description": "This award supports a project to perform continuous microparticle concentration and size distribution measurements (using coulter counter and state-of-the-art laser detector methods), analysis of biologically relevant trace elements associated with microparticles (Fe, Zn, Co, Cd, Cu), and tephra measurements on the WAIS Divide ice core. This initial three-year project includes analysis of ice core spanning the instrumental (~1850-present) to mid- Holocene (~5000 years BP) period, with sample resolution ranging from subannual to decadal. The intellectual merit of the project is that it will help in establishing the relationships among climate, atmospheric aerosols from terrestrial and volcanic sources, ocean biogeochemistry, and greenhouse gases on several timescales which remain a fundamental problem in paleoclimatology. The atmospheric mineral dust plays an important but uncertain role in direct radiative forcing, and the microparticle datasets produced in this project will allow us to examine changes in South Pacific aerosol loading, atmospheric dynamics, and dust source area climate. The phasing of changes in aerosol properties within Antarctica, throughout the Southern Hemisphere, and globally is unclear, largely due to the limited number of annually dated records extending into the glacial period and the lack of a\u003cbr/\u003etephra framework to correlate records. The broader impacts of the proposed research are an interdisciplinary approach to climate science problems, and will contribute to several WAIS Divide science themes as well as the broader paleoclimate and oceanographic communities. Because the research topics have a large and direct societal relevance, the project will form a centerpiece of various outreach efforts at UMaine and NMT including institution websites, public speaking, local K-12 school interaction, media interviews and news releases, and popular literature. At least one PhD student and one MS student will be directly supported by this project, including fieldwork, core processing, laboratory analysis, and data interpretation/publication. We expect that one graduate student per year will apply for a core handler/assistant driller position through the WAIS Divide Science Coordination Office, and that undergraduate student involvement will result in several Capstone experience projects (a UMaine graduation requirement). Data and ideas generated from the project will be integrated into undergraduate and graduate course curricula at both institutions.", "east": 112.11666, "geometry": "POINT(112.11666 -79.46666)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PARTICLE DETECTORS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e LOPC-PMS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e ICE CORE MELTER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PARTICLE DETECTORS", "is_usap_dc": true, "keywords": "Ice Core Dust; Tephra; Radiative Forcing; Greenhouse Gas; West Antarctica; Atmospheric Aerosols; Oxygen Isotope; Not provided; WAIS Divide; Snow Pit; Ice Core Chemistry; Microparticle; Wais Divide-project; Microparticles Size; Paleoclimate; LABORATORY; Ice Core Data; Atmospheric Dynamics; Antarctica; FIELD SURVEYS; Ice Core; Trace Elements; FIELD INVESTIGATION; Holocene; Isotope; Snow Chemistry", "locations": "Antarctica; WAIS Divide; West Antarctica", "north": -79.46666, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Koffman, Bess; Kreutz, Karl; Breton, Daniel; Dunbar, Nelia; Hamilton, Gordon S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.46666, "title": "Collaborative Research: Microparticle/tephra analysis of the WAIS Divide ice core", "uid": "p0000040", "west": 112.11666}, {"awards": "0440819 Taylor, Kendrick", "bounds_geometry": "POINT(112.1 -79.46667)", "dataset_titles": null, "datasets": null, "date_created": "Tue, 19 Jun 2012 00:00:00 GMT", "description": "This award supports a project that is part of the West Antarctic Ice Sheet Divide (WAIS Divide) program; which is a multi-disciplinary multi-institutional program to investigate the causes of natural changes in climate, the influence of the West Antarctic ice sheet on sea level, and the biology of deep ice. The WAIS Divide core will be unique among Antarctic ice cores in that it will have discernable annual layers for the last 40,000 years. A critical element of the program is to determine the age of the ice so that the climate proxies measured on the core can be interpreted in terms of age, not just depth. This project will make electrical measurements that can identify the annual layers. This information will be combined with information from other investigators to develop an annually resolved timescale over the last 40,000 years. This timescale will be the foundation on which the recent climate records are interpreted. Electrical measurements will also be used to produce two-dimensional images of the ice core stratigraphy; allowing sections of the core with abnormal stratigraphy to be identified. The broader impacts of this project include exposing a diverse group of undergraduate and graduate students to ice core research and assisting the Smithsonian National Museum of Natural History in Washington, D.C to develop a paleoclimate/ice core display.", "east": 112.1, "geometry": "POINT(112.1 -79.46667)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": false, "keywords": "Annual Layers; Time Scale; FIELD INVESTIGATION; Stratigraphy; FIELD SURVEYS; Glaciology; Electrical Measurements; Antarctic; Not provided; Ice Sheet; Ice Core; LABORATORY; Climate Proxies", "locations": "Antarctic", "north": -79.46667, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Taylor, Kendrick C.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -79.46667, "title": "Investigation of the Stratigraphy and Time Scale of the WAIS Divide Ice Core Using Electrical Methods", "uid": "p0000373", "west": 112.1}, {"awards": "0739654 Catania, Ginny; 0739372 Conway, Howard", "bounds_geometry": null, "dataset_titles": "Coastal and Terminus History of the Eastern Amundsen Sea Embayment, West Antarctica, 1972 - 2011; Ice Flow History of the Thwaites Glacier, West Antarctica", "datasets": [{"dataset_uid": "609522", "doi": "10.7265/N5CC0XNK", "keywords": "Amundsen Sea; Antarctica; Climate Change; Coastline; GIS Data; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Satellite Data Interpretation", "people": "Andrews, Alan G.; Catania, Ginny; Markowski, Michael; Macgregor, Joseph A.", "repository": "USAP-DC", "science_program": null, "title": "Coastal and Terminus History of the Eastern Amundsen Sea Embayment, West Antarctica, 1972 - 2011", "url": "https://www.usap-dc.org/view/dataset/609522"}, {"dataset_uid": "609463", "doi": "10.7265/N5RR1W6X", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Flow Lines; Thwaites Glacier", "people": "Catania, Ginny; Conway, Howard; Fudge, T. J.", "repository": "USAP-DC", "science_program": null, "title": "Ice Flow History of the Thwaites Glacier, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609463"}], "date_created": "Wed, 30 May 2012 00:00:00 GMT", "description": "Catania 0739654\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to study the Amundsen Sea drainage system and improve understanding of the impact of recent glaciological changes as an aid to predicting how this region will change in the future. The intellectual merit of the work is that the Amundsen Sea drainage system has been a recent focus for glaciological research because of rapid changes occurring there as a result of grounding line retreat. The work will focus on the regions of flow transition and will map the internal stratigraphy of the ice sheet across the Thwaites Glacier shear margins and use the age and geometry of radar-detected internal layers to interpret ice flow history. Thwaites Glacier (one of the main pathways for ice drainage in the region) has recently widened and may continue to do so in the near future. Thwaites Glacier may be particularly vulnerable to grounding line retreat because it lacks a well-defined subglacial channel. The subglacial environment exerts strong control on ice flow and flow history will be mapped in the context of bed topography and bed reflectivity. The plan is to use existing ice-penetrating radar data and coordinate with planned upcoming surveys to reduce logistical costs. The work proposed here will take three years to complete but no additional fieldwork in Antarctica is required. More detailed ground-based geophysical (radar and seismic) experiments will be needed at key locations to achieve our overall goal and the work proposed here will aid in identifying those regions. The broader impacts of the project are that it will initiate a new collaboration among radar communities within the US including those that are on the forefront of radar systems engineering and those that are actively involved in radar-derived internal layer and bed analysis. The project will also provide support for a postdoctoral researcher and a graduate student, thus giving them exposure to a variety of methodologies and scientific issues. Finally, there are plans to further develop the \"Wired Antarctica\" website designed by Ginny Catania with the help of a student-teacher. This will allow for the existing lesson plans to be updated to Texas State standards so that they can be used more broadly within state middle and high schools.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e SAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e TM; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": true, "keywords": "ERS-1; Coastal; Terminus; LABORATORY; Subglacial; Glacier; Not provided; Thwaites Glacier; Antarctica; LANDSAT; Internal Stratigraphy; West Antarctica; Internal Layers; Amundsen Sea; FIELD INVESTIGATION; FIELD SURVEYS; Glaciers; LANDSAT-5; Radar; Seismic", "locations": "Coastal; Antarctica; Thwaites Glacier; Amundsen Sea; West Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Conway, Howard; Catania, Ginny; Markowski, Michael; Macgregor, Joseph A.; Andrews, Alan G.; Fudge, T. J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e EUROPEAN REMOTE SENSING SATELLITE (ERS) \u003e ERS-1; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e LANDSAT \u003e LANDSAT; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e LANDSAT \u003e LANDSAT-5", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Ice-flow history of the Thwaites Glacier, West Antarctica", "uid": "p0000143", "west": null}, {"awards": "0739766 Brook, Edward J.", "bounds_geometry": "POINT(-112.08 -79.47)", "dataset_titles": "WAIS Divide Ice Core CO2", "datasets": [{"dataset_uid": "609651", "doi": "10.7265/N5DV1GTZ", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Brook, Edward J.; Marcott, Shaun", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core CO2", "url": "https://www.usap-dc.org/view/dataset/609651"}], "date_created": "Wed, 30 May 2012 00:00:00 GMT", "description": "Brook 0739766\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to create a 25,000-year high-resolution record of atmospheric CO2 from the WAIS Divide ice core. The site has high ice accumulation rate, relatively cold temperatures, and annual layering that should be preserved back to 40,000 years, all prerequisite for preserving a high quality, well-dated CO2 record. The new record will be used to examine relationships between Antarctic climate, Northern Hemisphere climate, and atmospheric CO2 on glacial-interglacial to centennial time scales, at unprecedented temporal resolution. The intellectual merit of the proposed work is simply that CO2 is the most important greenhouse gas that humans directly impact, and understanding the sources, sinks, and controls of atmospheric CO2 is a major goal for the global scientific community. Accurate chronology and detailed records are primary requirements for developing and testing models that explain and predict CO2 variability. The proposed work has several broader impacts. It contributes to the training of a post-doctoral researcher, who will transfer to a research faculty position during the award period and who will participate in graduate teaching and guest lecture in undergraduate courses. An undergraduate researcher will gain valuable lab training and conduct independent research. Bringing the results of\u003cbr/\u003ethe proposed work to the classroom will enrich courses taught by the PI. Outreach efforts will expose pre-college students to ice core research. The proposed work will enhance the laboratory facilities for ice core research at OSU, insuring that the capability for CO2 measurements exists for future projects. All data will be archived at the National Snow and Ice Data Center and other similar archives, per OPP policy. Highly significant results will be disseminated to the news media through OSU?s very effective News and Communications group. Carbon dioxide is the most important greenhouse gas that humans are directly changing. Understanding how CO2 and climate are linked on all time scales is necessary for predicting the future behavior of the carbon cycle and climate system, primarily to insure that the appropriate processes are represented in carbon cycle/climate models. Part of the proposed work emphasizes the relationship of CO2 and abrupt climate change. Understanding how future abrupt change might impact the carbon cycle is an important issue for society.", "east": -112.08, "geometry": "POINT(-112.08 -79.47)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Carbon Dioxide; FIELD INVESTIGATION; CO2; Wais Divide-project; Ice Core; Antarctica; Climate; Gas Chromatography; Antarctic Ice Core; LABORATORY", "locations": "Antarctica", "north": -79.47, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Marcott, Shaun; Ahn, Jinho; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.47, "title": "Atmospheric Carbon Dioxide and Climate Change: The WAIS Divide Ice Core Record", "uid": "p0000044", "west": -112.08}, {"awards": "0758274 Parizek, Byron; 0636724 Blankenship, Donald", "bounds_geometry": "POLYGON((-110.058 -74.0548,-109.57993 -74.0548,-109.10186 -74.0548,-108.62379 -74.0548,-108.14572 -74.0548,-107.66765 -74.0548,-107.18958 -74.0548,-106.71151 -74.0548,-106.23344 -74.0548,-105.75537 -74.0548,-105.2773 -74.0548,-105.2773 -74.31383,-105.2773 -74.57286,-105.2773 -74.83189,-105.2773 -75.09092,-105.2773 -75.34995,-105.2773 -75.60898,-105.2773 -75.86801,-105.2773 -76.12704,-105.2773 -76.38607,-105.2773 -76.6451,-105.75537 -76.6451,-106.23344 -76.6451,-106.71151 -76.6451,-107.18958 -76.6451,-107.66765 -76.6451,-108.14572 -76.6451,-108.62379 -76.6451,-109.10186 -76.6451,-109.57993 -76.6451,-110.058 -76.6451,-110.058 -76.38607,-110.058 -76.12704,-110.058 -75.86801,-110.058 -75.60898,-110.058 -75.34995,-110.058 -75.09092,-110.058 -74.83189,-110.058 -74.57286,-110.058 -74.31383,-110.058 -74.0548))", "dataset_titles": "Access to data; AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment; AGASEA Ice Thickness Profile Data from the Amundsen Sea Embayment, Antarctica; Airborne Laser Altimetry of the Thwaites Glacier Catchment, West Antarctica; ICECAP Basal Interface Specularity Content Profiles: IPY and OIB; Subglacial water flow paths under Thwaites Glacier, West Antarctica; Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "datasets": [{"dataset_uid": "601371", "doi": "10.15784/601371", "keywords": "Antarctica; East Antarctica; ICECAP; Ice Penetrating Radar; Radar Echo Sounder; Radar Echo Sounding; Subglacial Hydrology", "people": "Young, Duncan A.; Roberts, Jason; Greenbaum, Jamin; Blankenship, Donald D.; Schroeder, Dustin; Siegert, Martin; van Ommen, Tas", "repository": "USAP-DC", "science_program": null, "title": "ICECAP Basal Interface Specularity Content Profiles: IPY and OIB", "url": "https://www.usap-dc.org/view/dataset/601371"}, {"dataset_uid": "609518", "doi": "10.7265/N5RJ4GC8", "keywords": "AGASEA; Airborne Radar; Antarctica; Elevation; Flow Paths; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Thwaites Glacier", "people": "Young, Duncan A.; Blankenship, Donald D.; Carter, Sasha P.", "repository": "USAP-DC", "science_program": null, "title": "Subglacial water flow paths under Thwaites Glacier, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609518"}, {"dataset_uid": "609619", "doi": "10.7265/N58913TN", "keywords": "Amundsen Sea; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model; Thwaites Glacier", "people": "Blankenship, Donald D.; Dupont, Todd K.; Parizek, Byron R.; Holt, John W.", "repository": "USAP-DC", "science_program": null, "title": "Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "url": "https://www.usap-dc.org/view/dataset/609619"}, {"dataset_uid": "000248", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Access to data", "url": "http://nsidc.org/data/netcdf/tools.html"}, {"dataset_uid": "609334", "doi": "10.7265/N5HD7SK8", "keywords": "AGASEA; Airborne Altimetry; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Thwaites Glacier", "people": "Blankenship, Donald D.; Holt, John W.; Morse, David L.; Young, Duncan A.; Kempf, Scott D.", "repository": "USAP-DC", "science_program": null, "title": "Airborne Laser Altimetry of the Thwaites Glacier Catchment, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609334"}, {"dataset_uid": "601673", "doi": "10.15784/601673", "keywords": "Antarchitecture; Antarctica; Ice Penetrating Radar; Isochron; Layers; Radar; Radioglaciology; Thwaites Glacier", "people": "Muldoon, Gail R.; Blankenship, Donald D.; Jackson, Charles; Young, Duncan A.", "repository": "USAP-DC", "science_program": null, "title": "AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment", "url": "https://www.usap-dc.org/view/dataset/601673"}, {"dataset_uid": "609517", "doi": "10.7265/N5W95730", "keywords": "AGASEA; Airborne Radar; Amundsen Sea; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness", "people": "Kempf, Scott D.; Holt, John W.; Young, Duncan A.; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": null, "title": "AGASEA Ice Thickness Profile Data from the Amundsen Sea Embayment, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609517"}, {"dataset_uid": "002536", "doi": "", "keywords": null, "people": null, "repository": "NASA", "science_program": null, "title": "Access to data", "url": "http://www.giss.nasa.gov/tools/panoply/"}], "date_created": "Tue, 15 May 2012 00:00:00 GMT", "description": "This award supports a three-year study to isolate essential physical processes affecting Thwaites Glacier (TG) in the Amundsen Sea Embayment (ASE) of West Antarctica using a suite of existing numerical models in conjunction with existing and International Polar Year (IPY)-proposed data sets. Four different models will be utilized to explore the effects of embayment geometry, ice-shelf buttressing, basal-stress distribution, surface mass balance, surface climate, and inland dynamic perturbations on the present and future dynamics of TG. This particular collection of models is ideally suited for the broad nature of this investigation, as they incorporate efficient and complementary simplifications of the stress field (shallow-ice and shelf-stream), system geometry (1-d and 2-d plan-view and flowline; depth-integrated and depth-dependent), and mass-momentum energy coupling (mechanical and thermo-mechanical). The models will be constrained and validated by data sets (including regional maps of ice thickness, surface elevation, basal topography, ice surface velocity, and potential fields) and geophysical data analyses (including increasing the spatial resolution of surface elevations, improving regional estimates of geothermal flux, and characterizing the sub-glacial interface of grounded ice as well as the grounding-zone transition between grounded and floating ice). The intellectual merit of the research focuses on several of the NSF Glaciology program\u0027s emphases, including: ice dynamics, numerical modeling, and remote sensing of ice sheets. In addition, the research directly addresses the following specific NSF objectives: \"investigation of the physics of fast glacier flow with emphasis on processes at glacier beds\"; \"investigation of ice-shelf stability\"; and \"identification and quantification of the feedback between ice dynamics and climate change\". The broader impacts of this research effort will help answer societally relevant questions of future ice sheet stability and sea-level change. The research also will aid in the early career development of two young investigators and will contribute to the education of both graduate and undergraduate students directly involved in the research, and results will be incorporated into courses and informal presentations.", "east": -105.2773, "geometry": "POINT(-107.66765 -75.34995)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e RADIO \u003e INS", "is_usap_dc": true, "keywords": "Ice Sheet Thickness; Ice Sheet Elevation; Glacier Dynamics; Ice Stream; Numerical Model; West Antarctic; Surface Elevation; Basal Rheology; Ice Surface Velocity; Embayment Geometry; Amundsen Sea; Hydrology; FIELD SURVEYS; Antarctic Ice Sheet; Glacier; Subglacial; DHC-6; West Antarctic Ice Sheet; Model Output; Surface Climate; Glaciers; Basal Topography; Grounding Zone; Model Input Data; Airborne Laser Altimeters; FIELD INVESTIGATION; Thwaites Glacier; Airborne Laser Altimetry; Diagnostic; Ice-Shelf Buttressing; Ice Sheet; Prognostic; Glacier Surface; Airborne Radar Sounding; Digital Elevation Model; Ice Dynamic; Antarctica; Altimetry; Antarctica (agasea); Bed Elevation; Basal Stress; LABORATORY", "locations": "Antarctica; Thwaites Glacier; West Antarctic Ice Sheet; Antarctic Ice Sheet; West Antarctic; Amundsen Sea", "north": -74.0548, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Carter, Sasha P.; Dupont, Todd K.; Holt, John W.; Morse, David L.; Parizek, Byron R.; Young, Duncan A.; Kempf, Scott D.; Blankenship, Donald D.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "NASA; NSIDC; USAP-DC", "science_programs": null, "south": -76.6451, "title": "Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "uid": "p0000174", "west": -110.058}, {"awards": "0538538 Sowers, Todd; 0538578 Brook, Edward J.", "bounds_geometry": null, "dataset_titles": "Late Holocene Methane Concentrations from WAIS Divide and GISP2; Methane Concentrations from the WAIS Divide Ice Core (WDC06A), 60 to 11,300 ybp; The Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program.", "datasets": [{"dataset_uid": "609586", "doi": "10.7265/N5W66HQQ", "keywords": "Antarctica; Arctic; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Mitchell, Logan E", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Late Holocene Methane Concentrations from WAIS Divide and GISP2", "url": "https://www.usap-dc.org/view/dataset/609586"}, {"dataset_uid": "609509", "doi": "10.7265/N5J1013R", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Methane; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Sowers, Todd A.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Methane Concentrations from the WAIS Divide Ice Core (WDC06A), 60 to 11,300 ybp", "url": "https://www.usap-dc.org/view/dataset/609509"}, {"dataset_uid": "001303", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "The Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program.", "url": "https://nsidc.org/data/agdc"}], "date_created": "Thu, 19 Apr 2012 00:00:00 GMT", "description": "Sowers/Brook\u003cbr/\u003e0538538\u003cbr/\u003eThis award supports a project to develop a high-resolution (every 50 yr) methane data set that will play a pivotal role in developing the timescale for the new deep ice core being drilled at the West Antarctic Ice Sheet Divide (WAIS Divde) site as well as providing a common stratigraphic framework for comparing climate records from Greenland and WAIS Divide. Certain key intervals will be measured at even higher resolution to assist in precisely defining the phasing of abrupt climate change between the northern and southern hemispheres. Concurrent analysis of a suit of samples from both the WAIS Divide and GISP2 ice cores throughout the last 110kyr is also proposed, to establish the inter-hemispheric methane gradient which will be used to identify geographic areas responsible for the climate-related methane emission changes. A large gas measurement inter-calibration of numerous laboratories, utilizing both compressed air cylinders and WAIS Divide ice core samples, will also be performed. The intellectual merit of the proposed work is that it will provide the chronological control needed to examine the timing of changes in climate proxies, and critical chronological ties to the Greenland ice core records via methane variations. In addition, the project addresses the question of what methane sources were active during the ice age and will help to answer the fundamental question of what part of the biosphere controlled past methane variations. The broader impact of the proposed work is that it will directly benefit all ice core paleoclimate research and will impact the paleoclimate studies that rely on ice core timescales for correlation purposes. The project will also support a Ph.D. student at Oregon State University who will have the opportunity to be involved in a major new ice coring effort with international elements. Undergraduates at Penn State will gain valuable laboratory experience and participate fully in the project. The proposed work will underpin the WAIS Divide chronology, which will be fundamental to all graduate student projects that involve the core. The international inter-calibration effort will strengthen ties between research institutions on four continents and will be conducted as part of the International Polar Year research agenda.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Antarctica; Ch4; West Antarctica; Wais Divide-project; GROUND-BASED OBSERVATIONS; FIELD INVESTIGATION; FIELD SURVEYS; Methane Concentration; Methane; Ice Core; WAIS Divide; Antarctic; LABORATORY", "locations": "Antarctic; WAIS Divide; Antarctica; West Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Organisms and Ecosystems; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; NOT APPLICABLE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Lee, James; Buizert, Christo; Brook, Edward J.; Mitchell, Logan E; Sowers, Todd A.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "NSIDC; USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Collaborative Research: Constructing an Ultra-high Resolution Atmospheric Methane Record for the Last 140,000 Years from WAIS Divide Core.", "uid": "p0000025", "west": null}, {"awards": "0087521 Waddington, Edwin", "bounds_geometry": null, "dataset_titles": "Annual Layers at Siple Dome, Antarctica, from Borehole Optical Stratigraphy", "datasets": [{"dataset_uid": "609515", "doi": "10.7265/N5DB7ZRZ", "keywords": "Antarctica; Borehole Optical Stratigraphy; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Siple Dome; Siple Dome Ice Core; Snow/ice; Snow/Ice", "people": "Alley, Richard; Waddington, Edwin D.; Taylor, Kendrick C.; Hawley, Robert L.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Annual Layers at Siple Dome, Antarctica, from Borehole Optical Stratigraphy", "url": "https://www.usap-dc.org/view/dataset/609515"}], "date_created": "Sun, 15 Apr 2012 00:00:00 GMT", "description": "This award supports a two year project to develop a new method for measuring vertical strain rates in polar firn. Vertical strain rate measurements in the firn are important because they can aid in the understanding of the dynamics of firn compaction, a key factor in determining ice age/gas age difference estimates for ice cores. Vertical strain rate measurements also determine ice advection for borehole paleothermometry models, and most importantly can be used to date the shallow sections of ice cores where ambiguities in chemical dating or counting of annual layers hinder dating by traditional methods. In this project a video logging tool will be used to create a unique \"optical fingerprint\" of variations in the optical properties of the firn with depth, and track the movement and deformation of the features of this fingerprint. Preliminary work at Siple Dome, Antarctica using an improvised logging system shows a series of optically bright and dark zones as the tool transits up or down the hole. Borehole fingerprinting has the potential to improve measurements of vertical strain in firn holes. This project represents a unique opportunity to interface with an existing field program where a borehole vertical strain rate project is already underway. A graduate student will be supported to conduct the work on this project as part of a PhD. dissertation on climate and physical processes in polar firn.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS", "is_usap_dc": true, "keywords": "Antarctica; Stratigraphy; Layers; Ice Core Stratigraphy; Siple Dome; Borehole; FIELD INVESTIGATION; Borehole Camera; Ice Stratigraphy", "locations": "Antarctica; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Alley, Richard; Taylor, Kendrick C.; Waddington, Edwin D.; Hawley, Robert L.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Borehole Fingerprinting: Vertical Strain, Firn Compaction, and Firn Depth-Age Scales", "uid": "p0000173", "west": null}, {"awards": "0537930 Steig, Eric; 0537661 Cuffey, Kurt; 0537593 White, James", "bounds_geometry": "POINT(-112.08 -79.47)", "dataset_titles": "Stable Isotope Lab at INSTAAR, University of Colorado; WAIS ice core isotope data #342, 347, 348, 349, 350, 351 (full data link not provided)", "datasets": [{"dataset_uid": "000140", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "WAIS ice core isotope data #342, 347, 348, 349, 350, 351 (full data link not provided)", "url": "http://www.waisdivide.unh.edu/"}, {"dataset_uid": "002561", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Stable Isotope Lab at INSTAAR, University of Colorado", "url": "http://instaar.colorado.edu/sil/about/index.php"}], "date_created": "Mon, 09 Apr 2012 00:00:00 GMT", "description": "This award supports analyses of stable isotopes of water, dD, d18O and deuterium excess in the proposed West Antarctic Ice Sheet Divide (WAIS) deep ice core. The project will produce a continuous and high-resolution reconstruction of stable isotope ratios for the new core. dD and d18O values provide estimates of temperature change at the ice core site. Deuterium excess provides estimates of ocean surface conditions, such as sea surface temperature, at the moisture source areas. This new ice core is ideally situated to address questions ranging from ice sheet stability to abrupt climate change. WAIS Divide has high enough snowfall rates to record climate changes on annual to decadal time scales. It should also have ice old enough to capture the last interglacial period in detail. The West Antarctic ice sheet is the subject of great scrutiny as our modern climate warms and sea level rises. What are the prospects for added sea level rise from ice released by this ice sheet? Understanding how this ice sheet has responded to climate change in the past, which the data collected in this project will help to assess, is critical to answering this question. The high temporal resolution available in the WAIS Divide core will provide the best available basis for inter-comparison of millennial-scale climate changes between the poles, and thus a better understanding of the spatial expression and dynamics of rapid climate change events. Finally, the location of this core in the Pacific sector of West Antarctica makes it well situated for examining the influence of the tropical Pacific on Antarctica climate, on longer timescales than are available from the instrumental climate record. Analyses will include the measurement of sub-annually resolved isotope variations in the uppermost parts of the core, measurements at annual resolution throughout the last 10,000 years and during periods of rapid climate change prior to that, and measurements at 50-year resolution throughout the entire length of the core that is collected and processed during the period of this grant. We anticipate that this will be about half of the full core expected to be drilled. In terms of broader impacts, the PIs will share the advising of two graduate students, who will make this ice core the focus of their thesis projects. It will be done in an innovative multi-campus approach designed to foster a broader educational experience. As noted above, the data and interpretations generated by this proposal will address climate change questions not only of direct and immediate scientific interest, but also of direct and immediate policy interest.", "east": -112.08, "geometry": "POINT(-112.08 -79.47)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES", "is_usap_dc": true, "keywords": "West Antarctic Ice Sheet Divide; Not provided; Ice Core; WAIS Divide; LABORATORY; FIELD SURVEYS; Isotope; FIELD INVESTIGATION; Antarctica; West Antarctica; Stable Isotope Ratios; Antarctic; Ice Sheet; Deuterium", "locations": "WAIS Divide; West Antarctica; Antarctic; Antarctica; West Antarctic Ice Sheet Divide", "north": -79.47, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY", "persons": "White, James; Steig, Eric J.; Cuffey, Kurt M.; Souney, Joseph Jr.; Vaughn, Bruce", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "Project website", "repositories": "Project website", "science_programs": null, "south": -79.47, "title": "Collaborative Research: Stable Isotopes of Ice in the WAIS Divide Deep Ice Core", "uid": "p0000294", "west": -112.08}, {"awards": "0739769 Fricker, Helen", "bounds_geometry": "POLYGON((-57.22 74.58,-55.343 74.58,-53.466 74.58,-51.589 74.58,-49.712 74.58,-47.835 74.58,-45.958 74.58,-44.081 74.58,-42.204 74.58,-40.327 74.58,-38.45 74.58,-38.45 73.822,-38.45 73.064,-38.45 72.306,-38.45 71.548,-38.45 70.79,-38.45 70.032,-38.45 69.274,-38.45 68.516,-38.45 67.758,-38.45 67,-40.327 67,-42.204 67,-44.081 67,-45.958 67,-47.835 67,-49.712 67,-51.589 67,-53.466 67,-55.343 67,-57.22 67,-57.22 67.758,-57.22 68.516,-57.22 69.274,-57.22 70.032,-57.22 70.79,-57.22 71.548,-57.22 72.306,-57.22 73.064,-57.22 73.822,-57.22 74.58))", "dataset_titles": "Amery Ice Shelf metadata (IRIS); Columbia Glacier metadata (IRIS); Greenland Ice Sheet Seismic Network metadata (IRIS)", "datasets": [{"dataset_uid": "000100", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Amery Ice Shelf metadata (IRIS)", "url": "http://www.iris.edu/mda/X9?timewindow=2004-2007"}, {"dataset_uid": "000103", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Greenland Ice Sheet Seismic Network metadata (IRIS)", "url": "http://www.iris.edu/mda/_GLISN"}, {"dataset_uid": "000101", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Columbia Glacier metadata (IRIS)", "url": "http://www.iris.edu/mda/YM?timewindow=2004-2005"}], "date_created": "Thu, 22 Mar 2012 00:00:00 GMT", "description": "This award supports a project to strengthen collaborations between the various research groups working on iceberg calving. Relatively little is known about the calving process, especially the physics that governs the initiation and propagation of fractures within the ice. This knowledge gap exists in part because of the diverse range in spatial and temporal scales associated with calving (ranging from less than one meter to over a hundred kilometers in length scale). It is becoming increasingly clear that to predict the future behavior of the Antarctic Ice Sheet and its contribution to sea level rise, it is necessary to improve our understanding of iceberg calving processes. Further challenges stem from difficulties in monitoring and quantifying short-time and spatial-scale processes associated with ice fracture, including increased fracturing events in ice shelves or outlet glaciers that may be a precursor to disintegration, retreat or increased calving rates. Coupled, these fundamental problems currently prohibit the inclusion of iceberg calving into numerical ice sheet models and hinder our ability to accurately forecast changes in sea level in response to climate change. Seismic data from four markedly different environmental regimes forms the basis of the proposed research, and researchers most familiar with the datasets will perform all analyses. Extracting the similarities and differences across the full breadth of calving processes embodies the core of the proposed work, combining and improving methods previously developed by each group. Techniques derived from solid Earth seismology, including waveform cross-correlation and clustering will be applied to each data set allowing quantitative process comparisons on a significantly higher level than previously possible. This project will derive catalogues of glaciologically produced seismic events; the events will then be located and categorized based on their location, waveform and waveform spectra both within individual environments and between regions. The intellectual merit of this work is that it will lead to a better understanding of iceberg calving and the teleconnections between seismic events and other geophysical processes around the globe. The broader impacts of this work are that it relates directly to socio-environmental impacts of global change and sea level rise. Strong collaborations will form as a result of this research, including bolstered collaborations between the glacier and ice sheet communities, as well as the glaciology and seismology communities. Outreach and public dissemination of findings will be driven by SIO\u0027s Visualization Center, and Birch Aquarium, hosting presentations devoted to the role of the cryosphere in global change. Time-lapse movies of recent changes at Columbia Glacier will be used to engage potential young scientists. A program of presentations outside the university setting to at-risk and gifted youth will be continued. This study will also involve undergraduates in analyses and interpretation and presentation of the seismic data assembled. The work will also support two junior scientists who will be supported by this project.", "east": 72.949097, "geometry": "POINT(72.8836975 -69.008701)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS", "is_usap_dc": false, "keywords": "PASSCAL; Not provided; Antarctic; SEISMOLOGICAL STATIONS; Iceberg; Seismology; Calving", "locations": "Antarctic", "north": -68.993301, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Fricker, Helen", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e PASSCAL; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS; Not provided", "repo": "IRIS", "repositories": "IRIS", "science_programs": null, "south": -69.024101, "title": "An Investigation into the Seismic Signatures Generated by Iceberg Calving and Rifting", "uid": "p0000683", "west": 72.818298}, {"awards": "0636997 Waddington, Edwin", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 20 Mar 2012 00:00:00 GMT", "description": "Waddington/0636997\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to integrate three lines of glaciology research, previously treated independently. First, internal layers in ice sheets, detected by ice-penetrating radar, retain information about past spatial and temporal patterns of ice accumulation. Ice-flow modelers can recover this information, using geophysical inverse methods; however, the ages of the layers must be known, through interpolation where they intersect a well-dated ice core. \u003cbr/\u003eSecond, concentrations of methane and some other atmospheric constituents vary through time as climate changes. However, the atmosphere is always well mixed, and concentrations are similar world-wide at any one time, so gas variations from an undated core can be correlated with those in a well-dated core such as GISP2. Because air in near-surface firn mixes readily with the atmosphere above, the air that is trapped in bubbles deep in the firn is typically hundreds to thousands of years younger than that firn. Gas geochemists must calculate this age difference, called delta-age, with a firn-densification model before the ice enclosing the gas can be dated accurately. To calculate delta-age, they must know the temperature and the snow accumulation rate at the time and place where the snow fell. Third, gases can be correlated between cores only at times when the atmosphere changed, so ice-core dates must be interpolated at depths between the sparse dated points. Simplistic interpolation schemes can create undesirable artifacts in the depth-age profile. The intellectual merit of this project is that it will develop new interpolation methods that calculate layer thinning over time due to ice-flow mechanics. Accurate interpolation also requires a spatial and temporal accumulation history. These three issues are coupled through accumulation patterns and ice-core dates. This project will develop an integrated inversion procedure to solve all three problems simultaneously. The new method will incorporate ice-penetrating radar profile data and ice-core data, and will find self-consistent: spatial/temporal accumulation patterns; delta-age profiles for ice cores; and reliably interpolated depth-age profiles. The project will then: recalculate the depth-age profile at Byrd Station, Antarctica; provide a preliminary depth-age at the West Antarctic Ice Sheet (WAIS) in the initial stages of drilling, using radar layers with estimated ages traced from Byrd Station; and generate a self-consistent depth-age relationship for Taylor Dome, Antarctica over the past 20ka, where low accumulation has created uncertainty in dating, accumulation, and controversy over delta-age estimates. The broader impacts of the project are that it will support the PhD research of a female graduate student, and her continued outreach work with Making Connections, a non-profit program through the University of Washington Women\u0027s Center, which matches professional women mentors with minority high-school women interested in mathematics and science, disciplines where they are traditionally under-represented. The graduate student will also work with Girls on Ice, a ten-day glacier field program, taught by women scientist instructors, emphasizing scientific observation through immersion, leadership skills and safety awareness.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Internal Layers; LABORATORY; Ice Core; FIELD SURVEYS; Firn; FIELD INVESTIGATION; Accumulation; Glaciology; Climate Change; Ice Sheet", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Carns, Regina; Hay, Mike; Waddington, Edwin D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "Self-consistent Ice Dynamics, Accumulation, Delta-age, and Interpolation of Sparse Age Data using an Inverse Approach", "uid": "p0000376", "west": null}, {"awards": "0940650 Pettit, Erin; 0636996 Waddington, Edwin", "bounds_geometry": "POLYGON((-165 -75,-159 -75,-153 -75,-147 -75,-141 -75,-135 -75,-129 -75,-123 -75,-117 -75,-111 -75,-105 -75,-105 -76,-105 -77,-105 -78,-105 -79,-105 -80,-105 -81,-105 -82,-105 -83,-105 -84,-105 -85,-111 -85,-117 -85,-123 -85,-129 -85,-135 -85,-141 -85,-147 -85,-153 -85,-159 -85,-165 -85,-165 -84,-165 -83,-165 -82,-165 -81,-165 -80,-165 -79,-165 -78,-165 -77,-165 -76,-165 -75))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 16 Mar 2012 00:00:00 GMT", "description": "Pettit/0636795\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to constrain the accumulation rate, thickness, and temperature history for Siple Dome using a vertical velocity profile that includes the effects of an evolving fabric on deformation through time, to invert the depth-profile of fabric determined from sonic velocity measurements and grain size observed in thin sections in Siple Dome for the surface temperature and accumulation rate changes in the past, focusing on the apparent abrupt climate change events at 22ka and 15ka. The intellectual merit of the work is that it will extract past climate information from a number of physical properties of the deep ice using a coupled fabric evolution and ice-sheet flow model. The focus will be on the deep ice-age ice at Siple Dome, where the ice-core record shows puzzling signals and where modeling results imply intriguing deformation patterns. The method will also be applied to the records from Byrd Station and Taylor Dome to ultimately form a basis for future analysis of the West Antarctic Divide core. The broader impacts of the project are that it will ultimately contribute to our understanding of the effects of anisotropy on ice flow dynamics in West Antarctica. It will contribute to our understanding of the connection between ice flow and the paleoclimate record in ice cores, particularly with respect to the relationship between the chemical record and ice deformation. And it will contribute a new ice-flow model that includes the effects of anisotropy and fabric evolution. The project will also contribute to advancing the career of a new, young, female investigator and will support a couple of graduate students. Finally, the work will encouraging diversity in the physical sciences by directly helping to support the Girls on Ice a program that encourages young women to explore science and the natural world.", "east": -105.0, "geometry": "POINT(-135 -80)", "instruments": null, "is_usap_dc": false, "keywords": "LABORATORY; FIELD SURVEYS; FIELD INVESTIGATION; Vertical Velocity; COMPUTERS; Ice Core; Firn; Accumulation Rate; Siple Dome; Ice Thickness; Abrupt Climate Change; Ice Temperature; Metamorphism; Anisotropy; Antarctica", "locations": "Siple Dome; Antarctica", "north": -75.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Pettit, Erin; Waddington, Edwin D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -85.0, "title": "Collaborative Research: Anisotropy, Abrupt Climate Change, and the Deep Ice in West Antarctica", "uid": "p0000741", "west": -165.0}, {"awards": "9527571 Whillans, Ian", "bounds_geometry": "POLYGON((158.25 -76.66667,158.325 -76.66667,158.4 -76.66667,158.475 -76.66667,158.55 -76.66667,158.625 -76.66667,158.7 -76.66667,158.775 -76.66667,158.85 -76.66667,158.925 -76.66667,159 -76.66667,159 -76.683336,159 -76.700002,159 -76.716668,159 -76.733334,159 -76.75,159 -76.766666,159 -76.783332,159 -76.799998,159 -76.816664,159 -76.83333,158.925 -76.83333,158.85 -76.83333,158.775 -76.83333,158.7 -76.83333,158.625 -76.83333,158.55 -76.83333,158.475 -76.83333,158.4 -76.83333,158.325 -76.83333,158.25 -76.83333,158.25 -76.816664,158.25 -76.799998,158.25 -76.783332,158.25 -76.766666,158.25 -76.75,158.25 -76.733334,158.25 -76.716668,158.25 -76.700002,158.25 -76.683336,158.25 -76.66667))", "dataset_titles": "GPS Ice Flow Measurements, Allan Hills, Antarctica", "datasets": [{"dataset_uid": "609507", "doi": "10.7265/N5NS0RSX", "keywords": "Allan Hills; Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ice Flow Velocity", "people": "Hamilton, Gordon S.; Spikes, Vandy Blue; Kurbatov, Andrei V.; Spaulding, Nicole", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "GPS Ice Flow Measurements, Allan Hills, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609507"}], "date_created": "Tue, 20 Dec 2011 00:00:00 GMT", "description": "Whillans, Wilson, Goad OPP 9527571 Abstract This award supports a project to initiate Global Positioning System (GPS) measurements for rock motions in South Victoria Land and vicinity. The results will be used to test some of the leading models for ice-sheet change and tectonism, in particular, whether the continent is rebounding due to reduced ice load from East or West Antarctica and whether there is tectonic motion due to Terror Rift or uplift of the Transantarctic Mountains. A modest program to measure ice motion will be conducted as well. The motive is to test models for ice flow in the Allan Hills meteorite concentration region and to determine whether small glaciers in the Dry Valleys are thickening or thinning. Monuments will be set into rock and ice and GPS receivers used to determine their locations. Repeats in later years will determine motion. Field activities will involve close cooperation with the USGS.", "east": 159.0, "geometry": "POINT(158.625 -76.75)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "FIELD SURVEYS; LABORATORY; Not provided; Ice Movement; GPS Data; Vertical Motions; GPS; FIELD INVESTIGATION", "locations": null, "north": -76.66667, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Whillans, Ian; Spaulding, Nicole; Hamilton, Gordon S.; Spikes, Vandy Blue; Kurbatov, Andrei V.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.83333, "title": "GPS Measurements of Rock and Ice Motions in South Victoria Land", "uid": "p0000523", "west": 158.25}, {"awards": "0537609 Gee, Jeffrey", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "An Integrated Geomagnetic and Petrologic Study of the Dufek Complex", "datasets": [{"dataset_uid": "600053", "doi": "10.15784/600053", "keywords": "Antarctica; Dufek Complex; Geology/Geophysics - Other; Paleomagnetism; Solid Earth", "people": "Gee, Jeffrey", "repository": "USAP-DC", "science_program": null, "title": "An Integrated Geomagnetic and Petrologic Study of the Dufek Complex", "url": "https://www.usap-dc.org/view/dataset/600053"}], "date_created": "Tue, 20 Dec 2011 00:00:00 GMT", "description": "This project studies remnant magnetization in igneous rocks from the Dufek igneous complex, Antarctica. Its primary goal is to understand variations in the Earth\u0027s magnetic field during the Mesozoic Dipole Low (MDL), a period when the Earth\u0027s magnetic field underwent dramatic weakening and rapid reversals. This work will resolve the MDL\u0027s timing and nature, and assess connections between reversal rate, geomagnetic intensity and directional variability, and large-scale geodynamic processes. The project also includes petrologic studies to determine cooling rate effects on magnetic signatures, and understand assembly of the Dufek as an igneous body. Poorly studied, the Dufek is amongst the world\u0027s largest intrusions and its formation is connected to the break-up of Gondwana. \u003cbr/\u003e\u003cbr/\u003eThe broader impacts of this project include graduate and undergraduate education and international collaboration with a German and Chilean IPY project.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Gee, Jeffrey", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: An Integrated Geomagnetic and Petrologic Study of the Dufek Complex", "uid": "p0000510", "west": -180.0}, {"awards": "0636898 Winckler, Gisela", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 30 Nov 2011 00:00:00 GMT", "description": "Winckler/0636898\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to study dust sources in Antarctic ice cores. Atmospheric aerosols play an important role both in global biogeochemical cycles as well as in the climate system of the Earth. Records extracted from Antarctic ice cores inform us that dust deposition from the atmosphere to the ice sheet was 15-20 times greater during glacial periods than during interglacials, which raises the possibility that dust may be a key player in climate change on glacial-interglacial timescales. By characterizing potential source areas from South America, South Africa, and Australia as well as fresh glacial flour from Patagonia, the project will determine if the interglacial dust was mobilized from a distinct geographical region (e.g., Australia) or from a more heavily weathered source region in South America. The intellectual merit of the project is that it will contribute to reconstructing climate-related changes in the rate of dust deposition, and in the provenance of the dust, it will provide critical constraints on hydrology and vegetation in the source regions, as well as on the nature of the atmospheric circulation transporting dust to the archive location. In a recent pilot study it was found that there is a dramatic glacial to Holocene change in the 4He/Ca ratio in the dust extracted from ice from Dronning Maud Land, Antarctica, indicating a shift in the source of dust transported to Antarctica. The broader impacts of the project are that Helium isotopes and calcium measurements provide a wealth of information that can then be turned into critical input for dust-climate models. Improved models, which are able to accurately reconstruct paleo dust distribution, will help us to predict changes in dust in response to future climate variability. This information will contribute to an improvement of our integrated understanding of the Earth\u0027s climate system and, in turn, will better inform policy makers of those processes and conditions most susceptible to perturbation by climate change, thereby leading to more meaningful climate-change policy. The project will support a graduate student in the dual masters Earth and Environmental Science Journalism program. The lead-PI manages the rock noble gas laboratory at Lamont. Her leadership role in this facility impacts the training of undergraduate and graduate students as well as visiting scientists.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": false, "keywords": "Deposition; LABORATORY; Dust; Climate; Not provided; Climate Change; Helium Isotopes; FIELD INVESTIGATION; Biogeochemical Cycles", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Winckler, Gisela", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "Tracing Glacial-interglacial Changes in the Dust Source to Antarctica using Helium Isotopes", "uid": "p0000265", "west": null}, {"awards": "0828786 Barletta, Robert", "bounds_geometry": "POINT(38.466667 72.583336)", "dataset_titles": null, "datasets": null, "date_created": "Tue, 06 Sep 2011 00:00:00 GMT", "description": "Barletta \u003cbr/\u003e0828786\u003cbr/\u003e\u003cbr/\u003eThis award supports a Small Grant for Exploratory Research (SGER) for a project to conduct a limited scope, proof-of-concept study of the application of Raman spectroscopy to the analysis of ice cores. As a non-destructive analytical tool with high spatial resolution, Raman spectroscopy has found widespread application in situations where water is a major constituent in the sample, including marine science and the analysis of clathrates in ice-cores themselves. Raman can provide information at high enough sensitivity (ppm to ppb) to make its use as a non-destructive survey tool for ice core samples attractive. Laser-based techniques such as Raman can be used to obtain chemical information at near diffraction-limited resolution allowing particulates on the order of 1micron or less to be characterized. Preliminary work has demonstrated the selectivity of Raman spectroscopy for determining related polyatomic species (ions and compounds), and the ability to discern oxidation state from such analysis. In spite of the potential of this technique, instrumentation necessary to analyze ice core samples using micro-Raman spectroscopy with UV excitation is not readily available. Even with visible excitation, libraries of Raman spectra necessary for mixture de-convolution are not available. The proposed effort is a novel extension of Raman into the area of polar and climatic research, providing data on chemical speciation hitherto unavailable, of critical importance to the understanding of the biology present in glacial ice as well as the sources of particulate material found in ice cores. Since the availability of ice-core material at critical horizons is limited, this non-destructive technique will help to maximize the information obtained from these samples. The broader impacts of the work are that it will bring a new researcher into the field of polar ice core analysis and it has the potential to also bring a new non-destructive technique into the field. Finally, the research will take place at a predominately undergraduate institution in South Alabama with a large proportion (24% of undergraduates) of minority students. The proposed effort is high-risk because, although based upon established principles of vibrational spectroscopy, the application to the analytical problems of trace environmental analysis are unique, and the precision requirements are stringent. Moreover, this work will demonstrate the feasibility of an integrated approach to ice core analysis, while addressing specific problems in glaciology.", "east": 38.466667, "geometry": "POINT(38.466667 -72.583336)", "instruments": null, "is_usap_dc": false, "keywords": "Particulates; Spectroscopy; Antarctic; LABORATORY; Ice Core; FIELD INVESTIGATION; Not provided; Ions; Raman Spectra", "locations": "Antarctic", "north": -72.583336, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Barletta, Robert", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -72.583336, "title": "SGER - ?Raman Analysis of Ice-Core Samples", "uid": "p0000285", "west": 38.466667}, {"awards": "0440847 Raymond, Charles", "bounds_geometry": null, "dataset_titles": "GPS-Measured Ice Velocities and Strain Data from the Ross and Amundsen Sea Ice Flow Divide, West Antarctica; Polarimetric Radar Data from the Ross and Amundsen Sea Ice Flow Divide, West Antarctica", "datasets": [{"dataset_uid": "609503", "doi": "10.7265/N5222RQ8", "keywords": "Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ice Flow Velocity; Ross-Amundsen Divide; Strain", "people": "Matsuoka, Kenichi; Power, Donovan; Rasmussen, Al", "repository": "USAP-DC", "science_program": null, "title": "GPS-Measured Ice Velocities and Strain Data from the Ross and Amundsen Sea Ice Flow Divide, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609503"}, {"dataset_uid": "609496", "doi": "10.7265/N5TH8JNG", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Radar; Ross-Amundsen Divide", "people": "Power, Donovan; Fujita, Shuji; Raymond, Charles; Matsuoka, Kenichi", "repository": "USAP-DC", "science_program": null, "title": "Polarimetric Radar Data from the Ross and Amundsen Sea Ice Flow Divide, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609496"}], "date_created": "Mon, 29 Aug 2011 00:00:00 GMT", "description": "This award supports a project to investigate fabrics with ground-based radar measurements near the Ross/Amundsen Sea ice-flow divide where a deep ice core will be drilled. The alignment of crystals in ice (crystal-orientation fabric) has an important effect on ice deformation. As ice deforms, anisotropic fabrics are produced, which, in turn, influence further deformation. Measurement of ice fabric variations can help reveal the deformation history of the ice and indicate how the ice will deform in the future. Ice cores provide opportunities to determine a vertical fabric profile, but horizontal variations of fabrics remain unknown. Remote sensing with ice-penetrating radar is the only way to do that over large areas. Preliminary results show that well-established polarimetric methods can detect the degree of horizontal anisotropy of fabrics and their orientation, even when they are nearly vertical-symmetric fabrics. In conjunction with ice deformation history, our first mapping of ice fabrics will contribute to modeling ice flow near the future ice core site. The project will train a graduate student and provide research experiences for two under graduate students both in field and laboratory. The project will contribute to ongoing West Antarctic ice sheet program efforts to better understand the impact of the ice sheet on global sea level rise. This project also supports an international collaboration between US and Japanese scientists.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "GPS; FIELD SURVEYS; Antarctic; Radar; Antarctica; FIELD INVESTIGATION; Ice Sheet; Not provided; Ross-Amundsen Divide; West Antarctica; West Antarctic Ice Sheet", "locations": "Antarctica; Ross-Amundsen Divide; West Antarctica; Antarctic; West Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Matsuoka, Kenichi; Power, Donovan; Fujita, Shuji; Raymond, Charles; Rasmussen, Al", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Detection of Crystal Orientation Fabrics near the Ross/Amundsen Sea Ice-flow Divide and at the Siple Dome Ice Core Site using Polarimetric Radar Methods", "uid": "p0000024", "west": null}, {"awards": "0739598 Aydin, Murat; 0739491 Sowers, Todd", "bounds_geometry": null, "dataset_titles": "Alkanes in Firn Air Samples, Antarctica and Greenland; Methane Isotopes in South Pole Firn Air, 2008", "datasets": [{"dataset_uid": "609504", "doi": "10.7265/N5X9287C", "keywords": "Antarctica; Arctic; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Greenland; Snow/ice; Snow/Ice; South Pole; WAIS Divide", "people": "Aydin, Murat; Saltzman, Eric", "repository": "USAP-DC", "science_program": null, "title": "Alkanes in Firn Air Samples, Antarctica and Greenland", "url": "https://www.usap-dc.org/view/dataset/609504"}, {"dataset_uid": "609502", "doi": "10.7265/N55T3HFP", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Isotope; Paleoclimate; Snow/ice; Snow/Ice; South Pole", "people": "Sowers, Todd A.", "repository": "USAP-DC", "science_program": null, "title": "Methane Isotopes in South Pole Firn Air, 2008", "url": "https://www.usap-dc.org/view/dataset/609502"}], "date_created": "Thu, 18 Aug 2011 00:00:00 GMT", "description": "This award supports a project to make measurements of methane and other trace gases in firn air collected at South Pole, Antarctica. The analyses will include: methane isotopes (delta-13CH4 and delta-DCH4), light non-methane hydrocarbons (ethane, propane, and n-butane), sulfur gases (COS, CS2), and methyl halides (CH3Cl and CH3Br). The atmospheric burdens of these trace gases reflect changes in atmospheric OH, biomass burning, biogenic activity in terrestrial, oceanic, and wetland ecosystems, and industrial/agricultural activity. The goal of this project is to develop atmospheric histories for these trace gases over the last century through examination of depth profiles of these gases in South Pole firn air. The project will involve two phases: 1) a field campaign at South Pole, Antarctica to drill two firn holes and fill a total of ~200 flasks from depths reaching 120 m, 2) analysis of firn air at University of California, Irvine, Penn State University, and several other collaborating laboratories. Atmospheric histories will be inferred from the measurements using a one dimensional advective/diffusive model of firn air transport. This study will provide new information about the recent changes in atmospheric levels of these gases, providing about a 90 year long time series record that connects the earlier surface and firn air measurements to present day. The project will also explore the possibility of in- situ production of light non-methane hydrocarbons in firn air that is relevant to the interpretation of ice core records. The broader impacts of this research are that it has the potential for significant societal impact by improving our understanding of climate change and man\u0027s input to the atmosphere. The results of this work will be disseminated through the peer review process, and will contribute to environmental assessments, such as the Inter-governmental Panel on Climate Change (IPCC) Climate Assessment and the Word Meteorological Organization (WMO) Stratospheric Ozone Assessment. This research will provide educational opportunities for graduate and undergraduate students, and will contribute to a teacher training program for K-12 teachers in minority school districts.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GC-MS", "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; Isotope; Firn Air Chemistry; Firn Air Isotope Measurements; Not provided; LABORATORY; South Pole; Firn; Delta 13C; Carbon-13; Mass Spectrometer; Deuterium; Mass Spectrometry; Firn Air Samples; Carbon; Gas Chromatography; Polar Firn Air; GROUND-BASED OBSERVATIONS; Methane; Antarctica; Firn Air Isotopes; Delta Deuterium; FIELD SURVEYS; Firn Air; Chromatography; Methane Isotopes; Carbon Isotopes; Stable Isotopes", "locations": "Antarctica; South Pole", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Aydin, Murat; Saltzman, Eric; Sowers, Todd A.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Methane Isotopes, Hydrocarbons, and other Trace Gases in South Pole Firn Air", "uid": "p0000162", "west": null}, {"awards": "0636929 Bales, Roger", "bounds_geometry": null, "dataset_titles": "Measurements of Air and Snow Photochemical Species at WAIS Divide, Antarctica", "datasets": [{"dataset_uid": "609585", "doi": "10.7265/N5GX48HW", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Bales, Roger", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Measurements of Air and Snow Photochemical Species at WAIS Divide, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609585"}], "date_created": "Thu, 14 Jul 2011 00:00:00 GMT", "description": "This award supports a project to understand how recent changes in atmospheric chemistry, and historical changes as recorded in snow, firn and ice, have affected atmospheric photochemistry over Antarctica. Atmospheric, snow and firn core measurements of selected gas, meteorological and snow physical properties will be made and modeling of snow-atmosphere exchange will be carried out. The intellectual merit of the project is that it will lead to a better an understanding of the atmospheric chemistry in West Antarctica, its bi-directional linkages with the snowpack, and how it responds to regional influences. There are at least four broader impacts of this work. First is education of university students at both the graduate and undergraduate levels. One postdoctoral researcher and one graduate student will carry out much of the work, and a number of undergraduates will be involved. Second, involvement with the WAIS-Divide coring program will be used to help recruit under-represented groups as UC Merced students. As part of UC Merced\u0027s outreach efforts in the San Joaquin Valley, whose students are under-represented in the UC system, the PI and co-PI give short research talks to groups of prospective students, community college and high school educators and other groups. They will develop one such talk highlighting this project. Including high-profile research in these recruiting talks has proven to be an effective way to promote dialog, and interest students in UC Merced. Third, talks such as this also contribute to the scientific literacy of the general public. The PI and grad student will all seek opportunities to share project information with K-14 and community audiences. Fourth, results of the research will be disseminated broadly to the scientific community, and the researchers will seek additional applications for the transfer functions as tools to improve interpretation of ice-cores. This research is highly collaborative, and leverages the expertise and data from a number of other groups.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e CHEMILUMINESCENCE", "is_usap_dc": true, "keywords": "Snow; Atmospheric Chemistry; Not provided; LABORATORY; Antarctica; FIELD SURVEYS; Snow Physical Properties; Meteorology; Wais Divide-project; Firn; Atmosphere Exchange; WAIS Divide; FIELD INVESTIGATION", "locations": "Antarctica; WAIS Divide", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bales, Roger", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Atmospheric, Snow and Firn Chemistry Studies for Interpretation of WAIS-Divide Cores", "uid": "p0000041", "west": null}, {"awards": "0538120 Catania, Ginny; 0538015 Hulbe, Christina", "bounds_geometry": "POLYGON((154.71 -82.78,154.79000000000002 -82.78,154.87 -82.78,154.95 -82.78,155.03 -82.78,155.11 -82.78,155.19 -82.78,155.26999999999998 -82.78,155.35 -82.78,155.43 -82.78,155.51 -82.78,155.51 -82.788,155.51 -82.796,155.51 -82.804,155.51 -82.812,155.51 -82.82,155.51 -82.828,155.51 -82.836,155.51 -82.844,155.51 -82.852,155.51 -82.86,155.43 -82.86,155.35 -82.86,155.26999999999998 -82.86,155.19 -82.86,155.11 -82.86,155.03 -82.86,154.95 -82.86,154.87 -82.86,154.79000000000002 -82.86,154.71 -82.86,154.71 -82.852,154.71 -82.844,154.71 -82.836,154.71 -82.828,154.71 -82.82,154.71 -82.812,154.71 -82.804,154.71 -82.796,154.71 -82.788,154.71 -82.78))", "dataset_titles": "Grounding Line Strain Grid Surveys, Kamb Ice Stream, Antarctica; Ice-Penetrating Radar Data Across Siple Coast Grounding Lines", "datasets": [{"dataset_uid": "609474", "doi": "10.7265/N5M043BH", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; GPR; Grounding Line; Radar; Siple Coast", "people": "Catania, Ginny; Hulbe, Christina", "repository": "USAP-DC", "science_program": null, "title": "Ice-Penetrating Radar Data Across Siple Coast Grounding Lines", "url": "https://www.usap-dc.org/view/dataset/609474"}, {"dataset_uid": "609494", "doi": "10.7265/N5Z899C6", "keywords": "Antarctica; Geodesy; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Grounding Line; Kamb Ice Stream; Strain", "people": "Hulbe, Christina", "repository": "USAP-DC", "science_program": null, "title": "Grounding Line Strain Grid Surveys, Kamb Ice Stream, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609494"}], "date_created": "Sat, 02 Jul 2011 00:00:00 GMT", "description": "0538120\u003cbr/\u003eCatania\u003cbr/\u003eThis award supports a project to identify and map ice surface and internal features that chronicle the sequence of events leading to the shut-down of Kamb ice stream. In particular, the project will study past grounding line migration and the relationship between that process and ice stream shutdown. The intellectual merits of the project include the fact that an understanding of such processes has important implications for our ability to accurately predict mass balance changes in this region. Currently, one of the five major West Antarctic ice streams, Kamb, is quiescent, and another, Whillans, is slowing in its downstream reaches. The Kamb shutdown appears to have begun at its downstream end but beyond that simple observation, it is not possible, yet, to draw meaningful comparisons between the two adjacent streams. We do not know if current events on Whillans Ice Stream are similar to what transpired during the Kamb shut-down. The work proposed here intends to bridge that gap. It is expected that this effort will yield useful insights into the influence of grounding line dynamics on ice stream flow. The work will involve a combination of field investigations using radio-echo sounding and GPS combined with computational efforts involving the interpretation of ice-surface features such as relict flow traces and crevasses. The broader impacts of the project will be in addressing a global environmental problem with critical societal implications, training the next generation of scientists and engineers to serve the nation, and encouraging women to pursue scientific or engineering careers. Participants from both institutions are involved in a range of public outreach activities.", "east": 155.51, "geometry": "POINT(155.11 -82.82)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR", "is_usap_dc": true, "keywords": "Not provided; Ice Sheet Elevation; West Antarctic Ice Stream; MODELS; Ice Sheet Thickness; West Antarctic Ice Sheet; Kamb Ice Stream; Antarctic Ice Sheet; Ice Sheet; Ice Stream Motion; Antarctica; Siple Dome; Grounding Line; FIELD INVESTIGATION; GPS; FIELD SURVEYS; West Antarctica; Ice Stream; Radar", "locations": "Antarctica; Kamb Ice Stream; West Antarctic Ice Stream; Antarctic Ice Sheet; West Antarctica; West Antarctic Ice Sheet; Siple Dome", "north": -82.78, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Hulbe, Christina; Catania, Ginny", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e MODELS \u003e MODELS; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.86, "title": "Collaborative Research: Grounding Line Forensics: The History of Grounding Line Retreat in the Kamb Ice Stream Outlet Region", "uid": "p0000019", "west": 154.71}, {"awards": "0739780 Taylor, Kendrick", "bounds_geometry": "POINT(-112.117 -79.666)", "dataset_titles": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning", "datasets": [{"dataset_uid": "600142", "doi": "10.15784/600142", "keywords": "Antarctica; Atmosphere; Black Carbon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Taylor, Kendrick C.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning", "url": "https://www.usap-dc.org/view/dataset/600142"}], "date_created": "Thu, 28 Apr 2011 00:00:00 GMT", "description": "Edwards/0739780\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to develop a 2,000-year high-temporal resolution record of biomass burning from the analysis of black carbon in the WAIS Divide bedrock ice core. Pilot data for the WAIS WD05A core demonstrates that we now have the ability to reconstruct this record with minimal impact on the amount of ice available for other projects. The intellectual merit of this project is that black carbon (BC) aerosols result solely from combustion and play a critical but poorly quantified role in global climate forcing and the carbon cycle. When incorporated into snow and ice, BC increases absorption of solar radiation making seasonal snow packs, mountain glaciers, polar ice sheets, and sea ice much more vulnerable to climate warming. BC emissions in the Southern Hemisphere are dominated by biomass burning in the tropical regions of Southern Africa, South America and South Asia. Biomass burning, which results from both climate and human activities, alters the atmospheric composition of greenhouse gases, aerosols and perturbs key biogeochemical cycles. A long-term record of biomass burning is needed to aid in the interpretation of ice core gas composition and will provide important information regarding human impacts on the environment and climate before instrumental records. The broader impacts of the project are that it represents a paradigm shift in our ability to reconstruct the history of fire from ice core records and to understand its impact on atmospheric chemistry and climate over millennial time scales. This type of data is especially needed to drive global circulation model simulations of black carbon aerosols, which have been found to be an important component of global warming and which may be perturbing the hydrologic cycle. The project will also employ undergraduate students and is committed to attracting underrepresented groups to the physical sciences. The project?s outreach component will be conducted as part of the WAIS project outreach program and will reach a wide audience.", "east": -112.117, "geometry": "POINT(-112.117 -79.666)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Ice Core Chemistry; Not provided; Gas Record; Ice Core; Gas Measurement; Ice Core Gas Composition; Antarctica; LABORATORY; Bedrock Ice Core; Ice Core Gas Records; Wais Project; Greenhouse Gas; Atmospheric Chemistry; FIELD INVESTIGATION; Black Carbon; Biomass Burning; WAIS Divide; FIELD SURVEYS; West Antarctica; Methane", "locations": "Antarctica; West Antarctica; WAIS Divide", "north": -79.666, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Brook, Edward J.; McConnell, Joseph; Mitchell, Logan E; Sowers, Todd A.; Taylor, Kendrick C.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.666, "title": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning", "uid": "p0000022", "west": -112.117}, {"awards": "0538495 Albert, Mary; 0537532 Liston, Glen; 0963924 Steig, Eric; 0538416 McConnell, Joseph; 0538103 Scambos, Ted; 0538422 Hamilton, Gordon", "bounds_geometry": "POLYGON((-180 -72.01667,-161.74667 -72.01667,-143.49334 -72.01667,-125.24001 -72.01667,-106.98668 -72.01667,-88.73335 -72.01667,-70.48002 -72.01667,-52.22669 -72.01667,-33.97336 -72.01667,-15.72003 -72.01667,2.5333 -72.01667,2.5333 -73.815003,2.5333 -75.613336,2.5333 -77.411669,2.5333 -79.210002,2.5333 -81.008335,2.5333 -82.806668,2.5333 -84.605001,2.5333 -86.403334,2.5333 -88.201667,2.5333 -90,-15.72003 -90,-33.97336 -90,-52.22669 -90,-70.48002 -90,-88.73335 -90,-106.98668 -90,-125.24001 -90,-143.49334 -90,-161.74667 -90,180 -90,162.25333 -90,144.50666 -90,126.75999 -90,109.01332 -90,91.26665 -90,73.51998 -90,55.77331 -90,38.02664 -90,20.27997 -90,2.5333 -90,2.5333 -88.201667,2.5333 -86.403334,2.5333 -84.605001,2.5333 -82.806668,2.5333 -81.008335,2.5333 -79.210002,2.5333 -77.411669,2.5333 -75.613336,2.5333 -73.815003,2.5333 -72.01667,20.27997 -72.01667,38.02664 -72.01667,55.77331 -72.01667,73.51998 -72.01667,91.26665 -72.01667,109.01332 -72.01667,126.75999 -72.01667,144.50666 -72.01667,162.25333 -72.01667,-180 -72.01667))", "dataset_titles": "Ice Core Chemistry from the Norwegian-U.S. Scientific Traverse of East Antarctica, IPY 2007-2009; Norwegian-U.S. Scientific Traverse of East Antarctica; This data set contains data from the publication Steig et al., Nature Geoscience, vol. 6, pages 372\u00e2\u20ac\u201c375 (doi:10.1038/ngeo1778), which includes isotope data from the Norway-US traverse in East Antarctica.", "datasets": [{"dataset_uid": "001305", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "This data set contains data from the publication Steig et al., Nature Geoscience, vol. 6, pages 372\u00e2\u20ac\u201c375 (doi:10.1038/ngeo1778), which includes isotope data from the Norway-US traverse in East Antarctica.", "url": "http://nsidc.org/data/nsidc-0536.html"}, {"dataset_uid": "609520", "doi": "10.7265/N5H41PC9", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; East Antarctica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Chemistry from the Norwegian-U.S. Scientific Traverse of East Antarctica, IPY 2007-2009", "url": "https://www.usap-dc.org/view/dataset/609520"}, {"dataset_uid": "000112", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Norwegian-U.S. Scientific Traverse of East Antarctica", "url": "http://traverse.npolar.no/"}], "date_created": "Wed, 23 Feb 2011 00:00:00 GMT", "description": "This award supports a project of scientific investigations along two overland traverses in East Antarctica: one going from the Norwegian Troll Station (72deg. S, 2deg. E) to the United States South Pole Station (90deg. S, 0deg. E) in 2007-2008; and a return traverse starting at South Pole Station and ending at Troll Station by a different route in 2008-2009. The project will investigate climate change in East Antarctica, with the goals of understanding climate variability in Dronning Maud Land of East Antarctica on time scales of years to centuries and determining the surface and net mass balance of the ice sheet in this sector to understand its impact on sea level. The project will also investigate the impact of atmospheric and oceanic variability and human activities on the chemical composition of firn and ice in the region, and will revisit areas and sites first explored by traverses in the 1960\u0027s, for detection of possible changes and to establish benchmark datasets for future research efforts. In terms of broader impacts, the results of this study will add to understanding of climate variability in East Antarctica and its contribution to global sea level change. The project includes international exchange of graduate students between the institutions involved and international education of undergraduate students through classes taught by the PI\u0027s at UNIS in Svalbard. It involves extensive outreach to the general public both in Scandinavia and North America through the press, television, science museums, children\u0027s literature, and web sites. Active knowledge sharing and collaboration between pioneers in Antarctic glaciology from Norway and the US, with the international group of scientists and students involved in this project, provide a unique opportunity to explore the changes that half a century have made in climate proxies from East Antarctica, scientific tools, and the culture and people of science. The project is relevant to the International Polar Year (IPY) since it is a genuine collaboration between nations: the scientists involved have complementary expertise, and the logistics involved relies on assets unique to each nation. It is truly an endeavor that neither nation could accomplish alone. This project is a part of the Trans- Antarctic Scientific Traverse Expeditions Ice Divide of East Antarctica (TASTE-IDEA) which is also part of IPY.", "east": 2.5333, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PHOTOMETERS \u003e SPECTROPHOTOMETERS", "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; East Antarctic Plateau; FIXED OBSERVATION STATIONS; Glaciology; LABORATORY; FIELD SURVEYS; Permeability; Ice Core; Climate Variability; Firn; Accumulation Rate; Mass Balance; Snow; Gravity; Ice Sheet; GROUND-BASED OBSERVATIONS; Traverse; Not provided; Antarctic; Ice Core Chemistry; Antarctica; Density", "locations": "Antarctica; Antarctic; East Antarctic Plateau", "north": -72.01667, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Courville, Zoe; Bell, Eric; Liston, Glen; Scambos, Ted; Hamilton, Gordon S.; McConnell, Joseph; Albert, Mary R.; Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "NSIDC", "repositories": "NSIDC; Project website; USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Norwegian-United States IPY Scientific Traverse: Climate Variability and Glaciology in East Antarctica", "uid": "p0000095", "west": 2.5333}, {"awards": "0636705 Marchant, David; 0636731 Bender, Michael", "bounds_geometry": "POLYGON((160.48705 -77.84513,160.501913 -77.84513,160.516776 -77.84513,160.531639 -77.84513,160.546502 -77.84513,160.561365 -77.84513,160.576228 -77.84513,160.591091 -77.84513,160.605954 -77.84513,160.620817 -77.84513,160.63568 -77.84513,160.63568 -77.8515624,160.63568 -77.8579948,160.63568 -77.8644272,160.63568 -77.8708596,160.63568 -77.877292,160.63568 -77.8837244,160.63568 -77.8901568,160.63568 -77.8965892,160.63568 -77.9030216,160.63568 -77.909454,160.620817 -77.909454,160.605954 -77.909454,160.591091 -77.909454,160.576228 -77.909454,160.561365 -77.909454,160.546502 -77.909454,160.531639 -77.909454,160.516776 -77.909454,160.501913 -77.909454,160.48705 -77.909454,160.48705 -77.9030216,160.48705 -77.8965892,160.48705 -77.8901568,160.48705 -77.8837244,160.48705 -77.877292,160.48705 -77.8708596,160.48705 -77.8644272,160.48705 -77.8579948,160.48705 -77.8515624,160.48705 -77.84513))", "dataset_titles": "Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica; Measurements of Trapped Air from Mullins Valley, Dry Valleys, Antarctica", "datasets": [{"dataset_uid": "609597", "doi": "10.7265/N50R9MBM", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Dry Valleys; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; Radar Interferometer", "people": "Bender, Michael; Yau, Audrey M.", "repository": "USAP-DC", "science_program": null, "title": "Measurements of Trapped Air from Mullins Valley, Dry Valleys, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609597"}, {"dataset_uid": "600069", "doi": "10.15784/600069", "keywords": "Antarctica; Dry Valleys; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope Record; Lake Vostok; Paleoclimate", "people": "Bender, Michael", "repository": "USAP-DC", "science_program": null, "title": "Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica", "url": "https://www.usap-dc.org/view/dataset/600069"}], "date_created": "Thu, 03 Feb 2011 00:00:00 GMT", "description": "This project studies ancient ice buried in the Dry Valleys of Antarctica. The ice, which may approach ten million years in age, will be dated using argon and uranium radioisotope techniques. High-risk work, if successful it will offer the first and perhaps only samples of the Earth\u0027s atmosphere from millions of years in the past. These samples could offer critically important tests of paleoclimate records and proxies, as well as a glimpse into the characteristics of a past world much like the predicted future, warmer Earth. The broader impacts are graduate student education, and potentially contributing to society\u0027s understanding of global climate change and sea level rise.", "east": 160.63568, "geometry": "POINT(160.561365 -77.877292)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Elemental Ratios; Oxygen Isotope; Not provided; Nitrogen Isotopes; LABORATORY; Argon Isotopes; FIELD INVESTIGATION", "locations": null, "north": -77.84513, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Bender, Michael; Yau, Audrey M.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.909454, "title": "Collaborative Research: Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica", "uid": "p0000039", "west": 160.48705}, {"awards": "0619708 Simpson, David", "bounds_geometry": "POINT(180 90)", "dataset_titles": "IRIS data management center: seismic data and metadata for the engineering testing of these designs can be found under the XD network code (Polar Equipment Development) at stations PMC01, PMC02, PSP01, PSP02, and PSP03.", "datasets": [{"dataset_uid": "001460", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IRIS data management center: seismic data and metadata for the engineering testing of these designs can be found under the XD network code (Polar Equipment Development) at stations PMC01, PMC02, PSP01, PSP02, and PSP03.", "url": "http://ds.iris.edu/ds/nodes/dmc/"}], "date_created": "Mon, 20 Dec 2010 00:00:00 GMT", "description": "This project develops power and communications systems to support the operation of seismometers and GPS receivers in Antarctica throughout the polar night. In terms of intellectual merit, this system would allow a new class of geophysical questions to be approached, in areas as varied as ice sheet movement, plate tectonics, and deep earth structure. In terms of broader impacts, this project represents research infrastructure of potential use to many scientific disciplines. In addition, the results will improve society\u0027s understanding of the Antarctic ice sheet and its behavior in response to global warming.", "east": -180.0, "geometry": "POINT(-180 -90)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": false, "keywords": "IRIS-GSN; PASSCAL; SEISMOLOGICAL STATIONS; Not provided; GSN", "locations": null, "north": -90.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, Kent; Parker, Tim", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GSN; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e IRIS-GSN; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e PASSCAL; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS; Not provided", "repo": "IRIS", "repositories": "IRIS", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Development of a Power and Communication System for Remote Autonomous GPS and Seismic Stations in Antarctica", "uid": "p0000691", "west": -180.0}, {"awards": "0439906 Koch, Paul", "bounds_geometry": "POLYGON((162 -72,162.6 -72,163.2 -72,163.8 -72,164.4 -72,165 -72,165.6 -72,166.2 -72,166.8 -72,167.4 -72,168 -72,168 -72.6,168 -73.2,168 -73.8,168 -74.4,168 -75,168 -75.6,168 -76.2,168 -76.8,168 -77.4,168 -78,167.4 -78,166.8 -78,166.2 -78,165.6 -78,165 -78,164.4 -78,163.8 -78,163.2 -78,162.6 -78,162 -78,162 -77.4,162 -76.8,162 -76.2,162 -75.6,162 -75,162 -74.4,162 -73.8,162 -73.2,162 -72.6,162 -72))", "dataset_titles": "Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change", "datasets": [{"dataset_uid": "600041", "doi": "10.15784/600041", "keywords": "Biota; Isotope; Penguin; Ross Sea; Seals; Southern Ocean", "people": "Koch, Paul", "repository": "USAP-DC", "science_program": null, "title": "Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change", "url": "https://www.usap-dc.org/view/dataset/600041"}], "date_created": "Sat, 30 Oct 2010 00:00:00 GMT", "description": "During previous NSF-sponsored research, the PI\u0027s discovered that southern elephant seal colonies once existed along the Victoria Land coast (VLC) of Antarctica, a region where they are no longer observed. Molted seal skin and hair occur along 300 km of coastline, more than 1000 km from any extant colony. The last record of a seal at a former colony site is at ~A.D. 1600. Because abandonment occurred prior to subantarctic sealing, disappearance of the VLC colony probably was due to environmental factors, possibly cooling and encroachment of land-fast, perennial sea ice that made access to haul-out sites difficult. The record of seal inhabitation along the VLC, therefore, has potential as a proxy for climate change. Elephant seals are a predominantly subantarctic species with circumpolar distribution. Genetic studies have revealed significant differentiation among populations, particularly with regard to that at Macquarie I., which is the extant population nearest to the abandoned VLC colony. Not only is the Macquarie population unique genetically, but it is has undergone unexplained decline of 2%/yr over the last 50 years3. In a pilot study, genetic analyses showed a close relationship between the VLC seals and those at Macquarie I. An understanding of the relationship between the two populations, as well as of the environmental pressures that led to the demise of the VLC colonies, will provide a better understanding of present-day population genetic structure, the effect of environmental change on seal populations, and possibly the reasons underlying the modern decline at Macquarie Island.\u003cbr/\u003eThis project addresses several key research problems: (1) Why did elephant seals colonize and then abandon the VLC? (2) What does the elephant seal record reveal about Holocene climate change and sea-ice conditions? (3) What were the foraging strategies of the seals and did these strategies change over time as climate varied? (4) How does the genetic structure of the VLC seals relate to extant populations? (5) How did genetic diversity change over time and with colony decline? (6) Using ancient samples to estimate mtDNA mutation rates, what can be learned about VLC population dynamics over time? (7) What was the ecological relationship between elephant seals and Adelie penguins that occupied the same sites, but apparently at different times? The proposed work includes the professional training of young researchers and incorporation of data into graduate and undergraduate courses.", "east": 168.0, "geometry": "POINT(165 -75)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS", "locations": null, "north": -72.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Koch, Paul", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research: Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change", "uid": "p0000533", "west": 162.0}, {"awards": "0337567 Jacobel, Robert", "bounds_geometry": "POLYGON((130 -78,133 -78,136 -78,139 -78,142 -78,145 -78,148 -78,151 -78,154 -78,157 -78,160 -78,160 -79.2,160 -80.4,160 -81.6,160 -82.8,160 -84,160 -85.2,160 -86.4,160 -87.6,160 -88.8,160 -90,157 -90,154 -90,151 -90,148 -90,145 -90,142 -90,139 -90,136 -90,133 -90,130 -90,130 -88.8,130 -87.6,130 -86.4,130 -85.2,130 -84,130 -82.8,130 -81.6,130 -80.4,130 -79.2,130 -78))", "dataset_titles": "Glaciological Investigations of the Bulge and Trunk of Kamb Ice Stream, West Antarctica; Radar Studies of Internal Stratigraphy and Bed Topography along the US ITASE-II Traverse", "datasets": [{"dataset_uid": "609380", "doi": "10.7265/N5ZC80SH", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Kamb Ice Stream", "people": "Jacobel, Robert", "repository": "USAP-DC", "science_program": null, "title": "Glaciological Investigations of the Bulge and Trunk of Kamb Ice Stream, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609380"}, {"dataset_uid": "609475", "doi": "10.7265/N5G73BMS", "keywords": "Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness; ITASE; South Pole; Taylor Dome", "people": "Jacobel, Robert", "repository": "USAP-DC", "science_program": "ITASE", "title": "Radar Studies of Internal Stratigraphy and Bed Topography along the US ITASE-II Traverse", "url": "https://www.usap-dc.org/view/dataset/609475"}], "date_created": "Wed, 20 Oct 2010 00:00:00 GMT", "description": "This award supports a project to test whether Kamb Ice Stream (formerly Ice Stream C (ISC)), an ice stream\u003cbr/\u003ethat is thought to have stopped ~150 years ago, may be already in the process of restarting. If yes, it will help establish what is the rate of ice stream reactivation and what mechanisms are controlling this rate. If there is no evidence for ongoing ice stream reactivation, the physical controls that are preventing it will be examined and alternative scenarios for near-future evolution of this ice stream will be explored. One such scenario is an increase in ice diversion toward the neighboring Whillans Ice Stream. Such diversion may help prevent a complete stoppage of Whillans Ice Stream,which has been slowing down for at least the last 24 years. This project will consist of two components: (1) field observations of bed properties,geometry of internal radar reflectors, as well as surface strain rates and velocity/topography changes using Ice-Penetrating Radar and differential Global Positioning System, (2) numerical modeling study of near future(~100-1000 years) evolution of Kamb Ice Stream. The field component will be focused on the bulge-to-trunk transition, which is located at the present time just downstream of the so-called camp UpC. Reactivation of Kamb Ice Stream should be reflected in a downstream migration of the bulge-trunk transition at possibly high rates (bulge migration rates of ~km/yr occur on surging mountain glaciers). The modeling\u003cbr/\u003ecomponent will be used to generate predictions regarding the near-future behavior of Kamb Ice Stream. This project will provide training opportunities for at least two undergraduate students (per year) at St. Olaf College and for one\u003cbr/\u003eundergraduate student (per year) at UCSC. This collaboration will bring together scientists from three different types of US institutions: (1) a liberal arts college (St.Olaf College), (2) a public research university (UCSC) and (3) a NASA research laboratory (JPL). The project will also help build a new glaciological research program at UCSC. Project results will be incorporated into undergraduate and graduate courses at UCSC and will be made available\u003cbr/\u003eto the general public and educators through downloadable graphics and animations posted on the research website of the UCSC PI. Field data resulting from the project will be posted in the Antarctic Glaciological Data Center for use by other investigators.", "east": 160.0, "geometry": "POINT(145 -84)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR", "is_usap_dc": true, "keywords": "Ice; Antarctic Glaciations; Radar; Antarctic Ice Sheet; Radar Echo Sounder; Ice Sheet Thickness; Ice Stream; Ice Sheet Elevation; Not provided; Radar Echo Sounding; Ice Stratigraphy; Antarctica; West Antarctic Ice Sheet; Continental Ice Sheet; Ice Cap; Antarctic; US ITASE; FIELD SURVEYS; Ice Thickness; FIELD INVESTIGATION", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; West Antarctic Ice Sheet", "north": -78.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Jacobel, Robert", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": -90.0, "title": "Collaborative Research: Is Ice Stream C Restarting? Glaciological Investigations of the \u0027Bulge\u0027 and the Trunk of Ice Stream C, West Antartica", "uid": "p0000192", "west": 130.0}, {"awards": "0538097 Anandakrishnan, Sridhar", "bounds_geometry": "POLYGON((140 -89.8,144 -89.8,148 -89.8,152 -89.8,156 -89.8,160 -89.8,164 -89.8,168 -89.8,172 -89.8,176 -89.8,180 -89.8,180 -89.82,180 -89.84,180 -89.86,180 -89.88,180 -89.9,180 -89.92,180 -89.94,180 -89.96,180 -89.98,180 -90,176 -90,172 -90,168 -90,164 -90,160 -90,156 -90,152 -90,148 -90,144 -90,140 -90,140 -89.98,140 -89.96,140 -89.94,140 -89.92,140 -89.9,140 -89.88,140 -89.86,140 -89.84,140 -89.82,140 -89.8))", "dataset_titles": "IRIS Data Management Center (DMC) holds the full resolution seismic data. Keyword: POLELAKE. Dataset ID: 10-019; seismic data. Keyword: POLELAKE. Dataset ID: 10-019", "datasets": [{"dataset_uid": "001466", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IRIS Data Management Center (DMC) holds the full resolution seismic data. Keyword: POLELAKE. Dataset ID: 10-019", "url": "http://www.iris.edu/dms/dmc"}, {"dataset_uid": "000102", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "seismic data. Keyword: POLELAKE. Dataset ID: 10-019", "url": "http://ds.iris.edu/ds/nodes/dmc/"}], "date_created": "Wed, 08 Sep 2010 00:00:00 GMT", "description": "0538097\u003cbr/\u003eAnandakrishnan\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to intensively study a subglacial Antarctic lake near the geographic South Pole using seismic and radar methods. These ground-based experiments are better suited to determine the presence of water and its thickness than are airborne methods. We hypothesize that there are two end-member explanations for this feature: either the lake is thawed, but freezing on (and likely to have been freezing on through much of the current interglacial period), or it is a frozen, relict lake for which the high basal radar reflectivity is due to intergranular water in a permafrost-like layer beneath the ice. The seismic experiment we propose is ideally suited to examine these alternatives. Intermediate cases of, e.g., a thawed saturated sedimentary base or a smooth crystalline basement layer would also be resolved by this experiment. Seismic reflections are sensitive to changes in acoustic impedance which is strongly variable with fluid content, porosity, and lithology. Water has low density relative to most rocks and low seismic velocity (and nil shear wave velocity) relative to both ice and rock. Thus, discriminating between subglacial water and subglacial rock is a task ideally suited to the seismic reflection technique. This project has significant impacts outside the directly affected fields of Antarctic glaciology and geology. The lake (either thawed or sediments with thin liquid layers around the matrix particles) will have the potential for harboring novel life forms. The experiment has the potential for expanding our information about the newest frontier in life on Earth. The collaboration between PIs in the seismic community and the marine acoustics community will foster cross-disciplinary pollination of ideas, techniques, and tools. In addition to traditional seismic techniques, new methods of data analysis that have been developed by acousticians will be applied to this problem as an independent measure of lake properties. We will train students who will have a wider view of seismology than would be possible in a traditional ocean acoustics or traditional geoscience seismology program of study.", "east": 180.0, "geometry": "POINT(160 -89.9)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e SEISMIC REFLECTION PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS", "is_usap_dc": false, "keywords": "Antarctica; South Pole; Porosity; Not provided; Seismic; Lithology; FIELD INVESTIGATION; Subglacial; Subglacial Lake; FIELD SURVEYS; LABORATORY; Fluid Content; Acoustic Impedance", "locations": "Antarctica; South Pole", "north": -89.8, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Anandakrishnan, Sridhar; Holland, Charles", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "IRIS", "repositories": "IRIS", "science_programs": null, "south": -90.0, "title": "Characterization of Lake Amundsen-Scott, S. Pole: A Ground Geophysical Program", "uid": "p0000693", "west": 140.0}, {"awards": "0538553 Cole-Dai, Jihong", "bounds_geometry": "POINT(-112.085 -79.467)", "dataset_titles": "Major Ion Concentrations in WDC05Q and WDC06A Ice Cores (WAIS Divide)", "datasets": [{"dataset_uid": "609544", "doi": "10.7265/N54M92H3", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ion Chromatograph; WAIS Divide; WAIS Divide Ice Core", "people": "Cole-Dai, Jihong", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Major Ion Concentrations in WDC05Q and WDC06A Ice Cores (WAIS Divide)", "url": "https://www.usap-dc.org/view/dataset/609544"}], "date_created": "Wed, 25 Aug 2010 00:00:00 GMT", "description": "Cole-Dai\u003cbr/\u003e0538553\u003cbr/\u003e\u003cbr/\u003eThis award supports a project that will contribute to the US West Antarctica Ice Sheet Ice Divide ice core (WAIS Divide) project by developing new instrumentation and analytical procedures to measure concentrations of major ions (Cl-, NO3-, SO42-, Na+, K+, NH4+, Mg2+, Ca2+). A melter-based, continuous flow, multi-ion-chromatograph technique (CFA-IC) has been developed recently at South Dakota State University (SDSU). This project will further expand and improve the CFA-IC technique and instrumentation and develop procedures for routine analysis of major ions in ice cores. In addition, training of personnel (operators) to perform continuous, high resolution major ion analysis of the deep core will be accomplished through this project. The temporal resolution of the major ion measurement will be as low as 0.5 cm with the fully developed CFA-IC technique. At this resolution, it will be possible to use annual cycles of sulfate and sea-salt ion concentrations to determine annual layers in the WAIS Divide ice core. Annual layer counting using CFA-IC chemical measurements and other high resolution measurements will contribute significantly to the major WAIS Divide project objective of producing precisely (i.e., annually) dated climate records. The project will support the integration of research and education, train future scientists and promote human resource development through the participation of graduate and undergraduate students. In particular, undergraduate participation will contribute to a current REU (Research Experience for Undergraduates) chemistry site program at SDSU. Development and utilization of multi-user instrumentation will promote research collaboration and advance environmental science. NSF support for SDSU will contribute to the economic development and strengthen the infrastructure for research and education in South Dakota.", "east": -112.085, "geometry": "POINT(-112.085 -79.467)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "LABORATORY; WAIS Divide; Ice Core; West Antarctic Ice Sheet; Ion Chromatograph; GROUND-BASED OBSERVATIONS; Not provided; Major Ion; Ions", "locations": "WAIS Divide; West Antarctic Ice Sheet", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Cole-Dai, Jihong", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Major Ion Chemistry of WAIS Divide Ice Core", "uid": "p0000035", "west": -112.085}, {"awards": "9024544 Andreas, Edgar", "bounds_geometry": "POLYGON((-53.8 -61.2,-52.74 -61.2,-51.68 -61.2,-50.62 -61.2,-49.56 -61.2,-48.5 -61.2,-47.44 -61.2,-46.38 -61.2,-45.32 -61.2,-44.26 -61.2,-43.2 -61.2,-43.2 -62.22,-43.2 -63.24,-43.2 -64.26,-43.2 -65.28,-43.2 -66.3,-43.2 -67.32,-43.2 -68.34,-43.2 -69.36,-43.2 -70.38,-43.2 -71.4,-44.26 -71.4,-45.32 -71.4,-46.38 -71.4,-47.44 -71.4,-48.5 -71.4,-49.56 -71.4,-50.62 -71.4,-51.68 -71.4,-52.74 -71.4,-53.8 -71.4,-53.8 -70.38,-53.8 -69.36,-53.8 -68.34,-53.8 -67.32,-53.8 -66.3,-53.8 -65.28,-53.8 -64.26,-53.8 -63.24,-53.8 -62.22,-53.8 -61.2))", "dataset_titles": "Atmospheric Boundary Layer Measurements on the Weddell Sea Drifting Station", "datasets": [{"dataset_uid": "600141", "doi": "10.15784/600141", "keywords": "Antarctica; Atmosphere; Critical Zone; Meteorology; Oceans; Radiosounding; Southern Ocean; Weddell Sea", "people": "Andreas, Edgar", "repository": "USAP-DC", "science_program": null, "title": "Atmospheric Boundary Layer Measurements on the Weddell Sea Drifting Station", "url": "https://www.usap-dc.org/view/dataset/600141"}], "date_created": "Fri, 30 Jul 2010 00:00:00 GMT", "description": "The proposed work is part of an integrated research program into the oceanographic structure of the western Weddell Sea. It is to be carried out from an ice camp jointly occupied by U.S. and USSR scientists from February to June 1992. This project concerns the determination of the energy exchange between the sea ice cover and the atmospheric boundary layer. The objectives are to measure time series of the individual components of the sea ice/atmosphere energy budget for the duration of the drift, and to determine the bulk transfer coefficients for the exchange of momentum and sensible and latent heat. The purpose of the measurements is to expand our capability for numerical and analytical modelling of the antarctic environment. Turbulent fluctuations in the temperature, wind, and humidity fields will be measured directly with small, fast-responding sensors. These observations will be complemented by other synoptic meteorological data and with upper air soundings.", "east": -43.2, "geometry": "POINT(-48.5 -66.3)", "instruments": null, "is_usap_dc": true, "keywords": "Radiative Fluxes; Atmospheric Boundary Layer; Turbulent Surface Fluxes; Eddy-Covariance Measurements; Ice Station Weddell; FIELD SURVEYS", "locations": null, "north": -61.2, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Andreas, Edgar", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -71.4, "title": "Atmospheric Boundary Layer Measurements on the Weddell Sea Drifting Station", "uid": "p0000655", "west": -53.8}, {"awards": "0839119 Wu, Qian", "bounds_geometry": "POLYGON((-68.1 -63.8,-67.29 -63.8,-66.48 -63.8,-65.67 -63.8,-64.86 -63.8,-64.05 -63.8,-63.24 -63.8,-62.43 -63.8,-61.62 -63.8,-60.81 -63.8,-60 -63.8,-60 -64.1,-60 -64.4,-60 -64.7,-60 -65,-60 -65.3,-60 -65.6,-60 -65.9,-60 -66.2,-60 -66.5,-60 -66.8,-60.81 -66.8,-61.62 -66.8,-62.43 -66.8,-63.24 -66.8,-64.05 -66.8,-64.86 -66.8,-65.67 -66.8,-66.48 -66.8,-67.29 -66.8,-68.1 -66.8,-68.1 -66.5,-68.1 -66.2,-68.1 -65.9,-68.1 -65.6,-68.1 -65.3,-68.1 -65,-68.1 -64.7,-68.1 -64.4,-68.1 -64.1,-68.1 -63.8))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 12 Jul 2010 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). This project will deploy a new Fabry-Perot interferometer (FPI) at the U.S. Palmer Station located in the Antarctic Peninsula. The FPI will observe mesospheric and thermospheric neutral winds and temperatures using multiple nightglow emissions (OH, 892 nm, 87 km; O 557.7 nm, 97 km; O 630 nm, 250 km; and O2 (0-1) 865 nm, 94 km). The project\u0027s team will collaborate with Australian scientists who operate similar FPI instruments at their Antarctic stations Mawson and Davis to jointly analyze the neutral wind and temperature data distributions over the continent and address the following scientific problems: (1) Thermospheric neutral winds effects on the Weddell Sea Anomaly, (2) Non-migrating tides in the mesosphere and lower thermosphere, (3) Lower thermospheric meridional wind circulation and mesosphere wind shear, (4) High-latitude geomagnetic field effects on the mid-latitude thermosphere, and (4) Conjugacy studies of the mesosphere and thermosphere with the incoherent scatter radar and FPI observations from Millstone Hill, Massachusetts. The fieldwork and analysis efforts associated with this project are highly suitable for involvement and research training of graduate students.", "east": -60.0, "geometry": "POINT(-64.05 -65.3)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e INTERFEROMETERS \u003e FPI", "is_usap_dc": false, "keywords": "GROUND STATIONS; Thermospheric Winds; Fpi", "locations": null, "north": -63.8, "nsf_funding_programs": "Antarctic Astrophysics and Geospace Sciences", "paleo_time": null, "persons": "Wu, Qian", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repositories": null, "science_programs": null, "south": -66.8, "title": "Collaborative Research: Thermospheric Neutral Wind Observation from the Antarctic Peninsula", "uid": "p0000472", "west": -68.1}, {"awards": "0538657 Severinghaus, Jeffrey", "bounds_geometry": null, "dataset_titles": "Borehole Temperature Measurement in WDC05A in January 2008 and January 2009; d15N and d18O of air in the WAIS Divide ice core; Low-res d15N and d18O of O2 in the WAIS Divide 06A Deep Core; Ultra-High Resolution LA-ICP-MS Results: DO-21 Rapid Warming Event; WAIS Divide d18Oatm and Siple Dome/WAIS Divide composite and individual delta epsilon LAND", "datasets": [{"dataset_uid": "609635", "doi": "10.7265/N51J97PS", "keywords": "Arctic; Geochemistry; GISP; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate", "people": "Haines, Skylar; Mayewski, Paul A.; Kurbatov, Andrei V.", "repository": "USAP-DC", "science_program": null, "title": "Ultra-High Resolution LA-ICP-MS Results: DO-21 Rapid Warming Event", "url": "https://www.usap-dc.org/view/dataset/609635"}, {"dataset_uid": "601747", "doi": "10.15784/601747", "keywords": "Antarctica; Delta 15N; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Gas Records; Ice Core Records; Isotope; Nitrogen; Nitrogen Isotopes; Oxygen; Oxygen Isotope; Snow/ice; Snow/Ice; WAIS; WAIS Divide", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "d15N and d18O of air in the WAIS Divide ice core", "url": "https://www.usap-dc.org/view/dataset/601747"}, {"dataset_uid": "609637", "doi": "10.7265/N5B27S7S", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Temperature; WAIS Divide; WAIS Divide Ice Core", "people": "Severinghaus, Jeffrey P.; Orsi, Anais J.", "repository": "USAP-DC", "science_program": null, "title": "Borehole Temperature Measurement in WDC05A in January 2008 and January 2009", "url": "https://www.usap-dc.org/view/dataset/609637"}, {"dataset_uid": "609660", "doi": "10.7265/N5S46PWD", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Low-res d15N and d18O of O2 in the WAIS Divide 06A Deep Core", "url": "https://www.usap-dc.org/view/dataset/609660"}, {"dataset_uid": "601041", "doi": "10.15784/601041", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Gas; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; WAIS Divide Ice Core", "people": "Severinghaus, Jeffrey P.; Seltzer, Alan", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide d18Oatm and Siple Dome/WAIS Divide composite and individual delta epsilon LAND", "url": "https://www.usap-dc.org/view/dataset/601041"}], "date_created": "Thu, 08 Jul 2010 00:00:00 GMT", "description": "0538657\u003cbr/\u003eSeveringhaus\u003cbr/\u003eThis award supports a project to develop high-resolution (20-yr) nitrogen and oxygen isotope records on trapped gases in the WAIS Divide ice core (Antarctica), with a comparison record for chronological purposes in the GISP2 (Greenland) ice core. The main scientific objective is to provide an independent temperature-change record for the past 100,000 years in West Antarctica that is not subject to the uncertainty inherent in ice isotopes (18O and deuterium), the classical paleothermometer. Nitrogen isotopes (Delta 15N) in air bubbles in glacial ice record rapid surface temperature change because of thermal fractionation of air in the porous firn layer, and this isotopic anomaly is recorded in bubbles as the firn becomes ice. Using this gas-based temperature-change record, in combination with methane data as interpolar stratigraphic markers, the proposed work will define the precise relative timing of abrupt warming in Greenland and abrupt cooling at the WAIS Divide site during the millennial-scale climatic oscillations of Marine Isotopic Stage 3 (30-70 kyr BP) and the last glacial termination. The nitrogen isotope record also provides constraints on past firn thickness, which inform temperature and accumulation rate histories from the ice core. A search for possible solar-related cycles will be conducted with the WAIS Divide Holocene (Delta 15N.) Oxygen isotopes of O2 (Delta 18Oatm) are obtained as a byproduct of the (Delta 15N) measurement. The gas-isotopic records will enhance the value of other atmospheric gas measurements in WAIS Divide, which are expected to be of unprecedented quality. The high-resolution (Delta 18Oatm) records will provide chronological control for use by the international ice coring community and for surface glacier ice dating. Education of a graduate student, and training of a staff member in the laboratory, will contribute to the nation\u0027s human resource base. Outreach activities in the context of the International Polar Year will be enhanced. International collaboration is planned with the laboratory of LSCE, University of Paris.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e LA-ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Borehole Temperature; LABORATORY; Depth; Not provided; GROUND-BASED OBSERVATIONS; Wais Divide-project; Ice Core; WAIS Divide", "locations": "WAIS Divide", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Haines, Skylar; Mayewski, Paul A.; Orsi, Anais J.; Kurbatov, Andrei V.; Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate", "uid": "p0000036", "west": null}, {"awards": "0538494 Meese, Debra", "bounds_geometry": null, "dataset_titles": "Microstructural Location and Composition of Impurities in Polar Ice Cores", "datasets": [{"dataset_uid": "609436", "doi": "10.7265/N5DF6P5P", "keywords": "Antarctica; Arctic; Byrd Glacier; Byrd Ice Core; Chemistry:ice; Chemistry:Ice; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Lake Vostok; Paleoclimate; Vostok Ice Core", "people": "Baker, Ian; Obbard, Rachel", "repository": "USAP-DC", "science_program": null, "title": "Microstructural Location and Composition of Impurities in Polar Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609436"}], "date_created": "Thu, 03 Jun 2010 00:00:00 GMT", "description": "0538494\u003cbr/\u003eMeese\u003cbr/\u003eThis award supports a project for physical properties research on snow pits and firn/ice cores with specific objectives that include stratigraphic analysis including determination of accumulation rates, annual layers, depth hoar, ice and wind crusts and rates of grain growth with depth. Studies of firn densification rates and how these parameters relate to the meteorology and climatology over the last 200 years of snow accumulation in Antarctica will also be investigated. The project will also determine the seasonality of accumulation by co-registration of stratigraphy and chemistry and determination of chemical species at the grain boundaries, how these may change with depth/densification (and therefore temperature), precipitation, and may affect grain growth. Fabric analyses will be made, including variation with depth, location on undulations and if any variation exists with climate/chemistry. The large spatial coverage of the US ITASE program offers the opportunity to determine how these parameters are affected by a large range of temperature, precipitation and topographic effects. The intellectual merit of the project includes the fact that ITASE is the terrestrial equivalent of a polar research vessel that provides a unique, logistically efficient, multi-dimensional (x, y, z and time) view of the atmosphere, ice sheet and their histories. Physical properties measurements/ analyses are an integral part of understanding the dynamic processes to which the accumulated snow is subjected. Recent advancements in the field along with multiple core sites provide an excellent opportunity to gain a much broader understanding of the spatial, temporal and physical variables that impact firnification and the possible resultant impact on climatic interpretation. In terms of broader impacts, the data collected by US ITASE and its international ITASE partners is available to a broad scientific community. US ITASE has an extensive program of public outreach and provides significant opportunities for many students to experience multidisciplinary Antarctic research. A graduate student, a post-doctoral fellow and at least one undergraduate would be funded by this work. Dr. Meese is also a member of the New England Science Collaborative, an organization that educates the public on climate change based on recent scientific advancements.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES", "is_usap_dc": false, "keywords": "LABORATORY; Grain Growth; FIELD SURVEYS; Accumulation Rate; Firn Core; FIELD INVESTIGATION; Chemistry; Snow Pit; Depth Hoar; Firn Density; Ice Core; Not provided; Stratigraphic Analysis; Firn; US ITASE; Annual Layers", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Meese, Deb; MEESE, DEBRA", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "The Physical Properties of the US ITASE Firn and Ice Cores from South Pole to Taylor Dome", "uid": "p0000289", "west": null}, {"awards": "0338151 Raymond, Charles", "bounds_geometry": "POINT(-112.086 -79.468)", "dataset_titles": "Englacial Layers and Attenuation Rates across the Ross and Amundsen Sea Ice-Flow Divide (WAIS Divide), West Antarctica; Surface Elevation and Ice Thickness, Western Marie Byrd Land, Antarctica", "datasets": [{"dataset_uid": "609119", "doi": "10.7265/N5BZ63ZH", "keywords": "Airborne Radar; Airplane; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marie Byrd Land", "people": "Wilson, Douglas S.; Luyendyk, Bruce P.", "repository": "USAP-DC", "science_program": null, "title": "Surface Elevation and Ice Thickness, Western Marie Byrd Land, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609119"}, {"dataset_uid": "609470", "doi": "10.7265/N5416V0W", "keywords": "Airborne Radar; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Radar; WAIS Divide", "people": "Raymond, Charles; Matsuoka, Kenichi", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Englacial Layers and Attenuation Rates across the Ross and Amundsen Sea Ice-Flow Divide (WAIS Divide), West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609470"}], "date_created": "Tue, 11 May 2010 00:00:00 GMT", "description": "This award supports an investigation of spatial variations of ice temperature and subglacial conditions using available ice-penetrating radar data around a future deep ice coring site near the Ross and Amundsen flow divide of West Antarctic Ice Sheet. Besides geometry of reflection layers the focus will be on intensities of radar echoes from within ice deeper than several hundred meters and will also examine echoes from the bed. Preliminary studies on theory and comparison with Japanese radar data from East Antarctica suggest that large spatial variations of the vertical gradient of radar echoes from within ice exist and are caused primarily by ice temperature and secondarily by crystal-orientation fabric. The hypothesis that the vertical gradient is a proxy of ice temperature will be tested. The project will utilize an existing data set from the Support Office for Aerogeophysical Research in Antarctica (SOAR) and will complement work already underway at University of Texas to analyze the radar data. The project will provide undergraduate research experience with an emphasis on computer analysis of time series and large data sets as well as development of web-based resource of results and methods and will support an international collaboration between US and Japan through discussions on the preliminary results from their study sites. Practical procedures developed through this study will be downloadable from the project\u0027s web site in the third year and will allow investigation of other ice sheets using existing radar data sets. This project will contribute to the interpretation of the future inland West Antarctic ice core and will help in the understanding of ice sheet history and climate change.", "east": -112.086, "geometry": "POINT(-112.086 -79.468)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LASERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e RADAR ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR", "is_usap_dc": true, "keywords": "SOAR; Ice Sheet Elevation; Antarctic Ice Sheet; Layers; USAP-DC; West Antarctic; FIELD INVESTIGATION; Amundsen; Ice Sheet; Airborne Laser Altimetry; Ice Surface; Not provided; Ice Penetrating Radar; Ice Sheet Thickness; Ice Extent; Ice Surface Elevation; Ice Cover; Ice Deformation; FIELD SURVEYS; Antarctica; Ground Ice; Subglacial; Reflection Layers; West Antarctic Ice Sheet; Ice Surface Temperature; LABORATORY; Amundsen Flow Divide; Radar Echo Sounding; Internal Layering; Radar Altimetry; Ice; Radar Echoes; Englacial; Crystal Orientation Fabric; Ice Thickness; Altimetry; Ice Temperature; Radar Echo Sounder; Ice Thickness Distribution", "locations": "Antarctic Ice Sheet; Antarctica; West Antarctic; Amundsen; Amundsen Flow Divide; West Antarctic Ice Sheet", "north": -79.468, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Raymond, Charles; Matsuoka, Kenichi; Luyendyk, Bruce P.; Wilson, Douglas S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.468, "title": "Glaciological Characteristics of the Ross/Amundsen Sea Ice-flow Divide Deduced by a New Analysis of Ice-penetrating Radar Data", "uid": "p0000017", "west": -112.086}, {"awards": "0127037 Neale, Patrick; 0741411 Hutchins, David; 0338097 DiTullio, Giacomo; 0338157 Smith, Walker; 0338350 Dunbar, Robert", "bounds_geometry": "POLYGON((173.31833 -46.5719,173.757539 -46.5719,174.196748 -46.5719,174.635957 -46.5719,175.075166 -46.5719,175.514375 -46.5719,175.953584 -46.5719,176.392793 -46.5719,176.832002 -46.5719,177.271211 -46.5719,177.71042 -46.5719,177.71042 -48.759516,177.71042 -50.947132,177.71042 -53.134748,177.71042 -55.322364,177.71042 -57.50998,177.71042 -59.697596,177.71042 -61.885212,177.71042 -64.072828,177.71042 -66.260444,177.71042 -68.44806,177.271211 -68.44806,176.832002 -68.44806,176.392793 -68.44806,175.953584 -68.44806,175.514375 -68.44806,175.075166 -68.44806,174.635957 -68.44806,174.196748 -68.44806,173.757539 -68.44806,173.31833 -68.44806,173.31833 -66.260444,173.31833 -64.072828,173.31833 -61.885212,173.31833 -59.697596,173.31833 -57.50998,173.31833 -55.322364,173.31833 -53.134748,173.31833 -50.947132,173.31833 -48.759516,173.31833 -46.5719))", "dataset_titles": "Expedition Data; Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea; Processed Fluid Chemistry Data from the Ross Sea acquired during the Nathaniel B. Palmer expedition NBP0601", "datasets": [{"dataset_uid": "601340", "doi": null, "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Fluid Chemistry Data; Geochemistry; NBP0601; Niskin Bottle; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Southern Ocean; Water Measurements", "people": "Smith, Walker; DiTullio, Giacomo", "repository": "USAP-DC", "science_program": null, "title": "Processed Fluid Chemistry Data from the Ross Sea acquired during the Nathaniel B. Palmer expedition NBP0601", "url": "https://www.usap-dc.org/view/dataset/601340"}, {"dataset_uid": "001580", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0601"}, {"dataset_uid": "001687", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0305"}, {"dataset_uid": "001545", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0608"}, {"dataset_uid": "001584", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0508"}, {"dataset_uid": "600036", "doi": "10.15784/600036", "keywords": "Biota; Chemistry:fluid; Chemistry:Fluid; Diatom; Oceans; Phytoplankton; Ross Sea; Southern Ocean", "people": "DiTullio, Giacomo", "repository": "USAP-DC", "science_program": null, "title": "Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea", "url": "https://www.usap-dc.org/view/dataset/600036"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The objectives of this proposal are to investigate the controls on the large-scale distribution and production of the two major bloom-forming phytoplankton taxa in the Southern Ocean, diatoms and Phaeocystis Antarctica. These two groups, through their involvement in the biogeochemical cycles of carbon, sulfur and nutrient elements, may have played important roles in the climate variations of the late Quaternary, and they also may be key players in future environmental change. A current paradigm is that irradiance and iron availability drive phytoplankton dynamics in the Southern Ocean. Recent work, however, suggests that carbon dioxide (CO2) concentrations may also be important in structuring algal assemblages, due to species-specific differences in the physiology. This proposal examines the interactive effects of iron, light and CO2 on the physiology, ecology and relative dominance of Phaeocystis and diatoms in the Southern Ocean. The Ross Sea is an ideal system in which to investigate the environmental factors that regulate the distribution and production of these two algal groups, since it is characterized by seasonal blooms of both P. Antarctica and diatoms that are typically separated in both space and time. This study will take the form of an interdisciplinary investigation that includes a field survey and statistical analysis of algal assemblage composition, iron, mixed layer depth, and CO2 levels in the southern Ross Sea, coupled with shipboard experiments to examine the response of diatom and P. Antarctica assemblages to high and low levels of iron, light and CO2 during spring and summer. \u003cbr/\u003eThis project will provide information on some of the major factors controlling the production and distribution of the two major bloom forming phytoplankton in the Southern Ocean and the related biogeochemical cycling of carbon, sulfur and nutrient elements. The results may ultimately advance the ability to predict how the Southern Ocean will be affected by and possibly modulate future climate change. This project will also make significant educational contributions at several levels, including the planned research involvement of graduate and undergraduate students, postdoctoral associates, a student teacher, and community outreach and educational activities. A number of activities are planned to interface the project with K-12 education. Presentations will be made at local schools to discuss the research and events of the research cruise. During the cruise there will be daily interactive email contact with elementary classrooms. Established websites will be used to allow students to learn about the ongoing research, and to allow researchers to communicate with students through text and downloaded images.", "east": 177.71042, "geometry": "POINT(175.514375 -57.50998)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FRRF; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FRRF", "is_usap_dc": true, "keywords": "B-15J; OCEAN PLATFORMS; FIELD SURVEYS; R/V NBP", "locations": "B-15J", "north": -46.5719, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ditullio, Giacomo; Smith, Walker; Dryer, Jennifer; Neale, Patrick", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; WATER-BASED PLATFORMS \u003e FIXED PLATFORMS \u003e SURFACE \u003e OCEAN PLATFORMS; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -68.44806, "title": "Collaborative Research: Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea", "uid": "p0000540", "west": 173.31833}, {"awards": "0230069 Naveen, Ron", "bounds_geometry": "POLYGON((-68.0489 -52.7302,-66.96539 -52.7302,-65.88188 -52.7302,-64.79837 -52.7302,-63.71486 -52.7302,-62.63135 -52.7302,-61.54784 -52.7302,-60.46433 -52.7302,-59.38082 -52.7302,-58.29731 -52.7302,-57.2138 -52.7302,-57.2138 -53.97453,-57.2138 -55.21886,-57.2138 -56.46319,-57.2138 -57.70752,-57.2138 -58.95185,-57.2138 -60.19618,-57.2138 -61.44051,-57.2138 -62.68484,-57.2138 -63.92917,-57.2138 -65.1735,-58.29731 -65.1735,-59.38082 -65.1735,-60.46433 -65.1735,-61.54784 -65.1735,-62.63135 -65.1735,-63.71486 -65.1735,-64.79837 -65.1735,-65.88188 -65.1735,-66.96539 -65.1735,-68.0489 -65.1735,-68.0489 -63.92917,-68.0489 -62.68484,-68.0489 -61.44051,-68.0489 -60.19618,-68.0489 -58.95185,-68.0489 -57.70752,-68.0489 -56.46319,-68.0489 -55.21886,-68.0489 -53.97453,-68.0489 -52.7302))", "dataset_titles": "Expedition Data; Expedition data of LMG0413A; Expedition data of LMG0514; Expedition data of LMG0611; Long-term Data Collection at Select Antarctic Peninsula Visitor Sites", "datasets": [{"dataset_uid": "001686", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0308"}, {"dataset_uid": "001626", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0413A"}, {"dataset_uid": "002679", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0413A", "url": "https://www.rvdata.us/search/cruise/LMG0413A"}, {"dataset_uid": "002681", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0611", "url": "https://www.rvdata.us/search/cruise/LMG0611"}, {"dataset_uid": "002680", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0514", "url": "https://www.rvdata.us/search/cruise/LMG0514"}, {"dataset_uid": "001547", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0611B"}, {"dataset_uid": "600032", "doi": "10.15784/600032", "keywords": "Antarctica; Biota; Penguin; Petermann Island", "people": "Naveen, Ronald", "repository": "USAP-DC", "science_program": null, "title": "Long-term Data Collection at Select Antarctic Peninsula Visitor Sites", "url": "https://www.usap-dc.org/view/dataset/600032"}, {"dataset_uid": "001585", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0514"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The Antarctic Site Inventory Project has collected biological data and site-descriptive information in the Antarctic Peninsula region since 1994. This research effort has provided data on those sites which are visited by tourists on shipboard expeditions in the region. The aim is to obtain data on the population status of several key species of Antarctic seabirds, which might be affected by the cumulative impact resulting from visits to the sites. This project will continue the effort by focusing on two heavily-visited Antarctic Peninsula sites: Paulet Island, in the northwestern Weddell Sea and Petermann Island, in the Lemaire Channel near Anvers Island. These sites were selected because both rank among the ten most visited sites in Antarctica each year in terms of numbers of visitors and zodiac landings; both are diverse in species composition, and both are sensitive to potential environmental disruptions from visitors. These data collected focus on two important biological parameters for penguins and blue-eyed shags: (1) breeding population size (number of occupied nests) and (2) breeding success (number of chicks per occupied nests). A long-term data program will be supported, with studies at the two sites over a five-year period. The main focus will be at Petermann Island, selected for intensive study due to its visitor status and location in the region near Palmer Station. This will allow for comparative data with the Palmer Long Term Ecological Research program. Demographic data will be collected in accordance with Standard Methods established by the Convention for the Conservation of Antarctic Marine Living Resources Ecosystem Monitoring Program and thus will be comparable with similar data sets being collected by other international Antarctic Treaty nation research programs. While separating human-induced change from change resulting from a combination of environmental factors will be difficult, this work will provide a first step to identify potential impacts. These long-term data sets will contribute to a better understanding of biological processes in the entire region and will contribute valuable information to be used by the Antarctic Treaty Parties as they address issues in environmental stewardship in Antarctica.", "east": -57.2138, "geometry": "POINT(-62.63135 -58.95185)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": true, "keywords": "R/V LMG; FIELD SURVEYS", "locations": null, "north": -52.7302, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Yen, Jeannette; Naveen, Ronald; Leger, Dave", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -65.1735, "title": "Long-term Data Collection at Select Antarctic Peninsula Visitor Sites", "uid": "p0000122", "west": -68.0489}, {"awards": "0837988 Steig, Eric", "bounds_geometry": "POLYGON((-180 -65,-144 -65,-108 -65,-72 -65,-36 -65,0 -65,36 -65,72 -65,108 -65,144 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.5,-180 -85,-180 -82.5,-180 -80,-180 -77.5,-180 -75,-180 -72.5,-180 -70,-180 -67.5,-180 -65))", "dataset_titles": "West Antarctica Ice Core and Climate Model Data", "datasets": [{"dataset_uid": "609536", "doi": "10.7265/N5QJ7F8B", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Paleoclimate; WAIS Divide", "people": "Steig, Eric J.", "repository": "USAP-DC", "science_program": null, "title": "West Antarctica Ice Core and Climate Model Data", "url": "https://www.usap-dc.org/view/dataset/609536"}], "date_created": "Fri, 30 Apr 2010 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). \u003cbr/\u003e\u003cbr/\u003eThis award supports a project to reconstruct the past physical and chemical climate of Antarctica, with an emphasis on the region surrounding the Ross Sea Embayment, using \u003e60 ice cores collected in this region by US ITASE and by Australian, Brazilian, Chilean, and New Zealand ITASE teams. The ice core records are annually resolved and exceptionally well dated, and will provide, through the analyses of stable isotopes, major soluble ions and for some trace elements, instrumentally calibrated proxies for past temperature, precipitation, atmospheric circulation, chemistry of the atmosphere, sea ice extent, and volcanic activity. These records will be used to understand the role of solar, volcanic, and human forcing on Antarctic climate and to investigate the character of recent abrupt climate change over Antarctica in the context of broader Southern Hemisphere and global climate variability. The intellectual merit of the project is that ITASE has resulted in an array of ice core records, increasing the spatial resolution of observations of recent Antarctic climate variability by more than an order of magnitude and provides the basis for assessment of past and current change and establishes a framework for monitoring of future climate change in the Southern Hemisphere. This comes at a critical time as global record warming and other impacts are noted in the Southern Ocean, the Antarctic Peninsula, and on the Antarctic ice sheet. The broader impacts of the project are that Post-doctoral and graduate students involved in the project will benefit from exposure to observational and modeling approaches to climate change research and working meetings to be held at the two collaborating institutions plus other prominent climate change institutions. The results are of prime interest to the public and the media Websites hosted by the two collaborating institutions contain climate change position papers, scientific exchanges concerning current climate change issues, and scientific contribution series.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Deuterium Isotopes; Deuterium Excess; Not provided; GROUND-BASED OBSERVATIONS; Wais Divide-project", "locations": null, "north": -65.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Antarctic Climate Reconstruction Utilizing the US ITASE Ice Core Array (2009- 2012)", "uid": "p0000180", "west": -180.0}, {"awards": "0538639 Waddington, Edwin", "bounds_geometry": "POLYGON((-112.1 -79.4,-112.09 -79.4,-112.08 -79.4,-112.07 -79.4,-112.06 -79.4,-112.05 -79.4,-112.04 -79.4,-112.03 -79.4,-112.02 -79.4,-112.01 -79.4,-112 -79.4,-112 -79.41,-112 -79.42,-112 -79.43,-112 -79.44,-112 -79.45,-112 -79.46,-112 -79.47,-112 -79.48,-112 -79.49,-112 -79.5,-112.01 -79.5,-112.02 -79.5,-112.03 -79.5,-112.04 -79.5,-112.05 -79.5,-112.06 -79.5,-112.07 -79.5,-112.08 -79.5,-112.09 -79.5,-112.1 -79.5,-112.1 -79.49,-112.1 -79.48,-112.1 -79.47,-112.1 -79.46,-112.1 -79.45,-112.1 -79.44,-112.1 -79.43,-112.1 -79.42,-112.1 -79.41,-112.1 -79.4))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 01 Apr 2010 00:00:00 GMT", "description": "0538639\u003cbr/\u003eWaddington\u003cbr/\u003eThis award supports a project to study the patterns of accumulation variation and microstructural properties near the WAIS Divide ice core site in a 2.5 km array of 20 m boreholes. Borehole Optical Stratigraphy (BOS) is a novel optical measurement system that detects annual-scale layers in firn that result from changes in firn microstructure, giving annual-scale records of how accumulation varied spatially over the last 40-50 years. Data from borehole optical stratigraphy can eventually be calibrated against other data on the microstructural parameters of firn to calibrate BOS\u0027s sensitivity to density, pore-volume, and pore-shape variations, and to show by proxy how these parameters vary in space across the survey area. Statistical analysis of layer-thickness and layer-brightness data will enable prediction of: 1) interannual accumulation variability, 2) variability in layer-thickness at decadal scales due to changing spatial patterns in accumulation and 3) variability in microstructure-driven metamorphism due to changing spatial patterns of microstructure. With these statistics in hand, a scientist measuring climatic shifts found in the WAIS Divide ice core will be able to determine the fraction by which signals they measure exceed the signal due to background accumulation variations. As an added benefit, while still in the field, we will determine a preliminary depth-age scale for the firn by optical layer-counting, to the depth of the deepest air-filled firn hole available. This will be a valuable result for core-drilling operations and for preliminary data-analysis on the core. In terms of broader impacts, this project will advance education by training a post-doctoral student in field techniques. The P.I. and the post-doctoral researcher will participate in an undergraduate seminar called \"What is Scientific Research?\", incorporating progress and results from this project. They will also communicate about their progress and field experience with a middle-school science and math class.", "east": -112.0, "geometry": "POINT(-112.05 -79.45)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS", "is_usap_dc": false, "keywords": "Spatial Variability; FIELD INVESTIGATION; Not provided; LABORATORY; Stratigraphy; Borehole Optical Stratigraphy; Optical Layer-Counting; Microstructure; Firn; Depth-Age-Model; Optical; WAIS Divide; FIELD SURVEYS; Accumulation", "locations": "WAIS Divide", "north": -79.4, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Fudge, T. J.; Waddington, Edwin D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -79.5, "title": "Spatial Variability in Firn Properties from Borehole Optical Stratigraphy at the Inland WAIS Core Site", "uid": "p0000237", "west": -112.1}, {"awards": "0440666 Waddington, Edwin", "bounds_geometry": null, "dataset_titles": "Histories of Accumulation, Thickness, and WAIS Divide Location, Antarctica", "datasets": [{"dataset_uid": "609473", "doi": "10.7265/N5QR4V2J", "keywords": "Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; WAIS Divide; WAIS Divide Ice Core", "people": "Koutnik, Michelle; Waddington, Edwin D.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Histories of Accumulation, Thickness, and WAIS Divide Location, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609473"}], "date_created": "Thu, 04 Mar 2010 00:00:00 GMT", "description": "This award supports development of a new modeling approach that will extract information about past snow accumulation rate in both space and time in the vicinity of the future ice core near the Ross-Amundsen divide of the West Antarctic Ice Sheet (WAIS). Internal layers, detected by ice-penetrating radar, are isochrones, or former ice-sheet surfaces that have been buried by subsequent snowfall, and distorted by ice flow. Extensive ice-penetrating radar data are available over the inland portion of the WAIS. Layers have been dated back to 17,000 years before present. The radar data add the spatial dimension to the temporally resolved accumulation record from ice cores. Accumulation rates are traditionally derived from the depths of young, shallow layers, corrected for strain using a local 1-D ice-flow model. Older, deeper layers have been more affected by flow over large horizontal distances. However, it is these deeper layers that contain information on longer-term climate patterns. This project will use geophysical inverse theory and a 2.5D flow-band ice-flow forward model comprising ice-surface and layer-evolution modules, to extract robust transient accumulation patterns by assimilating multiple deeper, more-deformed layers that have previously been intractable. Histories of divide migration, geothermal flux, and surface evolution will also be produced. The grant will support the PhD research of a female graduate student who is a mentor to female socio-economically disadvantaged high-school students interested in science, through the University of Washington Women\u0027s Center. It will also provide a research\u003cbr/\u003eexperience for an undergraduate student, and contribute to a freshman seminar on Scientific Research.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS", "is_usap_dc": true, "keywords": "Ross-Amundsen Divide; FIELD SURVEYS; Internal Layers; Ice Flow Model; West Antarctic Ice Sheet; Accumulation; Glacier; Ice Penetrating Radar; Model; MODELS; Snow Accumulation; GPS; Antarctica; Isochron; Not provided; Snowfall; Radar", "locations": "West Antarctic Ice Sheet; Antarctica; Ross-Amundsen Divide", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Koutnik, Michelle; Waddington, Edwin D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e MODELS \u003e MODELS; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Histories of accumulation, thickness and WAIS Divide location from radar layers using a new inverse approach", "uid": "p0000018", "west": null}, {"awards": "0440817 Taylor, Kendrick", "bounds_geometry": null, "dataset_titles": "WAIS Divide Ice Core Images, Antarctica", "datasets": [{"dataset_uid": "609375", "doi": "10.7265/N5348H8T", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Optical Images; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "McGwire, Kenneth C.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core Images, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609375"}], "date_created": "Wed, 10 Feb 2010 00:00:00 GMT", "description": "This award supports the coordination of an interdisciplinary and multi institutional deep ice coring program in West Antarctica. The program will develop interrelated climate, ice dynamics, and biologic records focused on understanding interactions of global earth systems. The records will have a year-by-year chronology for the most recent 40,000 years. Lower temporal resolution records will extend to 100,000 years before present. The intellectual activity of this project includes enhancing our understanding of the natural mechanisms that cause climate change. The study site was selected to obtain the best possible material, available from anywhere, to determine the role of greenhouse gas in the last series of major climate changes. The project will study the how natural changes in greenhouse gas concentrations influence climate. The influence of sea ice and atmospheric circulation on climate changes will also be investigated. Other topics that will be investigated include the influence of the West Antarctic ice sheet on changes in sea level and the biology deep in the ice sheet. The broader impacts of this project include developing information required by other science communities to improve predictions of future climate change. The \u003cbr/\u003eproject will use mass media to explain climate, glaciology, and biology issues to a broad audience. The next generation of ice core investigators will be trained and there will be an emphasis on exposing a diverse group of students to climate, glaciology and biology research.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS", "is_usap_dc": true, "keywords": "FIELD SURVEYS; Antarctica; Not provided; Ice Core Data; West Antarctica; LABORATORY; Ice Core; FIELD INVESTIGATION", "locations": "Antarctica; West Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "McGwire, Kenneth C.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Investigation of Climate, Ice Dynamics and Biology using a Deep Ice Core from the West Antarctic Ice Sheet Ice Divide", "uid": "p0000182", "west": null}, {"awards": "0338008 Wemple, Beverley", "bounds_geometry": null, "dataset_titles": "Laboratory Studies of Isotopic Exchange in Snow; Snow Accumulation and Snow Melt in a Mixed Northern Hardwood-Conifer Forest", "datasets": [{"dataset_uid": "609441", "doi": "10.7265/N54X55R2", "keywords": "Snow/ice; Snow/Ice", "people": "Wemple, Beverley C.", "repository": "USAP-DC", "science_program": null, "title": "Snow Accumulation and Snow Melt in a Mixed Northern Hardwood-Conifer Forest", "url": "https://www.usap-dc.org/view/dataset/609441"}, {"dataset_uid": "609445", "doi": "10.7265/N51834DX", "keywords": "Atmosphere; Chemistry:ice; Chemistry:Ice; Snow/ice; Snow/Ice; Snow Sublimation Rate", "people": "Neumann, Thomas A.", "repository": "USAP-DC", "science_program": null, "title": "Laboratory Studies of Isotopic Exchange in Snow", "url": "https://www.usap-dc.org/view/dataset/609445"}], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "This award supports a project to develop a quantitative understanding of the processes active in isotopic exchange between snow/firn and water vapor, which is of paramount importance to ice core interpretation. Carefully controlled laboratory studies will be conducted at a variety of temperatures to empirically measure the mass transfer coefficient (the rate at which water moves from the solid to the vapor phase) for sublimating snow and to determine the time scale for isotopic equilibration between water vapor and ice. In addition the isotopic fractionation coefficient for vapor derived from sublimating ice will be determined and the results will be used to update existing models of mass transfer and isotopic evolution in firn. It is well known that water vapor moves through firn due to diffusion, free convection and forced convection. Although vapor movement through variably-saturated firn due to these processes has been modeled, because of a lack of laboratory data the mass transfer coefficient had to be estimated. Field studies have documented the magnitudes of post-depositional changes, but field studies do not permit rigorous analysis of the relative importance of the many processes which are likely to act in natural snow packs. The results of these laboratory investigations will be broadly applicable to a number of studies and will allow for improvement of existing physically-based models of post-depositional isotopic change, isotopic diffusion in firn, and vapor motion in firn. A major component of this project will be the design and fabrication of the necessary, novel experimental apparatus, which will be facilitated by existing technical expertise, cold room facilities, and laboratory equipment at CRREL. This project is a necessary step toward a quantitative understanding of the isotopic effects of water vapor movement in firn. The proposed work has broader impacts in several different areas. The modeling results will be applicable to a wide range of studies of water in the polar environment, including studies of wind-blown or drifting snow. The proposed collaborative study will partially support a Dartmouth graduate student for three years. This project will also provide support for a young first-time NSF investigator at the University of Vermont. Undergraduate students from Dartmouth will be involved in the research through the Women in Science Project and undergraduate students at the University of Vermont will be supported through the Research Experiences for Undergraduates program. The principal investigators and graduate student will continue their tradition of k-12 school outreach by giving science lessons and talks in local schools each year. Research results will be disseminated through scientific conferences, journal publications, and institutional seminars.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e SNOW TUBE; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HYGROMETERS \u003e HYGROMETERS", "is_usap_dc": true, "keywords": "Snow Accumulation; Snow Chemistry; Snow Melt; Snowfall; Snow Water Equivalent; LABORATORY; Seasonal Snow Cover; Not provided; Snow; Sublimation Rate; FIELD SURVEYS; FIELD INVESTIGATION", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Neumann, Thomas A.; Wemple, Beverley C.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Laboratory Studies of Isotopic Exchange in Snow and Firn", "uid": "p0000132", "west": null}, {"awards": "0196105 Steig, Eric", "bounds_geometry": null, "dataset_titles": "US ITASE Stable Isotope Data, Antarctica", "datasets": [{"dataset_uid": "609425", "doi": "10.7265/N5NZ85MD", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; ITASE; Paleoclimate; WAIS", "people": "Steig, Eric J.", "repository": "USAP-DC", "science_program": "ITASE", "title": "US ITASE Stable Isotope Data, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609425"}], "date_created": "Thu, 01 Oct 2009 00:00:00 GMT", "description": "Not Available", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e AMS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e LIDAR/LASER SPECTROMETERS \u003e PALMS", "is_usap_dc": true, "keywords": "Isotope; Depth; Ice Core Gas Records; Ice Core; Ice Core Data; Ice Core Chemistry; LABORATORY; Firn Isotopes; FIELD SURVEYS; Deuterium; Ice Age; Oxygen Isotope; Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": null, "title": "Stable Isotope Studies at West Antarctic ITASE Sites", "uid": "p0000013", "west": null}, {"awards": "0440414 Steig, Eric", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Stable Isotope Studies at East Antarctic US ITASE Sites", "datasets": [{"dataset_uid": "600042", "doi": "10.15784/600042", "keywords": "Antarctica; Atmosphere; Climate; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; ITASE; Meteorology; Paleoclimate; Satellite Remote Sensing; Weather Station Data", "people": "Steig, Eric J.", "repository": "USAP-DC", "science_program": "ITASE", "title": "Stable Isotope Studies at East Antarctic US ITASE Sites", "url": "https://www.usap-dc.org/view/dataset/600042"}], "date_created": "Mon, 14 Sep 2009 00:00:00 GMT", "description": "This award supports a project to obtain stable isotope profiles from shallow (\u003c100 m) ice cores from East Antarctica, to add to the growing database of environmental proxy data collected under the auspices of the \"ITASE\" (International TransAntarctic Scientific Expedition) program. In Antarctica, the instrumental record of climate is particularly short (~40 years except in a few isolated locations on the coast), and ice core proxy data are the only means available for extending this record into the past. The use of stable isotopes of water (18-O/16-O and D/H ratios) from ice cores as proxies for temperature is well established for both very short (i.e. seasonal) and long timescales (centuries, millennia). Using multivariate regression methods and shallow ice cores from West Antarctica, a reconstruction of Antarctic climate over the last ~150 years has been developed which suggests the continent has been warming, on average, at a rate of ~0.2 K/century. Further improving these reconstructions is the chief motivation for further extending the US ITASE project. Ten to fifteen shallow (~ 100 m) from Victoria Land, East Antarctica will be obtained and analyzed. The core will be collected along a traverse route beginning at Taylor Dome and ending at the South Pole. Age-depth relationships for the cores will be determined through a combination of stable isotopes, visual stratigraphy and seasonal chemical signatures and marker horizons. Reconstructions of Antarctic climate obtained from these cores will be incorporated into the global network of paleoclimate information, which has been important in science, policy and educational contexts. The project will include graduate student and postdoctoral training and field experience.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": -90.0, "title": "Stable Isotope Studies at East Antarctic US ITASE Sites", "uid": "p0000202", "west": -180.0}, {"awards": "0086645 Fountain, Andrew", "bounds_geometry": "POLYGON((161.04 -77.3,161.239 -77.3,161.438 -77.3,161.637 -77.3,161.836 -77.3,162.035 -77.3,162.234 -77.3,162.433 -77.3,162.632 -77.3,162.831 -77.3,163.03 -77.3,163.03 -77.378,163.03 -77.456,163.03 -77.534,163.03 -77.612,163.03 -77.69,163.03 -77.768,163.03 -77.846,163.03 -77.924,163.03 -78.002,163.03 -78.08,162.831 -78.08,162.632 -78.08,162.433 -78.08,162.234 -78.08,162.035 -78.08,161.836 -78.08,161.637 -78.08,161.438 -78.08,161.239 -78.08,161.04 -78.08,161.04 -78.002,161.04 -77.924,161.04 -77.846,161.04 -77.768,161.04 -77.69,161.04 -77.612,161.04 -77.534,161.04 -77.456,161.04 -77.378,161.04 -77.3))", "dataset_titles": "McMurdo Dry Valleys Long-Term Ecological Research (MCM LTER) Core Glacier Mass Balance Data, Antarctica", "datasets": [{"dataset_uid": "609421", "doi": "", "keywords": "Antarctica; Dry Valleys; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; LTER; LTER Mcmurdo Dry Valleys", "people": "Basagic, Hassan; Nylen, Thomas; Lyons, W. Berry; Langevin, Paul; Fountain, Andrew", "repository": "USAP-DC", "science_program": null, "title": "McMurdo Dry Valleys Long-Term Ecological Research (MCM LTER) Core Glacier Mass Balance Data, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609421"}], "date_created": "Mon, 31 Aug 2009 00:00:00 GMT", "description": "0086645\u003cbr/\u003eFountain\u003cbr/\u003e\u003cbr/\u003eThis award supports a Small Grant for Exploratory Research (SGER) to study glaciological change in the McMurdo Dry Valleys, Antarctica under the category of \"application of new expertise or new approaches to established research topics\". The purpose of the project is to assess the application of classified imagery to the study of the magnitude and rate of change of glacier extent and lake area as an indicator of climate change. Because the rate of change of both glacier extent and lake area is small compared to the resolution of unclassified imagery, the increased resolution of classified imagery is clearly needed. Access to classified imagery with 1 meter or better resolution will provide a baseline measurement against which future changes can be compared. Maximum use will be made of archived imagery but if necessary, one request will be made for new imagery to supplement the existing archive. This work will support on-going field measurements which are part of the Long-Term Ecological Research (LTER) site in the McMurdo Dry Valleys but which are limited by logistic constraints to only a few measurements during limited times of the year. If successful, the information gained in this project will enable researchers to better direct their efforts to identify the important physical processes controlling the changes in the valleys. The information acquired in conducting this project will be made available to the public, using appropriate security procedures to declassify the data. The \"exploratory\" and \"high risk\" nature of the proposed work and its \"potential\" to make an important \"impact\" on the field of Antarctic glacier studies are all reasons that this work is appropriate to support as an SGER.", "east": 163.03, "geometry": "POINT(162.035 -77.69)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SNOW DENSITY CUTTER", "is_usap_dc": true, "keywords": "Glacier Surface; Antarctic; LABORATORY; Byrd Polar Research Center; FIELD INVESTIGATION; FIELD SURVEYS; Antarctica; Not provided; Glacier; Mass Balance; Snow Density; Ice Core; Taylor Glacier", "locations": "Antarctic; Antarctica; Taylor Glacier", "north": -77.3, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Nylen, Thomas; Basagic, Hassan; Langevin, Paul; Lyons, W. Berry; Fountain, Andrew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.08, "title": "SGER Proposal:Glaciological change in the McMurdo Dry Valleys, Antarctica", "uid": "p0000541", "west": 161.04}, {"awards": "0125794 Price, P. Buford", "bounds_geometry": null, "dataset_titles": "Optical Logging for Dust and Microbes in Boreholes in Glacial Ice", "datasets": [{"dataset_uid": "609403", "doi": "10.7265/N59P2ZKB", "keywords": "Antarctica; Dust; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Microbiology; Optical Backscatter", "people": "Bay, Ryan", "repository": "USAP-DC", "science_program": null, "title": "Optical Logging for Dust and Microbes in Boreholes in Glacial Ice", "url": "https://www.usap-dc.org/view/dataset/609403"}], "date_created": "Wed, 29 Jul 2009 00:00:00 GMT", "description": "0125794\u003cbr/\u003ePrice\u003cbr/\u003e\u003cbr/\u003eThis award supports research in climatology, geosciences, and life in extreme environments to be carried out with a newly developed optical borehole logger. The logger fits into a fluid-filled borehole in glacial ice. It emits light at 370 nm in a horizontal plane in order to probe optical properties of particles embedded in the ice out to several meters from the borehole. After leaving the borehole, the light is partially absorbed and scattered by dust, biomolecules, or microbes. A fraction of the light is scattered back into the borehole and is detected by a system of seven phototubes, each of which collects light with high efficiency in a separate wavelength band. One of them collects light that scatters off of dust and air bubbles without wavelength shift, and serves as a dust logger. The other six are covered with notch filters that measure six different wavelength bands and measure the shape of the fluorescence spectrum of microbes and biomolecules. Thus, the same instrument serves as both a dust logger and a microbe logger. Applications include: 1) Precise chronologies and long-period solar variability. With a resolution of 1 to 2 cm for both GISP2 and Siple Dome, the logger will record annual dust maxima and evaluate claims of modulations of dust concentration with periods ranging from 11 yrs (the solar cycle) to 2300 yrs; 2) Volcanism and age-depth markers. Dozens of volcanic ash bands will be detectable and will serve as primary age-depth markers for other boreholes; 3) Microorganisms and biomolecules. The vertical distribution of living, dormant, and dead microbes can be logged, and searches for archaea and aeolian polyaromatic hydrocarbons can be made. The logging experiments will be carried out at Siple Dome and Dome C in Antarctica and at GISP2 and GRIP in Greenland.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS", "is_usap_dc": true, "keywords": "Ice Core Data; Not provided; Climate Research; Climate; FIELD INVESTIGATION; Climate Change; FIELD SURVEYS; LABORATORY; Paleoclimate; Ice Core; Volcanic", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology; Arctic Natural Sciences", "paleo_time": null, "persons": "Bay, Ryan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Optical Logging for Dust and Microbes in Boreholes in Glacial Ice", "uid": "p0000156", "west": null}, {"awards": "0440975 Severinghaus, Jeffrey", "bounds_geometry": "POINT(-119.533333 -80.016667)", "dataset_titles": "Nitrogen and Oxygen Gas Isotopes in the Siple Dome and Byrd Ice Cores, Antarctica", "datasets": [{"dataset_uid": "609407", "doi": "10.7265/N55X26V0", "keywords": "Antarctica; Arctic; Atmosphere; Byrd Glacier; Byrd Ice Core; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Nitrogen and Oxygen Gas Isotopes in the Siple Dome and Byrd Ice Cores, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609407"}], "date_created": "Fri, 17 Jul 2009 00:00:00 GMT", "description": "The award supports the development of high-resolution nitrogen and oxygen isotope records on trapped gases in the Byrd and Siple Dome ice cores, and the Holocene part of the GISP2 ice core. The primary scientific goals of this work are to understand the enigmatic d15N anomalies seen thus far in the Siple Dome record at 15.3 ka and 35 ka, and to find other events that may occur in both cores. At these events, d15N of trapped air approaches zero, implying little or no gravitational fractionation of gases in the firn layer at the time of formation of the ice. These events may represent times of low accumulation rate and arid meteorological conditions, and thus may contain valuable information about the climatic history of West Antarctica. Alternatively, they may stem from crevassing and thus may reveal ice-dynamical processes. Finding the events in the Byrd core, which is located 500 km from Siple Dome, would place powerful constraints on their origin and significance. A second major goal is to explore the puzzling absence of the abrupt warming event at 22 ka (seen at Siple Dome) in the nearby Byrd 18O/16O record in the ice (d18Oice), and search for a possible correlative signal in Byrd d15N. A third goal takes advantage of the fact that precise measurements of the oxygen isotopic composition of atmospheric O2 (d18Oatm) are obtained as a byproduct of the d15N measurement. The proposed gas-isotopic measurements will underpin an integrated suite of West Antarctic climate and atmospheric gas records, which will ultimately include the WAIS Divide core. These records will help separate regional from global climate signals, and may place constraints on the cause of abrupt climate change. Education of two graduate students, and training of two staff members in the laboratory, contribute to the nation\u0027s human resource base. Education and outreach will be an important component of the project.", "east": -119.533333, "geometry": "POINT(-119.533333 -80.016667)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Antarctica; Firn Air Isotopes; Not provided; Nitrogen Isotopes; LABORATORY; Firn Isotopes; Paleoclimate; FIELD SURVEYS; Ice Core; Oxygen Isotope; FIELD INVESTIGATION; Siple Dome", "locations": "Antarctica; Siple Dome", "north": -80.016667, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -80.016667, "title": "Nitrogen and oxygen gas isotopes in the Siple Dome and Byrd ice cores", "uid": "p0000450", "west": -119.533333}, {"awards": "0122520 Gogineni, S. Prasad", "bounds_geometry": "POLYGON((-110 -62,-105 -62,-100 -62,-95 -62,-90 -62,-85 -62,-80 -62,-75 -62,-70 -62,-65 -62,-60 -62,-60 -63.5,-60 -65,-60 -66.5,-60 -68,-60 -69.5,-60 -71,-60 -72.5,-60 -74,-60 -75.5,-60 -77,-65 -77,-70 -77,-75 -77,-80 -77,-85 -77,-90 -77,-95 -77,-100 -77,-105 -77,-110 -77,-110 -75.5,-110 -74,-110 -72.5,-110 -71,-110 -69.5,-110 -68,-110 -66.5,-110 -65,-110 -63.5,-110 -62))", "dataset_titles": "Antarctic Radar Echograms and Derived Ice Thickness Data from CReSIS", "datasets": [{"dataset_uid": "609414", "doi": "", "keywords": "Airborne Radar; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Radar", "people": "Gogineni, Prasad", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Radar Echograms and Derived Ice Thickness Data from CReSIS", "url": "https://www.usap-dc.org/view/dataset/609414"}], "date_created": "Wed, 01 Jul 2009 00:00:00 GMT", "description": "0122520\u003cbr/\u003eGogineni\u003cbr/\u003e\u003cbr/\u003eSea level has been rising over the last century. Although the immediate impact of sea level rise may be less severe than other effects of global climate change, the long-term consequences can be much more devastating since nearly 60% of the world population lives in coastal regions. Scientists have postulated that excess water is being released from polar ice sheets due to long-term, global climate change, but there are insufficient data to confirm these theories. Understanding the interactions between the ice sheets, oceans and atmosphere is essential to quantifying the role of ice sheets in sea level rise. Toward that end, this research project involves the innovative application of information technology in the development and deployment of intelligent radar sensors for measuring key glaciological parameters. \u003cbr/\u003e\u003cbr/\u003eRadar instrumentation will consist of a synthetic aperture radar (SAR) that can operate in bistatic or monostatic mode. One important application of the SAR will be in the determination of basal conditions, particularly the presence and distribution of basal water. Basal water lubricates the ice/bed interface, enhancing flow, and increasing the amount of ice discharged into the ocean. Another application of the SAR will be to measure ice thickness and map internal layers in both shallow and deep ice. Information on near-surface internal layers will be used to estimate the average, recent accumulation rate, while the deeper layers provide a history of past accumulation and flow rates. A tracked vehicle and an automated snowmobile will be used to test and demonstrate the utility of an intelligent radar in glaciological investigations.\u003cbr/\u003e\u003cbr/\u003eThe system will be developed to collect, process and analyze data in real time and in conjunction with a priori information derived from archived sources. The combined real time and archived information will be used onboard the vehicles to select and generate an optimum sensor configuration. This project thus involves innovative research in intelligent systems, sounding radars and ice sheet modeling. In addition it has a very strong public outreach and education program, which include near-real-time image broadcasts via the world wide web", "east": -60.0, "geometry": "POINT(-85 -69.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e AIRSAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e IMAGING RADAR SYSTEMS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e SAR", "is_usap_dc": true, "keywords": "Radar Echo Sounding; Not provided; FIELD SURVEYS; Airborne Radar Sounding; Radar Echo Sounder; Antarctic Ice Sheet; LABORATORY; Antarctica; Ice Sheet Thickness; Antarctic; Ice Sheet; Synthetic Aperture Radar Imagery; Radar Altimetry; Ice Sheet Elevation; FIELD INVESTIGATION; Radar", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet", "north": -62.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Gogineni, Prasad", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "ITR/SI+AP: A Mobile Sensor Web for Polar Ice Sheet Measurements", "uid": "p0000583", "west": -110.0}, {"awards": "0536526 Le Masurier, Wesley", "bounds_geometry": "POLYGON((-136 -73,-133.4 -73,-130.8 -73,-128.2 -73,-125.6 -73,-123 -73,-120.4 -73,-117.8 -73,-115.2 -73,-112.6 -73,-110 -73,-110 -73.425,-110 -73.85,-110 -74.275,-110 -74.7,-110 -75.125,-110 -75.55,-110 -75.975,-110 -76.4,-110 -76.825,-110 -77.25,-112.6 -77.25,-115.2 -77.25,-117.8 -77.25,-120.4 -77.25,-123 -77.25,-125.6 -77.25,-128.2 -77.25,-130.8 -77.25,-133.4 -77.25,-136 -77.25,-136 -76.825,-136 -76.4,-136 -75.975,-136 -75.55,-136 -75.125,-136 -74.7,-136 -74.275,-136 -73.85,-136 -73.425,-136 -73))", "dataset_titles": "Geochemistry and Petrologic Evolution of Felsic Volcanoes in Western Marie Byrd Land, Antarctica", "datasets": [{"dataset_uid": "600051", "doi": "10.15784/600051", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Intracontinental Magmatism; IntraContinental Magmatism; Marie Byrd Land; Solid Earth", "people": "Le Masurier, Wesley", "repository": "USAP-DC", "science_program": null, "title": "Geochemistry and Petrologic Evolution of Felsic Volcanoes in Western Marie Byrd Land, Antarctica", "url": "https://www.usap-dc.org/view/dataset/600051"}], "date_created": "Wed, 24 Jun 2009 00:00:00 GMT", "description": "This project uses geochemical studies to determine the origin of volcanic rocks from Marie Byrd Land (MBL), Antarctica. Surprisingly, adjacent volcanoes in the MBL have dramatically different compositions, ranging from phonolite to trachyte to rhyolite. This diversity offers an opportunity to constrain the processes responsible for generating silica oversaturated and undersaturated magmas in a single geologic setting. Previous work suggests that the most obvious and simplest explanation--crustal contamination--is not a significant factor, and that polybaric fractional crystallization is the major cause. This study evaluates these factors through analyses and interpretation of trace and rare earth element abundances, as well as Sr and Nd isotopic ratios. \u003cbr/\u003e\u003cbr/\u003eThe broader impacts include outreach programs to the Girl Scouts of America, and dissemination of results through publications and meetings.", "east": -110.0, "geometry": "POINT(-123 -75.125)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS", "locations": null, "north": -73.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Le Masurier, Wesley", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.25, "title": "Geochemistry and Petrologic Evolution of Felsic Volcanoes in Western Marie Byrd Land, Antarctica", "uid": "p0000534", "west": -136.0}, {"awards": "9814810 Bales, Roger", "bounds_geometry": "POLYGON((-124 -76,-120 -76,-116 -76,-112 -76,-108 -76,-104 -76,-100 -76,-96 -76,-92 -76,-88 -76,-84 -76,-84 -77.4,-84 -78.8,-84 -80.2,-84 -81.6,-84 -83,-84 -84.4,-84 -85.8,-84 -87.2,-84 -88.6,-84 -90,-88 -90,-92 -90,-96 -90,-100 -90,-104 -90,-108 -90,-112 -90,-116 -90,-120 -90,-124 -90,-124 -88.6,-124 -87.2,-124 -85.8,-124 -84.4,-124 -83,-124 -81.6,-124 -80.2,-124 -78.8,-124 -77.4,-124 -76))", "dataset_titles": "Atmospheric Mixing Ratios of Hydroperoxides above the West Antarctic Ice Sheet; Twenty-Three Century-scale Ice Core Records of Hydrogen Peroxide (H2O2) from West Antarctica", "datasets": [{"dataset_uid": "609392", "doi": "10.7265/N5TM7826", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; WAIS", "people": "Frey, Markus; Bales, Roger; McConnell, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Twenty-Three Century-scale Ice Core Records of Hydrogen Peroxide (H2O2) from West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609392"}, {"dataset_uid": "609394", "doi": "10.7265/N5PZ56RS", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; ITASE; WAIS", "people": "Bales, Roger; Frey, Markus; McConnell, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Atmospheric Mixing Ratios of Hydroperoxides above the West Antarctic Ice Sheet", "url": "https://www.usap-dc.org/view/dataset/609394"}], "date_created": "Mon, 01 Jun 2009 00:00:00 GMT", "description": "This award supports a project to improve understanding of atmospheric photochemistry over West Antarctica, as recorded in snow, firn and ice. Atmospheric and firn sampling will be undertaken as part of the U.S. International Trans-Antarctic Scientific Expedition (US ITASE) traverses. Measurements of hydrogen peroxide (H2O2) and formaldehyde (HCHO) will be made on these samples and a recently developed, physically based atmosphere-to-snow transfer model will be used to relate photochemical model estimates of these components to the concentrations of these parameters in the atmosphere and snow. The efficiency of atmosphere-to-snow transfer and the preservation of these components is strongly related to the rate and timing of snow accumulation. This information will be obtained by analyzing the concentration of seasonally dependent species such as hydrogen peroxide, nitric acid and stable isotopes of oxygen. Collection of samples along the US ITASE traverses will allow sampling at a wide variety of locations, reflecting both a number of different depositional environments and covering much of the West Antarctic region.", "east": -84.0, "geometry": "POINT(-104 -83)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUORESCENCE SPECTROSCOPY; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS SENSORS", "is_usap_dc": true, "keywords": "Ice Core; Ice Core Chemistry; FIELD INVESTIGATION; FIELD SURVEYS; Antarctica; West Antarctica; Antarctic; LABORATORY; Ice Core Gas Records; Not provided; Ice Core Data; Polar Firn Air; Hydrogen Peroxide; West Antarctic Ice Sheet; Shallow Firn Air; US ITASE; Antarctic Ice Sheet; Snow Chemistry", "locations": "Antarctica; West Antarctica; Antarctic; Antarctic Ice Sheet; West Antarctic Ice Sheet", "north": -76.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Bales, Roger; Frey, Markus; McConnell, Joseph", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Hydrogen Peroxide, Formaldehyde, and Sub-Annual Snow Accumulation in West Antarctica: Participation in West Antarctic Traverse", "uid": "p0000253", "west": -124.0}, {"awards": "0338260 Chin, Yu-Ping; 0338342 Foreman, Christine", "bounds_geometry": "POINT(166.167 -77.55)", "dataset_titles": "Biogeochemistry of Dissolved Organic Matter in Pony Lake, Ross Island", "datasets": [{"dataset_uid": "600168", "doi": "10.15784/600168", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Critical Zone; Ross Island; Sample/collection Description; Sample/Collection Description; Water Samples", "people": "Foreman, Christine; Chin, Yu-Ping", "repository": "USAP-DC", "science_program": null, "title": "Biogeochemistry of Dissolved Organic Matter in Pony Lake, Ross Island", "url": "https://www.usap-dc.org/view/dataset/600168"}], "date_created": "Mon, 16 Mar 2009 00:00:00 GMT", "description": "Dissolved organic matter (DOM) is a significant chemical component in aquatic systems because it acts as an important carbon source for microorganisms, absorbs harmful radiation in sunlight, is able to complex metals, and can participate in important biogeochemical reactions. This study will investigate the biogeochemical cycling of DOM in a small coastal Antarctic pond, Pony Lake, located on Cape Royds, Ross Island. Because there are no higher plants present at this site all of the DOM in this lake is derived from microorganisms. Thus, Pony Lake is an ideal site to study the effect of physical, chemical, and microbial processes on the composition and character of the DOM pool. Finally, Pony Lake is also an ideal site to collect an International Humic Substances Society (IHSS) fulvic acid standard. Unlike other IHSS standards, this standard will not contain DOM components derived from higher land plants. To better understand the role of physical influences, the project will study the changes in the DOM pool as the lake evolves from ice-covered to ice-free conditions during the summer, as well as the relationship of DOM to the observed turnover of dominant microbial communities in the lake. Scientists will also monitor changes in microbial abundance, diversity, and productivity that may occur during the ice to open-water transition period. This research will provide much needed information regarding the relationship between microbial diversity and DOM biogeochemistry. Middle school science students will be active participants in this project through the Internet, while scientists are in the field, and in the lab.", "east": 166.167, "geometry": "POINT(166.167 -77.55)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided; FIELD SURVEYS", "locations": null, "north": -77.55, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Foreman, Christine; Chin, Yu-Ping", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.55, "title": "Collaborative Research: Biogeochemistry of Dissolved Organic Matter in Pony Lake, Ross Island", "uid": "p0000548", "west": 166.167}, {"awards": "0228842 Grew, Edward", "bounds_geometry": "POLYGON((76 -69.3,76.05 -69.3,76.1 -69.3,76.15 -69.3,76.2 -69.3,76.25 -69.3,76.3 -69.3,76.35 -69.3,76.4 -69.3,76.45 -69.3,76.5 -69.3,76.5 -69.32,76.5 -69.34,76.5 -69.36,76.5 -69.38,76.5 -69.4,76.5 -69.42,76.5 -69.44,76.5 -69.46,76.5 -69.48,76.5 -69.5,76.45 -69.5,76.4 -69.5,76.35 -69.5,76.3 -69.5,76.25 -69.5,76.2 -69.5,76.15 -69.5,76.1 -69.5,76.05 -69.5,76 -69.5,76 -69.48,76 -69.46,76 -69.44,76 -69.42,76 -69.4,76 -69.38,76 -69.36,76 -69.34,76 -69.32,76 -69.3))", "dataset_titles": "Boron in Antarctic granulite-facies rocks: under what conditions is boron retained in the middle crust?", "datasets": [{"dataset_uid": "600030", "doi": "10.15784/600030", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Geochronology; Solid Earth", "people": "Grew, Edward", "repository": "USAP-DC", "science_program": null, "title": "Boron in Antarctic granulite-facies rocks: under what conditions is boron retained in the middle crust?", "url": "https://www.usap-dc.org/view/dataset/600030"}], "date_created": "Tue, 10 Mar 2009 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the role and fate of Boron in high-grade metamorphic rocks of the Larsemann Hills region of Antarctica. Trace elements provide valuable information on the changes sedimentary rocks undergo as temperature and pressure increase during burial. One such element, boron, is particularly sensitive to increasing temperature because of its affinity for aqueous fluids, which are lost as rocks are buried. Boron contents of unmetamorphosed pelitic sediments range from 20 to over 200 parts per million, but rarely exceed 5 parts per million in rocks subjected to conditions of the middle and lower crust, that is, temperatures of 700 degrees C or more in the granulite-facies, which is characterized by very low water activities at pressures of 5 to 10 kbar (18-35 km burial). Devolatization reactions with loss of aqueous fluid and partial melting with removal of melt have been cited as primary causes for boron depletion under granulite-facies conditions. Despite the pervasiveness of both these processes, rocks rich in boron are locally found in the granulite-facies, that is, there are mechanisms for retaining boron during the metamorphic process. The Larsemann Hills, Prydz Bay, Antarctica, are a prime example. More than 20 lenses and layered bodies containing four borosilicate mineral species crop out over a 50 square kilometer area, which thus would be well suited for research on boron-rich granulite-facies metamorphic rocks. \u003cbr/\u003e\u003cbr/\u003eWhile most investigators have focused on the causes for loss of boron, this work will investigate how boron is retained during high-grade metamorphism. Field observations and mapping in the Larsemann Hills, chemical analyses of minerals and their host rocks, and microprobe age dating will be used to identify possible precursors and deduce how the precursor materials recrystallized into borosilicate rocks under granulite-facies conditions. The working hypothesis is that high initial boron content facilitates retention of boron during metamorphism because above a certain threshold boron content, a mechanism \"kicks in\" that facilitates retention of boron in metamorphosed rocks. For example, in a rock with large amounts of the borosilicate tourmaline, such as stratabound tourmalinite, the breakdown of tourmaline to melt could result in the formation of prismatine and grandidierite, two borosilicates found in the Larsemann Hills. This situation is rarely observed in rocks with modest boron content, in which breakdown of tourmaline releases boron into partial melts, which in turn remove boron when they leave the system. Stratabound tourmalinite is associated with manganese-rich quartzite, phosphorus-rich rocks and sulfide concentrations that could be diagnostic for recognizing a tourmalinite protolith in a highly metamorphosed complex where sedimentary features have been destroyed by deformation. Because partial melting plays an important role in the fate of boron during metamorphism, our field and laboratory research will focus on the relationship between the borosilicate units, granite pegmatites and other granitic intrusives. The results of our study will provide information on cycling of boron at deeper levels in the Earth\u0027s crust and on possible sources of boron for granites originating from deep-seated rocks.\u003cbr/\u003e\u003cbr/\u003eAn undergraduate student will participate in the electron microprobe age-dating of monazite and xenotime as part of a senior project, thereby integrating the proposed research into the educational mission of the University of Maine. In response to a proposal for fieldwork, the Australian Antarctic Division, which maintains Davis station near the Larsemann Hills, has indicated that they will support the Antarctic fieldwork.", "east": 76.5, "geometry": "POINT(76.25 -69.4)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION", "locations": null, "north": -69.3, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Grew, Edward", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -69.5, "title": "Boron in Antarctic granulite-facies rocks: under what conditions is boron retained in the middle crust?", "uid": "p0000431", "west": 76.0}, {"awards": "9911617 Blankenship, Donald; 9319379 Blankenship, Donald", "bounds_geometry": null, "dataset_titles": "Antarctic Aerogeophysics Data; Antarctic Subglacial Lake Classification Inventory; RBG - Robb Glacier Survey; SOAR-Lake Vostok Survey airborne radar data; SOAR-Lake Vostok Survey bed elevation data; SOAR-Lake Vostok Survey Gravity data; SOAR-Lake Vostok Survey ice thickness data; SOAR-Lake Vostok survey magnetic anomaly data; SOAR-Lake Vostok Survey surface elevation data", "datasets": [{"dataset_uid": "601295", "doi": "10.1594/IEDA/306563", "keywords": "Airborne Gravity; Airplane; Antarctica; East Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Lake Vostok; Potential Field; Solid Earth", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey Gravity data", "url": "https://www.usap-dc.org/view/dataset/601295"}, {"dataset_uid": "601296", "doi": " 10.1594/IEDA/306564", "keywords": "Airborne Magnetic; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Lake Vostok; Magnetic; Magnetic Anomaly; Magnetometer; Potential Field; SOAR; Solid Earth", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok survey magnetic anomaly data", "url": "https://www.usap-dc.org/view/dataset/601296"}, {"dataset_uid": "601300", "doi": "10.1594/IEDA/306568", "keywords": "Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Lake Vostok; Navigation; Radar; SOAR; Subglacial Lakes", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey airborne radar data", "url": "https://www.usap-dc.org/view/dataset/601300"}, {"dataset_uid": "601604", "doi": "10.15784/601604", "keywords": "Airborne Radar; Antarctica; Bed Elevation; Geophysics; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Surface Elevation; Ice Thickness; Robb Glacier; Transantarctic Mountains", "people": "Bell, Robin; Buck, W. Roger; Young, Duncan A.; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": null, "title": "RBG - Robb Glacier Survey", "url": "https://www.usap-dc.org/view/dataset/601604"}, {"dataset_uid": "601297", "doi": "10.1594/IEDA/306567", "keywords": "Airborne Laser Altimeters; Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Sheet; Ice Stratigraphy; Ice Thickness; Ice Thickness Distribution; Lake Vostok; Radar; Radar Altimetry; Radar Echo Sounder; SOAR; Subglacial Lake", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey ice thickness data", "url": "https://www.usap-dc.org/view/dataset/601297"}, {"dataset_uid": "601298", "doi": "10.1594/IEDA/306566", "keywords": "Airborne Altimetry; Airborne Laser Altimeters; Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Ice Sheet Elevation; Ice Surface; Lake Vostok; Radar Echo Sounder; SOAR; Surface Elevation", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey surface elevation data", "url": "https://www.usap-dc.org/view/dataset/601298"}, {"dataset_uid": "609240", "doi": "", "keywords": "Airborne Radar; Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Navigation; Potential Field; SOAR; Solid Earth", "people": "Morse, David L.; Blankenship, Donald D.; Holt, John W.; Dalziel, Ian W.", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Aerogeophysics Data", "url": "https://www.usap-dc.org/view/dataset/609240"}, {"dataset_uid": "601299", "doi": "10.1594/IEDA/306565", "keywords": "Airborne Laser Altimeters; Airborne Laser Altimetry; Airborne Radar; Airplane; Antarctica; Bed Elevation; Bedrock Elevation; Digital Elevation Model; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Lake Vostok; Radar; Radar Echo Sounder; SOAR", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey bed elevation data", "url": "https://www.usap-dc.org/view/dataset/601299"}, {"dataset_uid": "609336", "doi": "10.7265/N5CN71VX", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Subglacial Lake", "people": "Holt, John W.; Carter, Sasha P.; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Subglacial Lake Classification Inventory", "url": "https://www.usap-dc.org/view/dataset/609336"}], "date_created": "Fri, 06 Feb 2009 00:00:00 GMT", "description": "9911617 Blankenship This award, provided jointly by the Antarctic Geology and Geophysics Program, the Antarctic Glaciology Program, and the Polar Research Support Section of the Office of Polar Programs, provides funds for continuation of the Support Office for Aerogeophysical Research (SOAR). From July 1994 to July 2000, SOAR served as a facility to accomplish aerogeophysical research in Antarctica under an agreement between the University of Texas at Austin and the National Science Foundation\u0027s Office of Polar Programs (NSF/OPP). SOAR operated and maintained an aerogeophysical instrument package that consists of an ice-penetrating radar sounder, a laser altimeter, a gravimeter and a magnetometer that are tightly integrated with each other as well as with the aircraft\u0027s avionics and power packages. An array of aircraft and ground-based GPS receivers supported kinematic differential positioning using carrier-phase observations. SOAR activities included: developing aerogeophysical research projects with NSF/OPP investigators; upgrading of the aerogeophysical instrumentation package to accommodate new science projects and advances in technology; fielding this instrument package to accomplish SOAR-developed projects; and management, reduction, and analysis of the acquired aerogeophysical data. In pursuit of 9 NSF-OPP funded aerogeophysical research projects (involving 14 investigators from 9 institutions), SOAR carried out six field campaigns over a six-year period and accomplished approximately 200,000 line kilometers of aerogeophysical surveying over both East and West Antarctica in 377 flights. This award supports SOAR to undertake a one year and 8 month program of aerogeophysical activities that are consistent with continuing U.S. support for geophysical research in Antarctica. - SOAR will conduct an aerogeophysical campaign during the 200/01 austral summer to accomplish surveys for two SOAR-developed projects: \"Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Studies\" (Co-PI\u0027s Bell and Studinger, LDEO); and \"Collaborative Research: Seismic Investigation of the Deep Continental Structure Across the East-West Antarctic Boundary\" (Co-PI\u0027s Weins, Washington U. and Anandakrishnan, U. Alabama). After configuration and testing of the survey aircraft in McMurdo, SOAR will conduct survey flights from an NSF-supported base adjacent to the Russian Station above Lake Vostok and briefly occupy one or two remote bases on the East Antarctic ice sheet. - SOAR will reduce these aerogeophysical data and produce profiles and maps of surface elevation, bed elevation, gravity and magnetic field intensity. These results will be provided to the respective project investigators within nine months of conclusion of field activities. We will also submit a technical manuscript that describes these results to a refereed scientific journal and distribute these results to appropriate national geophysical data centers within approximately 24 months of completion of field activities. - SOAR will standardize all previously reduced SOAR data products and transfer them to the appropriate national geophysical data centers by the end of this grant. - SOAR will convene a workshop to establish a community consensus for future U.S. Antarctic aerogeophysical research. This workshop will be co-convened by Ian Dalziel and Richard Alley and will take place during the spring of 2001. - SOAR will upgrade the existing SOAR in-field quality control procedures to serve as a web-based interface for efficient browsing of many low-level SOAR data streams. - SOAR will repair and/or refurbish equipment that was used during the 2000/01 field campaign. Support for SOAR is essential for accomplishing major geophysical investigations in Antarctica. Following data interpretation by the science teams, these data will provide valuable insights to the structure and evolution of the Antarctic continent.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e IMAGING RADAR SYSTEMS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LIDAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e PROTON MAGNETOMETER", "is_usap_dc": true, "keywords": "Ice Sheet; Ice Sheet Elevation; Surface Winds; Snow Temperature; Atmospheric Pressure; Antarctic; West Antarctic Ice Sheet; Surface Temperature Measurements; FIELD INVESTIGATION; Surface Wind Speed Measurements; Subglacial Topography; Atmospheric Humidity Measurements; Not provided; Aerogeophysics; FIELD SURVEYS; GROUND STATIONS; Antarctica; SOAR; Snow Temperature Measurements; West Antarctica; Antarctic Ice Sheet; East Antarctic Plateau", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; West Antarctica; West Antarctic Ice Sheet; East Antarctic Plateau", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Carter, Sasha P.; Holt, John W.; Blankenship, Donald D.; Morse, David L.; Dalziel, Ian W.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR)", "uid": "p0000125", "west": null}, {"awards": "0440759 Sowers, Todd; 0440498 White, James; 0440602 Saltzman, Eric; 0440509 Battle, Mark; 0440701 Severinghaus, Jeffrey; 0440615 Brook, Edward J.", "bounds_geometry": "POINT(-112.085 -79.467)", "dataset_titles": "Gases in Firn Air and Shallow Ice at the WAIS Drilling Site, Antarctica; Ice Core Air Carbonyl Sulfide Measurements - SPRESSO Ice Core; Methane Isotopes from the WAIS Divide Ice Core; Surface Temperature Reconstruction from Borehole Temperature Measurement in WDC05A; WAIS ice core Methane Data, Carbon Dioxide Data", "datasets": [{"dataset_uid": "609493", "doi": "10.7265/N5319SV3", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Sowers, Todd A.; McConnell, Joseph; Brook, Edward J.; Mitchell, Logan E; Taylor, Kendrick C.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS ice core Methane Data, Carbon Dioxide Data", "url": "https://www.usap-dc.org/view/dataset/609493"}, {"dataset_uid": "609435", "doi": "10.7265/N5J67DW0", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Methane; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Sowers, Todd A.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Methane Isotopes from the WAIS Divide Ice Core", "url": "https://www.usap-dc.org/view/dataset/609435"}, {"dataset_uid": "609638", "doi": "10.7265/N56971HF", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Temperature; WAIS Divide; WAIS Divide Ice Core", "people": "Orsi, Anais J.; Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Surface Temperature Reconstruction from Borehole Temperature Measurement in WDC05A", "url": "https://www.usap-dc.org/view/dataset/609638"}, {"dataset_uid": "609412", "doi": "10.7265/N5251G40", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice; WAIS Divide; WAIS Divide Ice Core", "people": "Saltzman, Eric", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Gases in Firn Air and Shallow Ice at the WAIS Drilling Site, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609412"}, {"dataset_uid": "601357", "doi": "10.15784/601357", "keywords": "Antarctica; Atmospheric Gases; Gas Measurement; Ice Core; Ice Core Gas Records; Trace Gases", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Air Carbonyl Sulfide Measurements - SPRESSO Ice Core", "url": "https://www.usap-dc.org/view/dataset/601357"}], "date_created": "Tue, 03 Feb 2009 00:00:00 GMT", "description": "This award supports a project to measure the elemental and isotopic composition of firn air and occluded air in shallow boreholes and ice cores from the WAIS Divide site, the location of a deep ice-coring program planned for 2006-07 and subsequent seasons. The three primary objectives are: 1) to establish the nature of firn air movement and trapping at the site to aid interpretations of gas data from the deep core; 2) to expand the suite of atmospheric trace gas species that can be measured in ice and replicate existing records of other species; and 3) to inter-calibrate all collaborating labs to insure that compositional and isotopic data sets are inter-comparable. The program will be initiated with a shallow drilling program during the 05/06 field season which will recover two 300+m cores and firn air samples. The ice core and firn air will provide more than 700 years of atmospheric history that will be used to address a number of important questions related to atmospheric change over this time period. The research team consists of six US laboratories that also plan to participate in the deep core program. This collaborative research program has a number of advantages. First, the scientists will be able to coordinate sample allocation a priori to maximize the resolution and overlap of records of interrelated species. Second, sample registration will be exact, allowing direct comparison of all records. Third, a coherent data set will be produced at the same time and all PI.s will participate in interpreting and publishing the results. This will insure that the best possible understanding of gas records at the WAIS Divide site will be achieved, and that all work necessary to interpret the deep core is conducted in a timely fashion. The collaborative structure created by the proposal will encourage sharing of techniques, equipment, and ideas between the laboratories. The research will identify impacts of various industrial/agricultural activities and help to distinguish them from natural variations, and will include species for which there are no long records of anthropogenic impact. The work will also help to predict future atmospheric loadings. The project will contribute to training scientists at several levels, including seven undergraduates, two graduate students and one post doctoral fellow.", "east": -112.085, "geometry": "POINT(-112.085 -79.467)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GC-MS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e SPECTROMETERS \u003e SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e FLASKS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS", "is_usap_dc": true, "keywords": "Ice Core Chemistry; WAIS Divide; Firn; LABORATORY; Ice Core; Firn Air Isotope Measurements; Shallow Firn Air; FIELD INVESTIGATION; Ice Core Gas Records; GROUND-BASED OBSERVATIONS; Firn Isotopes; Wais Divide-project; Gas Data; Polar Firn Air; Not provided; Trace Gas Species; Trapped Gases; West Antarctic Ice Sheet; Deep Core; Ice Sheet; Gas; Firn Air Isotopes; FIELD SURVEYS; Air Samples; Atmospheric Gases; Isotope; Cores; Atmosphere; Ice Core Data; Surface Temperatures; Firn Air; Borehole; Antarctica", "locations": "West Antarctic Ice Sheet; Antarctica; WAIS Divide", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Battle, Mark; Mischler, John; Saltzman, Eric; Aydin, Murat; White, James; Brook, Edward J.; Orsi, Anais J.; Severinghaus, Jeffrey P.; Sowers, Todd A.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site", "uid": "p0000368", "west": -112.085}, {"awards": "0636629 Kurz, Mark", "bounds_geometry": "POLYGON((160.7 -77.8,161.06 -77.8,161.42 -77.8,161.78 -77.8,162.14 -77.8,162.5 -77.8,162.86 -77.8,163.22 -77.8,163.58 -77.8,163.94 -77.8,164.3 -77.8,164.3 -77.86,164.3 -77.92,164.3 -77.98,164.3 -78.04,164.3 -78.1,164.3 -78.16,164.3 -78.22,164.3 -78.28,164.3 -78.34,164.3 -78.4,163.94 -78.4,163.58 -78.4,163.22 -78.4,162.86 -78.4,162.5 -78.4,162.14 -78.4,161.78 -78.4,161.42 -78.4,161.06 -78.4,160.7 -78.4,160.7 -78.34,160.7 -78.28,160.7 -78.22,160.7 -78.16,160.7 -78.1,160.7 -78.04,160.7 -77.98,160.7 -77.92,160.7 -77.86,160.7 -77.8))", "dataset_titles": "Periglacial Landscape Evolution in Antarctic Lava Flows and Glacial Tills", "datasets": [{"dataset_uid": "600066", "doi": "10.15784/600066", "keywords": "Antarctica; Cosmogenic Radionuclides; Dry Valleys; Geology/Geophysics - Other; Glaciology; LIDAR; Navigation; Sample/collection Description; Sample/Collection Description", "people": "Soule, S. Adam; Kurz, Mark D.", "repository": "USAP-DC", "science_program": null, "title": "Periglacial Landscape Evolution in Antarctic Lava Flows and Glacial Tills", "url": "https://www.usap-dc.org/view/dataset/600066"}], "date_created": "Sun, 01 Feb 2009 00:00:00 GMT", "description": "This project uses cosmogenic nuclide dating and LIDAR studies of surface roughness to understand weathering and landscape evolution in the Dry Valleys of Antarctica. The work focuses on two processes: cryoturbation of frozen soils and the development of patterned, frozen ground on ancient lava flows. The approach includes innovative uses of He3 profiling. Results will also be applied to understanding the glacial history of the Dry Valleys. There are potential applications to understanding the history of the East Antarctic Ice Sheet and the formation of Martian landscapes. The broader impacts include graduate student education. As well, the work may contribute to our understanding of the history of the Antarctic ice sheets, which is important to modeling their behavior during global climate change.", "east": 164.3, "geometry": "POINT(162.5 -78.1)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION", "locations": null, "north": -77.8, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Soule, Samuel; Kurz, Mark D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.4, "title": "Periglacial Landscape Evolution in Antarctic Lava Flows and Glacial Tills", "uid": "p0000559", "west": 160.7}, {"awards": "0125098 Emslie, Steven", "bounds_geometry": "POLYGON((-50 -60,-29 -60,-8 -60,13 -60,34 -60,55 -60,76 -60,97 -60,118 -60,139 -60,160 -60,160 -63,160 -66,160 -69,160 -72,160 -75,160 -78,160 -81,160 -84,160 -87,160 -90,139 -90,118 -90,97 -90,76 -90,55 -90,34 -90,13 -90,-8 -90,-29 -90,-50 -90,-50 -87,-50 -84,-50 -81,-50 -78,-50 -75,-50 -72,-50 -69,-50 -66,-50 -63,-50 -60))", "dataset_titles": "Occupation History and Diet of Adelie Penguins in the Ross Sea Region", "datasets": [{"dataset_uid": "600028", "doi": "10.15784/600028", "keywords": "Antarctica; Biota; Geochronology; Oceans; Paleoclimate; Penguin; Radiocarbon; Ross Sea; Southern Ocean", "people": "Emslie, Steven D.", "repository": "USAP-DC", "science_program": null, "title": "Occupation History and Diet of Adelie Penguins in the Ross Sea Region", "url": "https://www.usap-dc.org/view/dataset/600028"}], "date_created": "Sun, 01 Feb 2009 00:00:00 GMT", "description": "#0125098\u003cbr/\u003eSteve Emslie\u003cbr/\u003e\u003cbr/\u003eOccupation History and Diet of Adelie Penguins in the Ross Sea Region\u003cbr/\u003e\u003cbr/\u003eThis project will build on previous studies to investigate the occupation history and diet of Adelie penguins (Pygoscelis adeliae) in the Ross Sea region, Antarctica, with excavations of abandoned and active penguin colonies. Numerous active and abandoned colonies exist on the Victoria Land coast, from Cape Adare to Marble Point will be sampled. Some of these sites have been radiocarbon-dated and indicate a long occupation history for Adelie penguins extending to 13,000 years before present (B. P.). The material recovered from excavations, as demonstrated from previous investigations, will include penguin bones, tissue, and eggshell fragments as well as abundant remains of prey (fish bones, otoliths, squid beaks) preserved in ornithogenic (formed from bird guano) soils. These organic remains will be quantified and subjected to radiocarbon analyses to obtain a colonization history of penguins in this region. Identification of prey remains in the sediments will allow assessment of penguin diet. Other data (ancient DNA) from these sites will be analyzed through collaboration with New Zealand scientists. Past climatic conditions will be interpreted from published ice-core and marine-sediment records. These data will be used to test the hypothesis that Adelie penguins respond to climate change, past and present, in a predictable manner. In addition, the hypothesis that Adelie penguins alter their diet in accordance with climate, sea-ice conditions, and other marine environmental variables along a latitudinal gradient will be tested. Graduate and undergraduate students will be involved in this project and a project Web site will be developed to report results and maintain educational interaction between the PI and students at local middle and high schools in Wilmington, NC.", "east": 160.0, "geometry": "POINT(55 -75)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": null, "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Occupation History and Diet of Adelie Penguins in the Ross Sea Region", "uid": "p0000220", "west": -50.0}, {"awards": "0230276 Ward, Bess", "bounds_geometry": "POLYGON((162 -77.2,162.16 -77.2,162.32 -77.2,162.48 -77.2,162.64 -77.2,162.8 -77.2,162.96 -77.2,163.12 -77.2,163.28 -77.2,163.44 -77.2,163.6 -77.2,163.6 -77.26,163.6 -77.32,163.6 -77.38,163.6 -77.44,163.6 -77.5,163.6 -77.56,163.6 -77.62,163.6 -77.68,163.6 -77.74,163.6 -77.8,163.44 -77.8,163.28 -77.8,163.12 -77.8,162.96 -77.8,162.8 -77.8,162.64 -77.8,162.48 -77.8,162.32 -77.8,162.16 -77.8,162 -77.8,162 -77.74,162 -77.68,162 -77.62,162 -77.56,162 -77.5,162 -77.44,162 -77.38,162 -77.32,162 -77.26,162 -77.2))", "dataset_titles": "What Limits Denitrification and Bacterial Growth in Lake Bonney, Taylor Valley, Antarctica?", "datasets": [{"dataset_uid": "600033", "doi": "10.15784/600033", "keywords": "Antarctica; Biota; CTD Data; Dry Valleys; Lake Bonney; Lake Vanda; Microbiology; Taylor Valley", "people": "Ward, Bess", "repository": "USAP-DC", "science_program": null, "title": "What Limits Denitrification and Bacterial Growth in Lake Bonney, Taylor Valley, Antarctica?", "url": "https://www.usap-dc.org/view/dataset/600033"}], "date_created": "Sun, 18 Jan 2009 00:00:00 GMT", "description": "Denitrification is the main process by which fixed nitrogen is lost from ecosystems and the regulation of this process may directly affect primary production and carbon cycling over short and long time scales. Previous investigations of the role of bioactive metals in regulating denitrification in bacteria from permanently ice-covered Lake Bonney in the Taylor Valley of East Antarctica indicated that denitrifying bacteria can be negatively affected by metals such as copper, iron, cadmium, lead, chromium, nickel, silver and zinc; and that there is a distinct difference in denitrifying activity between the east and west lobes of the lake. Low iron concentrations were found to exacerbate the potential toxicity of the other metals, while silver has the potential to specifically inhibit denitrification because of its ability to interfere with copper binding in redox proteins, such as nitrite reductase and nitrous oxide reductase. High silver concentrations might prevent the functioning of nitrous oxide reductase in the same way that simple copper limitation does, thereby causing the buildup of nitrous oxide and resulting in a nonfunctional nitrogen cycle. Other factors, such as oxygen concentration, are likely also to affect bacterial activity in Lake Bonney. This project will investigate silver toxicity, general metal toxicity and oxygen concentration to determine their effect on denitrification in the lake by using a suite of \"sentinel\" strains of denitrifying bacteria (isolated from the lake) incubated in Lake Bonney water and subjected to various treatments. The physiological responses of these strains to changes in metal and oxygen concentration will be quantified by flow cytometric detection of single cell molecular probes whose sensitivity and interpretation have been optimized for the sentinel strains. Understanding the relationships between metals and denitrification is expected to enhance our understanding of not only Lake Bonney\u0027s unusual nitrogen cycle, but more generally, of the potential role of metals in the regulation of microbial nitrogen transformations.\u003cbr/\u003e\u003cbr/\u003eThe broader impacts of this work include not only a better understanding of regional biogeochemistry and global perspectives on these processes; but also the training of graduate students and a substantial outreach effort for school children.", "east": 163.6, "geometry": "POINT(162.8 -77.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD", "is_usap_dc": true, "keywords": "FIELD SURVEYS", "locations": null, "north": -77.2, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ward, Bess", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.8, "title": "Collaborative Research: What Limits Denitrification and Bacterial Growth in Lake Bonney, Taylor Valley, Antarctica?", "uid": "p0000223", "west": 162.0}, {"awards": "0440304 Jacobel, Robert", "bounds_geometry": null, "dataset_titles": "U.S. International Trans Antarctic Scientific Expedition web pages", "datasets": [{"dataset_uid": "000108", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "U.S. International Trans Antarctic Scientific Expedition web pages", "url": "http://www2.umaine.edu/USITASE/index.html"}], "date_created": "Tue, 13 Jan 2009 00:00:00 GMT", "description": "This award supports a project to perform ice radar studies of bedrock topography and internal layers along the second US ITASE traverse corridor extending from Taylor Dome to South Pole on the inland side of the Transantarctic Mountains. The radar will provide information immediately available in the field on ice thickness and internal layer structure to help in the selection of core sites as the traverse proceeds. These data will also be useful in locating additional radar and surface studies to characterize the drainage divides between major outlet glaciers flowing through the mountains and possible changes in them through time. Information from the radar on bed roughness and basal reflectivity, together with images of internal layer deformation will enable us to study changes in the character of ice flow as tributaries merge to trunk flow and velocities increase. Areas where wind scour and sublimation have brought old ice close to the surface will be investigated. Based on our results from the first ITASE traverse, it is also likely that there will be findings of opportunity, phenomena we have not anticipated that are revealed by the radar as the result of a discovery-based traverse. The interdisciplinary science goals of US ITASE are designed to accommodate a variety of interactive research programs and data collected are available to a broad scientific community. US ITASE also supports an extensive program of public outreach and the education and training of future scientists will be central to all activities of this proposal. St. Olaf College is an undergraduate liberal arts institution that emphasizes student participation in scientific research. This award supports two undergraduate students as well as a research associate and a graduate student who will be part of the US ITASE field team.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": false, "keywords": "US ITASE; Stratigraphy; Radar; Antarctica; FIELD SURVEYS; Us Itase Ii; Bed Topography; Not provided; Internal Layers; FIELD INVESTIGATION; Taylor Dome; Transantarctic Mountains; West Antarctica; Traverse", "locations": "Antarctica; West Antarctica; Transantarctic Mountains; Taylor Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Jacobel, Robert", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repo": "Project website", "repositories": "Project website", "science_programs": null, "south": null, "title": "Radar Studies of Internal Stratigraphy and Bed Topography along the US ITASE-II Traverse", "uid": "p0000116", "west": null}, {"awards": "0126057 Brook, Edward J.; 0512971 Brook, Edward J.", "bounds_geometry": null, "dataset_titles": "Antarctic and Greenland Climate Change Comparison; GISP2 (B and D Core) Methane Concentrations; GISP2 (D Core) Helium Isotopes from Interplanetary Dust; GISP2 (D Core) Methane Concentration Data; Siple Dome Methane Record", "datasets": [{"dataset_uid": "609125", "doi": "", "keywords": "Arctic; Chemistry:fluid; Chemistry:Fluid; Chemistry:ice; Chemistry:Ice; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenland; Ice Core Records; Methane; Paleoclimate", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "GISP2 (B and D Core) Methane Concentrations", "url": "https://www.usap-dc.org/view/dataset/609125"}, {"dataset_uid": "609361", "doi": "", "keywords": "Antarctica; Arctic; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Lake Vostok; Paleoclimate; Vostok Ice Core", "people": "Brook, Edward J.; Kurz, Mark D.", "repository": "USAP-DC", "science_program": null, "title": "GISP2 (D Core) Helium Isotopes from Interplanetary Dust", "url": "https://www.usap-dc.org/view/dataset/609361"}, {"dataset_uid": "609253", "doi": "", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Vostok Ice Core", "people": "Brook, Edward J.; Stauffer, Bernhard; Blunier, Thomas; Chappellaz, Jerome", "repository": "USAP-DC", "science_program": null, "title": "Antarctic and Greenland Climate Change Comparison", "url": "https://www.usap-dc.org/view/dataset/609253"}, {"dataset_uid": "609124", "doi": "10.7265/N5KH0K8R", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Siple Dome Methane Record", "url": "https://www.usap-dc.org/view/dataset/609124"}, {"dataset_uid": "609360", "doi": "", "keywords": "Antarctica; Arctic; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Methane; Paleoclimate; Taylor Dome", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "GISP2 (D Core) Methane Concentration Data", "url": "https://www.usap-dc.org/view/dataset/609360"}], "date_created": "Tue, 16 Dec 2008 00:00:00 GMT", "description": "This award supports work on trapped gases in Antarctic and other ice cores for paleoenvironmental and chronological purposes. The project will complete a ~ 100,000 year, high-resolution record of atmospheric methane from the Siple Dome ice core and use these data to construct a precise chronology for climate events recorded by the Siple Dome record. In addition, the resolution of the GISP2 (Greenland) ice core record will be increased in some critical intervals to help with the Siple Dome chronology and that of future ice cores. Finally, an upgrade to the analytical capabilities of the laboratory, including increasing precision and throughput and decreasing sample size needed for ice core methane measurements will be an important goal of this work. The proposed work will contribute to the understanding of the timing of rapid climate change in the Northern and Southern hemispheres during the last glacial period, the evolution of the global methane budget in the late Quaternary, and the late Quaternary climate history of Antarctica. It will also improve our ability to generate methane records for future ice coring projects, and inform and enrich the educational and outreach activities of our laboratory.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Isotope; Siple Coast; WAISCORES; GROUND-BASED OBSERVATIONS; Interplanetary Dust; FIELD SURVEYS; Not provided; Ice Sheet; Snow; GROUND STATIONS; Gas Measurement; Ice Core; Siple; Antarctica; Methane; Glaciology; Stratigraphy; Siple Dome", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Glaciology; Antarctic Organisms and Ecosystems; Antarctic Glaciology", "paleo_time": null, "persons": "Blunier, Thomas; Chappellaz, Jerome; Stauffer, Bernhard; Kurz, Mark D.; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change", "uid": "p0000034", "west": null}, {"awards": "0228052 Kreutz, Karl", "bounds_geometry": "POLYGON((161.0434 -77.3002,161.241645 -77.3002,161.43989 -77.3002,161.638135 -77.3002,161.83638 -77.3002,162.034625 -77.3002,162.23287 -77.3002,162.431115 -77.3002,162.62936 -77.3002,162.827605 -77.3002,163.02585 -77.3002,163.02585 -77.3784846,163.02585 -77.4567692,163.02585 -77.5350538,163.02585 -77.6133384,163.02585 -77.691623,163.02585 -77.7699076,163.02585 -77.8481922,163.02585 -77.9264768,163.02585 -78.0047614,163.02585 -78.083046,162.827605 -78.083046,162.62936 -78.083046,162.431115 -78.083046,162.23287 -78.083046,162.034625 -78.083046,161.83638 -78.083046,161.638135 -78.083046,161.43989 -78.083046,161.241645 -78.083046,161.0434 -78.083046,161.0434 -78.0047614,161.0434 -77.9264768,161.0434 -77.8481922,161.0434 -77.7699076,161.0434 -77.691623,161.0434 -77.6133384,161.0434 -77.5350538,161.0434 -77.4567692,161.0434 -77.3784846,161.0434 -77.3002))", "dataset_titles": "Late Holocene Climate Variability, Dry Valleys, Antarctica", "datasets": [{"dataset_uid": "609399", "doi": "10.7265/N5FF3Q92", "keywords": "Antarctica; Borehole Temperature; Chemistry:ice; Chemistry:Ice; Dry Valleys; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Mass Balance; Paleoclimate; Physical Properties", "people": "Mayewski, Paul A.; Kreutz, Karl", "repository": "USAP-DC", "science_program": null, "title": "Late Holocene Climate Variability, Dry Valleys, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609399"}], "date_created": "Tue, 21 Oct 2008 00:00:00 GMT", "description": "This award supports a project to collect and develop high-resolution ice core records from the Dry Valleys region of Antarctica, and provide interpretations of interannual to decadal-scale climate variability during the last 2000 years (late Holocene). The project will test hypotheses related to ocean/atmosphere teleconnections (e.g., El Nino Southern Oscillation, Antarctic Oscillation) that may be responsible for major late Holocene climate events such as the Little Ice Age in the Southern Hemisphere. Conceptual and quantitative models of these processes in the Dry Valleys during the late Holocene are critical for understanding recent climate changes, and represent the main scientific merit of the project. We plan to collect intermediate-length ice cores (100-200m) at four sites along transects in Taylor Valley and Wright Valley, and analyze each core at high resolution for stable isotopes (d18O, dD), major ions (Na+, Mg2+, Ca2+, K+, NH4+, Cl-, NO3-, SO42-, MSA), and trace elements (Al, Fe, S, Sr, B). A suite of statistical techniques will be applied to the multivariate glaciochemical dataset to identify chemical associations and to calibrate the time-series records with available instrumental data. Broader impacts of the project include: 1) contributions to several ongoing interdisciplinary Antarctic research programs; 2) graduate and undergraduate student involvement in field, laboratory, and data interpretation activities; 3) use of project data and ideas in several UMaine courses and outreach activities; and 4) data dissemination through peer-reviewed publications, UMaine and other paleoclimate data archive websites, and presentations at national and international meetings.", "east": 163.02585, "geometry": "POINT(162.034625 -77.691623)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MC-ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HUMIDITY SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS", "is_usap_dc": true, "keywords": "Holocene; Climate Research; AWS Climate Data; Paleoclimate; Climate Variation; Dry Valleys; Wright Valley; Little Ice Age; Stable Isotopes; Glaciochemical; Ice Core; FIELD INVESTIGATION; Enso; Antarctic Oscillation; Climate; GPS; El Nino-Southern Oscillation; LABORATORY; Not provided; Climate Change; Ice Core Records; Antarctica; Taylor Valley; FIELD SURVEYS; Variability", "locations": "Antarctica; Dry Valleys; Taylor Valley; Wright Valley", "north": -77.3002, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Kreutz, Karl; Arcone, Steven; Mayewski, Paul A.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.083046, "title": "Dry Valleys Late Holocene Climate Variability", "uid": "p0000155", "west": 161.0434}, {"awards": "0440670 Hulbe, Christina; 0440636 Fahnestock, Mark", "bounds_geometry": "POLYGON((-180 -70,-175 -70,-170 -70,-165 -70,-160 -70,-155 -70,-150 -70,-145 -70,-140 -70,-135 -70,-130 -70,-130 -71.6,-130 -73.2,-130 -74.8,-130 -76.4,-130 -78,-130 -79.6,-130 -81.2,-130 -82.8,-130 -84.4,-130 -86,-135 -86,-140 -86,-145 -86,-150 -86,-155 -86,-160 -86,-165 -86,-170 -86,-175 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -84.4,180 -82.8,180 -81.2,180 -79.6,180 -78,180 -76.4,180 -74.8,180 -73.2,180 -71.6,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,-180 -70))", "dataset_titles": "MOA-derived Structural Feature Map of the Ronne Ice Shelf; MOA-derived Structural Feature Map of the Ross Ice Shelf; Using Fracture Patterns and Ice Thickness to Study the History and Dynamics of Grounding Line Migration and Shutdown of Kamb and Whillans Ice Streams", "datasets": [{"dataset_uid": "609497", "doi": "10.7265/N5PR7SXR", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; MOA; MODIS; Ronne Ice Shelf", "people": "Ledoux, Christine; Hulbe, Christina", "repository": "USAP-DC", "science_program": null, "title": "MOA-derived Structural Feature Map of the Ronne Ice Shelf", "url": "https://www.usap-dc.org/view/dataset/609497"}, {"dataset_uid": "601432", "doi": "10.15784/601432", "keywords": "Antarctica", "people": "Ledoux, Christine; Hulbe, Christina; Forbes, Martin", "repository": "USAP-DC", "science_program": null, "title": "MOA-derived Structural Feature Map of the Ross Ice Shelf", "url": "https://www.usap-dc.org/view/dataset/601432"}, {"dataset_uid": "600024", "doi": "", "keywords": null, "people": "Fahnestock, Mark", "repository": "USAP-DC", "science_program": null, "title": "Using Fracture Patterns and Ice Thickness to Study the History and Dynamics of Grounding Line Migration and Shutdown of Kamb and Whillans Ice Streams", "url": "https://www.usap-dc.org/view/dataset/600024"}], "date_created": "Thu, 25 Sep 2008 00:00:00 GMT", "description": "This award supports a three year project to develop the tools required to interpret complex patterns of flow features on the Ross Ice Shelf, which record the discharge history the ice streams flowing east off of the West Antarctic Ice Sheet. This work builds on previous research that used flow features visible in satellite image mosaics and numerical models of ice shelf flow to detect changes in grounding zone dynamics and redirection of ice stream outlets over hundreds of years. Recently observed changes on Whillans Ice Stream fit within this framework. The pattern of redirection is driven by the influence of rapid downstream thinning on the basal thermal gradient in the ice and associated \"sticky spot\" (ice rise) formation. In pursuing this work, the investigators recognized other records of discharge variation on the shelf that can be used to build a more complete history and understanding of ice-stream discharge variability. The intellectual merit of the proposed work lies in the fact that these records, including fracture patterns and spatial variation in ice thickness, when understood in the proper context, will yield quantitative information about the timing and dynamics of ice stream slowdowns, grounding line retreat, and the relative history of discharge between the ice streams. New tools will help further constrain this history. The laser altimeter on NASA\u0027s IceSAT has improved our knowledge of the surface elevation of Antarctic ice. IceSAT surface elevations provide a high-resolution map of ice-shelf thickness that, along with provenance maps from ice-shelf image mosaics, will be used to estimate the volumes of ice involved in past ice-stream discharge events (slowdowns, redirections, and so on). This project will develop new numerical models for fracture propagation; these will allow past variations in ice-shelf stress state to be investigated. Together, the dynamic and volume-flux histories will provide a powerful set of observations for understanding past variations in ice stream discharge and the underlying physical processes. The broader impacts of this project center on how it contributes to the ability to estimate West Antarctic contributions to global sea level rise and to answer outstanding questions about the causes of millennial and longer-scale evolution of ice streams. This work will provide a history of the most complex record of ice discharge known. In addition to the incorporation of this research into graduate student advising and normal teaching duties, the investigators are involved in other avenues of civic engagement and education. Outreach to high school students and the community at large is promoted on an annual basis by the investigators at both institutions. New outreach projects at Portland State University are developed with the assistance of researchers with expertise in student learning and achievement in science and mathematics. The collaborative research team includes two glaciologists with experience in the pairing of high resolution satellite imagery and a variety of ice-flow models and a geologist whose focus is the mechanics of rock deformation.", "east": -130.0, "geometry": "POINT(-155 -78)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e MODIS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e MODIS", "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; Fracture Patterns; Ross Ice Shelf; West Antarctic Ice Sheet; Not provided; Antarctica; TERRA; Ice Sheet; Ice Rise; LABORATORY; Ice-Stream Discharge; West Antarctica; Fracture Propagation; SATELLITES; Ice Stream Motion; Grounding Line; Ice Movement; Ice Stream; Whillans Ice Stream; Ice Stream Outlets; Basal Temperature Gradient; Numerical Model; Ice Thickness; Flow Features; Kamb Ice Stream; Antarctic Ice Sheet; Satellite Image Mosaics; Icesat; Grounding Line Migration; ICESAT", "locations": "Kamb Ice Stream; Whillans Ice Stream; Antarctica; Ross Ice Shelf; West Antarctic Ice Sheet; Antarctic Ice Sheet; West Antarctica", "north": -70.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Hulbe, Christina; Ledoux, Christine; Fahnestock, Mark", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e ICE, CLOUD AND LAND ELEVATION SATELLITE (ICESAT) \u003e ICESAT; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e TERRA", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -86.0, "title": "Collaborative Research: Using Fracture Patterns and Ice Thickness to Study the History and Dynamics of Grounding Line Migration and Shutdown of Kamb and Whillans Ice Streams", "uid": "p0000096", "west": 180.0}, {"awards": "0229546 MacAyeal, Douglas", "bounds_geometry": "POINT(-178 -78)", "dataset_titles": "collection of nascent rift images and description of station deployment; Continuous GPS (static) Data from the Ross Ice Shelf, Antarctica; Giant Icebergs of the Ross Sea, in situ Drift and Weather Measurements, Antarctica; Iceberg Firn Temperatures, Antarctica; Iceberg Harmonic Tremor, Seismometer Data, Antarctica; Iceberg Satellite imagery from stations and ice shelves (full data link not provided); Iceberg Tiltmeter Measurements, Antarctica; Ice Shelf Rift Time-Lapse Photography, Antarctica; Incorporated Research Institutions for Seismology; Nascent Iceberg Webcam Images available during the deployment period; Ross Ice Shelf Firn Temperature, Antarctica; The files contain a short header (number of data samples, sample rate, start time, stop time, channel title)The time series data then follow the header above.; This site mirrors the NSIDC website archive.", "datasets": [{"dataset_uid": "609352", "doi": "10.7265/N5M61H55", "keywords": "Glaciology; Iceberg; Oceans; Ross Ice Shelf; Sea Ice; Snow/ice; Snow/Ice; Southern Ocean; Temperature", "people": "MacAyeal, Douglas; Sergienko, Olga; Thom, Jonathan", "repository": "USAP-DC", "science_program": null, "title": "Iceberg Firn Temperatures, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609352"}, {"dataset_uid": "609350", "doi": "10.7265/N5VM496K", "keywords": "AWS; Glaciology; GPS; Iceberg; Meteorology; Oceans; Ross Sea; Sea Ice; Southern Ocean; Weatherstation", "people": "Bassis, Jeremy; Aster, Richard; Okal, Emile; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Giant Icebergs of the Ross Sea, in situ Drift and Weather Measurements, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609350"}, {"dataset_uid": "609351", "doi": "10.7265/N5QV3JGV", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Photo/video; Photo/Video; Ross Ice Shelf", "people": "Brunt, Kelly; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Ice Shelf Rift Time-Lapse Photography, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609351"}, {"dataset_uid": "609347", "doi": "10.7265/N57W694M", "keywords": "Antarctica; Geodesy; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ross Ice Shelf; Southern Ocean", "people": "Brunt, Kelly; MacAyeal, Douglas; King, Matthew", "repository": "USAP-DC", "science_program": null, "title": "Continuous GPS (static) Data from the Ross Ice Shelf, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609347"}, {"dataset_uid": "001684", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "This site mirrors the NSIDC website archive.", "url": "http://uwamrc.ssec.wisc.edu/"}, {"dataset_uid": "609353", "doi": "10.7265/N5GF0RFF", "keywords": "Glaciology; Iceberg; Oceans; Ross Ice Shelf; Sea Ice; Southern Ocean; Tiltmeter", "people": "Kim, Young-Jin; MacAyeal, Douglas; Bliss, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Iceberg Tiltmeter Measurements, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609353"}, {"dataset_uid": "609354", "doi": "10.7265/N5BP00Q3", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ross Ice Shelf; Snow/ice; Snow/Ice; Temperature", "people": "Scambos, Ted; Sergienko, Olga; Muto, Atsu; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Ross Ice Shelf Firn Temperature, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609354"}, {"dataset_uid": "002568", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Iceberg Satellite imagery from stations and ice shelves (full data link not provided)", "url": "http://amrc.ssec.wisc.edu/"}, {"dataset_uid": "001598", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "The files contain a short header (number of data samples, sample rate, start time, stop time, channel title)The time series data then follow the header above.", "url": "http://nsidc.org"}, {"dataset_uid": "002504", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Nascent Iceberg Webcam Images available during the deployment period", "url": "https://amrc.ssec.wisc.edu/data/iceberg.html"}, {"dataset_uid": "001639", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "collection of nascent rift images and description of station deployment", "url": "http://thistle.org/nascent/index.shtml"}, {"dataset_uid": "609349", "doi": "10.7265/N5445JD6", "keywords": "Geology/Geophysics - Other; Glaciology; Iceberg; Oceans; Ross Sea; Sea Ice; Seismometer; Southern Ocean", "people": "Bassis, Jeremy; Aster, Richard; Okal, Emile; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Iceberg Harmonic Tremor, Seismometer Data, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609349"}, {"dataset_uid": "001685", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Incorporated Research Institutions for Seismology", "url": "http://www.iris.edu/data/sources.htm"}], "date_created": "Fri, 19 Sep 2008 00:00:00 GMT", "description": "This award supports the study of the drift and break-up of Earth\u0027s largest icebergs, which were recently released into the Ross Sea of Antarctica as a result of calving from the Ross Ice Shelf. The scientific goals of the study are to determine the physics of iceberg motion within the dynamic context of ocean currents, winds, and sea ice, which determine the forces that drive iceberg motion, and the relationship between the iceberg and geographically and topographically determined pinning points on which the iceberg can ground. In addition, the processes by which icebergs influence the local environments (e.g., sea ice conditions near Antarctica, access to penguin rookeries, air-sea heat exchange and upwelling at iceberg margins, nutrient fluxes) will be studied. The processes by which icebergs generate globally far-reaching ocean acoustic signals that are detected within the global seismic (earthquake) sensing networks will also be studied. A featured element of the scientific research activity will be a field effort to deploy automatic weather stations, seismometer arrays and GPS-tracking stations on several of the largest icebergs presently adrift, or about to be adrift, in the Ross Sea. Data generated and relayed via satellite to home institutions in the Midwest will motivate theoretical analysis and computer simulation; and will be archived on an \"iceberg\" website (http://amrc.ssec.wisc.edu/amrc/iceberg.html) for access by scientists and the general public. At the most broad level, the study is justified by the fact that icebergs released by the Antarctic ice sheet represent the largest movements of fresh water within the natural environment (e.g., several of the icebergs to be studied, B15, C19 and others calved since 2000 CE, represent over 6000 cubic kilometers of fresh water-an amount roughly equivalent to 100 years of the flow of the Nile River). A better understanding of the impact of iceberg drift through the environment, and particularly the impact on ocean stratification and mixing, is essential to the understanding of the abrupt global climate changes witnessed by proxy during the ice age and of concern under conditions of future greenhouse warming. On a more specific level, the study will generate a knowledge base useful for the better management of Antarctic logistical resources (e.g., the shipping lanes to McMurdo Station) that can occasionally be influenced by adverse effects icebergs have on sea ice conditions.", "east": -178.0, "geometry": "POINT(-178 -78)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HUMIDITY SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e MMS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e TEMPERATURE LOGGERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e TEMPERATURE PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS", "is_usap_dc": true, "keywords": "SEISMOLOGICAL STATIONS; Pressure; AWS; Velocity Measurements; Firn Temperature Measurements; Ice Velocity; Seismology; Ice Sheet Elevation; Harmonic Tremor; Ice Shelf Temperature; Wind Speed; Iceberg; Ice Surface Elevation; Non-Volcanic Tremor; Not provided; Antarctic; Iceberg Tremor; Solar Radiation; Antarctic Ice Sheet; Ross Ice Shelf; Elevation; GPS; Temperature Profiles; Ice Shelf Rift Camera; GROUND STATIONS; Latitude; GROUND-BASED OBSERVATIONS; Ice Shelf Weather; FIELD INVESTIGATION; ARWS; Surface Elevation; Ice Shelf Flow; Antarctica; FIELD SURVEYS; Camera; Seismometer; Iceberg Weather (aws); Ice Movement; Photo; Wind Direction; Iceberg Snow Accumulation; Tremor And Slow Slip Events; AWS Climate Data; Location; Iceberg Drift; Iceberg Collisions; Iceberg Tilt; Atmospheric Pressure; Iceberg Seismicity; Firn Temperature", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; Ross Ice Shelf", "north": -78.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Okal, Emile; Aster, Richard; Bassis, Jeremy; Kim, Young-Jin; Bliss, Andrew; Sergienko, Olga; Thom, Jonathan; Scambos, Ted; Muto, Atsu; Brunt, Kelly; King, Matthew; Parker, Tim; Okal, Marianne; Cathles, Mac; MacAyeal, Douglas", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e ARWS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS; Not provided; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "AMRDC; IRIS; NSIDC; Project website; USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research of Earth\u0027s Largest Icebergs", "uid": "p0000117", "west": -178.0}, {"awards": "0338295 Tulaczyk, Slawek", "bounds_geometry": "POLYGON((-139 -82,-138.2 -82,-137.4 -82,-136.6 -82,-135.8 -82,-135 -82,-134.2 -82,-133.4 -82,-132.6 -82,-131.8 -82,-131 -82,-131 -82.08,-131 -82.16,-131 -82.24,-131 -82.32,-131 -82.4,-131 -82.48,-131 -82.56,-131 -82.64,-131 -82.72,-131 -82.8,-131.8 -82.8,-132.6 -82.8,-133.4 -82.8,-134.2 -82.8,-135 -82.8,-135.8 -82.8,-136.6 -82.8,-137.4 -82.8,-138.2 -82.8,-139 -82.8,-139 -82.72,-139 -82.64,-139 -82.56,-139 -82.48,-139 -82.4,-139 -82.32,-139 -82.24,-139 -82.16,-139 -82.08,-139 -82))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 04 Aug 2008 00:00:00 GMT", "description": "This award supports a project to test whether Kamb Ice Stream (formerly Ice Stream C (ISC)), an ice stream\u003cbr/\u003ethat is thought to have stopped ~150 years ago, may be already in the process of restarting. If yes, it will help establish what is the rate of ice stream reactivation and what mechanisms are controlling this rate. If there is no evidence for ongoing ice stream reactivation, the physical controls that are preventing it will be examined and alternative scenarios for near-future evolution of this ice stream will be explored. One such scenario is an increase in ice diversion toward the neighboring Whillans Ice Stream. Such diversion may help prevent a complete stoppage of Whillans Ice Stream,which has been slowing down for at least the last 24 years. This project will consist of two components: (1) field observations of bed properties,geometry of internal radar reflectors, as well as surface strain rates and velocity/topography changes using Ice-Penetrating Radar and differential Global Positioning System, (2) numerical modeling study of near future(~100-1000 years) evolution of Kamb Ice Stream. The field component will be focused on the bulge-to-trunk transition, which is located at the present time just downstream of the so-called camp UpC. Reactivation of Kamb Ice Stream should be reflected in a downstream migration of the bulge-trunk transition at possibly high rates (bulge migration rates of ~km/yr occur on surging mountain glaciers). The modeling\u003cbr/\u003ecomponent will be used to generate predictions regarding the near-future behavior of Kamb Ice Stream. This project will provide training opportunities for at least two undergraduate students (per year) at St. Olaf College and for one\u003cbr/\u003eundergraduate student (per year) at UCSC. This collaboration will bring together scientists from three different types of US institutions: (1) a liberal arts college (St.Olaf College), (2) a public research university (UCSC) and (3) a NASA research laboratory (JPL). The project will also help build a new glaciological research program at UCSC. Project results will be incorporated into undergraduate and graduate courses at UCSC and will be made available\u003cbr/\u003eto the general public and educators through downloadable graphics and animations posted on the research website of the UCSC PI. Field data resulting from the project will be posted in the Antarctic Glaciological Data Center for use by other investigators.", "east": -131.0, "geometry": "POINT(-135 -82.4)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": false, "keywords": "Topography; GPS; Kamb Ice Stream; Ice Stream; FIELD SURVEYS; FIELD INVESTIGATION; Not provided; Ice Penetrating Radar; Ice Stream C; Velocity; Surface Strain Rates; Antarctic", "locations": "Antarctic; Kamb Ice Stream; Ice Stream C", "north": -82.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Tulaczyk, Slawek; Joughin, Ian", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repositories": null, "science_programs": null, "south": -82.8, "title": "Collaborative Research: Is Kamb Ice Stream Restarting? Glaciological Investigations of the Bulge-Trunk Transition on Kamb Ice Stream, West Antarctica", "uid": "p0000238", "west": -139.0}, {"awards": "0233823 Fountain, Andrew; 0230338 Hallet, Bernard", "bounds_geometry": "POLYGON((162.132 -77.73,162.1495 -77.73,162.167 -77.73,162.1845 -77.73,162.202 -77.73,162.2195 -77.73,162.237 -77.73,162.2545 -77.73,162.272 -77.73,162.2895 -77.73,162.307 -77.73,162.307 -77.7303,162.307 -77.7306,162.307 -77.7309,162.307 -77.7312,162.307 -77.7315,162.307 -77.7318,162.307 -77.7321,162.307 -77.7324,162.307 -77.7327,162.307 -77.733,162.2895 -77.733,162.272 -77.733,162.2545 -77.733,162.237 -77.733,162.2195 -77.733,162.202 -77.733,162.1845 -77.733,162.167 -77.733,162.1495 -77.733,162.132 -77.733,162.132 -77.7327,162.132 -77.7324,162.132 -77.7321,162.132 -77.7318,162.132 -77.7315,162.132 -77.7312,162.132 -77.7309,162.132 -77.7306,162.132 -77.7303,162.132 -77.73))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 02 Jul 2008 00:00:00 GMT", "description": "This award supports a comprehensive study of land-based polar ice cliffs. Through field measurements, modeling, and remote sensing, the physics underlying the formation of ice cliffs at the margin of Taylor Glacier in the McMurdo Dry Valleys will be investigated. At three sites, measurements of ice deformation and temperature fields near the cliff face will be combined with existing energy balance data to quantify ice-cliff evolution over one full seasonal cycle. In addition, a small seismic network will monitor local \"ice quakes\" associated with calving events. Numerical modeling, validated by the field data, will enable determination of the sensitivity of ice cliff evolution to environmental variables. There are both local and global motivations for studying the ice cliffs of Taylor Glacier. On a global scale, this work will provide insight into the fundamental processes of calving and glacier terminus A better grasp of ice cliff processes will also improve boundary conditions required for predicting glaciers\u0027 response to climate change. Locally, the Taylor Glacier is an important component of the McMurdo Dry Valleys landscape and the results of this study will aid in defining ecologically-important sources of glacial meltwater and will lead to a better understanding of moraine formation at polar ice cliffs. This study will help launch the career of a female scientist, will support one graduate student, and provide experiential learning experiences for two undergraduates. The post-doctoral researcher will also use this research in the curriculum of a wilderness science experiential education program for high school girls.", "east": 162.307, "geometry": "POINT(162.2195 -77.7315)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOCOUPLES \u003e THERMOCOUPLES; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e SURVEYING TOOLS", "is_usap_dc": false, "keywords": "SEISMOLOGICAL STATIONS; Ice Quakes; Ice Cliffs; Not provided; Taylor Glacier; FIELD SURVEYS; Remote Sensing; GROUND-BASED OBSERVATIONS; Modeling; Ice Deformation; Glacial Meltwater; FIELD INVESTIGATION; McMurdo Dry Valleys", "locations": "McMurdo Dry Valleys; Taylor Glacier", "north": -77.73, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Pettit, Erin; Hallet, Bernard; Fountain, Andrew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS; Not provided", "repositories": null, "science_programs": null, "south": -77.733, "title": "Collaborative Research: Mechanics of Dry-Land Calving of Ice Cliffs", "uid": "p0000721", "west": 162.132}, {"awards": "0338218 Halanych, Kenneth; 0338087 Scheltema, Rudolf", "bounds_geometry": "POLYGON((-70 -55,-68 -55,-66 -55,-64 -55,-62 -55,-60 -55,-58 -55,-56 -55,-54 -55,-52 -55,-50 -55,-50 -56,-50 -57,-50 -58,-50 -59,-50 -60,-50 -61,-50 -62,-50 -63,-50 -64,-50 -65,-52 -65,-54 -65,-56 -65,-58 -65,-60 -65,-62 -65,-64 -65,-66 -65,-68 -65,-70 -65,-70 -64,-70 -63,-70 -62,-70 -61,-70 -60,-70 -59,-70 -58,-70 -57,-70 -56,-70 -55))", "dataset_titles": "Expedition Data; Expedition data of LMG0414; Expedition data of LMG0605; Relevance of Planktonic Larval Dispersal to Endemism and Biogeography of Antarctic Benthic Invertebrates", "datasets": [{"dataset_uid": "600035", "doi": "10.15784/600035", "keywords": "Antarctica; Biota; Oceans; R/v Laurence M. Gould; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Scheltema, Rudolf", "repository": "USAP-DC", "science_program": null, "title": "Relevance of Planktonic Larval Dispersal to Endemism and Biogeography of Antarctic Benthic Invertebrates", "url": "https://www.usap-dc.org/view/dataset/600035"}, {"dataset_uid": "001565", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0414"}, {"dataset_uid": "002682", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0605", "url": "https://www.rvdata.us/search/cruise/LMG0605"}, {"dataset_uid": "002711", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0414", "url": "https://www.rvdata.us/search/cruise/LMG0414"}], "date_created": "Wed, 18 Jun 2008 00:00:00 GMT", "description": "Because of extreme isolation of the Antarctic continent since the Early Oligocene, one expects a unique invertebrate benthic fauna with a high degree of endemism. Yet some invertebrate taxa that constitute important ecological components of sedimentary benthic communities include more than 40 percent non-endemic species (e.g., benthic polychaetes). To account for non-endemic species, intermittent genetic exchange must occur between Antarctic and other (e.g. South American) populations. The most likely mechanism for such gene flow, at least for in-faunal and mobile macrobenthos, is dispersal of planktonic larvae across the sub- Antarctic and Antarctic polar fronts. To test for larval dispersal as a mechanism of maintaining genetic continuity across polar fronts, the scientists propose to (1) take plankton samples along transects across Drake passage during both the austral summer and winter seasons while concurrently collecting the appropriate hydrographic data. Such data will help elucidate the hydrographic mechanisms that allow dispersal across Drake Passage. Using a molecular phylogenetic approach, they will (2) compare seemingly identical adult forms from Antarctic and South America continents to identify genetic breaks, historical gene flow, and control for the presence of cryptic species. (3) Similar molecular tools will be used to relate planktonic larvae to their adult forms. Through this procedure, they propose to link the larval forms respectively to their Antarctic or South America origins. The proposed work builds on previous research that provides the basis for this effort to develop a synthetic understanding of historical gene flow and present day dispersal mechanism in South American/Drake Passage/Antarctic Peninsular region. Furthermore, this work represents one of the first attempts to examine recent gene flow in Antarctic benthic invertebrates. Graduate students and a postdoctoral fellow will be trained during this research.", "east": -50.0, "geometry": "POINT(-60 -60)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": true, "keywords": "EU735823-EU735850; R/V LMG; FIELD SURVEYS; Genbank Ef565745-Ef565820; Not provided", "locations": null, "north": -55.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Scheltema, Rudolf; Halanych, Kenneth", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -65.0, "title": "Collaborative Research: Relevance of Planktonic Larval Dispersal to Endemism and Biogeography of Antarctic Benthic Invertebrates", "uid": "p0000189", "west": -70.0}, {"awards": "0238281 Marsh, Adam", "bounds_geometry": "POLYGON((163 -77,163.4 -77,163.8 -77,164.2 -77,164.6 -77,165 -77,165.4 -77,165.8 -77,166.2 -77,166.6 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.6 -78,166.2 -78,165.8 -78,165.4 -78,165 -78,164.6 -78,164.2 -78,163.8 -78,163.4 -78,163 -78,163 -77.9,163 -77.8,163 -77.7,163 -77.6,163 -77.5,163 -77.4,163 -77.3,163 -77.2,163 -77.1,163 -77))", "dataset_titles": "Marine Invertebrates of McMurdo Sound", "datasets": [{"dataset_uid": "600034", "doi": "10.15784/600034", "keywords": "Antarctica; Biota; McMurdo Sound; Oceans; Photo/video; Photo/Video; Southern Ocean", "people": "Marsh, Adam G.", "repository": "USAP-DC", "science_program": null, "title": "Marine Invertebrates of McMurdo Sound", "url": "https://www.usap-dc.org/view/dataset/600034"}], "date_created": "Mon, 09 Jun 2008 00:00:00 GMT", "description": "Although the cold ocean ecosystems comprise seventy-two percent of the biosphere on Earth by volume, they remain sparsely inhabited and relatively unexploited, particularly in terms of metazoan phyla. Consequently, the few animals that can exist at this border of intracellular freezing represent ideal systems for exploring genomic-level processes of environmental adaptations. Understanding life at a margin of the biosphere is likely to convey significant insights into the essential genomic processes necessary for survival under intense selection pressures. This study of adaptive mechanisms in genomic networks focuses on an experimental system that faces a formidable challenge for viability at low water temperatures: embryonic development at sea water temperatures of -1.8 o C in two Antarctic echinoderms, the sea star Odontaster validus and the sea urchin Sterechinus neumayeri. The project strategy will quantify temperature effects on gene expression and protein turnover networks during early development using a Bayesian network analysis to identify clusters of genes and proteins whose expression levels are associated in fixed, synergistic interactions. Ultimately, there is a simple question to be addressed: Is it more or less difficult (complex) for an embryo to develop in an extreme environment? To answer this question, the research plan will decipher network topologies and subnet structuring to uncover gene connectivity patterns associated with embryo development in this polar environment. This is the new area of Environmental Genomics that the PI will explore by expanding his research experience into computational network analyses. Overall, there is a significant need for integrative biologists in the future development of environmental sciences, particularly for the application of genomic-scale technologies to answer ecological-scale questions. The educational goals of this CAREER proposal are focused at two levels in terms of interesting young students in the developing field of environmental genomics: 1) increasing the racial diversity of the scientists attracted to environmental research, and 2) increasing the awareness of career opportunities within environmental research.\u003cbr/\u003eThese educational objectives are incorporated into the research plan to engage students with the excitement of working in an extreme environment such as Antarctica and to interest them in the insights that genome-level research can reveal about how organisms are adapted to specific habitats. Working in a remote, extreme environment such as Antarctica is always a challenge. However, the adventurous nature of the work can be utilized to establish educational and outreach components of high interest to both undergraduate students and the public in general. The proposed plan will bring the experience of working in Antarctica to a larger audience through several means. These include the following: the project theme of environmental genomics will be incorporated into a new Bioinformatics curriculum currently being developed at the University of Delaware; an intern program will be implemented to involved minority undergraduate students in summer research in the United States and then to bring the students to Antarctica to participate in the research; and a K-12 education program will bring the excitement of working in Antarctica to the classrooms of thousands of children (U.S. and international) through a program produced with the Marine Science Public Education Office at the University of Delaware.", "east": 167.0, "geometry": "POINT(165 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS", "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Marsh, Adam G.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "CAREER: Genomic Networks for Cold-Adaptation in Embryos of Polar Marine Invertebrates", "uid": "p0000240", "west": 163.0}, {"awards": "0440609 Price, P. Buford", "bounds_geometry": "POINT(-112.06556 -79.469444)", "dataset_titles": null, "datasets": null, "date_created": "Tue, 03 Jun 2008 00:00:00 GMT", "description": "This award supports a project to use three downhole instruments - an optical logger; a\u003cbr/\u003eminiaturized biospectral logger at 420 nm (miniBSL-420); and an Acoustic TeleViewer (ATV) - to log a 350-m borehole at the WAIS Divide drill site. In addition, miniBSL-224 (at 224 nm) and miniBSL-420 will scan ice core sections at NICL to look for abrupt climate changes, volcanic ash, microbial concentrations, and correlations among them. Using the optical logger and ATV to log bubble number densities vs depth in a WAIS Divide borehole, we will detect annual layers, from which we can establish the age vs depth relation to the bottom of the borehole that will be available during the three-year grant period. With the same instruments we will search for long-period modulation of bubble and dust concentrations in order to provide definitive evidence for or against an effect of long-period variability of the sun or solar wind on climate. We will detect and accurately date ash layers in a WAIS Divide borehole. We will match them with ash layers that we previously detected in the Siple Dome borehole, and also match them with sulfate and ash layers found by others at Vostok, Dome Fuji, Dome C, and GISP2. The expected new data will allow us to extend our recent study which showed that the Antarctic record of volcanism correlates with abrupt climate change at a 95% to \u003e99.8% significance level and that the volcanic signatures at bipolar locations match at better than 3 sigma during the interval 2 to 45 kiloyears. The results to be obtained during this grant period will position us to extend an accurate age vs depth relation and volcano-climate correlations to earlier than 150 kiloyears ago in the future WAIS Divide borehole to be drilled to bedrock. Using the miniBSLs to identify biomolecules via their fluorescence, we will log a 350-m borehole at WAIS Divide, and we will scan selected lengths of ice core at NICL. Among the biomolecules the miniBSLs can identify will be chlorophyll, which will provide the first map of aerobic microbes in ice, and F420, which will provide the first map of methanogens in ice. We will collaborate with others in relating results from WAIS Divide and NICL ice cores to broader topics in climatology, volcanology, and microbial ecology. We will continue to give broad training to undergraduate and graduate students, to attract underrepresented minorities to science, engineering, and math, and to educate the press and college teachers. A deeper understanding of the causes of abrupt climate change, including a causal relationship with strong volcanic eruptions, can enable us to understand and mitigate adverse effects on climate.", "east": -112.06556, "geometry": "POINT(-112.06556 -79.469444)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUORESCENCE SPECTROSCOPY; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS", "is_usap_dc": false, "keywords": "Volcanic Ash; Dust Concentration; Antarctica; FIELD INVESTIGATION; Liquid Veins In Ice; Optical Logger; Borehole; Ash Layer; FIELD SURVEYS; Microbial Metabolism; Climate; Biospectral Logger; Not provided; Protein Fluorescence; Gas Artifacts; Aerosol Fluorescence; Volcanism; WAIS Divide; Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.469444, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bay, Ryan; Price, Buford", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repositories": null, "science_programs": null, "south": -79.469444, "title": "Climatology, Volcanism, and Microbial Life in Ice with Downhole Loggers", "uid": "p0000746", "west": -112.06556}, {"awards": "0440447 Spencer, Matthew; 0917509 Spencer, Matthew", "bounds_geometry": "POINT(-148.81 -81.65)", "dataset_titles": "Firn depth and bubble density for Siple Ice Core and other sites", "datasets": [{"dataset_uid": "601746", "doi": "10.15784/601746", "keywords": "Antarctica; Density; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Data; Ice Core Records; Siple Dome; Snow/ice; Snow/Ice", "people": "Spencer, Matthew", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Firn depth and bubble density for Siple Ice Core and other sites", "url": "https://www.usap-dc.org/view/dataset/601746"}], "date_created": "Mon, 19 May 2008 00:00:00 GMT", "description": "This award supports a two-year collaborative effort to more fully understand the climatic history and physical properties of the Siple Dome, Antarctica deep ice core, to develop a new paleoclimatic technique based on bubble number-density, and to improve the U.S. capability to analyze ice-core physical properties rapidly and accurately. The Siple Dome ice core from West Antarctica is yielding important paleoclimatic insights, but has proven more difficult than some cores to interpret owing to the large iceflow effects on the paleoclimatic record. Paleoclimatic indicators that do not rely on iceflow corrections thus would be of value. The bubble number-density offers one such indicator, because it preserves information on mean temperature and accumulation rate during the transformation of firn to ice. We will focus on thin-section characteristics that are important to ice flow and the interpretation of the ice-core history, such as c-axis fabrics, and will use indicators that we have been developing, such as the correlation between grain elongation and the c-axis orientation, to gain additional information. To achieve this quickly and accurately, and to prepare for future projects, we propose to upgrade the automatic caxis- fabric analyzer that Wilen has built and housed at the National Ice Core Laboratory. The intellectual merit of the proposed activity includes improved estimates of paleoclimatic conditions in an important region, improved understanding of a new paleoclimatic research tool, greater understanding of ice flow and of linkages to physical properties, and a better instrument for further U.S. research in ice-core physical properties at the National Ice Core Laboratory. The broader impacts resulting from the proposed activity include providing better understanding of abrupt climate change and of ice flow, which eventually should help policy-makers, as well as an improved U.S. capability to analyze ice cores. The proposed research will assist the studies of two promising young scientists. Results of the research will be incorporated into courses and public outreach reaching at least hundreds or thousands of people per year.", "east": -148.81, "geometry": "POINT(-148.81 -81.65)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided; Ice Core; Ice Flow; Bubble Number Density; LABORATORY; Thin Sections; Paleoclimate; FIELD INVESTIGATION; Fabric; Siple Dome; Climate; Antarctica; Antarctic; FIELD SURVEYS", "locations": "Siple Dome; Antarctica; Antarctic", "north": -81.65, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Spencer, Matthew; Wilen, Larry", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -81.65, "title": "Collaborative Research: Combined Physical Property Measurements at Siple Dome", "uid": "p0000658", "west": -148.81}, {"awards": "9980452 Harvey, Ralph", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Thu, 20 Mar 2008 00:00:00 GMT", "description": "9980452 Harvey This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for continuation of the Antarctic Search for Meteorites (ANSMET). Since 1976, ANSMET has recovered more than 10,000 meteorite specimens from locations along the Transantarctic Mountains. This award supports continued recovery of Antarctic meteorites during six successive austral summer field seasons, starting with the 2000-2001 season and ending with the 2005-2006 season. Under this project, systematic searches for meteorite specimens will take place at previously discovered stranding surfaces, and reconnaissance work will be conducted to discover and explore the extent of new areas with meteorite concentrations. ANSMET recovery teams will deploy by air to locations in the deep field for periods of 5-7 weeks. While at the meteorite stranding surface, field team members will search the ice visually, traversing on foot or on snowmobile. Specimens will be collected under the most sterile conditions practical and samples will remain frozen until returned to the Johnson Space Center (JSC) in Houston, Texas. At the JSC, initial characterization and sample distribution to all interested researchers takes place under the auspices of an interagency agreement between NSF, NASA, and the Smithsonian Institution. The impact of ANSMET has been substantial and this will continue under this award. The meteorites recovered by ANSMET are the best and most reliable source of new, non-microscopic extraterrestrial material, providing essential \"ground-truth\" concerning the materials that make up the asteroids, planets and other bodies of our solar system. The system for their characterization and distribution is unparalleled and their subsequent study has fundamentally changed our understanding of the solar system. ANSMET meteorites have helped researchers explore the conditions that were present in the nebula from which our solar system was born 4.556 billion years ago and provided samples of asteroids, ranging from primitive bodies unchanged since the formation of the solar system to complex, geologically active miniature planets. ANSMET samples proved, against the conventional wisdom, that some meteorites actually represent planetary materials, delivered to us from the Moon and Mars, completely changing our view of the geology of those bodies. ANSMET meteorites have even generated a new kind of inquiry into one of the most fundamental scientific questions possible; the question of biological activity in the universe as a whole. Over the past twenty years, ANSMET meteorites have economically provided a continuous and readily available supply of extraterrestrial materials for research, and should continue to do so in the future.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": false, "keywords": "FIELD SURVEYS; FIELD INVESTIGATION", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Harvey, Ralph", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": null, "title": "The Antarctic Search for Meteorites", "uid": "p0000118", "west": null}, {"awards": "0542293 Winckler, Gisela", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 17 Dec 2007 00:00:00 GMT", "description": "This Small Grant for Exploratory Research supports development of an innovative dating technique for application to ancient, relict ice bodies buried in the Western Dry Valleys of Antarctica. Dating of surrounding sediments and volcanic ashes indicates that these ice bodies may be up to six million years in age, offering the oldest direct atmospheric and climate records available. This SGER is a proof of concept to develop a new dating technique using beryllium (10Be) of cosmogenic origin from the atmosphere and extraterrestrial helium (3He) contained in interplanetary dust particles. Both tracers are deposited to the Earth\u0027s surface and likely incorporated into the ice matrix at constant rates. Radioactive decay of 10Be versus the stable extraterrestrial 3He signal may offer way to directly measure the age of the ice.\u003cbr/\u003e\u003cbr/\u003eThe broader impacts of this work are development of a new analytical technique that may improve society\u0027s understanding of the potential for global climate change from the perspective of the deep time record.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": false, "keywords": "Cosmogenic Radionuclides; Old Ice; Idp; FIELD INVESTIGATION", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Winckler, Gisela", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": null, "title": "Direct Dating of Old Ice by Extraterrestrial Helium-3 and Atmospheric Beryllium-10 - A Proof of Concept", "uid": "p0000127", "west": null}, {"awards": "0338244 Schaefer, Joerg", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 10 Dec 2007 00:00:00 GMT", "description": "This project will determine the age, origin, and climatic significance of buried ice found in the western Dry Valleys of Antarctica. Previous studies indicate that this ice may be over a million years in age, making it by far the oldest ice yet discovered on Earth. An alternative view is that this ice is represents recently frozen groundwater. To distinguish between these hypotheses and characterize the ice, we are undertaking an interdisciplinary research program focused on: 1) understanding the surface processes that permit ice preservation; and 2) testing the efficacy of cosmogenic nuclides and 40Ar/39Ar analyses in dating both tills and volcanic ash associated with the ice. Our plan calls for the analysis of a minimum of six cosmogenic depth profiles to determine if and how cryoturbation reworks sublimation tills and assess the average rate of ice sublimation for three debris-covered glaciers. We will model through finite- element analyses at least three buried glaciers and compare flow rates with those based on radiometric dating of surface deposits. Ten ice cores will also be collected for measurement of d18O, dD, ice fabric, ice texture, total gas content/composition. Better understanding of surface processes above buried ice will permit researchers to gain access to a record of atmospheric and climate change that could well cover intervals that predate Quaternary time. The work may also add valuable insight into Martian history. In terms of broader impacts, we have recruited three female PhD students and developed interdisciplinary collaborations among geochemists at Columbia University, planetary geologists at Brown University, geomorphologists at Boston University, and numerical modelers at the University of Maine.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": false, "keywords": "FIELD INVESTIGATION", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY", "persons": "Schaefer, Joerg", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Age, Origin and Climatic Significance of Buried Ice in the Western Dry Valleys, Antarctica", "uid": "p0000255", "west": null}, {"awards": "0337891 Brook, Edward J.", "bounds_geometry": "POINT(158 -77.666667)", "dataset_titles": "Atmospheric CO2 and Climate: Byrd Ice Core, Antarctica; Atmospheric CO2 and Climate: Taylor Dome Ice Core, Antarctica", "datasets": [{"dataset_uid": "609314", "doi": "10.7265/N58W3B80", "keywords": "Antarctica; Atmosphere; Byrd Glacier; Byrd Ice Core; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate", "people": "Brook, Edward J.; Ahn, Jinho", "repository": "USAP-DC", "science_program": "Byrd Ice Core", "title": "Atmospheric CO2 and Climate: Byrd Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609314"}, {"dataset_uid": "609315", "doi": "10.7265/N5542KJK", "keywords": "Antarctica; Atmosphere; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Taylor Dome; Taylor Dome Ice Core", "people": "Brook, Edward J.; Ahn, Jinho", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Atmospheric CO2 and Climate: Taylor Dome Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609315"}], "date_created": "Mon, 05 Nov 2007 00:00:00 GMT", "description": "This award supports the development of a new laboratory capability in the U.S. to measure CO2 in ice cores and investigate millennial-scale changes in CO2 during the last glacial period using samples from the Byrd and Siple Dome ice cores. Both cores have precise relative chronologies based on correlation of methane and the isotopic composition of atmospheric oxygen with counterpart records from Greenland ice cores. The proposed work will therefore allow comparison of the timing of CO2 change, Antarctic temperature change, and Greenland temperature change on common time scales. Such comparisons are vital for evaluating models that explain changes in atmospheric CO2. The techniques being developed will also be available for future projects, specifically the proposed Inland WAIS ice core, for which a highly detailed CO2 record is a major objective, and studies greenhouse and other atmospheric gases and their isotopic composition for which dry extraction is necessary (stable isotopes in CO2, for example). There are many broad impacts of the proposed work. Ice core greenhouse gas records are central contributions of paleoclimatology to research and policy-making concerning global change. The proposed work will enhance those contributions by improving our understanding of the natural cycling of the most important greenhouse gas. It will contribute to the training of a postdoctoral researcher, who will be an integral part of an established research group and benefit from the diverse paleoclimate and geochemistry community at OSU. The PI teaches major and non-major undergraduate and graduate courses on climate and global change. The proposed work will enrich those courses and the courses will provide an opportunity for the postdoctoral researcher to participate in teaching by giving guest lectures. The PI also participates in a summer climate workshop for high school teachers at Washington State University and the proposed work will enrich that contribution. The extraction device that is built and the expertise gained in using it will be resources for the ice core community and available for future projects. Data will be made available through established national data center and the equipment designs will also be made available to other researchers.", "east": 158.0, "geometry": "POINT(158 -77.666667)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Ice Core; Climate Change; CO2; Atmospheric Chemistry; Atmospheric CO2; LABORATORY; Not provided; Ice Core Data; Climate; Ice Core Chemistry; Atmospheric Gases; Ice Core Gas Records; GROUND STATIONS; Climate Research", "locations": null, "north": -77.666667, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Ahn, Jinho; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": -77.666667, "title": "Developing Dry Extraction of Ice Core Gases and Application to Millennial-Scale Variability in Atmospheric CO2", "uid": "p0000268", "west": 158.0}, {"awards": "9725882 Raymond, Charles", "bounds_geometry": "POLYGON((-141.6722 -80.1678,-141.34195 -80.1678,-141.0117 -80.1678,-140.68145 -80.1678,-140.3512 -80.1678,-140.02095 -80.1678,-139.6907 -80.1678,-139.36045 -80.1678,-139.0302 -80.1678,-138.69995 -80.1678,-138.3697 -80.1678,-138.3697 -80.4863,-138.3697 -80.8048,-138.3697 -81.1233,-138.3697 -81.4418,-138.3697 -81.7603,-138.3697 -82.0788,-138.3697 -82.3973,-138.3697 -82.7158,-138.3697 -83.0343,-138.3697 -83.3528,-138.69995 -83.3528,-139.0302 -83.3528,-139.36045 -83.3528,-139.6907 -83.3528,-140.02095 -83.3528,-140.3512 -83.3528,-140.68145 -83.3528,-141.0117 -83.3528,-141.34195 -83.3528,-141.6722 -83.3528,-141.6722 -83.0343,-141.6722 -82.7158,-141.6722 -82.3973,-141.6722 -82.0788,-141.6722 -81.7603,-141.6722 -81.4418,-141.6722 -81.1233,-141.6722 -80.8048,-141.6722 -80.4863,-141.6722 -80.1678))", "dataset_titles": "Radar Investigations of Antarctic Ice Stream Margins, Siple Dome, 1998", "datasets": [{"dataset_uid": "609303", "doi": "10.7265/N52B8VZP", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Radar; Siple Dome", "people": "Nereson, Nadine A.; Raymond, Charles", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Radar Investigations of Antarctic Ice Stream Margins, Siple Dome, 1998", "url": "https://www.usap-dc.org/view/dataset/609303"}], "date_created": "Fri, 06 Jul 2007 00:00:00 GMT", "description": "9725882 Raymond This award is for support for a program of surface-based radio echo sounding to examine the geometry of the internal layering and the presence or absence of thawed zones outside the margins of active Ice Streams B and E and across the flow band feeding Ice Stream D. Melting in the marginal shear zone and/or on the bed outside an ice stream relates to the amount of support of the ice stream from the sides compared to the bed and the conditions that limit expansion of its width. Radar observations will be extended over the crest of adjacent inter-ice-stream ridges (B/C and D/E) and areas next to the flow band in the onset of D. The purpose is to examine internal layering indicative of the histories of these areas adjacent to ice streams and to determine whether ice streams have expanded into these presently stable areas in the past. These goals concerning the physical controls and history of ice stream width relate to how the discharge of ice streams has changed in the past and could change in the future to affect sea level.", "east": -138.3697, "geometry": "POINT(-140.02095 -81.7603)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS", "is_usap_dc": true, "keywords": "Ice Stream; Antarctica; Bed Geometry; GROUND-BASED OBSERVATIONS; Internal Layering; Internal Layer Geometry; Siple Dome; Shabtaie Ridge; Not provided; Engelhardt Ridge; Ice Stream Margins; Radar; Whillans Ice Stream; GPS; Bed Reflectivity; Macayeal Ice Stream; Surface Geometry", "locations": "Antarctica; Engelhardt Ridge; Macayeal Ice Stream; Shabtaie Ridge; Siple Dome; Whillans Ice Stream", "north": -80.1678, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Raymond, Charles; Nereson, Nadine A.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -83.3528, "title": "Internal Stratigraphy and Basal Conditions at the Margins ofActive Ice Streams of the Siple Coast, Antarctica", "uid": "p0000626", "west": -141.6722}, {"awards": "0126146 Miller, Molly", "bounds_geometry": "POINT(171 -83.75)", "dataset_titles": null, "datasets": null, "date_created": "Wed, 20 Jun 2007 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a study to investigate paleoenvironmental conditions during the late Paleozoic and Mesozoic in central interior Antarctica. The 4 km thick sequence of sedimentary rocks, known as the Beacon Supergroup, in the Beardmore Glacier area records 90 million years of Permian through Jurassic history of this high-paleolatitude sector of Gondwana. It accumulated in a foreland basin with a rate of subsidence approximately equal to the rate of deposition. The deposits have yielded diverse vertebrate fossils, in situ fossil forests, and exceptionally well preserved plant fossils. They give a unique glimpse of glacial, lake, and stream/river environments and ecosystems and preserve an unparalleled record of the depositional, paleoclimatic, and tectonic history of the area. The excellent work done to date provides a solid base of information on which to build understanding of conditions and processes.\u003cbr/\u003e\u003cbr/\u003eThis project is a collaborative study of this stratigraphic section that will integrate sedimentologic, paleontologic, and ichnologic observations to answer focused questions, including: (1) What are the stratigraphic architecture and alluvial facies of Upper Permian to Jurassic rocks in the Beardmore area?; (2) In what tectonostratigraphic setting were these rocks deposited?; (3) Did vertebrates inhabit the cold, near-polar, Permian floodplains, as indicated by vertebrate burrows, and can these burrows be used to identify, for the first time, the presence of small early mammals in Mesozoic deposits?; and (4) How did bottom-dwelling animals in lakes and streams use substrate ecospace, how did ecospace use at these high paleolatitudes differ from ecospace use in equivalent environments at low paleolatitudes, and what does burrow distribution reveal about seasonality of river flow and thus about paleoclimate? Answers to these questions will (1) clarify the paleoclimatic, basinal, and tectonic history of this part of Gondwana, (2) elucidate the colonization of near-polar ecosystems by vertebrates, (3) provide new information on the environmental and paleolatitudinal distributions of early mammals, and (4) allow semi-quantitative assessment of the activity and abundance of bottom-dwelling animals in different freshwater environments at high and low latitudes. In summary, this project will contribute significantly to an understanding of paleobiology and paleoecology at a high latitude floodplain setting during a time in Earth history when the climate was much different than today.", "east": 171.0, "geometry": "POINT(171 -83.75)", "instruments": null, "is_usap_dc": false, "keywords": "Beardmore Glacier; FIELD SURVEYS; Paleoclimate; Permian; Paleontology; FIELD INVESTIGATION; Sedimentologic; Ichnologic; Stratigraphic; Gondwana", "locations": "Beardmore Glacier", "north": -83.75, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e MESOZOIC \u003e JURASSIC; PHANEROZOIC \u003e PALEOZOIC \u003e PERMIAN; PHANEROZOIC \u003e MESOZOIC \u003e TRIASSIC", "persons": "Miller, Molly", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -83.75, "title": "Collaborative Research: Late Paleozoic-Mesozoic Fauna, Environment, Climate and Basinal History: Beardmore Glacier Area, Transantarctic Mountains", "uid": "p0000736", "west": 171.0}, {"awards": "0125610 Waddington, Edwin", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 30 Apr 2007 00:00:00 GMT", "description": "0125610\u003cbr/\u003eWaddington\u003cbr/\u003e\u003cbr/\u003eThis award provides three years of funding to study the transition from slow inland flow to fast ice stream flow by making use of a suite of geophysical measurements that have been made near the onset region of ice stream D in West Antarctica. These data provide a unique opportunity to develop and validate glaciological models of the controlling processes in ice stream onset zones. Important processes to quantify are motion at the bed and deformation in the ice. Previous analyses indicate that the controlling resistive forces shift from the bed to the sides during the transition from slow inland flow to fast, streaming flow. Model sensitivity analyses will be used to investigate the relative importance of feedbacks between basal processes and ice deformation in the transition from inland to ice stream flow. Model experiments will determine what factors control the location of the onset of streaming flow, and how that location might migrate when conditions at the bed, or along the flow direction, changes over time. The overall goal of this work is to improve understanding of the evolution of the WAIS drainage system. This study is a first step towards understanding the physics that govern the transition from slow inland flow to fast streaming flow.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": false, "keywords": "FIXED OBSERVATION STATIONS", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Price, Stephen", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS", "repositories": null, "science_programs": null, "south": null, "title": "Model Investigations of the Transition from Inland to Ice Stream Flow", "uid": "p0000759", "west": null}, {"awards": "0229573 Mayewski, Paul", "bounds_geometry": null, "dataset_titles": "Antarctic Mean Annual Temperature Map", "datasets": [{"dataset_uid": "609318", "doi": "10.7265/N51C1TTV", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Temperature", "people": "Dixon, Daniel A.", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Mean Annual Temperature Map", "url": "https://www.usap-dc.org/view/dataset/609318"}], "date_created": "Wed, 04 Apr 2007 00:00:00 GMT", "description": "This award supports a science management office for a pilot ice-core drilling and analysis program to test the feasibility of obtaining well-dated, high-resolution isotope and chemistry records from East Antarctica. Shallow ice cores will be obtained from two locations: 1) ~100 km from South Pole towards the Pole of Inaccessibility, as an extension of the Byrd Station-to-South Pole ITASE traverse [International Trans Antarctic Scientific Expedition]; 2) at Taylor Dome, near the original deep coring site, and (3) possibly at AGO 3 and AGO 4 as part of a logistics traverse to these sites. All of the cores collected will be sampled at very high resolution (~1/2 cm) and analyzed for major ions. Results from this calibration work, along with those from another project that is analyzing stable isotopes will be used to help plan a program of larger scope, with the objective of mapping the spatial expression of climate variability in East Antarctica. Funds are also provided to organize a community workshop for coordination of the second phase of US ITASE and for one workshop per year for two years dedicated to writing and preparation of scientific papers from phase one of US ITASE. In addition, route selection activities for the follow-on traverse activities in East Antarctica will be conducted using satellite image mapping. A summary document will be produced and made available to the community to help with planning of related field programs (e.g. deep ice radar, firn radar profiling, atmospheric chemistry, ice coring, snow surface properties for satellite observations, ice surface elevation and mass balance).", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOCOUPLES \u003e THERMOCOUPLES; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS", "is_usap_dc": true, "keywords": "Antarctic Ice Sheet; West Antarctica; FIELD INVESTIGATION; West Antarctic Ice Sheet; Antarctic; Temperature; East Antarctic Plateau; FIELD SURVEYS; Antarctica; Not provided", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; West Antarctica; West Antarctic Ice Sheet; East Antarctic Plateau", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Dixon, Daniel A.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "A Science Management Office for the U. S. Component of the International Trans Antarctic Expedition (US ITASE SMO)A Collaborative Pgrm of Research from S. Pole to N. Victoria Land", "uid": "p0000199", "west": null}, {"awards": "9615502 Harrison, William", "bounds_geometry": "POINT(-148.822 -81.655)", "dataset_titles": "Vertical Strain at Siple Dome, Antarctica, 1999-2002", "datasets": [{"dataset_uid": "609214", "doi": "10.7265/N5HH6H00", "keywords": "Antarctica; Geodesy; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Siple Dome; Siple Dome Ice Core; Strain; WAISCORES", "people": "Harrison, William; Elsberg, Daniel; Zumberge, Mark; Pettit, Erin; Waddington, Edwin D.; Morack, James", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Vertical Strain at Siple Dome, Antarctica, 1999-2002", "url": "https://www.usap-dc.org/view/dataset/609214"}], "date_created": "Thu, 22 Feb 2007 00:00:00 GMT", "description": "This award is for support for a three year project to measure the vertical strain rate as a function of depth at two sites on Siple Dome Antarctica. Ice flow near a divide such as Siple Dome is unique in that it is predominantly vertical. As a consequence, the component of ice deformation in the vertical direction, the \"vertical strain rate\" is dominant. Its measurement is therefore important for the calibration of dynamic models of ice flow. Two different, relatively new, high resolution systems for its measurement in hot water drilled holes will be employed. The ice flow model resulting from the measurements and flow law determination will be used to interpret the shapes of radar internal layering in terms of the dynamic history and accumulation patterns of Siple Dome over the past 10,000 years. The resulting improved model will also be applied to the interpretation of annual layers thicknesses (to produce annual accumulation rates) and borehole temperatures from the ice core to be drilled at Siple Dome during the 1997/98 field season. The results should permit an improved analysis of the ice core, relative to what was possible at recent coring sites in central Greenland. This is a collaborative project between the University of Alaska, the University of California, San Diego and the University of Washington.", "east": -148.822, "geometry": "POINT(-148.822 -81.655)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e GAUGES \u003e STRAIN GAUGE WHEATSTONE BRIDGE", "is_usap_dc": true, "keywords": "Ice Core Data; GROUND-BASED OBSERVATIONS; Antarctica; USAP-DC; Ice Core; Ice Analysis; Ice Flow; Ice Deformation; Antarctic Ice Sheet; West Antarctic Ice Sheet; Vertical Strain Rate; Ice Sheet; Glaciology; West Antarctica; Ice; Ice Movement", "locations": "Antarctica; Antarctic Ice Sheet; West Antarctica; West Antarctic Ice Sheet", "north": -81.655, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Harrison, William; Morack, James; Pettit, Erin; Zumberge, Mark; Elsberg, Daniel; Waddington, Edwin D.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.655, "title": "Ice Dynamics, the Flow Law, and Vertical Strain at Siple Dome", "uid": "p0000601", "west": -148.822}, {"awards": "0125579 Cuffey, Kurt; 0126202 Blankenship, Donald", "bounds_geometry": "POLYGON((160 -77.6,160.25 -77.6,160.5 -77.6,160.75 -77.6,161 -77.6,161.25 -77.6,161.5 -77.6,161.75 -77.6,162 -77.6,162.25 -77.6,162.5 -77.6,162.5 -77.63,162.5 -77.66,162.5 -77.69,162.5 -77.72,162.5 -77.75,162.5 -77.78,162.5 -77.81,162.5 -77.84,162.5 -77.87,162.5 -77.9,162.25 -77.9,162 -77.9,161.75 -77.9,161.5 -77.9,161.25 -77.9,161 -77.9,160.75 -77.9,160.5 -77.9,160.25 -77.9,160 -77.9,160 -77.87,160 -77.84,160 -77.81,160 -77.78,160 -77.75,160 -77.72,160 -77.69,160 -77.66,160 -77.63,160 -77.6))", "dataset_titles": "Ablation Rates of Taylor Glacier, Antarctica; Stable Isotopes of Ice on the Surface of Taylor Glacier, Antarctica; Surface Velocities of Taylor Glacier, Antarctica", "datasets": [{"dataset_uid": "609324", "doi": "10.7265/N5RV0KM7", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Velocity; Taylor Glacier", "people": "Kavanaugh, Jeffrey; Cuffey, Kurt M.; Bliss, Andrew; Aciego, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Surface Velocities of Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609324"}, {"dataset_uid": "609326", "doi": "10.7265/N5N29TW8", "keywords": "Ablation Poles; Ablation Rates; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Taylor Glacier", "people": "Cuffey, Kurt M.; Kavanaugh, Jeffrey; Bliss, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Ablation Rates of Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609326"}, {"dataset_uid": "609323", "doi": "10.7265/N5WM1BBZ", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Isotope; Taylor Glacier", "people": "Cuffey, Kurt M.; Bliss, Andrew; Kavanaugh, Jeffrey; Aciego, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Stable Isotopes of Ice on the Surface of Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609323"}], "date_created": "Tue, 13 Feb 2007 00:00:00 GMT", "description": "This award supports a project to significantly improve our understanding of how Taylor Glacier flows and responds to climate changes. Taylor Glacier drains the Taylor Dome region of the East Antarctic Ice Sheet and terminates in Taylor Valley, one of the Dry Valleys of Victoria Land. It provides a crucial and unique link between two intensively studied Antarctic environments: the Taylor Dome, from which a 130 kyr ice core paleoclimate record has recently been extracted, and the Dry Valleys, a pivotal Long-Term Ecological Research (LTER) site and a focus of research on geomorphology and glacial geology. The proposed work will thus make an important contribution to ongoing efforts to exploit the Taylor Dome - Dry Valleys system to build a uniquely comprehensive view of regional long-term environmental changes. The proposed work has two complementary components: field research and numerical modelling. Two field seasons will be used to measure velocity, surface strain rate, mass balance, ice thickness, glacier bed reflectance, and subglacial topography, along a nearly complete longitudinal transect of the Taylor Glacier, and along select cross-valley transects. This information will be used to constrain numerical models of ice and heat flow for the Taylor Dome - Taylor Glacier system. These calibrated models will be used to analyze the time-dependent response of the Taylor Glacier to climate changes. The synthesis of results will be aimed to improve understanding of the glacial geomorphology of Taylor Valley, and to illuminate impacts on the Taylor Valley lakes ecosystem. The project will have a major role in furthering the careers of a doctoral-level graduate student and a post-doctoral researcher.", "east": 162.5, "geometry": "POINT(161.25 -77.75)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Glacier; Glacier Surface; Glacier Surface Ablation; Ice Velocity; Velocity Measurements; Taylor Glacier; Isotope; GPS; Ice Sheet Elevation; Not provided; FIELD INVESTIGATION; Ice Surface Elevation; Ablation; Oxygen Isotope; Elevation; Deuterium; GROUND-BASED OBSERVATIONS; Glacier Surface Ablation Rate; Surface Elevation", "locations": "Taylor Glacier", "north": -77.6, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Bliss, Andrew; Kavanaugh, Jeffrey; Aciego, Sarah; Cuffey, Kurt M.; Morse, David L.; Blankenship, Donald D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Collaborative Research: Dynamics and Climatic Response of the Taylor Glacier System", "uid": "p0000084", "west": 160.0}, {"awards": "0230378 Kanagaratnam, Pannirselvam", "bounds_geometry": "POLYGON((-112.224 -79.3385,-112.1245 -79.3385,-112.025 -79.3385,-111.9255 -79.3385,-111.826 -79.3385,-111.7265 -79.3385,-111.627 -79.3385,-111.5275 -79.3385,-111.428 -79.3385,-111.3285 -79.3385,-111.229 -79.3385,-111.229 -79.35475,-111.229 -79.371,-111.229 -79.38725,-111.229 -79.4035,-111.229 -79.41975,-111.229 -79.436,-111.229 -79.45225,-111.229 -79.4685,-111.229 -79.48475,-111.229 -79.501,-111.3285 -79.501,-111.428 -79.501,-111.5275 -79.501,-111.627 -79.501,-111.7265 -79.501,-111.826 -79.501,-111.9255 -79.501,-112.025 -79.501,-112.1245 -79.501,-112.224 -79.501,-112.224 -79.48475,-112.224 -79.4685,-112.224 -79.45225,-112.224 -79.436,-112.224 -79.41975,-112.224 -79.4035,-112.224 -79.38725,-112.224 -79.371,-112.224 -79.35475,-112.224 -79.3385))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 18 Oct 2006 00:00:00 GMT", "description": "This award supports a project to build and test a 12-18 GHz radar system with a plane wave antenna. This is a wideband radar operating over a frequency range of 12 to 18 GHz to detect near-surface internal firn layers of the ice sheet with better than 10 cm resolution to a depth of approximately 7 m. These measurements will allow determination of spatially continuous snow accumulation rate in the firn, which would be useful along a traverse and is of critical importance to the validation of CryoSat and ICESAT satellite missions aimed at assessing the current state of mass balance of the polar ice sheets. The antenna system planned for the radar is relatively compact, and will be located on the sledge carrying the radar systems. The broad scientific focus of this project will be to investigate important glacial processes relevant to ice sheet mass balance. The new radar will allow the characterization (with high depth resolution) of the spatial variability of snow accumulation rate along a traverse route for interpreting data from CryoSat and ICESAT missions. As part of this project, we will institute a strong outreach program involving K-12 education and a minority institution of higher education. We currently work closely with the Advanced Learning Technology Program (ALTec) at the University of Kansas to develop interactive, resource-based lessons for use on-line by students of all grade levels, and we will develop new resources related to this project. We currently have an active research and education collaboration with faculty and undergraduate students at neighboring Haskell Indian Nations University, in Lawrence, Kansas, and we will expand our collaboration to include this project.", "east": -111.229, "geometry": "POINT(-111.7265 -79.41975)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": false, "keywords": "Firn; Cryosat; Plane Wave Antenna; Glacial Processes; GROUND-BASED OBSERVATIONS; Not provided; Icesat; FIELD INVESTIGATION; Radar; LABORATORY; Snow Accumulation; Mass Balance; FIELD SURVEYS", "locations": null, "north": -79.3385, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Kanagaratnam, Pannirselvam; Braaten, David; Bauer, Rob", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -79.501, "title": "High Resolution Ice Thickness and Plane Wave Mapping of Near-Surface Layers", "uid": "p0000731", "west": -112.224}, {"awards": "0230452 Severinghaus, Jeffrey", "bounds_geometry": "POINT(124.5 -80.78)", "dataset_titles": "Antarctic megadunes", "datasets": [{"dataset_uid": "000191", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Antarctic megadunes", "url": "http://nsidc.org/antarctica/megadunes/"}], "date_created": "Wed, 27 Sep 2006 00:00:00 GMT", "description": "This award supports a study of the chemical composition of air in the snow layer (firn) in a region of \"megadunes\" near Vostok station, Antarctica. It will test the hypothesis that a deep \"convective zone\" of vigorous wind-driven mixing can prevent gas fractionation in the upper one-third of the polar firn layer. In the megadunes, ultralow snow accumulation rates lead to structural changes (large grains, pipes, and cracks) that make the permeability of firn to air movement orders of magnitude higher than normal. The unknown thickness of the convective zone has hampered the interpretation of ice core 15N/14N and 40Ar/36Ar ratios as indicators of past firn thickness, which is a key constraint on the climatically important variables of temperature, accumulation rate, and gas age-ice age difference. Studying this \"extreme end-member\" example will better define the role of the convective zone in gas reconstructions. This study will pump air from a profile of ~20 depths in the firn, to definitively test for the presence of a convective zone based on the fit of observed 15 N/14N and 40Ar/36Ar to a molecular- and eddy-diffusion model. Permeability measurements on the core and 2-D air flow modeling (in collaboration with M. Albert) will permit a more physically realistic interpretation of the isotope data and will relate mixing vigor to air velocities. A new proxy indicator of convective zone thickness will be tested on firn and ice core bubble air, based on the principle that isotopes of slow-diffusing heavy noble gases (Kr, Xe) should be more affected by convection than isotopes of fast-diffusing N2 . These tools will be applied to a test of the hypothesis that the megadunes and a deep convective zone existed at the Vostok site during glacial periods, which would explain the anomalously low 15N/14N and 40Ar/36Ar in the Vostok ice core glacial periods. The broader impacts of this work include 1) clarification of phase relationships of greenhouse gases and temperature in ice core records, with implications for understanding of past and future climates, 2) education of one graduate student, and 3) building of collaborative relationships with five investigators.", "east": 124.5, "geometry": "POINT(124.5 -80.78)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e FLASKS", "is_usap_dc": false, "keywords": "Antarctica; Methane; Carbon-14; Permeability; CO2; Firn Core; FIELD SURVEYS; Deuterium Excess; GROUND-BASED OBSERVATIONS; LABORATORY; Isotope; Ice Core Density; Firn Air; Megadunes; Ice Core; Not provided; FIELD INVESTIGATION", "locations": "Antarctica", "north": -80.78, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bauer, Rob; Albert, Mary R.; Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "NSIDC", "repositories": "NSIDC", "science_programs": null, "south": -80.78, "title": "How Thick Is the Convective Zone: A Study of Firn Air in the Megadunes Near Vostok, Antarctica", "uid": "p0000097", "west": 124.5}, {"awards": "0338363 Thiemens, Mark; 0337933 Cole-Dai, Jihong", "bounds_geometry": null, "dataset_titles": "Major Ion Concentrations in 2004 South Pole Ice Core", "datasets": [{"dataset_uid": "609542", "doi": "10.7265/N5HX19N8", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ion Chromatograph; South Pole", "people": "Cole-Dai, Jihong", "repository": "USAP-DC", "science_program": null, "title": "Major Ion Concentrations in 2004 South Pole Ice Core", "url": "https://www.usap-dc.org/view/dataset/609542"}], "date_created": "Fri, 11 Aug 2006 00:00:00 GMT", "description": "This award supports a collaborative study between South Dakota State University (SDSU) and University of California, San Diego (UCSD) to investigate the oxygen and sulfur isotope composition of sulfates from a number of large volcanic eruptions in the past 1000 years. The project aims to drill a number of shallow ice cores at South Pole and return them to SDSU and UCSD lab for chemical and isotope analysis. Preliminary results from measurements of isotopes in sulfate samples from several volcanic eruptions in Antarctic snow and ice indicate that isotopic composition of volcanic sulfate contains abundant valuable information on atmospheric chemical and dynamic processes that have not been previously investigated. One tentative conclusion is that mass-independently fractionated sulfur isotopes reveal that atmospheric photolysis of sulfur compounds occurs at longer UV wavelengths than those in the Archean atmosphere, possibly reflecting the atmospheric ozone and/or oxygen concentration. This suggests that isotopic composition of atmospheric sulfate may be used to understand the role of UV radiation in sulfur dioxide conversion in the atmosphere and to track the evolution (i.e., oxygenation) of the atmosphere and the origin of life on Earth. Other major research objectives include understanding what impact massive volcanic eruptions have on the oxidative capacity of the atmosphere, what oxidants and mechanisms are involved in the oxidation or conversion of volcanic sulfur dioxide to sulfate in the stratosphere and what isotopic criteria may be used to differentiate ice core signals of stratospheric eruptions from those of tropospheric eruptions. By providing educational and research opportunities to graduate and undergraduate students at both SDSU and UCSD, the proposed project will promote the integration of research and education and contribute to human resource development in science and engineering. The project will contribute to a proposed REU chemistry site program at SDSU. This collaboration will utilize the complementary strengths of both labs and promote exchange between the two institutions. International collaboration will enhance scientific cooperation between France and US.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Not provided; Ion Chromatograph; Ions; LABORATORY; GROUND-BASED OBSERVATIONS", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Cole-Dai, Jihong", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Investigating Atmospheric Chemistry and Dynamics through Oxygen and Sulfur Isotopes in Volcanic Sulfate from South Pole Ice Cores", "uid": "p0000031", "west": null}, {"awards": "0230316 White, James; 0230021 Sowers, Todd; 0230348 Dunbar, Nelia", "bounds_geometry": "POINT(135.1333 -76.05)", "dataset_titles": "Mount Moulton Isotopes and Other Ice Core Data", "datasets": [{"dataset_uid": "609640", "doi": "10.7265/N5FT8J0N", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Epica Dome C; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Lake Vostok; Mount Moulton; Paleoclimate; Talos Dome; Taylor Dome", "people": "Steig, Eric J.; White, James; Popp, Trevor", "repository": "USAP-DC", "science_program": null, "title": "Mount Moulton Isotopes and Other Ice Core Data", "url": "https://www.usap-dc.org/view/dataset/609640"}], "date_created": "Tue, 01 Aug 2006 00:00:00 GMT", "description": "The summit crater of Mt. Moulton, in West Antarctica, contains a 600-m thick horizontally-exposed section of ice with intercalated tephra layers from nearby Mt Berlin. Argon-40/Argon-39 dating of the thick, near-source tephra indicates that the age of the horizontal ice section ranges between 15,000 and 492,000 years. Thus, the Mt Moulton site offers an unparalleled repository of ancient West Antarctic snow and trapped air that can be used to investigate West Antarctic climate over much of the past 500,000 years. The planar nature and consistent dips of the tephra layers suggests that, although the ice section has thinned, it is otherwise undeformed. The Mt. Moulton site was visited during the 1999/2000 field season, at which time a horizontal ice core representing approximately 400 meters of ice was collected, ranging in age from 15,000 to older than 480,000 years. In addition to this horizontal core, samples of ice at a range of depths were collected in order to test the quality of the climate record in the ice. Forty tephra layers intercalated in the ice were also collected in order to provide chronology for the ice section. The results of this first effort are extremely encouraging. Based on the d?18 O of ice, for example, there is clearly a useable record of past climate at Mt. Moulton extending back beyond 140,000 years. There is work to do, however, to realize the full potential of this horizontal ice core. The elemental and isotopic composition of trapped gases suggest some contamination with modern air, for example. As gas cross-dating of ice cores is the current standard by which climate records are intercompared, we need to understand why and how the gas record is compromised before adding Moulton to our arsenal of ice core paleoclimate records. This award supports a collaborative effort between three institutions with following objectives: 1) to evaluate more thoroughly the integrity of the climatic record through shallow drilling of the blue ice area, as well as the snow field upslope from the blue ice; 2) to improve the radioisotopic dating of specific tephra layers; 3) to obtain baseline information about modern snowfall deposition, mean annual temperature, and wind pumping around the summit of Mt. Moulton; and 4) to study how firn densification differs when surface accumulation changes from net accumulation to net ablation.", "east": 135.1333, "geometry": "POINT(135.1333 -76.05)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES", "is_usap_dc": true, "keywords": "LABORATORY; Climate; Argon-40; 40Ar; Argon-39; FIELD SURVEYS; Chronology; Ice Core Gas Age; Gas Record; Ice Core; FIELD INVESTIGATION; Tephra; Mount Moulton; Not provided; Caldera; 39Ar; Stratigraphy; Ice Core Depth", "locations": "Mount Moulton", "north": -76.05, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "White, James; Popp, Trevor; Dunbar, Nelia; Sowers, Todd A.; Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.05, "title": "Collaborative Research: Refining a 500-kry Climate Record From the Moulton Blue Ice Field in West Antarctica", "uid": "p0000755", "west": 135.1333}, {"awards": "0126343 Nishiizumi, Kunihiko", "bounds_geometry": "POINT(-148.812 -81.6588)", "dataset_titles": "Cosmogenic Radionuclides in the Siple Dome A Ice Core", "datasets": [{"dataset_uid": "609307", "doi": "10.7265/N5XK8CGS", "keywords": "Antarctica; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Nishiizumi, Kunihiko; Finkel, R. C.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Cosmogenic Radionuclides in the Siple Dome A Ice Core", "url": "https://www.usap-dc.org/view/dataset/609307"}], "date_created": "Mon, 12 Jun 2006 00:00:00 GMT", "description": "This award supports a three-year renewal project to complete measurement of cosmogenic nuclides in the Siple Dome ice core as part of the West Antarctic ice core program. The investigators will continue to measure profiles of Beryllium-10 (half-life = 1.5x10 6 years) and Chlorine-36 (half-life = 3.0x10 5 years) in the entire ice core which spans the time period from the present to about 100 kyr. It will be particularly instructive to compare the Antarctic record with the detailed Arctic record that was measured by these investigators as part of the GISP2 project. This comparison will help separate global from local effects at the different drill sites. Cosmogenic radionuclides in polar ice cores have been used to study the long-term variations in several important geophysical variables, including solar activity, geomagnetic field strength, atmospheric circulation, snow accumulation rates, and others. The time series of nuclide concentrations resulting from this work will be applied to several problem areas: perfecting the ice core chronology, deducing the history of solar activity, deducing the history of variations in the geomagnetic field, and studying the possible role of solar variations on climate. Comparison of Beryllium-10 and Chlorine-36 profiles in different cores will allow us to improve the ice core chronology and directly compare ice cores from different regions of the globe. Additional comparison with the Carbon-14 record will allow correlation of the ice core paleoenvironment record to other, Carbon-14 dated, paleoclimate records.", "east": -148.812, "geometry": "POINT(-148.812 -81.6588)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e AMS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Ice Core Chemistry; Antarctica; Ice Core; Cosmogenic Radionuclides; Chlorine-36; GROUND STATIONS; Beryllium-10; Siple Dome; West Antarctica", "locations": "Antarctica; Siple Dome; West Antarctica", "north": -81.6588, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Finkel, R. C.; Nishiizumi, Kunihiko", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.6588, "title": "Cosmogenic Radionuclides in the Siple Dome Ice Core", "uid": "p0000358", "west": -148.812}, {"awards": "0196441 Hamilton, Gordon", "bounds_geometry": null, "dataset_titles": "The Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program.; US ITASE International Trans-Antarctic Scientific Expedition", "datasets": [{"dataset_uid": "000109", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "US ITASE International Trans-Antarctic Scientific Expedition", "url": "http://www2.umaine.edu/USITASE/"}, {"dataset_uid": "000586", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "The Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program.", "url": "https://nsidc.org/data/agdc"}], "date_created": "Thu, 30 Mar 2006 00:00:00 GMT", "description": "Not Available", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": false, "keywords": "Transantarctic Mountains; Not provided; US ITASE; Snow Accumulation; Mass Balance; Transantarctic; Outlet Glaciers; Antarctica; FIELD INVESTIGATION; FIELD SURVEYS", "locations": "Antarctica; Transantarctic Mountains", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Hamilton, Gordon S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repo": "Project website", "repositories": "NSIDC; Project website", "science_programs": null, "south": null, "title": "Mass Balance and Accumulation Rate Along US ITASE Routes", "uid": "p0000727", "west": null}, {"awards": "0229245 Hamilton, Gordon", "bounds_geometry": "POINT(135 -76)", "dataset_titles": null, "datasets": null, "date_created": "Thu, 30 Mar 2006 00:00:00 GMT", "description": "A \u0027horizontal ice core\u0027 was collected at the Mount Moulton blue ice field in West Antarctica and preliminary analyses of the sample material suggests that a ~500 kyr climate record is preserved in the ice at this site. This award will contribute to the understanding of the Mt Moulton record by assessing the potential for ice-flow induced deformation of the stratigraphic profile. In addition, this award builds on the recognition of blue ice areas as archives of long climate records by conducting reconnaissance studies for a potential horizontal ice core location at the Allan Hills in East Antarctica. The objectives of this project are to contribute to the glaciological understanding of blue ice areas in Antarctica. Ice flow conditions at the Mt Moulton blue ice field will be studied to assess the possibility that the stratigraphic record has been deformed and reconnaissance of a potential horizontal ice core site in the Allan Hills blue ice field will also be accomplished. Short field programs will be undertaken at each location to collect relevant measurements of ice flow and subglacial topography, and to conduct sampling of material that will enable the preservation of the stratigraphic sequences to be assessed.", "east": 135.0, "geometry": "POINT(135 -76)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e ACOUSTIC RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": false, "keywords": "Mount Moulton; Not provided; Subglacial Topography; FIELD INVESTIGATION; Ice Flow; West Antarctica; FIELD SURVEYS; Stratigraphy; Horizontal Ice Core; GROUND-BASED OBSERVATIONS; Blue Ice; Radar", "locations": "Mount Moulton; West Antarctica", "north": -76.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bauer, Rob; Hamilton, Gordon S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided", "repositories": null, "science_programs": null, "south": -76.0, "title": "Glaciology of Blue Ice Areas in Antarctica", "uid": "p0000248", "west": 135.0}, {"awards": "0230448 Severinghaus, Jeffrey; 0230260 Bender, Michael", "bounds_geometry": "POLYGON((-75.34 86.6,-68.742 86.6,-62.144 86.6,-55.546 86.6,-48.948 86.6,-42.35 86.6,-35.752 86.6,-29.154 86.6,-22.556 86.6,-15.958 86.6,-9.36 86.6,-9.36 83.618,-9.36 80.636,-9.36 77.654,-9.36 74.672,-9.36 71.69,-9.36 68.708,-9.36 65.726,-9.36 62.744,-9.36 59.762,-9.36 56.78,-15.958 56.78,-22.556 56.78,-29.154 56.78,-35.752 56.78,-42.35 56.78,-48.948 56.78,-55.546 56.78,-62.144 56.78,-68.742 56.78,-75.34 56.78,-75.34 59.762,-75.34 62.744,-75.34 65.726,-75.34 68.708,-75.34 71.69,-75.34 74.672,-75.34 77.654,-75.34 80.636,-75.34 83.618,-75.34 86.6))", "dataset_titles": "Firn Air Inert Gas and Oxygen Observations from Siple Dome, 1996, and the South Pole, 2001; Trapped Gas Composition and Chronology of the Vostok Ice Core", "datasets": [{"dataset_uid": "609311", "doi": "10.7265/N5P26W12", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Lake Vostok; Paleoclimate; Vostok; Vostok Ice Core", "people": "Bender, Michael; Suwa, Makoto", "repository": "USAP-DC", "science_program": null, "title": "Trapped Gas Composition and Chronology of the Vostok Ice Core", "url": "https://www.usap-dc.org/view/dataset/609311"}, {"dataset_uid": "609290", "doi": "10.7265/N5FJ2DQC", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciology; Paleoclimate; Siple Dome; Snow/ice; Snow/Ice; South Pole", "people": "Bender, Michael; Battle, Mark; Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Firn Air Inert Gas and Oxygen Observations from Siple Dome, 1996, and the South Pole, 2001", "url": "https://www.usap-dc.org/view/dataset/609290"}], "date_created": "Wed, 18 Jan 2006 00:00:00 GMT", "description": "High latitude deep ice cores contain fundamental records of polar temperatures, atmospheric dust loads (and continental aridity), greenhouse gas concentrations, the status of the biosphere, and other essential properties of past environments. An accurate chronology for these records is needed if their significance is to be fully realized. The dating challenge has stimulated efforts at orbital tuning. In this approach, one varies a timescale, within allowable limits, to optimize the match between a paleoenvironmental property and a curve of insolation through time. The ideal property would vary with time due to direct insolation forcing. It would be unaffected by complex climate feedbacks and teleconnections, and it would give a clean record with high signal/noise ratio. It is argued strongly that the O2/N2 ratio of ice core trapped gases is such a property, and evidence is presented that this property, whose atmospheric ratio is nearly constant, is tied to local summertime insolation. This award will support a project to analyze the O2/N2 ratios at 1 kyr intervals from ~ 115-400 ka in the Vostok ice core. Ancillary measurements will be made of Ar/N2, and Ne/N2 and heavy noble gas ratios, in order to understand bubble close-off fractionation and its manifestation in the Vostok trapped gas record. O2/N2 variations will be matched with summertime insolation at Vostok to achieve a high-accuracy chronology for the Vostok core. The Vostok and other correlatable climate records will then be reexamined to improve our understanding of the dynamics of Pleistocene climate change.", "east": 106.8, "geometry": "POINT(106.8 -72.4667)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e FLASKS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Paleoclimate; Siple Dome; Ice Age; Shallow Firn Air; Firn Air Isotope Measurements; Polar Firn Air; Ice Sample Gas Integrity; Oxygen Isotope; Noble Gas; Ice Core Gas Records; Atmospheric Gases; Trapped Gases; Not provided; LABORATORY; Vostok; Firn Air Isotopes; Thermal Fractionation; Ice Core Chemistry; Trapped Air Bubbles; Ice Core; Antarctica; South Pole; Ice Core Data; GROUND-BASED OBSERVATIONS; Gas Age; Firn Isotopes", "locations": "Antarctica; Vostok; Siple Dome; South Pole", "north": -72.4667, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Battle, Mark; Bender, Michael; Suwa, Makoto; Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -72.4667, "title": "Collaborative Research: Trapped Gas Composition and the Chronology of the Vostok Ice Core", "uid": "p0000257", "west": 106.8}, {"awards": "0125570 Scambos, Ted; 0125276 Albert, Mary", "bounds_geometry": null, "dataset_titles": "Access AGDC data online by navigating to Data Sets. Data sets are arranged by Principal Investigators. Access data that are combined into multiple data sets, or compiled products.; AWS Data: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation; GPR and GPS Data: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation; Snow and Firn Permeability: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation; The Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program.", "datasets": [{"dataset_uid": "609282", "doi": "10.7265/N5Q23X5F", "keywords": "Antarctica; East Antarctic Plateau; Glaciology; GPR; GPS; Navigation; Paleoclimate; Snow/ice; Snow/Ice", "people": "Scambos, Ted; Bauer, Rob", "repository": "USAP-DC", "science_program": null, "title": "GPR and GPS Data: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation", "url": "https://www.usap-dc.org/view/dataset/609282"}, {"dataset_uid": "609283", "doi": "10.7265/N5K935F3", "keywords": "Antarctica; Atmosphere; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Meteorology; Snow/ice; Snow/Ice", "people": "Bauer, Rob; Fahnestock, Mark; Scambos, Ted; Haran, Terry", "repository": "USAP-DC", "science_program": null, "title": "AWS Data: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "url": "https://www.usap-dc.org/view/dataset/609283"}, {"dataset_uid": "001669", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Access AGDC data online by navigating to Data Sets. Data sets are arranged by Principal Investigators. Access data that are combined into multiple data sets, or compiled products.", "url": "http://nsidc.org/data/agdc_investigators.html"}, {"dataset_uid": "609299", "doi": "10.7265/N5639MPD", "keywords": "Antarctica; East Antarctic Plateau; Glaciology; Physical Properties; Snow/ice; Snow/Ice", "people": "Albert, Mary R.; Courville, Zoe; Cathles, Mac", "repository": "USAP-DC", "science_program": null, "title": "Snow and Firn Permeability: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation", "url": "https://www.usap-dc.org/view/dataset/609299"}, {"dataset_uid": "001343", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "The Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program.", "url": "https://nsidc.org/data/agdc/"}], "date_created": "Wed, 04 Jan 2006 00:00:00 GMT", "description": "This award supports a program of field surveys of an area within the large, well-developed megadune field southeast of Vostok station. The objectives are to determine the physical characteristics of the firn across the dunes, including typical climate indicators such as stable isotopes and major chemical species, and to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. Field study will consist of surface snowpit and shallow core sampling, ground penetrating radar (GPR) profiling, GPS topographic and ice motion surveys, AWS installation, accumulation/ ablation measurements, subsurface temperature, and firn permeability studies. Field work in two successive seasons is proposed. Continent-wide remote sensing studies of the dunes will be continued, using the new group of instruments that are now, or will shortly be available (e.g., MODIS, MISR, GLAS, AMSR). The earlier study of topographic, passive microwave, and SAR characteristics will be extended, with the intent of determining the relationships of dune amplitude and wavelength to climate parameters, and further development of models of dune formation. Diffusion, ventilation, and vapor transport processes within the dune firn will be modeled as well. A robust program of outreach is planned and reporting to inform both the public and scientists of the fundamental in-situ and remote sensing characteristics of these uniquely Antarctic features will be an important part of the work. Because of their extreme nature, their broad extent, and their potential impact on the climate record, it is important to improve our current understanding of these. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on past terrestrial climate, or to processes active on other planets. Megadunes are likely to represent an end-member in firn diagenesis, and as such, may have much to teach us about the processes involved.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ICE AUGERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e SNOWPACK TEMPERATURE PROBE; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e PERMEAMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e SAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e AIR PERMEAMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e RADIO \u003e ARGOS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e WIND PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e DENSIOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e GAUGES \u003e BALANCE", "is_usap_dc": true, "keywords": "Internal Layering; ICESAT; Vapor-Redeposition; Antarctic; Wind Speed; FIELD INVESTIGATION; Surface Morphology; Antarctica; GROUND-BASED OBSERVATIONS; ARWS; Polar Firn Air; Microstructure; Gas Diffusivity; WEATHER STATIONS; Surface Temperatures; RADARSAT-2; Ice Core; Wind Direction; AWS; Ice Sheet; Snow Pit; Dunefields; Climate Record; Megadunes; GROUND STATIONS; METEOROLOGICAL STATIONS; Antarctic Ice Sheet; Density; Atmospheric Pressure; Firn Permeability; FIELD SURVEYS; Radar; Permeability; Field Survey; Firn Temperature Measurements; Snow Megadunes; Thermal Conductivity; LANDSAT; Firn; Ice Core Interpretation; East Antarctic Plateau; Not provided; Surface Winds; Sublimation; Snow Density; Ice Climate Record; Glaciology; Snow Permeability; Air Temperature; Paleoenvironment; Automated Weather Station", "locations": "Antarctica; Antarctic Ice Sheet; Antarctic; East Antarctic Plateau", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Courville, Zoe; Cathles, Mac; Scambos, Ted; Bauer, Rob; Fahnestock, Mark; Haran, Terry; Shuman, Christopher A.; Albert, Mary R.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e ARWS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e METEOROLOGICAL STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e WEATHER STATIONS; Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e ICE, CLOUD AND LAND ELEVATION SATELLITE (ICESAT) \u003e ICESAT; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e LANDSAT \u003e LANDSAT; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e RADARSAT \u003e RADARSAT-2", "repo": "USAP-DC", "repositories": "NSIDC; USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "uid": "p0000587", "west": null}, {"awards": "0125761 Thiemens, Mark", "bounds_geometry": null, "dataset_titles": "Atmospheric Nitrate Isotopic Analysis at Amundsen-Scott South Pole Station, A Twenty-Five Year Record", "datasets": [{"dataset_uid": "609281", "doi": "10.7265/N5TT4NWF", "keywords": "Aerosol; Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; NBP1502; Snow/ice; Snow/Ice; South Pole Station", "people": "Thiemens, Mark H.; Savarino, Joel", "repository": "USAP-DC", "science_program": null, "title": "Atmospheric Nitrate Isotopic Analysis at Amundsen-Scott South Pole Station, A Twenty-Five Year Record", "url": "https://www.usap-dc.org/view/dataset/609281"}], "date_created": "Tue, 27 Dec 2005 00:00:00 GMT", "description": "This award supports a detailed laboratory analysis of the mass-independent isotopic composition of processes associated with atmospheric nitrate trapped in the snow pack at the South Pole. The project will specifically test if the oxygen isotopes 16O, 17O, 18O of nitrate can be used to probe the denitrification of the Antarctic stratosphere. Despite decades of research, there are several important issues in Antarctic atmospheric science, which are presently inadequately resolved. This includes quantification over time of the sources of nitrate aerosols. Today, little is known about the past denitrification of the stratosphere in high latitude regions. This lack of knowledge significantly limits our ability to understand the chemical state of ancient atmospheres and therefore evaluate present and past-coupled climate/atmosphere models. The role of nitrogen in environmental degradation is well known. This issue will also be addressed in this proposal. Atmospheric aerosols have now been shown to possess a mass-independent oxygen isotopic content. The proposed research will investigate the stable oxygen isotope ratios of nitrate in Antarctica both collected in real time and from the snow. Two periods of time will be covered. Full year nitrate aerosol collections, with week resolution time horizons, will be performed at the South Pole. Weekly aerosol collections will help us to identify any seasonal trend of the oxygen-17 excess anomaly, and eventually link this anomaly to the denitrification of the Antarctic stratosphere. This data set will also be used to test our assumption that the oxygen isotopic anomaly of nitrate is mainly formed in the stratosphere and is well preserved in the snow pack. If true, we will for the first time resolve an atmospheric signal extracted from a nitrate profile. The snow pit will allow us to see any trend in the data on a multiple decade timescale.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Snow; GROUND STATIONS; Ion Chemistry; South Pole; Not provided; Aerosol; Oxygen Isotope; GROUND-BASED OBSERVATIONS; Snow Pit; Antarctica; Admundsen-Scott Station", "locations": "Antarctica; South Pole", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Savarino, Joel; Thiemens, Mark H.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "South Pole Atmospheric Nitrate Isotopic Analysis (SPANIA)", "uid": "p0000242", "west": null}, {"awards": "0338359 Saltzman, Eric", "bounds_geometry": "POINT(-148.81 -81.65)", "dataset_titles": "Analysis of Siple Dome Ice Core: Carbonyl Sulfide (COS), Methyl Chloride (CH3Cl), and Methyl Bromide (CH3Br); Antarctic Ice Cores: Methyl Chloride and Methyl Bromide; Ice Core Air Carbonyl Sulfide Measurements - SPRESSO Ice Core; Methane and Carbonyl Sulfide Analysis of Siple Dome Ice Core Subsamples", "datasets": [{"dataset_uid": "609279", "doi": "10.7265/N53B5X3G", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Aydin, Murat; Saltzman, Eric", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Analysis of Siple Dome Ice Core: Carbonyl Sulfide (COS), Methyl Chloride (CH3Cl), and Methyl Bromide (CH3Br)", "url": "https://www.usap-dc.org/view/dataset/609279"}, {"dataset_uid": "609131", "doi": "10.7265/N5P848VP", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Methane and Carbonyl Sulfide Analysis of Siple Dome Ice Core Subsamples", "url": "https://www.usap-dc.org/view/dataset/609131"}, {"dataset_uid": "601357", "doi": "10.15784/601357", "keywords": "Antarctica; Atmospheric Gases; Gas Measurement; Ice Core; Ice Core Gas Records; Trace Gases", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Air Carbonyl Sulfide Measurements - SPRESSO Ice Core", "url": "https://www.usap-dc.org/view/dataset/601357"}, {"dataset_uid": "609313", "doi": "10.7265/N5DN430Q", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; ITASE; Paleoclimate; Siple Dome Ice Core; South Pole; SPRESSO; SPRESSO Ice Core", "people": "Williams, Margaret; Tatum, Cheryl; Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Ice Cores: Methyl Chloride and Methyl Bromide", "url": "https://www.usap-dc.org/view/dataset/609313"}], "date_created": "Wed, 16 Nov 2005 00:00:00 GMT", "description": "This award supports the analysis, in Antarctic ice cores, of the ozone depleting substances methyl bromide (CH3Br) and methyl chloride (CH3Cl), and the sulfur-containing gas, carbonyl sulfide (OCS). The broad scientific goal is to assess the level and variability of these gases in the preindustrial atmosphere. This information will allow testing of current models for sources and sinks of these gases from the atmosphere, and to indirectly assess the impact of anthropogenic activities on their biogeochemical cycles. Longer-term records will shed light on the climatic sensitivity of the atmospheric burden of these gases, and ultimately on the biogeochemical processes controlling them. These gases are present in ice at parts per trillion levels, and the current database consists entirely of a small number of measurements made in from a shallow ice core from Siple Dome, Antarctica. This project will involve studies of ice core samples from three Antarctic sites: Siple Station, Siple Dome, and South Pole. The sampling strategy is designed to accomplish several objectives: 1) to verify the atmospheric mixing ratios previously observed in shallow Siple Dome ice for OCS, CH3Br, and CH3Cl at sites with very different accumulation rates and surface temperatures; 2) to obtain a well-dated, high resolution record from a high accumulation rate site (Siple Station), that can provide overlap in mean gas age with Antarctic firn air samples; 3) explore Holocene variability in trace gas mixing ratios; and 4) to make the first measurements of these trace gases in Antarctic glacial ice. In terms of broader impact on society, this research will help to provide a stronger scientific basis for policy decisions regulating the production and use of ozone-depleting and climate-active gases. Specifically, the methyl bromide results will contribute to the current debate on the impact of recent regulation (via the Montreal Protocol and its Amendments) on atmospheric levels. Determination of pre-industrial atmospheric variability of ozone-depleting substances will help place more realistic constraints on scenarios used for future projections of stratospheric ozone and its climatic impacts. This research will involve the participation of both graduate and undergraduate students.", "east": -148.81, "geometry": "POINT(-148.81 -81.65)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Ice Core Gas Records; Carbonyl Sulfide; Siple Coast; Chloride; Trapped Gases; Snow; Ice Core Chemistry; Chromatography; Siple; GROUND STATIONS; Atmospheric Gases; Ozone Depletion; AWS Siple; Ice Sheet; Ice Core Data; Antarctica; Glaciology; West Antarctica; Atmospheric Chemistry; Ice Core; Stratigraphy; LABORATORY; Methane; Mass Spectrometer; GROUND-BASED OBSERVATIONS; WAISCORES; Msa; Mass Spectrometry; Not provided; Siple Dome; Gas Measurement", "locations": "Antarctica; Siple Coast; Siple Dome; West Antarctica; Siple", "north": -81.65, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Saltzman, Eric; Aydin, Murat; Williams, Margaret; Tatum, Cheryl", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.65, "title": "Methyl chloride and methyl bromide in Antarctic ice cores", "uid": "p0000032", "west": -148.81}, {"awards": "9909518 Raymond, Charles", "bounds_geometry": "POLYGON((-154 -80,-152 -80,-150 -80,-148 -80,-146 -80,-144 -80,-142 -80,-140 -80,-138 -80,-136 -80,-134 -80,-134 -80.5,-134 -81,-134 -81.5,-134 -82,-134 -82.5,-134 -83,-134 -83.5,-134 -84,-134 -84.5,-134 -85,-136 -85,-138 -85,-140 -85,-142 -85,-144 -85,-146 -85,-148 -85,-150 -85,-152 -85,-154 -85,-154 -84.5,-154 -84,-154 -83.5,-154 -83,-154 -82.5,-154 -82,-154 -81.5,-154 -81,-154 -80.5,-154 -80))", "dataset_titles": "Compilation of Antarctic Radar Data, Siple Coast, 2000-2002", "datasets": [{"dataset_uid": "609274", "doi": "10.7265/N5736NTS", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Radar; Siple Coast", "people": "Raymond, Charles; Conway, Howard; Catania, Ginny", "repository": "USAP-DC", "science_program": null, "title": "Compilation of Antarctic Radar Data, Siple Coast, 2000-2002", "url": "https://www.usap-dc.org/view/dataset/609274"}], "date_created": "Fri, 03 Jun 2005 00:00:00 GMT", "description": "9909518 Raymond This award provides support for three years of funding to study the scar-like features that are well-known from the Siple Coast ice stream system in West Antarctica. The objective of the proposed field work is to identify the nature of several as yet unvisited scars, and to further characterize previously-identified margin scars that are poorly dated. Advanced Very High Resolution Radiometer (AVHRR) and Radarsat image data will be used to locate and map the features, and place them in a regional context. The study seeks to describe the recent history of the Siple Coast glaciers and investigate the causes of their changes in configuration. The main investigative tools will be low-frequency RES and high-frequency ground penetrating radar (GPR) profiles to image internal layers and measure depths to buried crevasses or disrupted layering. This, coupled with accumulation rates determined from shallow ice cores, will provide \"shutdown\" ages for the margin features. The field data will provide input parameters for simple models of ice flow for margins and inter-ice stream ridges during active shearing and after shutdown. This modeling will estimate the initial elevation of a scar at the time of shut down and the corresponding ice stream elevation at that time.", "east": -134.0, "geometry": "POINT(-144 -82.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e SAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e AVHRR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": true, "keywords": "Ice Stream; West Antarctic Ice Sheet; Radarsat; Siple Dome; Radar; Ice Floe; Not provided; AVHRR; Siple Coast; Ice Stratigraphy; Margin Scars; NOAA POES; RAMP; GROUND-BASED OBSERVATIONS; Ice Flow; Accumulation Rate; Antarctic Ice Sheet; RADARSAT-1", "locations": "Siple Coast; Antarctic Ice Sheet; Siple Dome; West Antarctic Ice Sheet", "north": -80.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Raymond, Charles; Conway, Howard; Catania, Ginny", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e POLAR ORBITING ENVIRONMENTAL SATELLITES (POES) \u003e NOAA POES; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e RADARSAT \u003e RADARSAT-1", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.0, "title": "Collaborative Research:History and Evolution of the Siple Coast Ice Stream Systems as Recorded by Former Shear-Margin Scars", "uid": "p0000275", "west": -154.0}, {"awards": "0088035 Arcone, Steven", "bounds_geometry": "POLYGON((-135 -75,-130.5 -75,-126 -75,-121.5 -75,-117 -75,-112.5 -75,-108 -75,-103.5 -75,-99 -75,-94.5 -75,-90 -75,-90 -76.5,-90 -78,-90 -79.5,-90 -81,-90 -82.5,-90 -84,-90 -85.5,-90 -87,-90 -88.5,-90 -90,-94.5 -90,-99 -90,-103.5 -90,-108 -90,-112.5 -90,-117 -90,-121.5 -90,-126 -90,-130.5 -90,-135 -90,-135 -88.5,-135 -87,-135 -85.5,-135 -84,-135 -82.5,-135 -81,-135 -79.5,-135 -78,-135 -76.5,-135 -75))", "dataset_titles": "US International Trans-Antarctic Scientific Expedition 400 MHz Subsurface Radar Profiles; US International Trans-Antarctic Scientific Expedition (US ITASE): GPR Profiles and Accumulation Mapping", "datasets": [{"dataset_uid": "609269", "doi": "10.7265/N5GH9FV6", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; ITASE; WAIS", "people": "Mayewski, Paul A.; Arcone, Steven; Kaspari, Susan; Hamilton, Gordon S.; Spikes, Vandy Blue", "repository": "USAP-DC", "science_program": "ITASE", "title": "US International Trans-Antarctic Scientific Expedition (US ITASE): GPR Profiles and Accumulation Mapping", "url": "https://www.usap-dc.org/view/dataset/609269"}, {"dataset_uid": "609254", "doi": "10.7265/N58050J7", "keywords": "Airborne Radar; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; ITASE; Radar; WAIS", "people": "Arcone, Steven", "repository": "USAP-DC", "science_program": null, "title": "US International Trans-Antarctic Scientific Expedition 400 MHz Subsurface Radar Profiles", "url": "https://www.usap-dc.org/view/dataset/609254"}], "date_created": "Sun, 01 May 2005 00:00:00 GMT", "description": "This award supports continued acquisition of high resolution, radar reflection profiles of the snow and ice stratigraphy between core sites planned along traverse routes of the U.S. component of the International\u003cbr/\u003eTrans-Antarctic Scientific Expedition (U.S.-ITASE). The purpose is to use the profiles to establish the structure and continuity of firn stratigraphic horizons over hundreds of kilometers and to quantitatively\u003cbr/\u003eassess topographic and ice movement effects upon snow deposition. Other objectives are to establish the climatic extent that a single site represents and to investigate the cause of firn reflections. The radar\u003cbr/\u003ewill also be used to identify crevasses ahead of the traverse vehicles in order to protect the safety of the scientists and support personnel on the traverse. Collaboration with other ITASE investigators will use the radar horizons as continuous isochronic references fixed by the core dating to calculate historical snow accumulation rates. The primary radar system uses 400-MHz (center frequency) short-pulse antennas, which (with processing) gives the penetration of 50-70 meters. This is the depth which is required to exceed the 200-year deposition horizon along the traverse routes. Profiles at 200 MHz will also be recorded if depths greater than 70 meters are of interest. Processing will be accomplished by data compression (stacking) to reveal long distance stratigraphic deformation, range gain corrections to give proper weight to signal amplitudes, and GPS corrections to adjust the records for the present ice sheet topography. Near surface stratigraphy will allow topographic and ice movement effects to be separated. This work is critical to the success of the U.S.-ITASE program.", "east": -90.0, "geometry": "POINT(-112.5 -82.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": true, "keywords": "Ice; Radar Echo Sounder; USAP-DC; US ITASE; Ice Cover; West Antarctic Ice Sheet; Snow Accumulation; CRREL; Antarctic Ice Sheet; Radar; Ice Surveys; ITASE; Ice Sheet; Radar Echo Sounding; GROUND-BASED OBSERVATIONS; Ice Thickness; Mass Balance", "locations": "Antarctic Ice Sheet; West Antarctic Ice Sheet", "north": -75.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Spikes, Vandy Blue; Arcone, Steven; Kaspari, Susan; Hamilton, Gordon S.; Mayewski, Paul A.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": -90.0, "title": "High Resolution Radar Profiling of the Snow and Ice Stratigraphy beneath the ITASE Traverses, West Antarctic Ice Sheet", "uid": "p0000146", "west": -135.0}, {"awards": "9814574 Jacobel, Robert", "bounds_geometry": "POLYGON((-120 -80,-115.6 -80,-111.2 -80,-106.8 -80,-102.4 -80,-98 -80,-93.6 -80,-89.2 -80,-84.8 -80,-80.4 -80,-76 -80,-76 -81,-76 -82,-76 -83,-76 -84,-76 -85,-76 -86,-76 -87,-76 -88,-76 -89,-76 -90,-80.4 -90,-84.8 -90,-89.2 -90,-93.6 -90,-98 -90,-102.4 -90,-106.8 -90,-111.2 -90,-115.6 -90,-120 -90,-120 -89,-120 -88,-120 -87,-120 -86,-120 -85,-120 -84,-120 -83,-120 -82,-120 -81,-120 -80))", "dataset_titles": "Ice Thickness and Internal Layer Depth Along the 2001 and 2002 US ITASE Traverses", "datasets": [{"dataset_uid": "609264", "doi": "10.7265/N5R20Z9T", "keywords": "Airborne Radar; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; ITASE; WAIS", "people": "Welch, Brian; Jacobel, Robert", "repository": "USAP-DC", "science_program": "ITASE", "title": "Ice Thickness and Internal Layer Depth Along the 2001 and 2002 US ITASE Traverses", "url": "https://www.usap-dc.org/view/dataset/609264"}], "date_created": "Fri, 08 Apr 2005 00:00:00 GMT", "description": "This award supports a program of radar studies of internal stratigraphy and bedrock topography along the traverses for the U.S. component of the International Trans-Antarctic Scientific Expedition (US ITASE). The radar will provide information immediately available in the field on ice thickness and internal layer structure to help in the selection of core sites as the traverse proceeds. These data will also be useful in siting deeper millennial scale cores planned at less frequent intervals along the traverse, and in the selection of the location for the deep inland core planned for the future. In addition to continuous coverage along the traverse route, more detailed studies on a grid surrounding each of the core locations will be made to better characterize accumulation and bedrock topography in each area. This proposal is complimentary to the one submitted by the Cold Regions Research and Engineering Laboratory (CRREL), which proposes a high frequency radar to examine the shallower portion of the record down to approximately 60 meters, including the presence of near-surface crevasses. The radar proposed herein is most sensitive at depths below 60 meters and can depict deep bedrock and internal layers to a substantial fraction of the ice thickness.", "east": -76.0, "geometry": "POINT(-98 -85)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS", "is_usap_dc": true, "keywords": "US ITASE; Traverses; West Antarctica; Radar Echo Sounder; GROUND-BASED OBSERVATIONS; Radar Echo Sounding; Antarctica; Depth; Ice Thickness; Radar", "locations": "Antarctica; West Antarctica", "north": -80.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Jacobel, Robert; Welch, Brian", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": -90.0, "title": "Radar Studies of Internal Stratigraphy and Bedrock Topography along the US ITASE Traverse", "uid": "p0000595", "west": -120.0}, {"awards": "0086997 Truffer, Martin", "bounds_geometry": null, "dataset_titles": "Margin Migration Rates and Dynamics: Siple Coast Ice Streams", "datasets": [{"dataset_uid": "609263", "doi": "10.7265/N50K26HH", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Siple Coast", "people": "Truffer, Martin; Echelmeyer, Keith A.", "repository": "USAP-DC", "science_program": null, "title": "Margin Migration Rates and Dynamics: Siple Coast Ice Streams", "url": "https://www.usap-dc.org/view/dataset/609263"}], "date_created": "Thu, 17 Mar 2005 00:00:00 GMT", "description": "0086997\u003cbr/\u003eTruffer\u003cbr/\u003e\u003cbr/\u003eThis award supports a two year project to investigate the dynamics of the marginal zone of the Siple Coast ice streams using existing velocity and temperature profiles. The flow and stress fields will be modeled using finite element methods and a thermo-mechanical model will be used to investigate the coupling of the flow and temperature fields. Direct comparison of these models with the observed velocity profiles will lead to estimates of the structure of the margins and the softening of the marginal ice. The distribution of basal and marginal shear stress will be investigated, leading to an estimate of the relative roles of the bed and the margins in the overall force balance of the ice streams.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e SURVEYING TOOLS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e THEODOLITE", "is_usap_dc": true, "keywords": "GROUND-BASED OBSERVATIONS; Ice Movement; Siple Dome; Ice Stream; USAP-DC; Ice Velocity", "locations": "Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Truffer, Martin; Echelmeyer, Keith A.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Margin Migration Rates and Margin Dynamics of the Siple Coast Ice Streams", "uid": "p0000144", "west": null}, {"awards": "0135989 Wilen, Larry", "bounds_geometry": null, "dataset_titles": "Ice Fabric Characteristics: Siple Dome, A Core", "datasets": [{"dataset_uid": "609255", "doi": "10.7265/N54B2Z7V", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Siple Dome Ice Core", "people": "Wilen, Larry", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Ice Fabric Characteristics: Siple Dome, A Core", "url": "https://www.usap-dc.org/view/dataset/609255"}], "date_created": "Wed, 02 Mar 2005 00:00:00 GMT", "description": "0135989\u003cbr/\u003eWilen\u003cbr/\u003e\u003cbr/\u003eThis is a collaborative proposal by Principal Investigators at the University of Washington and Ohio University. Detailed knowledge about the interactions between micro-structure of ice and its deformation is needed to assess the integrity of stratigraphic layering and the depth-age relationship in ice cores, which is essential for interpreting the paleoclimate record. The Principal Investigators will use micro-structure to study fabric, the orientation distribution of crystal c-axes, and texture, the size and shape of crystals. Numerical modeling of ice deformation is a useful tool in understanding these interactions. Accurate modeling of ice deformation is complicated by factors, such as the fabric, grain size, dynamic recrystallization, stress level, and precise knowledge of initial conditions. For example, ice fabric evolves as the ice is strained and the deformation depends on the fabric. This complicated feedback mechanism must be understood to correctly model ice deformation. In another example, the usual assumption is that the initial fabric is isotropic or random, but there are excellent examples of near-surface ice in the ice cores that are apparently not isotropic. One must know the initial fabric to calculate the deformation rate in ice sheets. Dr. Wilen will combine results of his new automatic fabric analyzer (AFA) with predictions of detailed ice deformation models (Dr. Thorsteinsson) to refine and better constrain such models. The AFA gives new information in thin sections because the precision and number of measured c-axis orientations are greatly improved. The Principal Investigators will analyze existing data and collect new data on fabric and texture from ice cores to address questions regarding near-surface fabric, deformation mechanisms, dynamic recrystallization, and potential sources of layer disturbances. The data will be used to constrain models of fabric evolution and recrystallization processes. With the more refined models, scientists can address different questions and important problems related to ice deformation and ice cores. For example, the recent agreement between the climate records from the Greenland Ice Core Project (GRIP) and Greenland Ice Sheet Project 2 (GISP2) ice cores of the upper-90%, and the disagreement in the lower-10% emphasizes the need to understand and predict the mechanisms and probable depths of disruption in these and future deep ice cores. Evidence suggests that the stratigraphic disturbances arise from the anisotropic nature of ice crystals at a variety of scales. To properly model the deformation of anisotropic ice, the influence of fabric on deformation must be well known.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "GROUND-BASED OBSERVATIONS; Ice Core Data; Siple Dome; Ice Fabric; Ice Core; USAP-DC", "locations": "Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Arctic Natural Sciences", "paleo_time": null, "persons": "Wilen, Larry", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Collaborative Research: Fabric and Texture Characteristics of Micro-Physical Processes in Ice", "uid": "p0000134", "west": null}, {"awards": "9714687 Brook, Edward J.", "bounds_geometry": null, "dataset_titles": "Byrd Ice Core Microparticle and Chemistry Data", "datasets": [{"dataset_uid": "609247", "doi": "", "keywords": "Antarctica; Byrd; Byrd Ice Core; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate", "people": "Blunier, Thomas; Brook, Edward J.; Thompson, Lonnie G.; Fluckiger, Jacqueline", "repository": "USAP-DC", "science_program": "Byrd Ice Core", "title": "Byrd Ice Core Microparticle and Chemistry Data", "url": "https://www.usap-dc.org/view/dataset/609247"}], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "This award is for support for a program to make high resolution studies of variations in the concentration of methane, the oxygenisotope composition of paleoatmospheric oxygen, and the total gas content of deep Antarctic ice cores. Studies of the concentration and isotopic composition of air in the firn of the Antarctic ice sheet will also be continued. One objective of this work is to use the methane concentration and oxygen-isotope composition of oxygen of air in ice as time-stratigraphic markers for the precise intercorrelation of Greenland and Antarctic ice cores as well as the correlation of ice cores to other climatic records. A second objective is to use variations in the concentration and interhemispheric gradient of methane measured in Greenland and Antarctic ice cores to deduce changes in continental climates and biogeochemistry on which the atmospheric methane distribution depends. A third objective is to use data on the variability of total gas content in the Siple Dome ice core to reconstruct aspects of the glacial history of West Antarctica during the last glacial maximum. The fourth objective is to participate in collaborative studies of firn air chemistry at Vostok, Siple Dome, and South Pole which will yield much new information about gas trapping in ice as well as the concentration history and isotopic composition of greenhouse gases, oxygen, trace biogenic gases and trace anthropogenic gases during the last 100 years.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "GROUND STATIONS", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Blunier, Thomas; Fluckiger, Jacqueline; Thompson, Lonnie G.; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Studies of Trapped Gases in Firn and Ice from Antarctic Deep Ice Cores", "uid": "p0000168", "west": null}, {"awards": "9316564 Mayewski, Paul", "bounds_geometry": null, "dataset_titles": "Ross Ice Drainage System (RIDS) Glaciochemical Analysis; Siple Dome Ice Core Chemistry and Ion Data", "datasets": [{"dataset_uid": "609266", "doi": "10.7265/N5M906KG", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice; Snow Pit", "people": "Kreutz, Karl; Mayewski, Paul A.; Twickler, Mark; Whitlow, Sallie; Meeker, Loren D.", "repository": "USAP-DC", "science_program": null, "title": "Ross Ice Drainage System (RIDS) Glaciochemical Analysis", "url": "https://www.usap-dc.org/view/dataset/609266"}, {"dataset_uid": "609251", "doi": "", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Severinghaus, Jeffrey P.; Dunbar, Nelia; Mayewski, Paul A.; Kreutz, Karl; Brook, Edward J.; Blunier, Thomas", "repository": "NCEI", "science_program": "Siple Dome Ice Core", "title": "Siple Dome Ice Core Chemistry and Ion Data", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/2461"}], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "9316564 Mayewski This award is for support for a three year program to provide a high resolution record of the Antarctic climate through the acquisition, analysis, and interpretation of records of atmospheric chemical deposition taken from three ice cores located at sites within or immediately adjacent to the Ross Ice Drainage System (RIDS). These cores include one from Taylor Dome, and two from West Antarctic locations identified as potential deep drilling sites for the WAISCORES program. Collection of the two West Antarctic cores is intended to be a lightweight dry-drilling operation to depths of ~ 200 m, which will provide records of \u003e 2 kyr. Glaciochemical analyses will focus on the major cations and anions found in the antarctic atmosphere, plus methanesulfonic acid and selected measurements of the hydrogen ion, aluminum, iron, and silica. These analyses, and companion stable isotope and particle measurements to be carried out by other investigators require \u003c 7% by volume of each core, leaving \u003e 90% for other investigators and storage at the U.S. National Ice Core Laboratory. These records are intended to solve a variety of scientific objectives while also providing spatial sampling and reconnaissance for future U.S. efforts in West Antarctica. ***", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Magnesium; GROUND STATIONS; Nitrate; Methane Sulfonic Acid; Sodium; Ice Core Chemistry; Ammonium (NH4); Sulfate; Ice Core; Chloride; Potassium (k); Calcium (ca)", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Kreutz, Karl; Twickler, Mark; Whitlow, Sallie; Blunier, Thomas; Dunbar, Nelia; Brook, Edward J.; Mayewski, Paul A.; Meeker, Loren D.; Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "NCEI; USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Ross Ice Drainage System (RIDS) Late Holocene Climate Variability", "uid": "p0000145", "west": null}, {"awards": "8411018 Frisic, David", "bounds_geometry": null, "dataset_titles": "Dominion Range Ice Core Beta Profiles, Chemistry, and Density Data; Newall Glacier Ice Core and Snow Pit Beta Profiles, Chemistry, and Stratigraphy; Newall Glacier Snow Pit and Ice Core, 1987 to 1989", "datasets": [{"dataset_uid": "609088", "doi": "10.7265/N5JM27JP", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Newall Glacier; Paleoclimate; Snow/ice; Snow/Ice", "people": "Mayewski, Paul A.; Whitlow, Sallie", "repository": "USAP-DC", "science_program": null, "title": "Newall Glacier Snow Pit and Ice Core, 1987 to 1989", "url": "https://www.usap-dc.org/view/dataset/609088"}, {"dataset_uid": "609249", "doi": "", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Newall Glacier; Paleoclimate; Physical Properties; Snow/ice; Snow/Ice; Statigraphy", "people": "Mayewski, Paul A.; Welch, Kathy A.", "repository": "USAP-DC", "science_program": null, "title": "Newall Glacier Ice Core and Snow Pit Beta Profiles, Chemistry, and Stratigraphy", "url": "https://www.usap-dc.org/view/dataset/609249"}, {"dataset_uid": "609248", "doi": "", "keywords": "Antarctica; Beta Profiles; Chemistry:ice; Chemistry:Ice; Density; Dominion Range; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Physical Properties", "people": "Mayewski, Paul A.; Watson, M. Scott; Saltzman, Eric; Sowers, Todd A.; Grootes, Pieter; Meese, Deb; Gow, Tony", "repository": "USAP-DC", "science_program": null, "title": "Dominion Range Ice Core Beta Profiles, Chemistry, and Density Data", "url": "https://www.usap-dc.org/view/dataset/609248"}], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "Not available", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "GROUND STATIONS", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Frisic, David; Meese, Deb; Gow, Tony; Saltzman, Eric; Mayewski, Paul A.; Sowers, Todd A.; Welch, Kathy A.; Grootes, Pieter; Watson, M. Scott; Grootes, Peiter", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Characterization of Climatic Events for the Last 2 x 103y through the Retrieval of Ice Cores from the Transantarctic Mountains, Antarctica", "uid": "p0000169", "west": null}, {"awards": "9017827 Lal, Devendra", "bounds_geometry": null, "dataset_titles": "Dome C Ice Core Chemistry and Depth and Age Scale Data", "datasets": [{"dataset_uid": "609243", "doi": "", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Depth-Age-Model; Dome C Ice Core; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate", "people": "Lal, Devendra; Lorius, Claude", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Dome C Ice Core Chemistry and Depth and Age Scale Data", "url": "https://www.usap-dc.org/view/dataset/609243"}], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "This award is for support of a study to establish a quantitative nuclear method for determination of Antarctic ablation and accumulation rates and to provide correction factors for the carbon 14 ages of ice samples dated using trapped carbon 14. Recent studies have established the presence of cosmogenic in-situ produced carbon 14 in polar ice. In conjunction with estimated carbon 14 production rates, measured concentrations of carbon 14 per gram of ice yield, ablation rates which are in good agreement with the values determined from stake measurements. Similar studies to determine accumulation rates have been tested and the estimates are consistent with previous studies. This study will expand the preliminary work done to date in order to improve the 14CO and 14CO2 vacuum extraction techniques, by lowering blank levels and by obtaining more complete separation of 14CO and 14CO2.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "GROUND STATIONS", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Lal, Devendra; Lorius, Claude; Lal, Devendra", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Dome C Ice Core", "south": null, "title": "Nuclear Studies of Accumulating and Ablation Ice Using Cosmogenic 14c", "uid": "p0000152", "west": null}, {"awards": "0087390 Grunow, Anne", "bounds_geometry": "POLYGON((-170 -79,-164 -79,-158 -79,-152 -79,-146 -79,-140 -79,-134 -79,-128 -79,-122 -79,-116 -79,-110 -79,-110 -79.5,-110 -80,-110 -80.5,-110 -81,-110 -81.5,-110 -82,-110 -82.5,-110 -83,-110 -83.5,-110 -84,-116 -84,-122 -84,-128 -84,-134 -84,-140 -84,-146 -84,-152 -84,-158 -84,-164 -84,-170 -84,-170 -83.5,-170 -83,-170 -82.5,-170 -82,-170 -81.5,-170 -81,-170 -80.5,-170 -80,-170 -79.5,-170 -79))", "dataset_titles": "Polar Rock Repository; Rock Magnetic Clast data are at this website", "datasets": [{"dataset_uid": "001970", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Rock Magnetic Clast data are at this website", "url": "http://bprc.osu.edu/"}, {"dataset_uid": "200243", "doi": "", "keywords": null, "people": null, "repository": "PRR", "science_program": null, "title": "Polar Rock Repository", "url": "https://prr.osu.edu/"}], "date_created": "Mon, 23 Aug 2004 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research project between the University of California-Santa Cruz, the University of Texas-Austin, and the Ohio State University to investigate sediment samples recovered from the base of the West Antarctic Ice Sheet (WAIS). West Antarctica is a remote polar region but its dynamic ice sheet, complicated tectonic history, and the sedimentary record of Cenozoic glaciation make it of particular interest to glaciologists and geologists. Glaciologists are concerned with the possibility of significant near-future changes in mass balance of the WAIS that may contribute to the ongoing global sea level rise. Geologists are investigating in West Antarctica the fundamental process of continental extension and are constructing models of a polar marine depositional system using this region as the prime modern example. The subglacial part of West Antarctica has escaped direct geological investigations and all that is known about subglacial geology comes from geophysical remote sensing. Recent acquisitions of new, high-quality geophysical data have led to generation of several enticing models. For instance, subglacial presence of high-magnitude, short-wavelength magnetic anomalies has prompted the proposition that there may be voluminous (\u003e1 million cubic km), Late Cenozoic flood basalts beneath the ice sheet. Another important model suggests that the patterns of fast ice streaming (~100 meters/year) and slow ice motion (~1-10 meters/year) observed within the WAIS are controlled by subglacial distribution of sedimentary basins and resistant bedrock. These new geophysics-based models should be tested with direct observations because they are of such great importance to our understanding of the West Antarctic tectonic history and to our ability to predict the future behavior of the WAIS.\u003cbr/\u003e\u003cbr/\u003eThis research is designed as a pilot study to provide new geologic data, which may help to test the recent models inferred from geophysical observations. The new constraints on subglacial geology and on its interactions with the WAIS will be obtained through petrological and geochemical analyses of basal and subglacial sediments collected previously from seven localities. This investigation will take place in the context of testing the following three hypotheses: (A) the provenance of bedrock clasts in the glacial sediment samples is primarily from West Antarctica, (B) some clasts and muds from the West Antarctic subglacial sediments have been derived by erosion of the (inferred) subglacial Late Cenozoic flood basalts, and (C) the sediments underlying the West Antarctic ice streams were generated by glacial erosion of preglacial sedimentary basins but the sediments recovered from beneath the slow-moving parts of the WAIS were produced through erosion of resistant bedrock.\u003cbr/\u003e\u003cbr/\u003eThe individual hypotheses will be tested by collecting data on: (A) petrology, geochemistry and age of granitoid clasts, (B) petrology, geochemistry and age of basaltic clasts combined with mud geochemistry, and (C) clay mineralogy/paragenesis combined with textural maturity of sand and silt grains. The results of these tests will help evaluate the interesting possibility that subglacial geology may have first-order control on the patterns of fast ice flow within the WAIS. The new data will also help to determine whether the subglacial portion of West Antarctica is a Late Cenozoic flood basalt province. By combining glaciological and geological aspects of West Antarctic research the proposed collaborative project will add to the ongoing U.S. effort to create a multidisciplinary understanding of this polar region.", "east": -110.0, "geometry": "POINT(-140 -81.5)", "instruments": null, "is_usap_dc": false, "keywords": "Till; Subglacial; Clasts; Magnetic Properties; Rock Magnetics; FIELD INVESTIGATION; West Antarctic Ice Sheet", "locations": "West Antarctic Ice Sheet", "north": -79.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Grunow, Anne; Vogel, Stefan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "PI website", "repositories": "PI website; PRR", "science_programs": null, "south": -84.0, "title": "Collaborative Research: Relationship Between Subglacial Geology and Glacial Processes in West Antarctica: Petrological and Geochemical Analyses of Subglacial and Basal Sediments", "uid": "p0000740", "west": -170.0}, {"awards": "0126286 McConnell, Joseph", "bounds_geometry": "POLYGON((-180 -62.83,-144 -62.83,-108 -62.83,-72 -62.83,-36 -62.83,0 -62.83,36 -62.83,72 -62.83,108 -62.83,144 -62.83,180 -62.83,180 -65.547,180 -68.264,180 -70.981,180 -73.698,180 -76.415,180 -79.132,180 -81.849,180 -84.566,180 -87.283,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.283,-180 -84.566,-180 -81.849,-180 -79.132,-180 -76.415,-180 -73.698,-180 -70.981,-180 -68.264,-180 -65.547,-180 -62.83))", "dataset_titles": "Siple Shallow Core Density Data", "datasets": [{"dataset_uid": "609129", "doi": "10.7265/N52F7KCD", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Lamorey, Gregg W.", "repository": "USAP-DC", "science_program": null, "title": "Siple Shallow Core Density Data", "url": "https://www.usap-dc.org/view/dataset/609129"}], "date_created": "Mon, 19 Apr 2004 00:00:00 GMT", "description": "This award provides one year of support to use newly developed technology in which an ice-core melter is coupled with both an Inductively Coupled Plasma - Mass Spectrometer (ICP-MS) and a traditional Continuous Flow Analysis (CFA) system, to measure a continuous time series of chemical and trace element deposition on the Siple Dome ice core from West Antarctica. A coupled ice-core melter, ICP-MS, and CFA system will be used to measure concentrations of a number of elements, isotopes and chemical species at very high depth resolution (~2-cm) in the top 54 m of the Siple Dome A-core. Pilot data from analyses of ~6 m from the nearby but much lower accumulation J-core site at Siple Dome, together with more extensive results from Summit, Greenland, indicate that it will be possible to obtain exactly co-registered, high-quality records of at least 12 seasonally varying elements (sodium, magnesium, aluminum, potassium, calcium, iron, manganese, rubidium, strontium, zirconium, barium, lead) and three other chemical species and ions (ammonium, nitrate, calcium ion) with this system. Under this proposed research, we will also add continuous measurements of sulfate to our system. Because more than sufficient core from Siple Dome for these depths is archived at the National Ice Core Laboratory, the proposed research will require no fieldwork. The continuous, very high-resolution, ~350-y record of these elemental tracers will enhance the value of previous chemical and isotopic measurements that have been made on the Siple Dome core and will be particularly valuable for comparisons between ice-core proxies and modern instrumental data related to El Nino-Southern Oscillation (ENSO) as well as for validation of model simulations of atmospheric circulation. These data, and the expertise gained through this research, will be invaluable when this novel chemical analysis technology is eventually applied to deep ice-core records for the study of rapid climate-change events.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "WAISCORES; Siple Coast; Glaciology; Not provided; GROUND-BASED OBSERVATIONS; Ice Core; Siple; Antarctica; Density; Snow; Ice Sheet; Siple Dome; Shallow Core; GROUND STATIONS; Stratigraphy", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": -62.83, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Lamorey, Gregg W.; McConnell, Joseph", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -90.0, "title": "Continuous High Resolution Ice-Core Chemistry using ICP-MS at Siple Dome", "uid": "p0000159", "west": -180.0}, {"awards": "0087151 Cole-Dai, Jihong", "bounds_geometry": null, "dataset_titles": "Sulfate-Based Volcanic Record from South Pole Ice Core", "datasets": [{"dataset_uid": "609215", "doi": "10.7265/N5CR5R88", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Solid Earth; South Pole", "people": "Cole-Dai, Jihong", "repository": "USAP-DC", "science_program": null, "title": "Sulfate-Based Volcanic Record from South Pole Ice Core", "url": "https://www.usap-dc.org/view/dataset/609215"}], "date_created": "Fri, 09 Apr 2004 00:00:00 GMT", "description": "This award supports a two year project to analyze shallow (~150 m) ice cores from South Pole in order to construct an annually resolved, sulfate-based volcanic record covering the last 1400 years. Two shallow ice cores will be recovered at the South Pole during the 00/01 field season and will be used for this work. Volcanic records from polar ice cores provide valuable information for studies of the connection between volcanism and climate. The new records are expected to be continuous and to cover at least the last 1400 years. The information from these records will verify the volcanic events found in the few existing Antarctic records and resolve discrepancies in the timing and magnitude of major explosive eruptions \u003cbr/\u003edetermined from those earlier records. In order to achieve the objectives of the proposed research, funds are provided to assist with the construction of an analytical laboratory for ice core and environmental \u003cbr/\u003echemistry research.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Ice Core; Snow Chemistry; West Antarctica; GROUND-BASED OBSERVATIONS; Antarctica; Ice Core Gas Records; Ion Chemistry; Ice Core Data", "locations": "West Antarctica; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Cole-Dai, Jihong", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "A Sulfate-based Volcanic Record from South Pole Ice Cores", "uid": "p0000167", "west": null}, {"awards": "9615333 Saltzman, Eric", "bounds_geometry": "POINT(-148.8 -81.7)", "dataset_titles": "Biogenic Sulfur in the Siple Dome Ice Core", "datasets": [{"dataset_uid": "609201", "doi": "10.7265/N5S180F1", "keywords": "Antarctica; Biota; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Saltzman, Eric; Dioumaeva, Irina; Finley, Brandon", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Biogenic Sulfur in the Siple Dome Ice Core", "url": "https://www.usap-dc.org/view/dataset/609201"}], "date_created": "Tue, 09 Mar 2004 00:00:00 GMT", "description": "This award is for support for four years of funding for a program of biogenic sulfur measurements on the Siple Dome ice core. Biogenic sulfur is a major aerosol-forming constituent of the atmosphere and has potentially important links to the earth\u0027s radiation budget. Previous work on the Vostok ice core has demonstrated a remarkable climate-related variability in biogenic sulfur, suggesting that the sulfur cycle may act to stabilize climate (keep the glacial atmosphere cool and the interglacial atmosphere warm) in the Southern Hemisphere. In this study, methane-sulfonate (MSA) will be measured on the Siple Dome ice core as part of the West Antarctic ice sheet program (WAIS). Siple Dome is located in a region which is strongly impacted by the incursion of marine air onto the Antarctic plateau. Because of its proximity to the coast and meteorological setting, it is expected that variability in high-latitude marine biogenic sulfur emissions should dominate the MSA record at this site. In addition to the deep ice core record, samples from shallow cores will also be analyzed to provide information about regional variability and decadal-to-centennial scale variability in the deposition of sulfur-containing aerosols from high latitude source regions over the past 200 years.", "east": -148.8, "geometry": "POINT(-148.8 -81.7)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "FIELD SURVEYS; Siple Dome; GROUND-BASED OBSERVATIONS; Biogenic Sulfur; FIELD INVESTIGATION; Not provided; LABORATORY; Methane Sulfonate", "locations": "Siple Dome", "north": -81.7, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Saltzman, Eric; Dioumaeva, Irina; Finley, Brandon", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.7, "title": "Biogenic Sulfur in the Siple Dome Ice Core", "uid": "p0000251", "west": -148.8}, {"awards": "9980691 Wahlen, Martin", "bounds_geometry": null, "dataset_titles": "Atmospheric CO2 Trapped in the Ice Core from Siple Dome, Antarctica", "datasets": [{"dataset_uid": "609202", "doi": "10.7265/N5N877Q9", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; CO2; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Wahlen, Martin; Ahn, Jinho; Deck, Bruce", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Atmospheric CO2 Trapped in the Ice Core from Siple Dome, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609202"}], "date_created": "Thu, 11 Dec 2003 00:00:00 GMT", "description": "9980691 Wahlen This award is for support for three years of funding to reconstruct the atmospheric carbon dioxide (CO2) and carbon-13 isotope (d13C) concentration in ice cores from Antarctica over several climatic periods. Samples from the Holocene, the Last Glacial Maximum (LGM)-Holocene transition and glacial stadial/interstadial episodes will be examined. Samples from the Siple Dome ice core drilled in 1998/99 will be made, in addition to measurements from the Taylor Dome and Vostok ice cores. The major objectives are to investigate the phase relationships between variations in the concentration of atmospheric CO2, its carbon isotope composition, and temperature changes (indicated by 18dO and dD of the ice) during deglaciations as well as across rapid climate change events (e.g. Dansgaard-Oeschger events). This will help to determine systematic changes in the global carbon cycle during and between different climatic periods, and to ascertain if the widely spread northern hemisphere temperature stadial/interstadial events produced a global atmospheric carbon dioxide signal. Proven experimental techniques will be used.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "FIELD SURVEYS; Siple Dome; Ice Core; USAP-DC; Carbon Dioxide", "locations": "Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Wahlen, Martin; Ahn, Jinho; Deck, Bruce", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "CO2 and Delta 13CO2 in Antarctic Ice Cores", "uid": "p0000166", "west": null}, {"awards": "9420648 Waddington, Edwin", "bounds_geometry": null, "dataset_titles": "Siple Dome Ice Core Age-Depth Scales", "datasets": [{"dataset_uid": "609130", "doi": "10.7265/N5T151KD", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Nereson, Nadine A.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Siple Dome Ice Core Age-Depth Scales", "url": "https://www.usap-dc.org/view/dataset/609130"}], "date_created": "Tue, 09 Sep 2003 00:00:00 GMT", "description": "This award is for support for a three year program to investigate the response of ice domes, such as Siple Dome in West Antarctica, to changing boundary conditions, for example as arising from fluctuations in thickness or position of bounding ice streams. A range of models will be used, from simple one-dimensional analytical models to coupled dynamic-thermodynamic flow models, to investigate the response of the ice dome to boundary forcing, and the record that boundary forcing can leave in the ice core record. Using radar, temperature, and ice core data from the currently funded field programs on Siple Dome, and ice flux and thickness values from the map view model as boundary conditions, a flow line across Siple Dome will be studied and possible ranges of time scales, the likely origin of ice near the bed, and the basal temperature conditions that exist now and existed in the past will be determined.The response of internal stratigraphy patterns to climate and dynamic forcing effects will be investigated and observed internal layers from ice cores will be used to infer the forcing history.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Ice Sheet; Snow; Not provided; Stratigraphy; Shallow Core; Siple Coast; Antarctica; Ice Core; Siple Dome; Glaciology; Density; Siple; WAISCORES; GROUND STATIONS; GROUND-BASED OBSERVATIONS", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Nereson, Nadine A.; Waddington, Edwin D.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Ice Modelling Study of Siple Dome: WAIS Ice Dynamics, WAISCORES Paleoclimate and Ice Stream/Ice Dome Interactions", "uid": "p0000058", "west": null}, {"awards": "9909469 Scambos, Ted", "bounds_geometry": null, "dataset_titles": "Ice Motion and Topography Near Margin Areas of Kamb Ice Stream, Antarctica", "datasets": [{"dataset_uid": "609141", "doi": "10.7265/N5WS8R52", "keywords": "Antarctica; Geodesy; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Kamb Ice Stream", "people": "Scambos, Ted; Raymond, Charles; Gades, Anthony; Conway, Howard; Catania, Ginny", "repository": "USAP-DC", "science_program": null, "title": "Ice Motion and Topography Near Margin Areas of Kamb Ice Stream, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609141"}], "date_created": "Fri, 01 Aug 2003 00:00:00 GMT", "description": "9909469 Scambos This award provides support for three years of funding to study the scar-like features that are well-known from the Siple Coast ice stream system in West Antarctica. The objective of the proposed field work is to identify the nature of several as yet unvisited scars, and to further characterize previously-identified margin scars that are poorly dated. Advanced Very High Resolution Radiometer (AVHRR) and Radarsat image data will be used to locate and map the features, and place them in a regional context. The study seeks to describe the recent history of the Siple Coast glaciers and investigate the causes of their changes in configuration. The main investigative tools will be low-frequency RES and high-frequency ground penetrating radar (GPR) profiles to image internal layers and measure depths to buried crevasses or disrupted layering. This, coupled with accumulation rates determined from shallow ice cores, will provide \"shutdown\" ages for the margin features. The field data will provide input parameters for simple models of ice flow for margins and inter-ice stream ridges during active shearing and after shutdown. This modeling will estimate the initial elevation of a scar at the time of shut down and the corresponding ice stream elevation at that time.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS", "is_usap_dc": true, "keywords": "Ice Velocity; Ice Acceleration; Ice Sheet Elevation; GROUND-BASED OBSERVATIONS; Ice Stream; Antarctic Ice Sheet; Ice Sheet; Ice Surface Elevation; Ice Position; Ice Surface; Ice Stream C Velocities; Ice Movement; Ice; Cryosphere", "locations": "Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Scambos, Ted; Catania, Ginny; Conway, Howard; Gades, Anthony; Raymond, Charles", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: History and Evolution of the Siple Coast Ice Stream System as Recorded by Former Shear-Margin Scars", "uid": "p0000165", "west": null}, {"awards": "9526979 White, James", "bounds_geometry": null, "dataset_titles": "Siple Dome Core Date from Measurement of the d18O of Paleoatmospheric Oxygen", "datasets": [{"dataset_uid": "609123", "doi": "10.7265/N5TX3C95", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "White, James; Bender, Michael", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Siple Dome Core Date from Measurement of the d18O of Paleoatmospheric Oxygen", "url": "https://www.usap-dc.org/view/dataset/609123"}], "date_created": "Mon, 16 Jun 2003 00:00:00 GMT", "description": "This award is for support for a program to measure the stable isotope (deuterium to hydrogen and oxygen-18 to oxygen-16) concentrations of ice cores retrieved from Siple Dome as part of the West Antarctic ice sheet program. In addition, the deuterium excess of samples from the Taylor Dome ice core will be determined. This project will approach the question of rapid climate change using ice cores to determine the history of temperature changes, moisture source changes, and elevational changes in the West Antarctic ice sheet. Results from ice cores taken to date in the interior of Antarctica (East and West) are surprisingly lacking in indications of abrupt climate changes, such as those that have been observed in the GISP2 ice core from Summit, Greenland. This work will address the question of whether rapid climate changes, which are known to have occurred in other parts of the southern hemi-sphere, may have also occurred in the coastal regions of West Antarctica. There is some indication from existing records of isotopes in ice cores that the West Antarctic ice sheet may have flushed ice in the past (as evidenced by large changes in elevation of the ice sheet).", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Antarctica; LABORATORY; WAISCORES; GROUND STATIONS; Siple Coast; Glaciology; Snow; D18O; Isotope; Thermometry; Ice Sheet; Siple; Accumulation; Ice Core; Siple Dome; Stratigraphy; Densification; GROUND-BASED OBSERVATIONS; Not provided", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "White, James; Bender, Michael", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Isotopic Measurements on the WAIS/Siple Dome Ice Cores", "uid": "p0000063", "west": null}, {"awards": "9615347 Conway, Howard", "bounds_geometry": null, "dataset_titles": "Roosevelt Island Bedrock and Surface Elevations; Roosevelt Island Ice Core Density and Beta Count Data", "datasets": [{"dataset_uid": "609139", "doi": "10.7265/N55718ZW", "keywords": "Antarctica; Beta Count; Density; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; Roosevelt Island", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Ice Core Density and Beta Count Data", "url": "https://www.usap-dc.org/view/dataset/609139"}, {"dataset_uid": "609140", "doi": "10.7265/N51J97NB", "keywords": "Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Roosevelt Island; Solid Earth", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Bedrock and Surface Elevations", "url": "https://www.usap-dc.org/view/dataset/609140"}], "date_created": "Fri, 23 May 2003 00:00:00 GMT", "description": "This award is for two years of support to perform radar investigations across former shear margins at Roosevelt Island and Ice Stream C in order to measure changes in the configuration and continuity of internal layers and the bed. The broad goal of these investigations is to gain an understanding of ice stream flow and the timing and mechanisms of ice stream shutdown. A high-resolution short-pulse radar system will be used for detailed examination of the uppermost hundred meters of the firn and ice, and a monopulse sounding-radar system will be used to image the rest of the ice column (including internal layers) and the bed. Changes in the shape and continuity of layers will be used to interpret mechanisms and modes of ice stream flow including the possible migration of stagnation fronts and rates of shut-down. Variations in bed reflectivity will be used to deduce basal hydrology conditions across lineations. Accumulation rates deduced from snow pits and shallow cores will be used to estimate near-surface depth-age profiles. Improved understanding of ice stream history opens the possibility of linking changes in the West Antarctic ice sheet with the geologic evidence from Northern Victoria Land and the ocean record of the retreat of the grounding line in the Ross Sea.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e RA; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Radioactive Decay; Radar Echo Sounder; Antarctica; Radar Altimetry; Densification; Bedrock Elevation; Ice Sheet Elevation; Satellite Radar Data; GROUND-BASED OBSERVATIONS; Radar; Ice Core; Snow Stratigraphy; Terrain Elevation; Antarctic Ice Sheet; Stable Isotopes; Ice Surface Elevation; Surface Elevation; Glaciology; Snow Densification; Ice Core Data; GROUND STATIONS; Not provided; Altimetry; Antarctic; Ice Core Stratigraphy; Ice Stratigraphy", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Conway, Howard", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Radar Investigations of Former Shear Margins: Roosevelt Island and Ice Stream C", "uid": "p0000164", "west": null}, {"awards": "9615554 Fitzpatrick, Joan", "bounds_geometry": null, "dataset_titles": "Digital Images of Thin Sections from Siple Dome; Digital Imaging for Siple Dome Ice Core Analysis, Antarctica", "datasets": [{"dataset_uid": "609127", "doi": "10.7265/N59Z92T4", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Photo/video; Photo/Video; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Fitzpatrick, Joan", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Digital Images of Thin Sections from Siple Dome", "url": "https://www.usap-dc.org/view/dataset/609127"}, {"dataset_uid": "609413", "doi": "10.7265/N5XG9P2G", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Photo/video; Photo/Video; Siple Dome; Siple Dome Ice Core", "people": "Alley, Richard; Spencer, Matthew; Fitzpatrick, Joan", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Digital Imaging for Siple Dome Ice Core Analysis, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609413"}], "date_created": "Wed, 14 May 2003 00:00:00 GMT", "description": "This award is for support for two years to develop the technology and methodology for digitizing the photographs and analyzing the thin sections from ice cores. In addition, the application of digital technology for whole-core stratigraphy, using digital photography, image enhancement and image processing will be investigated. The thin section analysis will be piloted with samples already in hand from the Taylor Dome ice core. If successful, these techniques will be applied to samples from the Siple Dome ice core, in cooperation with Principal Investigators already funded to retrieve and examine these sections. The original digital images with all original data annotation files will be distributed to Siple Dome principal investigators for their use in the interpretation of their own data. All software and hardware acquired for this project will become part of the permanent equipment inventory at the U.S. National Ice Core Laboratory and will be available for use by clients at the facility.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Antarctica; Glaciology; Ice Sheet; Siple; Ice Core; Stratigraphy; GROUND STATIONS; Siple Dome; WAISCORES; Trapped Air Bubbles; Photo; Snow; Density; Volcanic Deposits; Not provided; Ice Core Data; GROUND-BASED OBSERVATIONS; Siple Coast; Chemical Composition", "locations": "Siple Dome; Antarctica; Siple; Siple Coast", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Fitzpatrick, Joan; Alley, Richard; Spencer, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Digital Imaging for Ice Core Analysis", "uid": "p0000011", "west": null}, {"awards": "9527262 Gow, Anthony", "bounds_geometry": null, "dataset_titles": "Physical and Structural Properties of the Siple Dome Ice Cores", "datasets": [{"dataset_uid": "609128", "doi": "10.7265/N5668B34", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Photo/video; Photo/Video; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Meese, Deb; Gow, Tony", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Physical and Structural Properties of the Siple Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609128"}], "date_created": "Wed, 14 May 2003 00:00:00 GMT", "description": "This award is for support for a program to investigate the visual stratigraphy, index physical properties, relaxation characteristics and crystalline structure of ice cores from Siple Dome, West Antarctica. This investigation will include measurements of a time-priority nature that must be initiated at the drill site on freshly-drilled cores. This will be especially true of cores from the brittle ice zone, which is expected to comprise a significant fraction of the ice core. The brittle zone includes ice in which relaxation , resulting from the release of confining pressure is maximized and leads to significant changes in the mechanical condition of the core that must be considered in relation to the processing and analysis of ice samples for entrapped gas and chemical studies. This relaxation will be monitored via precision density measurements made initially at the drill site and repeated at intervals back in the U.S. Other studies will include measurement of the annual layering in the core to as great a depth as visual stratigraphy can be deciphered, crystal size measurements as a function of depth and age, c-axis fabric studies, and analysis of the physical properties of any debris-bearing basal ice and its relationship to the underlying bedrock. Only through careful documentation and analysis of these key properties can we hope to accurately assess the dynamic state of the ice and the age-depth relationships essential to deciphering the paleoclimate record at this location.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Siple Dome; Antarctica; Stratigraphy; Ice Sheet; GROUND-BASED OBSERVATIONS; Density; Siple; Chemical Composition; Volcanic Deposits; Siple Coast; WAISCORES; Not provided; GROUND STATIONS; Pico; Ice Core; Tephra; Fabric; Glaciology; Snow", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Gow, Tony; Meese, Deb", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Physical and Structural Properties of the Siple Dome Core", "uid": "p0000064", "west": null}, {"awards": "9526420 Taylor, Kendrick", "bounds_geometry": null, "dataset_titles": "Siple Dome Cores Electrical Measurement Data", "datasets": [{"dataset_uid": "609133", "doi": "10.7265/N5DR2SDN", "keywords": "Antarctica; Electrical Conductivity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Taylor, Kendrick C.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Siple Dome Cores Electrical Measurement Data", "url": "https://www.usap-dc.org/view/dataset/609133"}], "date_created": "Thu, 08 May 2003 00:00:00 GMT", "description": "This award is for support for the measurement of electrical and optical properties of the Siple Dome ice core. The electrical methods can be used to determine the concentration of the hydrogen ions and the concentration of a weighted sum of all ions. The electrical measurements can resolve features as small as 1 cm. The albedo of the core is also measured with a laser system that can resolve features as small as 0.5 cm. The high spatial resolution of these methods makes them ideal for resolving narrow features in the core, which can be missed in larger composite samples. The measurements will be particularly useful for assisting to date the core and to identify short duration features in the record, such as volcanic eruptions. These measurements will also provide useful information for assessing the temporal variability of Holocene accumulation rate and atmospheric circulation.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Densification; Siple Dome; Glaciology; Snow; Thermometry; WAISCORES; Electrical; Isotope; GROUND STATIONS; GROUND-BASED OBSERVATIONS; Not provided; Ice Sheet; Siple Coast; Ice Core; Siple; Antarctica", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Taylor, Kendrick C.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Electrical and Optical Measurements on the Siple Dome Ice Core", "uid": "p0000163", "west": null}, {"awards": "9526572 Bales, Roger", "bounds_geometry": null, "dataset_titles": "Snow-atmosphere Transfer Function for Reversibly Deposited Chemical Species in West Antarctica", "datasets": [{"dataset_uid": "609122", "doi": "10.7265/N5ZP441W", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Snow/ice; Snow/Ice; WAISCORES", "people": "Bales, Roger; McConnell, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Snow-atmosphere Transfer Function for Reversibly Deposited Chemical Species in West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609122"}], "date_created": "Thu, 11 Jul 2002 00:00:00 GMT", "description": "This award is for support for a program of measurements to improve our understanding of the relationship between formaldehyde (HCHO) and hydrogen peroxide (H2O2) in the atmosphere and the concentrations of the same species in Antarctic snow, firn and ice. This work aims to relate changes in concentrations in the snow, firn and ice to corresponding changes in tropospheric chemistry. Atmospheric and firn sampling for formaldehyde and hydrogen peroxide at one or more of the WAIS ice core drilling sites will be undertaken and controlled laboratory studies to estimate thermodynamic and rate parameters will be performed. In addition, this work will involve modeling of atmosphere-snow exchange processes to infer the \"transfer function\" for reactive species at the sites and atmospheric photochemical modeling to relate changes in concentrations of formaldehyde and hydrogen peroxide in snow, firn and ice to atmospheric oxidation capacity. This work will contribute to a better understanding of the relationship between atmospheric concentrations of various species and those same species measured in snow and ice samples.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Siple Dome; Antarctica; Isotope; WAISCORES; GROUND-BASED OBSERVATIONS; GROUND STATIONS; Snow; Glaciology; LABORATORY; Siple; Siple Coast; Thermometry; Hydrogen Peroxide; Ice Sheet", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bales, Roger; McConnell, Joseph", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Snow-Atmosphere Transfer Function for Reversibly Deposited Chemical Species in West Antarctica", "uid": "p0000060", "west": null}, {"awards": "9526449 Mayewski, Paul", "bounds_geometry": null, "dataset_titles": "WAISCORES Snow Pit Chemistry, Antarctica", "datasets": [{"dataset_uid": "609420", "doi": "10.7265/N5SQ8XBR", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice; Snow Pit; WAIS; WAISCORES", "people": "Kreutz, Karl; Mayewski, Paul A.", "repository": "USAP-DC", "science_program": null, "title": "WAISCORES Snow Pit Chemistry, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609420"}], "date_created": "Thu, 11 Jul 2002 00:00:00 GMT", "description": "This award is for support for a program of glaciochemical analyses of shallow and deep ice cores from Siple Dome, West Antarctica. Measurements that have been proposed include chloride, nitrate, sulfate, calcium, magnesium, sodium, potassium, ammonium and methansulfonic acid. These measurements will provide information about past volcanic events, biomass source strength, sea ice fluctuations, atmospheric circulation, changes in ice-free areas and the environmental response to Earth orbit insolation changes and solar variability. The glaciochemical records from the Siple Dome core will be developed at a resolution sufficient to compare with the Summit, Greenland record, thus allowing a bipolar comparison of climate change event timing and magnitude. As part of this award, an international workshop will be held during the first year to formulate a science plan for the International Transantarctic Scientific Expedition (ITASE), a program of regional surveys documenting the spatial distribution of properties measured in ice cores .", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Ion Chemistry; Antarctic; Snow Chemistry; Stable Isotopes; Snow Density; Siple Dome; GROUND-BASED OBSERVATIONS", "locations": "Antarctic; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Kreutz, Karl; Mayewski, Paul A.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Siple Dome Deep Ice Core Glaciochemistry and Regional Survey - A Contribution to the WAIS Initiative", "uid": "p0000012", "west": null}, {"awards": "9615167 Dunbar, Nelia; 9527373 Dunbar, Nelia", "bounds_geometry": null, "dataset_titles": "Blue Ice Tephra II - Brimstone Peak; Blue Ice Tephra II - Mt. DeWitt; Tephra in Siple and Taylor Dome Ice Cores; Volcanic Records in the Siple and Taylor Dome Ice Cores", "datasets": [{"dataset_uid": "609110", "doi": "10.7265/N50P0WXF", "keywords": "Antarctica; Backscattered Electron Images; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Siple Dome Ice Core; Taylor Dome Ice Core; WAIS", "people": "Dunbar, Nelia", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Tephra in Siple and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609110"}, {"dataset_uid": "609126", "doi": "10.7265/N5FQ9TJG", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome Ice Core; Taylor Dome Ice Core; Tephra; WAIS; WAISCORES", "people": "Zielinski, Gregory; Dunbar, Nelia", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Volcanic Records in the Siple and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609126"}, {"dataset_uid": "609126", "doi": "10.7265/N5FQ9TJG", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome Ice Core; Taylor Dome Ice Core; Tephra; WAIS; WAISCORES", "people": "Zielinski, Gregory; Dunbar, Nelia", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Volcanic Records in the Siple and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609126"}, {"dataset_uid": "609114", "doi": "10.7265/N5MG7MDK", "keywords": "Antarctica; Blue Ice; Brimstone Peak; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Petrography; Tephra", "people": "Dunbar, Nelia", "repository": "USAP-DC", "science_program": null, "title": "Blue Ice Tephra II - Brimstone Peak", "url": "https://www.usap-dc.org/view/dataset/609114"}, {"dataset_uid": "609115", "doi": "10.7265/N5GQ6VPV", "keywords": "Antarctica; Blue Ice; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Mount Dewitt; Petrography; Tephra", "people": "Dunbar, Nelia", "repository": "USAP-DC", "science_program": null, "title": "Blue Ice Tephra II - Mt. DeWitt", "url": "https://www.usap-dc.org/view/dataset/609115"}, {"dataset_uid": "609110", "doi": "10.7265/N50P0WXF", "keywords": "Antarctica; Backscattered Electron Images; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Siple Dome Ice Core; Taylor Dome Ice Core; WAIS", "people": "Dunbar, Nelia", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Tephra in Siple and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609110"}], "date_created": "Sat, 01 Jun 2002 00:00:00 GMT", "description": "Dunbar/Kyle OPP 9527373 Zielinski OPP 9527824 Abstract The Antarctic ice sheets are ideal places to preserve a record the volcanic ash (tephra) layers and chemical aerosol signatures of volcanic eruptions. This record, which is present both in areas of bare blue ice, as well as in deep ice cores, consists of a combination of local eruptions, as well as eruptions from more distant volcanic sources from which glassy shards can be chemically fingerprinted and related to a source volcano. Field work carried out during the 1994/1995 Antarctic field season in the Allan Hills area of Antarctica, and subsequent microbeam chemical analysis and 40Ar/39Ar dating has shown that tephra layers in deep Antarctic ice preserve a coherent, systematic stratigraphy, and can be successfully mapped, dated, chemically fingerprinted and tied to source volcanoes. The combination of chemical fingerprinting of glass shards, and chemical analysis of volcanic aerosols associated with ash layers will allow establishment of a high-resolution chronology of local and distant volcanism that can help understand patterns of significant explosive volcanisms and atmospheric loading and climactic effects associated with volcanic eruptions. Correlation of individual tephra layers, or sets of layers, in blue ice areas, which have been identified in many places the Transantarctic Mountains, will allow the geometry of ice flow in these areas to be better understood and will provide a useful basis for interpreting ice core records.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES", "is_usap_dc": true, "keywords": "USAP-DC; Siple Coast; Sulfur Dioxide; Siple Dome; Taylor Dome; Chlorine; WAISCORES; Ice Core; Tephra; Geochemistry; Volcanic Deposits; GROUND STATIONS; Brimstone Peak; GROUND-BASED OBSERVATIONS; Magnesium Oxide; Glaciology; Mount Dewitt; Silicon Dioxide; Glass Shards; Ice Sheet; Siple; Nickel Oxide; Potassium Dioxide; Not provided; Manganese Oxide; Volcanic; Snow; Nitrogen; Iron Oxide; Titanium Dioxide; Stratigraphy; Antarctica", "locations": "Antarctica; Siple; Siple Coast; Siple Dome; Taylor Dome; Brimstone Peak; Mount Dewitt", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Dunbar, Nelia; Zielinski, Gregory", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": null, "title": "Collaborative Research: Volcanic Record in Antarctic Ice: Implications for Climatic and Eruptive History and Ice Sheet Dynamics of the South Polar Region", "uid": "p0000065", "west": null}, {"awards": "9615292 Wahlen, Martin", "bounds_geometry": null, "dataset_titles": "Carbon-Isotopic Composition of Atmospheric CO2 since the Last Glacial Maximum; Taylor Dome Ice Core Chemistry, Ion, and Isotope Data", "datasets": [{"dataset_uid": "609246", "doi": "", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Paleoclimate; Taylor Dome; Taylor Dome Ice Core", "people": "Brook, Edward J.; Indermuhle, A.; Steig, Eric J.; Mayewski, Paul A.; Smith, Jesse; Sowers, Todd A.", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Taylor Dome Ice Core Chemistry, Ion, and Isotope Data", "url": "https://www.usap-dc.org/view/dataset/609246"}, {"dataset_uid": "609108", "doi": "10.7265/N54F1NN5", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Taylor Dome; Taylor Dome Ice Core", "people": "Wahlen, Martin", "repository": "USAP-DC", "science_program": null, "title": "Carbon-Isotopic Composition of Atmospheric CO2 since the Last Glacial Maximum", "url": "https://www.usap-dc.org/view/dataset/609108"}], "date_created": "Tue, 01 Jan 2002 00:00:00 GMT", "description": "This award is for support of a program to reconstruct the record of atmospheric carbon dioxide (and the carbon-13 isotopes of carbon dioxide) over several intervals, including the Last Glacial Maximum-Holocene transition, interstadial episodes, the mid-Holocene, the last 1000 years and the penultimate glacial period, using ice from the Taylor Dome and Vostok ice cores. The major objective of this study is to investigate the phase relationship between variations of the greenhouse gases occluded in the ice cores and temperature changes (indicated by oxygen and deuterium isotopes) during the last deglaciation. In addition, the concentration of atmospheric carbon dioxide over the past 1000 years and during the mid-Holocene will be determined in these cores.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "USAP-DC; Ice Core; GROUND-BASED OBSERVATIONS; Carbon; Trapped Gases; Glaciology; GROUND STATIONS; Taylor Dome; Carbon Dioxide; Isotope; Antarctica; Nitrogen", "locations": "Antarctica; Taylor Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Steig, Eric J.; Wahlen, Martin; Smith, Jesse; Brook, Edward J.; Indermuhle, A.; Mayewski, Paul A.; Sowers, Todd A.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": null, "title": "Carbon Dioxide and Carbon Isotopes in the Taylor Dome and Vostok Ice Cores", "uid": "p0000153", "west": null}, {"awards": "9316715 Taylor, Susan", "bounds_geometry": null, "dataset_titles": "Micrometeorites from the South Pole Water Well", "datasets": [{"dataset_uid": "609113", "doi": "10.7265/N5R49NQK", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Cosmos; Geochemistry; Meteorite; Scanning Electron Microscope (SEM) Images; South Pole", "people": "Taylor, Susan", "repository": "USAP-DC", "science_program": null, "title": "Micrometeorites from the South Pole Water Well", "url": "https://www.usap-dc.org/view/dataset/609113"}], "date_created": "Tue, 01 Jan 2002 00:00:00 GMT", "description": "9316715 Taylor This award is for support to collect micrometeorites from the bottom of the new water well at South Pole Station, Antarctica. The large volume of firn and ice being melted provides the concentrating mechanism needed to collect large numbers of micrometeorites that occur in low concentrations in the ice. The first task of the project is to design a collection system to retrieve the micrometeorites from the bottom of the water well. The collector must be reliable, easy to operate, must collect all particles larger than 10 mm and should not contaminate the well\u0027s water quality. Following successful design and deployment of the collector, recovered particles will be catalogued and distributed to interested researchers. ***", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e GRABBERS/TRAPS/COLLECTORS \u003e SEDIMENT TRAPS", "is_usap_dc": true, "keywords": "USAP-DC; Micrometeorites; SEM/EMAX; GROUND-BASED OBSERVATIONS; South Pole Water Well; Glass Spherules", "locations": "South Pole Water Well", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Taylor, Susan", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Retrieval and Analysis of Extraterrestrial Particles from the Water Well at the South Pole Station, Antarctica", "uid": "p0000057", "west": null}, {"awards": "9222121 Dalziel, Ian", "bounds_geometry": null, "dataset_titles": "Concentration and Isotopic Composition of O2 and N2 in Trapped Gases of the Vostok Ice Core", "datasets": [{"dataset_uid": "609107", "doi": "10.7265/N5862DCW", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciology; Ice Core Records; Lake Vostok; Paleoclimate; UPLC-Q-TOF; Vostok Ice Core", "people": "Bender, Michael", "repository": "USAP-DC", "science_program": null, "title": "Concentration and Isotopic Composition of O2 and N2 in Trapped Gases of the Vostok Ice Core", "url": "https://www.usap-dc.org/view/dataset/609107"}], "date_created": "Tue, 01 Jan 2002 00:00:00 GMT", "description": "This award supports an in situ and short traverse seismic reflection/refraction and magnetotelluric experiment in West Antarctica. This collaborative experiment involves four awards at four institutions. The four-fold purpose is 1) to investigate part of the Byrd Subglacial Basin, 2) to test techniques for this work that could be done in a long traverse, 3) to determine the viability of the magnetotelluric method on a thick (electrically resistive) ice sheet, and 4) to evaluate the relative merits of refraction with wide reflection versus reflection with narrow refraction seismic studies in imaging the lithosphere. The geophysical techniques that will be employed are capable of imaging the ice sheet, the continental lithosphere, and the upper mantle, as well as determining physical properties of parts of the lithosphere and mantle. Investigations of outcrop geology over the last thirty years in West Antarctica and the Transantarctic Mountains have lead to recent interpretations that the crust is made up of many different lithospheric blocks. Seismic reflection work is the only way to image the crust in detail and the refraction work is the only way to determine physical properties of the layers and blocks defined by the reflection work. The magnetotelluric work is scientifically risky because it may not yield useful information when used over the electrically resistive ice sheet; however, if it works it has the potential to image molten rock in the crust and upper mantle. In a continental rift region such as West Antarctica, the presence of melt in the lithosphere is likely and, if documented, has very important ramifications to ice sheet dynamics. Research work supported by this award is expected to provide constraints to models of a range of crustal processes from models of ice sheet dynamics to tectonic and kinematic models of lithospheric thinning and rifting.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Isotope; Vostok; USAP-DC; Antarctica; Trapped Gases; Ice Core; Glaciology; Nitrogen; GROUND STATIONS", "locations": "Antarctica; Vostok", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bender, Michael; Dalziel, Ian W.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Seismic Traverse of the Byrd Subglacial Basin-Field Test", "uid": "p0000150", "west": null}, {"awards": "9318121 Anandakrishnan, Sridhar", "bounds_geometry": null, "dataset_titles": "Ice Velocity Data from Ice Stream C, West Antarctica", "datasets": [{"dataset_uid": "609106", "doi": "10.7265/N5CZ3539", "keywords": "Antarctica; Geodesy; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; WAIS", "people": "Anandakrishnan, Sridhar", "repository": "USAP-DC", "science_program": null, "title": "Ice Velocity Data from Ice Stream C, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609106"}], "date_created": "Sat, 01 Dec 2001 00:00:00 GMT", "description": "9318121 Anandakrishnan This award is for support for a three year project to test the hypothesis that a controlling parameter of fast ice-stream flow is the hydrologic state of discrete zones of high friction (\"sticky spots\") at the bed of the ice streams. Previous work has discovered an enormous difference in basal microearthquake activity between fast-flowing ice stream B and ice stream C, which stopped flowing within the last 200 years. It is hypothesized that the basal water system is lubricating the sticky spots under the fast ice stream and thus inhibiting microearthquake activity, and at the same time permitting fast ice flow. This experiment is intended to collect a continuous record of wide-bandwidth microearthquake data from a variety of sites, on the ice streams, in the transition zone, and on the inland ice. ***", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS", "is_usap_dc": true, "keywords": "Glaciology; USAP-DC; Ice Stream; Velocity Measurements; Ice Velocity; GROUND-BASED OBSERVATIONS; Ice Sheet; West Antarctic Ice Sheet; Ice Stream C Velocities; GPS; Antarctica", "locations": "Antarctica; West Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Anandakrishnan, Sridhar", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Microearthquake Monitoring of Ice Stream C, West Antarctica: A Sensor for Sticky Spots", "uid": "p0000161", "west": null}, {"awards": "9526601 Albert, Mary", "bounds_geometry": null, "dataset_titles": "Snow and Firn Temperature and Permeability Measurements from Siple Dome, Antarctica", "datasets": [{"dataset_uid": "609100", "doi": "10.7265/N5S46PVZ", "keywords": "Antarctica; Glaciology; Permeability; Siple Dome; Siple Dome Ice Core; Snow/ice; Snow/Ice; Temperature", "people": "Albert, Mary R.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Snow and Firn Temperature and Permeability Measurements from Siple Dome, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609100"}], "date_created": "Sat, 01 Dec 2001 00:00:00 GMT", "description": "This award supports a project to examine the physical processes that affect the manner in which heat, vapor and chemical species in air are incorporated into snow and polar firn. The processes include advection, diffusion, and the effects of solar radiation penetration into the snow. An understanding of these processes is important because they control the rate at which reactive and non-reactive chemical species in the atmosphere become incorporated into the snow, firn, and polar ice, and thus will affect interpretation of polar ice core data. Currently, the interpretation of polar ice core data assumes that diffusion controls the rate at which chemical species are incorporated into firn. This project will determine whether ventilation, or advection of the species by air movement in the firn, and radiation penetration processes have a significant effect. Field studies at the two West Antarctic ice sheet deep drilling sites will be conducted to determine the spatial and temporal extent for key parameters, and boundary conditions needed to model the advection, conduction, and radiation transmission/absorption processes. An existing multidimensional numerical model is being expanded to simulate the processes and to serve as the basis for ongoing and future work in transport and distribution of reactive chemical species.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e PERMEAMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS", "is_usap_dc": true, "keywords": "Glaciology; Antarctica; Snow Permeability; Firn Permeability; USAP-DC; GROUND-BASED OBSERVATIONS; Not provided; GROUND STATIONS; Snow Properties; Snow Temperature; Siple Dome; Firn Temperature", "locations": "Antarctica; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Albert, Mary R.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Near-Surface Processes Affecting Gas Exchange: West Antarctic Ice Sheet", "uid": "p0000061", "west": null}, {"awards": "9725305 Severinghaus, Jeffrey", "bounds_geometry": null, "dataset_titles": "Firn Air Isotope and Temperature Measurements from Siple Dome and South Pole", "datasets": [{"dataset_uid": "609098", "doi": "10.7265/N51N7Z2P", "keywords": "Antarctica; Atmosphere; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciology; Isotope; Paleoclimate; Siple Dome; Snow/ice; Snow/Ice; South Pole; Temperature", "people": "Grachev, Alexi; Battle, Mark; Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Firn Air Isotope and Temperature Measurements from Siple Dome and South Pole", "url": "https://www.usap-dc.org/view/dataset/609098"}], "date_created": "Mon, 01 Jan 2001 00:00:00 GMT", "description": "9725305 Severinghaus This award supports a project to develop and apply a new technique for quantifying temperature changes in the past based on the thermodynamic principle of thermal diffusion, in which gas mixtures in a temperature gradient become fractionated. Air in polar firn is fractionated by temperature gradients induced by abrupt climate change, and a record of this air is preserved in bubbles in the ice. The magnitude of the abrupt temperature change, the precise relative timing, and an estimate of the absolute temperature change can be determined. By providing a gas-phase stratigraphic marker of temperature change, the phasing of methane (with decadal precision) and hence widespread climate change (relative to local polar temperature changes) can be determined (across five abrupt warming events during the last glacial period).", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e FLASKS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS", "is_usap_dc": true, "keywords": "Isotopic History; GROUND STATIONS; Thermal Diffusion; Firn Temperature Measurements; Not provided; Oxygen Isotope; Trapped Air Bubbles; Shallow Firn Air; Firn Air Isotope Measurements; Seasonal Temperature Gradients; Mass Spectrometry; GROUND-BASED OBSERVATIONS; Thermal Fractionation; Polar Firn Air; Isotopic Anomalies; Xenon; Atmospheric Gases; Argon Isotopes; Siple Dome; Krypton; Nitrogen Isotopes; Seasonal Temperature Changes; Antarctica; Ice Core Gas Records; Firn Air Isotopes; Mass Spectrometer; South Pole; Firn Isotopes; Borehole", "locations": "Antarctica; Siple Dome; South Pole", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Battle, Mark; Grachev, Alexi; Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Thermal Fractionation of Firn Air and the Ice Core Record of Abrupt Interstadial Climate Change", "uid": "p0000160", "west": null}, {"awards": "0537827 Lazzara, Matthew", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Access Antarctic NOAA Polar Orbiting AVHRR HRPT GAC and LAC images.; Access Arrival Heights Meteorological Observations; Access Building 189 Meteorological Observations; Access Building 69 Meteorological Observations; Access Building 71 Meteorological Observations; Access McMurdo Meteorological Observations; Access Neumayer Meteorological Observations; Access Palmer Meteorological Observations; Access South Pole Meteorological Observations", "datasets": [{"dataset_uid": "001294", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Building 71 Meteorological Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/mcmurdo/building71/"}, {"dataset_uid": "001292", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Building 189 Meteorological Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/mcmurdo/building189/"}, {"dataset_uid": "001298", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access South Pole Meteorological Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/southpole/surface_observations/"}, {"dataset_uid": "001291", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Arrival Heights Meteorological Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/mcmurdo/arrivalheights/"}, {"dataset_uid": "001287", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Antarctic NOAA Polar Orbiting AVHRR HRPT GAC and LAC images.", "url": "ftp://amrc.ssec.wisc.edu"}, {"dataset_uid": "001295", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access McMurdo Meteorological Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/mcmurdo/climatology/"}, {"dataset_uid": "001296", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Neumayer Meteorological Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/neumayer/"}, {"dataset_uid": "001297", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Palmer Meteorological Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/palmer/observations/"}, {"dataset_uid": "001293", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Building 69 Meteorological Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/mcmurdo/building69/"}], "date_created": "Thu, 12 Oct 2000 00:00:00 GMT", "description": "This proposed work is the continued operation of the Antarctic Meteorological Research Center (AMRC) for three years through 2009. AMRC is a meteorological data acquisition and management system with nodes at McMurdo Station and at the University of Wisconsin, Madison. The system is a resource and archive for meteorological research and a test bed for improving operational synoptic forecasting. Its basis is a computer-based system for organizing, manipulating, and integrating antarctic environmental data, developed by the University of Wisconsin. It captures the flow of meteorological information from polar orbiting satellites, automatic weather stations, operational station synoptic observations, and research project data, producing a mosaic of antarctic satellite images on an operational basis. It also receives environmental data products, such as weather forecasts, from outside Antarctica, and acts as a repository for existing archived databases. The AMRC provides customized weather and climate information for a variety of antarctic users, including aircraft and ship operations of the US Antarctic Program. Currently the AMRC produces the Antarctic Composite Infrared Image, a mosaic of images from four geostationary and three polar-orbiting satellites, which is used for both forecasting and research purposes. In the current time period, AMRC will develop a data exploration/classification toolkit based on self-organizing maps to produce a new, satellite-based antarctic cloud climatology for regions. The AMRC will also be at the center of the evolving Antarctic-Internet Data Distribution (Antarctic-IDD) system, a reliable and formalized means of sharing and distributing Antarctic data among operational and research users. \u003cbr/\u003e***", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e AVHRR", "is_usap_dc": false, "keywords": "NOAA-14; FIXED OBSERVATION STATIONS; Antarctica; Not provided; Satellite Imagery; NOAA-15; Noaa Avhrr Lac; NOAA-12; Observation Data", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew; Costanza, Carol; Snarski, Joey", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e POLAR ORBITING ENVIRONMENTAL SATELLITES (POES) \u003e NOAA-12; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e POLAR ORBITING ENVIRONMENTAL SATELLITES (POES) \u003e NOAA-14; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e POLAR ORBITING ENVIRONMENTAL SATELLITES (POES) \u003e NOAA-15", "repo": "AMRDC", "repositories": "AMRDC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Antarctic Meteorological Research Center (2006-2009)", "uid": "p0000280", "west": -180.0}, {"awards": "9316338 Jacobel, Robert", "bounds_geometry": null, "dataset_titles": "Siple Dome Glaciology and Ice Stream History 1994, 1996", "datasets": [{"dataset_uid": "609085", "doi": "10.7265/N5Z31WJQ", "keywords": "Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Sample/collection Description; Sample/Collection Description; Siple Dome; Siple Dome Ice Core", "people": "Jacobel, Robert", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Siple Dome Glaciology and Ice Stream History 1994, 1996", "url": "https://www.usap-dc.org/view/dataset/609085"}], "date_created": "Fri, 01 Jan 1999 00:00:00 GMT", "description": "9316338 Jacobel This award is for support for a program of glaciological studies of Siple Dome and its surroundings between Ice Streams C and D. The purpose of the work is to characterize the dynamic environment and ice stratigraphy to aid in the assessment of Siple Dome as a potential deep ice core site, and to determine whether the configuration of ice stream flow in the region was different in the past than now. The work involves measurements of the configuration and continuity of internal layers in the ice, using radar echo sounding and determination of velocity field, based on standard GPS surveying. The goals of the work are relevant to understanding the dynamics of the West Antarctic Ice Sheet (WAIS), its past history and its potential future behavior, including possible effects on global sea level. This work is a collaborative project between the University of Washington, the University of Colorado and St. Olaf College. ***", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR", "is_usap_dc": true, "keywords": "Siple Dome; Antarctic; Glaciology; Radar; GROUND-BASED OBSERVATIONS; Ice Stream", "locations": "Antarctic; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Jacobel, Robert", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Siple Dome Glaciology and Ice Stream History", "uid": "p0000190", "west": null}, {"awards": "9526374 Alley, Richard", "bounds_geometry": null, "dataset_titles": "Visible Stratigraphic Dating, Siple Dome and Upstream C Cores", "datasets": [{"dataset_uid": "609121", "doi": "10.7265/N53F4MHS", "keywords": "Antarctica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Sample/collection Description; Sample/Collection Description; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Alley, Richard", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Visible Stratigraphic Dating, Siple Dome and Upstream C Cores", "url": "https://www.usap-dc.org/view/dataset/609121"}], "date_created": "Wed, 01 Jan 1997 00:00:00 GMT", "description": "This award is for support for a program of physical and visible studies on the shallow and deep ice cores to be retrieved from Siple Dome, West Antarctica. Visible examination of ice cores has proven to be a powerful technique for dating and paleoclimatic interpretation. Recent examination of a shallow core from Siple Dome indicates that annual-layer dating is possible and that visible examination will contribute significantly to the dating effort at Siple Dome. Once ages are obtained, distances between layers provide snow accumulation after correction for density variations and ice flow thinning. Thin- section examination of the core will contribute to understanding the visible stratigraphy, and will reveal c-axis fabrics which are related to past ice deformation. The results of this study should include a better understanding of rapid climate change in the Antarctic and should contribute to knowledge of the stability of the West Antarctic ice sheet.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Ice Core; GROUND-BASED OBSERVATIONS; Siple; Ice Sheet; Isotope; Stratigraphy; GROUND STATIONS; Accumulation; Siple Dome; WAISCORES; Densification; Antarctica; Siple Coast; Thermometry; Snow; Not provided; Bubble; Glaciology", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Alley, Richard", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Physical Properties of the Siple Dome Deep Ice Core", "uid": "p0000059", "west": null}, {"awards": "0838834 Lazzara, Matthew", "bounds_geometry": "POLYGON((-180 -62.83,-144 -62.83,-108 -62.83,-72 -62.83,-36 -62.83,0 -62.83,36 -62.83,72 -62.83,108 -62.83,144 -62.83,180 -62.83,180 -65.547,180 -68.264,180 -70.981,180 -73.698,180 -76.415,180 -79.132,180 -81.849,180 -84.566,180 -87.283,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.283,-180 -84.566,-180 -81.849,-180 -79.132,-180 -76.415,-180 -73.698,-180 -70.981,-180 -68.264,-180 -65.547,-180 -62.83))", "dataset_titles": "Access all real-time datasets; Access Antarctic Composite Images.; Access Antarctic Synoptic and METAR Observations.; Access McMurdo Radiosonde Observations; Access South Pole Radiosonde Observations; Archived METAR observational data; We have observations from three ships near Antarctica, the R/V Polar Duke the R/V Nathaniel B. Palmer and the R/V Laurence M. Gould. Data from 23 August 1993 are available via ftp and the files are updated with the most recent observations every 7-10 days as we receive the information. The AMRC has been archiving general ship and buoy observational data for the Antarctic and surrounding regions since 2 December 1998.", "datasets": [{"dataset_uid": "001285", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Antarctic Composite Images.", "url": "http://amrc.ssec.wisc.edu/data/view-data.php?action=list\u0026amp;amp;product=satellite/composite"}, {"dataset_uid": "001288", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access South Pole Radiosonde Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/southpole/radiosonde/"}, {"dataset_uid": "001289", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access McMurdo Radiosonde Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/mcmurdo/radiosonde/"}, {"dataset_uid": "001290", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "We have observations from three ships near Antarctica, the R/V Polar Duke the R/V Nathaniel B. Palmer and the R/V Laurence M. Gould. Data from 23 August 1993 are available via ftp and the files are updated with the most recent observations every 7-10 days as we receive the information. The AMRC has been archiving general ship and buoy observational data for the Antarctic and surrounding regions since 2 December 1998.", "url": "ftp://amrc.ssec.wisc.edu/pub/shipobs/"}, {"dataset_uid": "001299", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Antarctic Synoptic and METAR Observations.", "url": "ftp://amrc.ssec.wisc.edu/"}, {"dataset_uid": "001300", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access all real-time datasets", "url": "http://amrc.ssec.wisc.edu/"}, {"dataset_uid": "001382", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Antarctic Synoptic and METAR Observations.", "url": "ftp://amrc.ssec.wisc.edu"}, {"dataset_uid": "001386", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Archived METAR observational data", "url": "ftp://amrc.ssec.wisc.edu/archive/"}], "date_created": "Thu, 01 Jan 1970 00:00:00 GMT", "description": "Abstract\u003cbr/\u003e\u003cbr/\u003eThe Antarctic Meteorological Research Center (AMRC), located at the University of Wisconsin, Madison, serves several communities by maintaining and extending the stewardship of meteorological data pertinent to the Antarctic continent, its surrounding islands, ice sheets and ice margins and the adjacent Southern Ocean. This data will continue to be made freely available to interested researchers and the general public. Activities of particular interest for the current award include the development of an enhanced data portal to provide improved data and analysis tools to the research community, and to continue to add to the evolution of the Antarctic-Internet Data Distribution system, which is meant to overcome the costly and generally low bandwidth internet connectivity to and from the Antarctic continent. Operational forecasting for logistical activities in the Antarctic, as well as active Antarctic meteorological research programs, are clearly in need of a dependable, steady flow of meteorological observations, model output, and related data in what must be a collaborative environment in order to overcome the otherwise distributed nature of Antarctic meteorological and climatological observations.\u003cbr/\u003e\u003cbr/\u003eAMRC interaction with the public through answering e-mail questions, giving informal public lectures and presentations to K-12 education institutions through visits to schools will help to raise science literacy with regards to meteorology and of the Antarctic and polar regions. \u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\"This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\"", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e AVHRR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e GOES I-M IMAGER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e OLS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e VISSR; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e BAROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e WET BULB THERMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADIOSONDES; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e AMSU-A; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e AVHRR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e HIRS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e HIRS/2; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e MSU; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e TOVS", "is_usap_dc": false, "keywords": "Shortwave Composite Satellite Images; Radiosonde Data; Antarctic; Noaa Hrpt Raw Data; Synoptic Data; Water Vapor Composite Satellite Images; SATELLITES; Satellite Imagery; Infrared Imagery; NOAA POES; Visible Composite Satellite Images; BUOYS; Antarctica; Ship/buoy Data; FIXED OBSERVATION STATIONS; Longwave Composite Satellite Images; Not provided; COASTAL STATIONS; Metar Weather Observations", "locations": "Antarctic; Antarctica", "north": -62.83, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew; Costanza, Carol", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e COASTAL STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e POLAR ORBITING ENVIRONMENTAL SATELLITES (POES) \u003e NOAA POES; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED \u003e BUOYS", "repo": "AMRDC", "repositories": "AMRDC", "science_programs": null, "south": -90.0, "title": "Antarctic Meteorological Research Center (2009-2011)", "uid": "p0000264", "west": -180.0}, {"awards": "0636873 Lazzara, Matthew", "bounds_geometry": "POLYGON((-71 85,-65.8 85,-60.6 85,-55.4 85,-50.2 85,-45 85,-39.8 85,-34.6 85,-29.4 85,-24.2 85,-19 85,-19 82.5,-19 80,-19 77.5,-19 75,-19 72.5,-19 70,-19 67.5,-19 65,-19 62.5,-19 60,-24.2 60,-29.4 60,-34.6 60,-39.8 60,-45 60,-50.2 60,-55.4 60,-60.6 60,-65.8 60,-71 60,-71 62.5,-71 65,-71 67.5,-71 70,-71 72.5,-71 75,-71 77.5,-71 80,-71 82.5,-71 85))", "dataset_titles": "Access data.", "datasets": [{"dataset_uid": "001302", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access data.", "url": "ftp://amrc.ssec.wisc.edu"}], "date_created": "Thu, 01 Jan 1970 00:00:00 GMT", "description": "This is a three-year project to maintain and augment as necessary, the network of approximately fifty automatic weather stations established on the antarctic continent and on several surrounding islands. These weather stations measure surface wind, pressure, temperature, humidity, and in some instances other atmospheric variables, such as snow accumulation and incident solar radiation, and report these via satellite to a number of ground stations. The data are used for operational weather forecasting in support of the United States Antarctic program, for global forecasting through the WMO Global Telecommunications System, for climatological records, and for research purposes. The AWS network, which began as a small-scale program in 1980, has been extremely reliable and has proven indispensable for both forecasting and research purposes.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e GAUGES \u003e ADG; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e BAROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HUMIDITY SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e SNOWPACK TEMPERATURE PROBE; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e RADIO \u003e ARGOS", "is_usap_dc": false, "keywords": "Automated Weather Station; FIXED OBSERVATION STATIONS; Antarctica; AWS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew; Costanza, Carol", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS", "repo": "AMRDC", "repositories": "AMRDC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Antarctic Automatic Weather Station Program: 2007-2010", "uid": "p0000284", "west": -180.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
The Results Map and the Results Table
The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
As the map is panned or zoomed, the highlighted rows in the table will update.
If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page.
The bounds for the project(s)/dataset(s) selected will be displayed in red.
The selected result(s) will be highlighted in red and brought to the top of the table.
The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds
and highlight the centroid on the Results Map.
Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other
search criteria already selected.
After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
Clicking Clear in the map will clear any drawn polygon.
Clicking Search in the map, or Search on the form will have the same effect.
The returned results will be any projects/datasets with bounds that intersect the polygon.
Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Goodge, John; Kylander-Clark, Andrew; Bell, Elizabeth; Pecha, Mark
No dataset link provided
Non-Technical Abstract This project will examine ancient Antarctic rocks to understand the continent’s early history, including how Antarctica was once connected to other continents. By studying rock samples from the Nimrod Complex, the project will gather data on the age and makeup of these rocks, showing how Antarctica's crust formed and changed over time. This work will not only expand scientific knowledge about Earth's history but also provide valuable training for college students at multiple universities, helping to grow a diverse community of researchers who can tackle big questions in Earth science. Technical Abstract This project seeks to unravel the origin, evolution, and geological significance of the Nimrod Complex in Antarctica’s East Antarctic craton through detailed age and isotopic analysis of its igneous and metamorphic rocks. Using U-Pb zircon geochronology along with O-isotope, Hf-isotope, and trace element analyses, we will construct a comprehensive petrochronological profile of these Mesoarchean to Paleoproterozoic rocks to reveal their magmatic sources, metamorphic history, and role in the broader tectonic framework. The project aims to trace sediment sources and tectonic influences across sedimentary units spanning the Paleoproterozoic to lower Paleozoic eras, adding crucial data to supercontinent reconstructions (Columbia, Rodinia, and Gondwana) and Antarctic tectonic models. Broader impacts include collaborations between universities to develop a diverse STEM workforce, inter-laboratory partnerships, and a robust isotopic dataset that will contribute to models of Antarctic crustal evolution and its implications for ice sheet stability. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
General Description: This project is intended to reveal the magma source regions, staging areas, and eruptive pathways within the active volcano Mount Erebus. This volcano is an end-member type known as phonolitic, which refers to the lava composition, and is almost purely carbon-dioxide-bearing and occurs in continental rift settings. It is in contrast to the better known water-bearing volcanoes which occur at plate boundary settings (such as Mount St Helens or Mount Fuji). Phonolitic volcanic eruptions elsewhere such as Tamboro or Vesuvius have caused more than 50,000 eruption related fatalities. Phonolites are also associated with rare earth element deposits, giving them economic interest. To illuminate the inner workings of Mount Erebus, we will cover the volcano with a dense network of geophysical probes based on magnetotelluric (MT) measurements. MT makes use of naturally occurring electromagnetic (EM) waves generated mainly by the sun as sources to provide images of the electrical conductivity structure of the Earth's interior. Conductivity is sensitive to the presence of fluids and melts in the Earth and so is well suited to understanding volcanic processes. The project is a cooperative effort between scientists from the United States, New Zealand, Japan and Canada. It implements new technology developed by the lead investigator and associates that allows such measurements to be taken on snow-covered terrains. This has applicability for frozen environments generally, such as resource exploration in the Arctic. The project supports a new post-doctoral researcher, and leverages imaging and measurement methods developed through support by other agencies and interfaced with commercial platforms. Technical Description: The investigators propose to test magmatic evolution models for Mount Erebus volcano, Antarctica, using the magnetotelluric (MT) method. The phonolite lava flow compositions on Mount Erebus are uncommon, but provide a window into the range of upper mantle source compositions and melt differentiation paths. Explosive phonolite eruptions have been known worldwide for devastating eruptions such as Tambora and Vesuvius, and commonly host rare earth element deposits. In the MT method, temporal variations in the Earth's natural electromagnetic (EM) field are used as source fields to probe the electrical resistivity structure in the depth range of 1 to 100 kilometers. This effort will consist of approximately 100 MT sites, with some concentration in the summit area. Field acquisition will take place over two field seasons. The main goals are to 1) confirm the existence and the geometry of the uppermost magma chamber thought to reside at 5-10 kilometer depths; 2) attempt to identify, in the deeper resistivity structure, the magma staging area near the crust-mantle boundary; 3) image the steep, crustal-scale, near-vertical conduit carrying magma from the mantle; 4) infer the physical and chemical state from geophysical properties of a CO2-dominated mafic shield volcano; and 5) constrain the relationships between structural and magmatic/ hydrothermal activity related to the Terror Rift. Tomographic imaging of the interior resistivity will be performed using a new inversion platform developed at Utah, based on the deformable edge finite element method, that is the best available for accommodating the steep topography of the study area. The project is an international cooperation between University of Utah, GNS Science Wellington New Zealand (G. Hill, Co-I), and Tokyo Institute of Technology Japan (Y. Ogawa, Co-I), plus participation by University of Alberta (M. Unsworth) and Missouri State University (K. Mickus). Instrument deployments will be made exclusively by helicopter. The project implements new technology that allows MT measurements to be taken on snow-covered terrains. The project supports a new post-doctoral researcher, and leverages imaging and measurement methods developed through support by other agencies and interfaced with commercial platforms.
Non-technical Abstract The McMurdo Dry Valleys LTER seeks to understand how changes in the temporal variability of ecological connectivity interact with existing landscape legacies to alter the structure and functioning of this extreme polar desert ecosystem. This research has broad implications, as it will help us to understand how natural ecosystems respond to ongoing anthropogenic global change. At the same time, this project also serves an important educational and outreach function, providing immersive research and educational experiences to students and artists from diverse backgrounds, and helping to ensure a diverse and well-trained next generation of leaders in polar ecosystem science and stewardship. Ultimately, the results of this project will help us to better understand and prepare for the effects of climate change and develop scientific insights that are relevant far beyond Antarctic ecosystems. The McMurdo Dry Valleys (MDVs) make up an extreme polar desert ecosystem in the largest ice-free region of Antarctica. The organisms in this ecosystem are generally small. Bacteria, microinvertebrates, cyanobacterial mats, and phytoplankton can be found across the streams, soils, glaciers, and ice-covered lakes. These organisms have adapted to the cold and arid conditions that prevail outside of lakes for all but a brief period in the austral summer when the ecosystem is connected by liquid water. In the summer when air temperatures rise barely above freezing, soils warm and glacial meltwater flows through streams into the open moats of lakes. Most biological activity across the landscape occurs in summer. Through the winter, or polar night (6 months of darkness), glaciers, streams, and soil biota are inactive until sufficient light, heat, and liquid water return, while lake communities remain active all year. Over the past 30 years, the MDVs have been disturbed by cooling, heatwaves, floods, rising lake levels, as well as permafrost and lake ice thaw. Considering the clear ecological responses to this variation in physical drivers, and climate models predicting further warming and more precipitation, the MDV ecosystem sits at a threshold between the current extreme cold and dry conditions and an uncertain future. This project seeks to determine how important the legacy of past events and conditions versus current physical and biological interactions shape the current ecosystem. Four hypotheses will be tested, related to 1) whether the status of specific organisms are indicative ecosystem stability, 2) the relationship between legacies of past events to current ecosystem resilience (resistance to big changes), 3) carryover of materials between times of high ecosystem connectivity and activity help to maintain ecosystem stability, and 4) changes in disturbances affect how this ecosystem persists through the annual polar night (i.e., extended period of dark and cold). Technical Abstract In this iteration of the McMurdo LTER project (MCM6), the project team will test ecological connectivity and stability theory in a system subject to strong physical drivers (geological legacies, extreme seasonality, and contemporary climate change) and driven by microbial organisms. Since microorganisms regulate most of the world’s critical biogeochemical functions, these insights will be relevant far beyond polar ecosystems and will inform understanding and expectations of how natural and managed ecosystems respond to ongoing anthropogenic global change. MCM6 builds on previous foundational research, both in Antarctica and within the LTER network, to consider the temporal aspects of connectivity and how it relates to ecosystem stability. The project will examine how changes in the temporal variability of ecological connectivity interact with the legacies of the existing landscape that have defined habitats and biogeochemical cycling for millennia. The project team hypothesizes that the structure and functioning of the MDV ecosystem is dependent upon legacies and the contemporary frequency, duration, and magnitude of ecological connectivity. This hypothesis will be tested with new and continuing monitoring, experiments, and analyses of long-term datasets to examine: 1) the stability of these ecosystems as reflected by sentinel taxa, 2) the relationship between ecological legacies and ecosystem resilience, 3) the importance of material carryover during periods of low connectivity to maintaining biological activity and community stability, and 4) how changes in disturbance dynamics disrupt ecological cycles through the polar night. Tests of these hypotheses will occur in field and modeling activities using new and long-term datasets already collected. New datasets resulting from field activities will be made freely available via widely-known online databases (MCM LTER and EDI). The project team has also developed six Antarctic Core Ideas that encompass themes from data literacy to polar food webs and form a consistent thread across the education and outreach activities. Building on past success, collaborations will be established with teachers and artists embedded within the science teams, who will work to develop educational modules with science content informed by direct experience and artistic expression. Undergraduate mentoring efforts will incorporate computational methods through a new data-intensive scientific training program for MCM REU students. The project will also establish an Antarctic Research Experience for Community College Students at CU Boulder, to provide an immersive educational and research experience for students from diverse backgrounds in community colleges. MCM LTER will continue its mission of training and mentoring students, postdocs, and early career scientists as the next generation of leaders in polar ecosystem science and stewardship. Historically underrepresented participation will be expanded at each level of the project. To aid in these efforts, the project has established Education & Outreach and Diversity, Equity, and Inclusion committees to lead, coordinate, support, and integrate these activities through all aspects of MCM6. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Antarctic Automatic Weather Station (AWS) network, first commenced in 1978, is the most extensive meteorological observing system on the Antarctic continent, approaching its 30th year at many of its key sites. Its prime focus as a long term observational record is vital to the measurement of the near surface climatology of the Antarctic atmosphere. AWS units measure air-temperature, pressure, wind speed and direction at a nominal surface height of 3m. Other parameters such as relative humidity and snow accumulation may also be taken. Observational data from the AWS are collected via the DCS Argos system aboard either NOAA or MetOp polar orbiting satellites and thus made available globally, in near real time via the GTS (Global Telecommunications System), to operational and synoptic weather forecasters. The surface observations from the AWS network also are often used to check on satellite and remote sensing observations, and the simulations of Global Climate Models (GCMs). Research instances of its use in this project include continued development of the climatology of the Antarctic atmosphere and surface wind studies of the Ross Ice Shelf. The AWS observations benefit the broader earth system science community, supporting research activities ranging from paleoclimate studies to penguin phenology.
1. A non-technical explanation of the project's broader significance and importance, that serves as a public justification for NSF funding. This part should be understandable to an educated reader who is not a scientist or engineer. Katabatic or drainage winds, carry high-density air from a higher elevation down a slope under the force of gravity. Although katabatic flows are ubiquitous in alpine and polar regions, a surface-layer similarity theory is currently lacking for these flows, undermining the accuracy of numerical weather and climate prediction models. This project is interdisciplinary, and will give graduate and undergraduate students valuable experience interacting with researchers outside their core discipline. Furthermore, this project will broaden participating in science through recruitment of students from under-represented groups at OU and CU through established programs. The Antarctic Ice Sheet drives many processes in the Earth system through its modulation of regional and global atmospheric and oceanic circulations, storage of fresh water, and effects on global albedo and climate. An understanding of the surface mass balance of the ice sheets is critical for predicting future sea level rise and for interpreting ice core records. Yet, the evolution of the ice sheets through snow deposition, erosion, and transport in katabatic winds (which are persistent across much of the Antarctic) remains poorly understood due to the lack of an overarching theoretical framework, scarcity of in situ observational datasets, and a lack of accurate numerical modeling tools. Advances in the fundamental understanding and modeling capabilities of katabatic transport processes are urgently needed in view of the future climatic and snowfall changes that are projected to occur within the Antarctic continent. This project will leverage the expertise of a multidisciplinary team of investigators (with backgrounds spanning cryospheric science, environmental fluid mechanics, and atmospheric science) to address these knowledge gaps. 2. A technical description of the project that states the problem to be studied, the goals and scope of the research, and the methods and approaches to be used. In many cases, the technical project description may be a modified version of the project summary submitted with the proposal. Using field observations and direct numerical simulations of katabatic flow, this project is expected--- for the first time---to lead to a surface-layer similarity theory for katabatic flows relating turbulent fluxes to mean vertical gradients. The similarity theory will be used to develop surface boundary conditions for large eddy simulations (LES), enabling the first accurate LES of katabatic flow. The numerical tools that the PIs will develop will allow them to investigate how the partitioning between snow redistribution, transport, and sublimation depends on the environmental parameters typically encountered in Antarctica (e.g. atmospheric stratification, surface sloping angles, and humidity profiles), and to develop simple models to infer snow transport based on satellite remote sensing and regional climate models This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The goal of this project is to drill and recover an ice core from Hercules Dome, Antarctica. The geographic setting of Hercules Dome makes it well-situated to investigate changes in the size of the West Antarctic ice sheet over long time periods. The base of the West Antarctic ice sheet lies below sea level, which makes this part of Antarctica vulnerable to melting from the relatively warm deep water of the Southern Ocean. An important research question is whether the West Antarctic Ice Sheet collapsed during Earth's last prolonged warm period, about 125,000 years ago, when the ocean was warmer and sea level was several meters higher than today. Evidence for or against such a collapse will be recorded in the chemistry and physical properties of the ice. The Hercules Dome ice core will be obtained over three to four field seasons in Antarctica using efficient drilling technology. This grant includes support for project management, pre-drilling science community engagement, ice-core recovery, and education and outreach activities. Hercules Dome is located at the edge of the East Antarctic ice sheet, south of the Transantarctic Mountains at 86 degrees South, 105 degrees West. Glaciological conditions at Hercules Dome are simple, with well-defined layering to the bed, optimal for the recovery of a deep ice core reaching to the last interglacial period at depths between 1600 and 2800 meters. An ice core from Hercules Dome will provide a research opportunity for ice-core analysts and others to make progress on a number of science priorities, including the environmental conditions of the last interglacial period, the history of gases and aerosols, and the magnitude and timing of changes in temperature and snow accumulation over the last 150,000 years. Together with the network of ice cores obtained by U.S. and international researchers over the last few decades, results from Hercules Dome will yield improved estimates of the boundary conditions necessary for the implementation and validation of ice-sheet models critical to the projection of future Antarctic ice-sheet change and sea level. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Our knowledge of Antarctic weather and climate relies on only a handful of direct observing stations located on this harsh and remote continent. This observing system reports meteorological measurements from an existing network of automatic weather stations (AWS) spread across a vast area. This MRI project will enable the development, testing and eventual deployment of a next generation of polar automatic climate and weather observing stations for unattended use in the Antarctic. The proposed new Automatic Weather Station (AWS) system will enhance the capabilities and accuracy of the meteorological observations, enabling climate quality measurements. This project will involve development of a more capable instrumentation core, with two major goals. The first goal is to lower the cost for an AWS electronic core to 3 times less than currently employed systems. The second is to enable an onboard temperature calibration capability, an innovative development for the Antarctic AWS. The capability for onboard calibration will add confidence in the critical climate measure of ambient temperature, along with other standard meteorological parameters. Observations made by a modernized AWS network will inform and extend future numerical climate modeling efforts, improve operational weather forecasts, capture weather phenomena, and support environmental science research in other disciplines. A theme of the project is the inclusion of community college students in all aspects of the effort. With an eye on training the next generation of research instrumentation expertise, while involving other science, technology, engineering and mathematics (STEM) fields, undergraduate students will be involved in the development, testing and deployment of new AWS systems. As well as reporting, data analysis and publication of scientific knowledge, students intending to transfer to a 4-year university, as well as those pursuing electronics or electrical engineering associate degrees will be introduced to weather and climate topics. This MRI award was supported with funds from the Division of Polar Programs and the Division of Atmospheric and Geospace Sciences, both of the Directorate of Geosciences.
Siddoway, Christine; Thomson, Stuart; Teyssier, Christian
No project link provided
in progress
No project link provided
in progress
Sediment records off the coast of Marie Byrd Land (MBL), Antarctica suggest frequent and dramatic changes in the size of the West Antarctic Ice Sheet (WAIS) over short (tens of thousands of years) and long (millions of years) time frames in the past. WAIS currently overrides much of MBL and covers the rugged and scoured bedrock landscape. The ice sheet carved narrow linear troughs that reach depths of two to three thousand meters below sea level as outlet glaciers flowed from the interior of the continent to the oceans. As a result, large volumes of fragmented continental bedrock were carried out to the seabed. The glaciers cut downward into a region of crystalline rocks (i.e. granite) whose temperature change as a function of rock depth happens to be significant. This strong geothermal gradient in the bedrock is favorable for determining when the bedrock experienced rapid exhumation or "uncovering". Analyzing the chemistry of minerals (zircon and apatite) within the eroded rocks will provide information about the rate and timing of the glacier removal of bedrock from the Antarctic continent. The research addresses the following questions: When did the land become high enough for a large ice sheet to form? What was the regional pre-glacial topography? Under what climate conditions, and at what point in the growth of an ice sheet, did glaciers begin to cut sharply into bedrock to form the narrow troughs that flow seaward? The research will lead to greater understanding of past Antarctic ice sheet fluctuations and identify precise timing of glacial incision. These results will refine ice sheet history and aid the international societal response to contemporary ice sheet change and its global consequences. The project will contribute to the training of two graduate and two undergraduate students in STEM. The objective is to clarify the onset of WAIS glacier incision and assess the evolution of Cenozoic paleo-topography. Low-temperature (T) thermochronology and Pecube 3-D thermo-kinematic modeling will be applied to date and characterize episodes of glacial erosional incision. Single-grain double- and triple-dating of zircon and apatite will reveal the detailed crustal thermal evolution of the region enabling the research team to determine the comparative topographic influences on glaciation versus bedrock uplift induced by Eocene to present tectonism/magmatism. High-T mineral thermochronometers across Marie Byrd Land (MBL) record rapid extension-related cooling at ~100 Ma from temperatures of >800 degrees C to ≤ 300 degrees C. This signature forms a reference horizon, or paleogeotherm, through which the Cenozoic landscape history using low-T thermochronometers can be explored. MBL's elevated geothermal gradient, sustained during the Cenozoic, created favorable conditions for sensitive apatite and zircon low-T thermochronometers to record bedrock cooling related to glacial incision. Students will be trained to use state-of-the-art analytical facilities in Arizona and Minnesota, expanding the geo- and thermochronologic history of MBL from bedrock samples and offshore sedimentary deposits. The temperature and time data they acquire will provide constraints on paleotopography, isostasy, and the thermal evolution of MBL that will be modeled in 3D using Pecube model simulations. Within hot crust, less incision is required to expose bedrock containing the distinct thermochronometric profile; a prediction that will be tested with inverse Pecube 3-D models of the thermal field through which bedrock and detrital samples cooled. Using results from Pecube, the ICI-Hot team will examine time-varying topography formed in response to changes in erosion rates, topographic relief, geothermal gradient and/or flexural isostatic rigidity. These effects are manifestations of dynamic processes in the WAIS, including ice sheet loading, ice volume fluctuations, relative motion upon crustal faults, and magmatism-related elevation increase across the MBL dome. The project makes use of pre-existing sample collections housed at the US Polar Rock Repository, IODP's Gulf Coast Core Repository, and the Antarctic Marine Geology Research Facility. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Non-technical description: This 4-year project is evaluating evidence of extinction patterns and depositional conditions from a high southern latitude Cretaceous-Paleogene (K-Pg) outcrop section found on Seymore Island, in the Western Antarctic Peninsula. The team is using sediment samples collected below the weathering horizon to evaluate detailed sedimentary structures, geochemistry, and microfossils in targeted stratigraphic intervals. The study will help determine if the K-Pg mass extinction was a single or double phased event and whether Seymour Island region in the geological past was a restricted, suboxic marine environment or an open well-mixed shelf. The award includes an integrated plan for student training at all levels, enhanced by a highlighted partnership with a high school earth sciences teacher working in a school serving underrepresented students. Technical description: The proposed research is applying multiple techniques to address an overarching research question for which recent studies are in disagreement: Is the fossil evidence from a unique outcropping on Seymour Island, Antarctica consistent with a single or double phased extinction? In a two-phased model, the first extinction would affect primarily benthic organisms and would have occurred ~150 kiloyears prior to a separate extinction at the K-Pg boundary. However, this early extinction could plausibly be explained by an unrecognized facies control that is obscured by surficial weathering. This team is using microfossil evidence with detailed sedimentary petrology and geochemistry data to evaluate if the fossil evidence from Seymour Island is consistent with a single or double phased extinction process. The team is using detailed sedimentary petrology and geochemistry methods to test for facies changes across the K-PG interval that would explain the apparent early extinction. Samples of core sedimentary foraminifera, siliceous microfossils, and calcareous nannofossils are being evaluated to provide a high-resolution stratigraphic resolution and to evaluate whether evidence for an early extinction is present. Additionally, the team is using multiple geochemical methods to evaluate whether there is evidence for intermittent anoxia or euxinia and/or physical restriction of the Seymore region basin. Data from this analysis will indicate if this region was a restricted, suboxic marine environment or an open well-mixed shelf. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Kienle, Sarah; Trumble, Stephen J; Bonin, Carolina
No dataset link provided
The leopard seal (Hydrurga leptonyx) is an enigmatic apex predator in the rapidly changing Southern Ocean. As top predators, leopard seals play a disproportionately large role in ecosystem functioning and act as sentinel species that can track habitat changes. How leopard seals respond to a warming environment depends on their adaptive capacity, that is a species’ ability to cope with environmental change. However, leopard seals are one of the least studied apex predators on Earth, hindering our ability to predict how the species is responding to polar environmental changes. Investigating the adaptability of Antarctic biota in a changing system aligns with NSF’s Strategic Vision for Investments in Antarctic and Southern Ocean Research. This research, which is tightly integrated with educational and outreach activities, will increase diversity in STEM and Antarctic science by recruiting students from historically underrepresented groups in STEM and providing training, mentoring, and educational opportunities at an emerging Hispanic Serving Institution and a Historically Black Colleges and Universities campus. This project will improve STEM education and science literacy via museum collaborations, creation of informational videos and original artwork depicting the research. The proposal supports data and sample reuse in polar research and long-term reuse of scientific data, thereby maximizing NSF’s investment in previous field research and reducing operational costs. The researchers will investigate leopard seals adaptive capacity to the warming Southern Ocean by quantifying their ability to move (dispersal ability), adapt (genetic diversity), and change (plasticity). Aim 1 of the research will determine leopard seals’ dispersal ability by assessing their distribution and movement patterns. Aim 2 will quantify genetic diversity by analyzing genetic variability and population structure and Aim 3 will examine phenotypic plasticity by evaluating changes in their ecological niche and physiological responses. The international, multidisciplinary team will analyze existing data (e.g., photographs, census data, life history data, tissue samples, body morphometrics) collected from leopard seals across the Southern Ocean over the last decade. Additionally, land- and ship-based field efforts will generate comparable data from unsampled regions in the Southern Ocean. The research project will analyze these historical and contemporary datasets to evaluate the adaptive capacity of leopard seals against the rapidly warming Southern Ocean. This research is significant because changes in the distribution, genetic diversity, and ecophysiology of leopard seals can dramatically restructure polar and subpolar communities. Further, the research will expand understanding of leopard seals’ ecological role, likely characterizing the species as flexible polar and subpolar predators throughout the Southern Hemisphere. The findings of this research will be relevant for use in ecosystem-based management decisions—including the design of Marine Protected Areas— across three continents. This study will highlight intrinsic traits that determine species’ adaptive capacity, as well as showcase the dynamic links between polar and subpolar ecosystems. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This research will provide new insights into the relationships and history of sharks, fish and limbed animals. Understanding these relationships forms the backbone for both basic and applied science because fish often serve as models of human traits and diseases. Some of the main lines of evidence for these relationships come from fossils in rocks over 380 million years old that were originally deposited as ancient rivers and streams. Because rocks of this type and age are abundantly exposed along a number of the dry valleys and mountains of Antarctica, the investigation of these areas holds exceptional promise for discoveries that can have a broad impact. The fieldwork will involve geological mapping and assessment of the rocks with detailed reconnaissance for the fossils that they may hold. Fossil discoveries form the backbone for public communication of the methods and results of scientific research-- these studies will be used as vehicles for training of students at multiple levels as well as communication of science to the broader non-science citizen base. The discovery, description, and analysis of Middle to Late Devonian (390-355 Million years ago) vertebrates and depositional environments provide important data on the emergence of novel anatomical structures, faunas, and habitats during a critical interval in the history of life and earth. Biological innovation during this time includes the early evolution of freshwater fish, the origins of major groups of vertebrates (e.g., sharks, lobe and ray-finned fish, tetrapods), and the expansion and elaboration of non-marine ecosystems. Accordingly, expanding our knowledge of vertebrate diversity during the Middle and Late Devonian will provide new evidence on the relationships of the major groups of vertebrates, the assembly of novelties that ultimately enabled tetrapods to invade land, the origin and early evolution of sharks and their relatives, and the assembly and expansion of non-marine ecosystems generally. The Aztec Siltstone of Antarctica Middle-Late Devonian; Givetian-Frasnian Stages) has exceptional potential to produce new paleontological evidence of these events and to illuminate the temporal, ecological, and geographic context in which they occurred. It is essentially fossiliferous throughout its known exposure range, something that is rare for Middle-Late Devonian non-marine rocks anywhere in the world. In addition, fine-grained meandering stream deposits are abundantly exposed in the Aztec Siltstone and are recognized as an important locus for the discovery of well-preserved Devonian fish, including stem tetrapods and their relatives. Given the exceedingly fossiliferous nature of the Aztec Siltstone, the large number of taxa known only from partial material, and the amount of promising exposure yet to be worked, a dedicated reconnaissance, collection, and research effort is designed to recover important new fossil material and embed it in a stratigraphic and sedimentological context. The first major objective of this study is the recovery, preparation, and description of Middle-Late Devonian fossil taxa. Ensuing investigation of the phylogenetic affinities, taphonomic occurrence, and stratigraphic position of fossil assemblages will allow both local and global comparisons of biotic diversity. These analyses will inform: 1) higher level phylogenetic hypotheses of jawed vertebrates, 2) biostratigraphic and biogeographic analysis of the distribution of the Middle-Late Devonian fish, and 3) paleobiological investigation of the elaboration of terrestrial and freshwater habitats. The broader impacts are derived from the utility of paleontology and Antarctic expeditionary science as educational tools with powerful narratives. Specific goals include affiliations with local urban secondary schools (using established relationships for broadening participation) and collegiate and graduate training. Wider dissemination of knowledge to the general public is a direct product of ongoing interactions with national and international media (print, television, internet).
The western portion of the Antarctic continent is very active in terms of plate tectonic processes that can produce significant variations in the Earths mantle temperature as well as partial melting of the mantle. In addition to these internal processes, the ice sheet in western Antarctica is melting due to Earths warming climate and adding water to the ocean. These changes in ice mass cause adjustments in rocks within the Earth's crust, allowing the surface to rebound in some locations and fall in others, altering the geographical pattern of sea-level change. However, the solid Earth response depends strongly on the strength of the rocks at a wide range of timescales which is not well-known and varies with temperature and other rock properties. This project has three primary goals. (1) It will assess how processes such as rifting, mantle upwelling and lithospheric instability have altered the lithosphere and underlying asthenosphere of western Antarctica, contributing to a planet-wide understanding of these processes. (2) It will use new measurements of mantle and crust properties to estimate the rate at which heat from the solid Earth flows into the base of the ice, which is important for modeling the rates at which the ice melts and flows. (3) It will places bounds on mantle viscosity, which is key for modeling the interaction of the solid Earth with changing ice and water masses and their implications for sea-level rise. To accomplish these goals, new resolution of crust and mantle structure will be obtained by analyzing seismic waves from distant earthquakes that have been recorded at numerous seismic stations in Antarctica. These analyses will include new combinations of seismic wave data that provide complementary information about mantle temperature, heat flow and viscosity. This project will provide educational and career opportunities to a Brown University graduate student, undergraduates from groups underrepresented in science who will come to Brown University for a summer research program, and other undergraduates. The project will bring together faculty and students for a seminar at Brown that explores the connections between the solid Earth and ice processes in Antarctica. Project research will be incorporated in outreach to local public elementary schools and high schools. This research addresses key questions about mantle processes and properties in western Antarctica. What are the relative impacts of rifting, mantle plumes, and lithospheric delamination in the evolution of the lithosphere and asthenosphere? Where is topography isostatically compensated, and where are dynamic processes such as plate flexure or tractions from 3-D mantle flow required? What are the bounds on heat flow and mantle viscosity, which represent important inputs to models of ice sheet evolution and its feedback from the solid Earth? To address these questions, this project will measure mantle and crust properties using seismic tools that have not yet been applied in Antarctica: regional-scale measurement of mantle attenuation from surface waves; Sp body wave phases to image mantle velocity gradients such as the lithosphere-asthenosphere boundary; and surface wave amplification and ellipticity. The resulting models of seismic attenuation and velocity will be jointly interpreted to shed new light on temperature, bulk composition, volatile content, and partial melt, using a range of laboratory-derived constitutive laws, while considering data from mantle xenoliths. To test the relative roles of rifting, mantle plumes, and delamination, and to assess isostatic support for Antarctic topography, the predictions of these processes will be compared to the new models of crust and mantle properties. To improve bounds on western Antarctic heat flow, seismic attenuation and velocity will be used in empirical comparisons and in direct modeling of vertical temperature gradients. To better measure mantle viscosity at the timescales of glacial isostatic adjustment, frequency-dependent viscosity will be estimated from the inferred mantle conditions. This project will contribute to the education and career development of the following: a Brown University Ph.D. student, Brown undergraduates, and undergraduates from outside the university will be involved through the Department of Earth, Environmental and Planetary Sciences (DEEPS) Leadership Alliance NSF Research Experience for Undergraduates (REU) Site which focuses on geoscience summer research experiences for underrepresented students. The project will be the basis for a seminar at Brown that explores the connections between the solid Earth and cryosphere in Antarctica and will contribute to outreach in local public elementary and high schools. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Warming on the western Antarctic Peninsula in the later 20th century has caused widespread changes in the cryosphere (ice and snow) and terrestrial ecosystems. These recent changes along with longer-term climate and ecosystem histories will be deciphered using peat deposits. Peat accumulation can be used to assess the rate of glacial retreat and provide insight into ecological processes on newly deglaciated landscapes in the Antarctic Peninsula. This project builds on data suggesting recent ecosystem transformations that are linked to past climate of the western Antarctic Peninsula and provide a timeline to assess the extent and rate of recent glacial change. The study will produce a climate record for the coastal low-elevation terrestrial region, which will refine the major climate shifts of up to 6 degrees C in the recent past (last 12,000 years). A novel terrestrial record of the recent glacial history will provide insight into observed changes in climate and sea-ice dynamics in the western Antarctic Peninsula and allow for comparison with off-shore climate records captured in sediments. Observations and discoveries from this project will be disseminated to local schools and science centers. The project provides training and career development for a postdoctoral scientist as well as graduate and undergraduate students. The research presents a new systematic survey to reconstruct ecosystem and climate change for the coastal low-elevation areas on the western Antarctic Peninsula (AP) using proxy records preserved in late Holocene peat deposits. Moss and peat samples will be collected and analyzed to generate a comprehensive data set of late-Holocene climate change and ecosystem dynamics. The goal is to document and understand the transformations of landscape and terrestrial ecosystems on the western AP during the late Holocene. The testable hypothesis is that coastal regions have experienced greater climate variability than evidenced in ice-core records and that past warmth has facilitated dramatic ecosystem and cryosphere response. A primary product of the project is a robust reconstruction of late Holocene climate changes for coastal low-elevation terrestrial areas using multiple lines of evidence from peat-based biological and geochemical proxies, which will be used to compare with climate records derived from marine sediments and ice cores from the AP region. These data will be used to test several ideas related to novel peat-forming ecosystems (such as Antarctic hairgrass bogs) in past warmer climates and climate controls over ecosystem establishment and migration to help assess the nature of the Little Ice Age cooling and cryosphere response. The chronology of peat cores will be established by radiocarbon dating of macrofossils and Bayesian modeling. The high-resolution time series of ecosystem and climate changes will help put the observed recent changes into a long-term context to bridge climate dynamics over different time scales. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Algae in the surface ocean convert carbon dioxide into organic carbon through photosynthesis. The biological carbon pump transports this organic carbon from the atmosphere to the deep ocean where it can be stored for tens to hundreds of years. Annually, the amount transported is similar to that humans are currently emitting by burning fossil fuels. However, at present we cannot predict how this important process will change with a warming ocean. These investigators plan to develop a 15+ year time-series of vertical carbon transfer for the Western Antarctic Peninsula; a highly productive Antarctic ecosystem. This region is also rapid transition to warmer temperatures leading to reduced sea ice coverage. This work will help researchers better understand how the carbon cycle in the Western Antarctic Peninsula will respond to climate change. The researchers will develop the first large-scale time-series of carbon flux anywhere in the ocean. This research will also support the education and training of a graduate student and support the integration of concepts in Antarctic research into two undergraduate courses designed for non-science majors and advanced earth science students. The researchers will also develop educational modules for introducing elementary and middle-school age students to important concepts such as gross and net primary productivity, feedbacks in the marine and atmospheric systems, and the differences between correlation and causation. Results from this proposal will also be incorporated into a children’s book, “Plankton do the Strangest Things”, that is targeted at 5-7 year olds and is designed to introduce them to the incredible diversity and fascinating adaptations of microscopic marine organisms. This research seeks to leverage 6 years (2015-2020) of 234Th samples collected on Palmer LTER program, 5 years of prior measurements (2009-2010, 2012-2014), and upcoming cruises (2021-2023) to develop a time-series of summertime particle flux in the WAP that stretches for 15 years. The 238U-234Th disequilibrium approach utilizes changes in the activity of the particle-active radio-isotope 234Th relative to its parent nuclide 238U to quantify the flux of sinking carbon out of the surface ocean (over a time-scale of ~one month). This proposal will fund 234Th analyses from nine years’ worth of cruises (2015-2023) and extensive analyses designed to investigate the processes driving inter-annual variability in the BCP. These include: 1) physical modeling to quantify the importance of advection and diffusion in the 234Th budget, 2) time-series analyses of particle flux, and 3) statistical modeling of the relationships between particle flux and multiple presumed drivers (biological, chemical, physical, and climate indices) measured by collaborators in the Palmer LTER program. This multi-faceted approach is critical for linking the measurements to models and for predicting responses to climate change. It will also test the hypothesis that export flux is decreasing in the northern WAP, increasing in the southern WAP, and increasing when integrated over the entire region as a result of earlier sea ice retreat and a larger ice-free zone. The project will also investigate relationships between carbon export and multiple potentially controlling factors including: primary productivity, algal biomass and taxonomic composition, biological oxygen saturation, zooplankton biomass and taxonomic composition, bacterial production, temperature, wintertime sea ice extent, date of sea ice retreat, and climate modes. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part 1: Non-technical description: It is well known that the Southern Ocean plays an important role in global carbon cycling and also receives a disproportionately large influence of climate change. The role of marine viruses on ocean productivity is largely understudied, especially in this global region. This team proposes to use combination of genomics, flow cytometry, and network modeling to test the hypothesis that viral biogeography, infection networks, and viral impacts on microbial metabolism can explain variations in net community production (NCP) and carbon cycling in the Southern Ocean. The project includes the training of a postdoctoral scholar, graduate students and undergraduate students. It also includes the development of a new Polar Sci ReachOut program in partnership with the University of Michigan Museum of Natural History especially targeted to middle-school students and teachers and the general public. The team will also produce a Science for Tomorrow (SFT) program for use in middle schools in metro-Detroit communities and lead a summer Research Experience for Teachers (RET) fellows. Part 2: Technical description: The study will leverage hundreds of existing samples collected for microbes and viruses from the Antarctic Circumpolar Expedition (ACE). These samples provide the first contiguous survey of viral diversity and microbial communities around Antarctica. Viral networks are being studied in the context of biogeochemical data to model community networks and predict net community production (NCP), which will provide a way to evaluate the role of viruses in Southern Ocean carbon cycling. Using cutting edge molecular and flow cytometry approaches, this project addresses the following questions: 1) How/why are Southern Ocean viral populations distributed across environmental gradients? 2a) Do viruses interfere with "keystone" metabolic pathways and biogeochemical processes of microbial communities in the Southern Ocean? 2b) Does nutrient availability or other environmental variables drive changes in virus-microbe infection networks in the Southern Ocean? Results will be used to develop and evaluate generative models of NCP predictions that incorporate the importance of viral traits and virus-host interactions. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This project studies how the proteins of the nerves and muscles of fish that live in Antarctica function in the cold, which should provide information on the function of these same proteins in all animals, including humans. These proteins, called ion channels, open and close to allow ions (atoms or molecules with electrical charge) to flow into or out of cells which causes the electrical activity of nerves and muscles. Mutations that influence this process are the basis of numerous human disorders such as epilepsy, heart arrhythmias, and muscle paralysis. Thus, it is important to understand what parts of the proteins govern these transitions. The speed with which channels open and close depends on temperature. Human ion channels transition slowly when we are cold, which is why we become numb in the cold. Yet Antarctic fish, called icefish, are active at freezing temperatures that drastically limit the activity of human ion channels. The investigators have evidence that specific alterations in the icefishs' ion channels allow their channels to operate differently in the cold and they will use gene discovery and biophysical methods to test how these changes alter the transitions of icefish proteins at different temperatures. The project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. The gene discovery analysis will be done by undergraduate students including those from a minority-serving university and the investigators will develop a new course which will also serve students at that institution and elsewhere. In addition, the investigators will participate in educational outreach events with the general public as well as with groups with special needs. Notothenioid fishes are one of the most successful groups of vertebrates in Antarctica. Notothens have adaptations to the freezing water they inhabit and this project will study how their voltage-gated ion channels (VGICs) function in the cold. The molecular movements of ion channels are severely impaired by cold, yet notothens function at temperatures that would paralyze the nerves and muscles of "cold-blooded" temperate zone animals. Surprisingly, no biophysical or molecular investigations have been conducted on notothen VGICs. The investigators have preliminary data that amino acid substitutions occur at sites in VGICs that are evolutionarily conserved from fruit flies to humans. Some of these sites are known to impact channel function and the role of others in channel transitioning are unknown. The results from studying them will provide novel information also applicable to non-notothen, perhaps even human, VGICs as well as providing insights into how VGICs adapt to the cold. The project will biophysically characterize notothen VGICs using voltage-clamp techniques will and compare their properties over a range of temperatures to the same channel from two temperate zone fish. The role of unique notothen amino acid substitutions will be characterized by mutagenesis. One specific aim will be a project in which undergraduates mine notothen sequence databases to identify other potential amino acid substitutions in VGICs that might facilitate adaptation to the cold.
The Ross Sea, Antarctica, is one of the last large intact marine ecosystems left in the world, yet is facing increasing pressure from commercial fisheries and environmental change. It is the most productive stretch of the Southern Ocean, supporting an array of marine life, including Antarctic toothfish – the region’s top fish predator. While a commercial fishery for toothfish continues to grow in the Ross Sea, fundamental knowledge gaps remain regarding toothfish ecology and the impacts of toothfish fishing on the broader Ross Sea ecosystem. Recognizing the global value of the Ross Sea, a large (>2 million km2) marine protected area was adopted by the multi-national Commission for the Conservation of Antarctic Marine Living Resources in 2016. This research will fill a critical gap in the knowledge of Antarctic toothfish and deepen understanding of biological-physical interactions for fish ecology, while contributing to knowledge of impacts of fishing and environmental change on the Ross Sea system. This work will further provide innovative tools for studying connectivity among geographically distinct fish populations and for synthesizing and assessing the efficacy of a large-scale marine protected area. In developing an integrated research and education program in engaged scholarship, this project seeks to train the next generation of scholars to engage across the science-policy-public interface, engage with Southern Ocean stakeholders throughout the research process, and to deepen the public’s appreciation of the Antarctic. A major research priority among Ross Sea scientists is to better understand the life history of the Antarctic toothfish and test the efficacy of the Ross Sea Marine Protected Area (MPA) in protecting against the impacts of overfishing and climate change. Like growth rings of a tree, fish ear bones, called otoliths, develop annual layers of calcium carbonate that incorporates elements from their environment. Otoliths offer information on the fish’s growth and the surrounding ocean conditions. Hypothesizing that much of the Antarctic toothfish life cycle is structured by ocean circulation, this research employs a multi-disciplinary approach combining age and growth work with otolith chemistry testing, while also utilizing GIS mapping. The project will measure life history parameters as well as trace elements and stable isotopes in otoliths in three distinct sets collected over the last four decades in the Ross Sea. The information will be used to quantify the transport pathways Antarctic toothfish use across their life history, and across time, in the Ross Sea. The project will assess if toothfish populations from the Ross Sea are connected more widely across the Antarctic. By comparing life history and otolith chemistry data across time, the researchers will assess change in life history parameters and spatial dynamics and seek to infer if these changes are driven by fishing or climate change. Spatially mapping of these data will allow an assessment of the efficacy of the Ross Sea MPA in protecting toothfish and where further protections might be needed. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Climate change is changing the number of sea-ice free days in coastal polar environments, which is impacting Antarctic communities. This study will evaluate the change in macroalgae (seaweed) communities to increased light availability in order to predict if macroalgae will be able to spread to newly ice-free locations faster than invertebrates (e.g., sponges, bryozoans, tunicates, and polychaetes) in shallow underwater rocky habitats. Study sites will include multiple locations in McMurdo Sound, Ross Sea, Antarctica. This study will establish patterns in plant properties, genetic diversity and reproductive characteristics of two species of seaweeds, Phyllophora antarctica and Iridaea cordata in relation to depth and light. Long-term changes will be assesed by comparing to results from a survey in 1980. This will be the first study in the region to estimate the potential effects of climate, in particular reductions in annual sea ice cover and resulting increase in light intensity and duration, on shifts in macroalgal communities in McMurdo Sound. Three-dimensional photogrammetry will also be used to evaluate benthic community structure on the newly discovered offshore Dellbridge Seamount. Visualization from the video footage will be shared with web-based interactive applications to engage and educate the public in polar ecology and factors causing changes in marine community ecosystem structure in this important region. This project is evaluating macroalgae biogeography in Antarctic coastal waters near McMurdo Sound, a relatively understudied region that is experiencing large changes in fast sea ice coverage. The population ecology and genetic diversity of nearshore shallow and deeper offshore benthic macroalgal communities of Phyllophora antarctica and Iridaea cordata will be assessed for percentage cover, biomass, blade length, and reproductive characteristics at seven locations: Cape Royds, Cape Evans, Little Razorback Islands, Turtle Rock, Arrival Heights, Granite Harbor, and Dellbridge Seamount in McMurdo Sound, Antarctica. The team is also assessing differential reproductive successes at different depths and comparing results to populations surveyed in 1980. The genetic diversity of the two species is being estimated using a combination of whole genome sequencing and species-specific microsatellite genetic markers. Samples from this study will be compared to samples collected from other regions in Antarctica such as the South Shetland Islands and Antarctic Peninsula. In addition, a macroalgal assemblage and 3D models of the community structure will be generated using photogrammetry from the newly discovered Dellbridge Seamount that is located 2 km offshore in McMurdo Sound. With the addition of photogrammetry and 3D visualization to this research, web-based applications will be used to engage and educate the public in subtidal polar ecology, population genetics, and the importance of Antarctic science to their lives. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Cores drilled through the Antarctic ice sheet provide a remarkable window on the evolution of Earth’s climate and unique samples of the ancient atmosphere. The clear link between greenhouse gases and climate revealed by ice cores underpins much of the scientific understanding of climate change. Unfortunately, the existing data do not extend far enough back in time to reveal key features of climates warmer than today. COLDEX, the Center for Oldest Ice Exploration, will solve this problem by exploring Antarctica for sites to collect the oldest possible record of past climate recorded in the ice sheet. COLDEX will provide critical information for understanding how Earth’s near-future climate may evolve and why climate varies over geologic time. New technologies will be developed for exploration and analysis that will have a long legacy for future research. An archive of old ice will stimulate new research for the next generations of polar scientists. COLDEX programs will galvanize that next generation of polar researchers, bring new results to other scientific disciplines and the public, and help to create a more inclusive and diverse scientific community. Knowledge of Earth’s climate history is grounded in the geologic record. This knowledge is gained by measuring chemical, biological and physical properties of geologic materials that reflect elements of climate. Ice cores retrieved from polar ice sheets play a central role in this science and provide the best evidence for a strong link between atmospheric carbon dioxide and climate on geologic timescales. The goal of COLDEX is to extend the ice-core record of past climate to at least 1.5 million years by drilling and analyzing a continuous ice core in East Antarctica, and to much older times using discontinuous ice sections at the base and margin of the ice sheet. COLDEX will develop and deploy novel radar and melt-probe tools to rapidly explore the ice, use ice-sheet models to constrain where old ice is preserved, conduct ice coring, develop new analytical systems, and produce novel paleoclimate records from locations across East Antarctica. The search for Earth’s oldest ice also provides a compelling narrative for disseminating information about past and future climate change and polar science to students, teachers, the media, policy makers and the public. COLDEX will engage and incorporate these groups through targeted professional development workshops, undergraduate research experiences, a comprehensive communication program, annual scientific meetings, scholarships, and broad collaboration nationally and internationally. COLDEX will provide a focal point for efforts to increase diversity in polar science by providing field, laboratory, mentoring and networking experiences for students and early career scientists from groups underrepresented in STEM, and by continuous engagement of the entire COLDEX community in developing a more inclusive scientific culture. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Antarctic Automatic Weather Station (AWS) network is the most extensive ground meteorological network in the Antarctic, approaching its 30th year at several of its installations. Its prime focus as a long term observational record is to measure the near surface weather and climatology of the Antarctic atmosphere. AWS stations measure air-temperature, pressure, wind speed and direction at a nominal surface height of ~ 2-3m. Other parameters such as relative humidity and snow accumulation may also be taken. Observational data from the AWS are collected via Iridium network, or DCS Argos aboard either NOAA or MetOp polar orbiting satellites and thus made available in near real time to operational and synoptic weather forecasters. The surface observations from the AAWS network are important records for recent climate change and meteorological processes. The surface observations from the AAWS network are also used operationally, and in the planning of field work. The surface observations made from the AAWS network have been used to check on satellite and remote sensing observations. This project proposes to use the surface conditions observed by the AWS network to determine how large-scale modes of climate variability impact Antarctic weather and climate, how the surface observations from the AWS network are linked to surface layer and boundary layer processes, and to quantify the impact of snowfall and blowing snow events. Specifically, this project proposes to improve our understanding of the processes that lead to unusual weather events and how these events are related to large-scale modes of climate variability. This project will fill a gap in knowledge of snowfall distribution, and distinguishing between snowfall and blowing snow events using a suite of precipitation sensors near McMurdo Station.
Part 1: Non-technical description: With support from the Office of Polar Programs, this project will evaluate how an important part of the food web in the coastal ocean of Antarctica will respond to climate change. The focal study organism in the plankton is a shelled mollusk, the Antarctic pteropod, Limacina helicina antarctica, an Southern Ocean organism that this known to respond to climate driven changes in ocean acidification and ocean warming. Ocean acidification, the lowering of ocean pH via the absorption of atmospheric carbon dioxide in the surface of the ocean, is a change in the ocean that is expected to cross deleterious thresholds of pH within decades. This study will improve understanding of how pteropods will respond, which will provide insight into predicting the resilience of the Antarctic marine ecosystem during future changes, one of the planet’s last marine wildernesses. The project will use tools of molecular biology to examine specifically how gene expression is modulated in the pteropods, and further, how the changes and regulation of genes act to resist the stress of low pH and high temperature. In addition, this project supports the training of Ph.D. graduate students and advances the goal of inclusive excellence in STEM and in marine sciences, in particular. The students involved in this project are from groups traditionally under-represented in marine science including first-generation college students. Overall, the project contributes to the development of the U.S. work force and contributes to diversity and inclusive excellence in the geosciences. Part 2: Technical description: The overarching goal of this project is to investigate the molecular response of the Antarctic thecosome pteropod, Limacina helicina antarctica to ocean acidification (OA) and ocean warming. The project will investigate changes in the epigenome of juvenile L. h. antarctica, by assessing the dynamics of DNA methylation in response to three scenarios of environmental conditions that were simulated in laboratory mesocosm CO2 experiments: (1) present-day pCO2 conditions for summer and winter, (2) future ocean acidification expected within 10-15 years, and (3) a multiple stressor experiment to investigate synergistic interaction of OA and high temperature stress. Recent lab-based mesocosm experiment research showed significant changes in the dynamics of global DNA methylation in the pteropod genome, along with variation in gene expression in response to abiotic changes. Thus, it is clear that juvenile L. h. antarctica are capable of mounting a substantial epigenetic response to ocean acidification. However, it is not known how DNA methylation, as an epigenetic process, is modulating changes in the transcriptome. In order to address this gap in the epigenetic knowledge regarding pteropods, the project will use next-generation sequencing approaches (e.g., RNA sequencing and reduced representation bisulfite sequencing) to integrate changes in methylation status with changes in gene expression in juvenile pteropods. Overall, this investigation is an important step in exploring environmental transcriptomics and phenotypic plasticity of an ecologically important member of Southern Ocean macrozoooplankton in response to anthropogenic climate change. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Antarctic Peninsula is experiencing rapid environmental changes, which will influence the community of organisms that live there. However, we know very little about the microscopic organisms living in the soil in this region. Soil biology (including bacteria, fungi, and invertebrates) are responsible for many important processes that sustain ecosystems, such as nutrient recycling. Without understanding the environmental conditions that influence soil biodiversity along the Antarctic Peninsula, our ability to predict the consequences of global change is strongly limited. This project will identify the soil community at many sites along the Antarctic Peninsula to discover how the community changes with environmental conditions from north to south. The project will also identify how the soil community at each site differs under different types of plants. Understanding more about the ways in which plant cover and climate conditions influence soil biodiversity will allow predictions of how communities will respond to future changes such as climate warming and invasive plant species. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. The investigators will engage with outreach to K-12 students and the general public both directly and through a blog and will participate in workshops for K-12 teachers. Additionally, the project will provide the opportunity for many undergraduate and graduate students of diverse backgrounds to be trained in interdisciplinary research. The investigators will determine the nature and strength of plant-soil linkages in influencing soil community composition and diversity over a latitudinal gradient of environmental and climatic conditions. The goals are to (1) increase our understanding of current biogeography and diversity by providing in-depth knowledge of soil community composition and complexity as it relates to environmental and climatic characteristics; and (2) determine the nature of aboveground-belowground community linkages over varying spatial scales. The team will identify the composition and diversity of soil communities under key habitat types (grass, moss, algae, etc.). Microbial communities (bacteria, fungi, archaea) will be investigated using pyrosequencing for community composition analysis and metagenomic sequencing to identify functional capabilities. Invertebrates (nematodes, tardigrades, rotifers, microarthropods) will be extracted and identified to the lowest possible taxonomic level. Soil chemistry (pH, nutrient content, soil moisture, etc.) and climate conditions will be measured to determine the relationship between soil communities and physical and chemical properties. Structural equation modeling will be used to identify aboveground-belowground linkage pathways and quantify link strengths under varying environmental conditions.
Part I: Non-technical summary The Antarctic Peninsula warmed very rapidly in the late part of the 20th century, much faster than the global average, and this warming is predicted to resume and continue over the rest of the 21st century. One consequence of this rapid warming is the melting and subsequent retreat of glaciers, leading to an increase in newly-exposed land on the Peninsula that was previously covered with ice. Once new terrain is exposed, the process of ecological succession begins, with the arrival of early-colonizing plants, such as moss and lichens, and soil organisms - a process commonly referred to as the “greening” of Antarctica. Early stages of succession will be an increasingly common feature on the Antarctic Peninsula, but the mechanisms by which they occur on the Antarctic continent is not well understood. Once the plants have established on the newly-exposed soil, they can change many important properties, such as water dynamics, nutrient recycling, soil development, and habitat for microscopic organisms, which will ultimately determine the structure and functioning of the future ecosystem as it develops. These relationships between vegetation, soil, and the associated microorganisms, referred to as “plant-soil” interactions, are something we know virtually nothing about. This project will be the first to make a comprehensive study of how the type of colonizing plant, and the expansion of those plants from climate change, will influence terrestrial ecosystems in Antarctica. Understanding these processes is critical to understanding how the greening Antarctica is occurring and how soil communities and processes are influenced by these expanding plant communities. Through this work the research team, will also be intensively training undergraduate and graduate students, including training of students from underrepresented groups and collaborative training of students from Chile and the US. Additionally, the research groups will continue their focus on scientific outreach with K-12 schools and the general public to expand awareness of the effects of climate change in Antarctica. Part II: Technical summary In this study, the researchers will use surveys across succession sites along the Antarctic Peninsula and Scotia Arc as well as a manipulative field experiment at glacier succession sites to test how species-specific plant functional traits impact soil properties and associated microbial and invertebrate communities in a greening Antarctica. In doing so, they will pursue three integrated aims to understand how Antarctic plant functional traits alter their soil environment and soil communities during succession after glacial retreat. AIM 1) Characterize six fundamental plant functional traits (thermal conductivity, water holding capacity, albedo, decomposability, tissue nutrient content, and secondary chemistry) among diverse Antarctica flora; AIM 2) Measure the relative effects of fundamental plant functional traits on soil physical properties and soil biogeochemistry across glacial succession gradients in Antarctica; and AIM 3) Measure the relative effects of fundamental plant functional traits on soil microbial and invertebrate communities across glacial succession gradients in Antarctica. They will explore how early-colonizing plants, especially mosses and lichens, alter soil physical, biogeochemical, and biological components, potentially impacting later patterns of succession. The researhcers will use intensive surveys of plant-soil interactions across succession sites and a manipulative transplant experiment in the South Shetland Islands, Antarctica to address their aims. The investigators will collect data on plant functional traits and their effects on soil physical properties, biogeochemistry, biotic abundance, and microbial metagenomics. The data collected will be the first comprehensive measures of the relative importance of plant functional types during glacial retreat and vegetative expansion from climate change in Antarctica, aiding our understanding of how plant functional group diversity and abundance are changing in a greening Antarctica. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Antarctic ice sheet is underlain by a dynamic water system that lubricates the flow of ice streams and outlet glaciers, provides a habitat for a diverse microbial ecosystem, and delivers freshwater and nutrients to the Southern Ocean. However, imaging this subglacial environment is difficult: Antarctica is a vast continent with ice up to four kilometers (2.5 miles) thick. To detect water at the ice-bed interface and in deeper groundwater reservoirs, this project will adapt a technique called electromagnetic sounding that is well-established on land and in the ocean for imaging fluids beneath the surface. Groundwater is estimated to be a significant part of the subglacial water budget in Antarctica, yet previous observational approaches have been unable to characterize its volume and distribution. This project will thus yield critical information about how ice-rock-water-ocean systems interact and inform our understanding of ice-sheet processes, global nutrient cycles, and freshwater flux to the ocean. The project will provide cross-disciplinary training for a graduate student and postdoctoral scientist, and develop an educational outreach program through the Birch Aquarium. Standard geophysical surveying techniques used in glaciology to image subglacial water (radio-echo sounding and active-source seismology) are not directly sensitive to water content. In contrast, ground-based electromagnetic (EM) methods are sensitive to water content through its impact on bulk conductivity. Although EM methods are well-established for high-precision mapping of hydrology in other geological environments, their application on ice sheets is in its infancy. The proposed work will adapt both passive- and active-source EM techniques to glaciological questions to quantify the three-dimensional structure of subglacial water beneath an ice stream and in a grounding zone. The project will perform a suite of synthetic inversion studies to determine the range of applications of EM techniques in glaciology and execute a field experiment on the Whillans Ice Plain to investigate two hypotheses about the subglacial water system based on previous observational and modeling results: (1) Subglacial Lake Whillans is underlain by a deep, saline groundwater reservoir; and (2) there is an estuary-like zone of mixing between fresh subglacial water and seawater near, and possibly landward, of the grounding line.
ANDRILL is a scientific drilling program to investigate Antarctica's role in global climate change over the last sixty million years. The approach integrates geophysical surveys, new drilling technology, multidisciplinary core analysis, and ice sheet modeling to address four scientific themes: (1) the history of Antarctica's climate and ice sheets; (2) the evolution of polar biota and ecosystems; (3) the timing and nature of major tectonic and volcanic episodes; and (4) the role of Antarctica in the Earth's ocean-climate system. <br/><br/>This award initiates what may become a long-term program with drilling of two previously inaccessible sediment records beneath the McMurdo Ice Shelf and in South McMurdo Sound. These stratigraphic records cover critical time periods in the development of Antarctica's major ice sheets. The McMurdo Ice Shelf site focuses on the Ross Ice Shelf, whose size is a sensitive indicator of global climate change. It has recently undergone major calving events, and there is evidence of a thousand-kilometer contraction since the last glacial maximum. As a generator of cold bottom water, the shelf may also play a key role in ocean circulation. The core obtained from this site will also offer insight into sub-ice shelf sedimentary, biologic, and oceanographic processes; the history of Ross Island volcanism; and the flexural response of the lithosphere to volcanic loading, which is important for geophysical and tectonic studies of the region.<br/><br/>The South McMurdo Sound site is located adjacent to the Dry Valleys, and focuses on the major ice sheet overlying East Antarctica. A debate persists regarding the stability of this ice sheet. Evidence from the Dry Valleys supports contradictory conclusions; a stable ice sheet for at least the last fifteen million years or an active ice sheet that cycled through expansions and contractions as recently as a few millions of years ago. Constraining this history is critical to deep-time models of global climate change. The sediment cores will be used to construct an overall glacial and interglacial history for the region; including documentation of sea-ice coverage, sea level, terrestrial vegetation, and melt-water discharge events. The core will also provide a general chronostratigraphic framework for regional seismic studies and help unravel the area's complex tectonic history.<br/><br/>The broader impacts of this project include formal and informal education, new research infrastructure, various forms of collaboration, and improving society's understanding of global climate change. Education is supported at the postdoctoral, graduate, undergraduate, and K-12 levels. Teachers and curriculum specialists are integrated into the research program, and a range of video resources will be produced, including a science documentary for television release. New research infrastructure includes equipment for core analysis and ice sheet modeling, as well as development of a unique drilling system to penetrate ice shelves. Drill development and the overall project are co-supported by international collaboration with scientists and the National Antarctic programs of New Zealand, Germany, and Italy. The program also forges new collaborations between research and primarily undergraduate institutions within the United States. <br/><br/>As key factors in sea-level rise and oceanic and atmospheric circulation, Antarctica's ice sheets are important to society's understanding of global climate change. ANDRILL offers new data on marine and terrestrial temperatures, and changes our understanding of extreme climate events like the formation of polar ice caps. Such data are critical to developing accurate models of the Earth's climatic future.
Atmospheric warming has been a major factor in the loss of ice shelves on the Antarctic Peninsula. In West Antarctica, oceanic warming is presently regarded as the largest source of stress on both the ice-shelves and at the grounding lines of the ice sheets. The loss of ice shelf buttressing and grounding line retreat may have already induced irreversible loss of Thwaites Glacier. To advance predictive models more data is needed regarding both water-induced fracturing on an ice shelf and marine ice cliff instability near the grounding line. This project will help advance understanding of atmospheric circulation and solar radiation over West Antarctica and the Ross Ice Shelf that lead to surface melting. In support of this project, and incorporating Antarctic science from this work, UCSD educators will sponsor a workshop series for exemplary middle and/or high school science teachers designed to address this need. Teacher participants will be carefully selected for their demonstrated leadership skills and will eventually become part of an cadre of "master" science teachers who will serve as local leaders in disseminating strategies and tools for addressing the NGSS (Ca Next Gen. of Sci. Eng. Stds.) to teachers throughout the county. For the summer field seasons requested, UCSD scientists will deploy a suite instruments to measure downwelling and net shortwave and longwave fluxes, sensible and latent heat fluxes, and near-surface meteorology. This suite of instruments will be self-reliant with power requirements and will be supportable in the field with a single Twin Otter aircraft. The investigators plan to deploy this suite as a remote ice camp with a field party of 2-3 personnel, making measurements for at up to one month during each of the sampled summer field seasons. These measurements will be analyzed and interpreted to determine mesoscale conditions that govern surface melt in West Antarctica, in the context of improving coupled climate model parameterizations. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). The Western Antarctic Peninsula (WAP; AP) has been warming faster than the global average since the mid-1960s. Concurrent mobilization of ice shelves has been associated with glacial discharge into the ocean, with important implications for global sea level rise. This work will enhance our understanding of the contributions of clouds, water vapor and surface radiation to warming over the WAP. Processes governing phase partitioning and amounts of supercooled liquid water are crucial for understanding surface melt, and will be explored. In addition, the role of clouds and moisture during foehn and atmospheric river (AR) events, will be characterized. Clouds and atmospheric water vapor have strong radiative signals that vary seasonally and with cloud properties. This work will lead to a better understanding of how clouds are impacting surface melt on the AP in the changing climate. In addition, the proposed work will include several undergraduate research projects. Finally, broader impacts include public outreach through participation in GeoWeek at Ohio State University and Polar Science Weekend at the Pacific Science Center in Seattle, WA. It is crucial to human welfare to understand mechanisms responsible for the rapid pace of Antarctic ice loss. This work will lead to a better understanding of how clouds are impacting surface melt on the WAP in the changing climate. The project will use surface- and satellite-based measurements to characterize clouds and humidity. The project maximizes value by using a variety of previous, ongoing, and planned measurements made by an international group of collaborators, along with measurements and model (AMPS, Polar-WRF) results. These will be used to quantify clouds, water vapor, and radiation and their effects on the surface energy balance at three strategically-located stations: Rothera (upwind of the WAP), Marambio (downwind of the WAP) and Escudero (north of the WAP), in order to provide a detailed characterization of cloud radiative and precipitation-formation properties and their role in surface warming and melt events. These mechanisms lead to the following hypotheses: 1) Through their effect on the surface energy balance, clouds play an important role in surface warming on the AP; this role is seasonally varying and sensitive to cloud thermodynamic phase, 2) Radiative heating during foehn events is an important contributor to warming at the northern AP, and 3) The radiative effects of clouds and water vapor have strong influences on heating before and during AR events, with significant differences on the two sides of the WAP. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Correlating ecosystem responses to past climate forcing is highly dependent on the use of reliable techniques for establishing the age of events (dating techniques). In Antarctic dry regions (land areas without glaciers), carbon-14 dating has been used to assess the ages of organic deposits left behind by ancient lakes. However, the reliability of the ages is debatable because of possible contamination with "old carbon" from the surrounding landscape. The proposed research will attempt to establish two alternate dating techniques, in situ carbon-14 cosmogenic radionuclide exposure dating and optically stimulated luminescence (OSL), as reliable alternate dating methods for lake history in Antarctic dry areas that are not contaminated by the old carbon. The end goal will be to increase scientific understanding of lake level fluctuation in the lakes of Taylor Valley, Antarctica so that inference about past climate, glacier, and ecosystem response can be inferred. The results of this study will provide a coarse-scale absolute chronology for lake level history in Taylor Valley, demonstrate that exposure dating and OSL are effective means to understand the physical dynamics of ancient water bodies, and increase the current understanding of polar lacustrine and ice sheet responses to past and present climatic changes. These chronologies will allow polar lake level fluctuations to be correlated with past changes in global and regional climate, providing information critical for understanding and modeling the physical responses of these environments to modern change. This research supports a PhD student; the student will highlight this work with grade school classes in the United States. This research aims to establish in situ carbon-14 exposure dating and OSL as reliable alternate (to carbon-14 of organic lake deposits) geochronometers that can be used to settle the long-disputed lacustrine history and chronology of Taylor Valley, Antarctica and elsewhere. Improved lake level history will have significant impacts for the McMurdo Dry Valleys Long Term Ecological Research (MCM LTER) site as the legacy of fluctuating lake levels of the past affects the distribution of organic matter and nutrients, and impacts biological connectivity valley-wide. This work will provide insight into the carbon reservoir of large glacial lakes in the late Holocene and have implications for previously reported radiocarbon chronologies. OSL samples will be analyzed in the Desert Research Institute Luminescence Laboratory in Reno, NV. For the in situ carbon-14 work, rock samples extracted from boulders and bedrock surfaces will be prepared at Tulane University. The prepared in situ carbon-14 samples will be analyzed at the National Ocean Sciences Accelerator Mass Spectrometry laboratory in Woods Hole, MA. The two datasets will be combined to produce a reliable, coarse scale chronology for late Quaternary lake level fluctuations in Taylor Valley. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This award is funded in whole or part under the American Rescue Plan Act of 2021 (Public Law 117-2). The Geospace environment comprises a complex system of the incoming solar wind plasma flow interacting with the Earth's magnetic field and transferring its energy and momentum into the magnetosphere. This interaction takes place mainly on the Earth's dayside, where reconnecting geomagnetic field line might be "open" and directly connected to the interplanetary magnetic field lines, thus providing direct pathways for the solar wind energy to be transferred down to the ionosphere and upper atmosphere. The spatial extent of the polar cap areas controlled by the ionospheric plasma convection demarcate the so-called "Open-Closed Boundary" where solar wind particles reach down polar ionospheres. Observations of that boundary serve the important role in validating geomagnetic field modeling and help studying space weather. Motivated by the compelling Geospace research in the polar regions, this award will allow scientists to investigate magnetosphere-ionosphere coupling processes and ionospheric irregularities inside the polar caps and their space weather impacts by establishing a new ground-based network that will be deployed in the Antarctic polar cap region. This will be achieved using three new instrumented platforms (next generation of Automatic Geophysical Observatories) along the snow traverse route from the Korean Antarctic Station Jang Bogo toward to the Concordia Station at Dome C by the Korea Polar Research Institute's (KOPRI) team. Geospace data collected by these three platforms will be shared by the U.S. and Korean researchers, as well as will be made available to other scientists. The research involves early-career researchers, as well as train students who will build and operate remote Antarctic platforms, as well as analyze collected data to investigate space weather events and validate models. This project expands the U.S. institutions partnership with the KOPRI scientists and logistical support personnel. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Antarctic groundwater drives the regional carbon cycle and can accelerate permafrost thaw shaping Antarctic surface features. However, groundwater extent, flow, and processes on a continent virtually locked in ice are poorly understood. The proposed work investigates the interplay between groundwater, sediment, and ice in Antarctica's cold desert landscape to determine when, where, and why Antarctic groundwater is flowing, and how it may evolve Antarctic frozen deserts from dry and stable to wet and dynamic. Mapping the changing extent of Antarctic near-surface groundwater requires the ability to measure soil moisture rapidly and repeatedly over large areas. The research will capture changes in near-surface groundwater distribution through an unmanned aerial vehicle (UAV) mapping approach. The project integrates a diverse range of sensors with new UAV technologies to provide a higher-resolution and more frequent assessment of Antarctic groundwater extent and composition than can be accomplished using satellite observations alone. To complement the research objectives, the PI will develop a new UAV summer field school, the Geosciences UAV Academy, focused on training undergraduate-level UAV pilots in conducting novel earth sciences research using cutting edge imaging tools. The integration of research and technology will prepare students for careers in UAV-related industries and research. The project will deliver new UAV tools and workflows for soil moisture mapping relevant to arid regions including Antarctica as well as temperate desert and dryland systems and will train student research pilots to tackle next generation airborne challenges. Water tracks are the basic hydrological unit that currently feeds the rapidly-changing permafrost and wetlands in the Antarctic McMurdo Dry Valleys (MDV). Despite the importance of water tracks in the MDV hydrologic cycle and their influence on biogeochemistry, little is known about how these water tracks control the unique brine processes operating in Antarctic ice-free areas. Both groundwater availability and geochemistry shape Antarctic microbial communities, connecting soil geology and hydrology to carbon cycling and ecosystem functioning. The objectives of this CAREER proposal are to 1) map water tracks to determine the spatial distribution and seasonal magnitude of groundwater impacts on the MDV near-surface environment to determine how near-surface groundwater drives permafrost thaw and enhances chemical weathering and biogeochemical cycling; 2) establish a UAV academy training earth sciences students to answer geoscience questions using drone-based platforms and remote sensing techniques; and 3) provide a formative step in the development of the PI as a teacher-scholar. UAV-borne hyperspectral imaging complemented with field soil sampling will determine the aerial extent and timing of inundation, water level, and water budget of representative water tracks in the MDV. Soil moisture will be measured via near-infrared reflectance spectroscopy while bulk chemistry of soils and groundwater will be analyzed via ion chromatography and soil x-ray fluorescence. Sedimentological and hydrological properties will be determined via analysis of intact core samples. These data will be used to test competing hypotheses regarding the origin of water track solutions and water movement through seasonal wetlands. The work will provide a regional understanding of groundwater sources, shallow groundwater flux, and the influence of regional hydrogeology on solute export to the Southern Ocean and on soil/atmosphere linkages in earth's carbon budget. The UAV school will 1) provide comprehensive instruction at the undergraduate level in both how and why UAVs can advance geoscience research and learning; and 2) provide educational infrastructure for an eventual self-sustaining summer program for undergraduate UAV education. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The McMurdo Dry Valleys are the largest ice-free region in Antarctica and home to a seasonally active hydrologic system, with streams and saline lakes. Streams are fed by summer meltwater from local glaciers and snowbanks. Therefore, streamflow is tied to summer climate conditions such as air temperatures, ground temperatures, winds, and incoming solar radiation. Based on 50 years of monitoring, summer stream activity has been observed to change, and it likely varied during the geologic past in response to regional climate change and fluctuating glaciers. Thus, deposits from these streams can address questions about past climate, meltwater, and lake level changes in this region. How did meltwater streamflow respond to past climate change? How did streamflow vary during periods of glacial advance and retreat? At what times did large lakes fill many of the valleys and what was their extent? The researchers plan to acquire a record of stream activity for the Dry Valleys that will span the three largest valleys and a time period of about 100,000 years. This record will come from a series of active and ancient alluvial fans that were deposited by streams as they flowed from valley sidewalls onto valley floors. The study will provide a long-term context with which to assess recent observed changes to stream activity and lake levels. The research will be led by two female mid-career investigators and contribute significantly to student research opportunities and education. The research will contribute to graduate and undergraduate education by including students in both field and laboratory research, as well as incorporating data and results into the classroom. The research will be disseminated to K-12 and non-scientific communities through outreach that includes professional development training for K-12 teachers in eastern Massachusetts, development of hands-on activities, visits to K-12 classrooms, and STEM education and literacy activities in North Carolina. The PIs propose to constrain rates of fluvial deposition and periods of increased fluvial activity in the McMurdo Dry Valleys during the Holocene and late Pleistocene. During 50 years of hydrologic monitoring in the Dry Valleys, scientists have observed that streams exhibit significant response to summer conditions. Previous studies of glacial and lacustrine deposits indicate regional glacier advance in the Dry Valleys during recent interglacial periods and high lake levels during and after the Last Glacial Maximum (LGM), with potentially significant low and high stands during the Holocene. However, the geologic record of meltwater activity is poorly constrained. The PIs seek to develop the first spatially-extensive record of stream deposition in the Dry Valleys by analyzing and dating alluvial fans. Given that alluvial fans are deposited by summer meltwater streams in a relatively stable tectonic setting, this record will serve as a proxy of regional summer climate conditions. Meltwater streams are an important component of the regional hydrologic system, connecting glaciers to lakes and affecting ecosystems and soils. A record of fluvial deposition is key to understanding the relationship between past climate change and regional hydrology. The proposed research will include remote- and field-based mapping of alluvial fans, stream channels, and meltwater sources as well as modeling potential incoming solar radiation to the fans and moisture sources during the austral summer. In the field, the PIs will document stratigraphy, collect near-surface sediments from 25 fans across four valleys (Taylor, Pearse, Wright, and Victoria), and collect 2- to 3-m vertical cores of ice-cemented sediments from three alluvial fan complexes. The PIs will then conduct depositional dating of fluvial sands via optically stimulated luminescence, and analyze mineralogy and bulk major element chemistry with X-ray powder diffraction and X-ray fluorescence. From these analyses, the PIs propose to (1) determine the timing of local- to regional-scale periods of high fluvial deposition, (2) calculate depositional rates, and (3) constrain depositional environments and sediment provenance. Given that many of the alluvial fans occur below the hypothesized maximum extents of glacially-dammed lakes in Wright and Victoria valleys, detailed stratigraphy, sediment provenance, and OSL dating of these fans could shed light on ongoing debates regarding the timing and extent of LGM and post-LGM lakes. The work will support a postdoctoral researcher, a PhD student, and many undergraduate and master’s students in cross-disciplinary research that spans stratigraphy, geochemistry, paleoclimatology and physics. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part I: Nontechnical description: This award represents a collaborative geoscience research effort between US NSF and UK Natural Environment Research Council (NERC) researchers with efforts in each nation funded by their respective countries (Dear Colleague Letter NSF 16-132). The research will focus on understanding the links between behavior, ecology, and evolution in a Southern Ocean wandering albatross population in response to global changes in climate and in exploitation of natural resources. The most immediate response of animals to global change typically is behavioral, and this work will provide a more comprehensive understanding of how differences individual bird behavior affect evolution and adaptation for the population under changing environments. Characterization of albatross personality, life-history traits, and population dynamics collected over long time scales will be used to develop robust forecasting of species persistence in the face of future global changes. The results of this project will feed into conservation and management decisions for endangered Southern Ocean species. The work will also be used to provide specific research training at all levels, including a postdoctoral scholar, graduate students and K-12 students. It will also support education for the public about impacts from human-induced activities on our polar ecosystems using animations, public lectures, printed and web media. Part II: Technical description Past research has shown that individual animal personalities range over a continuum of behavior, such that some individuals are consistently more aggressive, more explorative, and bolder than others. How the phenotypic distributions of personality and foraging behavior types within a population is created and maintained by ecological (demographic and phenotypic plasticity) and evolutionary (heritability) processes remain an open question. Differences in personality traits determine how individuals acquire resources and how they allocate these to reproduction and survival. Although some studies have found different foraging behaviors or breeding performances between personality types, none have established the link between personality differences in foraging behaviors and life histories (both reproduction and survival, and their covariations) in the context of global change. Furthermore, plasticity in foraging behaviors is not considered in the pace-of-life syndrome, which has potentially hampered our ability to find covariation between personality and life history trade-off. This project will fill these knowledge gaps and develop an eco-evolutionary model of the complex interactions among individual personality and foraging plasticity, heritability of personality and foraging behaviors, life history strategies, population dynamics in a changing environment (fisheries and climate) using a long-term database consisting of ~1,800 tagged wandering albatross seabirds (Diomedea exulans) with defined individual personalities and life history traits breeding in the Southern Ocean. Climate projections from IPCC atmospheric-oceanic global circulation models will be used to provide projections of population structure under future global change conditions. Specifically, the team will (1) characterize the differences in life history strategies along the shy-bold continuum of personalities and across environmental conditions; (2) develop the link between phenotypic plasticity in foraging effort and personality; (3) characterize the heritability of personality and foraging behaviors; (4) develop a stochastic eco-evolutionary model to predict population growth rates in a changing environment. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Microbial mats are found throughout the McMurdo Dry Valleys where summer snowmelt provides liquid water that allows these mats to flourish. Researchers have long studied the environmental conditions microbial mats need to grow. Despite these efforts, it has been difficult to develop a broad picture of these unique ecosystems. Recent advances in satellite technology now provide researchers an exciting new tool to study these special Antarctic ecosystems from space using the unique spectral signatures associated with microbial mats. This new technology not only offers the promise that microbial mats can be mapped and studied from space, this research will also help protect these delicate environments from potentially harmful human impacts that can occur when studying them from the ground. This project will use satellite imagery and spectroscopic techniques to identify and map microbial mat communities and relate their properties and distributions to both field and lab-based measurements. This research provides an exciting new tool to help document and understand the distribution of a major component of the Antarctic ecosystem in the McMurdo Dry Valleys. The goal of this project is to establish quantitative relationships between spectral signatures derived from orbit and the physiological status and biogeochemical properties of microbial mat communities in Taylor Valley, Antarctica, as measured by field and laboratory analyses on collected samples. The goal wioll be met by (1) refining atmospheric correction techniques using in situ radiometric rectification to derive accurate surface spectra; (2) collecting multispectral orbital images concurrent with in situ sampling and spectral measurements in the field to ensure temporal comparability; (3) measuring sediment, water, and microbial mat samples for organic and inorganic carbon content, essential biogeochemical nutrients, and chlorophyll-a to determine relevant mat characteristics; and (4) quantitatively associating these laboratory-derived characteristics with field-derived and orbital spectral signatures and parameters. The result of this work will be a more robust quantitative link between the distribution of microbial mat communities and their biogeochemical properties to landscape-scale spectral signatures. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSFGEO-NERC Collaborative Research: P2P: Predators to Plankton – Biophysical controls in Antarctic polynyas Part I: Non-technical description: The Ross Sea, a globally important ecological hotspot, hosts 25% to 45% of the world populations of Adélie and Emperor penguins, South Polar skuas, Antarctic petrels, and Weddell seals. It is also one of the few marine protected areas within the Southern Ocean, designed to protect the workings of its ecosystem. To achieve conservation requires participation in an international research and monitoring program, and more importantly integration of what is known about penguin as predators and the biological oceanography of their habitat. The project will acquire data on these species’ role within the local food web through assessing of Adélie penguin feeding grounds and food choices, while multi-sensor ocean gliders autonomously quantify prey abundance and distribution as well as ocean properties, including phytoplankton, at the base of the food web. Additionally, satellite imagery will quantify sea ice and whales, known penguin competitors, within the penguins’ foraging area. Experienced and young researchers will be involved in this project, as will a public outreach program that reaches more than 200 school groups per field season, and with an excess of one million visits to a website on penguin ecology. Lessons about ecosystem change, and how it is measured, i.e. the STEM fields, will be emphasized. Results will be distributed to the world scientific and management communities. Part II: Technical description: This project, in collaboration with the United Kingdom (UK) National Environmental Research Council (NERC), assesses food web structure in the southwestern Ross Sea, a major portion of the recently established Ross Sea Region Marine Protected Area that has been designed to protect the region’s food web structure, dynamics and function. The in-depth, integrated ecological information collected in this study will contribute to the management of this system. The southwestern Ross Sea, especially the marginal ice zone of the Ross Sea Polynya (RSP), supports global populations of iconic and indicator species: 25% of Emperor penguins, 30% of Adélie penguins, 50% of South Polar skuas, and 45% of Weddell seals. However, while individually well researched, the role of these members as predators has been poorly integrated into understanding of Ross Sea food web dynamics and biogeochemistry. Information from multi-sensor ocean gliders, high-resolution satellite imagery, diet analysis and biologging of penguins, when integrated, will facilitate understanding of the ‘preyscape’ within the intensively investigated biogeochemistry of the RSP. UK collaborators will provide state-of-the-art glider technology, glider programming, ballasting, and operation and expertise to evaluate the oceanographic conditions of the study area. Several young scientists will be involved, as well as an existing outreach program already developed that reaches annually more than 200 K-12 school groups and has more than one million website visits per month. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This study will collect a novel dataset to determine how the West Antarctic Ice Sheet (WAIS) responded to a warmer climate during the last interglacial period (~125,000 years ago) by reconstructing the glacial history at the Mt. Waesche volcano. Reconstructing WAIS geometry when the ice sheet was smaller than present is difficult and data are lacking because the evidence lies beneath the present ice sheet. This study will drill through the ice sheet and recover bedrock that can be analyzed for its surface exposure history to help determine when the surface became overridden by the ice sheet. This study will provide constraints on the past maximum and minimum spatial extent of WAIS during the last glacial-interglacial cycle. Understanding the geometry of a reduced WAIS during intervals when the planet was warmer than present may provide a possible analogue for future environmental conditions given predicted temperature trends. A reduction of WAIS results in rising sea levels which threatens coastal communities across the globe. The data will help improve numerical ice sheet models to better predict WAIS response to current and future climate trends. The project supports a teacher educational workshop and the training of graduate and undergraduate students. The goal of this project is to obtain rock samples from beneath the WAIS through shallow (<80 m) drilling at Mt. Waesche, a volcano in Marie Byrd Land, near an ice dome of WAIS (2000 m elevation). The lithologies of lava flows exposed on the flank of the volcano are well-suited for cosmogenic 3He and 36Cl as well as 40Ar/39Ar measurements which will establish eruption and exposure age. Existing 40Ar/39Ar data indicate basaltic lava flows on the volcano flank as young as 350 ka. Thus, measured cosmogenic nuclides measured in rock cores from beneath the ice surface will be indicative of relatively recent exposure during periods of reduced ice elevation, most likely, during the last interglacial. The first field season is focused on identifying appropriate locations for drilling and a ground penetrating radar (GPR) survey of the subglacial topography <100m under the blue ice area. Mapping and dating the adjacent exposed lava flows will allow tracing of lava flows of known age and composition below the ice margin that will be targeted for drilling the following year. The second field season activities include drilling 8 boreholes (two transects) through blue ice with the Winkie drill near the ice margin to 80 m depth to obtain rock cores from the sub-ice lava flows. 3He exposure ages will constrain the duration and minimum extent of past surface lowering of the WAIS in Marie Byrd Land. Deeper GPR imaging (up to 700 m) will hope to reveal additional evidence of lava/ice interactions that would independently place constraints on lower ice levels during past eruptions. Results from this study will be compared with the modeled ice elevation histories at Mt. Waesche to validate ice sheet modeling efforts. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Predicting the response of ice sheets to changing climate and their contribution to sea level requires accurate representation in numerical models of basal conditions under the ice. There remain large data gaps for these basal boundary conditions under the East Antarctic Ice Sheet as well as in West Antarctica, including basal melt rates under ice shelves. This project will develop and test a prototype ground-based radar system to sound and image ice more than 4km thick, detect thin water films at the ice bed, and determine basal melt rates under ice shelves. The team will work with European partners (France, Italy, Germany) at Dome C to conduct deep-field Antarctic testing of the new radar. The project will build and test an L-band radar system (1.2-1.4GHz) with peak transmit power of 2kW. In addition to sounding and imaging thick ice, detection goals include resolving thin water films (>0.5mm). Such a system would target glaciological problems including site selection for ice in the 1.5-million-year age range, basal stress boundary conditions under grounded ice, and melt rates under floating shelves. By demonstrating feasibility, the project aims to influence sensor selection for satellite missions. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). The spatial extent of the West Antarctic Ice Sheet during the last interglacial period (129,000 to 116,000 years ago) is currently unknown, yet this information is fundamental to projections of the future stability of the ice sheet in a warming climate. Paleoclimate records and proxy evidence such as dust can inform on past environmental conditions and ice-sheet coverage. This project will combine new, high-sensitivity geochemical measurements of dust from Antarctic ice collected at Allan Hills with existing water isotope records to document climate and environmental changes through the last interglacial period. These changes will then be compared with Earth-system model simulations of dust and water isotopes to determine past conditions and constrain the sensitivity of the West Antarctic Ice Sheet to warming. The project will test the hypothesis that the uncharacteristically volcanic dust composition observed at another peripheral ice core site at Taylor Glacier during the last interglacial period is related to changes in the spatial extent of the West Antarctic Ice Sheet. This project aims to characterize mineral dust transport during the penultimate glacial-interglacial transition. The team will apply high-precision geochemical techniques to the high-volume, high-resolution ice core drilled at the Allan Hills site in combination with Earth system model simulations to: (1) determine if the volcanic dust signature found in interglacial ice from Taylor Glacier is also found at Allan Hills, (2) determine the likely dust source(s) to this site during the last interglacial, and (3) probe the atmospheric and environmental changes during the last interglacial with a diminished West Antarctic Ice Sheet. The team will develop a suite of measurements on previously drilled ice from Allan Hills, including isotopic compositions of Strontium and Neodymium, trace element concentrations, dust-size distribution, and imaging of ice-core dust to confirm the original signal observed and provide a broader spatial reconstruction of dust transport. In tandem, the team will conduct Earth system modeling with prognostic dust and water-isotope capability to test the sensitivity of dust transport under several plausible ice-sheet and freshwater-flux configurations. By comparing dust reconstruction and model simulations, the team aims to elucidate the driving mechanisms behind dust transport during the last interglacial period. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Antarctica is among the most rapidly warming places on the planet, and some reports suggest the Antarctic environment is approaching, or possibly beyond, the tipping point for ice shelf collapse. The loss of ice around Antarctica is dramatically changing habitat availability for marine fauna, particularly benthic marine invertebrate species. Building on past studies, this research will provide insights into how changing climate impacts species distribution and community structure. Geological data suggests that during periods when ice extent was much reduced relative to modern levels, marine seaways connected the Ross and Weddell Seas on either side of Antarctica. However, most theories about the origins of current marine invertebrate distribution patterns fail to consider this transantarctic connection. This research will use molecular genomic tools to probe the DNA of Antarctic marine invertebrates and explore alternative hypotheses about factors that may have shaped current patterns of animal biodiversity in the Southern Ocean. Research will inform predictions about how species distributions may change as Antarctic ice sheets continue to deteriorate and provide critical information on how organisms adjust their ranges in response to environmental change. This work includes several specific outreach activities including presentations in K-8 classrooms, several short-format videos on Antarctic genomics and field work, and two 3-day workshops on bioinformatics approaches. A minimum of 4 graduate students, a postdoc and several undergraduates will also be trained during this project. The overarching goal of this research is to understand environmental factors that have shaped patterns of present-day diversity in Antarctic benthic marine invertebrates. Evidence from sediment cores and modeling suggests ice shelf collapses have occurred multiple times in the last few million years. During these periods, transantarctic seaways connected the Ross and Weddell Seas. This research will assess whether the presence of transantarctic waterways helps explain observed similarities between the Ross and Weddell Seas benthic marine invertebrate fauna better than other current hypotheses (e.g., dispersal by the Antarctic Circumpolar Current, or expansion from common glacial refugia). Seven Antarctic benthic invertebrate taxa will be targeted to test alternative hypothesis about the origins of population genetic structure in the Southern Ocean using Single Nucleotide Polymorphism (SNP) markers that sample thousands of loci across the genome. Additionally, research will test the current paradigm that divergence between closely related, often cryptic, species is the result of population bottlenecks caused by glaciation. Specifically, SNP data will be mapped on to draft genomes of three of our target taxa to assess the degree of genetic divergence and look for signs of selection. Research findings may be applicable to other marine ecosystems around the planet. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). Ice shelves play a critical role in restricting the seaward flow of grounded glacier ice by providing buttressing at their bases and sides. Processes that affect the long-term stability of ice shelves can therefore influence the future contribution of the Antarctic Ice Sheet to global sea-level rise. The Ross Ice Shelf is the largest ice shelf on Earth, and it buttresses massive areas of West and East Antarctica. Previous studies of modern ice velocity indicated that the Ross Ice Shelf’s mass loss is roughly balanced by its mass gain. However, more recent work that extends further back in time reveals the ice shelf is likely not in steady state, with possible long-term thinning since the late 1990s. Consequently, to accurately interpret modern-day ice-shelf changes, long-term observations are critical to evaluate how these recent variations fit into the historical context of ice-shelf variability. This project will examine more than four decades of historical and modern airborne radar sounding observations of the Ross Ice Shelf (spanning 1971 to 2017) to investigate ice-shelf changes on decadal timescales. The team will process, calibrate, and analyze radar data collected during 1971-79 field campaigns and compare them against modern observations collected between 2011-17. They will estimate basal melt rates by examining changes in ice-shelf thickness, and will determine other important metrics for melt, including ice-shelf roughness, englacial temperature, and marine-ice formation. The project will support the education of a Ph.D. student at each of the three participating institutions. In addition, the project will support the training of undergraduate and high-school researchers in radioglaciology and Antarctic sciences. The project will test the hypothesis that, over decadal timescales, the basal melt rates beneath the Ross Ice Shelf have been low, particularly under shallow ice drafts, leading to overall thickening and increased buttressing potential. The team aims to provide a direct estimate of basal melt rates based on changes in ice-shelf thickness that occurred between 1971 and 2017. This project will extend similar work completed at Thwaites Glacier and improve the calibration methods on the vertical scaling for fast-time and depth conversion. The work will also leverage the dense modern surveys to improve the geolocation of radar film collected on earlier field campaigns to produce a more precise comparison of local shelf thickness with the modern data. In addition, the team will conduct englacial attenuation analysis to calculate englacial temperature to infer the trends in local basal melting. They will also examine the radiometric and scatterometric character of bed echoes at the ice-ocean boundary to characterize changes in ice-shelf basal roughness, marine-ice formation related to local basal freezing, and structural damage from fracture processes. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
________________________________________________________________________________________________ Part I: Non-technical Summary The Antarctic Peninsula is one of the most rapidly warming regions on the planet. This 5-yr time-series program will build on an ongoing international collaboration with scientists from the Chilean Antarctic Program to evaluate the role of temperature, light absorbing particles, snow-algae growth, and their radiative forcing effects on snow and ice melt in the Western Antarctic Peninsula. There is strong evidence that these effects may be intensifying due to a warming climate. Rising temperatures can increase the growth rate of coastal snow algae as well as enhance the input of particles from sources such as the long-range transport of black carbon to the Antarctic continent from intensifying Southern Hemisphere wildfire seasons. Particle and algae feedbacks can have immediate local impacts on snow melt and long-term regional impacts on climate because reduced snow cover alters how the Antarctic continent interacts with the rest of the global climate. A variety of ground-based and remote sensing data collected across multiple spatial scales will be used. Ground measurements will be compared to satellite imagery to develop novel computer algorithms to map ice algal bloom effects under changing climates. The project is expected to fundamentally advance knowledge of the spatial and temporal snow algae growing season, which is needed to quantify impacts on regional snow and ice melt. The program also has a strong partnership with the International Association of Antarctic Tour Operators to involve cruise passengers as citizen scientists for sample collection. Antarctic research results will be integrated into undergraduate curricula and research opportunities through studies to LAPs and snow algae in the Pacific Northwest. The PI will recruit and train a diverse pool of students in cryosphere climate related research methods on Mt. Baker in Western Washington. Trained undergraduate will then serve as instructors for a local Snow School that takes middle school students to Mt. Baker to learn about snow science. Resulting datasets from Antarctica and Mt. Baker will be used in University classes to explore regional effects of climate change. Along with enhancing cryosphere-oriented place-based undergraduate field courses in the Pacific Northwest, the PI will recruit and train a diverse pool of undergraduate students to serve as instructors for the Mt. Baker Snow School program. This award will advance our understanding of cryosphere-climate feedbacks, which are likely changing and will continue to evolve in a warming world, while also increasing under-represented student engagement in the polar geosciences. Part 2: Technical Summary Rapid and persistent climate warming in the Western Antarctic Peninsula is likely resulting in intensified snow-algae growth and an extended bloom season in coastal areas. Similarly, deposition of light absorbing particles (LAPs) onto Antarctica cryosphere surfaces, such as black carbon from intensifying Southern Hemisphere wildfire seasons, and dust from the expansion of ice-free regions in the Antarctic Peninsula, may be increasing. The presence of snow algae blooms and LAPs enhance the absorption of solar radiation by snow and ice surfaces. This positive feedback creates a measurable radiative forcing, which can have immediate local and long-term regional impacts on albedo, snow melt and downstream ecosystems. This project will investigate the spatial and temporal distribution of snow algae, black carbon and dust across the Western Antarctica Peninsula region, their response to climate warming, and their role in regional snow and ice melt. Data will be collected across multiple spatial scales from in situ field measurements and sample collection to imagery from ground-based photos and high resolution multi-spectral satellite sensors. Ground measurements will inform development and application of novel algorithms to map algal bloom extent through time using 0.5-3m spatial resolution multi-spectral satellite imagery. Results will be used to improve snow algae parameterization in a new version of the Snow Ice Aerosol Radiation model (SNICARv3) that includes bio-albedo feedbacks, eventually informing models of ice-free area expansion through incorporation of SNICARv3 in the Community Earth System Model. Citizen scientists will be mentored and engaged in the research through an active partnership with the International Association of Antarctic Tour Operators that frequently visits the region. The cruise ship association will facilitate sampling to develop a unique snow algae observing network to validate remote sensing algorithms that map snow algae with high-resolution multi-spectral satellite imagery from space. These time-series will inform instantaneous and interannual radiative forcing calculations to assess impacts of snow algae and LAPs on regional snow melt. Quantifying the spatio-temporal growing season of snow algae and impacts from black carbon and dust will increase our ability to model their impact on snow melt, regional climate warming and ice-free expansion in the Antarctic Peninsula region. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The potential for future sea level rise from melting and collapse of Antarctic ice sheets and glaciers is concerning. We can improve our understanding of how water is exchanged between Antarctic ice sheets and the ocean by studying how ice sheets behaved in past climates, especially conditions that were similar to or warmer than those at present. For this project, the research team will document Antarctica’s response across an interval when Earth transitioned from the warm Pliocene into the Pleistocene ice ages by combining marine and land evidence for glacier variations from sites near the Antarctic Peninsula, complimented by detailed work on timescales and fossil evidence for environmental change. An important goal is to test whether Antarctica’s glaciers changed at the same time as glaciers in the Northern Hemisphere as Earth's most recent Ice Age intensified, or alternatively responded to regional climate forcing in the Southern Hemisphere. Eleven investigators from seven US institutions, as well as Argentine collaborators, will study new sediment cores from the International Ocean Discovery Program, as well as legacy cores from that program and on-land outcrops on James Ross Island. The group embraces a vertically integrated research program that allows high school, undergraduate, graduate, post-docs and faculty to work together on the same projects. This structure leverages the benefits of near-peer mentoring and the development of a robust collaborative research network while allowing all participants to take ownership of different parts of the project. All members of the team are firmly committed to attracting researchers from under-represented groups and will do this through existing channels as well as via co-creating programming that centers the perspectives of diverse students in conversations about sea-level rise and climate change. The proposed research seeks to understand phasing between Northern and Southern Hemisphere glacier and climate changes, as a means to understand drivers and teleconnections. The dynamics of past Antarctic glaciation can be studied using the unique isotope geochemical and mineralogic fingerprints from glacial sectors tied to a well-constrained time model for the stratigraphic successions. The proposed work would further refine the stratigraphic context through coupled biostratigraphic and magnetostratigraphic work. The magnitude of iceberg calving and paths of icebergs will be revealed using the flux, geochemical and mineralogic signatures, and 40Ar/39Ar and U-Pb geochronology of ice-rafted detritus. These provenance tracers will establish which sectors of Antarctica’s ice sheets are more vulnerable to collapse, and the timing and pacing of these events will be revealed by their stratigraphic context. Additionally, the team will work with Argentine collaborators to connect the marine and terrestrial records by studying glacier records intercalated with volcanic flows on James Ross Island. These new constraints will be integrated with a state of the art ice-sheet model to link changes in ice dynamics with their underlying causes. Together, these tight stratigraphic constraints, geochemical signatures, and ice-sheet model simulations will provide a means to compare to the global records of climate change, understand their primary drivers, and elucidate the role of the Antarctic ice sheet in a major, global climatic shift from the Pliocene into the Pleistocene. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). Part I: Non-technical description: The Weddell seal is an iconic Antarctic species and a superb diver, swimming down to 2,000 feet and staying underwater for up to 45 minutes. However, as for any mammal, the low oxygen concentrations in the blood during diving and the recovery once back at the surface are challenges that need to be overcome making their diving ability something unique that has fascinated scientists for decades. This research project will evaluate the underlying processes in Weddell seal’s physiology that protects this species from the consequences of diving. The work will combine laboratory experiments where cells that line the blood vessels will be exposed to conditions of low oxygen, similar to those that will be measured in diving seals in Antarctica. The investigarors will test a new idea that several short-term dives, performed before a long dive, allows seals to condition themselves. Measurements on the chemical compounds released to the blood during dives, combined with experiments on the genes that regulate them will provide clues on the biochemical pathways that help the seals tolerate these extreme conditions. The project allows for documentation of individual seal dives and provisioning of such information to the broader science community that seeks to study these seals, educating graduate and undergraduate students and a post-doctoral researcher and producing a science-outreach comic book for middle-school students to illustrate the project's science activities, goals and outcomes. Part II: Technical description: The Weddell seal is a champion diver with high natural tolerance for low blood oxygen concentration (hypoxemia) and inadequate blood supply (ischemia). The processes unique to this species protects their tissues from inflammation and oxidative stress observed in other mammalian tissues exposed to such physiological conditions. This project aims to understand the signatures of the processes that protect seals from inflammation and oxidant stress, using molecular, cellular and metabolic tools. Repetitive short dives before long ones are hypothesized to precondition seal tissues and activate the protective processes. The new aspect of this work is the study of endothelial cells, which sense changes in oxygen and blood flow, providing a link between breath-holding and cellular function. The approach is one of laboratory experiments combined with 2-years of field work in an ice camp off McMurdo Station in Antarctica. The study is structured by three main objectives: 1) laboratory experiments with arterial endothelial cells exposed to changes in oxygen and flow to identify molecular pathways responsible for tolerance of hypoxia and ischemia using several physiological, biochemical and genomic tools including CRSPR/Cas9 knochout and knockdown approaches. 2) Metabolomic analyses of blood metabolites produced by seals during long dives. And 3) Metabolomic and genomic determinations of seal physiology during short dives hypothesized to pre-condition tolerance responses. In the field, blood samples will be taken after seals dive in an isolated ice hole and its diving performance recorded. It is expected that the blood will contain metabolites that can be related to molecular pathways identified in lab experiments. Expert collaborators will provide field support, with the ice camp, dive hole for the seals, and telemetry associated with the seals’ dives. The project builds upon previous NSF-funded projects where the seal genome and cellular resources were produced. Undergraduate researchers will be recruited from institutional programs with a track record of attracting underrepresented minorities and a minority-serving institution. To further increase polar literacy training and educational impacts, the field team will include a blog where field experiences are shared and comic book preparation with an artist designed for K-12 students and public outreach. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Non-Technical Abstract: The Polar Rock Repository (PRR) at The Ohio State University provides a unique resource for researchers studying the polar regions by offering free access to geological samples and data. This project seeks support to continue expanding and managing the collection, which is vital for scientific studies and planning fieldwork in Antarctica. Over the next five years, the repository plans to add tens of thousands of new samples and images, making it easier for researchers to study polar geology without the high cost and environmental impact of traveling to remote Antarctic locations. The PRR also supports education and outreach by providing hands-on resources for schools, colleges, and the public, including a "Polar Rock Box" program that brings real Antarctic samples into classrooms. This work ensures the preservation of important scientific materials and makes them accessible to a broad community, advancing understanding of our planet’s polar regions. Technical Abstract: The Polar Rock Repository (PRR) at The Ohio State University serves as a critical resource for polar earth science research, offering no-cost loans of geological samples and comprehensive metadata to the scientific community. This proposal seeks funding to support the continued curation, expansion, and management of the PRR, alongside its educational and outreach initiatives. Over the next five years, the PRR anticipates acquiring approximately 15,000 new samples, including those from major drilling operations (RAID, Winkie drill cores) and polar cruises. The repository also aims to significantly grow its archives of images, petrographic thin sections, and mineral separates. By preserving these physical and digital assets in a discoverable online database, the PRR fosters transparency, reproducibility, and accessibility in polar research, fulfilling Antarctic data management mandates. The intellectual merit lies in enabling cutting-edge scientific analyses through freely available samples and metadata. Broader impacts include reduced environmental costs of Antarctic research, enhanced educational opportunities, and outreach to a diverse audience through initiatives like the "Polar Rock Box" program. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Nontechnical Abstract Mount Erebus volcano on Ross Island, Antarctica, is the southernmost active volcano on the planet. It provides a natural laboratory to study a volcanic system that has been in a continuous state of activity with a persistent lava lake over at least the last 40 years. Worldwide only four other volcanoes with such long-lived lava lakes exist: Erta Ale, Ethiopia; Kilauea, Hawaii; Nyiragongo, Congo; and Ambrym, Vanuatu. These volcanoes are a rare anomaly that provide a window into the underlying magmatic system and behavior. Erebus is of particular interest as it cycles through phases of very explosive activity every 20 thousand years. This project will investigate interactions between the magmatic system, the rift it is located in, and the impact of the gravitational load the volcano imposes on the underlying crust and its own magmatic system. Possible interactions between these factors may explain the changes in activity. The project will analyze geophysical data that have been collected at Erebus over at least the last two decades. The results of this work will be available to the public and scientific community and inform geodynamic models in this region. The project funds an early-career scientist and a graduate student at New Mexico Tech and contributes to the development of the next generation of scientists. Technical Abstract The proposed work targets scientific questions recently formulated by the community during the 2016 NSF-sponsored Scientific Drivers and Future of Mount Erebus Volcano Observatory workshop. The location and geometry of the magmatic plumbing from vent to lower crust system remain poorly constrained, particularly below 1 km depth. The style and causes for changes in volcanic and magmatic activity over the short term (minutes to hours) and on the decadal scale remains enigmatic. Two decades of campaign and continuous GPS data on Ross Island will inform about the longer term dynamics of both, Ross Island growing within the Terror Rift, and Erebus? deeper magmatic system. This project will organize and analyze all existing GPS data for Ross Island, and interpret any anomalies in the resulting time series. These activities require organization, consistent processing and interpretation/modeling of the existing ~20 years of GPS data, which include campaign, continuous, and high-rate GPS observations. We will generate these position time series in a consistent local reference frame and make the results, including models of transient deformation available to the community. Volcanic, tectonic and isostatic adjustment related deformation will be modeled to place Erebus in a broad volcano-tectonic framework of West Antarctica. During the data analysis phase, the utility of existing GPS data for reflection studies of snow and sea-level dynamics will also be evaluated.
The overall goal of this project is to determine the effect of past changes in the size of the Antarctic Ice Sheet on global sea level. At the peak of the last ice age 25,000 years ago, sea level was 120 meters (400 feet) lower than it is at present because water that is now part of the ocean was instead part of expanded glaciers and ice sheets in North America, Eurasia, and Antarctica. Between then and now, melting and retreat of this land ice caused sea level to rise. In this project, we aim to improve our understanding of how changes in the size of the Antarctic Ice Sheet contributed to this process. The overall strategy to accomplish this involves (i) visiting areas in Antarctica that are not now covered by ice; (ii) looking for geological evidence, specifically rock surface and sediment deposits, that indicates that these areas were covered by thicker ice in the past; and (iii) determining the age of these geological surfaces and deposits. This project addresses the final part of this strategy -- determining the age of Antarctic glacial rock surfaces or sediment deposits -- using a relatively new technique that involves measuring trace elements in rock surfaces that are produced by cosmic-ray bombardment after the rock surfaces are exposed by ice retreat. By applying this method to rock samples collected in previous visits to Antarctica, the timing of past expansion and contraction of the ice sheet can be determined. The main scientific outcomes expected from this project are (i) improved understanding of how Antarctic Ice Sheet changes contributed to past global sea level rise; and (ii) improved understanding of modern observed Antarctic Ice Sheet changes in a longer-term context. This second outcome will potentially improve predictions of future ice sheet behavior. Other outcomes of the project include training of individual undergraduate and graduate students, as well as the development of a new course on sea level change to be taught at Tulane University in New Orleans, a city that is being affected by sea level change today. This project will use measurements of in-situ-produced cosmogenic carbon-14 in quartz from existing samples collected at several sites in Antarctica to resolve major ambiguities in existing Last Glacial Maximum to present ice sheet reconstructions. This project is important because of the critical nature of accurate reconstructions of ice sheet change in constraining reconstructions of past sea level change. Although carbon-14 is most commonly exploited as a geochronometer through its production in the upper atmosphere and incorporation into organic materials, it is also produced within the crystal lattice of rocks and minerals that are exposed to the cosmic-ray flux at the Earth's surface. In this latter case, its concentration is proportional to the duration of surface exposure, and measurements of in-situ-produced carbon-14 can be used to date geological events that form or expose rock surfaces, for example, ice sheet expansion and retreat. Although carbon-14 is one of several trace radionuclides that can be used for this purpose, it is unique among them in that its half-life is short relative to the time scale of glacial-interglacial variations. Thus, in cases where rock surfaces in polar regions have been repeatedly covered and uncovered by ice sheet change during many glacial-interglacial cycles, carbon-14 measurements are uniquely suited to accurately dating the most recent episode of ice sheet advance and retreat. We aim to use this property to improve our understanding of Antarctic Ice Sheet change at a number of critically located sites at which other surface exposure dating methods have yielded ambiguous results. Geographically, these are focused in the Weddell Sea embayment of Antarctica, which is an area where the geometry of the Antarctic continent potentially permits large glacial-interglacial changes in ice volume but where existing geologic records of ice sheet change are particularly ambiguous. In addition, in-situ carbon-14 measurements, applied where independently constrained deglaciation chronologies already exist, can potentially allow us to date the last period of ice sheet advance as well as the most recent retreat.
Bubbles of ancient air trapped in ice cores have been used to directly reconstruct atmospheric composition, and its links to Antarctic and global climate, over the last 800,000 years. Previous field expeditions to the Allan Hills Blue Ice Area, Antarctica, have recovered ice cores that extend as far back as 2.7 million years, by far the oldest polar ice samples yet recovered. These ice cores extend direct observations of atmospheric carbon dioxide and methane concentrations and indirect records of Antarctic climate into a period of Earth's climate history that represents a plausible geologic analogue to future anthropogenic climate change. The results demonstrate a smaller glacial-interglacial variability of climate and greenhouse gases, and a persistent linkage between Antarctic climate and atmospheric carbon dioxide, between 1 and 2 million years ago. Through this project, the team will return to the Allan Hills Blue Ice Area to recover additional ice cores that date to 2 million years or older. The climate records developed from these ice cores will provide new insights into the chemical composition of the atmosphere and Antarctic climate during times of comparable or even greater warmth than the present day. Project results will help answer questions about issues associated with anthropogenic change including the relationship between temperature change and the mass balance of Antarctic ice and the relationship between atmospheric greenhouse gases and global climate change. Earth has been cooling, and ice sheets expanding, over the past ~52 million years. Superimposed on this cooling are periodic changes in Earth's climate system driven by variations in the eccentricity, precession, and obliquity of Earth's orbit around the Sun. Climate reconstructions based on measurements of oxygen isotopes in foraminiferal calcite indicate that, from ~2.8 to 1.2 million years before present (Ma), Earth's climate system oscillated between glacial and interglacial states every ~40,000 years (the "40k world"). Between 1.2-0.8 Ma and continuing to the present, the period of glacial cycles increased in amplitude and lengthened to ~100,000 years (the "100k world"). Ice cores preserve ancient air that allows direct reconstructions of atmospheric carbon dioxide and methane. They also archive proxy records of regional climate, mean ocean temperature, global oxygen cycling, and the aridity of nearby continents. Studies of stratigraphically continuous ice cores, extending to 800,000 years before present, have demonstrated that atmospheric carbon dioxide is strongly linked to climate, and it is of great interest to extend the ice-core record into the 40k world. Recent discoveries of well-preserved ice dating from 1.0 to 2.7 Ma from ice cores drilled in the Allan Hills Blue Ice Area (BIA), Antarctica, demonstrate the potential to retrieve stratigraphically discontinuous old ice at shallow depths (<200 meters). This project will continue this work by retrieving new large-volume ice cores and measuring paleoclimate properties in both new and existing ice from the Allan Hills BIA. The experimental objectives are to more fully characterize fundamental properties of the climate system and the carbon cycle during the 40k world. Project results will have implications for Pleistocene climate change, and will provide new constraints on the processes that regulate atmospheric carbon dioxide, methane, and oxygen on geologic timescales. Given a demonstrated age of the ice at the Allan Hills BIA of at least 2 million years, the team will drill additional cores to prospect for ice that predates the initiation of Northern Hemisphere glaciation at the Plio-Pleistocene transition (~2.8 Ma). This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The West Antarctic Ice Sheet is the most vulnerable polar ice mass to warming and already a major contributor to global mean sea level rise. Its fate in the light of prolonged warming is a topic of major uncertainty. Accelerated sea level rise from ice mass loss in the polar regions is a major concern as a cause of increased coastal flooding affecting millions of people. This project will disclose a unique geological archive buried beneath the seafloor off the Amundsen Sea, Antarctica, which will reveal how the West Antarctic Ice Sheet behaved in a warmer climate in the past. The data and insights can be used to inform ice-sheet and ocean modeling used in coastal policy development. The project will also support the development of a competitive U.S. STEM workforce. Online class exercises for introductory geology classes will provide a gateway for qualified students into undergraduate research programs and this project will enhance the participation of women in science by funding the education of current female Ph.D. students. The project targets the long-term variability of the West Antarctic Ice Sheet over several glacial-interglacial cycles in the early Pliocene sedimentary record drilled by the International Ocean Discovery Program (IODP) Expedition 379 in the Amundsen Sea. Data collection includes 1) the sand provenance of ice-rafted debris and shelf diamictites and its sources within the Amundsen Sea and Antarctic Peninsula region; 2) sedimentary structures and sortable silt calculations from particle size records and reconstructions of current intensities and interactions; and 3) the bulk provenance of continental rise sediments compared to existing data from the Amundsen Sea shelf with investigations into downslope currents as pathways for Antarctic Bottom Water formation. The results are analyzed within a cyclostratigraphic framework of reflectance spectroscopy and colorimetry (RSC) and X-ray fluorescence scanner (XRF) data to gain insight into orbital forcing of the high-latitude processes. The early Pliocene Climatic Optimum (PCO) ~4.5-4.1 Ma spans a major warm period recognized in deep-sea stable isotope and sea-surface temperature records. This period also coincides with a global mean sea level highstand of > 20 m requiring contributions in ice mass loss from Antarctica. The following hypotheses will be tested: 1) that the West Antarctic Ice Sheet retreated from the continental shelf break through an increase in sub iceshelf melt and iceberg calving at the onset of the PCO ~4.5 Ma, and 2) that dense shelf water cascaded down through slope channels after ~4.5 Ma as the continental shelf became exposed during glacial terminations. The project will reveal for the first time how the West Antarctic Ice Sheet operated in a warmer climate state prior to the onset of the current “icehouse” period ~3.3 Ma. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part I: Non-technical description: Methane is one of the more effective atmospheric gases at retaining heat in the lower atmosphere and the earth’s crust contains large quantities of methane. Research that identifies the factors that control methane’s release into the atmosphere is critical to understanding and mitigating climate change. One of the most effective natural processes that inhibits the release of methane from aquatic habitats is a community of bacteria and Archaea (microbes) that use the chemical energy stored in methane, transforming methane into less-climate-sensitive compounds. The amount of methane that may be released in Antarctica is unknown, and it is unclear which microbes consume the methane before it is released from the ocean in Antarctica. This project will study one of the few methane seeps known in Antarctica to advance our understanding of which microbes inhibit the release of methane in marine environments. The research will also identify if methane is a source of energy for other Antarctic organisms. The researchers will analyze the microbial species associated with methane consumption over several years of field and laboratory research based at an Antarctic US station, McMurdo. This project clearly expands the fundamental knowledge of Antarctic systems, biota, and processes outlined as a goal in the Antarctic solicitation. This research communicates and produces educational material for K-12, college, and graduate students to inspire and inform the public about the role Antarctic ecosystems play in the global environment. This project also provides a young professor an opportunity to establish himself as an expert in the field of Antarctic microbial ecology to help solidify his academic career. Part II: Technical description: Microbes act as filter to methane release from the ocean into the atmosphere, where microbial chemosynthetic production harvests the chemical energy stored in this greenhouse gas. In spite of methane reservoirs in Antarctica being as large as Arctic permafrost, we know only a little about the taxa or dominant processes involved in methane consumption in Antarctica. The principal investigator will undertake a genomic and transcriptomic study of microbial communities developed and still developing after initiation of methane seepage in McMurdo Sound. An Antarctic methane seep was discovered at this location in 2012 after it began seeping in 2011. Five years after it began releasing methane, the methane-oxidizing microbial community was underdeveloped and methane was still escaping from the seafloor. This project will be essential in elucidating the response of microbial communities to methane release and identify how methane oxidation occurs within the constraints of the low polar temperatures. This investigation is based on 4 years of field sampling and will establish a time series of the development of cold seep microbial communities in Antarctica. A genome-to-ecosystem approach will establish how the Southern Ocean microbial community is adapted to prevent methane release into the ocean. As methane is an organic carbon source, results from this study will have implications for the Southern Ocean carbon cycle. Two graduate students will be trained and supported with undergraduates participating in laboratory activities. The researcher aims to educate, inspire and communicate about Antarctic methane seeps to a broad community. A mixed-media approach, with videos, art and education in schools will be supported in collaboration with a filmmaker, teachers and a visual artist. Students will be trained in filmmaking and K-12 students from under-represented communities will be introduced to Antarctic science through visual arts. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part I: Non-technical description: Earth’s terrestrial ecosystems have the potential to either slow down or hasten the pace of climate change. The direction depends in part on both plant and microbial responses to warming. This study uses Antarctica as a model ecosystem to study the carbon balance of a simplified ecosystem (simplified compared to terrestrial ecosystems elsewhere) in response to a warming treatment. Carbon balance is dictated by sequestered carbon (through photosynthesis) and released carbon (plant and microbial respiration). Hence, to best assess plant and microbial responses to warming, this study uses a plant gradient that starts at the glacier (no plants, only soil microbes) to an old site entirely covered by plants. Experimental warming in the field is achieved by open-top chambers that warm the air and soil inside. The net ecosystem carbon exchange, the net result of sequestered and released carbon, will be measured in warmed and control plots with a state-of-the art gas exchange machine. Laboratory temperature incubation studies will supplement field work to attribute changes in carbon fluxes to individual plant species and soil microbial taxa (i.e., “species”). Data from this study will feed into earth system climate change models. The importance of this study will be shared with the broader community through the production of a video series created by an award-winning science media production company, an Antarctic blog, and through interactions with schools in the United States (on-site through Skype and in-person visits). Part II: Technical description: Responses of the carbon balance of terrestrial ecosystems to warming will feed back to the pace of climate change, but the size and direction of this feedback are poorly constrained. Least known are the effects of warming on carbon losses from soil, and clarifying the major microbial controls is an important research frontier. This study uses a series of experiments and observations to investigate microbial, including autotrophic taxa, and plant controls of net ecosystem productivity in response to warming in intact ecosystems. Field warming is achieved using open-top chambers paired with control plots, arrayed along a productivity gradient. Along this gradient, incoming and outgoing carbon fluxes will be measured at the ecosystem-level. The goal is to tie warming-induced shifts in net ecosystem carbon balance to warming effects on soil microbes and plants. The field study will be supplemented with lab temperature incubations. Because soil microbes dominate biogeochemical cycles in Antarctica, a major focus of this study is to determine warming responses of bacteria, fungi and archaea. This is achieved using a cutting-edge stable isotope technique, quantitative stable isotope probing (qSIP) developed by the proposing research team, that can identify the taxa that are active and involved in processing new carbon. This technique can identify individual microbial taxa that are actively participating in biogeochemical cycling of nutrients (through combined use of 18O-water and 13C-bicarbonate) and thus can be distinguished from those that are simply present (cold-preserved). The study further assesses photosynthetic uptake of carbon by the vegetation and their sensitivity to warming. Results will advance research in climate change, plant and soil microbial ecology, and ecosystem modeling. Science communication will be achieved through an informative video series, a daily Antarctic blog, and online- and in-person visits to schools in the United States. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part 1: Non-technical description: Global climate warming is increasing the frequency and severity of low oxygen events in marine and freshwater environments worldwide, and these events threaten the health of aquatic ecosystems and the viability of fish populations. The Southern Ocean surrounding Antarctica has historically been a stable, icy-cold, and oxygen-rich environment, but is now warming at an unprecedented rate and faster than all other regions in the Southern hemisphere. Antarctic fishes have evolved in sub-zero temperatures that have been stable over long periods of time with traits allowing them to thrive in frigid waters, but with diminished resilience to warming temperatures. Presently little is known about the ability of Antarctic fishes to withstand hypoxic, or low-oxygen, conditions that often accompany warming. This research will investigate the hypoxia tolerance of four species of Antarctic fishes, including two species of icefishes that lack the oxygen-carrying protein, hemoglobin, which may compromise their ability to oxygenate tissues under hypoxic conditions. The hypoxia tolerance of four Antarctic fish species will be compared to that of a related fish species inhabiting warmer coastal regions of South America. Physiological and biochemical responses to hypoxia will be evaluated and compared amongst the five species to bolster our predictions of the capacity of Antarctic fishes to cope with a changing environment. This research will provide training opportunities for undergraduate and graduate students, and a postdoctoral research fellow. A year-long seminar series hosted by the Aquarium of the Pacific will feature female scientists who work in Antarctica to inspire youth in the greater Los Angeles area to pursue careers in science. Part 2: Technical description: The overarching hypothesis to be tested in this project is that the long evolution of Antarctic notothenioid fishes in a cold, oxygen-rich environment has reduced their capacity to mount a robust physiological, biochemical, and molecular response to hypoxia compared to related, cold-temperate fish species. Hypoxia tolerance will be compared among the red-blooded Antarctic notothenioids, Notothenia coriiceps and Notothenia rossii; the hemoglobinless Antarctic icefishes, Chaenocephalus aceratus and Chionodraco rastrospinosus; and the basal, cold-temperate notothenioid, Eleginops maclovinus, a species that has never inhabited waters south of the Polar Front. The minimum level of oxygen required to sustain maintenance metabolic requirements (O2crit) will be quantified. Animals will then be exposed to 65% of O2crit for 48 hours, and responses to hypoxia will be evaluated by measuring hematocrit and hemoglobin levels, as well as metabolites in brain, liver, glycolytic and cardiac muscles. Maximal activities of key enzymes of aerobic and anaerobic metabolism will be quantified to assess capacities for synthesizing ATP in hypoxic conditions. Gill remodeling will be analyzed using light and scanning electron microscopy. The molecular response to hypoxia will be characterized in liver and brains by quantifying levels of the master transcriptional regulator of oxygen homeostasis, hypoxia-inducible factor-1 (HIF-1), and hypoxic gene expression will be quantified using RNA-Seq. Cell cultures will be used to determine if a previously identified insertion mutation in notothenioid HIF-1 affects the ability of HIF-1 to drive gene expression and thus, hypoxia tolerance. The results of this project will provide the most comprehensive assessment of the hypoxia tolerance of Antarctic fishes to date. Broader impacts include research training opportunities for undergraduate and graduate students and a postdoctoral research associate, with a focus on involving Native Alaskan students in research. In partnership with the Aquarium of the Pacific, a year-long public seminar series will be held, showcasing the research and careers of 9 women who conduct research in Antarctica. The goal of the series is to cultivate and empower a community of middle and high school students in the greater Los Angeles area to pursue their interests in science and related fields, and to enhance the public engagement capacities of research scientists so that they may better inspire youth and early career scientists in STEM fields. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part I: Non-technical description: Understanding human-induced changes on biodiversity is one of the most important scientific challenges we face today. This is especially true for marine environments that are home to much of the world’s biomass and biodiversity. A particularly effective approach to investigate the effects of climate change on marine ecosystems is to monitor top-predator populations such as seabirds or marine mammals. The food web in the Southern Ocean in relatively small and involves few species, therefore climate-induced variations at the prey species level directly affect the predator species level. For example, seabirds, like penguins, are ideal to detect and study these ecosystem changes. This study combines traditional methods to study emperor penguin population dynamics with the use of an autonomous vehicle to conduct the population dynamic measurements with less impact and higher accuracy. This project leverages an existing long-term emperor penguin observatory at the Atka Bay colony which hosts penguins living in the Weddell sea and the Atlantic sector of the Southern Ocean. The study will kickstart the collection of a multi-decadal data set in an area of the Southern Ocean that has been understudied. It will fill important gaps in ecological knowledge on the state of the Emperor penguin and its adaptive capabilities within a changing world. Finally, the project supports NSF goals of training new generations of scientists through collaborative training of undergraduate students and the creation of a new class on robotics for ecosystem study. Emperor penguins are an iconic species that few people will ever see in the wild. Through the technology developed in this proposal, the public can be immersed in real-time into the life of an emperor penguin colony. Public outreach will be achieved by showcasing real-time video and audio footage of emperor penguins from the field as social media science and engineering-themed educational materials. Part II: Technical description: Polar ecosystems currently experience significant impacts due to global changes. Measurable negative effects on polar wildlife have already occurred, such as population decreases of numerous seabird species, including the complete loss of colonies of one of the most emblematic species of the Antarctic, the emperor penguin. These existing impacts on polar species are alarming, especially because many polar species still remain poorly studied due to technical and logistical challenges imposed by the harsh environment and extreme remoteness. Developing technologies and tools for monitoring such wildlife populations is, therefore, a matter of urgency. This project aims to help close major knowledge gaps about the emperor penguin, in particular about their adaptive capability to a changing environment, by the development of next-generation tools to remotely study entire colonies. Specifically, the main goal of this project is to implement and test an autonomous unmanned ground vehicle equipped with Radio-frequency identification (RFID) antennas and wireless mesh communication data-loggers to: 1) identify RFID-tagged emperor penguins during breeding to studying population dynamics without human presence; and 2) receive Global Positioning System-Time Domain Reflectometry (GPS-TDR) datasets from Very High Frequency VHF-GPS-TDR data-loggers without human presence to study animal behavior and distribution at sea. The autonomous vehicles navigation through the colony will be aided by an existing remote penguin observatory (SPOT). Properly implemented, this technology can be used to study of the life history of individual penguins, and therefore gather data for behavioral and population dynamic studies. The new data will contribute to intelligent establishment of marine protected areas in Antarctica. The education objectives of this CAREER project are designed to increase the interest in a STEM education for the next generation of scientists by combining the charisma of the emperor penguin with robotics research. Within this project, a new class on ecosystem robotics will be developed and taught, Robotics boot-camps will allow undergraduate students to remotely participate in Antarctic field trips, and an annual curriculum will be developed that allows K-12 students to follow the life of the emperor penguin during the breeding cycle, powered by real-time data obtained using the unmanned ground vehicle as well as the existing emperor penguin observatory. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Southern Ocean contains an extraordinary diversity of marine life. Many Antarctic marine organisms have evolved in stable, cold ocean conditions and possess limited ability to respond to environmental fluctuations. To date, research on the physiological limits of Antarctic fishes has focused largely on adult life stages. However, early life stages may be more sensitive to environmental change because they may need to prioritize energy to growth and development instead of maintenance of physiological balance and integrity- even under stress conditions. This project will examine the specific mechanisms that young (embryos, larvae and juveniles) Antarctic fishes use to respond to changes in ocean conditions at the molecular, cellular and physiological levels, so that they are able to survive. The aim is to provide a unifying framework for linking environmental change, gene expression, metabolism and organismal performance in different species that have various rates of growth and development. There is a diverse and robust education and outreach program linked with the research effort that will reach students, teachers, young scientists, community members and government officials at local and regions scales. Polar species have already been identified as highly vulnerable to global change. However as yet, there is no unifying framework for linking environmental change to organismal performance, in part because a mechanistic understanding of how stressors interact at the molecular, biochemical and physiological level is underdeveloped is lacking for most species. In the marine environment, this paucity of information limits our capacity to accurately predict the impacts of warming and CO2-acidification on polar species, and therefore prevents linking climate model projections to population health predictions. This research will evaluate whether metabolic capacity (i.e. the ability to match energy supply with energy demand) limits the capacity of Antarctic fishes to acclimate to the simultaneous stressors of ocean warming and CO2-acidification. If species are unable to reestablish metabolic homeostasis following exposure to stressors, increased energetic costs may lead to a decline in physiological performance, organismal fitness, and survival. This energy-mismatch hypothesis will be tested in a multi-species approach that focuses on the early life stages, as growing juveniles are likely more vulnerable to energetic constraints than adults, while different species are targeted in order to understand how differences in phenology and life history traits influence metabolic plasticity. The research will provide a mechanistic integration of gene expression and metabolite patterns, and metabolic responses at the cellular and whole organism levels to broadly understand metabolic plasticity of fishes. The research is aligned with the theme "Decoding the genomic and transcriptomic bases of biological adaptation and response across Antarctic organisms and ecosystems" which is one of three major themes identified by the National Academy of Sciences in their document "A Strategic Vision for NSF Investments in Antarctic and Southern Ocean Research". Additionally, this project builds environmental stewardship and awareness by increasing science literacy in the broader community in three main ways: First it will increase the diversity of students involved in environmental science research by supporting one PhD student, one postdoctoral scholar and two undergraduate students and promoting the training of young students from groups traditionally underrepresented in environmental biology. Second, the project will participate in UC Davis's OneClimate initiative, which leverages the community's expertise to develop broad perspectives regarding climate change, science and society, and engage K-12 students, government officials, and local and statewide communities on topics of Antarctic research, organismal adaptation as well as ongoing and potential future changes at the poles. Lastly, summer workshops will be conducted in collaborations with the NSF-funded education program APPLES (Arctic Plant Phenology: Learning through Engaged Science), to engage teachers and K-12 students in polar science. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Viruses are prevalent in aquatic environments where they reach up to five hundred million virus particles in a teaspoon of water. Ongoing discovery of viruses seems to confirm current understanding that all forms of life can host and be infected by viruses and that viruses are one of the largest reservoirs of unexplored genetic diversity on Earth. This study aims to better understand interactions between specific viruses and phytoplankton hosts and determine how these viruses may affect different algal groups present within lakes of the Vestfold Hills, Antarctica. These lakes (Ace, Organic and Deep)were originally derived from the ocean and contain a broad range of saline conditions with a similarly broad range of physicochemical characteristics resulting from isolation and low external influence for thousands of years. These natural laboratories allow examination of microbial processes and interactions that would be difficult to characterize elsewhere on earth. The project will generate extensive genomic information that will be made freely available. The project will also leverage the study of viruses and the genomic approaches employed to advance the training of undergraduate students and to engage and foster an understanding of Antarctic science and studies of microbes during a structured informal education program in Maine for the benefit of high school students. By establishing the dynamics and interactions of (primarily) specific dsDNA virus groups in different habitats with different redox conditions throughout seasonal and inter annual cycles the project will learn about the biotic and abiotic factors that influence microbial community dynamics. This project does not require fieldwork in Antarctica. Instead, the investigators will leverage already collected and archived samples from three lakes that have concurrent measures of physicochemical information. Approximately 2 terabyte of Next Generation Sequencing (NGS) (including metagenomes, SSU rRNA amplicons and single virus genomes) will be generated from selected available samples through a Community Science Program (CSP) funded by the Joint Genome Institute. The investigators will employ bioinformatics to interrogate those sequence databases. In particular, they will focus on investigating the presence, phylogeny and co-occurrence of polintons, polinton-like viruses, virophages and large dsDNA phytoplankton viruses as well as of their putative eukaryotic microbial hosts. Bioinformatic analyses will be complemented with quantitative digital PCR and microbial association network analysis to detect specific virus?virus?host interactions from co-occurrence spatial and temporal patterns. Multivariate analysis and network analyses will also be performed to investigate which abiotic factors most closely correlate with phytoplankton and virus abundances, temporal dynamics, and observed virus-phytoplankton associations within the three lakes. The results of this project will improve understanding of phytoplankton and their viruses as vital components of the carbon cycle in Antarctic, marine-derived aquatic environments, and likely in any other aquatic environment. Overall, this work will advance understanding of the genetic underpinnings of adaptations in unique Antarctic environments.
During exercise, oxygen must be efficiently delivered from the lungs to the working tissues. Birds have a unique respiratory system that includes both air sacs and lungs (called parabronchi) and has a one-way, rather than bidirectional, air flow pattern. This allows a high proportion of the oxygen in inhaled air to be transferred into the blood so that it can be circulated by the cardiovascular system to the tissues. In diving birds such as the emperor penguin, the air sac-to-tissue oxygen delivery is essential to the dive capacity, and is one of the adaptations that allows this species to dive deeper than 500 meters. However, the physiological mechanisms underlying the transfer of oxygen from air sacs to blood and the subsequent distribution of oxygen to tissues are poorly understood. The emperor penguin is ideal for investigation of this oxygen cascade because of its large body size, dive capacity, physiological data base, and the prior development of research techniques and protocols for this species. This study should provide insight into a) the mechanisms underlying the efficiency of the bird oxygen transport system, b) the physiological basis of penguin dive behavior, and the ability of penguins to adapt to environmental change, and c) perhaps, even the design of better therapeutic strategies and tools for treatment of respiratory disease. The project also includes educational exhibits and lecture programs on penguin biology at SeaWorld of San Diego. These educational programs at SeaWorld have outreach to diverse groups of grade school and high school students. One graduate student will also be trained, and participate in Antarctic physiological research. This project will examine the transport of oxygen from air sacs to tissues in a series of studies with temporarily captive emperor penguins that are free-diving at an isolated dive hole research camp in McMurdo Sound. Physiological data will be obtained with application of backpack recorders for the partial pressure of oxygen (PO2) in air sacs and/or blood, and backpack heart rate/stroke rate recorders. This experimental approach will lay the groundwork for future investigations of air sac to lung to blood oxygen transfer during exercise of flying and running birds. Four major topics are examined in this project: a) air sac oxygen distribution/depletion and the movement of air between anterior and posterior air sacs, b) anterior air sac to arterial PO2 differences and parabronchial gas exchange, c) blood oxygen transport and depletion throughout dives, and the nature of the aerobic dive limit, and d) the relationship of venous oxygen depletion patterns to both heart rate and stroke effort during dives. Specific educational outreach goals include a) short video features to be displayed in the Penguin Encounter exhibit at SeaWorld of San Diego, and b) lectures, video presentations, and pre- and post-course evaluations for student campers and participants in SeaWorld's education programs. Underwater video for exhibits/presentations with be obtained with use of a penguin backpack camera in the Antarctic. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part I: Non-technical Summary Understanding the mechanisms that animals use to find and acquire food is a fundamental question in ecology. The survival and success of marine predators depends on their ability to locate prey in a variable or changing environment. To do this the predators need to be able to adjust foraging behavior depending on the conditions they encounter. Emperor penguins are ice-dependent, top predators in Antarctica. However, they are vulnerable to environmental changes that alter food web or sea ice coverage, and environmental change may lead to changes in penguin foraging behavior, and ultimately survival and reproduction success. Despite their importance in the Southern Ocean ecosystem, relatively little is known about the specific mechanisms Emperor penguins use to find and acquire food. This study combines a suite of technological and analytical tools to gain essential knowledge on Ross Sea penguin foraging energetics, ecology, and habitat use during critical periods in their life history, especially during late chick-rearing periods. Energy management is particularly crucial during this time as parents need to feed both themselves and their rapidly growing offspring, while being constrained to regions near the colony. Penguin ecology and habitat preference will also be evaluated after the molt and through early reproduction. This study fills important ecological knowledge gaps on the energy balance, diet, and habitat use by penguins during these critical periods. Finally, the project furthers the NSF goals of training new generations of scientists through training of undergraduates, graduate students and a postdoctoral researcher. Public outreach activities will be aligned with another NSF funded project designed to provide science training in afterschool and camp programs that target underrepresented groups. Part II: Technical summary This project will identify behavioral and physiological variability in foraging Emperor penguins that can be directly linked to individual success in the marine environment using an ecological theoretical framework during two critical life history stages. First, this project will investigate the foraging energetics, ecology, and habitat use of Emperor penguins at Cape Crozier using fine-scale movement and video data loggers during the energetically demanding life history phase of late chick-rearing. Specifically, this study will 1) Estimate the relationship of foraging efficiency to foraging behavior and diet using an optimal foraging theory framework to identify what environmental or physiological constraints influence foraging behavior; 2) Investigate the inter- and intra-individual behavioral variability exhibited by emperor penguins, which is essential to predict how resilient these penguins are to environmental change; and 3) Integrate penguin foraging efficiency data with environmental data to identify important habitat. Next the researchers will study the ecology and habitat preference after the molt and through early reproduction using satellite-linked data loggers. The team will: 1) Investigate penguin inter- and intra-individual behavioral variability during the three-month post-molt and early winter foraging trips; and 2) Integrate penguin behavioral data with environmental data to identify which environmental features are indicative of habitat preference when penguins are not constrained to returning to the colony to feed a chick. These fine- and coarse-scale data will be combined with climate predictions to create predictive habitat models. The education objectives of this CAREER project are designed to inspire, engage, and train the next generation of scientists using the data and video generated while investigating Emperor penguins in the Antarctic ecosystem. This includes development of two university courses, training of undergraduate and graduate students, and a collaboration with the NSF funded “Polar Literacy: A model for youth engagement and learning” program to develop after school and camp curriculum that target undeserved and underrepresented groups. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Putkonen/1445205 This award supports the study of a large body of ice that is buried beneath approximately a meter of debris in the Ong Valley of the Transantarctic Mountains of East Antarctica. Preliminary analyses of this material suggest that it could be over a million years old. Most glacial ice contains tiny air bubbles that have trapped the atmospheric gases and other atmospherically transported materials existing at the time that the ice was deposited such as plant pollen, microbes and mineral dust. Samples will be collected from this buried ice mass, down to a depth of 10 meters, and cosmogenic nuclide concentrations both in the overlying debris and in the till contained in the ice will be measured. This site could contain some of the oldest ice on Earth and studies of the material contained within it may help researchers to better understand the processes involved in its survival for such long periods of time. This work will also help inform scientists about the processes involved in the development of landforms here on earth as well as those on Mars where similar dirt covered glaciers are found today. Samples of the buried ice will be collected in Ong Valley and analyzed to determine the cosmogenic nuclide concentrations in both the overlying debris and in the mineral matter suspended in the ice. The combined analysis of the target cosmogenic nuclides (Beryllium-10, Aluminum-26, and Neon-21) will allow the age of the ice to be uniquely determined and will enable determination of the rate that the ice is sublimating. The intellectual merit of this research is to unequivocally determine the age of the ice and the sublimation rate of the ice in Ong Valley, Antarctica and to better understand if this an uniquely Antarctic process or whether it could exist elsewhere on earth or on other planets. The work may also lead to the recognition of the oldest buried ice ever found on Earth and would provide a source from which direct information about the atmospheric chemistry, ancient life forms, and geology of that time could be measured. The broader impacts of this work are that it will be relevant to researchers in a number of different fields including glaciology, paleoclimatology, planetary geology, and biology. Several students will also participate in the project, conducting Antarctic field work, making measurements in the lab, attending meetings, participating in outreach activities, and producing videos. A graduate student will also write a thesis on this research. The results will be published in scientific journals and presented at conferences. The project requires field work in Antarctica.
Understanding the interaction between blue whales and their prey is essential for understanding Antarctic ecosystem dynamics. In the austral summer of 2019 an international interdisciplinary research voyage will head to the Antarctic with the overall goal of mapping Antarctic krill and blue whale distributions to determine if foraging preferences of blue whales are dictated in part by the density and shape of Antarctic krill swarms. This research voyage will combine advanced research technologies (including autonomous underwater vehicles, short term-tags, photogrammetry, and ship-based, real-time passive listening and active echosounders) to answer questions about how the density, swarm shape and behavior of Antarctic krill influence Antarctic blue whales. U.S. participation on this voyage on an Australian research vessel will allow collection of concurrent predator and prey data through the use of passive listening and echosounders from a fixed mooring. By coupling moored data collection with the ship-based survey focusing on Antarctic blue whale behavior and krill dynamics, the project will contribute to the understanding of basic questions relating to the dynamics between blue whales and their prey as well as adding to the development of instrumentation and technologies that will enhance current capabilities for in situ observing on the continent and the surrounding ice-covered waters. The project will provide an educational platform for high school students and the general public to virtually experience Antarctica via "virtual sailing" through a project website and blog. Students and the general public also will be allowed the opportunity to participate in post-cruise data analysis. The Australian Antarctic Division and the University of Tasmania will lead an international voyage to the Antarctic in the austral summer of 2019. The overall goal of the voyage will be to map Antarctic krill (Euphausia superba) and blue whale (Balaenoptera musculus) distributions to determine if the foraging preferences of blue whales are dictated in part by the density and shape of Antarctic krill swarms. US participation in voyage will entail the deployment of passive and active acoustic instrumentation on a fixed mooring in concert with real-time acoustic and visual tracking and localizing of blue whales that will then allow better directing of ship operations towards aggregations of animals such that fine-scale acoustic tracking and prey field mapping can be achieved. This approach will be the first time such an acoustic system is deployed in Antarctica and used in an integrative fashion to assess foraging behaviors and krill. Thus, the project will advance understanding of the relationships between the acoustic ecology of blue whales, krill abundance, and blue whale densities. The technology deployment and testing will also be used to assess its potential use in ice-covered waters for similar studies in the future. Broader impacts of this project will occur through outreach and education, as well as through the collaborations with the broader international scientific community. The project will provide educational platforms for high school students and general public to virtually experience Antarctica. Research findings will be communicated to both the scientific community and the wider public through peer-reviewed publications, presentations, student lectures, seminars and communication through appropriate media channels by institutional communications teams. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The near surface atmosphere over West Antarctica is one of the fastest warming locations on the planet. This atmospheric warming, along with oceanic forcing, is contributing to ice sheet melt and hence rising global sea levels. An observational campaign, focused on the atmospheric boundary layer over the West Antarctic ice sheet, is envisioned. A robust set of year-round, autonomous, atmospheric and surface measurements, will be made using an instrumented 30-m tall tower at the West Antarctic ice sheet divide field camp. An additional unmanned aerial system field campaign will be conducted during the second year of this project and will supplement the West Antarctic ice sheet tall tower observations by sampling the depths of the boundary layer. The broader subject of the Antarctic ABL clearly supports a range of research activities ranging from the physics of turbulent mixing, its parameterization and constraints on meteorological forecasts, and even climatological effects, such as surface mass and energy balances. With the coming of the Thwaites WAIS program, a suite of metrological observables would be a welcome addition to the joint NSF/NERC (UK) Thwaites field campaigns. The meteorologists of this proposal have pioneered 30-m tall tower (TT) and unmanned aerial system (UAS) development in the Antarctic, and are well positioned to successfully carry out and analyze this work. In turn, the potential for these observations to advance our understanding of how the atmosphere exchanges heat with the ice sheet is high. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Despite several decades of successful Antarctic aviation, centered upon flight operations in the McMurdo (Phoenix Field, Ross Island; RsI) area, systemized description of radar observations such as are normally found essential in operational aviation settings are notably lacking. The Ross Island region of Antarctica is a topographically complex region that results in large variations in the mesoscale high wind and precipitation features across the region. The goals of this project are to increase the understanding of the three-dimensional structure of these mesoscale meteorology features. Of particular interest are those features observed with radar signals. This project will leverage observations from the scanning X-band radar installed during the AWARE field campaign in 2016 and the installation of an EWR Radar Systems X-band scanning radar (E700XD) to be deployed during the 2019-20 field season, at McMurdo. Several science questions and case studies will be addressed during the season. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Geospace environment comprises a complex system of interlaced domains that interacts with the incoming solar wind plasma flow and transfers its energy and momentum from the Earth's magnetosphere outer layers down to the ionosphere and upper atmosphere. These physical processes take place mainly on the Earth's dayside, diverting most of the energy along geomagnetic field lines toward both the northern and southern polar regions. Understanding this complex interaction process that couples both polar ionospheres is important for developing the physical models that can describe and predict space weather disturbances and help mitigate their impacts on humans' technological systems - from near-Earth space assets down to electrical grids and long pipelines. There is a strong need to collect sufficient geophysical data to investigate the above-mentioned processes, particularly from the southern hemisphere. With this award, the grantees will build and deploy additional ground-based observations platforms in the East Antarctic Plateau, enhancing capabilities of the existing meridional array of already deployed autonomous, low-powered magnetometers. This will make the southern array of magnetometers two-dimensional and geomagnetically conjugate to similar instruments deployed in Greenland and Svalbard, thus making possible a global view of the magnetospheric regions where natural, ultra-low frequency electromagnetic waves are generated. The project involves young scientists who will operate remote Antarctic magnetometers and analyze collected data to investigate space weather events and validate models. This project expands the Virginia Tech's partnership with the University of New Hampshire, New Jersey Institute of Technology, Polar Research Institute of China, and Technical University of Denmark. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Antarctica’s native animals face increasing stressors from warming oceans. A key unanswered question is how Antarctic life will respond. If warmer waters contribute to fish disease susceptibility, then iconic Antarctic predators they support, including penguins, seals, and killer whales, will suffer. A recent scientific cruise on the Antarctic peninsula encountered a population of crowned notothen fish that were plagued by pink, wart-like tumors that covered 10% to 30% of the body surface on about a third of the animals. Similar tumors had not previously been reported, suggesting that this might be a new disease that threatens Antarctic fish. The goal of proposed work is to identify the biological origins of the tumor and how it affects cell function and organismal physiology. The work is potentially transformative because it studies what might be a harbinger of Antarctic fish responses to global climate change. The project has several Broader Impacts. First, it will publicize the tumors. Because Antarctic researchers have never reported a tumor epidemic, the community must become aware of the outbreak and the tumor’s distinct diagnostic features. Second, dissemination of project results will stir further research to determine if this is an isolated event or is becoming a general phenomenon, and thus a broad concern for Antarctic ecosystems. Third, assays the project develops to detect the disease will enhance research infrastructure. Finally, work will broaden the nation’s scientific workforce by providing authentic research experiences for high school students and undergraduates from groups underrepresented in scientific research. The overall goal of proposed work is to identify the biological origins of the neoplasia and how it affects cell function and physiology. Aim 1 is to identify the pathogenic agent. Aim 1a is to test the hypothesis that a virus causes the neoplasia by isolating and sequencing viral nucleic acids from neoplasias and from animals that are not visibly affected. Aim 1b is to test neoplasias for bacteria, fungi, protozoa, or invertebrate parasites not present in healthy skin. Aim 2 is to learn how the disease alters the biology of affected cells. Aim 2a is to examine histological sections of affected and control tissues to see if the neoplasias are similar to previously reported skin diseases in temperate water fishes. Aim 2b is to examine the function of neoplastic cells by RNA-seq transcriptomics to identify genes that are differentially expressed in neoplasias and normal skin. Achieving these Aims will advance knowledge by identifying the causes and consequences of an outbreak of neoplasias in Antarctic fish. Proposed work is significant because it is the first to investigate a neoplasia cluster in Antarctic fish. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This project will take initial development steps toward a laser-cut ice-sampling capability in glaciers and ice sheets. The collection of ice samples from the Polar Ice Sheets involves large amounts of time, effort, and expense. However, the most important science data are often retrieved from small sections of an ice core and, while replicate coring can supplement this section of ice core, there is often a need to retrieve additional ice samples based on subsequent scientific findings or borehole logging at a research site. In addition, there are currently no easy methods of extracting ice samples from a borehole drilled by non-coring mechanical drills that are faster, lighter, and less expensive to operate. There are numerous science applications that could potentially benefit from laser-cut ice samples, including sampling ice overlying buried impact craters and bolides, filling critical gaps in chemical records retrieved from damaged ice cores, and obtaining ice samples from sites where coring drills apply stresses that may fracture the ice. This award will explore a laser cutting technology to rapidly extract high-quality ice samples from a borehole wall. The project will investigate and validate the existing technology of laser ice sampling and will use a fiberoptic cable to deliver light pulses to a borehole instrument rather than attempting to assemble a complete laser system in an instrument deployed in a borehole. This offers a new way of retrieving ice samples from a polar ice sheet without the need to drill a borehole to collect ice-core samples (i.e., the hole could be mechanically drilled). This technology could also be used in existing boreholes or those that are made by augering through ice (i.e., not coring) or made with hot water. If successful, this technique would create the ability to rapidly retrieve ice samples with a small logistical footprint and enable science that might not be supportable otherwise. The proposed technology could eventually provide better access to ice-core samples to study past atmospheric composition for understanding past climate and inform on future potential for ice-sheet change. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This EAGER award will explore the Distributed Acoustic Sensing emerging technology that transforms a single optical fiber into a massively multichannel seismic array. This technology may provide a scalable and affordable way to deploy dense seismic networks. Experimental Distributed Acoustic Sensing equipment will be tested in the Antarctic exploiting unused (dark) strands in the existing fiber-optic cable that connects the U.S. Amundsen-Scott South Pole Station to the Remote Earth Science and Seismological Observatory (SPRESSO) located about 7.5-km from the main station. Upon processing the seismic signals, the Distributed Acoustic Sensing may provide a new tool to structurally image firn, glacial ice, and glacial bedrock. Learning how Distributed Acoustic Sensing would work on the ice sheet, scientists can then check seismological signals propagating through the Earth's crust and mantle variously using natural icequakes and earthquakes events in the surrounding area. The investigators propose to convert at least 8 km of pre-existing fiber optic cable at the Amundsen-Scott South Pole station into more than 8000 sensors to explore the potential of Distributed acoustic sensing (DAS) as a breakthrough data engine for polar seismology. The DAS array will operate for about one year, allowing them to (1) evaluate and calibrate the performance of the DAS technology in the extreme cold, very low noise (including during the exceptionally quiet austral winter) polar plateau environment; (2) record and analyze local ambient and transient signals from ice, anthropogenic signals, ocean microseism, atmospheric and other processes, as well as to study local, regional, and teleseismic tectonic events; (3) structurally image the firn, glacial ice, glacial bed, crust, and mantle, variously using active sources, ambient seismic noise, and natural icequake and earthquake events. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Non-technical Abstract Around 252 million years ago, a major mass extinction wiped out over 90% of species on Earth. Coincident with this extinction, the Antarctic portion of the supercontinent of Pangea transitioned to a warmer climatic regime devoid of a permanent ice cap. Compared to lower latitudes, relatively little is known about the survivors of the extinction in Antarctica, although it has been hypothesized that the continents more polar location shielded it from the worst of the extinctions effects. As the result of a NSF-sponsored deep field camp in 2017/2018, a remarkable collection of vertebrate fossils was discovered in the rocks of the Shackleton Glacier region. This collection includes the best preserved and most complete materials of fossil amphibians ever recovered from Antarctica, including two previously undescribed species. This grant supports one postdoctoral researcher with expertise in fossil amphibians to describe and interpret the significance of these fossils, including their identification, relationships, and how they fit into the terrestrial ecosystem of Antarctica and other southern hemisphere terrestrial assemblages in light of the major reorganization of post-extinction environments. Historical collections of fossil amphibians will also be reviewed as part of this work. Undergraduate students at the University of Washington will be actively involved as part of this research and learn skills like hard tissue histology and CT data manipulation. Public engagement in Antarctic science will be accomplished at the University of Washington Burke Museum, which is the Washington State museum of natural history and culture. Specifically, a new exhibit on Antarctic amphibians will be developed as part of the paleontology gallery, which sees over 100,000 visitors per year. Technical Abstract This two-year project will examine the evolution of Triassic temnospondyls based on a remarkable collection of fossils recently recovered from the Shackleton Glacier region of Antarctica. Temnospondyls collected from the middle member of the Fremouw Formation are part of the first collection of identifiable tetrapod fossils from this stratigraphic interval. Thorough anatomical description and comparisons of these fossils will add new faunal information and also aid in determining if this horizon is Early or Middle Triassic in age. Exquisitely preserved temnospondyl material from the lower Fremouw Formation will permit more precise identification than previously possible and will provide insights into the earliest stages of their radiation in the extinction recovery interval. Overall, the Principal Investigator and Postdoctoral Researcher will spearhead an effort to revise the systematics of the Antarctic members of Temnospondyli and properly contextualize them in the framework of Triassic tetrapod evolution. The research team will also take advantage of the climate-sensitive nature of fossil amphibians to better understand patterns of seasonality at high-latitudes during the early Mesozoic by subjecting selected fossils to histological analysis. Preliminary data suggest that temnospondyls were exceptionally diverse and highly endemic immediately after the end-Permian extinction, when compared to their distribution before and after this interval. If confirmed, this macroevolutionary pattern could be used to predict the response of modern amphibians to future climate perturbations. Overall, this research will provide new insights into the vertebrate fauna of the Fremouw Formation, as well as shed light on the evolution of terrestrial ecosystems in southern Pangea in the wake of the Permian-Triassic mass extinction. As part of the broader impacts, the research team will help to develop an exhibit featuring some of the best preserved fossils from Antarctica to explain to the public how paleontologists use fossils and rocks to understand past climates like the Triassic 'hot-house' world that lacked permanent ice caps at the poles. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part I: Non-technical summary: This project focuses on understanding annual changes in microbial life that grows on the bottom of Lake Fryxell, Antarctica. Because of its polar latitude, photosynthesis can only occur during the summer months. During summer, photosynthetic bacteria supply communities with energy and oxygen. However, it is unknown how the microbes behave in the dark winter, when observations are not possible. This project will install environmental monitors and light-blocking shades over parts of these communities. The shades will extend winter conditions into the spring to allow researchers to characterize the winter behavior of the microbial communities. Researchers will measure changes in the water chemistry due to microbial activities when the shades are removed and the mats first receive light. Results are expected to provide insights into how organisms interact with and change their environments. The project includes training of graduate students and early career scientists in fieldwork, including scientific ice diving techniques. In addition, the members of the project team will develop a web-based “Guide to Thrive”, which will compile field tips ranging from basic gear use to advanced environmental protection techniques. This will be a valuable resource for group leaders ranging from undergraduate teaching assistants to Antarctic expedition leaders to lead well-planned and tailored field expeditions. Part II: Technical summary: The research team will measure seasonal metabolic and biogeochemical changes in benthic mats using differential gene expression and geochemical gradients. They will identify seasonal phenotypic differences in microbial communities and ecosystem effects induced by spring oxygen production. To do so, researchers will install environmental sensors and opaque shades over mats at three depths in the lake. The following spring, shaded and unshaded mats will be sampled. The shades will then be removed, and changes in pore water O2, H2S, pH, and redox will be measured using microelectrodes. Mats will also be sampled for transcriptomic gene expression analyses at intervals guided by geochemical changes. Pore water will be sampled for nutrient analyses. Field research will be supplemented with laboratory experiments to refine field techniques, gene expression data analysis, and integration of results into a seasonal model of productivity and nitrogen cycling in Lake Fryxell. Results will provide insights into several key priorities for NSF, including how biotic, abiotic and environmental components of the benthic mats interact to affect Antarctic lakes. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Around 252 million years ago, a major mass extinction wiped out upwards of 90% of species on Earth. Coincident with this extinction, the Antarctic portion of the supercontinent of Pangea transitioned to a warmer climatic regime and became devoid of glaciers. Little is known about the survivors of the extinction in Antarctica, although it has been hypothesized that the continent's high latitude location shielded it from the worst of the extinction's effects. The Shackleton Glacier region is the best place to study this extinction in Antarctica because it exposes an abundance of correct age rocks and relevant fossils were found there in the 1960s and 1980s. For this research, paleontologists will study fossil vertebrates that span from about 260 to 240 million years ago to understand how life evolved at high latitudes in the face of massive climate change. In addition, geologists will use fossil soils and fossil plant matter to more precisely reconstruct the climate of Antarctica across this extinction boundary. These data will allow for a more complete understanding of ancient climates and how Antarctic life compared to that at lower latitudes. Undergraduate and graduate students will be actively involved in this research. Public engagement in Antarctic science will be accomplished at several natural history museums. This three-year project will examine the evolution of Permo-Triassic paleoenvironments and their vertebrate communities by conducting fieldwork in the Shackleton Glacier region of Antarctica. The team will characterize the Permo-Triassic boundary within Shackleton area strata and correlate it to other stratigraphic successions in the region (e.g. via stable carbon isotope stratigraphy of fossilized plant organic matter). The researchers will use multiple types of data to assess the paleoenvironment, including: 1) paleosol morphology; 2) paleosol geochemistry; 3) pedogenic organic matter; and 4) fossil wood chronology and stable isotopes. The Fremouw Formation of Antarctica preserves the highest paleolatitude (~70° S) tetrapod fauna of the entire Triassic and thus has the potential to shed important light on the evolution of polar life during the early Mesozoic. The biology of Triassic vertebrates from Antarctica will be compared to conspecifics from lower paleolatitudes through analysis of growth in bone and tusk histology. An interdisciplinary approach will be used to address relationships between environmental change, faunal composition, and biogeographic patterns in the context of the high-latitude strata preserved in the Buckley and Fremouw formations in the Shackleton Glacier region.
The Antarctic benthic marine invertebrate communities are currently experiencing rapid environmental change due to the combined effects of global warming, ocean acidification, and the potential for ice-shelf collapse. Colonial invertebrate animals called bryozoans create specialized ‘reef-like’ habitats that are reminiscent of the coral reefs found in tropical marine environments. In the Antarctic, these bryozoan communities occupy significant portions of the shallow and deep seafloor, and provide habitat for other marine animals. The bryozoan lineages that make up these communities have undergone dramatic genetic and physiological changes in response to the unique environmental conditions found in Antarctica. Comparison of the DNA data from multiple Antarctic bryozoans to those of related warm-water species will help researchers identify unique and shared adaptations characteristic of bryozoans and other marine organisms that have adapted to the Antarctic environment. Additionally, direct experimental tests of catalytic-related genes (enzymes) will shed light on potential cold-adaption in various cell processes. Workshops will train diverse groups of scientists using computational tools to identify genetic modifications of organisms from disparate environments. Public outreach activities to students, social media, and science journalists are designed to raise awareness and appreciation of the spectacular marine life in the Antarctic and the hidden beauty of bryozoan biology. Understanding the genomic changes underlying adaptations to polar environments is critical for predicting how ecological changes will affect life in these fragile environments. Accomplishing these goals requires looking in detail at genome-scale data across a wide array of organisms in a phylogenetic framework. This study combines multifaceted computational and functional approaches that involves analyzing in the genic evolution of invertebrate organisms, known as the bryozoans or ectoprocts. In addition, the commonality of bryozoan results with those of other taxa will be tested by comparing newly generated data to that produced in previous workshops. The specific aims of this study include: 1) identifying genes involved in adaptation to Antarctic marine environments using transcriptomic and genomic data from bryozoans to test for positively selected genes in a phylogenetic framework, 2) experimentally testing identified candidate enzymes (especially those involved in calcium signaling, glycolysis, the citric acid cycle, and the cytoskeleton) for evidence of cold adaption, and 3) conducting computational workshops aimed at training scientists in techniques for the identification of genetic adaptations to polar and other disparate environments. The proposed work provides critical insights into the molecular rules of life in rapidly changing Antarctic environments, and provides important information for understanding how Antarctic taxa will respond to future environmental conditions. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Ice supersaturation plays a key role in cloud formation and evolution, and it determines the partitioning among ice, liquid and vapor phases. Over the Southern Ocean and Antarctica, the transition between mixed-phase and ice clouds significantly impacts the radiative effects of clouds. Remote regions such as the Antarctica and Southern Ocean historically have been under-sampled by in-situ observations, especially by airborne observations. Even though more attention has been given to the cloud microphysical properties over these regions, the distribution and characteristics of ice supersaturation and its role in the current and future climate have not been fully investigated at the higher latitudes in the Southern Hemisphere. One of the main objectives of this study is to analyze observations from three recent major field campaigns sponsored by NSF and DOE, which provide intensive in-situ, airborne measurements over the Southern Ocean and ground-based observations at McMurdo station in Antarctica. This project will analyze aircraft-based and ground-based observations over the Southern Ocean and Antarctica, and compare the observations with the Community Earth System Model Version 2 (CESM2) simulations. The focus will be on the observations of ice supersaturation and the relative humidity distribution in mixed-phase and ice clouds, as well as their relationship with cloud micro- and macrophysical properties. Observations will be compared to CESM2 simulations to elucidate model biases. Surface radiation and the precipitation budget at the McMurdo station will be quantified and compared against the CESM2 simulations to improve the fidelity of the representation of Antarctic climate (and climate prediction over Antarctica). Results from our research will be released to the community for improving the understanding of cloud radiative effects and the mass transport of water in the high southern latitudes. Comparisons between the simulations and observations will provide valuable information for improving the next generation CESM model. Two education/outreach projects will be carried out by PI Diao at San Jose State University (SJSU), including a unique undergraduate student research project with hands-on laboratory work on an airborne instrument, and an outreach program that uses social media to broadcast news on polar research to the public. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Enderlin/1643455 This award supports a project that will use a novel remote sensing method, which was initially developed to investigate melting of icebergs around Greenland, to examine spatial and temporal variations in ocean forcing around the Antarctic ice sheet periphery. Nearly three-quarters of the Antarctic ice sheet is fringed by regions of floating glacier ice called ice shelves. These ice shelves play an important role in modulating the flow of ice from the ice sheet interior towards the coast, similar to how dams regulate the downstream flow of water from reservoirs. Therefore, a reduction in ice shelf size due to changing air and ocean temperatures can have serious implications for the flux of glacier ice reaching the Antarctic coast, and thus, sea level change. Observations of recent ocean warming in the Amundsen Sea, thinning of the ice shelves, and increased ice flux from the West Antarctic ice sheet interior suggests that ice shelf destabilization triggered by ocean warming may already be underway in some regions. Although detailed observations are available in the Amundsen Sea region, our understanding of spatial and temporal variations in ocean conditions and their influence on ice shelf stability is limited by the scarceness of observations spanning the ice sheet periphery. The project will yield insights into variability in the submarine melting of ice shelves and will help advance the career of a female early-career scientist in a male-dominated field. The project will use repeat, very high-resolution (~0.5 m pixel width and length) satellite images acquired by the WorldView satellites, to estimate rates of iceberg melting in key coastal regions around Antarctica. The satellite images will be used to construct maps of iceberg surface elevation, which will be differenced in time to derive time series of iceberg volume change and area-averaged melt rates. Where ocean data are available, the melt rates will be compared to these data to assess whether variations in ocean temperature can explain observed iceberg melt variability. Large spatial gradients in melt rates will be compared to estimates of iceberg drift rates, which will be inferred from the repeat satellite images as well as numerically modeled drift rates produced by (unfunded) collaborators, to quantify the effects of water shear on iceberg melt rates. Spatial and temporal patterns in iceberg melting will also be compared to independently derived ice shelf thickness datasets. Overall, the analysis should yield insights into the effects of changes in ocean forcing on the submarine melting of Antarctic ice shelves and icebergs. The project does not require field work in Antarctica.
Part I: Nontechnical Earths warming climate has the potential to drive widespread collapse of glaciers and ice sheets across the planet, driving global sea-level rise. Understanding both the rate and magnitude of such changes is essential for predicting future sea-level and how it will impact infrastructure and property. Collapse of the ice sheets of Antarctica has the potential to raise global sea-level by up to 60 meters. However, not all regions of Antarctica are equally suspectable to collapse. One area with potential for collapse is the Wilkes Subglacial Basin in East Antarctica, a region twice the size of California's Central Valley. Geologic evidence indicates that the ice-sheet in this region has retreated significantly in response to past global warming events. While the geologic record clearly indicates ice-sheets in this area are vulnerable, the rate and magnitude of any future retreat will be influenced significantly by geology of the region. In particular, ice-sheets sitting above warm Earth will collapse more quickly during warming climate. Constraining the geologic controls on the stability of the ice-sheets of the Wilkes Subglacial Basin remains challenging since the ice-sheet hides the geology beneath kilometers of ice. As a step in understanding the potential for future ice loss in the Wilkes Subglacial Basin this project will conduct geophysical analysis of existing data to better constrain the geology of the region. These results will constrain new models designed to understand the tectonics that control the behavior of the ice-sheets in the region. These new models will highlight the geological properties that exert the most significant control on the future of the ice-sheets of the Wilkes Subglacial Basin. Such insights are critical to guide future efforts aimed at collecting in-situ observations needed to more fully constrain Antarctica's potential for future sea-level. Part II: Technical Description In polar environments, inward-sloping marine basins are susceptible to an effect known as the marine ice-sheet instability (MISI): run-away ice stream drainage caused by warm ocean water eroding the ice shelf from below. The magnitude and time-scale of the ice-sheet response strongly depend on the physical conditions along the ice-bed interface, which are, to a first order, controlled by the tectonic evolution of the basin. Topography, sedimentology, geothermal heat flux, and mantle viscosity all play critical roles in ice-sheet stability. However, in most cases, these solid-Earth parameters for regions susceptible to the MISI are largely unknown. One region with potential susceptibility to MISI is the Wilkes Subglacial Basin of East Antarctica. The project will provide an integrated investigation of the Wilkes Subglacial Basin, combining geophysical analyses with both mantle flow and ice-sheet modeling to understand the stability of the ice sheet in this region, and the associated potential sea level rise. The work will be focused on four primary objectives: (1) to develop an improved tectonic model for the region based on existing seismic observations as well as existing geophysical and geological data; (2) to use the new tectonic model and seismic data to estimate the thermal, density, and viscosity structure of the upper mantle and to develop a heat flow map for the WSB; (3) to simulate mantle flow and to assess paleotopography based on our density and viscosity constraints; and (4) to assess ice-sheet behavior by modeling (a) past ice-sheet stability using our paleotopography estimates and (b) future ice-sheet stability using our heat flow and mantle viscosity estimates. Ultimately, the project will generate improved images of the geophysical structure beneath the WSB that will allow us to assess the geodynamic origin for this region and to assess the influence of geologic parameters on past, current, and future ice-sheet behavior. These efforts will then highlight areas and geophysical properties that should be the focus of future geophysical deployments. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Antarctic Peninsula is warming and one of the consequences is a decrease in sea ice cover. Antarctic minke whales are the largest ice-obligate krill predator in the region, yet- little is known about their foraging behavior and ecology. The goals of the project are to use a suite of new technological tools to measure the underwater behavior of the whales and better understand how they exploit the sea ice habitat. Using video-recording motion-sensing tags, the underwater movements of the whales can be reconstructed and it can be determine where and when they feed. UAS (unmanned aerial systems) will be used to generate real-time images of sea ice cover that will be linked with tag data to determine how much time whales spend in sea ice versus open water, and how the behavior of the whales changes between these two habitats. Lastly, scientific echosounders will be used to characterize the prey field that the whales are exploiting and differences in krill availability inside and out of the ice will be investigated. All of this information is critical to understand the ecological role of Antarctic minke whales so that better predictions can be made regarding impacts of climate change not only on these animals, but on the structure and function of the Antarctic marine ecosystem. The project will promote the progress of science by elucidating the ecological role of a poorly known Antarctic predator and using this information to better understand the impact of changes that are occurring in Polar Regions. The educational and outreach program will increase awareness and understanding of minke whales, Antarctic marine ecosystems, sea ice, and the dynamics of climate change through the use of film, social media, and curriculum development for formal STEM educators. To understand how changes in sea ice will manifest in the demography of predators that rely on sea ice habitat requires knowledge of their behavior and ecology. The largest ice-dependent krill predator and most abundant cetacean in the Southern Ocean is the Antarctic minke whale (AMW)- yet, virtually nothing is known of its foraging behavior or ecological role. Thus, the knowledge to understand how climate-driven changes will affect these animals and therefore the dynamics of the ecosystem as a whole is lacking. The project will use multi-sensor and video recording tags, fisheries acoustics, and unmanned aerial systems to study the foraging behavior and ecological role of minke whales in the waters of the Antarctic Peninsula. The following research questions will be posed: 1. What is the feeding performance of AMWs? 2. How important is sea ice to the foraging behavior of AMW? 3. How do AMWs feed directly under sea ice? Proven tagging and analytical approaches to characterize the underwater feeding behavior and kinematics of minke whales will be used. Combined with quantitative measurements of the prey field, the energetic costs of feeding will be measured and it will be determined how minke whales optimize energy gain. Using animal-borne video recording tags and UAS technology it will also be determined how much feeding occurs directly under sea ice and how this mode differs from open water feeding. This knowledge will: (1) significantly enhance knowledge of the least-studied Antarctic krill predator; and (2) be made directly available to international, long-term efforts to understand how climate-driven changes will affect the structure and function of the Antarctic marine ecosystem. The educational and outreach efforts aim to increase awareness and understanding of: (i) the ecological role of minke whales around the Antarctic Peninsula; (ii) the effects of environmental change on an abundant but largely unstudied marine predator; (iii) the advanced methods and technologies used by whale researchers to study these cryptic animals and their prey; and (iv) the variety of careers in the ocean sciences by sharing the experiences of scientists and students. These educational aims will be achieved by delivering continuous near-real-time delivery of project events and data to informal audiences through social media channels as well as curricula and professional development programs that will provide formal STEM educators with specific standards-compliant lesson plans.
Antarctic krill (Euphausia superba) are an ecologically important component of the Southern Ocean's food web, yet little is known about their behavior in response to many features of their aquatic environment. This project will improve understanding of krill swimming and schooling behavior by examining individual responses to light levels, water flow rates, the presence of attractive and repulsive chemical cues. Flow, light and chemical conditions will be controlled and altered in specialized tanks outfitted with high speed digital camera systems so that individual krill responses to these factors can be measured in relevant schooling settings. This analysis will be used to predict preferred environments, define the capacity of krill to detect and move to them (and away from unfavorable ones). Such information will then be used to improve models that estimate the energetic costs of behaviors associated with different types of environments. Linking individual behavior to those of larger krill aggregations will also improve acoustic assessments of krill densities. Understanding the capacity of krill to respond to environmental perturbations will improve our understanding of the ecology of high latitude ecosystems and provide relevant information for the management of krill fisheries. The project will support graduate and undergraduate students and provide training for as post-doctoral associate. Curricular materials and public engagement activities will be based on the project's aims and activities. Project investigators will share model results and predictions of krill movements and school structure with experts interested in krill conservation and management. The project will use horizontal and vertical laminar flow tunnels to examine krill behavior under naturally relevant conditions. Horizontal (1-10 cm per second) and vertical (1-3 mm per second) flow velocities mimic naturally relevant current patterns, while light levels and spectral quality will be varied from complete darkness to intensities experienced across the depth range inhabited by krill. Attractive phytoplankton odor will be created by dosing the flumes to obtain background chlorophyll a levels approximating average and bloom conditions, while repulsive cues will be generated from penguin guano. Behavior of individual krill in all conditions will be video recorded with cameras visualizing X-Y and Y-Z planes, and 3D movements will be reconstructed by video motion analysis at a 5 Hz sampling rate. The distribution of horizontal and vertical swimming angles and velocities will be used to create an individual based model (IBM) of krill movement in response to each condition, where krill behavior at each model time step is based on random draws from the velocity and angular distributions. Since krill commonly travel in groups, further experiments will examine the behavior of small krill schools in these same conditions to further parameterize variables such as individual spacing. Researchers will examine krill aggregation structure from 3D video records of krill swimming in a specially designed kriesel tank, and compute nearest neighbor distances (NND) and correlations of swimming angles among individuals within the aggregation. Krill movements in the IBM will be constrained to adhere to observed NND and angular correlations. Large scale oceanographic models will be used to define spatial environments in which the modelled krill will be allowed to move using simulated schools of 1000-100,000 krill. Model output will include the school swimming speed, direction and structure (packing density, NND). Researchers will compare available acoustic data sets of krill schools in measured flow and phytoplankton abundance to evaluate the model predictions. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The consequences of variation in maternal effects on the ability of offspring to survive, reproduce, and contribute to future generations has rarely been evaluated in polar marine mammals. This is due to the challenges of having adequate data on the survival and reproductive outcomes for numerous offspring born in diverse environmental conditions to mothers with known and diverse sets of traits. This research project will evaluate the survival and reproductive consequences of early-life environmental conditions and variation in offspring traits that are related to maternal attributes (e.g. birth date, birth mass, weaning mass, and swimming behavior) in a population of individually marked Weddell seals in the Ross Sea. Results will allow an evaluation of the importance of different types of individuals to the Weddell Seal's population sustenance and better assessments of factors contributing to the population dynamics in the past and into the future. The project allows for documentation of specific individual seal's unique histories and provisioning of such information to the broader science community that seeks to study these seals, educating graduate and undergraduate ecology students, producing science-outreach videos, and developing a multi-media iBook regarding the project's science activities, goals and outcomes. The research has the broad objective of evaluating the importance of diverse sources of variation in pup characteristics to survival and reproduction. The study will (1) record birth dates, body mass metrics, and time spent in the water for multiple cohorts of pups (born to known-age mothers) in years with different environmental conditions; (2) mark all pups born in the greater Erebus Bay study area and conduct repeated surveys to monitor fates of these pups through the age of first reproduction; and (3) use analyses specifically designed for data on animals that are individually marked and resighted each year to evaluate hypotheses about how variation in birth dates, pup mass, time spent in the water by pups, and environmental conditions relate to variation in early-life survival and recruitment for those pups. The research will also allow the documentation of the population status that will contribute to the unique long-term database for the local population that dates back to 1978.
This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Collapse of the West Antarctic Ice Sheet (WAIS) could raise the global sea level by about 5 meters (16 feet) and the scientific community considers it the most significant risk for coastal environments and cities. The risk arises from the deep, marine setting of WAIS. Although scientists have been aware of the precarious setting of this ice sheet since the early 1970s, it is only now that the flow of ice in several large drainage basins is undergoing dynamic change consistent with a potentially irreversible disintegration. Understanding WAIS stability and enabling more accurate prediction of sea-level rise through computer simulation are two of the key objectives facing the polar science community today. This project will directly address both objectives by: (1) using state-of-the-art technologies to observe rapidly deforming parts of Thwaites Glacier that may have significant control over the future evolution of WAIS, and (2) using these new observations to improve ice-sheet models used to predict future sea-level rise. This project brings together a multidisciplinary team of UK and US scientists. This international collaboration will result in new understanding of natural processes that may lead to the collapse of the WAIS and will boost infrastructure for research and education by creating a multidisciplinary network of scientists. This team will mentor three postdoctoral researchers, train four Ph.D. students and integrate undergraduate students in this research project. The project will test the overarching hypothesis that shear-margin dynamics may exert powerful control on the future evolution of ice flow in Thwaites Drainage Basin. To test the hypothesis, the team will set up an ice observatory at two sites on the eastern shear margin of Thwaites Glacier. The team argues that weak topographic control makes this shear margin susceptible to outward migration and, possibly, sudden jumps in response to the drawdown of inland ice when the grounding line of Thwaites retreats. The ice observatory is designed to produce new and comprehensive constraints on englacial properties, including ice deformation rates, ice crystal fabric, ice viscosity, ice temperature, ice water content and basal melt rates. The ice observatory will also establish basal conditions, including thickness and porosity of the till layer and the deeper marine sediments, if any. Furthermore, the team will develop new knowledge with an emphasis on physical processes, including direct assessment of the spatial and temporal scales on which these processes operate. Seismic surveys will be carried out in 2D and 3D using wireless geophones. A network of broadband seismometers will identify icequakes produced by crevassing and basal sliding. Autonomous radar systems with phased arrays will produce sequential images of rapidly deforming internal layers in 3D while potentially also revealing the geometry of a basal water system. Datasets will be incorporated into numerical models developed on different spatial scales. One will focus specifically on shear-margin dynamics, the other on how shear-margin dynamics can influence ice flow in the whole drainage basin. Upon completion, the project aims to have confirmed whether the eastern shear margin of Thwaites Glacier can migrate rapidly, as hypothesized, and if so what the impacts will be in terms of sea-level rise in this century and beyond. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Recent theoretical and experimental studies indicated that over a wide range of altitudes and for periods from a few minutes to several hours a significant portion of the waves activity observed in the upper atmosphere/thermosphere is due to acoustic gravity waves radiated by infragravity waves generated in the ocean. Studying this impressive gravity wave activity over the Antarctic, where proximity of the Ross Ice Shelf makes it very special, is the goal of this project. The ocean's infragravity waves can excite the fundamental mode and low-order oscillations of the Ross Ice Shelf at its resonance frequencies, thus creating standing wave structures throughout the entire atmosphere. It is likely that this effect was recently detected using LIDAR observations at McMurdo. This project will support the training and education of a graduate student. This award will allow scientists to study the wave coupling of the Southern Ocean (via the Ross Ice Shelf) to the upper atmosphere/thermosphere. This study will involve theoretical assessment of the coupling phenomena and comparing theory with data collected by a unique combination of instruments deployed in the Ross Ice Shelf area: the NSF-supported network of seismographs and microbarometers on the Ross Ice Shelf, the infrasound station near McMurdo, and the Dynasonde recently installed at the Korean Antarctic Station Jang Bogo.
Glacial retreat in West Antarctica is correlated with ocean warming; however, less is known about the ocean's effect on East Antarctica's glaciers including Totten Glacier located on the Sabrina Coast. The retreat of Totten Glacier has global significance as the glacier drains a sector of the East Antarctic Ice Sheet that contains enough ice to raise global sea levels by as much as 3.5 meters. This study looks to determine the influence of ocean temperatures on East Antarctic glaciers, including Totten Glacier, over the last ~18,000 years by studying seafloor sediment around Antarctica. These sediments, or muds, include the remains of microscopic marine organisms as well as tiny particles originating from eroded Antarctic bedrock. These muds provide a record of past environmental changes including ocean temperatures and the advance and retreat of glaciers. Scientists use a variety of physical and chemical analyses to determine how long ago this mud was deposited, the temperature of the ocean at that location through time, and the relative location of glacial ice. In this project, researchers will refine and test new methods for measuring ocean temperature from the sediments to better understand the influence of ocean temperatures on East Antarctic glacier response. Results will be integrated into ice sheet and climate models to improve the accuracy of ice sheet modeling efforts and subsequent sea level predictions. Results from this project will be disseminated at scientific conferences, in the scientific literature, and more broadly to the general public via the St. Petersburg Science Festival and at the Oceanography Camp for Girls. The influence of ocean temperatures on East Antarctic glaciers is largely unknown. This research focuses on ice-proximal Antarctic margin paleoceanographic proxy calibration and validation, which will improve understanding of past ocean-ice sheet interactions on a variety of timescales. In this project, researchers from the University of South Florida will (1) further develop and refine two ocean temperature proxies, foraminifer Mg/Ca and TEX86, for use in ice-proximal Antarctic continental margin sediments and (2) investigate deglacial to present (~18-0 ka) ocean-ice interactions at the outlet of the climatically sensitive Aurora Subglacial Basin. The proposed research utilizes sediment trap, sediment core, and physical oceanographic data previously collected from the Sabrina Coast continental shelf during NSF-funded cruise NBP14-02. Studies of existing sediment cores will integrate multiple paleotemperature, meltwater/salinity, nutrient, bottom water oxygen, and sea ice proxies with geophysical and lithologic data to understand past regional ocean-ice interactions. While the recent international Antarctic research focus has been on understanding the drivers of West Antarctic Ice Sheet retreat, models suggest it would be imprudent to ignore the East Antarctic Ice Sheet, which is proving more sensitive to climate perturbations than previously realized. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Undersea forests of seaweeds dominate the shallow waters of the central and northern coast of the western Antarctic Peninsula and provide critical structural habitat and carbon resources (food) for a host of marine organisms. Most of the seaweeds are chemically defended against herbivores yet support very high densities of herbivorous shrimp-like grazers (crustaceans, primarily amphipods) which greatly benefit their hosts by consuming filamentous and microscopic algae that otherwise overgrow the seaweeds. The amphipods benefit from the association with the chemically defended seaweeds by gaining an associational refuge from fish predation. The project builds on recent work that has demonstrated that several species of amphipods that are key members of crustacean assemblages associated with the seaweeds suffer significant mortality when chronically exposed to increased seawater acidity (reduced pH) and elevated temperatures representative of near-future oceans. By simulating these environmental conditions in the laboratory at Palmer Station, Antarctica, the investigators will test the overall hypothesis that ocean acidification and ocean warming will play a significant role in structuring crustacean assemblages associated with seaweeds. Broader impacts include expanding fundamental knowledge of the impacts of global climate change by focusing on a geographic region of the earth uniquely susceptible to climate change. This project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. This includes training graduate students and early career scientists with an emphasis on diversity, presentations to K-12 groups and the general public, and a variety of social media-based outreach programs. The project will compare population and assemblage-wide impacts of natural (ambient), carbon dioxide enriched, and elevated temperature seawater on assemblages of seaweed-associated crustacean grazers. Based on prior results, it is likely that some species will be relative "winners" and some will be relative "losers" under the changed conditions. The project will then aim to carry out measurements of growth, calcification, mineralogy, the incidence of molts, and biochemical and energetic body composition for two key amphipod "winners" and two key amphipod "losers". These measurements will allow an assessment of what factors drive species-specific enhanced or diminished performance under conditions of ocean acidification and sea surface warming. The project will expand on what little is known about prospective impacts of changing conditions on benthic marine Crustacea, in Antarctica, a taxonomic group that faces the additional physiological stressor of molting. The project is likely to provide additional insight on the indirect regulation of the seaweeds that comprise Antarctic undersea forests that provide key architectural components of the coastal marine ecosystem. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Over the past century, climate science has constructed an extensive record of Earth’s ice age cycles through the chemical and isotopic characterization of various geologic archives such as polar ice cores, deep-ocean sediments, and cave speleothems. These climatic archives provide an insightful picture of ice age cycles and of the related large global sea level fluctuations triggered by these significant climate rhythms. However, such records still provide limited insight as to how or which of Earth’s ice sheets contributed to higher sea levels during past warm climate periods. This is of particular importance for our modern world: the Antarctic ice sheet is currently the world’s largest freshwater reservoir, which, if completely melted, would raise the global sea level by over 60 meters (200 feet). Yet, geologic records of Antarctic ice sheet sensitivity to warm climates are particularly limited and difficult to obtain, because the direct records of ice sheet geometry smaller than the modern one are still buried beneath the mile-thick ice covering the continent. Therefore, it remains unclear how much this ice sheet contributed to past sea level rise during warm climate periods or how it will respond to the anticipated near-future climate warming. In the proposed research we seek to develop sub-ice chemical precipitates—minerals that form in lakes found beneath the ice sheet—as a climatic archive, one that records how the Antarctic ice sheet responded to past climatic change. These sub-ice mineral formations accumulated beneath the ice for over a hundred thousand years, recording the changes in chemical and isotopic subglacial properties that occur in response to climate change. Eventually these samples were eroded by the ice sheet and moved to the Antarctic ice margin where they were collected and made available to study. This research will utilize advanced geochemical, isotopic and geochronologic techniques to develop record of the Antarctica ice sheet’s past response to warm climate periods, directly informing efforts to understand how Antarctica will response to future warming. Efforts to improve sea level forecasting on a warming planet have focused on determining the temperature, sea level and extent of polar ice sheets during Earth’s past warm periods. Large uncertainties, however, in reconstructions of past and future sea levels, result from the poorly constrained climate sensitivity of the Antarctic Ice sheet (AIS). This research project aims to develop the use of subglacial precipitates as an archive the Antarctic ice sheet (AIS) past response to climate change. The subglacial precipitates from East Antarctica form in water bodies beneath Antarctic ice and in doing so provide an entirely new and unique measure of how the AIS responds to climate change. In preliminary examination of these precipitates, we identified multiple samples consisting of cyclic opal and calcite that spans hundreds of thousands of years in duration. Our preliminary geochemical characterization of these samples indicates that the observed mineralogic changes result from a cyclic change in subglacial water compositions between isotopically and chemically distinct waters. Opal-forming waters are reduced (Ce* <1 and high Fe/Mn) and exhibit elevated 234U/238U compositions similar to the saline groundwater brines found at the periphery of the AIS. Calcite-forming waters, are rather, oxidized and exhibit δ18O compositions consistent with derivation from the depleted polar plateau (< -50 ‰). 234U-230Th dates permit construction of a robust timeseries describing these mineralogic and compositional changes through time. Comparisons of these time series with other Antarctic climate records (e.g., ice core records) reveal that calcite forming events align with millennial scale changes in local temperature or “Antarctic isotopic maximums”, which represent Southern Hemisphere warm periods resulting in increased Atlantic Meridional overturing circulation. Ultimately, this project seeks to develop a comprehensive model as to how changes in the thermohaline cycle induce a glaciologic response which in turn induces a change in the composition of subglacial waters and the mineralogic phase recorded within the precipitate archive. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Cold-blooded animals in the Antarctic ocean have survived in near-constant, extreme cold conditions for millions of years and are very sensitive to even small changes in water temperature. However, the consequences of this extreme thermal sensitivity for the energetics, development, and survival of developing embryos is not well understood. This award will investigate the effect of temperature on the metabolism, growth rate, developmental rate, and developmental energetics of embryos and larvae of Antarctic marine ectotherms. The project will also measure annual variation in temperature and oxygen at different sites in McMurdo Sound, and compare embryonic and larval metabolism in winter and summer to determine the extent to which these life stages can acclimate to seasonal shifts. This research will provide insight into the ability of polar marine animals and ecosystems to withstand warming polar ocean conditions. Antarctic marine ectotherms exhibit universally slow growth, low metabolic rates, and extended development, yet many of their rate processes related to physiology and metabolism are highly thermally sensitive. This suggests that small changes in temperature may result in dramatic changes to energy metabolism, growth, and the rate and duration of development. This project will measure the effects of temperature on metabolism, developmental rate, and the energetic cost of development of four common and ecologically important species of benthic Antarctic marine invertebrates. These effects will be measured over the functional ranges of the organisms and in the context of environmentally relevant seasonal shifts in temperature around McMurdo Sound. Recent data show that seasonal warming of ~1 deg C near McMurdo Station is accompanied by long-lasting hyperoxic events that impact the benthos in the nearshore boundary layer. This research will provide a more comprehensive understanding of both annual variation in environmental oxygen and temperature across the Sound, and whether this variation drives changes in developmental rate and energetics that are consistent with physiological acclimatization. These data will provide key information about potential impacts of warming Antarctic ectotherms. In addition, this project will support undergraduate and graduate research and partner with large-enrollment undergraduate courses and REU programs at an ANNH and AANAPISI Title III minority-serving institution. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Antarctica is almost entirely covered by ice, in places over two miles thick. This ice hides a landscape that is less well known than the surface of Mars and represents one of Earth's last unexplored frontiers. Ice-penetrating radar images provide a remote glimpse of this landscape including ice-buried mountains larger than the European Alps and huge fjords twice as deep as the Grand Canyon. The goal of this project is to collect sediment samples derived from these landscapes to determine when and under what conditions these features formed. Specifically, the project seeks to understand the landscape in the context of the history and dynamics of the overlying ice sheet and past mountain-building episodes. This project accomplishes this goal by analyzing sand collected during previous sea-floor drilling expeditions off the coast of Antarctica. This sand was supplied from the continent interior by ancient rivers when it was ice-free over 34 million year ago, and later by glaciers. The project will also study bedrock samples from rare ice-free parts of the Transantarctic Mountains. The primary activity is to apply multiple advanced dating techniques to single mineral grains contained within this sand and rock. Different methods and minerals yield different dates that provide insight into how Antarctica?s landscape has eroded over the many tens of millions of years during which sand was deposited offshore. The dating techniques that are being developed and enhanced for this study have broad application in many branches of geoscience research and industry. The project makes cost-effective use of pre-existing sample collections housed at NSF facilities including the US Polar Rock Repository, the Gulf Coast Core Repository, and the Antarctic Marine Geology Research Facility. The project will contribute to the STEM training of two graduate and two undergraduate students, and includes collaboration among four US universities as well as international collaboration between the US and France. The project also supports outreach in the form of a two-week open workshop giving ten students the opportunity to visit the University of Arizona to conduct STEM-based analytical work and training on Antarctic-based projects. Results from both the project and workshop will be disseminated through presentations at professional meetings, peer-reviewed publications, and through public outreach and media. The main objective of this project is to reconstruct a chronology of East Antarctic subglacial landscape evolution to understand the tectonic and climatic forcing behind landscape modification, and how it has influenced past ice sheet inception and dynamics. Our approach focuses on acquiring a record of the cooling and erosion history contained in East Antarctic-derived detrital mineral grains and clasts in offshore sediments deposited both before and after the onset of Antarctic glaciation. Samples will be taken from existing drill core and marine sediment core material from offshore Wilkes Land (100°E-160°E) and the Ross Sea. Multiple geo- and thermo-chronometers will be employed to reconstruct source region cooling history including U-Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar. This offshore record will be augmented and tested by applying the same methods to onshore bedrock samples in the Transantarctic Mountains obtained from the US Polar Rock Repository and through fieldwork. The onshore work will additionally address the debated incision history of the large glacial troughs that cut the range, now occupied by glaciers draining the East Antarctic Ice Sheet. This includes collection of samples from several age-elevation transects, apatite 4He/3He thermochronometry, and Pecube thermo-kinematic modeling. Acquiring an extensive geo- and thermo-chronologic database will also provide valuable new information on the poorly known ice-hidden geology and tectonics of subglacial East Antarctica that has implications for improving supercontinent reconstructions and understanding continental break-up.
The continent of Antarctica has approximately the same surface area as the continental United States, though we know significantly less about its underlying geology and seismic activity. Multinational investments in geophysical infrastructure over the last few decades, especially broadband seismometers operating for several years, are allowing us to observe many interesting natural phenomena, including iceberg calving, ice stream slip, and tectonic earthquakes. To specifically leverage those past investments, we will analyze past and current data to gain a better understanding of Antarctic seismicity. Our recent research revealed that certain large earthquakes occurring elsewhere in the world triggered ice movement near various stations throughout Antarctica. We plan to conduct an exhaustive search of the terabytes of available data, using cutting-edge computational techniques, to uncover additional evidence for ice crevassing, ice stream slip, and earth movement during earthquakes. One specific focus of our research will include investigating whether some of these phenomena may be triggered by external influences, including passing surface waves from distant earthquakes, ocean tides, or seasonal melt. We plan to produce a catalog of the identified activity and share it publicly, so the public and researchers can easily access it. To reach a broader audience, we will present talks to high school classes, including Advanced Placement classes, in the Austin, Texas and Atlanta, Georgia metropolitan areas with emphasis on general aspects of seismic hazard, climate variability, and the geographies of Antarctica. This project will provide research opportunities for undergraduates, training for graduate students, and support for an early-career scientist. In recent years, a new generation of geodetic and seismic instrumentation has been deployed as permanent stations throughout Antarctica (POLENET), in addition to stations deployed for shorter duration (less than 3 years) experiments (e.g. AGAP/TAMSEIS). These efforts are providing critical infrastructure needed to address fundamental questions about both crustal-scale tectonic structures and ice sheets, and their interactions. We plan to conduct a systematic detection of tectonic and icequake activities in Antarctica, focusing primarily on background seismicity, remotely-triggered seismicity, and glacier slip events. Our proposed tasks include: (1) Identification of seismicity throughout the Antarctic continent for both tectonic and ice sources. (2) An exhaustive search for additional triggered events in Antarctica during the last ~15 years of global significant earthquakes. (3) Determination of triggered source mechanisms and whether those triggered events also occur at other times, by analyzing years of data using a matched-filter analysis (where the triggered local event is used to detect similar events). (4) Further analysis of GPS measurements over a ~5.5 year period from Whillans Ice Plain, which suggests that triggering of stick-slip events occurred after the largest earthquakes. An improved knowledge of how the Antarctic ice sheet responds to external perturbations such as dynamic stresses from large distant earthquakes and recent ice unloading could lead to a better understanding of ice failure and related dynamic processes. By leveraging the vast logistical investment to install seismometers in Antarctica over the last decade, our project will build an exhaustive catalog of tectonic earthquakes, icequakes, calving events, and any other detectable near-surface seismic phenomena.
As glaciers creep across the landscape, they can act as earthmovers, plucking up rocks and grinding them into fine sediments. Glaciers have moved across the Antarctic landscape over thousands to millions of years, leaving these ground-up sediments in their wake. This study builds on pilot discoveries by the investigators that revealed remarkably large and variable measurements of surface area in glacially-derived fine-grained sediments found in the McMurdo Dry Valleys (MDV), one of the few landscapes on the Antarctic continent not currently covered by ice. Surface area is key to chemical weathering, the process by which rock is converted to soils as ions are carried away in streams and groundwater. These chemical weathering processes are also one of the primary means by which the Earth system naturally removes carbon dioxide from the atmosphere. Hence, high surface areas observed in sediments implies high "weatherability" which in turn translates to more potential carbon dioxide removed from the atmosphere. Therefore, chemical weathering in high surface area glacial sediments may have significant impacts on Earth's carbon cycle. The researchers will measure the chemical and physical properties of sediments previously collected from the Dry Valleys to understand what factors lead to production of sediment with high-surface area and potential "weather ability" and investigate how sediment produced in these glacial systems could ultimately impact Earth's carbon budget. Results from this research will help scientists (including modelers) refine predictions of the effects of melting glaciers- and attendant exposure of glacial sediment? on atmospheric carbon levels. These results may also contribute to applied research efforts on development of carbon-dioxide removal technologies utilizing principles of rock weathering. In addition to the scientific benefits, this research will involve several students at the undergraduate, graduate, and post-doctoral levels, including science education undergraduates, thus contributing to training of the next-generation STEM workforce. Physical weathering produces fresh surfaces, greatly enhancing specific surface area (SSA) and reactive surface area (RSA) of primary minerals. Quantifying SSA and RSA of sediments is key to determining dissolution and leaching rates during natural weathering, but few data exist on distribution of sediment SA, particularly in glacial and fluvial systems. Pilot data from glacial stream systems in Taylor Valley and Wright Valley (located in the MDV) exhibit remarkably high and variable values in both SSA and RSA, values that in some cases greatly exceed values from muds in temperate glacial systems. This discovery motivates the current research, which aims to investigate the hypothesis that high and variable SAs of muds within Wright and Taylor Valleys reflect textural and/or compositional inheritance from the differing depositional settings within the MDV, biologic controls, dust additions, and/or pedogenic processes. These hypotheses will be tested by sedimentologically, mineralogically, and geochemically characterizing muds from glacially derived sediment deposited in various environments (cold vs. wet based glaciation; fluvial, lacustrine, dust, and drift deposits) and of varying age (Miocene to Modern) from the MDV and quantifying variation of SA and reactivity. Comparisons with analyzed muds from temperate glacial systems will enable polar-temperate comparisons. Analyses will focus on muds of previously collected sediment from the MDVs. Grain size and SSA will be measured by Laser Analysis and N2 adsorption BET, respectively. After carbonate removal, samples will be re-analyzed for SSA, and muds characterized geochemically. Mineralogy and bulk chemistry will also be assessed on co-occurring sand fractions, and textural attributes documented. SSA-normalized dissolution experiments will be used to compare solutes released from sediments to determine RSAs. Results will be integrated with the various sedimentologic and geochemical analyses to test the posed hypotheses. Ultimately, this research should shed light on how weathering in Antarctic systems contributes to global carbon cycling.
New methodologies for the deployment of coordinated unmanned aerial vehicles will be developed with the aim of attaining whole-colony imagery that can be used to characterize nesting habitats of Adelie penguins at Cape Crozier, on Ross Island, Antarctica. This information will be used to test hypotheses regarding relationships between terrain characteristics, nesting density, and breeding success. This population, potentially the largest in the world and at the southern limit of the species' range, has doubled in size over the past 20 years while most other colonies in the region have remained stable or declined. New information gained from this project will be useful in understanding the potential ofclimate-driven changes in terrestrial nesting habitats for impacting Adelie penguins in the future. The project will produce, and document, open-source software tools to help automate image processing for automated counting of Adelie penguins. The project will train graduate and undergraduate students and contribute materials to ongoing educational outreach programs based on related penguin science projects. Information gained from this project will contribute towards building robust, cost-effective protocols for monitoring Adelie penguin populations, a key ecosystem indicator identified in the draft Ross Sea Marine Protected Area Research and Monitoring Plan. Adelie penguins are important indicators of ecosystem function and change in the Southern Ocean. In addition to facing rapid changes in sea ice and other factors in their pelagic environment, their terrestrial nesting habitat is also changing. Understanding the species' response to such changes is critical for assessing its ability to adapt to the changing climate. The objective of this project is to test several hypotheses about the influence of fine-scale nesting habitat, nest density, and breeding success of Adelie penguins in the Ross Sea region. To accomplish this, the project will develop algorithms to improve efficiency and safety of surveys by unmanned aerial systems and develop and disseminate an automated image processing workflow. Images collected during several UAV surveys will be used to estimate the number of nesting adults and chicks produced, as well as estimate nesting density in different parts of two colonies on Ross Island, Antarctica, that differ in size by two orders of magnitude. Imagery will be used to generate high resolution digital surface/elevation models that will allow terrain variables like flood risk and terrain complexity to be derived. Combining the surface model with the nest and chick counts at the two colonies will provide relationships between habitat covariates, nest density, and breeding success. The approaches developed will enable Adelie penguin population sizes and potentially several other indicators in the Ross Sea Marine Protected Area Research and Monitoring Plan to be determined and evaluated. The flight control algorithms developed have the potential to be used for many types of surveys, especially when large areas need to be covered in a short period with extreme weather potential and difficult landing options. Aerial images and video will be used to create useable materials to be included in outreach and educational programs. The automated image processing workflow and classification models will be developed as open source software and will be made freely available for others addressing similar wildlife monitoring challenges. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part 1: Non-technical description Polar regions are experiencing some of the most dramatic effects of climate change resulting in large-scale changes in sea ice cover. Despite this, there are relatively few long-term studies on polar species that evaluate the full scope of these effects. Over the last two decades, this team has conducted globally unique demographic studies of Adélie penguins in the Ross Sea, Antarctica, to explore several potential mechanisms for population change. This five-year project will use penguin-borne sensors to evaluate foraging conditions and behavior and environmental conditions on early life stages of Adélie penguins. Results will help to better understand population dynamics and how populations might respond to future environmental change. To promote STEM literacy, education and public outreach efforts will include multiple activities. The PenguinCam and PenguinScience.com website (impacts of >1 million hits per month and use by >300 classrooms/~10,000 students) will be continued. Each field season will also have ‘Live From the Penguins’ Skype calls to classes (~120/season). Classroom-ready activities that are aligned with Next Generation Science Standards will be developed with media products and science journal papers translated to grade 5-8 literacy level. The project will also train early career scientists, postdoctoral scholars, graduate students and post-graduate interns. Finally, in partnership with an Environmental Leadership Program, the team will host 2-year Roger Arliner Young Conservation Fellow, which is a program designed to increase opportunities for recent college graduates of color to learn about, engage with, and enter the environmental conservation sector. Part II: Technical description: Leveraging 25 years of data on marked individuals from two Adélie penguin colonies in the Ross Sea, combined with new biologging tags that track detailed penguin foraging efforts and environmental conditions, researchers will accomplish three major goals: 1) assess the quality of natal conditions by determining how environmental conditions, relative prey availability, and diet composition influence parental foraging behavior, chick provisioning, and fledging mass; 2) determine the spatial distribution and foraging behavior of juvenile Adélie penguins and the relative influence of natal versus post-fledging environmental conditions on their survival; and 3) determine the role of natal and post-fledging conditions in shaping individual life history traits and colony growth. Data from several types of penguin-borne biologging devices will be used to provide multiple lines of evidence for how early-life conditions and penguin behavior relate to penguin energetics and population size. This study is the first to integrate salinity, temperature, light level, depth, accelerometry, video loggers, and GPS data with longitudinal demographic information, providing an unprecedented ability to understand how penguins use the environment and enabling new insights from previously collected data. Changes in salinity due to increased glacial melt have important implications for sea ice formation, ocean circulation and productivity of the Southern Ocean, and potentially global temperature change. The penguin-borne sensors deployed in this study will support the NSF Office of Polar Programs priority: How does society more efficiently observe and measure the polar regions? It represents only the second study to track juvenile Adélie penguins at sea, the first in the Ross Sea region, the first with substantial sample sizes, and the first to assess juvenile survival rates directly, integrating early life factors and environmental conditions to better understand colony growth trajectories. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This award is to support measurements of the 14-billion-year cosmic microwave background (CMB) light with the South Pole Telescope (SPT) to address some of the most basic and compelling questions in cosmology: What is the origin of the Universe? What is the Universe made of? What is the mass scale of the neutrinos? When did the first stars and galaxies form and how was the Universe reionized? What is the Dark Energy that is accelerating the expansion of the Universe? The SPT plays a unique role in the pursuit of these questions. Its siting is ideal for ultra-low-noise imaging surveys of the sky at the millimeter and sub-millimeter radio wavelengths. The SPT is supported by the NSF's Amundsen-Scott South Pole Station, which is the best operational site on Earth for mm-wave sky surveys. This unique geographical location allows SPT to obtain extremely sensitive 24/7 observations of targeted low Galactic foreground regions of the sky. The telescope's third-generation, SPT-3G receiver has 16,000 detectors configured for polarization-sensitive observations in three millimeter-wave bands. The proposed operation includes five years of sky surveys to obtain ultra-deep measurements of a 1500 square degree field and to produce and publicly archive essential data products from the survey. The telescope's CMB temperatures and polarization power spectrum will play a central role in probing the nature of current tensions among cosmological parameter estimations from different data sets and determining if their explanation requires physics beyond the current LCDM model. The data will help constraining the Dark Energy properties that affect the growth of large structures through both the CMB lensing and abundance of galaxy clusters. The proposed operations also support SPT's critical role in the Event Horizon Telescope (EHT), a global array of telescopes to image the event horizon around the black hole at the center of Milky Way Galaxy. This award addresses and advances the science objectives and goals of the NSF's "Windows on the Universe: The Era of Multi-Messenger Astrophysics" program. The proposed research activity will also contribute to the training of the next generation of scientists by integrating graduate and undergraduate education with the technology development, astronomical observations, and scientific analyses of SPT data. Research and education are integrated by bringing research activities into the undergraduate classroom and sharing of forefront research with non-scientists extending it beyond the university through a well-established educational network that reaches a wide audience at all levels of the educational continuum. Through museum partnerships and new media, the SPT outreach and educational efforts reach large numbers of individuals while personalizing the experience. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Ross Sea region of the Southern Ocean is experiencing growing sea ice cover in both extent and duration. These trends contrast those of the well-studied, western Antarctic Peninsula area, where sea ice has been disappearing. Unlike the latter, little is known about how expanding sea ice coverage might affect the regional Antarctic marine ecosystem. This project aims to better understand some of the potential effects of the changing ice conditions on the marine ecosystem using the widely-recognized indicator species - the Adélie Penguin. A four-year effort will build on previous results spanning 19 seasons at Ross Island to explore how successes or failures in each part of the penguin's annual cycle are effected by ice conditions and how these carry over to the next annual recruitment cycle, especially with respect to the penguin's condition upon arrival in the spring. Education and public outreach activities will continually be promoted through the PenguinCam and PenguinScience websites (sites with greater than 1 million hits a month) and "NestCheck" (a site that is logged-on by >300 classrooms annually that allows students to follow penguin families in their breeding efforts). To encourage students in pursuing educational and career pathways in the Science Technology Engineering and Math fields, the project will also provide stories from the field in a Penguin Journal, develop classroom-ready activities aligned with New Generation Science Standards, increase the availability of instructional presentations as powerpoint files and short webisodes. The project will provide additional outreach activities through local, state and national speaking engagements about penguins, Antarctic science and climate change. The annual outreach efforts are aimed at reaching over 15,000 students through the website, 300 teachers through presentations and workshops, and 500 persons in the general public. The project also will train four interns (undergraduate and graduate level), two post-doctoral researchers, and a science writer/photographer. The project will accomplish three major goals, all of which relate to how Adélie Penguins adapt to, or cope with environmental change. Specifically the project seeks to determine 1) how changing winter sea ice conditions in the Ross Sea region affect penguin migration, behavior and survival and alter the carry-over effects (COEs) to subsequent reproduction; 2) the interplay between extrinsic and intrinsic factors influencing COEs over multiple years of an individual?s lifetime; and 3) how local environmental change may affect population change via impacts to nesting habitat, interacting with individual quality and COEs. Retrospective analyses will be conducted using 19 years of colony based data and collect additional information on individually marked, known-age and known-history penguins, from new recruits to possibly senescent individuals. Four years of new information will be gained from efforts based at two colonies (Cape Royds and Crozier), using radio frequency identification tags to automatically collect data on breeding and foraging effort of marked, known-history birds to explore penguin response to resource availability within the colony as well as between colonies (mates, nesting material, habitat availability). Additional geolocation/time-depth recorders will be used to investigate travels and foraging during winter of these birds. The combined efforts will allow an assessment of the effects of penguin behavior/success in one season on its behavior in the next (e.g. how does winter behavior affect arrival time and body condition on subsequent breeding). It is at the individual level that penguins are responding successfully, or not, to ongoing marine habitat change in the Ross Sea region.
Accurately measuring precipitation in Antarctica is important for purposes such as calculating Antarctica?s mass balance and contribution to global sea level rise, interpreting ice core records, and validating model- and satellite-based precipitation estimates. There is a critical need for reliable, autonomous, long-term measurements of Antarctic precipitation in order to better understand its variability in space in time. Such records over time are essentially absent from the continent, despite their importance. This project will deploy and test instrumentation to measure and record rates of snowfall and blowing snow in Antarctica. Project goals are based on installation of four low-power, autonomous Antarctic precipitation systems (APS) co-located at automatic weather station (AWS) sites in the Ross Island region of Antarctica. The APSs are designed with an integrated sensor approach to provide multiple types of observations of snow accumulation types at the test sites. The APSs are designed to construct an accurate timeline of snow accumulation, and to distinguish the water equivalent of fallen precipitation from surface blowing (lofted) snow, a prime confounding factor. The standard suite of instruments to be deployed includes: precipitation gauge with double Alter windshield, laser disdrometer, laser snow height sensor, optical precipitation detector, anemometer at gauge height, and a visible /infrared webcam. These instruments have previously been shown to work well in cold regions applications.
Bromirski/1246151 This award supports a project intended to discover, through field observations and numerical simulations, how ocean wave-induced vibrations on ice shelves in general, and the Ross Ice Shelf (RIS), in particular, can be used (1) to infer spatial and temporal variability of ice shelf mechanical properties, (2) to infer bulk elastic properties from signal propagation characteristics, and (3) to determine whether the RIS response to infragravity (IG) wave forcing observed distant from the front propagates as stress waves from the front or is "locally" generated by IG wave energy penetrating the RIS cavity. The intellectual merit of the work is that ocean gravity waves are dynamic elements of the global ocean environment, affected by ocean warming and changes in ocean and atmospheric circulation patterns. Their evolution may thus drive changes in ice-shelf stability by both mechanical interactions, and potentially increased basal melting, which in turn feed back on sea level rise. Gravity wave-induced signal propagation across ice shelves depends on ice shelf and sub-shelf water cavity geometry (e.g. structure, thickness, crevasse density and orientation), as well as ice shelf physical properties. Emphasis will be placed on observation and modeling of the RIS response to IG wave forcing at periods from 75 to 300 s. Because IG waves are not appreciably damped by sea ice, seasonal monitoring will give insights into the year-round RIS response to this oceanographic forcing. The 3-year project will involve a 24-month period of continuous data collection spanning two annual cycles on the RIS. RIS ice-front array coverage overlaps with a synergistic Ross Sea Mantle Structure (RSMS) study, giving an expanded array beneficial for IG wave localization. The ice-shelf deployment will consist of sixteen stations equipped with broadband seismometers and barometers. Three seismic stations near the RIS front will provide reference response/forcing functions, and measure the variability of the response across the front. A linear seismic array orthogonal to the front will consist of three stations in-line with three RSMS stations. Passive seismic array monitoring will be used to determine the spatial and temporal distribution of ocean wave-induced signal sources along the front of the RIS and estimate ice shelf structure, with the high-density array used to monitor and localize fracture (icequake) activity. The broader impacts include providing baseline measurements to enable detection of ice-shelf changes over coming decades which will help scientists and policy-makers respond to the socio-environmental challenges of climate change and sea-level rise. A postdoctoral scholar in interdisciplinary Earth science will be involved throughout the course of the research. Students at Cuyamaca Community College, San Diego County, will develop and manage a web site for the project to be used as a teaching tool for earth science and oceanography classes, with development of an associated web site on waves for middle school students.
This award funds the continued management and operations (M&O) of the IceCube Neutrino Observatory (ICNO) located at the South Pole Station. The core team of researchers and engineers maintain the existing ICNO infrastructure at the South Pole and home institution, guaranteeing an uninterrupted stream of scientifically unique, high-quality data. The M&O activities are built upon eight highly successful years of managing the overall ICNO operations after the start of science operations in 2008. Construction of ICNO was supported by NSF's Major Research Equipment and Facilities Construction (MREFC) account and was completed on schedule and within budget in 2010. Effective coordination of efforts by the core M&O personnel and efforts by personnel within the IceCube Collaboration has yielded significant increases in the performance of this cubic-kilometer detector over time. The scientific output from the IceCube Collaboration during the past five years has been outstanding. The broader impacts of the ICNO/M&O activities are strong, involving postdoctoral, graduate, and (in some cases) undergraduate students in the day-today operation & calibration of the neutrino detector. The extraordinary physics results recently produced by ICNO and its extraordinary location at South Pole have a high potential to excite the imagination of high school children and the public in general at a national and international level. The current ICNO/M&O effort produces better energy and angular resolution information about detected neutrino events, has more efficient data filters and more accurate detector simulations, and enables continuous software development for systems that are needed to acquire and analyze data. This has produced data acquisition and data management systems with high robustness, traceability, and maintainability. The current ICNO/M&O effort includes: (1) resources for both distributed and centrally managed activities, and (2) additional accountability mechanisms for "in-kind" and institutional contributions. Both are necessary to ensure that the detector maintains its capability to produce quality scientific data at the level required to achieve the detector's scientific discovery objectives. Recent ICNO discoveries of cosmic high-energy neutrinos (some reaching energies close to and over 2.5 PeV) and oscillating atmospheric neutrinos in a previously unexplored energy range from 10 to 60 GeV became possible because of the "state-of-the-art" detector configuration, excellently supported infrastructure, and cutting-edge science analyses. The ICNO has set limits on Dark Matter annihilations, made precision measurements of the angular distribution of cosmic ray muons, and characterized in detail physical properties of the Antarctic 2.5-km thick ice sheet at South Pole. The discovery of high-energy cosmic neutrinos by IceCube with a flux at the level anticipated for those associated with high-energy gamma- and cosmic-ray accelerators brightens the prospect for identifying the sources of the highest energy particles.
This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. The Thwaites Glacier system dominates the contribution to sea-level rise from Antarctica. Predicting how this system will evolve in coming decades, and thereby its likely contribution to sea level, requires detailed understanding of how it has responded to changes in climate and oceanographic conditions in the past. This project will provide a record of regional sea-level change by establishing chronologies for raised marine beaches as well as the timing and duration of periods of retreat of Thwaites Glacier during the past 10,000 years by sampling and dating bedrock presently covered by Thwaites Glacier via subglacial drilling. Together with climatic and oceanographic conditions from other records, these will provide boundary conditions for past-to-present model simulations as well as those used to predict future glacier changes under a range of climate scenarios. Specifically, the project will test the hypothesis--implied by existing geological evidence from the region--that present rapid retreat of the Thwaites Glacier system is reversible. The team aims to utilize two approaches: 1. To reconstruct relative sea level during the Holocene, it will map and date raised marine and shoreline deposits throughout Pine Island Bay. Chronological constraints on sea-level change will be provided by radiocarbon dating of organic material in landforms and sediments that are genetically related to past sea level, such as shell fragments, bones of marine fauna, and penguin guano. 2. To obtain geological evidence for past episodes of grounding-line retreat, the team will apply cosmogenic-nuclide exposure-dating of subglacial bedrock. Using drill systems recently developed for subglacial bedrock recovery, the team will obtain subglacial bedrock from sites where ice thickness is dynamically linked to grounding-line position in the Thwaites system (specifically in the Hudson Mountains, and near Mount Murphy). Observation of significant cosmogenic-nuclide concentrations--the team will primarily measure Beryllium-10 and in situ Carbon-14--in these samples would provide direct, unambiguous evidence for past episodes of thinning linked to grounding-line retreat as well as constraints on their timing and duration. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part I: Nontechnical Antarcticas ice sheets constitute the largest ice mass on Earth, with approximately 53 meters of sea level equivalent stored in the East Antarctic Ice Sheet alone. The history of the East Antarctic Ice Sheet is therefore important to understanding and predicting changes in sea level and Earths climate. There is conflicting evidence regarding long-term stability of the East Antarctic Ice Sheet, over the last twenty million years. To better understand past ice sheet changes, together with the history of the Transantarctic Mountains, accurate time scales are needed. One of the few dating methods applicable to the Antarctic glacial deposits, that record past ice sheet changes, is the measurement of rare isotopes produced by cosmic rays in surface rock samples, referred to as cosmogenic nuclides. Whenever a rock surface is exposed/free of cover, cosmic rays produce rare isotopes such as helium-3, beryllium-10, and neon-21within the minerals. This project will involve measurement of all three isotopes in some of the oldest glacial deposits found at high elevation in the Transantarctic Mountains. Because the amount of each isotope is directly linked to the exposure time, this can be used to calculate the age of a surface. This method requires knowledge of the rates that cosmic radiation produces each isotope, which depends upon mineral composition, and is presently a limitation of the method. The goal of this project is to advance and enhance existing measurement methods and expand the range of possibilities in surface dating with new measurements of all three isotopes in pyroxene, a mineral that is commonly found throughout the Transantarctic Mountains. This technological progress will allow a better application of the surface exposure dating method, which in turn will help to reconstruct Antarctic ice sheet history and provide valuable knowledge of former ice-extent. Understanding Antarcticas ice-sheet history is crucial to predict its influence on past and future sea level changes. Part II: Technical Description Measurements of in-situ produced cosmogenic nuclides in Antarctic surficial rock samples provide unique time scales for glacial and landscape evolution processes. However, due to analytical challenges, pyroxene-bearing and widely distributed lithologies like the Ferrar dolerite of the Transantarctic Mountains, are underutilized. This proposal aims to changes this and to improve the cosmogenic nuclide methodologies for stable isotopes (21Ne and 3He) and radioactive nuclides (10Be) in pyroxenes. Proposed methodological improvements will be directly applicable to erosion rates and deposition ages of important glacial deposits, such as the controversial Sirius Group tills, and also to younger glacial features. Bennett Platform is the focus of this study because it is one of the southern-most Sirius Group outcrops along the Transantarctic Mountains, where cosmogenic ages are sparse. Preliminary measurements demonstrate large discrepancies between 3He and 21Ne age determinations in Sirius Group pyroxenes. One possible explanation is composition dependence of the 21Ne production rates. Coupled measurements of 3He, 21Ne, and 10Be in well-characterized pyroxene mineral separates from Ferrar dolerite will be used to better constrain the production rates, major element and trace element dependencies, the assumptions of the method, and ultimately advance the application of cosmogenic nuclides to mafic Antarctic lithologies. The main goals of this study are to improve measurement protocols for 10Be in pyroxene, and the determination of the composition dependence of 21Ne production rates by measuring mineral compositions (by electron microprobe), and nuclide concentrations in mineral pairs from young lava flows. Further aims are the validation of the nucleogenic contributions and the effects of helium diffusive loss through measurements of 3He/21Ne production ratios, combined with measurements of shielded samples of the Ferrar dolerite. Combined measurements of 3He, 21Ne and 10Be in pyroxenes have rarely been published for individual samples in Antarctica. The new and unique measurements of this study will advance the applicability of in-situ produced cosmogenic nuclides to both young and ancient Antarctic surfaces. The study will be performed using existing samples: no field work is requested. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Thwaites and neighboring glaciers in the Amundsen Sea Embayment are rapidly losing mass in response to recent climate warming and related changes in ocean circulation. Mass loss from the Amundsen Sea Embayment could lead to the eventual collapse of the West Antarctic Ice Sheet, raising the global sea level by up to 2.5 meters (8 feet) in as short as 500 years. The processes driving the loss appear to be warmer ocean circulation and changes in the width and flow speed of the glacier, but a better understanding of these changes is needed to refine predictions of how the glacier will evolve. One highly sensitive process is the transitional flow of glacier ice from land onto the ocean to become a floating ice shelf. This flow of ice from grounded to floating is affected by changes in air temperature and snowfall at the surface; the speed and thickness of ice feeding it from upstream; and the ocean temperature, salinity, bathymetry, and currents that the ice flows into. The project team will gather new measurements of each of these local environmental conditions so that it can better predict how future changes in air, ocean, or the ice will affect the loss of ice to the ocean in this region. Current and anticipated near-future mass loss from Thwaites Glacier and nearby Amundsen Sea Embayment region is mainly attributed to reduction in ice-shelf buttressing due to sub-ice-shelf melting by intrusion of relatively warm Circumpolar Deep Water into sub-ice-shelf cavities. Such predictions for mass loss, however, still lack understanding of the dominant processes at and near grounding zones, especially their spatial and temporal variability, as well as atmospheric and oceanic drivers of these processes. This project aims to constrain and compare these processes for the Thwaites and the Dotson Ice Shelves, which are connected through upstream ice dynamics, but influenced by different submarine troughs. The team's specific objectives are to: 1) install atmosphere-ice-ocean multi-sensor remote autonomous stations on the ice shelves for two years to provide sub-daily continuous observations of concurrent oceanic, glaciologic, and atmospheric conditions; 2) measure ocean properties on the continental shelf adjacent to ice-shelf fronts (using seal tagging, glider-based and ship-based surveys, and existing moored and conductivity-temperature-depth-cast data), 3) measure ocean properties into sub-ice-shelf cavities (using autonomous underwater vehicles) to detail ocean transports and heat fluxes; and 4) constrain current ice-shelf and sub-ice-shelf cavity geometry, ice flow, and firn properties for the ice-shelves (using radar, active-source seismic, and gravimetric methods) to better understand the impact of ocean and atmosphere on the ice-sheet change. The team will also engage the public and bring awareness to this rapidly changing component of the cryosphere through a "Live from the Ice" social media campaign in which the public can follow the action and data collection from the perspective of tagged seals and autonomous stations. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Gerbi/1643301 This award supports a project to develop software that will allow researchers considering seismic or radar field surveys to test, ahead of time, whether the data they plan to collect will have sufficient resolution to measure the natural variations in the mechanical properties of ice, which determine the response of flowing ice to changing climatic conditions. The mechanical properties of ice depend largely on the temperature and the orientation of the crystals that make up the ice. The most accurate method for measuring ice crystal orientation and temperature is through drilling and direct analysis of an ice core. However, this method is very costly, time-consuming, and limited in spatial coverage. Geophysical techniques, such as seismic and radar, can cover much more area, but we have little knowledge about the practical limitations of these techniques as they relate to calculating mechanical properties. This project addresses that knowledge gap through construction of a computational toolbox that will allow accurate assessment of the ability of geophysical surveys to image crystal orientation and ice temperature. Researchers can then use these tools to adjust the field survey plans to maximize the return on investment. By working to improve the efficiency and effectiveness of future geophysical work related to glacial flow, this proposal will improve scientists? ability to quantify sea-level variations within the larger context of climate change. The project includes building new user-friendly, publicly accessible software and instructional modules. The work will provide training for graduate and undergraduate students, who will play a role in research and develop instructional materials. Ice viscosity, the resistance of ice to flow, exerts significant control over ice velocity. Therefore, mapping ice viscosity is important for understanding the current and future behavior of glaciers and ice sheets. To do so, scientists must determine the temperature and crystal orientation fabric throughout the ice. Seismic and radar techniques can survey large areas quickly, and thus are promising, yet not fully tested, methods to efficiently measure the thermal and mechanical structure of flowing ice. As part of this project, scientists will develop and use a computational framework to quantify the degree to which seismic and radar techniques can resolve the crystal orientation fabric and temperature of streaming ice, and then test how sensitive ice flow is to the attendant uncertainty. To meet these goals, a numerical toolbox will be built which will allow the glacier/ice stream geometry and physical properties (temperature, crystal orientation fabric, density and acidity) to be varied. The toolbox will be capable of both creating synthetic radar and seismic profiles through forward modeling and inverting synthetic profiles to allow evaluation of how well geophysical techniques can image the original thermal and mechanical structure. These simulated radar and seismic data will allow scientists to better quantify the influence of the variability in mechanical properties of the ice on flow velocities and patterns. The results of this work will guide planning for future field campaigns, making them more effective and efficient. This project does not require fieldwork in the Antarctic.
This project evaluates the role that water and rock/ice properties at the base of a fast moving glacier, or ice stream, play in controlling its motion. In Antarctica, where surface melting is limited, the speed of ice flow through the grounding zone (where ice on land detaches, and begins to float on ocean water) controls the rate at which glaciers contribute to sea level rise. The velocity of the ice stream is strongly dependent on resistance from the bed, so understanding the processes that control resistance to flow is critical in predicting ice sheet mass balance. In fact, the Intergovernmental Panel on Climate Change (IPCC) recognized this and stated in their 4th assessment report that reliable predictions of future global sea-level rise require improved understanding of ice sheet dynamics, which include basal controls on fast ice motion. Drilling to obtain direct observations of basal properties over substantial regions is prohibitively expensive. This project uses passive source seismology to "listen to" and analyze sounds generated by water flow and/or sticky spots at the ice/bed interface to evaluate the role that basal shear stress plays in ice flow dynamics. Because polar science is captivating to both scientists and the general public, it serves as an excellent topic to engage students at all levels with important scientific concepts and processes. In conjunction with this research, polar science educational materials will be developed to be used by students spanning middle school through the University level. Starting in summer 2015, a new polar science class for high school students in the California State Summer School for Mathematics and Science (COSMOS) will be offered at the University of California-Santa Cruz. This curriculum will be shared with the MESA Schools Program, a Santa Cruz and Monterey County organization that runs after-school science clubs led by teachers at several local middle and high schools with largely minority and underprivileged populations. This proposal extends the period of borehole and surface geophysical monitoring of the Whillians Ice Stream (WIS) established under a previous award for an additional 2 years. Data from the WIS network demonstrated that basal heterogeneity, revealed by microseismicity, shows variation over scales of 100's of meters. An extended observation period will allow detailed seismic characterization of ice sheet bed properties over a crucial length scale comparable to the local ice thickness. Due to the fast ice velocity (>300 m/year), a single instrumented location will move approximately 1 km during the extended 3 year operational period, allowing continuous monitoring of seismic emissions as the ice travels over sticky spots and other features in the bed (e.g., patches of till or subglacial water bodies). Observations over ~1km length scales will help to bridge a crucial gap in current observations of basal conditions between extremely local observations made in boreholes and remote observations of basal shear stress inferred from inversions of ice surface velocity data.
Non-technical description: Global sea-level rise is a significant long-term risk for human population and infrastructure. To mitigate and properly react to this threat, society needs accurate predictions of future sea-level variations. The largest uncertainty in these predictions comes from estimating the amount of ice that melts from polar ice sheets, especially from the West Antarctica ice sheet. Right now, scientists estimate the mass variations of ice sheets in two ways. The first way is using airplanes and repeated flybys to monitor the variation of ice sheet topography and estimate the gain or loss of ice. The second way is using satellite measurements to track gravity fluctuations that correlate with the variation of ice sheet volume. Both techniques work, but both have limitations including cost and resolution. This project uses a passive seismic monitoring method to estimate the change in weight of the ice pressing on the Earth's crust. One advantage of this seismic method is that vibrations are recorded continuously; therefore, it is possible to monitor the changes of the ice sheet with better temporal resolution. The sensitivity of the seismic waves also provides a picture of the structure of the interface between the ice and the rocks beneath the ice, where most of the dynamics and changes of the ice sheet take place. This information is difficult to obtain with other methods. In this project, the researchers will process and analyze previously acquired seismic data from the POLENET-ANET array, measuring variations in seismic wave speed through time to assess the amount of ice lost or gained. They will also determine important information about the mechanical properties at the ice-rock interface. The project will support a postdoctoral scholar to develop this new branch of seismological research and more generally the field of environmental seismology. This project will also support the education of a PhD student who will work in close collaboration with the postdoctoral scholar and the two researchers. Technical description: The researchers plan to monitor ice-mass variations in the West-Antarctic ice sheet by measuring and interpreting seismic velocity changes in crust beneath the ice sheet. This project will extend similar work already completed on the Greenland ice sheet, where ice-mass fluctuations were found to lead to poroelastic changes in the crust and modify the seismic-wave velocity. This investigation uses a passive seismology method, whereby repetitive seismic noise correlation functions are computed from records of Earth's ambient seismic noise field. Measurements of the temporal changes in the correlation functions are made and then related to variations of the poroelastic properties of the crust. The physical model for the relationship between ice-mass change and surface-wave velocity change has previously been verified using GRACE satellite data in Greenland. This project will specifically focus on the recent rapid ice loss in Western Antarctica using data from the POLENET-ANET seismic network. A comparison between the ice-sheet behaviors in Greenland and Antarctica will provide clarification about the underlying physical processes responsible for the observed seismic velocity changes. This new method will be a transformative approach to monitor ice sheets with the potential for much higher spatial and temporal resolution than existing methods. The fact that this method relies on seismic waves makes the approach completely independent from other modern ice-sheet monitoring techniques.
Notothenioid fishes live in the world's coldest marine waters surrounding Antarctica and have evolved strategies to avoid freezing. Past studies have shown that most Antarctic notothenioids produce special antifreeze proteins that prevent the growth of ice crystals that enter the body. While these proteins help prevent individuals from being killed by growing ice crystals, it is unclear how these fish avoid the accumulation of these small ice crystals inside their tissues over time. This project will observe how ice crystal accumulation relates to the harshness of the fish's habitat and the fish's behavior within different habitats of McMurdo Sound, Antarctica. The researchers will collect fishes and ocean observations at different field sites that cover a range of habitat severity in terms of temperature and iciness. Researchers will install an underwater ocean observatory near McMurdo Station which will include a HD video camera and hydrophone. The observatory will allow continuous monitoring of ocean conditions and fish behavior that will help explain the conditions and behaviors that contribute to the acquisition and accrual of ice inside the body. Acoustic and video data from the observatory will be available to other scientists and to the public. The project will advance understanding of the many challenges life faces in extreme cold environments. This work continues a line of inquiry that has resulted in the discovery of potential medical and food preservation applications. Hundreds of antifreeze protein (AFP) structure-function studies have been conducted in the laboratory, providing a basic physical understanding of the AFP-ice interaction. How AFPs function within fishes and their range of environments, however, is far from clear. This project will provide an understanding of notothenioid's freezing avoidance mechanisms, and strategies by quantifying the acquisition, accumulation, and loss of internal ice crystals. Specifically, the goal is to determine if and how habitat severity (as defined by iciness, seawater temperature, and prevalence of supercooled water) and fish behavior influence the abundance of ice crystals in their tissues. Four locations in the McMurdo Sound with different levels of habitat severity will be sampled for oceanographic conditions and ice crystal count within fish tissues. Researchers will use a new technique to count the number of splenic ice crystals, expanding on and simplifying previous methods. Environmental data loggers will be deployed for the duration of the project at the four sites to provide context and real-time assessment of environmental conditions. An oceanographic observatory near McMurdo Station will provide year-round, real-time and archival records of oceanographic conditions, in situ video observations of anchor ice growth and ice-organism interactions, hydroacoustic recordings, and serve as proof-of concept for expanding scientific infrastructure in McMurdo Sound related to monitoring of supercooled waters and oceanographic information.
The Siple Coast in West Antarctica has undergone significant glacier changes over the last millenium. Several ice streams--rapidly moving streams of ice bordered by slow-moving ice--exist in this region that feeds into the Ross Ice Shelf. A long-term slowdown of Whillans Ice Stream appears to be occurring, and this is affecting the zone between the Whillans and Mercer Ice Streams. However, the consistency of this slowdown and resulting changes to the shear margin between the two ice streams are unknown. The goal of this project is to quantify the observed changes over the past decade and understand the dynamic processes that cause them. A collateral benefit of and driver for this as a RAPID project is to test a method for assessing where crevassing will develop in this zone of steep velocity gradients. Such a method may benefit not only near-term field-project planning in the 2018-19 field season, but also planning for future fieldwork and traverses. The team will use remote sensing feature-tracking techniques to determine transient velocity patterns and shifts in the shear-zone location over the last 10-plus years. This velocity time series will be incorporated into a large-scale ice-sheet model to estimate ice-sheet susceptibility to changing boundary conditions over the next century based on likely regional ice-flux scenarios. This approach is an extension of recent work conducted by the team that shows promise for predicting areas of changing high strain rates indicative of an active glacier shear margin. The ultimate objectives are to characterize the flow field of merging ice streams over time and investigate lateral boundary migration. This will provide a better understanding of shear-margin control on ice-shelf and up-glacier stability. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The transition of young from parental care to independence is a critical stage in the life of many animals. Surviving this stage can be especially challenging for polar mammals where the extreme cold requires extra energy to keep warm, rather than using the majority of energy for growth, development and physical activities. Young Weddell seals (Leptonychotes weddellii) have only weeks to develop the capabilities to survive both on top of the sea ice and within the -1.9°C seawater where they can forage for food. The project seeks to better understand how Weddell seal pups rapidly develop (within weeks) the capacity to transition between these two extreme environments (that differ greatly in their abilities to conduct heat) and how they budget their energy during the transition. Though the biology and physiology of adult Weddell seals is well studied, the energetic and physiological strategies of pups during development is still unclear. Understanding factors that may affect survival at critical life history events is essential for better understanding factors that might affect marine mammal populations. Weddell seals are the southernmost breeding mammal and are easily recognizable as quintessential Antarctic seals. Determining potential vulnerabilities at critical life stages to change in the Antarctic environment will facilitate the researchers' ability to not only gain public interest but also communicate how research is revealing ways in which changes are occurring at the poles and how these changes may affect polar ecosystems. By collaborating with the Marine Mammal Center, the project will directly reach the public, through curricular educational materials and public outreach that will impact over 100,000 visitors annually. To elucidate the physiological strategies that facilitate the survival of Weddell seal pups from birth to independence, the proposed study examines the development of their thermoregulation and diving capability. To achieve this, the project will determine the mechanisms that Weddell seal pups use to maintain a stable, warm body temperature in air and in water and then examine the development of diving capability as the animals prepare for independent foraging. The researchers will take a fully integrative approach- making assessments from proteins to tissues to the whole-animal level- when investigating both these objectives. To assess the development of thermoregulatory capability, researchers will quantify body insulation, resting metabolic rates in air and in water, muscle thermogenesis (shivering), and body surface temperatures in the field. The project will also assess the development of dive capability by quantifying oxygen storage capacities and measuring early dive behavior. To identify possible cellular mechanisms for how Weddell seals navigate this trade-off during development, the program will quantify several key developmental regulators of increased hypoxic capacity (HIF, VEGF and EPO) using qPCR, as well as follow the proteomic changes of adipose and muscle tissue, which will include abundance changes of metabolic, antioxidant, cytoskeletal, and Ca2+-regulating proteins. The study of the physiological development leading up to the transition to independence in pinnipeds will help researchers better predict the effects of climate change on the distribution and abundance of this species and how this will affect other trophic levels. Environmental changes that alter habitat suitability have been shown to decrease population health, specifically because of declines in juvenile survival.
The project will characterize the functional, taxonomic, biotic and abiotic drivers of soil ecosystems in the Trans Antarctic Mountains (one of the most remote and harsh terrestrial landscapes on the planet). The work will utilize new high-throughput DNA and RNA sequencing technologies to identify members of the microbial communities and determine if the microbial community structures are independent of local environmental heterogeneities. In addition the project will determine if microbial diversity and function are correlated with time since the last glacial maximum (LGM). The expected results will greatly contribute to our knowledge regarding rates of microbial succession and help define the some of the limits to life and life-maintaining processes on Earth. The project will analyze genomes and RNA derived from these genomes to describe the relationships between biodiversity and ecosystem functioning from soils above and below LGM elevations and to correlate these with the environmental drivers associated with their development during the last ~18,000 years. The team will identify the taxonomic diversity and the functional genetic composition within a broad suite of soil biota and examine their patterns of assembly and distribution within the framework of their geological legacies. The project will mentor participants from undergraduate students to postdoctoral researchers and prepare them to effectively engage in research to meet their career aspirations. The project will contribute to ongoing public education efforts through relationships with K-12 teachers and administrators- to include University-Public School partnerships. Less formal activities include public lecture series and weblogs aimed at providing information on Antarctic polar desert ecosystems to the general public. Targeted classrooms near each PI's institution will participate in online, real-time discussions about current topics in Antarctic ecosystems research.
Nontechnical description of proposed research: This project will apply cutting-edge seismic imaging methods to existing seismic data to study the three-dimensional structure of the Earth beneath the ice-covered Antarctic continent. The study will improve understanding of Earth structure and hotspots and geologically recent and ancient rift systems. The results will be useful for models of ice movement and bedrock elevation changes due to variation in ice sheet thickness. The results will also help guide future seismic data collection. The researchers will transfer existing software from the high-performance computers at The University of Rhode Island to the Alabama supercomputer facilities. The project will also broaden public understanding of scientific research in Antarctica by engaging with the students and teachers in Socorro County, New Mexico to discuss career opportunities in science, technology, engineering, and mathematics (STEM), the Earth Sciences, and the importance of computers in scientific research. Project personnel from Alabama will visit Socorro and share research with students at New Mexico Tech and at the Socorro High School. The project will also train undergraduate and graduate students in the expanding field of computational seismology, by applying these approaches to study Antarctic geology. Technical description of proposed research: The project seeks to better resolve the three-dimensional Antarctic mantle structure and viscosity and to identify locations of ancient rifts within the stable East Antarctic lithosphere. To accomplish this, the researchers will utilize full-waveform tomographic inversion techniques that combine long-period ambient noise data with earthquake constraints to more accurately resolve structure than traditional tomographic approaches. The proposed research will be completed using the Alabama supercomputer facilities and the programs and methodology developed at The University of Rhode Island. The new tomographic results will be useful in assessing lithospheric structure beneath Dronning Maud Land as well as the Wilkes and Aurora Subglacial Basins in East Antarctica, where previous rifting episodes and mid-lithospheric discontinuities will be explored. In West Antarctica, the work will elucidate the easternmost extent of the West Antarctic Rift System as well as rifted structure and possible compositional variations within the Weddell Sea. The accuracy of existing Antarctic seismic models will be quantified through model validation approaches. The researchers will highlight regions of Antarctica where tomographic resolution is still lacking and where future deployments would improve resolution.
This project investigates a rapidly moving section of the West Antarctic Ice Sheet known as the Whillans Ice Stream. Ice streams and outlet glaciers are the major pathways for ice discharge from ice sheets into the ocean. Consequently, understanding ice stream dynamics, specifically the processes controlling the frictional resistance of ice sliding on sediments at its base, is essential for predictive modeling of how Earth's ice sheets will respond to a changing climate. Rather than flowing smoothly, Whillans Ice Stream advances in stick-slip cycles: brief periods of rapid sliding, equivalent to magnitude 7 earthquakes, alternating with much longer periods of repose. The PIs will perform simulations of these stick-slip cycles using computer codes originally developed for modeling tectonic earthquakes. By matching observed ice motions, the PIs will constrain the range of frictional processes acting at the base of the ice stream. An additional focus of the project is on brittle fracture processes in ice, expressed through seismic waves radiated by faulting and/or crevassing episodes that accompany the large-scale sliding events. An understanding of ice fracture provides a basis for assessing the susceptibility of ice shelves to rifting and catastrophic disintegration. Project results will be incorporated into outreach activities (from elementary school to community college events) as well as a polar science class for the California State Summer School for Mathematics and Science (COSMOS) program for high school students. Simulations of the stick-slip cycle will employ 3D dynamic rupture models that simultaneously solve for the seismic wavefield and rupture process, consistent with elastodynamic material response and friction laws on the ice stream bed. Stresses and frictional properties will be varied to achieve consistency with surface GPS and broadband seismic data as well as borehole seismograms from the WISSARD project. The results will be interpreted using laboratory till friction experiments, which link velocity-weakening/strengthening behavior to temperature and water content, and to related experiments quantifying basal drag from ice flow over rough beds. The source mechanism of seismicity accompanying the slip events (shear faulting versus crevassing) will be determined using 3D waveform modeling in conjunction with mechanical models of the seismic source processes. This proposal does not require fieldwork in the Antarctic.
This project will involve examination of Glossopteridales, fossil plants from Upper Permian deposits, in samples from the central Transantarctic Mountains and Southern Victoria Land, Antarctica. The glossopterids are an important fossil group because they are possible ancestors to the flowering plants. Permian sedimentary rocks (295-270 Ma before present) are important because they record a time of rapid biotic change, as the Late Paleozoic Age ended and the Mesozoic greenhouse environment began. The proposed research will rely entirely on specimens collected during recent field excursions to the central Transantarctic Mountains (CTM; 2010?2011) and southern Victoria Land (SVL; 2012?2013). Only a few of the specimens have been studied, but already have yielded anatomically well-preserved glossopterids with a complete pollen cone, which has never been found before. Additionally, several seed-bearing structures, which have never before been observed in Antarctica, have been found in both CTM and SVL. The project will allow comparison of whole-plant fossil glossopterids from the CTM with other paleo-latitudes, and will document the floral diversity within and between two depositional basins (CTM & SVL) during a time of global change, with the overall goal of linking environmental changes with fossil morphology. Broader impacts: The Broader Impacts of this project will include mentoring undergraduates in research projects, at an institution with a substantial minority enrollment. Public outreach will focus on involving middle/high school students through the ?Expanding Your Horizons? programs in Kansas and Missouri, as well as interactive presentations at schools in the Kansas City Area. The lead PI is an early-career scientist at an institution that serves minorities.
Nontechnical Description Glacier ice loss from Antarctica has the potential to lead to a significant rise in global sea level. One line of evidence for accelerated glacier ice loss has been an increase in the rate at which the land has been rising across the Antarctic Peninsula as measured by GPS receivers. However, GPS observations of uplift are limited to the last two decades. One goal of this study is to determine how these newly observed rates of uplift compare to average rates of uplift across the Antarctic Peninsula over a longer time interval. Researchers will reconstruct past sea levels using the age and elevation of ancient beaches now stranded above sea level on the low-lying coastal hills of the Antarctica Peninsula to determine the rate of uplift over the last 5,000 years. The researchers will also analyze the structure of the beaches using ground-penetrating radar and the characteristics of beach sediments to understand how sea-level rise and past climate changes are recorded in beach deposits. The benefits of these new records will be threefold: (1) they will help determine the natural variability of the Antarctic Ice Sheet and relative sea level (2) they will provide new insight about uplift and the structure of the Earth's interior; and 3) they will help researchers refine the methods used to determine the age of geologic deposits. The study results will be shared in outreach events at K-12 schools and with visitors of the Santa Barbara Natural History Museum. Three graduate students will be supported through this project. Technical description Paleo sea-level data is critical for reconstructing the size and extent of past ice sheets, documenting increased uplift following glacial retreat, and correcting gravity-based measurements of ice-mass loss for the impacts of post-glacial rebound. However, there are only 14 sites with relative sea-level data for Antarctica compared to over 500 sites used in a recent study of the North American Ice-Sheet complex. The purpose of this project is to use optically stimulated luminescence to date a series of newly discovered raised beaches along the eastern Antarctic Peninsula and an already known, but only preliminarily dated, series of raised beaches in the South Shetland Islands. Data to be collected at the raised beaches include the age and elevation, ground-penetrating radar profiles, and the roundness of cobbles and the lithology of ice-rafted debris. The study will test three hypotheses: (1) uplift rates have increased in modern times relative to the late Holocene across the Antarctic Peninsula, (2) the sea-level history at the northern tip of the Antarctic Peninsula is distinctly different than that of the South Shetland Islands, and (3) cobble roundness and the source of ice-rafted debris on raised beaches varied systematically through time reflecting the climate history of the northern Antarctic Peninsula.
Abstract for the general public: The margins of the Antarctic ice sheet have advanced and retreated repeatedly over the past few million years. Melting ice from the last retreat, from 19,000 to 9,000 years ago, raised sea levels by 8 meters or more, but the extents of previous retreats are less well known. The main goal of this project is to understand how Antarctic ice retreats: fast or slow, stepped or steady, and which parts of the ice sheet are most prone to retreat. Antarctica loses ice by two main processes: melting of the underside of floating ice shelves and calving of icebergs. Icebergs themselves are ephemeral, but they carry mineral grains and rock fragments that have been scoured from Antarctic bedrock. As the icebergs drift and melt, this 'iceberg-rafted debris' falls to the sea-bed and is steadily buried in marine sediments to form a record of iceberg activity and ice sheet retreat. The investigators will read this record of iceberg-rafted debris to find when and where Antarctic ice destabilized in the past. This information can help to predict how Antarctic ice will behave in a warming climate. The study area is the Weddell Sea embayment, in the Atlantic sector of Antarctica. Principal sources of icebergs are the nearby Antarctic Peninsula and Weddell Sea embayment, where ice streams drain about a quarter of Antarctic ice. The provenance of the iceberg-rafted debris (IRD), and the icebergs that carried it, will be found by matching the geochemical fingerprint (such as characteristic argon isotope ages) of individual mineral grains in the IRD to that of the corresponding source area. In more detail, the project will: 1. Define the geochemical fingerprints of the source areas of the glacially-eroded material using samples from each major ice stream entering the Weddell Sea. Existing data indicates that the hinterland of the Weddell embayment is made up of geochemically distinguishable source areas, making it possible to apply geochemical provenance techniques to determine the origin of Antarctica icebergs. Few samples of onshore tills are available from this area, so this project includes fieldwork to collect till samples to characterize detritus supplied by the Recovery and Foundation ice streams. 2. Document the stratigraphic changes in provenance of iceberg-rafted debris (IRD) and glacially-eroded material in two deep water sediment cores in the NW Weddell Sea. Icebergs calved from ice streams in the embayment are carried by the Weddell Gyre and deposit IRD as they pass over the core sites. The provenance information identifies which groups of ice streams were actively eroding and exporting detritus to the ocean (via iceberg rafting and bottom currents), and the stratigraphy of the cores shows the relative sequence of ice stream activity through time. A further dimension is added by determining the time lag between fine sediment erosion and deposition, using a new method of uranium-series isotope measurements in fine grained material. Technical abstract: The behavior of the Antarctic ice sheets and ice streams is a critical topic for climate change and future sea level rise. The goal of this proposal is to constrain ice sheet response to changing climate in the Weddell Sea during the three most recent glacial terminations, as analogues for potential future warming. The project will also examine possible contributions to Meltwater Pulse 1A, and test the relative stability of the ice streams draining East and West Antarctica. Much of the West Antarctic ice may have melted during the Eemian (130 to 114 Ka), so it may be an analogue for predicting future ice drawdown over the coming centuries. Geochemical provenance fingerprinting of glacially eroded detritus provides a novel way to reconstruct the location and relative timing of glacial retreat during these terminations in the Weddell Sea embayment. The two major objectives of the project are to: 1. Define the provenance source areas by characterizing Ar, U-Pb, and Nd isotopic signatures, and heavy mineral and Fe-Ti oxide compositions of detrital minerals from each major ice stream entering the Weddell Sea, using onshore tills and existing sediment cores from the Ronne and Filchner Ice Shelves. Pilot data demonstrate that detritus originating from the east and west sides of the Weddell Sea embayment can be clearly distinguished, and published data indicates that the hinterland of the embayment is made up of geochemically distinguishable source areas. Few samples of onshore tills are available from this area, so this project includes fieldwork to collect till to characterize detritus supplied by the Recovery and Foundation ice streams. 2. Document the stratigraphic changes in provenance of iceberg-rafted debris (IRD) and glacially-eroded material in two deep water sediment cores in the NW Weddell Sea. Icebergs calved from ice streams in the embayment are carried by the Weddell Gyre and deposit IRD as they pass over the core sites. The provenance information will identify which ice streams were actively eroding and exporting detritus to the ocean (via iceberg rafting and bottom currents). The stratigraphy of the cores will show the relative sequence of ice stream activity through time. A further time dimension is added by determining the time lag between fine sediment erosion and deposition, using U-series comminution ages.
This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. The Science Coordination Office will facilitate planning and coordination of the science and broader impacts of several international research projects studying Thwaites Glacier--one of the largest glaciers in Antarctica. The glacier is located on the Pacific coast of the Antarctic continent. It is flowing almost twice as fast now as in the 1970s, and is one of the largest likely contributors to sea-level rise over the coming decades to centuries. Many of the factors that will affect the speed and retreat of Thwaites Glacier will be addressed by the set of projects funded by the Thwaites initiative. The Science Coordination Office comprises a US-UK science and communications team that will work with each project's scientists and students, logistics planners, and NSF and NERC to ensure the overall success of the project. The Office will maintain an informative website, and will produce content to explain the activities of the scientists and highlight the results of the work. The role of the Science Coordination Office will be to enhance integration and coordination among the science projects selected for the joint NSF-NERC Thwaites initiative to achieve maximum collective scientific and societal impact. The Office will facilitate scientific and logistical planning; facilitate data management, sharing, and discovery; and facilitate and support web content, outreach, and education for this high-profile research endeavor. The Office's role will be key to enabling the program to achieve its scientific goals and for the program to be broadly recognized and valued by scientists, the public, and policymakers. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Snow or firn aquifers are areas of subsurface meltwater storage that form in glaciated regions experiencing intense summer surface melting and high snowfall. Aquifers can induce hydrofracturing, and thereby accelerate flow or trigger ice-shelf instability leading to increased ice-sheet mass loss. Widespread aquifers have recently been discovered in Greenland. These have been modelled and mapped using new satellite and airborne remote-sensing techniques. In Antarctica, a series of catastrophic break-ups at the Wilkins Ice Shelf on the Antarctic Peninsula that was previously attributed to effects of surface melting and brine infiltration is now recognized as being consistent with a firn aquifer--possibly stimulated by long-period ocean swell--that enhanced ice-shelf hydrofracture. This project will verify inferences (from the same mapping approach used in Greenland) that such aquifers are indeed present in Antarctica. The team will survey two high-probability sites: the Wilkins Ice Shelf, and the southern George VI Ice Shelf. This two-year study will characterize the firn at the two field sites, drill shallow (~60 m maximum) ice cores, examine snow pits (~2 m), and install two AMIGOS (Automated Met-Ice-Geophysics Observing System) stations that include weather, GPS, and firn temperature sensors that will collect and transmit measurements for at least a year before retrieval. Ground-penetrating radar survey in areas surrounding the field sites will track aquifer extent and depth variations. Ice and microwave model studies will be combined with the field-observed properties to further explore the range of firn aquifers and related upper-snow-layer conditions. This study will provide valuable experience for three early-career scientists. An outreach effort through field blogging, social media posts, K-12 presentations, and public lectures is planned to engage the public in the team?s Antarctic scientific exploration and discovery. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Antarctic krill are essential in the Southern Ocean as they support vast numbers of marine mammals, seabirds and fishes, some of which feed almost exclusively on krill. Antarctic krill also constitute a target species for industrial fisheries in the Southern Ocean. The success of Antarctic krill populations is largely determined by the ability of their young to survive the long, dark winter, where food is extremely scarce. To survive the long-dark winter, young Antarctic krill must have a high-quality diet in autumn. However, warming in certain parts of Antarctica is changing the dynamics and quality of the polar food web, resulting in a shift in the type of food available to young krill in autumn. It is not yet clear how these dynamic changes are affecting the ability of krill to survive the winter. This project aims to fill an important gap in current knowledge on an understudied stage of the Antarctic krill life cycle, the 1-year old juveniles. The results derived from this work will contribute to the development of improved bioenergetic, population and ecosystem models, and will advance current scientific understanding of this critical Antarctic species. This CAREER project's core education and outreach objectives seek to enhance education and increase diversity within STEM fields. An undergraduate course will be developed that will integrate undergraduate research and writing in way that promotes authentic scientific inquiry and analysis of original research data by the students, and that enhances their communication skills. A graduate course will be developed that will promote students' skills in communicating their own research to a non-scientific audience. Graduate students will be supported through the proposed study and will gain valuable research experience. Traditionally underserved undergraduate students will be recruited to conduct independent research under the umbrella of the larger project. Throughout each field season, the research team will maintain a weekly blog that will include short videos, photographs and text highlighting the research, as well as their experiences living and working in Antarctica. The aim of the blog will be to engage the public and increase awareness and understanding of Antarctic ecosystems and the impact of warming, and of the scientific process of research and discovery. In this 5-year CAREER project, the investigator will use a combination of empirical and theoretical techniques to assess the effects of diet on 1-year old krill in autumn-winter. The research is centered on four hypotheses: (H1) autumn diet affects 1-year old krill physiology and condition at the onset of winter; (H2) autumn diet has an effect on winter physiology and condition of 1-year old krill under variable winter food conditions; (H3) the rate of change in physiology and condition of 1-year old krill from autumn to winter is dependent on autumn diet; and (H4) the winter energy budget of 1-year old krill will vary between years and will be dependent on autumn diet. Long-term feeding experiments and in situ sampling will be used to measure changes in the physiology and condition of krill in relation to their diet and feeding environment. Empirically-derived data will be used to develop theoretical models of growth rates and energy budgets to determine how diet will influence the overwinter survival of 1-year old krill. The research will be integrated with an education and outreach plan to (1) develop engaging undergraduate and graduate courses, (2) train and develop young scientists for careers in polar research, and (3) engage the public and increase their awareness and understanding. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Tremblay, Marissa; Granger, Darryl; Balco, Gregory; Lamp, Jennifer
No dataset link provided
. ______________________________________________________________________________________________________________ Part I: Nontechnical Description Scientists study the Earth's past climate in order to understand how the climate will respond to ongoing global change in the future. One of the best analogs for future climate might the period that occurred approximately 3 million years ago, during an interval known as the mid-Pliocene Warm Period. During this period, the concentration of carbon dioxide in the atmosphere was similar to today's and sea level was 15 or more meters higher, due primarily to warming and consequent ice sheet melting in polar regions. However, the temperatures in polar regions during the mid-Pliocene Warm Period are not well determined, in part because we do not have records like ice cores that extend this far back in time. This project will provide constraints on surface temperatures in Antarctica during the mid-Pliocene Warm Period using a new type of climate substitute, known as cosmogenic noble gas paleothermometry. This project focuses on an area of Antarctica called the McMurdo Dry Valleys. In this area, climate models suggest that temperatures were more than 10 C warmer during the mid-Pliocene than they are today, but indirect geologic observations suggest that temperatures may have been similar to today. The McMurdo Dry Valleys are also a place where rocks have been exposed to Earth surface conditions for several million years, and where this new climate substitute can be readily applied. The team will reconstruct temperatures in the McMurdo Dry Valleys during the mid-Pliocene Warm Period in order to resolve the discrepancy between models and indirect geologic observations and provide much-needed constraints on the sensitivity of Antarctic ice sheets to warming temperatures. The temperature reconstructions generated in this project will have scientific impact in multiple disciplines, including climate science, glaciology, geomorphology, and planetary science. In addition, the project will (1) broaden the participation of underrepresented groups by supporting two early-career female principal investigators, (2) build STEM talent through the education and training of a graduate student, (3) enhance infrastructure for research via publication of a publicly-accessible, open-source code library, and (4) be broadly disseminated via social media, blog posts, publications, and conference presentations. Part II: Technical Description The mid-Pliocene Warm Period (3-3.3 million years ago) is the most recent interval of the geologic past when atmospheric CO2 concentrations exceeded 400 ppm and is widely considered an analog for how Earth’s climate system will respond to current global change. Climate models predict polar amplification - the occurrence of larger changes in temperatures at high latitudes than the global average due to a radiative forcing - both during the mid-Pliocene Warm Period and due to current climate warming. However, the predicted magnitude of polar amplification is highly uncertain in both cases. The magnitude of polar amplification has important implications for the sensitivity of ice sheets to warming and the contribution of ice sheet melting to sea level change. Proxy-based constraints on polar surface air temperatures during the mid-Pliocene Warm Period are sparse to non-existent. In Antarctica, there is only indirect evidence for the magnitude of warming during this time. This project will provide constraints on surface temperatures in the McMurdo Dry Valleys of Antarctica during the mid-Pliocene Warm Period using a newly developed technique called cosmogenic noble gas (CNG) paleothermometry. CNG paleothermometry utilizes the diffusive behavior of cosmogenic 3He in quartz to quantify the temperatures rocks experience while exposed to cosmic-ray particles within a few meters of the Earth’s surface. The very low erosion rates and subzero temperatures characterizing the McMurdo Dry Valleys make this region uniquely suited for the application of CNG paleothermometry for addressing the question: what temperatures characterized the McMurdo Dry Valleys during the mid-Pliocene Warm Period? To address this question, the team will collect bedrock samples at several locations in the McMurdo Dry Valleys where erosion rates are known to be low enough that cosmic ray exposure extends into the mid-Pliocene or earlier. They will pair cosmogenic 3He measurements, which will record the thermal histories of our samples, with measurements of cosmogenic 10Be, 26Al, and 21Ne, which record samples exposure and erosion histories. We will also make in situ measurements of rock and air temperatures at sample sites in order to quantify the effect of radiative heating and develop a statistical relationship between rock and air temperatures, as well as conduct diffusion experiments to quantify the kinetics of 3He diffusion specific to each sample. This suite of observations will be used to model permissible thermal histories and place constraints on temperatures during the mid-Pliocene Warm Period interval of cosmic-ray exposure. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Southern Ocean in the vicinity of Antarctica is a region characterized by seasonally-driven marine phytoplankton blooms that are often dominated by microalgal species which produce large amounts of dimethylsulfoniopropionate (DMSP). DMSP can be converted to the compound dimethylsulfide (DMS) which is a molecule that can escape into the atmosphere where it is known to have strong condensation properties that are involved in regional cloud formation. Production of DMSP can influence the diversity and composition of microbial assemblages in seawater and the types and activities of microbes in the seawater will likely affect the magnitude of DMSP\DMS production. The proposal aims to examine the role of DMSP in structuring the microbial communities in Antarctic waters and how this structuring may influence DMSP cycling. The project will leverage the Antarctic research to introduce concepts and data linking microbial diversity and biogeochemistry to a range of audiences (including high school and undergraduate students in Maine). The project will also engage teacher and students in rural K-8 schools and will allow a collaboration with a science writer and illustrator who will join the team in the field. The writer will use the southern ocean experience as the setting for a poster and a book about the proposed research and the scientists studying extreme environments. The project will examine (1) the extent to which the cycling of DMSP in southern ocean waters influences the composition and diversity of bacterial and protistan assemblages; (2) conversely, whether the composition and diversity of southern ocean protistan and bacterial assemblages influence the magnitude and rates of DMSP cycling; (3) the expression of DMSP degradation genes by marine bacteria seasonally and in response to additions of DMSP; and, to synthesize these results by quantifying (4) the microbial networks resulting from the presence of DMSP-producers and DMSP-consumers along with their predators, all involved in the cycling of DMSP in southern ocean waters. The work will be accomplished by conducting continuous growth experiments with DMSP-amended natural samples during field sampling of different microbial communities present in summer and fall. Data from the molecular (such as 16S/ 18S tag sequences, DMSP-cycle gene transcripts) and biogeochemical (such as biogenic sulfur cycling, bacterial production, microbial biomass) investigations will be integrated via network analysis.
The Antarctic subglacial environment remains one of the least explored regions on Earth. This project will examine the physical and biological characteristics of Subglacial Lake Mercer, a lake that lies 1200m beneath the West Antarctic Ice Sheet. This study will address key questions relating to the stability of the ice sheet, the subglacial hydrological system, and the deep-cold subglacial biosphere. The education and outreach component aims to widely disseminate results to the scientific community and to the general public through short films, a blog, and a website. Subglacial Lake Mercer is one of the larger hydrologically active lakes in the southern basin of the Whillans Ice Plain, West Antarctica. It receives about 25 percent of its water from East Antarctica with the remainder originating from West Antarctica, is influenced by drain/fill cycles in a lake immediately upstream (Subglacial Lake Conway), and lies about 100 km upstream of the present grounding line of the Ross Ice Shelf. This site will yield information on the history of the Whillans and Mercer Ice Streams, and on grounding line migration. The integrated study will include direct sampling of basal ice, water, and sediment from the lake in concert with surface geophysical surveys over a three-year period to define the hydrological connectivity among lakes on the Whillans Ice Plain and their flow paths to the sea. The geophysical surveys will furnish information on subglacial hydrology, aid the site selection for hot-water drilling, and provide spatial context for interpreting findings. The hot-water-drilled boreholes will be used to collect basal ice samples, provide access for direct measurement of subglacial physical, chemical, and biological conditions in the water column and sediments, and to explore the subglacial water cavities using a remotely operated vehicle equipped with sensors, cameras, and sampling equipment. Data collected from this study will address the overarching hypothesis "Contemporary biodiversity and carbon cycling in hydrologically-active subglacial environments associated with the Mercer and Whillans ice streams are regulated by the mineralization and cycling of relict marine organic matter and through interactions among ice, rock, water, and sediments". The project will be undertaken by a collaborative team of scientists, with expertise in microbiology, biogeochemistry, hydrology, geophysics, glaciology, marine geology, paleoceanography, and science communication.
Mak/1443482 This project will compare current atmospheric conditions with those of the remote past prior to human influence. This is important in order to understand the impact of human activities on Earth's atmosphere, and to determine the stability of the composition of the atmosphere in the past. How humans have impacted Earth?s atmospheric composition is important for developing accurate predictions of future global atmospheric conditions. In addition to training students, the investigators will support continuing education of high school science teachers on Long Island through specifically tailored, interactive seminars on various topics in earth science, atmospheric sciences, physics and biology. A pilot program at Mount Sinai School District, near Stony Brook University will be the first implementation of this program. The investigators plan to reconstruct historical variations in the sources of atmospheric carbon monoxide (CO) from measurements of the concentration and stable isotopic abundance of carbon monoxide ([CO], 13CO and C18O) in the South Pole Ice Core, which is being drilled in 2014-2016. The goal is to strategically sample and reconstruct the relative variations in CO source strengths over the past 20,000 years. These will be the first measurements to extend the CO record beyond 650 years before present, back to the last glacial maximum. Both atmospheric chemical processes and variations in CO sources can impact the CO budget, and variations in the CO budget are useful in identifying and quantifying chemistry-climate interactions.
The ocean tide is a large component of total variability of ocean surface height and currents in the seas surrounding Antarctica, including under the floating ice shelves. Maximum tidal height range exceeds 7 m (near the grounding line of Rutford Ice Stream) and maximum tidal currents exceed 1 m/s (near the shelf break in the northwest Ross Sea). Tides contribute to several important climate and ecosystems processes including: ocean mixing, production of dense bottom water, flow of warm Circumpolar Deep Water onto the continental shelves, melting at the bases of ice shelves, fracturing of the ice sheet near a glacier or ice stream’s grounding line, production and decay of sea ice, and sediment resuspension. Tide heights and, in particular, currents can change as the ocean background state changes, and as the geometry of the coastal margins of the Antarctic Ice Sheet varies through ice shelf thickness changes and ice-front and grounding-line advances or retreats. For satellite-based studies of ocean surface height and ice shelf thickness changes, tide heights are a source of substantial noise that must be removed. Similarly, tidal currents can also be a substantial noise signal when trying to estimate mean ocean currents from short-term measurements such as from acoustic Doppler current profilers mounted on ships and CTD rosettes. Therefore, tide models play critical roles in understanding current and future ocean and ice states, and as a method for removing tides in various measurements. A paper in Reviews of Geophysics (Padman, Siegfried and Fricker, 2018, see list of project-related publications below) provides a detailed review of tides and tidal processes around Antarctica.
This project provides a gateway to tide models and a database of tide height coefficients at the Antarctic Data Center, and links to toolboxes to work with these models and data.
Modeling fluctuations in the extent of the West Antarctic Ice Sheet (WAIS) over time is a principal goal of the glaciological community. These models will provide a critical basis for predictions of future sea level change, and therefore this work great societal relevance. The mid-Pliocene time interval is of particular interest, as it is the most recent period in which global temperatures were warmer and atmospheric CO2 concentrations may have been higher than current levels. However, observational constraints on fluctuations in the WAIS older than the last glacial maximum are rare. The investigators propose to collect geochemical data from the Ohio Range and Scott Glacier to quantify past variability in the height of the WAIS. Limited available cosmogenic nuclide data are broadly consistent with a model indicating that Pliocene WAIS elevations and volumes were smaller than at present, and that WAIS collapse was common. The PIs will use geologic observations and cosmogenic nuclide concentrations from bedrock samples at multiple locations and at multiple elevations, including sub-ice samples, to constrain WAIS ice volume changes in a "dipstick" like fashion. Data obtained from the proposed research will provide targets for data-ice sheet model comparisons to accurately characterize Plio-Pleistocene and future WAIS behavior. As part of this project, the investigators will work with the Natural History Museum and the Earth & Planetary Science department at Harvard to develop an exhibit that will become part of the Museum's recently opened Earth and Planetary Science Gallery. The project involves mentoring of a female graduate student as well as an undergraduate student.
Atmospheric oxygen rose suddenly approximately 2.4 billion years ago after Cyanobacteria evolved the ability to produce oxygen through photosynthesis (oxygenic photosynthesis). This change permanently altered the future of life on Earth, yet little is known about the evolutionary processes leading to it. The Melainabacteria were first discovered in 2013 and are closely related non-photosynthetic relatives of the first group of organisms capable of oxygenic photosynthesis. This project will utilize existing data on metagenomes from microbial mats in Lake Vanda, an ice-covered lake in Antarctica where many sequences of Melainabacteria have been previously identified. From this genetic information, the project aims to assess the metabolic capabilities of these Melainabacteria and identify their potential ecological roles. The project will additionally evaluate the evolutionary relationships among the Cyanobacteria and Melainabacteria and closely related organisms that will allow an advancement in understanding of the evolutionary path that lead to oxygenic photosynthesis on Earth. The project will focus on extracting evolutionary information from the genomic data of Melainabacteria and Sericytochromatia, recently-described groups closely related to but basal to the Cyanobacteria. The characterization of novel members of these groups in samples from Lake Vanda, Antarctica, will provide insights into the path and processes involved in the evolution of oxygenic photosynthesis. The research will focus on assessing the metabolic capabilities of Melainabacteri, deriving the evolutionary relationships among Melainabacteria and Cyanobacteria and reconstructing potential evolutionary pathways leading to oxygenic photosynthesis. The project will focus on 12 metagenomes where the researchers expect to obtain genomes for at least the eight most abundant Melainabacteria in the dataset. Melainabacteria bins will be annotated and preliminary metabolic pathways will be constructed. The project will utilize full-length sequences of marker genes from across the bacterial domain with a particular focus on taxa that are oxygenic or anoxygenic phototrophs and use the marker genes, to build a rooted "backbone" tree. Incomplete or short sequences from the metagenomes will be added to the tree using the Evolutionary Placement Algorithm. The researchers will also build a corresponding phylogenetic tree using a Bayesian framework and compare their topologies. By doing so, the project aims to improve the understanding of the evolution of oxygenic photosynthesis, which caused the most significant change in Earth's surface chemistry. Specifically, they will document a significantly broader metabolic diversity within the Melainabacteria than has been previously identified, gain significant insights into their metabolic evolution, their evolutionary relationships with the Cyanobacteria, and the evolutionary steps leading to the origin of oxygenic photosynthesis. This research will have the overall effect of constraining key evolutionary processes in the origin of oxygenic photosynthesis. It will provide the foundation for future studies by indicating where a genomic record of the evolution of oxygenic photosynthesis may be preserved. Results will also be shared with middle school children through the development of scientific lesson plans in collaboration with teachers. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Brook/1246465 This award supports a project to measure the carbon dioxide (CO2) concentration in the WAIS Divide ice core covering the time period 25,000 to 60,000 years before present, and to analyze the isotopic composition of CO2 in selected time intervals. The research will improve understanding of how and why atmospheric CO2 varied during the last ice age, focusing particularly on abrupt transitions in the concentration record that are associated with abrupt climate change. These events represents large perturbations to the global climate system and better information about the CO2 response should inform our understanding of carbon cycle-climate feedbacks and radiative forcing of climate. The research will also improve analytical methods in support of these goals, including completing development of sublimation methods to replace laborious mechanical crushing of ice to release air for analysis. The intellectual merit of the proposed work is that it will increase knowledge about the magnitude and timing of atmospheric CO2 variations during the last ice age, and their relationship to regional climate in Antarctica, global climate history, and the history of abrupt climate change in the Northern Hemisphere. The temporal resolution of the proposed record will in most intervals be ~ 4 x higher than previous data sets for this time period, and for selected intervals up to 8-10 times higher. Broader impacts of the proposed work include a significant addition to the amount of data documenting the history of the most important long-lived greenhouse gas in the atmosphere and more information about carbon cycle-climate feedbacks - important parameters for predicting future climate change. The project will contribute to training a postdoctoral researcher, research experience for an undergraduate and a high school student, and outreach to local middle school and other students. It will also improve the analytical infrastructure at OSU, which will be available for future projects.
Hydrogen (H2) is one of the most abundant trace gases in the atmosphere, with a mean level of 500 ppb and an atmospheric lifetime of about two years. Hydrogen has an impact on both air quality and climate, due to its role as a precursor for tropospheric ozone and stratospheric water vapor. Projections indicate that a future "hydrogen economy" would increase hydrogen emissions. Understanding of the atmospheric hydrogen budget is largely based on a 30-year record of surface air measurements, but there are no long-term records with which to assess either: 1) the influence of climate change on atmospheric hydrogen, or 2) the extent to which humans have impacted the hydrogen budget. Polar ice core records of hydrogen will advance our understanding of the atmospheric hydrogen cycle and provide a stronger basis for projecting future changes to atmospheric levels of hydrogen and their impacts. The research will involve laboratory work to enable the collection and analysis of hydrogen in polar ice cores. Hydrogen is a highly diffusive molecule and, unlike most other atmospheric gases, diffusion of hydrogen in ice is so rapid that ice samples must be stored in impermeable containers immediately upon drilling and recovery. This project will: 1) construct a laboratory system for extracting and analyzing hydrogen in polar ice, 2) develop and test materials and construction designs for vessels to store ice core samples in the field, and 3) test the method on samples of opportunity previously stored in the field. The goal of this project is a proven, cost-effective design for storage flasks to be fabricated for use on future polar ice coring projects. This project will support the dissertation research of a graduate student in the UC Irvine Department of Earth System Science. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Predictions of future sea level rise require better understanding of the changing dynamics of the Greenland and Antarctic ice sheets. One way to better understand the past history of the ice sheets is to obtain records from inland ice for past geological periods, particularly in Antarctica, the world?s largest remaining ice sheet. Such records are exceedingly rare, and can be acquired at volcanic outcrops in the La Gorce Mountains of the central Transantarctic Mountains. Volcanoes now exposed within the La Gorce Mountains erupted beneath the East Antarctic ice sheet and the data collected will record how thick the ice sheet was in the past. In addition, information will be used to determine the thermal conditions at the base of the ice sheet, which impacts ice sheet stability. The project will also investigate the origin of volcanic activity in Antarctica and links to the West Antarctic Rift System (WARS). The WARS is a broad area of extended (i.e. stretched) continental crust, similar to that found in East Africa, and volcanism is wide spread and long-lived (65 million years to currently active) and despite more than 50 years of research, the fundamental cause of volcanism and rifting in Antarctica is still vigorously debated. The results of this award therefore also potentially impact the study of oceanic volcanism in the entire southwestern Pacific region (e.g., New Zealand and Australia), where volcanic fields of similar composition and age have been linked by common magma sources and processes. The field program includes a graduate student who will work on the collection, analysis, and interpretation of petrological data as part of his/her Masters project. The experience and specialized analytical training being offered will improve the quality of the student?s research and optimize their opportunities for their future. The proposed work fosters faculty and student national and international collaboration, including working with multi-user facilities that provide advanced technological mentoring of science students. Results will be broadly disseminated in peer-reviewed journals, public presentations at science meetings, and in outreach activities. Petrologic and geochemical data will be disseminated to be the community through the Polar Rock Repository. The study of subglacially erupted volcanic rocks has been developed to the extent that it is now the most powerful proxy methodology for establishing precise ?snapshots? of ice sheets, including multiple critical ice parameters. Such data should include measurements of ice thickness, surface elevation and stability, which will be used to verify, or reject, published semi-empirical models relating ice dynamics to sea level changes. In addition to establishing whether East Antarctic ice was present during the formation of the volcanoes, data will be used to derive the coeval ice thicknesses, surface elevations and basal thermal regime(s) in concert with a precise new geochronology using the 40Ar/39Ar dating method. Inferences from measurement of standard geochemical characteristics (major, trace elements and Sr, Nd, Pb, O isotopes) will be used to investigate a possible relationship between the volcanoes and the recently discovered subglacial ridge under the East Antarctic ice, which may be a rift flank uplift. The ridge has never been sampled, is undated and its significance is uncertain. The data will provide important new information about the deep Earth and geodynamic processes beneath this mostly ice covered and poorly understood sector of the Antarctic continent.
The PIs will design and build a new rapid access ice drill (RAID) for use in Antarctica. This drill will have the ability to rapidly drill through ice up to 3300 m thick and then collect samples of the ice, ice-sheet bed interface, and bedrock substrate below. This drilling technology will provide a new way to obtain in situ measurements and samples for interdisciplinary studies in geology, glaciology, paleoclimatology, microbiology, and astrophysics. The RAID drilling platform will give the scientific community access to records of geologic and climatic change on a variety of timescales, from the billion-year rock record to thousand-year ice and climate histories. Successful development of the RAID system will provide a research tool that is currently unavailable. Development of this platform will enable scientists to address critical questions about the deep interface between the Antarctic ice sheets and the substrate below. Development of RAID will provide a way to address many of the unknowns associated with general stability of the Antarctic ice sheets in the face of changing climate and sea level rise. The scientific rationale for RAID was reviewed in a previous proposal (Goodge 1242027). The PIs were granted ?Phase I? funding to develop a more detailed conceptual design for the RAID drill that would provide a better understanding of construction costs as well as operation and maintenance costs for RAID once it is constructed. Phase I support also allowed the PIs to work with the research community to develop more detailed science requirements for the drill. This proposal requests continued funding (Phase II) to construct, assemble and test the RAID drilling platform, through to staging it in Antarctic for future scientific operations.
1142167/Pettit This award supports a project to develop a better understanding of the relation between ice microstructure, impurities, and ice flow and their connection to climate history for the West Antarctic Ice Sheet (WAIS) ice core site. This work builds on several ongoing studies at Siple Dome in West Antarctica and Dome C in East Antarctica. It is well known that the microstructure of ice evolves with depth and time in an ice sheet. This evolution of microstructure depends on the ice flow field, temperature, and impurity content. The ice flow field, in turn, depends on microstructure, leading to feedbacks that create layered variation in microstructure that relates to climate and flow history. The research proposed here focuses on developing a better understanding of: 1) how ice microstructure evolves with time and stress in an ice sheet and how that relates to impurity content, temperature, and strain rate; 2) how variations in ice microstructure and impurity content affect ice flow patterns near ice divides (on both small (1cm to 1m) and large (1m to 100km) scales); and 3) in what ways is the spatial variability of ice microstructure and its effect on ice flow important for interpretation of climate history in the WAIS Divide ice core. The study will integrate existing ice core and borehole data with a detailed study of ice microstructure using Electron Backscatter Diffraction (EBSD) techniques and measurements of borehole deformation through time using Acoustic Televiewers. This will be the first study to combine these two novel techniques for studying the relation between microstructure and deformation and it will build on other data being collected as part of other WAIS Divide borehole logging projects (e.g. sonic velocity, optical dust logging, temperature and other measurements on the ice core including fabric measurements from thin section analyses as well as studies of ice chemistry and stable isotopes. The intellectual merit of the work is that it will improve interpretation of ice core data (especially information on past accumulation) and overall understanding of ice flow. The broader impacts are that the work will ultimately contribute to a better interpretation of ice core records for both paleoclimate studies and for ice flow history, both of which connect to the broader questions of the role of ice in the climate system. The work will also advance the careers of two early-career female scientists, including one with a hearing impairment disability. This project will support a PhD student at the UAF and provide research and field experience for two or three undergraduates at Dartmouth. The PIs plan to include a teacher on their field team and collaborate with UAF's "From STEM to STEAM" toward enhancing the connection between art and science.
Antarctic notothenioid fishes exhibit two adaptive traits to survive in frigid temperatures. The first of these is the production of anti-freeze proteins in their blood and tissues. The second is a system-wide ability to perform cellular and physiological functions at extremely cold temperatures.The proposal goals are to show how Antarctic fishes use these characteristics to avoid freezing, and which additional genes are turned on, or suppressed in order for these fishes to maintain normal physiological function in extreme cold temperatures. Progressively colder habitats are encountered in the high latitude McMurdo Sound and Ross Shelf region, along with somewhat milder near?shore water environments in the Western Antarctic Peninsula (WAP). By quantifying the extent of ice crystals invading and lodging in the spleen, the percentage of McMurdo Sound fish during austral summer (Oct-Feb) will be compared to the WAP intertidal fish during austral winter (Jul-Sep) to demonstrate their capability and extent of freeze avoidance. Resistance to ice entry in surface epithelia (e.g. skin, gill and intestinal lining) is another expression of the adaptation of these fish to otherwise lethally freezing conditions. The adaptive nature of a uniquely characteristic polar genome will be explored by the study of the transcriptome (the set of expressed RNA transcripts that constitutes the precursor to set of proteins expressed by an entire genome). Three notothenioid species (E.maclovinus, D. Mawsoni and C. aceratus) will be analysed to document evolutionary genetic changes (both gain and loss) shaped by life under extreme chronic cold. A differential gene expression (DGE) study will be carried out on these different species to evaluate evolutionary modification of tissue-wide response to heat challenges. The transcriptomes and other sequencing libraries will contribute to de novo ice-fish genome sequencing efforts.
Many animals, from crustaceans to humans, engage in long-term relationships. The demographic consequences of divorce or widowhood for monogamous species are poorly understood. This research seeks to advance understanding of the drivers of partner loss and quantify its resulting effects on individual fitness and population dynamics in polar species that form life-long relationships. The project will focus on pair disruption in two seabirds that form long-last pair bonds: the wandering albatross and the snow petrel. Unique long-term individual mark-recapture data sets exist for these iconic polar species, allowing for a comprehensive study of the rates, causes and consequences of pair disruption and how they may differ among Antarctic species. Insights might be gained regarding the effects of changing environmental regimes as well as by direct and indirect effects of fisheries as a by-product of this research. The aim of the project is to better understand the implications of different drivers of pair disruption and quantify its resulting effects on individual fitness components and population growth rate and structure for two procellariiformes breeding in the Southern Ocean. The project will focus on the wandering albatross and the snow petrel, which both form long-lasting pair bonds. The unique long-term individual mark-recapture data sets allow for a study of the rates, causes and consequences of pair disruption and how they differ among species with different life histories as well as expected differences in mechanisms and rates of pair disruptions. The study will result in a detailed analysis of the impact of social monogamy and long-term pair bonds on individual fitness components (vital rates: survival, recruitment and fecundity; life-history outcomes: life expectancy, age at 1st breeding and lifetime reproductive success; and occupancy times: duration of pair bond or widowhood) and population growth and structure (e.g, sex ratio of individuals available for mating). Specifically, the project will assess: 1. Variations in pair disruption rates, and if they are related to global change (by-catch in the case of albatross widowing, and climate in the case of petrel divorce) by developing a statistical multievent mark-recapture model. 2. Impacts of pair disruption on vital rates, specifically whether i) greater familiarity and better coordination within pairs improves breeding performance and survival, ii) mating costs reduce the probability of breeding and iii) divorce is more likely to occur after a breeding failure. 3. Impacts of pair disruption on life-history outcomes and occupancy times using Markov chain stochastic life cycle models. 4. Impacts of pair disruption on population dynamics by developing a novel non-linear two-sex matrix population model. The research will include sensitivity and Life Table Response Experiment analyses to examine the respective effects of fisheries, climate, vital rates, and pair-disruption rates on life-history outcomes, occupancy times, and population growth and structure, and their variations among year and species This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The ocean surrounding Antarctica is home to an extraordinary assemblage of fishes, dominated by a single group that are extremely well-suited to life in icy waters and which are of significant ecological importance there. Of great concern is the capacity of these fishes to withstand increases in temperature as the region of the Western Antarctic Peninsula warms at a rate faster than any other area in the Southern hemisphere. One particular group of Antarctic fishes, known as the icefishes, are particularly vulnerable to increases in temperature because unlike all other vertebrates on earth, icefishes are white-blooded due to their lack of the oxygen-binding protein hemoglobin. This greatly reduces their capacity to transport and deliver oxygen to tissues compared to red-blooded Antarctic fishes. Previous studies have shown that icefishes are indeed less tolerant to elevations in temperature but the underlying factors are completely unknown. Additionally, it is not understood if red- or white-blooded Antarctic fishes can adjust, or acclimate, to modest increases in temperature, similar to those changes in temperature the animals might experience as the earth warms. The investigators will determine if heart function and/or nervous system function limits thermal tolerance of Antarctic fishes, and will determine their capacity to acclimate to warmer temperatures. The project will further the NSF goal of training new generations of scientists by training graduate and undergraduate students. In addition, the project will collaborate with a high school biology teacher from a school which serves a largely minority student body. The students will learn about the marine environment, and will construct a camera to be used in the field to learn more about Antarctic fishes. Two students and the teacher will also attend a summer marine biology internship program. Antarctic fishes within the suborder Notothenioidei (called "notothenioids") are among the organisms on earth least able to deal with changes in temperature. The hemoglobinless icefish are even less able to withstand temperature changes than are red-blooded notothenioids. While this is well documented, the underlying physiological and biochemical mechanisms responsible are unknown. The investigators will test the hypotheses that cardiac work is significantly greater in icefishes compared to red-blooded species, and that as temperature increases, the greater cardiac work of icefishes, coupled with reduced blood oxygen-carrying capacity, results in cardiac failure at a lower temperature compared to red-blooded species. They also hypothesize that neuronal function limits thermal tolerance of red-blooded notothenioids. These hypotheses will be tested using a wide variety of experiments. For example, the investigators will measure heart rate concurrently with critical thermal maximum. They will also characterize metabolic and gene-expression responses to elevated temperature and determine if mitochondrial function contributes to thermal tolerance using a variety of techniques. To determine if neuronal function limits thermal tolerance they will quantify behavioral responses to warming of whole animals and to warming of only the brain area. They will also determine if acclimation to warmer temperatures impacts heart function and they will measure activities of a variety of enzymes from central metabolic pathways.
The research seeks to further quantify the input of atmospheric Fe into the sparsely sampled Southern Ocean (SO), specifically in the vicinity of the West Antarctic Peninsula (WAP) and adjacent continental shelf waters in the Drake Passage. This is typically a high nutrient low chlorophyll region where surface trace metal and primary productivity data are suggestive of Fe limitation. The WAP is characterized by high productivity in the austral summer, and at this time may be in the path of northern dust (aeolian Fe) input or subject to melt influx of elevated Fe accumulated from glacial and present-day sea ice sources. Primary scientific questions are: (1) to what extent does atmospheric Fe contribute to nutrient cycles and ecosystem dynamics in the SO? (2) How is warming climate occurring in the WAP affecting the aerosol composition of the maritime atmosphere. The primary productivity of the Southern Ocean is key to understanding oceanic uptake of anthropogenic greenhouse gases such as carbon dioxide.
Nontechnical project description Globally, 500 million people live near and are threatened by active volcanoes. An important step in mitigating volcanic hazards is understanding the variables that influence the explosivity of eruptions. The rate at which a magma ascends from the reservoir within the Earth to the surface is one such variable. However, magma ascent rates are particularly difficult to determine because of the lack of reliable methods for investigating the process. This research applies a new approach to study magma storage depths and ascent rates at the Erebus volcanic province of Antarctica, one of Earth's largest alkaline volcanic centers. Small pockets of magma that become trapped within growing olivine crystals are called melt inclusions. The concentrations of water and carbon dioxide in these melt inclusions preserve information on the depth of magma reservoirs. Changes to the concentration and isotopic composition of water in the inclusions provide information on how long it took for the host magma to rise to the surface. In combination, these data from samples of olivine-rich volcanic deposits in the Erebus volcanic province will be used to determine the depths at which magmas are stored and their ascent rates. The project results will provide a framework for understanding volcanic hazards associated with alkaline volcanism worldwide. In addition, this project facilitates collaboration among three institutions, and provides an important educational opportunity for a postdoctoral researcher. Technical project description The depths at which magmas are stored, their pre-eruptive volatile contents, and the rates at which they ascend to the Earth's surface are important controls on the dynamics of volcanic eruptions. Basaltic magmas are likely to be vapor undersaturated as they begin their ascent from the mantle through the crust, but volatile solubility drops with decreasing pressure. Once vapor saturation is achieved and the magma begins to degas, its pre-eruptive volatile content is determined largely by the depth at which it resides within the crust. Magma stored in deeper reservoirs tend to experience less pre-eruptive degassing and to be richer in volatiles than magma shallower reservoirs. Eruptive style is influenced by the rate at which a magma ascends from the reservoir to the surface through its effect on the efficiency of vapor bubble nucleation, growth, and coalescence. The proposed work will advance our understanding of pre-eruptive storage conditions and syn-eruptive ascent rates through a combined field and analytical research program. Volatile measurements from olivine-hosted melt inclusions will be used to systematically investigate magma storage depths and ascent rates associated with alkaline volcanism in the Erebus volcanic province. A central goal of the project is to provide a spatial and temporal framework for interpreting results from studies of present-day volcanic processes at Mt Erebus volcano. The Erebus volcanic province of Antarctica is especially well suited to this type of investigation because: (1) there are many exposed mafic scoria cones, fissure vents, and hyaloclastites (exposed in sea cliffs) that produced rapidly quenched, olivine-rich tephra; (2) existing volatile data for Ross Island MIs show that magma storage was relatively deep compared to many mafic volcanic systems; (3) some of the eruptive centers ejected mantle xenoliths, allowing for comparison of ascent rates for xenolith-bearing and xenolith-free eruptions, and comparison of ascent rates for those bearing xenoliths with times estimated from settling velocities; and (4) the cold, dry conditions in Antarctica result in excellent tephra preservation compared to tropical and even many temperate localities. The project provides new tools for assessing volcanic hazards, facilitates collaboration involving researchers from three different institutions (WHOI, U Wyoming, and U Oregon), supports the researchers' involvement in teaching, advising, and outreach, and provides an educational opportunity for a promising young postdoctoral researcher. Understanding the interrelationships among magma volatile contents, reservoir depths, and ascent rates is vital for assessing volcanic hazards associated with alkaline volcanism across the globe.
Part I: Nontechnical One of the most interesting historical records that science can provide is contained in the ice of Antarctica. Layer by layer over hundreds of thousands of years, snow has precipitated on the ice sheet, become compacted, and turned into additional ice. Any dust or other impurities in the air or snow have been precipitated as well and thus each snowfall leaves a snapshot record of the atmosphere that existed at or near the time of deposition. A detailed chronology of volcanic eruptions can be obtained from the ice layers where ash and other volcanic products were deposited. Normally, the analysis of volcanic layers requires the physical extraction of a core from the ice sheet; however, chronologies from cores have discontinuities and are difficult, time-consuming, and expensive to obtain. Borehole logging is a measurement method where one lowers instrumentation into a drilled hole in the ice, whether or not core has been retrieved. To date, this technology has only been used to measure optical systems to identify volcanic ash and other impurity layers. In this program, a profiling technology will be developed that measures the conductivity of the ice. A radio-frequency emitter lowered into the borehole will create a return signal that changes depending on the local conductivity, which depends on the concentration of dissolved ions. For example, dissolved sulfates are a critical marker of volcanic activity that may not be coincident with deposited ash. Other dissolved ions, such as chloride, can be indicative of other processes. It is expected that this borehole profiling instrument will be able to help rapidly identify volcanic eruptions that had potentially global impact, distinguish between different dissolved ions via their frequency dependencies, and assist in establishing chronologies between different ice cores and boreholes. Part II: Technical Description Borehole logging of the polar ice sheets is one of the most important methods that earth scientists have to identify and date volcanic eruptions. However, current technology only indicates the presence and depth of ash from an eruption. In order to extract more detailed information, one must obtain an ice core, and laboriously measure each section in the laboratory using electrical conductivity or dielectric measurements to determine the presence or absence of dissolved sulfate and its location relative to the corresponding ash, if any. This program will investigate and demonstrate a borehole logging-compatible radio-frequency dielectric sensor to detect and measure spikes in dissolved major ions chemistry in ice, particularly in intervals corresponding to volcanically produced sulfates. The sulfate layers are one of the primary signatures of volcanic products. However, other ions, such as chlorides, calcium, and others are also commonly seen in ice, and the dielectric logging technology of this program would also measure these. It is expected that certain sets of ions will be distinguishable by their frequency dependencies. This technique could guide other investigators, who are using conventional core scanning and sampling methods, to regions of special interest in corresponding core. We plan to construct a ring-based electrode system and test this system on a variety of artificial ice boreholes and ice cores. This unit will not include a pressure vessel or other borehole logger packing. We will test different means of applying electrical signals including short pulses and periodic waves. We will further utilize differential measurements with low noise circuits and filters to achieve maximum sensitivity. We will correlate the signals extracted with known molarities of sulfates and other ions and measured ECM records. We will perform scaled-down experiments using real ice cores stored in Bay?s lab at UC Berkeley. This will permit testing of different designs in ice with natural impurities and polycrystalline structure. This small collection includes cores from a variety of locations in Antarctica and Greenland, and a variety of ages as old as a million years.
This study aims to better understand salt accumulation in cold deserts and develop a model of salt transport by groundwater. Cold deserts, like the Antarctic McMurdo Dry Valleys (MDV), are similar to hot deserts in that they accumulate high concentrations of salts because there is not enough water to flush the salts out of the soils into the ocean. The accumulation of salt allows for the creation of brine-rich groundwater that freezes at much lower temperatures. Field work will focus on several groundwater features in the MDV including Don Juan Pond, a shallow lake that accumulates extremely high levels of salts and does not freeze until the temperature reaches -51 degrees C (-60 degrees F). The setting offers the potential to better understand this unique water environment including life at its extremes. It also serves as an analog environment for Mars, a planet that is entirely underlain by permafrost, similar to the MDV. This project will support a doctoral student at the University of Washington Department of Earth and Space Sciences, who will be trained in chemical analysis, chemical and physical modeling, and remote field work in a polar desert environment. Past research suggests that the movement of soluble ions in sediment and soil is controlled by the water activity, permeability, and the thermal regime; however, processes controlling the ionic redistribution in Antarctic environments are poorly constrained. This project aims to better understand the formation, salt redistribution, and water activity of pervasive brine-rich groundwater that is enriched in calcium chloride. A primary goal is to develop a brine thermal;reactive;transport model for the MDV region using data collected from the field to constrain model inputs and ground-truth model outputs. The model will develop a Pitzer-type thermodynamic, reactive transport model and couple it to a ground temperature model. The model will test mechanisms of groundwater formation in the MDV and the properties (e.g. composition, temperature, and water activity) of widespread shallow brine-rich waters. Water is an essential ingredient for life and defining processes that control the availability of water is critical for understanding the habitability of extreme environments, including Mars.
This project will develop a record of the stable-isotope ratios of water from an ice core at the South Pole, Antarctica. Water-isotope ratio measurements provide a means to determine variability in temperature through time. South Pole is distinct from most other locations in Antarctica in showing no warming in recent decades, but little is known about temperature variability in this location prior to the installation of weather stations in 1957. The measurements made as part of this project will result in a much longer temperature record, extending at least 40,000 years, aiding our ability to understand what controls Antarctic climate, and improving projections of future Antarctic climate change. Data from this project will be critical to other investigators working on the South Pole ice core, and of general interest to other scientists and the public. Data will be provided rapidly to other investigators and made public as soon as possible. This project will obtain records of the stable-isotope ratios of water on the ice core currently being obtained at South Pole. The core will reach a depth of 1500 m and an age of 40,000 years. The project will use laser spectroscopy to obtain both an ultra-high-resolution record of oxygen 18/16 and deuterium-hydrogen ratios, and a lower-resolution record of oxygen 17/16 ratios. The high-resolution measurements will be used to aid in dating the core, and to provide estimates of isotope diffusion that constrain the process of firn densification. The novel 17/16 measurement provides additional constraints on the isotope fractionation due to the temperature-dependent supersaturation ratio, which affects the fractionation of water during the liquid-solid condensate transition. Together, these techniques will allow for improved accuracy in the use of the water isotope ratios as proxies for ice-sheet temperature, sea-surface temperature, and atmospheric circulation. The result will be a record of decadal through centennial and millennial scale climate change in a climatically distinct region in East Antarctica that has not been previously sampled by deep ice coring. The project will support a graduate student who will be co-advised by faculty at the University of Washington and the University of Colorado, and will be involved in all aspects of the work.
Cryoconite holes are pockets of life completely encased in otherwise barren glacial ice. These pockets of life form when dust blown onto the ice melts a small, largely isolated hole that can function as its own tiny ecosystem. This dust can contain microorganisms such as bacteria, algae, or microscopic animals. The microorganisms within the hole interact and carry out functions typical of a larger ecosystem, such as a forest. Cryoconite holes are especially important in extreme cold environments such as the Antarctic Dry Valleys, where they function as repositories of life. Because cryoconite holes are mostly enclosed and persist for years, they can be tracked over time to test fundamental scientific questions about how communities of interacting organisms develop to become fully functioning ecosystems. This project will sample existing and experimentally created cryoconite holes to understand how these ecosystems develop and to what degree random processes (such as which organisms get there first) affect the final community composition and functioning. The results will not only improve our understanding of how microbial communities assemble and affect the functioning of microecosystems such as cryoconite holes, but also how the processes of community assembly affect functioning of larger ecosystems, such as forests. A better understanding of community establishment, development, and response to abiotic factors are essential to forecasting ecological responses to environmental change. It is essential to unravel the links between community assembly, biodiversity, and nutrient cycling across numerous ecosystems because these are critical factors determining ecological responses to environmental change. The unique, largely isolated nature of cryoconite holes provides an experimental system that will advance fundamental understanding of the processes (e.g., stochastic dynamics such as dispersal limitation, assembly order, and ecological drift) driving community assembly. This project will use a field sampling campaign and a number of manipulative experiments to test a hypothesis that unites theory in community and ecosystem ecology: the degree to which stochastic processes guide microbial community assembly and affects regional patterns in biodiversity and ecosystem processes. Cryoconite holes will be sampled to compare community composition, environmental factors, and ecosystem functioning between hydrologically connected and isolated holes. New cryoconite holes will also be constructed and monitored over the course of two growing seasons to specifically alter assembly order and community size, thereby pairing a unique manipulative experiment with field surveys to address questions with relevance to the Antarctic and beyond. Amplicon sequencing, metagenomics, microscopy, sensitive environmental chemistry methods, and photosynthesis and respiration measurements will be used to test a series of sub-hypotheses that relate stochasticity to patterns in regional biodiversity, heterogeneity in environmental factors, and ecosystem processes.
1142517/Saltzman This proposal requests support for a project to drill and recover a new ice core from South Pole, Antarctica. The South Pole ice core will be drilled to a depth of 1500 m, providing an environmental record spanning approximately 40 kyrs. This core will be recovered using a new intermediate drill, which is under development by the U.S. Ice Drilling Design and Operations (IDDO) group in collaboration with Danish scientists. This proposal seeks support to provide: 1) scientific management and oversight for the South Pole ice core project, 2) personnel for ice core drilling and core processing, 3) data management, and 3) scientific coordination and communication via scientific workshops. The intellectual merit of the work is that the analysis of stable isotopes, atmospheric gases, and aerosol-borne chemicals in polar ice has provided unique information about the magnitude and timing of changes in climate and climate forcing through time. The international ice core research community has articulated the goal of developing spatial arrays of ice cores across Antarctica and Greenland, allowing the reconstruction of regional patterns of climate variability in order to provide greater insight into the mechanisms driving climate change. The broader impacts of the project include obtaining the South Pole ice core will support a wide range of ice core science projects, which will contribute to the societal need for a basic understanding of climate and the capability to predict climate and ice sheet stability on long time scales. Second, the project will help train the next generation of ice core scientists by providing the opportunity for hands-on field and core processing experience for graduate students and postdoctoral researchers. A postdoctoral researcher at the University of Washington will be directly supported by this project, and many other young scientists will interact with the project through individual science proposals. Third, the project will result in the development of a new intermediate drill which will become an important resource to US ice core science community. This drill will have a light logistical footprint which will enable a wide range of ice core projects to be carried out that are not currently feasible. Finally, although this project does not request funds for outreach activities, the project will run workshops that will encourage and enable proposals for coordinated outreach activities involving the South Pole ice core science team.
The Antarctic marine ecosystem is highly productive and supports a diverse range of ecologically and commercially important species. A key species in this ecosystem is Antarctic krill, which in addition to being commercially harvested, is the principle prey of a wide range of marine organisms including penguins, seals and whales. The aim of this study is to use penguins and other krill predators as sensitive indicators of past changes in the Antarctic marine food web resulting from climate variability and the historic harvesting of seals and whales by humans. Specifically this study will recover and analyze modern (<20 year old), historic (20-200 year old) and ancient (200-10,000 year old) penguin and other krill predator tissues to track their past diets and population movements relative to shifts in climate and the availability of Antarctic krill. Understanding how krill predators were affected by these factors in the past will allow us to better understand how these predators, the krill they depend on, and the Antarctic marine ecosystem as a whole will respond to current challenges such as global climate change and an expanding commercial fishery for Antarctic krill. The project will further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. This project will support the cross-institutional training of undergraduate and graduate students in advanced analytical techniques in the fields of ecology and biogeochemistry. In addition, this project includes educational outreach aimed encouraging participation in science careers by engaging K-12 students in scientific issues related to Antarctica, penguins, marine ecology, biogeochemistry, and global climate change. This research will help place recent ecological changes in the Southern Ocean into a larger historical context by examining decadal and millennial-scale shifts in the diets and population movements of Antarctic krill predators (penguins, seals, and squid) in concert with climate variability and commercial harvesting. This will be achieved by coupling advanced stable and radio isotope techniques, particularly compound-specific stable isotope analysis, with unprecedented access to modern, historical, and well-preserved paleo-archives of Antarctic predator tissues dating throughout the Holocene. This approach will allow the project to empirically test if observed shifts in Antarctic predator bulk tissue stable isotope values over the past millennia were caused by climate-driven shifts at the base of the food web in addition to, or rather than, shifts in predator diets due to a competitive release following the historic harvesting of krill eating whale and seals. In addition, this project will track the large-scale abandonment and reoccupation of penguin colonies around Antarctica in response to changes in climate and sea ice conditions over the past several millennia. These integrated field studies and laboratory analyses will provide new insights into the underlying mechanisms that influenced past shifts in the diets and population movements of charismatic krill predators such as penguins. This will allow for improved projections of the ecosystem consequences of future climate change and anthropogenic harvesting scenarios in the Antarctica that are likely to affect the availability of Antarctic krill.
During winter, sea-ice coverage along the Antarctic coast is punctuated by numerous polynyas--isolated openings of tens to hundreds of kilometer wide. These coastal polynyas are hotspots of sea ice production and the primary source regions of the bottom water in the global ocean. They also host high levels of biological activities and are the feeding grounds of Emperor penguins and marine mammals. The polynyas are a key component of the Antarctic coastal system and crucial for the survival of penguins and many other species. These features also differ dramatically from each other in timing of formation, duration, phytoplankton growth season, and overall biological productivity. Yet, the underlying reasons for differences among them are largely unknown. This project studies the fundamental biophysical processes at a variety of polynyas, examines the connection between the physical environment and the phytoplankton and penguin ecology, and investigates the mechanisms behind polynya variability. The results of this interdisciplinary study will provide a context for interpretation of field measurements in Antarctic coastal polynyas, set a baseline for future polynya studies, and examine how polynya ecosystems may respond to local and large-scale environmental changes. The project will include educational and outreach activities that convey scientific messages to a broad audience. It aims to increase public awareness of the interconnection between large-scale environmental change and Antarctic coastal systems. The main objectives of this study are to form a comprehensive understanding of the temporal and spatial variability of Antarctic coastal polynyas and the physical controls of polynya ecosystems. The project takes an interdisciplinary approach and seeks to establish a modeling system centered on the Regional Ocean Modeling System. This system links the ice and ocean conditions to the plankton ecology and penguin population. Applications of the modeling system in representative polynyas, in conjunction with analysis of existing observations, will determine the biophysical influences of individual forcing factors. In particular, this study will test a set of hypothesized effects of winds, offshore water intrusion, ice-shelf melting, sea-ice formation, glacier tongues, and ocean stratification on the timing of polynya phytoplankton bloom and the overall polynya biological productivity. The project will also examine how changing polynya state affects penguin breeding success, adult survival, and population growth. The team will conduct idealized sensitivity analysis to explore implications of forcing variability, including local and large-scale environmental change, on Antarctic coastal ecosystems.
Microbial mats are found throughout the McMurdo Dry Valleys where summer snowmelt provides liquid water that allows these mats to flourish. Researchers have long studied the environmental conditions microbial mats need to grow. Despite these efforts, it has been difficult to develop a broad picture of these unique ecosystems. Recent advances in satellite technology now provide researchers an exciting new tool to study these special Antarctic ecosystems from space using the unique spectral signatures associated with microbial mats. This new technology not only offers the promise that microbial mats can be mapped and studied from space, this research will also help protect these delicate environments from potentially harmful human impacts that can occur when studying them from the ground. This project will use satellite imagery and spectroscopic techniques to identify and map microbial mat communities and relate their properties and distributions to both field and lab-based measurements. This research provides an exciting new tool to help document and understand the distribution of a major component of the Antarctic ecosystem in the McMurdo Dry Valleys. The goal of this project is to establish quantitative relationships between spectral signatures derived from orbit and the physiological status and biogeochemical properties of microbial mat communities in Taylor Valley, Antarctica, as measured by field and laboratory analyses on collected samples. The goal wioll be met by (1) refining atmospheric correction techniques using in situ radiometric rectification to derive accurate surface spectra; (2) collecting multispectral orbital images concurrent with in situ sampling and spectral measurements in the field to ensure temporal comparability; (3) measuring sediment, water, and microbial mat samples for organic and inorganic carbon content, essential biogeochemical nutrients, and chlorophyll-a to determine relevant mat characteristics; and (4) quantitatively associating these laboratory-derived characteristics with field-derived and orbital spectral signatures and parameters. The result of this work will be a more robust quantitative link between the distribution of microbial mat communities and their biogeochemical properties to landscape-scale spectral signatures. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Proteorhodopsins are proteins that are embedded in membranes that can act as light-driven proton pumps to generate energy for metabolism and growth. The discovery of proteorhodopsins in many diverse marine prokaryotic microbes has initiated extensive investigation into their distributions and functional roles. Recently, a proton-pumping, rhodopsin-like gene was identified in diatoms, a group of marine phytoplankton that dominates the base of the food web in much of the Southern Ocean. Since this time, proteorhodopsins have been identified in many, but not all, diatom species. The proteorhodopsin gene is more frequently found in diatoms residing in cold, iron-limited regions of the ocean, including the Southern Ocean, than in diatoms from other regions. It is thought that proteorhodopsin is especially suited for use energy production in the Southern Ocean since it uses no iron and its reaction rate is insensitive to temperature (unlike conventional photosynthesis). The overall objective of the project is to characterize Antarctic diatom-proteorhodopsin and determine its role in the adaptation of these diatoms to low iron concentrations and extremely low temperatures found in Antarctic waters. This research will provide new information on the genetic underpinnings that contribute to the success of diatoms in the Southern Ocean and how this unique molecule may play a pivotal role in providing energy to the base of the Antarctic food web. Broader impact activities are aimed to promote the teaching and learning of polar marine-sciences related topics by translating research objectives into readily accessible educational materials for middle-school students. This project will combine molecular, biochemical and physiological measurements to determine the role and importance of proteorhodopsin in diatom isolates from the Western Antarctic Peninsula region. Proton-pumping characteristics and pumping rates of proteorhodopsin as a function of light intensity and temperature, the resultant proteorhodopsin-linked intracellular ATP production rates, and the cellular localization of the protein will be determined. The project will examine the environmental conditions where Antarctic diatom-proteorhodopsin is most highly expressed and construct a cellular energy budget that includes diatom-proteorhodopsin when grown under these different environmental conditions. Estimates of the energy flux generated by proteorhodopsin will be compared to total energy generation by the photosynthetic light reactions and metabolically coupled respiration rates. Finally, the characteristics and gene expression of diatom-proteorhodopsin in Antarctic diatoms and a proteorhodopsin-containing diatom isolates from temperate regions will be compared in order to determine if there is a preferential dependence on energy production through proteorhodopsin in diatoms residing in cold, iron-limited regions of the ocean. Educational activities will be performed in collaboration with the Morehead Planetarium and Science Center who co-ordinates the SciVentures program, a popular summer camp for middle-school students from Chapel Hill and surrounding areas. In collaboration with the Planetarium, the researchers will develop activities that focus on phytoplankton and the important role they play within polar marine food webs for the SciVentures participants. Additionally, a teaching module on Antarctic phytoplankton will be developed for classrooms and made available to educational networking websites and presented at workshops for science educators nationwide. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Recent observations and model results suggest that collapse of the Amundsen Sea sector of West Antarctica may already be underway. However, the timeline of collapse and the effects of ongoing climatic and oceanographic changes are key unanswered questions. Complete disintegration of the ice sheet would raise global sea level by more than 3 m, which would have significant societal impacts. Improved understanding of the controls on ice-sheet evolution is needed to make better predictions of ice-sheet behavior. Results from numerical models show that buttressing from surrounding ice shelves and/or from small-scale grounded ice rises should act to slow the retreat and discharge of ice from the interior ice sheet. However, there are very few field observations with which to develop and validate models. Field observations conducted in the early 1980s on Crary Ice Rise in the Ross Sea Embayment are a notable exception. This project will revisit Crary Ice Rise with new tools to make a suite of measurements designed to address questions about how the ice rise affects ice discharge from the Ross Sea sector of West Antarctica. The team will include a graduate and undergraduate student, and will participate in a range of outreach activities. New tools including radar, seismic, and GPS instruments will be used to conduct targeted geophysical measurements both on Crary Ice Rise and across its grounding line. The project will use these new measurements, together with available ancillary data to inform a numerical model of grounding line dynamics. The model and measurements will be used to address the (1) How has the ice rise evolved over timescales ranging from: the past few decades; the past millennia after freeze-on; and through the deglaciation? (2) What history of ice dynamics is preserved in the radar-detected internal stratigraphy? (3) What dynamical effect does the presence/absence of the ice rise have on discharge of the Ross Ice Streams today? (4) How is it contributing to the slow-down of the proximal Whillans and Mercer ice streams? (5) What dynamical response will the ice rise have under future environmental change?
The coastal environments of the western Antarctic Peninsula harbor rich assemblages of marine animals and algae. The importance of the interactions between these groups of organisms in the ecology of coastal Antarctica are well known and often mediated by chemical defenses in the tissues of the algae. These chemicals are meant to deter feeding by snails and other marine animals making the Antarctic Peninsula an excellent place to ask important questions about the functional and evolutionary significance of chemical compound diversity for marine communities. This project will focus on three main objectives: the first objective is to expand the current understanding of the relationship between algae and their associated marine animals. The second objective focuses on the diversity of chemical compounds used to defend algae from being consumed. The third objective seeks to understand how marine animals can benefit from these compounds by consuming the algae that contain them, and then using those compounds to chemically deter predators. The field components of this research will be performed during three expeditions to the US Palmer Station, Antarctica. During these expeditions, a variety of laboratory feeding bioassays, manipulative field and laboratory experiments, and on-site chemical analyses will be performed. The investigators will also foster opportunities to integrate their NSF research with a variety of educational activities. As in the past they will support undergraduate research, both through NSF programs as well as home, university-based, programs, and they will also continue to support and foster graduate education. Through their highly successful University of Alabama in Antarctica interactive web program (two time recipient of awards of excellence from the US Council for Advancement and Support of Education), they will continue to involve large numbers of teachers, K-12 students, and other members of the community at large in their scientific endeavors in Antarctica. In addition, the investigators have hosted K-12 teachers on their Antarctic field teams through the former NSF Teachers Experiencing Antarctica and the Arctic program and will pursue participation in PolarTREC, the successor to this valuable program. Moreover, they will actively participate in outreach efforts by presenting numerous talks on their research to local school and community groups. The near shore environments of the western Antarctic Peninsula harbor rich assemblages of macroalgae and macroinvertebrates. The importance of predator-prey interactions and chemical defenses in mediating community-wide trophic interactions makes the western Antarctic Peninsula an excellent place to ask important questions about the functional and evolutionary significance of defensive compound diversity for marine communities. This project will focus on three main objectives which are a direct outcome of the past studies of the chemical ecology of shallow-water marine macroalgae and invertebrates on the Antarctic Peninsula by this group of investigators. The first objective is to expand the current understanding of a community-wide mutualism between macroalgae and their associated amphipods to include gastropods, which are also abundant on many macroalgae. The second objective focuses on the diversity of chemical compounds used to defend macroalgae from being consumed, particularly in the common red alga Plocamium cartilagineum. The third objective seeks to understand the relationship between P. cartilagineum and the amphipod Paradexamine fissicauda, including the ecological benefits and costs to P. fissicauda resulting from the ability to consume P. cartilagineum and other chemically defended red algae. The investigators will focus on the costs and benefits related to the ability of P. fissicauda to sequester defensive compounds from the alga P. cartilagineum and use those chemicals to defend itself from predation. The field components of this research will be performed during three expeditions to Palmer Station, Antarctica. During these expeditions, a variety of laboratory feeding bioassays, manipulative field and laboratory experiments, and on-site chemical analyses will be performed. Phylogenetic analyses, detailed secondary metabolite chemical analyses and purifications, and other data analyses will also be performed at the investigators' home institutions between and after their field seasons.
Gases trapped in ice cores have revealed astonishing things about the greenhouse gas composition of the past atmosphere, including the fact that carbon dioxide concentrations never rose above 300 parts per million during the last 800,000 years. This places today's concentration of 400 parts per million in stark contrast. Furthermore, these gas records show that natural sources of greenhouse gas such as oceans and ecosystems act as amplifiers of climate change by increasing emissions of gases during warmer periods. Such amplification is expected to occur in the future, adding to the human-produced gas burden. The South Pole ice core will build upon these prior findings by expanding the suite of gases to include, for the first time, those potent trace gases that both trapped heat and depleted ozone during the past 40,000 years. The present project on inert gases and methane in the South Pole ice core will improve the dating of this crucial record, to unprecedented precision, so that the relative timing of events can be used to learn about the mechanism of trace gas production and destruction, and consequent climate change amplification. Ultimately, this information will inform predictions of future atmospheric chemical cleansing mechanisms and climate in the context of our rapidly changing atmosphere. This award also engages young people in the excitement of discovery and polar research, helping to entrain the next generations of scientists and educators. Education of graduate students, a young researcher (Buizert), and training of technicians, will add to the nation?s human resource base. This award funds the construction of the gas chronology for the South Pole 1500m ice core, using measured inert gases (d15N and d40Ar--Nitrogen and Argon isotope ratios, respectively) and methane in combination with a next-generation firn densification model that treats the stochastic nature of air trapping and the role of impurities on densification. The project addresses fundamental gaps in scientific understanding that limit the accuracy of gas chronologies, specifically a poor knowledge of the controls on ice-core d15N and the possible role of layering and impurities in firn densification. These gaps will be addressed by studying the gas enclosure process in modern firn at the deep core site. The work will comprise the first-ever firn air pumping experiment that has tightly co-located measurements of firn structural properties on the core taken from the same borehole. The project will test the hypothesis that the lock-in horizon as defined by firn air d15N, CO2, and methane is structurally controlled by impermeable layers, which are in turn created by high-impurity content horizons in which densification is enhanced. Thermal signals will be sought using the inert gas measurements, which improve the temperature record with benefits to the firn densification modeling. Neon, argon, and oxygen will be measured in firn air and a limited number of deep core samples to test whether glacial period layering was enhanced, which could explain low observed d15N in the last glacial period. Drawing on separate volcanic and methane synchronization to well-dated ice cores to create independent ice and gas tie points, independent empirical estimates of the gas age-ice age difference will be made to check the validity of the firn densification model-inert gas approach to calculating the gas age-ice age difference. These points will also be used to test whether the anomalously low d15N seen during the last glacial period in east Antarctic ice cores is due to deep air convection in the firn, or a missing impurity dependence in the firn densification models. The increased physical understanding gained from these studies, combined with new high-precision measurements, will lead to improved accuracy of the gas chronology of the South Pole ice core, which will enhance the overall science return from this gas-oriented core. This will lead to clarification of timing of atmospheric gas variations and temperature, and aid in efforts to understand the biogeochemical feedbacks among trace gases. These feedbacks bear on the future response of the Earth System to anthropogenic forcing. Ozone-depleting substances will be measured in the South Pole ice core record, and a precise gas chronology will add value. Lastly, by seeking a better understanding of the physics of gas entrapment, the project aims to have an impact on ice-core science in general.
Bubbles of ancient air trapped in ice cores permit the direct reconstruction of atmospheric composition and allow us to link greenhouse gases and global climate over the last 800,000 years. Previous field expeditions to the Allan Hills blue ice area, Antarctica, have recovered ice cores that date to one million years, the oldest ice cores yet recovered from Antarctica. These records have revealed that interglacial CO2 concentrations decreased by 800,000 years ago and that, in the warmer world 1 million years ago, CO2 and Antarctic temperature were linked as during the last 800,000 years. This project will return to the Allan Hills blue ice area to recover additional ice cores that date to 1 million years or older. The climate records developed from the drilled ice cores will provide new insights into the chemical composition of the atmosphere and Antarctic climate during times of comparable or even greater warmth than the present day. Our results will help answer questions about issues associated with anthropogenic change. These include the relationship between temperature change and the mass balance of Antarctic ice; precipitation and aridity variations associated with radiatively forced climate change; and the climate significance of sea ice extent. The project will entrain two graduate students and a postdoctoral scholar, and will conduct outreach including workshops to engage teachers in carbon science and ice cores. Between about 2.8-0.9 million years ago, Earth's climate was characterized by 40,000-year cycles, driven or paced by changes in the tilt of Earth's spin axis. Much is known about the "40,000-year" world from studies of deep-sea sediments, but our understanding of climate change during this period is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of ancient ice from the Main Ice Field, Allan Hills, Antarctica. During previous field seasons we recovered ice extending, discontinuously, from 0.1-1.0 million years old. Ice was dated by measuring the 40Ar/38Ar (Argon) ratio of the trapped gases. Our discovery of million year-old ice demonstrates that there is gas-record-quality ice from the 40,000-year world in the Allan Hills Main Ice Field. We have identified two different sites, each overlying bedrock at ~ 200 m depth, that are attractive targets for coring ice dating to 1 million years and older. This project aims to core the ice at these two sites, re-occupy a previous site with million year-old ice and drill it down to the bedrock, and generate 10-20 short (~10-meter) cores in areas where our previous work and terrestrial meteorite ages suggest ancient surface ice. We plan to date the ice using the 40Ar/38Ar ages of trapped Argon. We also plan to characterize the continuity of our cores by measuring the deuterium and oxygen isotope ratios in the ice, methane, ratios of Oxygen and Argon to Nitrogen in trapped gas, the Nitrogen-15 isotope (d15N) of Nitrogen, and the Oxygen-18 isotope (d18O) of Oxygen. As the ice may be stratigraphically disturbed, these measurements will provide diagnostic properties for assessing the continuity of the ice-core records. Successful retrieval of ice older than one million years will provide the opportunity for follow-up work to measure the CO2 concentration and other properties within the ice to inform on the temperature history of the Allan Hills region, dust sources and source-area aridity, moisture sources, densification conditions, global average ocean temperature, and greenhouse gas concentrations. We will analyze the data in the context of leading hypotheses of the 40,000-year world and the Mid-Pleistocene Transition to the 100,000-year world. We expect to advance understanding of climate dynamics during these periods.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The LISSARD project (Lake and Ice Stream Subglacial Access Research Drilling) is one of three research components of the WISSARD integrative initiative (Whillans Ice Stream Subglacial Access Research Drilling) that is being funded by the Antarctic Integrated System Science Program of NSF's Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The LISSARD component of WISSARD focuses on the role of active subglacial lakes in determining how fast the West Antarctic ice sheet loses mass to the global ocean and influences global sea level changes. The importance of Antarctic subglacial lakes has only been recently recognized, and the lakes have been identified as high priority targets for scientific investigations because of their unknown contributions to ice sheet stability under future global warming scenarios. LISSARD has several primary science goals: A) To provide an observational basis for improving treatments of subglacial hydrological and mechanical processes in models of ice sheet mass balance and stability; B) To reconstruct the past history of ice stream stability by analyzing archives of past basal water and ice flow variability contained in subglacial sediments, porewater, lake water, and basal accreted ice; C) To provide background understanding of subglacial lake environments to benefit RAGES and GBASE (the other two components of the WISSARD project); and D) To synthesize data and concepts developed as part of this project to determine whether subglacial lakes play an important role in (de)stabilizing Antarctic ice sheets. We propose an unprecedented synthesis of approaches to studying ice sheet processes, including: (1) satellite remote sensing, (2) surface geophysics, (3) borehole observations and measurements and, (4) basal and subglacial sampling. <br/><br/>INTELLECTUAL MERIT: The latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations. <br/><br/>BROADER IMPACTS: Societal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars.
Meltwater lakes that sit on top of Antarctica's floating ice shelves have likely contributed to the dramatic changes seen in Antarctica's glacial ice cover over the past two decades. In 2002, the 1,600-square-kilometer Larsen B Ice Shelf located on the Eastern side of the Antarctic Peninsula, for example, broke into thousands of small icebergs, which subsequently floated away as a result of the formation of more than 2,000 meltwater lakes on its surface over the prior decade. Our research project addresses the reasons why surface lakes form on Antarctic ice shelves and how these surface lakes subsequently contribute to the forces that may contribute to ice-shelf breakup like that of the Larsen B. Our project focuses primarily on making precise global positioning system (GPS) measurements of ice-shelf bending in response to the filling and draining of a surface lake on the McMurdo Ice Shelf. The observed vertical displacements (on the order of tens of centimeters) in response to lake filling will be used to calibrate and test computer simulation models that predict the response of ice shelves to surface lakes more generally and in a variety of future climate conditions. Our project will make hourly measurements of both vertical ice-shelf movements (using GPS surveying instruments) and of temperature and sunlight conditions (that drive melting) around a surface lake located close to the McMurdo Station airfield. Following this initial data-gathering effort, computer simulations and other more theoretical analysis will be undertaken to determine the suitability of the chosen McMurdo Ice Shelf surface lake as a field-laboratory for continued study. Ultimately, the research will contribute to understanding of the glaciological processes that link climate change to rising sea level. A successful outcome of the research will allow glaciologists to better assess the processes that promote or erode the influence Antarctic ice shelves have in controlling the transfer of ice from the interior of Antarctica into the ocean. The project will undertake two outreach activities: (1) web-posting of a field-activity journal and (2) establishing an open-access glaciological teaching and outreach web-sharing site for the International Glaciological Society. The proposed project seeks to experimentally verify a theory of ice-shelf instability proposed to explain the explosive break-up of Larsen B Ice Shelf in 2002. This theory holds that the filling and draining of supraglacial lakes on floating ice shelves induces sufficient flexure stress within the ice to (a) induce upward/downward propagating fractures originating at the base/surface of the ice shelf that (b) dissect the ice shelf into fragments that tend to have widths less than about half the ice thickness. The significance of narrow widths is that they promote capsize of the ice-shelf fragments during the break-up process. This capsize releases large amounts of gravitational potential energy (comparable to thousands of kilotons of TNT for the Larsen B Ice Shelf) thereby promoting explosiveness of the Larsen B event. The observational motivation for experimentally verifying the surface-lake mechanism for ice-shelf breakup is based on the fact that >2,000 surface lakes developed on the Larsen B Ice Shelf in the decade prior to its break up, and that these lakes were observed (via satellite imagery) to drain in a coordinated fashion during the day prior to the initiation of the break up. The field-observation component of the project will focus on a supraglacial lake on the McMurdo Ice Shelf where there is persistent summer season surface melting. The lake will be studied during a single provisional field season to determine whether grooming of surrounding surface streams and shorelines with heavy construction equipment will allow surface water to be manually encouraged to fill the lake. If successfully encouraged to develop, the McMurdo Ice Shelf surface lake will allow measurements of key ice-shelf flexure and stress variables needed to develop the theory of ice-shelf surface lakes without having to access the much more logistically demanding surface lakes of ice-shelves located elsewhere in Antarctica. Data to be gathered during the 6-week provisional field season include: energy- and water-balance parameters determining how the surface lake grows and fills, and various global positioning system measurements of the vertical bending of the ice sheet in response to the changing meltwater load contained within the surface lake. These data will be used to (1) constrain a computer model of viscoelastic flexure and possible fracture of the ice shelf in response to the increasing load of meltwater in the lake, and (2) determine whether continued study of the incipient surface-meltwater lake features on the McMurdo Ice Shelf provides a promising avenue for constraining the more-general behavior of surface meltwater lakes on other ice shelves located in warmer parts of Antarctica. Computer models constrained by the observational data obtained from the field project will inform energy- and water-balance models of ice shelves in general, and allow more accurate forecasts of changing ice-shelf conditions surrounding the inland ice of Antarctica. The project will create the first-ever ground-based observations useful for spawning the development of models capable of predicting viscoelastic and fracture behavior of ice shelves in response to supraglacial lake evolution, including slow changes due to energy balance effects, as well as fast changes due to filling and draining.
Ice-core records are critical to understanding past climate variations. An Antarctic ice core currently being drilled at the South Pole will allow detailed investigation of atmospheric gases and fill an important gap in understanding the pattern of climate variability across Antarctica. Critical to the interpretation of any ice core are: 1) accurate chronologies for both the ice and the trapped gas and 2) demonstration that records from the ice core reliably reflect climate. The proposed research will improve the ice and gas chronologies by making measurements of snow compaction in the upstream catchment in order to constrain age models of the ice. These measurements will be a key data set needed for better understanding and predicting time-varying conditions in the upper part of the ice sheet. The research team will measure the modern spatial gradients in accumulation rate, surface temperature, and water stable isotopes from shallow ice cores in the upstream catchment in order to determine the climate history from the ice-core record. The new ice-flow measurements will make it possible to define the path of ice from upstream to the South Pole ice-core drill site to assess spatial gradients in snowfall and to infer histories of snowfall from internal layers within the ice sheet. The project will be led by an early-career scientist, provide broad training to graduate students, and engage in public outreach on polar science. Ice-core records of stable isotopes, aerosol-born particles, and atmospheric gases are critical to understanding past climate variations. The proposed research will improve the ice and gas chronologies in the South Pole ice core by making in situ measurements of firn compaction in the upstream catchment to constrain models of the gas-age ice-age difference. The firn measurements will be a key data set needed to form a constitutive relationship for firn, and will drive better understanding and prediction of transient firn evolution. The research team will measure the modern gradients in accumulation rate, surface temperature, and water stable isotopes in the upstream catchment to separate spatial (advection) variations from temporal (climate) variations in the ice-core records. The ice-flow measurements will define the flowline upstream of the drill site, assess spatial gradients in accumulation, and infer histories of accumulation from radar-observed internal layers. Results will directly enhance interpretation of South Pole ice-core records, and also advance understanding of firn densification and drive next-generation firn models.
This award supports a project to use the Roosevelt Island ice core as a glaciological dipstick for the eastern Ross Sea. Recent attention has focused on the eastern Ross Embayment, where there are no geological constraints on ice thickness changes, due to the lack of protruding rock "dipsticks" where the ice sheet can leave datable records of high stands. Recent work has shown how dated ice cores can be used as dipsticks to derive ice-thickness histories. Partners from New Zealand and Denmark will extract an ice core from Roosevelt Island during the 2010-2011 and 2011-12 austral summers. Their science objective is to contribute to understanding of climate variability over the past 40kyr. The science goal of this project is not the climate record, but rather the history of deglaciation in the Ross Sea. The new history from the eastern Ross Sea will be combined with the glacial histories from the central Ross Sea (Siple Dome and Byrd) and existing and emerging histories from geologic and marine records along the western Ross Sea margin and will allow investigators to establish an updated, self-consistent model of the configuration and thickness of ice in the Ross Embayment during the LGM, and the timing of deglaciation. Results from this work will provide ground truth for new-generation ice-sheet models that incorporate ice streams and fast-flow dynamics. Realistic ice-sheet models are needed not only for predicting the response to future possible environments, but also for investigating past behaviors of ice sheets. This research contributes to the primary goals of the West Antarctic Ice Sheet Initiative as well as the IPY focus on ice-sheet history and dynamics. It also contributes to understanding spatial and temporal patterns of climate change and climate dynamics over the past 40kyr, one of the primary goals of the International Partnerships in Ice Core Sciences (IPICS). The project will help to develop the next generation of scientists and will contribute to the education and training of two Ph.D. students. All participants will benefit from the international collaboration, which will expose them to different field and laboratory techniques and benefit future collaborative work. All participants are involved in scientific outreach and undergraduate education, and are committed to fostering diversity. Outreach will be accomplished through regularly scheduled community and K-12 outreach events, talks and popular writing by the PIs, as well as through University press offices.
Like no other region on Earth, the northern Antarctic Peninsula represents a spectacular natural laboratory of climate change and provides the opportunity to study the record of past climate and ecological shifts alongside the present-day changes in one of the most rapidly warming regions on Earth. This award supports the cryospheric and oceano-graphic components of an integrated multi-disciplinary program to address these rapid and fundamental changes now taking place in Antarctic Peninsula (AP). By making use of a marine research platform (the RV NB Palmer and on-board helicopters) and additional logistical support from the Argentine Antarctic program, the project will bring glaciologists, oceanographers, marine geologists and biologists together, working collaboratively to address fundamentally interdisciplinary questions regarding climate change. The project will include gathering a new, high-resolution paleoclimate record from the Bruce Plateau of Graham Land, and using it to compare Holocene- and possibly glacial-epoch climate to the modern period; investigating the stability of the remaining Larsen Ice Shelf and rapid post-breakup glacier response ? in particular, the roles of surface melt and ice-ocean interactions in the speed-up and retreat; observing the contribution of, and response of, oceanographic systems to ice shelf disintegration and ice-glacier interactions. Helicopter support on board will allow access to a wide range of glacial and geological areas of interest adjacent to the Larsen embayment. At these locations, long-term in situ glacial monitoring, isostatic uplift, and ice flow GPS sites will be established, and high-resolution ice core records will be obtained using previously tested lightweight drilling equipment. Long-term monitoring of deep water outflow will, for the first time, be integrated into changes in ice shelf extent and thickness, bottom water formation, and multi-level circulation by linking near-source observations to distal sites of concentrated outflow. The broader impacts of this international, multidisciplinary effort are that it will significantly advance our understanding of linkages amongst the earth's systems in the Polar Regions, and are proposed with international participation (UK, Spain, Belgium, Germany and Argentina) and interdisciplinary engagement in the true spirit of the International Polar Year (IPY). It will also provide a means of engaging and educating the public in virtually all aspects of polar science and the effects of ongoing climate change. The research team has a long record of involving undergraduates in research, educating high-performing graduate students, and providing innovative and engaging outreach products to the K-12 education and public media forums. Moreover, forging the new links both in science and international Antarctic programs will provide a continuing legacy, beyond IPY, of improved understanding and cooperation in Antarctica.
The Antarctic Automatic Weather Station (AAWS) network, first commenced in 1978, is the most extensive ground meteorological network in the Antarctic, approaching its 30th year at several of its installations. Its prime focus as a long term observational record is to measure the near surface weather and climatology of the Antarctic atmosphere. AWS sites measure air-temperature, pressure, wind speed and direction at a nominal surface height of 3m. Other parameters such as relative humidity and snow accumulation may also be measured. Observational data from the AWS are collected via the DCS Argos system aboard either NOAA or MetOp polar orbiting satellites and thus made available in near real time to operational and synoptic weather forecasters. The surface observations from the AAWS network are important records for recent climate change and meteorological processes. The surface observations from the AAWS network are also used operationally, and in the planning of field work. The surface observations from the AAWS network have been used to check on satellite and remote sensing observations.
Hall/1246170 This award supports a project to reconstruct past ice-surface elevations from detailed glacial mapping and dating of moraines (using 14C dates of algae from former ice-marginal ponds and 10Be surface exposure ages) in the region of the Darwin-Hatherton Glaciers in Antarctica in order to try and resolve very different interpretations that currently exist about the glacial history in the region. The results will be integrated with existing climate and geophysical data into a flow-line model to gain insight into glacier response to climate and ice-dynamics perturbations during the Late Glacial Maximum (LGM) in Antarctica. The work will contribute to a better understanding of both LGM ice thickness and whether or not there is any evidence that Antarctica contributed to Meltwater Pulse (MWP)-1A a very controversial topic in Antarctic glacial geology. The intellectual merit of the work relates to the fact that reconstructing past fluctuations of the Antarctic Ice Sheet (AIS) is critical for understanding the sensitivity of ice volume to sea-level and climatic change. Constraints on past behavior help put ongoing changes into context and provide a basis for predicting future sea-level rise. Broader impacts include the support of two graduate and two undergraduate students, as well as a female early-career investigator. Graduate students will be involved in all stages of the project from planning and field mapping to geochronological analyses, interpretation, synthesis and reporting. Two undergraduates will work on lab-based research from the project. The project also will include visits to K-12 classrooms to talk about glaciers and climate change, correspondence with teachers and students from the field, and web-based outreach. This award has field work in Antarctica.
Marine mammals that inhabit high latitude environments have evolved unique mechanisms to execute a suite of energetically-costly life history events (CLHEs) within a relatively short timeframe when conditions are most favorable. Understanding the intrinsic and extrinsic factors that regulate CLHEs is particularly important in species such as Weddell seals, as both reproduction and molt are associated with large reductions in foraging effort, and the timing and outcome of each appears linked with the other. The long-term mark recapture program on Erebus Bay's Weddell seals provides a unique opportunity to examine CLHEs in a known-history population. The proposed work will monitor physiological condition, pregnancy status, and behavior at various times throughout the year to determine if molt timing is influenced by prior reproductive outcome, and if it, in turn, influences future reproductive success. These data will then be used to address the demographic consequences of trade-offs between CLHEs in Weddell seals. The impact of environmental conditions and CLHE timing on population health will also be modeled so that results can be extended to other climates and species. An improved understanding of the interactions between CLHEs and the environment is important in predicting the response of organisms from higher trophic levels to climate change. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of graduate students and a post-doctoral researcher and will further foster an extensive public outreach collaboration.
Marine paleoclimate archives show that approximately one million years ago Earth's climate transitioned from 40,000-year glacial /interglacial cycles to 100,000-year cycles. This award will support a study designed to map the distribution of one million year-old ice in the Allan Hills Blue Ice Area, Antarctica using state-of-the-art ground penetrating radar. The Allen Hills was demonstrated to contain a continuous record of the past 400,000 years and is also the collection location of the oldest ice samples (990,000 years) yet recovered. The maps resulting from this study will be used to select an ice-core drilling site at which a million-plus year-old continuous record of climate could be recovered. Ice cores contain the only kind of record to directly capture atmospheric gases and aerosols, but no ice-core-based climate record yet extends continuously beyond the past 800,000 years. A million-plus year-old record will allow better understanding of the major mechanisms and driving forces of natural climate variability in a world with 100,000-year glacial/interglacial cycles. The project will support two early career scientists in collaboration with senior scientists, as well as a graduate student, and will conduct outreach to schools and the public. The Allan Hills Blue Ice Area preserves a continuous climate record covering the last 400,000 years along an established glaciological flow line. Two kilometers to the east of this flow line, the oldest ice on Earth (~1 million years old) is found only 120 m below the surface. Meteorites collected in the area are reported to be as old as 1.8 million years, suggesting still older ice may be present. Combined, these data strongly suggest that the Allen Hills area could contain a continuous, well-resolved environmental record, spanning at least the last million years. As such, this area has been selected as an upcoming target for the new Intermediate Depth Ice Core Drill by the US Ice Core Working Group. This drill will recover a higher-quality core than previous dry drilling attempts. This project will conduct a comprehensive ground penetrating radar survey aimed at tracing the signature of the million-year-old ice layer throughout the region. The resulting map will be used to select a drill site from which an ice core containing the million-plus year-old continuous climate record will be collected. The proposed activities are a necessary precursor to the collection of the oldest known ice on Earth. Ice cores provide a robust reconstruction of past climate and extending this record beyond the 800,000 years currently available will open new opportunities to study the climate system. The data collected will also be used to investigate the bedrock and ice flow parameters favorable to the preservation of old ice, which may allow targeted investigation of other blue ice areas in Antarctica.
0538520<br/>Thiemens<br/>This award supports a project to develop the first complete record of multiple isotope ratios of nitrate and sulfate covering the last ~100,000 years, from the deep ice core planned for the central ice divide of the West Antarctic Ice Sheet (WAIS). The WAIS Divide ice core will be the highest resolution long ice core obtained from Antarctica and we can expect important complementary information to be available, including accurate knowledge of past accumulation rates, temperatures, and compounds such as H2O2, CO and CH4. These compounds play significant roles in global atmospheric chemistry and climate. Especially great potential lies in the use of multiple isotope signatures. The unique mass independent fractionation (MIF) 17O signature of ozone is observed in both nitrate and sulfate, due to the interaction of their precursors with ozone. The development of methods to measure the multiple-isotope composition of small samples of sulfate and nitrate makes continuous high resolution measurements on ice cores feasible for the first time. Recent work has shown that such measurements can be used to determine the hydroxyl radial (OH) and ozone (O3) concentrations in the paleoatmosphere as well as to apportion sulfate and nitrate sources. There is also considerable potential in using these isotope measurements to quantify post depositional changes. In the first two years, continuous measurements from the upper ~100-m of ice at WAIS divide will be obtained, to provide a detailed look at seasonal through centennial scale variability. In the third year, measurements will be made throughout the available depth of the deep core (expected to reach ~500 m at this time). The broader impacts of the project include applications to diverse fields including atmospheric chemistry, glaciology, meteorology, and paleoclimatology. Because nitrate and sulfate are important atmospheric pollutants, the results will also have direct and relevance to global environmental policy. This project will coincide with the International Polar Year (2007-2008), and contributes to goals of the IPY, which include the fostering of interdisciplinary research toward enhanced understanding of atmospheric chemistry and climate in the polar regions.
This award supports a project to help to establish the depth-age chronology and the histories of accumulation and ice dynamics for the WAIS Divide ice core. The depth-age relationship and the histories of accumulation and ice dynamics are coupled. An accurate age scale is needed to infer histories of accumulation rate and ice-thickness change using ice-flow models. In turn, the accumulation-rate history is needed to calculate the age difference of ice to determine the age of the trapped gases. The accumulation history is also needed to calculate atmospheric concentrations of impurities trapped in the ice and is an important characteristic of climate. The history of ice-thickness change is also fundamental to understanding the stability of the WAIS. The primary goals of the WAIS Divide ice core project are to investigate climate forcing by greenhouse gases, the initiation of climate changes, and the stability of the West Antarctic Ice Sheet (WAIS). An accurate age scale is fundamental for achieving these goals. The first objective of this project is to establish an annually resolved depth-age relationship for the past 40,000 years. This will be done by measuring variations in electrical conductivity along the ice core, which are caused by seasonal variations in chemistry. We expect to be able to resolve annual layers back to 40,000 years before present (3,000 m depth) using this method. The second objective is to search for stratigraphic disturbances in the core that would compromise the paleoclimate record. Irregular layering will be identified by measuring the electrical conductivity of the ice in a vertical plan through the core. The third objective is to derive a preliminary chronology for the entire core. For the deeper ice we will use an ice-flow model to interpolate between known age markers, such as dated volcanic horizons and tie points from the methane gas chronology. The fourth objective is to derive a refined chronology simultaneously with histories of accumulation and ice-sheet thickness. An ice-flow model and all available data will be used to formulate an inverse problem, in which we infer the most appropriate histories of accumulation and ice-thickness, together with estimates of uncertainties. The flow model associated with those preferred histories then produces the best estimate of the chronology. The research contributes directly to the primary goals of the West Antarctic Ice Sheet Initiative. The project will help develop the next generation of scientists through the education and training of one Ph.D. student and several undergraduate students. This project will result in instrumentation for measuring the electrical conductivity of ice cores being available at the National Ice Core Lab for other researchers to use on other projects. All collaborators are committed to fostering diversity and currently participate in scientific outreach and most participate in undergraduate education. Outreach will be accomplished through regularly scheduled community and K-12 outreach events at UW, talks and popular writing by the PIs, as well as through our respective press offices.
0539578<br/>Alley <br/>This award supports a five-year collaborative project to study the physical-properties of the planned deep ice core and the temperature of the ice in the divide region of the West Antarctic Ice Sheet. The intellectual merit of the proposed research is to provide fundamental information on the state of the ice sheet, to validate the integrity of the climate record, to help reconstruct the climate record, and to understand the flow state and history of the ice sheet. This information will initially be supplied to other investigators and then to the public and to appropriate databases, and will be published in the refereed scientific literature. The objectives of the proposed research are to aid in dating of the core through counting of annual layers, to identify any exceptionally warm intervals in the past through counting of melt layers, to learn as much as possible about the flow state and history of the ice through measurement of size, shape and arrangements of bubbles, clathrate inclusions, grains and their c-axes, to identify any flow disturbances through these indicators, and to learn the history of snow accumulation and temperature from analyses of bubbles and borehole temperatures combined with flow modeling and use of data from other collaborators. These results will then be synthesized and communicated. Failure to examine cores can lead to erroneous identification of flow features as climate changes, so careful examination is required. Independent reconstruction of accumulation rate provides important data on climate change, and improves confidence in interpretation of other climate indicators. Borehole temperatures are useful recorders of temperature history. Flow state and history are important in understanding climate history and potential contribution of ice to sea-level change. By contributing to all of these and additional issues, the proposed research will be of considerable value. The broader impacts of the research include making available to the public improved knowledge on societally central questions involving abrupt climate change and sea-level rise. The project will also contribute to the education of advanced students, will utilize results in education of introductory students, and will make vigorous efforts in outreach, informal science education, and supplying information to policy-makers as requested, thus contributing to a more-informed society.
This award supports a three-year study of the ongoing deceleration and stick-slip motion of Whillans Ice Stream (WIS), West Antarctica. Understanding the dynamic behavior of ice streams is essential for predicting the future of the West Antarctic Ice Sheet (WAIS). Despite being one of the best-studied ice streams in Antarctica, the surprising flow characteristics of WIS continue to demand interdisciplinary research. Recent estimates indicate that the WIS may stagnate within 50 years, resulting in a significant change to the mass balance of the Siple Coast sector of West Antarctica. The reasons for the ongoing stagnation are not well known, and are possibly linked (causally or coincidentally) to the stick-slip behavior. Our recent work on WIS stick-slip motion suggest that all slip events nucleate from a common location on the ice stream, suggesting that a relatively small (approximately 10 km in diameter) region of the exerts fundamental control over the flow of this large ice stream (100s of km long and 100 kilometers wide). We hypothesize that this is a region of increased bed strength and our measurements will address that hypothesis. We will deploy a series of GPS receivers and seismometers on the ice stream to accurately locate the nucleation region so that a comprehensive ground based geophysical survey can be conducted to determine the physical properties of bed at the nucleation point. The ground geophysical program will consist of reflection seismic and ice-penetrating radar studies that will better constrain the properties of both the hypothesized higher-friction nucleation zone and the surrounding regions. Slip events also generate seismic energy that can be recorded 100s of km away from the ice stream, thus, the GPS and seismometer deployment will also aid us in relating seismic waveforms directly with the rapid motion that occurs during slip events. The increased ability to relate rupture processes with seismic emissions will allow us to use archived seismic records to explore changes in the behavior of WIS during the later half of the 20th century. Broader impacts of this study include improved knowledge ice sheet dynamics, which remain a poorly constrained component of the climate system, thus, limiting our ability to predict the Earth's response to climate change. The scientific work includes the education of two graduate students and continued training of one post-doctoral scholar, thus helping to train the next generation of polar scientists. We will expose the broader public to polar science through interactions with the media and by take advantaging of programs to include K-12 educators in our field work.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). Mount Erebus is Antarctica?s most active volcano that has been in a persistent state of activity for at least the last 35 years. It has a unique geochemistry among the Earth's active volcanoes and is also unique in hosting a persistent convecting lake(s) of anorthclase phonolite magma in its summit crater. The relative simplicity of the magmatic system, consistency of activity, and accessibility of close-range observation make Erebus attractive as a target for extensive studies. Although the Erebus' seismicity and eruptive activity and processes are becoming increasingly well understood over years of research, there is a near total lack of understanding its deeper magmatic system. The primary goal of this proposal is to continue supporting the Mt. Erebus Volcano Observatory (MEVO III) improving our current understanding of the Erebus eruptive and non-eruptive magmatic system using an integrated approach from geophysical, geochemical and remote sensing observations. This goal can be grouped into the following fundamental research objectives: (a) to sustain year-round surveillance of on-going volcanic activity primarily using geophysical observatories; (b) to understand processes within the convecting conduit which feeds the persistent lava lakes; and (c) to understand the impact of Erebus eruptive activity upon the Antarctic environment. Continued reliance on students provides a broader impact to this proposed research and firmly grounds this effort in its educational mission.
Pettit/0948247<br/><br/>This award supports a project to study of the relationship between fabric and climate for the ice near the EPICA Dome C ice core site, East Antarctica. The work builds on an ongoing study at Siple Dome, West Antarctica and takes advantage of collaborations with European scientists and access to the Dome C borehole to make measurements of sonic velocity. The intellectual merit of the project is that a better understanding of how fabric preserves past climate information can improve models of the ice flow near ice core sites and the interpreta-tion of ice core data (particularly paleo-accumulation), and it may allow us to extract climate information directly from fabric data. In addition, because ice deformation is sensitive to the orientation of crystals, ice flow patterns are sensitive to the fabric. Thus, variations in the fabric between glacial and interglacial ice can affect how ice deforms and how fabric in the ice sheet develops. The Dome C site is particularly important for answering these questions, because the ice core shows evidence of eight glacial cycles, not just one as found at Siple Dome or the Greenland sites. The research will improve the understanding of the proxy relationship between sonic-velocity data and fabric; will help to model the pattern of ice flow caused by the fabric variation between glacial and interglacial time periods using these data, existing ice core chemistry and existing and new thin section data, improved surface strain data, and borehole deformation data; and will help to better understand the positive feedback mechanism that enhances fabric (and corresponding rheological) variability through a focused study of several climate transitions and the associated fabric changes. Borehole compressional-wave sonic-velocity will be measured which will complement the sonic-velocity data that already exist for boreholes in Greenland and West Antarctica. These will be the first sonic-velocity measurements in East Antarctica and the first measurements that extend for more than a single glacial/interglacial transition. The project will ultimately contribute to better interpretation of ice core records for both paleoclimate studies and for ice flow history, both of which connect to the broader questions of the role of ice in the climate system. This project will also strengthen the international collaborations within the paleoclimate and ice sheet modeling communities. This project will partially support a graduate student at the University of Alaska Fairbanks who is currently working on modeling ice including anisotropy and it will support the growth of a young scientist through a Post-Doc position. This Post Doc will gain important experience collaborating with the EPICA scientists in studying the climate-fabric relationship. Erin Pettit is active in field-science education for high school students, under-graduates, teachers, and adults. This project will help support the continued development and enhancement of Girls on Ice a program that encourages young women to explore science and the natural world.
Spectacular blooms of Phaeocystis antarctica in the Ross Sea, Antarctica are the source of some of the world's highest concentrations of dimethylsulfoniopropionate (DMSP) and its volatile degradation product, dimethylsulfide (DMS). The flux of DMS from the oceans to the atmosphere in this region and its subsequent gas phase oxidation generates aerosols that have a strong influence on cloud properties and possibly climate. In the oceans, DMS and DMSP are quantitatively significant components of the carbon, sulfur, and energy flows in marine food webs, especially in the Ross Sea. Despite its central role in carbon and sulfur biogeochemistry in the Ross Sea, surprisingly little is known about the physiological functions of DMSP in P. Antarctica. The research will isolate and characterize DMSP lyases from P. antarctica, with the goal of obtaining amino acid and gene sequence information on these important enzymes. The physiological studies will focus on the effects of varying intensities of photosynthetically active radiation, with and without ultraviolet radiation as these are factors that we have found to be important controls on DMSP and DMS dynamics. The research also will examine the effects of prolonged darkness on the dynamics of DMSP and related compounds in P. antarctica, as survival of this species during the dark Antarctic winter and at sub-euphotic depths appears to be an important part of the Phaeocystis? ecology. A unique aspect of this work is the focus on measurements of intracellular MSA, which if detected, would provide strong evidence for in vivo radical scavenging functions for methyl sulfur compounds. The study will advance understanding of what controls DMSP cycling and ultimately DMS emissions from the Ross Sea and also provide information on what makes P. antarctica so successful in this extreme environment. The research will directly benefit and build on several interrelated ocean-atmosphere programs including the International Surface Ocean Lower Atmosphere Study (SOLAS) program. The PIs will participate in several activities involving K-12 education, High School teacher training, public education and podcasting through the auspices of the Dauphin Island Sea Lab Discovery Hall program and SUNY ESF. Two graduate students will be employed full time, and six undergraduates (2 each summer) will be trained as part of this project.
This award supports a detailed, molecular level characterization of dissolved organic carbon and microbes in Antarctic ice cores. Using the most modern biological (genomic), geochemical techniques, and advanced chemical instrumentation researchers will 1) optimize protocols for collecting, extracting and amplifying DNA from deep ice cores suitable for use in next generation pyrosequencing; 2) determine the microbial diversity within the ice core; and 3) obtain and analyze detailed molecular characterizations of the carbon in the ice by ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS). With this pilot study investigators will be able to quantify the amount of material (microbial biomass and carbon) required to perform these characterizations, which is needed to inform future ice coring projects. The ultimate goal will be to develop protocols that maximize the yield, while minimizing the amount of ice required. The broader impacts include education and outreach at both the local and national levels. As a faculty mentor with the American Indian Research Opportunities and BRIDGES programs at Montana State University, Foreman will serve as a mentor to a Native American student in the lab during the summer months. Susan Kelly is an Education and Outreach Coordinator with a MS degree in Geology and over 10 years of experience in science outreach. She will coordinate efforts for comprehensive educational collaboration with the Hardin School District on the Crow Indian Reservation in South-central Montana.
1142010/Talghader This award supports a project to combine the expertise of both glaciologists and optical engineers to develop polarization- preserving optical scattering techniques for borehole tools to identify changes in high-resolution crystal structure (fabric) and dust content of glacial ice. The intellectual merit of this work is that the fabric and impurity content of the ice contain details on climate, volcanic activity and ice flow history. Such fabric measurements are currently taken by slicing an ice core into sections after it has started to depressurize which is an extremely time-intensive process that damages the core and does not always preserve the properties of ice in its in-situ state. In addition the ice core usually must be consumed in order to measure the components of the dust. The fabric measurements of this study utilize the concept that singly-scattered light in ice preserves most of its polarization when it is backscattered once from bubbles or dust; therefore, changes to the polarization of singly-backscattered light must originate with the birefringence. Measurements based on this concept will enable this program to obtain continuous records of fabric and correlate them to chronology and dust content. The project will also develop advanced borehole instruments to replace current logging tools, which require optical sources, detectors and power cables to be submerged in borehole fluid and lowered into the ice sheet at temperatures of -50oC. The use of telecommunications fiber will allow all sources and detectors to remain at the surface and enable low-noise signal processing techniques such as lock-in amplification that increase signal integrity and reduce needed power. Further, fiber logging systems would be much smaller and more flexible than current tools and capable of navigating most boreholes without a heavy winch. In order to assess fabric in situ and test fiber-optic borehole tools, field measurements will be made at WAIS Divide and a deep log will also be made at Siple Dome, both in West Antarctica. If successful, the broader impacts of the proposed research would include the development of new analytical methods and lightweight logging tools for ice drilling research that can operate in boreholes drilled in ice. Eventually the work could result in the development of better prehistoric records of glacier flow, atmospheric particulates, precipitation, and climate forcing. The project encompasses a broad base of theoretical, experimental, and design work, which makes it ideal for training graduate students and advanced undergraduates. Collaboration with schools and classroom teachers will help bring aspects of optics, climate, and polar science to an existing Middle School curriculum.
The research combines interdisciplinary study in geology, paleontology, and biology, using stable isotope and radiocarbon analyses, to examine how climate change and resource utilization have influenced population distribution, movement, and diet in penguins during the mid-to-late Holocene. Previous investigations have demonstrated that abandoned colonies contain well-preserved remains that can be used to examine differential responses of penguins to climate change in various sectors of Antarctica. As such, the research team will investigate abandoned and active pygoscelid penguin (Adelie, Chinstrap, and Gentoo) colonies in the Antarctic Peninsula and Ross Sea regions, and possibly Prydz Bay, in collaboration with Chinese scientists during four field seasons. Stable isotope analyses will be conducted on recovered penguin tissues and prey remains in guano to address hypotheses on penguin occupation history, population movement, and diet in relation to climate change since the late Pleistocene. The study will include one Ph.D., two Masters and 16 undergraduate students in advanced research over the project period. Students will be exposed to a variety of fields, the scientific method, and international scientific research. They will complete field and lab research for individual projects or Honor's theses for academic credit. The project also will include web-based outreach, lectures to middle school students, and the development of interactive exercises that highlight hypothesis-driven research and the ecology of Antarctica. Two undergraduate students in French and Spanish languages at UNCW will be hired to assist in translating the Web page postings for broader access to this information.
1043421/Severinghaus This award supports a project to obtain samples of ice in selected intervals for replication and verification of the validity and spatial representativeness of key results in the WAIS Divide ice core, and to obtain additional ice samples in areas of intense scientific interest where demand is high. The US Ice Core Working Group recommended in 2003 that NSF pursue the means to take replicate samples, termed "replicate coring". This recommendation was part of an agreement to reduce the diameter of the (then) new drilling system (the DISC drill) core to 12.2 cm to lighten logistics burdens, and the science community accepted the reduction in ice sample with the understanding that replicate coring would be able to provide extra sample volume in key intervals. The WAIS Divide effort would particularly benefit from replicate coring, because of the unique quality of the expected gas record and the large samples needed for gases and gas isotopes; thus this proposal to employ replicate coring at WAIS Divide. In addition, scientific demand for ice samples has been, and will continue to be, very unevenly distributed, with the ice core archive being completely depleted in depth intervals of high scientific interest (abrupt climate changes, volcanic sulfate horizons, meteor impact horizons, for example). The broader impacts of the proposed research may include identification of leads and lags between Greenland, tropical, and Antarctic climate change, enabling critical tests of hypotheses for the mechanism of abrupt climate change. Improved understanding of volcanic impacts on atmospheric chemistry and climate may also emerge. This understanding may ultimately help improve climate models and prediction of the Earth System feedback response to ongoing human perturbation in coming centuries. Outreach and public education about climate change are integral components of the PIs' activities and the proposed work will enhance these efforts. Broader impacts also include education and training of 2 postdoctoral scholars and 1 graduate student, and invaluable field experience for the graduate and undergraduate students who will likely make up the core processing team at WAIS Divide.
1143619/Severinghaus This award supports a project to extend the study of gases in ice cores to those gases whose small molecular diameters cause them to escape rapidly from ice samples (the so-called "fugitive gases"). The work will employ helium, neon, argon, and oxygen measurements in the WAIS Divide ice core to better understand the mechanism of the gas close-off fractionation that occurs while air bubbles are incorporated into ice. The intellectual merit of the proposed work is that corrections for this fractionation using neon (which is constant in the atmosphere) may ultimately enable the first ice core-based atmospheric oxygen and helium records. Neon may also illuminate the mechanistic link between local insolation and oxygen used for astronomical dating of ice cores. Helium measure-ments in the deepest ~100 m of the core will also shed light on the stratigraphic integrity of the basal ice, and serve as a probe of solid earth-ice interaction at the base of the West Antarctic ice sheet. Past atmospheric oxygen records, currently unavailable prior to 1989 CE, would reveal changes in the size of the terrestrial biosphere carbon pool that accompany climate variations and place constraints on the biogeochemical feedback response to future warming. An atmospheric helium-3/helium-4 record would test the hypothesis that the solar wind (which is highly enriched in helium-3) condensed directly into Earth?s atmosphere during the collapse of the geomagnetic field that occurred 41,000 years ago, known as the Laschamp Event. Fugitive-gas samples will be taken on-site immediately after recovery of the ice core by the PI and one postdoctoral scholar, under the umbrella of an existing project to support replicate coring and borehole deepening. This work will add value to the scientific return from field work activity with little additional cost to logistical resources. The broader impacts of the work on atmospheric oxygen are that it may increase understanding of how terrestrial carbon pools and atmospheric greenhouse gas sources will respond in a feedback sense to the coming warming. Long-term atmospheric oxygen trends are also of interest for understanding biogeochemical regulatory mechanisms and the impact of atmospheric evolution on life. Helium records have value in understanding the budget of this non-renewable gas and its implications for space weather and solar activity. The project will train one graduate student and one postdoctoral scholar. The fascination of linking solid earth, cryosphere, atmosphere, and space weather will help to entrain and excite young scientists and efforts to understand the Earth as a whole interlinked system will provide fuel to outreach efforts at all ages.
1245659/Petrenko This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, δ18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, δ13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of δ13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica.
Abstract Researchers will explore the use of a distributed temperature sensing monitoring system (DTS), using fiber-optical (FO) technology, as the basis of a sustainable, sub-ice cavity sensing array. FO cable systems, such as may be deployed through a hot-water drilled hole through an ice shelf, passing through the underlying cavity to the sea floor, are capable of measuring temperatures down fiber at 1 meter intervals, and at time frequencies as high as 15 seconds. DTS FO systems operate via optical time domain reflectometry along the fiber waveguide using inelastic backscatter of coherent laser light as a probe beam in the FO environment. The introduction of new technologies to the harsh environmental conditions of the Antarctic are often associated with high risk. However, the potential rewards of this approach (e.g. multiyear capability, minimal submerged mechanical or electrical components that may fail, relative simplicity of deployment and measurement principle, yet yielding distributed real time and spatial observation) are attractive enough to conduct a pilot project at a field-ready location (McMurdo). Current indications are that the instability of some of the world's largest ice sheets located around the Antarctic and Greenland may be caused by the presence of warming, deep ocean waters, shoaling over continental shelves, and melting the underside of floating ice shelves. Additional knowledge of the temporal and spatial variability of the temperature fields underneath terminal ice shelves, such as those draining the West Antarctic Ice Sheet, are needed to accurately project future global climate effects on ice-shelf ocean interactions, and in order to inform societal and technological aspects of adaption to changing sea-level.
This award provides support for "EAGER: Handbook of Hot Water Drill System (HWDS) Design Considerations and Best Practices" from the Antarctic Integrated System Science within the Office of Polar Programs. More and more science projects are proposing to use hot-water drilling systems (HWDS) to rapidly and/or cleanly access glacial and subglacial systems. To date the hot-water drill systems have been developed in isolation, and no attempt has been made to gather information about the different systems in one place. This proposal requests funds to document existing HWDS, and to then assess the design, testing, and development of a hot-water drill system that will be integrated with the evolving over-ice traverse capability of the USAP program. Intellectual Merit: A working handbook of best practices for hot-water drill design systems, including safety considerations, is long overdue, and will 1) provide suggestions for optimizing current systems; 2) contribute in the very near term to already funded projects such as WISSARD (Whillans Ice Stream Subglacial Access and Research Drilling); and 3) fit the long-term needs of the Antarctic science community who have identified rapid and clean access to glacial and subglaical environments as a top priority for the next decades. The collected information will be used for community education and training, will discuss potential design and operational trade-offs, and will identify ways to optimize the capabilities of an integrated USAP traverse and HWDS infrastructure. EAGER funding for this project is warranted because such a handbook has not been tried before, and needs to be shown to be doable prior to larger investments in such compilations. It fits the AISS (Antarctic Integrated System Science) program as an optimized HWDS will meet the needs of many different Antarctic research disciplines including biology, geology, glaciology, and oceanography. Broader Impacts: The proposed work is being done on behalf of the Antarctic research community, and will seek to capture the knowledge of experienced hot-water drill engineers who are nearing retirement, and to educate the next generation of hot-water drillers and engineers. The PI indicates he will work with the owners of such systems both within the US and abroad. Identification of best practices in hot-water drilling will save several different Antarctic research communities significant time, effort, and funding in the future.
The stability of the marine West Antarctic Ice Sheet (WAIS) remains an important, unresolved problem for predicting future sea level change. Recent studies indicate that the mass balance of the ice sheet today may be negative or positive. The apparent differences may stem in part from short-term fluctuations in flow. By comparison, geologic observations provide evidence of behavior over much longer time scales. Recent work involving glacial-geologic mapping, dating and ice-penetrating radar surveys suggests that deglaciation of both the Ross Sea Embayment and coastal Marie Byrd Land continued into the late Holocene, and leaves open the possibility of ongoing deglaciation and grounding-line retreat. However, previous work in the Ross Sea Embayment was based on data from just three locations that are all far to the north of the present grounding line. Additional data from farther south in the Ross Sea Embayment are needed to investigate whether recession has ended, or if the rate and pattern of deglaciation inferred from our previous study still apply to the present grounding line. This award provides support to reconstruct the evolution of Reedy Glacier, in the southern Transantarctic Mountains, since the Last Glacial Maximum (LGM). Because Reedy Glacier emerges from the mountains above the grounding line, its surface slope and elevation should record changes in thickness of grounded ice in the Ross Sea up to the present day. The deglaciation chronology of Reedy Glacier therefore can indicate whether Holocene retreat of the WAIS ended thousands of years ago, or is still continuing at present. This integrated glaciologic, glacial-geologic, and cosmogenic-isotope exposure- dating project will reconstruct past levels of Reedy Glacier. Over two field seasons, moraines will be mapped, dated and correlated at sites along the length of the glacier. Radar and GPS measurements will be made to supplement existing ice thickness and velocity data, which are needed as input for a model of glacier dynamics. The model will be used to relate geologic measurements to the grounding-line position downstream. Ultimately, the mapping, dating and ice-modeling components of the study will be integrated into a reconstruction that defines changes in ice thickness in the southern Ross Sea since the LGM, and relates these changes to the history of grounding-line retreat. This work directly addresses key goals of the West Antarctic Ice Sheet Initiative, which are to understand the dynamics, recent history and possible future behavior of the West Antarctic Ice Sheet.
This award supports a project to understand the flow dynamics of large, fast-moving outlet glaciers that drain the East Antarctic Ice Sheet. The project includes an integrated field, remote sensing and modeling study of Byrd Glacier which is a major pathway for the discharge of mass from the East Antarctic Ice Sheet (EAIS) to the ocean. Recent work has shown that the glacier can undergo short-lived but significant changes in flow speed in response to perturbations in its boundary conditions. Because outlet glacier speeds exert a major control on ice sheet mass balance and modulate the ice sheet contribution to sea level rise, it is essential that their sensitivity to a range of dynamic processes is properly understood and incorporated into prognostic ice sheet models. The intellectual merit of the project is that the results from this study will provide critically important information regarding the flow dynamics of large EAIS outlet glaciers. The proposed study is designed to address variations in glacier behavior on timescales of minutes to years. A dense network of global positioning satellite (GPS) instruments on the grounded trunk and floating portions of the glacier will provide continuous, high-resolution time series of horizontal and vertical motions over a 26-month period. These results will be placed in the context of a longer record of remote sensing observations covering a larger spatial extent, and the combined datasets will be used to constrain a numerical model of the glacier's flow dynamics. The broader impacts of the work are that this project will generate results which are likely to be a significant component of next-generation ice sheet models seeking to predict the evolution of the Antarctic Ice Sheet and future rates of sea level rise. The most recent report from the Intergovernmental Panel on Climate Change (IPCC) highlights the imperfect understanding of outlet glacier dynamics as a major obstacle to the production of an accurate sea level rise projections. This project will provide significant research opportunities for several early-career scientists, including the lead PI for this proposal (she is both a new investigator and a junior faculty member at a large research university) and two PhD-level graduate students. The students will be trained in glaciology, geodesy and numerical modeling, contributing to society's need for experts in those fields. In addition, this project will strengthen international collaboration between polar scientists and geodesists in the US and Spain. The research team will work closely with science educators in the Center for Remote Sensing of Ice Sheets (CReSIS) outreach program to disseminate project results to non-specialist audiences.
This project constructs POLENET a network of GPS and seismic stations in West Antarctica to understand how the mass of the West Antarctic ice sheet (WAIS) changes with time. The information is ultimately used to predict sea level rise accompanying global warming and interpret climate change records. The GPS (global positioning system) stations measure vertical and horizontal movements of bedrock, while the seismic stations characterize physical properties of the ice/rock interface, lithosphere, and mantle. Combined with satellite data, this project offers a more complete picture of the ice sheet's current state, its likely change in the near future, and its overall size during the last glacial maximum. This data will also be used to infer sub-ice sheet geology and the terrestrial heat flux, critical inputs to models of glacier movement. As well, this project improves tomographic models of the earth's deep interior and core through its location in the Earth's poorly instrumented southern hemisphere. <br/><br/><br/><br/>Broader impacts of this project are varied. The work is relevant to society for improving our understanding of the impacts of global warming on sea level rise. It also supports education at the postdoctoral, graduate, and undergraduate levels, and outreach to groups underrepresented in the sciences. As an International Polar Year contribution, this project establishes a legacy of infrastructure for polar measurements. It also involves an international collaboration of twenty four countries. For more information see IPY Project #185 at IPY.org. NSF is supporting a complementary Arctic POLENET array being constructed in Greenland under NSF Award #0632320.
Collaborative With: McPhee 0732804, Holland 0732869, Truffer 0732730, Stanton 0732926, Anandakrishnan 0732844 <br/>Title: Collaborative Research: IPY: Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica<br/><br/>The Office of Polar Programs, Antarctic Integrated and System Science Program has made this award to support an interdisciplinary study of the effects of the ocean on the stability of glacial ice in the most dynamic region the West Antarctic Ice Sheet, namely the Pine Island Glacier in the Amundsen Sea Embayment. The collaborative project builds on the knowledge gained by the highly successful West Antarctic Ice Sheet program and is being jointly sponsored with NASA. Recent observations indicate a significant ice loss, equivalent to 10% of the ongoing increase in sea-level rise, in this region. These changes are largest along the coast and propagate rapidly inland, indicating the critical impact of the ocean on ice sheet stability in the region. While a broad range of remote sensing and ground-based instrumentation is available to characterize changes of the ice surface and internal structure (deformation, ice motion, melt) and the shape of the underlying sediment and rock bed, instrumentation has yet to be successfully deployed for observing boundary layer processes of the ocean cavity which underlies the floating ice shelf and where rapid melting is apparently occurring. Innovative, mini ocean sensors that can be lowered through boreholes in the ice shelf (about 500 m thick) will be developed and deployed to automatically provide ocean profiling information over at least three years. Their data will be transmitted through a conducting cable frozen in the borehole to the surface where it will be further transmitted via satellite to a laboratory in the US. Geophysical and remote sensing methods (seismic, GPS, altimetry, stereo imaging, radar profiling) will be applied to map the geometry of the ice shelf, the shape of the sub ice-shelf cavity, the ice surface geometry and deformations within the glacial ice. To integrate the seismic, glaciological and oceanographic observations, a new 3-dimensional coupled ice-ocean model is being developed which will be the first of its kind. NASA is supporting satellite based research and the deployment of a robotic-camera system to explore the environment in the ocean cavity underlying the ice shelf and NSF is supporting all other aspects of this study. <br/><br/>Broader impacts: This project is motivated by the potential societal impacts of rapid sea level rise and should result in critically needed improvements in characterizing and predicting the behavior of coupled ocean-ice systems. It is a contribution to the International Polar Year and was endorsed by the International Council for Science as a component of the "Multidisciplinary Study of the Amundsen Sea Embayment" proposal #258 of the honeycomb of endorsed IPY activities. The research involves substantial international partnerships with the British Antarctic Survey and the University of Bristol in the UK. The investigators will partner with the previously funded "Polar Palooza" education and outreach program in addition to undertaking a diverse set of outreach activities of their own. Eight graduate students and one undergraduate as well as one post doc will be integrated into this research project.
The investigators propose to build and test a multi-sensor, automated measurement station for monitoring Arctic and Antarctic ice-ocean environments. The system, based on a previously successful design, will incorporate weather and climate sensors, camera, snow and firn sensors, instruments to measure ice motion, ice and ocean thermal profilers, hydrophone, and salinity sensors. This new system will have two-way communications for real-time data delivery and is designed for rapid deployment by a small field group. AMIGOS-II will be capable of providing real time information on geophysical processes such as weather, snowmelt, ice motion and strain, fractures and melt ponds, firn thermal profiling, and ocean conditions from multiple levels every few hours for 2-4 years. Project personnel will conduct a field test of the new system at a location with a deep ice-covered lake. Development of AMIGOS-II is motivated by recent calls by the U.S. Antarctic Program Blue-Ribbon Panel to increase Antarctic logistical effectiveness, which cites a need for greater efficiency in logistical operations. Installation of autonomous stations with reduced logistical requirements advances this goal.
This award supports a project to generate an absolute timescale for the Allan Hills Blue Ice Area (BIA), and then to reconstruct details of past climate changes and greenhouse gas concentrations for certain time periods back to 2.5 Ma. Ice ages will be determined by applying emerging methods for absolute and relative dating of trapped air bubbles (based on Argon-40/Argon-38, delta-18O of O2, and the O2/N2 ratio). To demonstrate the potential of the Allan Hills BIAs as a paleoclimate archive trenches and ice cores will be collected for age intervals corresponding to 110-140 ka, 1 Ma, and 2.5 Ma. During the proposed two field seasons a total of 6x100 m and additional 15 m cores will be combined with trenching. The intellectual merit of the proposed activity is that the results of this work will extend the landmark work of EPICA and other deep ice coring efforts, which give records dating back to 0.8 Ma, and will complement work planned by IPICS to drill a continuous Antarctic ice core extending to 1.5 Ma. The results will help to advance understanding of major climate regimes and transitions that took place between 0-2.5 Ma, including the 40 kyr world and the mid-Pleistocene climate transition. A major long-term scientific goal is to provide a transformative approach to the collection of paleoclimate records by establishing an "International Climate Park" in the Allan Hills BIA that would enable sampling of large quantities of known age ice as old as 2.5 Ma, by any interested American or foreign investigator. The broader impacts resulting from the proposed activity include training students who are well versed in advanced field, laboratory and numerical modeling methods combining geochemistry, glaciology, and paleoclimatology. We will include material relevant to our proposed research in our ongoing efforts in local education and in our outreach efforts for media. The University of Maine already has cyberinfrastructure, using state of the art web-based technology, which can provide a wide community of scientists with fast access to the results of our research. The work will contribute to the broad array of climate change studies that is informing worldwide understanding of natural and anthropogenic forced climate change, and the options for responding. This award has field work in Antarctica.
This award supports a project to contribute one of the cornerstone analyses, stable isotopes of ice (Delta-D, Delta-O18) to the ongoing West Antarctic Ice Sheet Divide (WAIS) deep ice core. The WAIS Divide drilling project, a multi-institution project to obtain a continuous high resolution ice core record from central West Antarctica, reached a depth of 2560 m in early 2010; it is expected to take one or two more field seasons to reach the ice sheet bed (~3300 m), plus an additional four seasons for borehole logging and other activities including proposed replicate coring. The current proposal requests support to complete analyses on the WAIS Divide core to the base, where the age will be ~100,000 years or more. These analyses will form the basis for the investigation of a number of outstanding questions in climate and glaciology during the last glacial period, focused on the dynamics of the West Antarctic Ice Sheet and the relationship of West Antarctic climate to that of the Northern polar regions, the tropical Pacific, and the rest of the globe, on time scales ranging from years to tens of thousands of years. One new aspect of this work is the growing expertise at the University of Washington in climate modeling with isotope-tracer-enabled general circulation models, which will aid in the interpretation of the data. Another major new aspect is the completion and use of a high-resolution, semi-automated sampling system at the University of Colorado, which will permit the continuous analysis of isotope ratios via laser spectroscopy, at an effective resolution of ~2 cm or less, providing inter-annual time resolution for most of the core. Because continuous flow analyses of stable ice isotopes is a relatively new measurement, we will complement them with parallel measurements, every ~10-20 m, using traditional discrete sampling and analysis by mass spectrometry at the University of Washington. The intellectual merit and the overarching goal of the work are to see Inland WAIS become the reference ice isotope record for West Antarctica. The broader impacts of the work are that the data generated in this project pertain directly to policy-relevant and immediate questions of the stability of the West Antarctic ice sheet, and thus past and future changes in sea level, as well as the nature of climate change in the high southern latitudes. The project will also contribute to the development of modern isotope analysis techniques using laser spectroscopy, with applications well beyond ice cores. The project will involve a graduate student and postdoc who will work with both P.I.s, and spend time at both institutions. Data will be made available rapidly through the Antarctic Glaciological Data Center, for use by other researchers and the public.
Intellectual Merit:<br/>The focus of this proposal is to collect fossil plants and palynomorphs from Permian-Triassic (P-T) rocks of the central Transantarctic Mountains (CTM), together with detailed data on sedimentologic and paleoecologic depositional environments. Fossil plants are important climate proxies that offer a unique window into the past, and the CTM fossils are an important source of data on the ways that plants responded to a strongly seasonal, polar light regime during a time of global change. The proposed project uses paleobotanical expertise, integrated with detailed sedimentology and stratigraphy, to reconstruct Permian-Triassic plant communities and their paleoenvironments. This interdisciplinary approach could uncover details of Antarctica?s complex late Paleozoic and Mesozoic environmental and climatic history which included: 1) deglaciation, 2) development and evolution of a post-glacial landscape and biota, 3) environmental and biotic change associated with the end-Permian mass extinction, 4) environmental recovery in the earliest Triassic, 5) strong, possible runaway Triassic greenhouse, and 6) widespread orogenesis and development of a foreland basin system. The PIs will collect compression floras both quantitatively and qualitatively to obtain biodiversity and abundance data. Since silicified wood is also present, the PIs will analyze tree rings and growth in a warm, high-latitude environment for which there is no modern analogue. Fossil plants from the CTM can provide biological and environmental information to: 1) interpret paleoclimate when Gondwana moved from icehouse to greenhouse conditions; 2) trace floral evolution across the P-T boundary; 3) reconstruct Antarctic plant life; 4) further understanding of plant adaptations to high latitudes. The Intellectual Merit of the research includes: 1) tracing floral evolution after the retreat of glaciers; 2) examining floral composition and diversity across the PTB; and 3) obtaining data on the recovery of these ecosystems in the Early Triassic, as well as changes in floral cover and diversity in the Early-Middle Triassic. Antarctica is the only place on Earth that includes extensive outcrops of terrestrial rocks, combined with widespread and well-preserved plant fossils, which spans this crucial time period.<br/><br/>Broader impacts:<br/>The broader impacts include public outreach; teaching, and mentoring of women and underrepresented students; mentoring graduate student, postdoctoral, and new faculty women; development of an inquiry-based workshop on Antarctic paleoclimate with the Division of Education, KU Natural History Museum; continuing support of workshops for middle school girls in science via the Expanding Your Horizons Program, Emporia State University, and the TRIO program, KU; exploring Antarctic geosciences through video/computer links from McMurdo Station and satellite phone conferences from the field with K-12 science classes in Wisconsin and Kansas, and through participation in the NSF Research Experiences for Teachers program at the University of Wisconsin.
0944199/Matsuoka<br/><br/>This award supports a project to test the hypothesis that abrupt changes in fabric exist and are associated with both climate transitions and volcanic eruptions. It requires depth-continuous measurements of the fabric. By lowering a new logging tool into the WAIS Divide borehole after the completion of the core drilling, this project will measure acoustic-wave speeds as a function of depth and interpret it in terms of ice fabrics. This interpretation will be guided by ice-core-measured fabrics at sparse depths. This project will apply established analytical techniques for the ice-sheet logging and estimate depth profiles of both compressional- and shear-wave speeds at short intervals (~ 1 m). Previous logging projects measured only compressional-wave speeds averaged over typically 5-7 m intervals. Thus the new logger will enable more precise fabric interpretations. Fabric measurements using thin sections have revealed distinct fabric patterns separated by less than several meters; fabric measurements over a shorter period are crucial. At the WAIS Divide borehole, six two-way logging runs will be made with different observational parameters so that multiple wave-propagation modes will be identified, yielding estimates of both compressional- and shear-wave speeds. Each run takes approximately 24 hours to complete; we propose to occupy the boreholes in total eight days. The logging at WAIS Divide is temporarily planned in December 2011, but the timing is not critical. This project?s scope is limited to the completion of the logging and fabric interpretations. Results will be immediately shared with other WAIS Divide researchers. Direct benefits of this data sharing include guiding further thin-section analysis of the fabric, deriving a precise thinning function that retrieves more accurate accumulation history and depth-age scales. The PIs of this project have conducted radar and seismic surveys in this area and this project will provide a ground truth for these regional remote-sensing assessments of the ice interior. In turn, these remote sensing means can extend the results from the borehole to larger parts of the central West Antarctica. This project supports education for two graduate students for geophysics, glaciology, paleoclimate, and polar logistics. The instrument that will be acquired in this project can be used at other boreholes for ice-fabric characterizations and for englacial hydrology (wetness of temperate ice).
This award supports a project to investigate the transformations from snow to firn to ice and the underlying physics controlling firn's ability to store atmospheric samples from the past. Senior researchers, a graduate student, and several undergraduates will make high-resolution measurements of both the diffusivity and permeability profiles of firn cores from several sites in Antarctica and correlate the results with their microstructures quantified using advanced materials characterization techniques (scanning electron microscopy and x-ray computed tomography). The use of cores from different sites will enable us to examine the influence of different local climate conditions on the firn structure. We will use the results to help interpret existing measurements of firn air chemical composition at several sites where firn air measurements exist. There are three closely-linked goals of this project: to quantify the dependence of interstitial transport properties on firn microstructure from the surface down to the pore close-off depth, to determine at what depths bubbles form and entrap air, and investigate the extent to which these features exhibit site-to-site differences, and to use the measurements of firn air composition and firn structure to better quantify the differences between atmospheric composition (present and past), and the air trapped in both the firn and in air bubbles within ice by comparing the results of the proposed work with firn air measurements that have been made at the WAIS Divide and Megadunes sites. The broader impacts of this project are that the study will this study will enable us to elucidate the fundamental controls on the metamorphism of firn microstructure and its impact on processes of gas entrapment that are important to understanding ice core evidence of past atmospheric composition and climate change. The project will form the basis for the graduate research of a PhD student at Dartmouth, with numerous opportunities for undergraduate involvement in cold room measurements and outreach. The investigators have a track record of successfully mentoring women students, and will build on this experience. In conjunction with local earth science teachers, and graduate and undergraduate students will design a teacher-training module on the role of the Polar Regions in climate change. Once developed and tested, this module will be made available to the broader polar research community for their use with teachers in their communities.
This award supports a program of ground-based geophysical measurements to map in detail the spatial variations of ice flow, accumulation rate, internal layering and ice thickness at the sites which have been identified as promising locations to drill the next deep ice core in West Antarctica. The main investigative tools are a high- and low-frequency ice penetrating radar to image the topography of internal layers and the bed, repeat GPS surveys to calculate the present day surface velocity field, synthetic aperture radar (SAR) interferometry to calculate the regional velocity field, and short firn cores to calculate present day accumulation rates. The data which will be collected will be used to as input to time-dependent ice flow and temperature models that will predict depth variation of age, layer thickness, and temperature. As well as yielding an estimate of expected conditions before drilling, the mismatch between the model prediction and data eventually recovered from the core will help infer thinning and climate (accumulation and temperature) histories for the region. The Western Divide, between the Ross Sea Embayment and the Amundsen Sea, has been identified as the region which best satisfies the criteria which have been established for a deep drilling site. Preliminary site selection using airborne geophysical methods has identified several potential drill sites on the Western Divide where the climate record should be best preserved. This work will contribute in a major way to the final site selection for the next deep ice core in West Antarctica.
Severinghaus/0944343<br/><br/>This award supports a project to develop both a record of past local temperature change at the WAIS Divide site, and past mean ocean temperature using solubility effects on atmospheric krypton and xenon. The two sets of products share some of the same measurements, because the local temperature is necessary to make corrections to krypton and xenon, and thus synergistically support each other. Further scientific synergy is obtained by the fact that the mean ocean temperature is constrained to vary rather slowly, on a 1000-yr timescale, due to the mixing time of the deep ocean. Thus rapid changes are not expected, and can be used to flag methodological problems if they appear in the krypton and xenon records. The mean ocean temperature record produced will have a temporal resolution of 500 years, and will cover the entire 3400 m length of the core. This record will be used to test hypotheses regarding the cause of atmospheric carbon dioxide (CO2) variations, including the notion that deep ocean stratification via a cold salty stagnant layer caused atmospheric CO2 drawdown during the last glacial period. The local surface temperature record that results will synergistically combine with independent borehole thermometry and water isotope records to produce a uniquely precise and accurate temperature history for Antarctica, on a par with the Greenland temperature histories. This history will be used to test hypotheses that the ?bipolar seesaw? is forced from the North Atlantic Ocean, which makes a specific prediction that the timing of Antarctic cooling should slightly lag abrupt Greenland warming. The WAIS Divide ice core is expected to be the premier atmospheric gas record of the past 100,000 years for the foreseeable future, and as such, making this set of high precision noble gas measurements adds value to the other gas records because they all share a common timescale and affect each other in terms of physical processes such as gravitational fractionation. Broader impact of the proposed work: The clarification of timing of atmospheric CO2 and Antarctic surface temperature, along with deep ocean temperature, will aid in efforts to understand the feedbacks among CO2, temperature, and ocean circulation. These feedbacks bear on the future response of the Earth System to anthropogenic forcing. A deeper understanding of the mechanism of deglaciation, and the role of atmospheric CO2, will go a long way towards clarifying a topic that has become quite confused in the public mind in the public debate over climate change. Elucidating the role of the bipolar seesaw in ending glaciations and triggering CO2 increases may also provide an important warning that this represents a potential positive feedback, not currently considered by IPCC. Education of one graduate student, and training of one technician, will add to the nation?s human resource base. Outreach activities will be enhanced and will to continue to entrain young people in discovery, and excitement will enhance the training of the next generation of scientists and educators.
The proposed work will investigate changes in the compositional variation of glacial tills over time across two concentric sequences of Pleistocene moraines located adjacent to the heads of East Antarctic outlet glaciers in the Transantarctic Mountains (TAM). The chronologic framework for this work will be generated from cosmogenic exposure ages of boulders on prominent morainal ridges. The PIs hypothesize that variations in till composition may indicate a change in ice flow direction or a change in the composition of the original source area, while ages of the moraines provide a long-term terrestrial perspective on ice sheet dynamics. Both results are vital for modeling experiments that aim to reconstruct the East Antarctic Ice Sheet and assess its role in the global climate system and its potential impact on global sea level rise. The variation of till compositions through time also allows for a more accurate interpretation of sediment cores from the Ross Sea and the Southern Ocean. Additionally, till exposures at the head of some East Antarctic outlet glaciers have been shown to contain subglacial material derived from East Antarctic bedrock, providing a window through the ice to view East Antarctica?s inaccessible bedrock. Till samples will be collected from two well-preserved sequences of moraine crests at Mt. Howe (head of Scott Glacier) and Mt. Achernar (between Beardmore and Nimrod Glaciers). Each size fraction in glacial till provides potentially valuable information, and the PIs will measure the petrography of the clast and sand fractions, quantitative X-ray diffraction on the crushed <2mm fraction, elemental abundance of the silt/clay fraction, and U/Pb of detrital zircons in the sand fraction. Data collection will rely on established methods previously used in this region and the PIs will also explore new methods to assess their efficacy. On the same moraines crests sampled for provenance studies, the PIs will sample for cosmogenic surface exposure analyses to provide a chronologic framework at the sites for provenance changes through time. <br/><br/>Broader Impact <br/>The proposed research involves graduate and undergraduate training in a diverse array of laboratory methods. Students and PIs will be make presentations to community and campus groups, as well as conduct interviews with local news outlets. The proposed work also establishes a new, potentially long-term, collaboration between scientists at IUPUI and LDEO and brings a new PI (Kaplan) into the field of Antarctic Earth Sciences.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>This award supports a project to use the WAIS Divide deep core to investigate the Last Deglaciation at sub-annual resolution through an integrated set of chemical and biological analyses. The intellectual merit of the project is that these analyses, combined with others, will take advantage of the high snow accumulation WAIS Divide site yielding the highest time resolution glacio-biogeochemical and gas record of any deep Antarctic ice core. With other high resolution Greenland cores (GISP2 and GRIP) and lower resolution Antarctic cores, the combined record will yield new insights into worldwide climate dynamics and abrupt change. The proposed chemical, biological, and elemental tracer measurements will also be used to address all of the WAIS Divide science themes. The broader impacts of the project include education and outreach activities such as numerous presentations to local K-12 students; opportunities for student and teacher involvement in the laboratory work; a teacher training program in Earth sciences in the heavily minority Santa Ana, Compton, and Costa Mesa, California school districts; and development of high school curricula. Extensive graduate and undergraduate student involvement also is planned and will include one post doctoral associate, one graduate student, and undergraduate hourly involvement at DRI; a graduate student and undergraduates at University of California, Irvine (UCI); and a post doctoral fellow at MSU. Student recruitment will be made from underrepresented groups building on a long track record of involvement and will include the NSF funded California Alliance for Minority Participation (CAMP) and the Montana American Indian Research Opportunities (AIRO).<br/><br/>This award does not involve field work in Antarctica.
Cole-Dai/0839066<br/><br/>This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>This award supports a project to make continuous major ion analyses in the West Antarctica Ice Sheet Divide (WAIS Divide) ice core by sampling the brittle ice zone (approximately from 500 m to 1500 m). The intellectual merit of the project is that these will likely be the only chemical measurements on the brittle ice zone and, therefore, will bridge the gap in the expected continuous records of climate, ice sheet dynamics and biological evolution based on chemical measurements. High resolution sampling and analysis, probably on selected portions and depth intervals in the brittle ice zone, will help with the independent, high-precision dating of the WAIS Divide core and contribute to the achievement of the major objectives of the WAIS Divide project?development of high resolution climate records with which to investigate issues of climate forcing by greenhouse gases and the role of Antarctica and Southern Hemisphere in the global climate system. Planned collaboration with other WAIS Divide investigators will develop the longest and most detailed volcanic record from Antarctica ice cores. The broader impacts of this project include a contribution to enhancing our knowledge of the climate system. Such improvements in understanding of the global climate system and the ability to predict the magnitude and uncertainty of future changes are highly relevant to the global community. The project will support post-doctoral scientists and graduate students, including those from under-represented groups, will contribute to education, an help to train future scientists and promote diversity in research and education. Public outreach activities of this project will contribute to informal science education of school age children in the Eastern South Dakota region.
Intellectual Merit: The PIs proposed a provenance study of glacial deposits in the Ross Embayment that will provide a broad scale geochronologic survey of detrital minerals in till to help characterize bedrock beneath the East Antarctic ice sheet and constrain Antarctica?s glacial history. This project capitalizes on previous investments in field sampling. Analytical tools applied to single mineral grains extracted from existing collections of glacial till will generate ?fingerprints? of East Antarctic outlet glaciers and West Antarctic till to refine paleo-ice flow models for the Ross Embayment during the last glacial maximum, older records from ANDRILL cores, and to assess IRD sources in the Southern Ocean. New provenance tracers will include a suite of geochronological methods that together provide greater insights into the orogenic and erosional history the region. This project will include U/Pb of detrital zircons, (U-Th)/He on a subset of the U/Pb dated zircons, as well as Ar-Ar of detrital hornblende, mica and feldspars. Broader impacts: This research will train one M.S. student at IUPUI, a Ph.D. student at Columbia, and several undergraduates at both institutions. Graduate students involved in the project will be involved in mentoring undergraduate researchers. Incorporation of research discoveries will be brought into the classroom by providing concrete examples and exercises at the appropriate level. Licht and Columbia graduate student E. Pierce are developing outreach projects with local secondary school teachers to investigate the provenance of glacial materials in their local areas. The research will have broad applicability to many fields.
Funds are provided to enable applications of powerful mathematical concepts and computational tools for rigorous sensitivity analysis, pseudo-spectra and generalized stability theory, and advanced state estimation in the context of large-scale ice sheet modeling. At the center of the proposal is the generation and application of adjoint model (ADM) and tangent linear model (TLM) components of the new Community Ice Sheet Model (CISM). The goal will be achieved through rigorous use of automatic differentiation (AD) to ensure synchronicity between the ongoing model development and improvement in terms of better representation of higher-order stress terms (which account for crucial fast flow regimes) of the nonlinear forward model (NLM) code and the derivative codes. The adjoint enables extremely efficient computation of gradients of scalar-valued functions in very high-dimensional control spaces. A hierarchy of applications is envisioned: (1) sensitivity calculations in support of the Intergovernmental Panel on Climate Change (IPCC) in order to determine to which control variables the polar ice sheet volumes are most sensitive; based on adjoint sensitivity maps, to establish quantitative estimates of ice sheet volume changes for relevant forcing scenarios; and to assess how sensitivities change when including higher-order stress terms; (2) coupling of the ADM and TLM to calculate pseudo-spectra or singular vectors (SV?s) of relevant ice sheet norms; SV?s provide perturbation patterns which lead to non-normal growth, optimally amplifying norm kernels over finite times; among the many applications of SV?s are optimal initialization of ensembles to assess uncertainties; SV?s are calculated through matrix-free iterative solution of a generalized eigenvalue problem via Lanczos or Arnoldi implicit restart algorithms; (3) a long-term goal is the development of an ice sheet state estimation system based on the adjoint or Lagrange Multiplier Method (LMM) in order to synthesize, in a formal manner, the increasing number and heterogeneous types of observations with a three-dimensional, state-of-the-art ice sheet model; an important requirement is that the adjoint incorporate new schemes that are being developed for CISM to capture crucial, but as yet unrepresented physical processes.
Abstract This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The Antarctic Peninsula is among the most rapidly warming regions on earth. Increased heat from the Antarctic Circumpolar Current has elevated the temperature of the 300 m of shelf water below the permanent pycnocline by 0.7 degrees C. This trend has displaced the once dominant cold, dry continental Antarctic climate, and is causing multi-level responses in the marine ecosystem. One striking example of the ecosystem response to warming has been the local declines in ice-dependent Adélie penguins. The changes in these apex predators are thought to be driven by alterations in phytoplankton and zooplankton community composition, and the foraging limitations and diet differences between these species. One of the most elusive questions facing researchers interested in the foraging ecology of the Adélie penguin, namely, what are the biophysical properties that characterize the three dimensional foraging space of this top predator? The research will combine the real-time site and diving information from the Adélie penguin satellite tags with the full characterization of the oceanography and the penguins prey field using an autonomous underwater vehicle (AUV). While some of these changes have been documented over large spatial scales of the WAP, it is now thought that the causal mechanisms that favor of one life history strategy over another may actually operate over much smaller scales than previously thought, specifically on the scale of local breeding sites and over-wintering areas. Characterization of prey fields on these local scales has yet to be done and one that the AUV is ideally suited. The results will have a direct tie to the climate induced changes that are occurring in the West Antarctic Peninsula. This study will also highlight a new approach to linking an autonomous platform to bird behavior that could be expanded to include the other two species of penguins and examine the seasonal differences in their foraging behavior and prey selection. From a vehicle perspective, this effort will inform the AUV user community of new sensor suites and/or data processing approaches that are required to better evaluate foraging habitat. The project also will help transition AUV platforms into routine investigative tools for this region, which is chronically under sampled and will remain difficult to access
Intellectual Merit: Mt. Erebus is one of only a handful of volcanoes worldwide that have lava lakes with readily observable and nearly continuous Strombolian explosive activity. Erebus is also unique in having a permanent convecting lava lake of anorthoclase phonolite magma. Over the years significant infrastructure has been established at the summit of Mt. Erebus as part of the Mount Erebus Volcano Observatory (MEVO), which serves as a natural laboratory to study a wide range of volcanic processes, especially magma degassing associated with an open convecting magma conduit. The PI proposes to continue operating MEVO for a further five years. The fundamental fundamental research objectives are: to understand diffuse flank degassing by using distributed temperature sensing and gas measurements in ice caves, to understand conduit processes, and to examine the environmental impact of volcanic emissions from Erebus on atmospheric and cryospheric environments. To examine conduit processes the PI will make simultaneous observations with video records, thermal imaging, measurements of gas emission rates and gas compositions, seismic, and infrasound data. Broader impacts: An important aspect of Erebus research is the education and training of students. Both graduate and undergraduate students will have the opportunity to work on MEVO data and deploy to the field site. In addition, this proposal will support a middle or high school science teacher for two field seasons. The PI will also continue working with various media organizations and filmmakers.
This award supports a project to create new, unprecedented high-resolution atmospheric carbon dioxide (CO2) records spanning intervals of abrupt climate changes during the last glacial period and the early Holocene. The proposed work will utilize high-precision methods on existing ice cores from high accumulation sites such as Siple Dome and Byrd Station, Antarctica and will improve our understanding of how fast CO2 can change naturally, how its variations are linked with climate, and, combined with a coupled climate-carbon cycle model, will clarify the role of terrestrial and oceanic processes during past abrupt changes of climate and CO2. The intellectual merit of this work is that CO2 is the most important anthropogenic greenhouse gas and understanding its past variations, its sources and sinks, and how they are linked to climate change is a major goal of the climate research community. This project will produce high quality data on centennial to multi-decadal time scales. Such high-resolution work has not been conducted before because of insufficient analytical precision, slow experimental procedures in previous studies, or lack of available samples. The proposed research will complement future high-resolution studies from WAIS Divide ice cores and will provide ice core CO2 records for the target age intervals, which are in the zone of clathrate formation in the WAIS ice cores. Clathrate hydrate is a phase composed of air and ice. CO2 analyses have historically been less precise in clathrate ice than in ?bubbly ice? such as the Siple Dome ice core that will be analyzed in the proposed project. High quality, high-resolution results from specific intervals in Siple Dome that we propose to analyze will provide important data for verifying the WAIS Divide record. The broader impacts of the work are that current models show a large uncertainty of future climate-carbon cycle interactions. The results of this proposed work will be used for testing coupled carbon cycle-climate models and may contribute to reducing this uncertainty. The project will contribute to the training of several undergraduate students and a full-time technician. Both will learn analytical techniques and the basic science involved. Minorities and female students will be highly encouraged to participate in this project. Outreach efforts will include participation in news media interviews, at a local festival celebrating art, science and technology, and giving seminar presentations in the US and foreign countries. The OSU ice core laboratory has begun a collaboration with a regional science museum and is developing ideas to build an exhibition booth to make public be aware of climate change and ice core research. All data will be archived at the National Snow and Ice Data Center and at other similar archives per the OPP data policy.
9725057 Mayewski This award is for support for a Science Management Office (SMO) for the United States component of the International Trans-Antarctic Scientific Expedition (US ITASE). The broad aim of US ITASE is to develop an understanding of the last 200 years of past West Antarctic climate and environmental change. ITASE is a multidisciplinary program that integrates remote sensing, meteorology, ice coring, surface glaciology and geophysics. In addition to the formation of a science management office, this award supports a series of annual workshops to coordinate the science projects that will be involved in ITASE and the logistics base needed to undertake ground-based sampling in West Antarctica.
Hulbe/0838810 <br/><br/>This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>This award supports a modeling study of the processes in West Antarctic grounding zones, the transition from ice resting on bedrock to ice floating on the ocean surface with an eye toward understanding the interrelated causes of rapid change in grounding line configuration and outlet flow. A combination of satellite remote sensing and numerical modeling will be used to investigate both past and ongoing patterns of change. New high-resolution surface elevation maps made from a novel combination of satellite laser altimetry and remotely observed surface shape provide a unique view of grounding zones. These data will be used to diagnose events associated with the shutdown of Kamb Ice Stream, to investigate a recent discharge event on Institute Ice Stream and to investigate ongoing change at the outlet of Whillans Ice Stream, along with other modern processes around the West Antarctic. An existing numerical model of coupled ice sheet, ice stream, and ice shelf flow will be used and improved as part of the research project. The broader impacts of the project relate to the importance of understanding the role of polar ice sheets in global sea level rise. The work will contribute to the next round of deliberations for the Intergovernmental Panel on Climate Change (IPCC). Improved views, interpretations, and insights into the physical processes that govern variability in ice sheet outlet streams will help correct the shortcomings of the last IPCC report that didn?t include the role of ice sheets in sea level rise. The PIs have a strong record of public outreach, involvement in the professional community, and student training.
This award is for support for a four year program to study the basal conditions of ice stream D using techniques previously applied to ice stream B. The objective is to determine whether the physical conditions and processes to be observed by borehole geophysics at the base of this large ice stream are consistent with what has been observed at ice stream B and to point to a common basal mechanism of ice streaming. This project includes a comparison between two parts of ice stream D, an upstream reach where flow velocities are modest (about 80 meters/year) and a downstream reach of high velocity (about 400 meters/year). The comparison will help to reveal what physical variable or combination of variables is mainly responsible for the streaming flow. The variables to be monitmred by borehole observation include basal water pressure, basal sliding velocity, flow properties and sedimentological characteristics of subglacial till if present, ice temperature profile including basal water transport velocity, connection time to the basal water system, basal melting rate and others.
This award supports a field experiment, with partners from Chile and the Netherlands, to determine the state of health and stability of Larsen C ice shelf in response to climate change. Significant glaciological and ecological changes are taking place in the Antarctic Peninsula in response to climate warming that is proceeding at 6 times the global average rate. Following the collapse of Larsen A ice shelf in 1995 and Larsen B in 2002, the outlet glaciers that nourished them with land ice accelerated massively, losing a disproportionate amount of ice to the ocean. Further south, the much larger Larsen C ice shelf is thinning and measurements collected over more than a decade suggest that it is doomed to break up. The intellectual merit of the project will be to contribute to the scientific knowledge of one of the Antarctic sectors where the most significant changes are taking place at present. The project is central to a cluster of International Polar Year activities in the Antarctic Peninsula. It will yield a legacy of international collaboration, instrument networking, education of young scientists, reference data and scientific analysis in a remote but globally relevant glaciological setting. The broader impacts of the project will be to address the contribution to sea level rise from Antarctica and to bring live monitoring of climate and ice dynamics in Antarctica to scientists, students, the non-specialized public, the press and the media via live web broadcasting of progress, data collection, visualization and analysis. Existing data will be combined with new measurements to assess what physical processes are controlling the weakening of the ice shelf, whether a break up is likely, and provide baseline data to quantify the consequences of a breakup. Field activities will include measurements using the Global Positioning System (GPS), installation of automatic weather stations (AWS), ground penetrating radar (GPR) measurements, collection of shallow firn cores and temperature measurements. These data will be used to characterize the dynamic response of the ice shelf to a variety of phenomena (oceanic tides, iceberg calving, ice-front retreat and rifting, time series of weather conditions, structural characteristics of the ice shelf and bottom melting regime, and the ability of firn to collect melt water and subsequently form water ponds that over-deepen and weaken the ice shelf). This effort will complement an analysis of remote sensing data, ice-shelf numerical models and control methods funded independently to provide a more comprehensive analysis of the ice shelf evolution in a changing climate.
This award supports a project to study ice sheet history and dynamics on the Thwaites Glacier and Pine Island Glacier in the Amundsen Sea sector of the West Antarctic Ice Sheet. The international collaboration that has been established with the British Antarctic Survey will enable a fuller suite of geophysical experiments with more-efficient use of people and logistics than we could achieve individually. This project is one of a number of projects to characterize the Amundsen Sea Embayment, which has been identified in numerous planning documents as perhaps the most important target for ice-dynamical research. Taken together, this "pulse of activity" will result in a better understanding of this important part of the global system. Field work will measure the subglacial environment of Thwaites and Pine Island Glaciers using three powerful, but relatively simple tools: reflection seismic imaging, GPS motion monitoring of the tidal forcing, and passive seismic monitoring of the seismicity associated with motion. The results of the field work will feed into ice-sheet modeling efforts that are tuned to the case of an ocean-terminating glacier and will assess the influence of these glaciers on current sea level and project into the future. The broader impacts of the project involve the inclusion of a film- and audio-professional to document the work for informal outreach (public radio and TV; museums). In addition, we will train graduate students in polar geophysical and glaciological research and in numerical modeling techniques. The ultimate goal of this project, of assessing the role of Thwaites Glacier in global sea level change, has broad societal impact in coastal regions and small islands.
0538674<br/>Matsuoka<br/>This award supports a project to evaluate radio-echo intensities in the available SOAR ice-penetrating radar data along grids covering Lake Vostok, and along four regional tracks from Ridge B toward the lake. The project has two objectives; first, it will examine the upper surface of the lake and reflectors hypothesized to be a boundary between the meteoric and accreted ice. They will provide crucial knowledge on the dynamic evolution of the lake. Second, this project will examine a poorly understood echo-free zone within the deep ice in central East Antarctica. This zone may consist of distorted stagnant ice, while its upper boundary may be a shear zone. The SOAR radar data provide a unique resource to examine spatiotemporal water circulation patterns that should be understood in order to select the best direct-sampling strategy to the lake. The Vostok ice core provides a unique opportunity to do this work. First, the path effects, i.e. propagation loss and birefringence, will be derived at the ice-core site using ice temperature, chemistry, and fabric data. Second, lateral variations of the propagation loss will be estimated by tracking chemistry associated with radar-detected isochronous layers, and by inferring temperatures from an ice-flow model that can replicate those layers. Ice-fabric patterns will be inferred from anisotropy in the reflectivity at about 100 radar-track cross-over sites. In terms of broader impacts, a graduate student will be trained to interpret the radar data in the light of radar theory and glaciological context of Lake Vostok and summer workshops for K-12 teachers will be provided in Seattle and New York. This project will contribute to ongoing efforts to study Lake Vostok and will complement the site selection for a North Vostok ice core, which has been proposed by Russia and France as an IPY program.
Studinger/0636584<br/><br/>This award supports a project to estimate the salinity of subglacial Lake Vostok, Lake Concordia and the 90 deg.E lake using existing airborne ice-penetrating radar and laser altimeter data. These lakes have been selected because of the availability of modern aerogeophysical data and because they are large enough for the floating ice to be unaffected by boundary stresses near the grounding lines. The proposed approach is based on the assumption that the ice sheet above large subglacial lakes is in hydrostatic equilibrium and the density and subsequently salinity of the lake's water can be estimated from the (linear) relationship between ice surface elevation and ice thickness of the floating ice. The goal of the proposed work is to estimate the salinity of Lake Vostok and determine spatial changes and to compare the salinity estimates of 3 large subglacial lakes in East Antarctica. The intellectual merits of the project are that this work will contribute to the knowledge of the physical and chemical processes operating within subglacial lake environments. Due to the inaccessibility of subglacial lakes numerical modeling of the water circulation is currently the only way forward to develop a conceptual understanding of the circulation and melting and freezing regimes in subglacial lakes. Numerical experiments show that the salinity of the lake's water is a crucial input parameter for the 3-D fluid dynamic models. Improved numerical models will contribute to our knowledge of water circulation in subglacial lakes, its effects on water and heat budgets, stratification, melting and freezing, and the conditions that support life in such extreme environments. The broader impacts of the project are that subglacial lakes have captured the interest of many people, scientists and laymen. The national and international press frequently reports about the research of the Principal Investigator. His Lake Vostok illustrations have been used in math and earth science text books. Lake Vostok will be used for education and outreach in the Earth2Class project. Earth2Class is a highly successful science/math/technology learning resource for K-12 students, teachers, and administrators in the New York metropolitan area. Earth2Class is created through collaboration by research scientists at the Lamont- Doherty Earth Observatory; curriculum and educational technology specialists from Teachers College, Columbia University; and classroom teachers in the New York metropolitan area.
Bay 0739743<br/><br/>This award supports a project to make high-resolution logs of dust and ash in the Dome C borehole using an optical dust logger. Logging at 20-50 cm/sec, in a matter of hours, mm-scale depth resolution of dust concentration and volcanic ash layers over the entire 3270 m borehole back to ~800 ka can be provided. The logger probes an area of order m2 of the horizon compared to the ~0.02 m2 core, greatly suppressing depositional noise and making the technique immune to core damage or loss. The method achieves unprecedented resolution of climate variations for matching or comparing ice core records, can detect particulate layers from explosive fallout which are invisible or missing in the core, and often reveals subtle trend changes which can elude standard core analyses. With the highly resolved dust record, it is expected to find new synchronous age markers between East Antarctica, West Antarctica and Greenland. The data could be instrumental in unifying global climate records, or resolving mysteries such as the transition from 41-kyr glacial cycles to apparent 100-kyr cycles. The project will extend previous finding, which make the most convincing case to date for a causal relationship between explosive volcanic events and abrupt climate change on millennial timescales. A search will also be made for evidence that some of the worldwide explosive fallout events that have been identified may have resulted from impacts by comets or asteroids. The investigators will evaluate the reliability of terrestrial impact crater records and the possibility that Earth impacts are considerably more frequent than is generally appreciated. Better understanding of the factors which force abrupt climate changes, the recurrence rate and triggering mechanisms of large volcanic eruptions, and the frequency of Gt to Tt-energy bolide impacts are of vital interest for civilization. The work plan for 2008-11 comprises modifying and testing of existing hardware in year one; logging field work, most likely in year two; data analysis and publication of results in year three. Because the EPICA collaborators will provide a suitable logging winch onsite, the logistical needs of this project are modest and can be accommodated by Twin Otter from McMurdo. The proposal is in the spirit of the International Polar Year (IPY) by forging an international collaboration with potential societal benefit. The project will provide interdisciplinary training to students and postdoctoral fellows from the U.S. and other countries.
Joughin 0631973<br/><br/>This award supports a project to gather data to better understand the mass balance of the West Antarctic Ice Sheet, in the Pine Island and Thwaites region, through the combination of radar altimetry and surface-based ice-core measurements of accumulation. The intellectual merit of the project is that the results of the field work will provide information on decadal-scale average accumulation extending back through the last century and will help constrain a modeling effort to determine how coastal changes propagate inland, to allow better prediction of future change. Comparison of the basin averaged accumulation with ice discharge determined using Interferometric Synthetic Aperture Radar (InSAR) velocity data will provide improved mass-balance estimates. Study of changes in flow speed will produce a record of mass balance over the last three decades. Analysis of the satellite altimeter record in conjunction with annual accumulation estimates also will provide estimates of changes and variability in mass balance. The broader impacts of the work are that it will make a significant contribution to future IPCC estimates of sea level, which are important for projection of the impacts of increased sea level on coastal communities. The research will contribute to the graduate education of students at the Universities of Washington and Kansas and will enrich K-12 education through the direct participation of the PIs in classroom activities. Informal science education includes 4-day glacier flow demonstrations at the Polar Science Weekend held annually at the Pacific Science Center in Seattle. The project also will communicate results through Center for the Remote Sensing of Ice Sheets (CReSIS) outreach effort. All field and remotely-sensed data sets will be archived and distributed by the National Snow and Ice Data Center. This project is relevant to IPY in that the West Antarctic Ice Sheet is losing mass, in large part because of rapid thinning of the Amundsen Coast glaciers so, it will directly address the NSF IPY emphasis on "ice sheet history and dynamics." The project is also international in scope.
This award supports a project to use two new scanning fluorimeters to map microbial concentrations vs depth in the WAIS Divide ice core as portions of it become available at NICL, and selected portions of the GISP2 ice core for inter-hemispheric comparison. Ground-truth calibrations with microbes in ice show that the instruments are sensitive to a single cell and can scan the full length of a 1-meter core at 300-micron intervals in two minutes. The goals of these studies will be to exploit the discovery that microbes are transported onto ice, in clumps, several times per year and that at rare intervals (not periodically) of ~104 years, a much higher flux, sometimes lasting >1 decade, reaches the ice. From variations ranging from seasonal to millennial to glacial scale in the arrival time distribution of phototrophs, methanogens, and total microbes in the Antarctic and Arctic ice, the investigators will attempt to determine oceanic and terrestrial sources of these microbes and will look for correlations of microbial bursts with dust concentration and temperature proxies. In addition the project will follow up on the discovery that the rare instances of very high microbial flux account for some of the"gas artifacts" in ice cores - isolated spikes of excess CH4 and N2O that have been discarded by others in previous climate studies. The intellectual merit of this project is that it will exploit scanning fluorimetry of microbes as a powerful new tool for studies ranging from meteorology to climatology to biology, especially when combined with mapping of dust, gases, and major element chemistry in ice cores. In 2010-11 the WAIS Divide borehole will be logged with the latest version of the dust logger. The log will provide mm-scale depth resolution of dust concentration and of volcanic ash layers down the entire depth of the borehole. The locations of ash layers in the ice will be determined and chemical analyses of the ash will be analyzed in order to determine provenance. By comparing data from the WAIS Divide borehole with data from other boreholes and with chemical data (obtained by others) on volcanic layers, the researchers will examine the relationship between the timing of volcanic eruptions and abrupt climate change. Results from this project with the scanning fluorimeters and the dust logger could have applications to planetary missions, borehole oceanography, limnology, meteorology, climate, volcanology, and ancient life in ice. A deeper understanding of the causes of abrupt climate change, including a causal relationship with volcanic explosivity, would enable a better understanding of the adverse effects on climate. The broader impact of the project is that it will provide training to students and post-docs from the U. S. and other countries.
1043528/Alley This award supports a project to complete the physical-properties studies of the WAIS Divide deep ice core, now being collected in West Antarctica. Ongoing work funded by NSF, under a grant that is ending, has produced visible stratigraphy dating, inspection of the core for any melt layers, volcanic horizons, flow disturbances or other features, analysis of bubble number-densities allowing reconstruction of a two-millennial cooling trend in the latter Holocene at the site, characterization of other bubble characteristics (size, etc.), density studies, characterization of snow-surface changes at the site, preliminary c-axis studies, and more. The current proposal seeks to complete this work, once the rest of the core is recovered. The intellectual merit of the proposed activity starts with quality assurance for the core, by visual detection of any evidence of flow disturbances that would disrupt the integrity of the climate record. Inspection will also reveal any melt layers, volcanic horizons, etc. Annual-layer dating will be conducted; thus far, the visible strata have not been as useful as some other indicators, but the possibility (based on experience in Greenland) that visible examination will allow detection of thinner annual layers than other techniques motivates the effort. Bubble number-density will be used to reconstruct temperature changes through the rest of the bubbly part of the core, providing important paleoclimatic data for earlier parts of the Holocene. Coordinated interpretation of c-axis fabrics, grain sizes and shapes, and bubble characteristics will be used to learn about the history of ice flow, the processes of ice flow, and the softness of the ice for additional deformation. Analysis of surface data already collected will improve interpretation of the layering of the core. It is possible that the annual-layer dating will not be sufficiently successful, and that the core will be undisturbed with no melt layers; if so, then these efforts will not yield major publications. However, success of the other efforts should produce improved understanding of the history and stability of the ice sheet, and key processes controlling these, and the quality assurance provided by the visual examination is important for the project as a whole. The broader impacts of the proposed activity include education of a PhD student and multiple undergraduates, and research opportunities for a junior faculty member at an undergraduate institution. The proposed activity will help support an especially vigorous education and outreach effort providing undergraduate instruction for over 1000 students per year, reaching thousands more citizens and many policymakers, and preparing educational materials used at many levels.
This award supports a project to perform continuous microparticle concentration and size distribution measurements (using coulter counter and state-of-the-art laser detector methods), analysis of biologically relevant trace elements associated with microparticles (Fe, Zn, Co, Cd, Cu), and tephra measurements on the WAIS Divide ice core. This initial three-year project includes analysis of ice core spanning the instrumental (~1850-present) to mid- Holocene (~5000 years BP) period, with sample resolution ranging from subannual to decadal. The intellectual merit of the project is that it will help in establishing the relationships among climate, atmospheric aerosols from terrestrial and volcanic sources, ocean biogeochemistry, and greenhouse gases on several timescales which remain a fundamental problem in paleoclimatology. The atmospheric mineral dust plays an important but uncertain role in direct radiative forcing, and the microparticle datasets produced in this project will allow us to examine changes in South Pacific aerosol loading, atmospheric dynamics, and dust source area climate. The phasing of changes in aerosol properties within Antarctica, throughout the Southern Hemisphere, and globally is unclear, largely due to the limited number of annually dated records extending into the glacial period and the lack of a<br/>tephra framework to correlate records. The broader impacts of the proposed research are an interdisciplinary approach to climate science problems, and will contribute to several WAIS Divide science themes as well as the broader paleoclimate and oceanographic communities. Because the research topics have a large and direct societal relevance, the project will form a centerpiece of various outreach efforts at UMaine and NMT including institution websites, public speaking, local K-12 school interaction, media interviews and news releases, and popular literature. At least one PhD student and one MS student will be directly supported by this project, including fieldwork, core processing, laboratory analysis, and data interpretation/publication. We expect that one graduate student per year will apply for a core handler/assistant driller position through the WAIS Divide Science Coordination Office, and that undergraduate student involvement will result in several Capstone experience projects (a UMaine graduation requirement). Data and ideas generated from the project will be integrated into undergraduate and graduate course curricula at both institutions.
This award supports a project that is part of the West Antarctic Ice Sheet Divide (WAIS Divide) program; which is a multi-disciplinary multi-institutional program to investigate the causes of natural changes in climate, the influence of the West Antarctic ice sheet on sea level, and the biology of deep ice. The WAIS Divide core will be unique among Antarctic ice cores in that it will have discernable annual layers for the last 40,000 years. A critical element of the program is to determine the age of the ice so that the climate proxies measured on the core can be interpreted in terms of age, not just depth. This project will make electrical measurements that can identify the annual layers. This information will be combined with information from other investigators to develop an annually resolved timescale over the last 40,000 years. This timescale will be the foundation on which the recent climate records are interpreted. Electrical measurements will also be used to produce two-dimensional images of the ice core stratigraphy; allowing sections of the core with abnormal stratigraphy to be identified. The broader impacts of this project include exposing a diverse group of undergraduate and graduate students to ice core research and assisting the Smithsonian National Museum of Natural History in Washington, D.C to develop a paleoclimate/ice core display.
Catania 0739654<br/><br/>This award supports a project to study the Amundsen Sea drainage system and improve understanding of the impact of recent glaciological changes as an aid to predicting how this region will change in the future. The intellectual merit of the work is that the Amundsen Sea drainage system has been a recent focus for glaciological research because of rapid changes occurring there as a result of grounding line retreat. The work will focus on the regions of flow transition and will map the internal stratigraphy of the ice sheet across the Thwaites Glacier shear margins and use the age and geometry of radar-detected internal layers to interpret ice flow history. Thwaites Glacier (one of the main pathways for ice drainage in the region) has recently widened and may continue to do so in the near future. Thwaites Glacier may be particularly vulnerable to grounding line retreat because it lacks a well-defined subglacial channel. The subglacial environment exerts strong control on ice flow and flow history will be mapped in the context of bed topography and bed reflectivity. The plan is to use existing ice-penetrating radar data and coordinate with planned upcoming surveys to reduce logistical costs. The work proposed here will take three years to complete but no additional fieldwork in Antarctica is required. More detailed ground-based geophysical (radar and seismic) experiments will be needed at key locations to achieve our overall goal and the work proposed here will aid in identifying those regions. The broader impacts of the project are that it will initiate a new collaboration among radar communities within the US including those that are on the forefront of radar systems engineering and those that are actively involved in radar-derived internal layer and bed analysis. The project will also provide support for a postdoctoral researcher and a graduate student, thus giving them exposure to a variety of methodologies and scientific issues. Finally, there are plans to further develop the "Wired Antarctica" website designed by Ginny Catania with the help of a student-teacher. This will allow for the existing lesson plans to be updated to Texas State standards so that they can be used more broadly within state middle and high schools.
Brook 0739766<br/><br/>This award supports a project to create a 25,000-year high-resolution record of atmospheric CO2 from the WAIS Divide ice core. The site has high ice accumulation rate, relatively cold temperatures, and annual layering that should be preserved back to 40,000 years, all prerequisite for preserving a high quality, well-dated CO2 record. The new record will be used to examine relationships between Antarctic climate, Northern Hemisphere climate, and atmospheric CO2 on glacial-interglacial to centennial time scales, at unprecedented temporal resolution. The intellectual merit of the proposed work is simply that CO2 is the most important greenhouse gas that humans directly impact, and understanding the sources, sinks, and controls of atmospheric CO2 is a major goal for the global scientific community. Accurate chronology and detailed records are primary requirements for developing and testing models that explain and predict CO2 variability. The proposed work has several broader impacts. It contributes to the training of a post-doctoral researcher, who will transfer to a research faculty position during the award period and who will participate in graduate teaching and guest lecture in undergraduate courses. An undergraduate researcher will gain valuable lab training and conduct independent research. Bringing the results of<br/>the proposed work to the classroom will enrich courses taught by the PI. Outreach efforts will expose pre-college students to ice core research. The proposed work will enhance the laboratory facilities for ice core research at OSU, insuring that the capability for CO2 measurements exists for future projects. All data will be archived at the National Snow and Ice Data Center and other similar archives, per OPP policy. Highly significant results will be disseminated to the news media through OSU?s very effective News and Communications group. Carbon dioxide is the most important greenhouse gas that humans are directly changing. Understanding how CO2 and climate are linked on all time scales is necessary for predicting the future behavior of the carbon cycle and climate system, primarily to insure that the appropriate processes are represented in carbon cycle/climate models. Part of the proposed work emphasizes the relationship of CO2 and abrupt climate change. Understanding how future abrupt change might impact the carbon cycle is an important issue for society.
This award supports a three-year study to isolate essential physical processes affecting Thwaites Glacier (TG) in the Amundsen Sea Embayment (ASE) of West Antarctica using a suite of existing numerical models in conjunction with existing and International Polar Year (IPY)-proposed data sets. Four different models will be utilized to explore the effects of embayment geometry, ice-shelf buttressing, basal-stress distribution, surface mass balance, surface climate, and inland dynamic perturbations on the present and future dynamics of TG. This particular collection of models is ideally suited for the broad nature of this investigation, as they incorporate efficient and complementary simplifications of the stress field (shallow-ice and shelf-stream), system geometry (1-d and 2-d plan-view and flowline; depth-integrated and depth-dependent), and mass-momentum energy coupling (mechanical and thermo-mechanical). The models will be constrained and validated by data sets (including regional maps of ice thickness, surface elevation, basal topography, ice surface velocity, and potential fields) and geophysical data analyses (including increasing the spatial resolution of surface elevations, improving regional estimates of geothermal flux, and characterizing the sub-glacial interface of grounded ice as well as the grounding-zone transition between grounded and floating ice). The intellectual merit of the research focuses on several of the NSF Glaciology program's emphases, including: ice dynamics, numerical modeling, and remote sensing of ice sheets. In addition, the research directly addresses the following specific NSF objectives: "investigation of the physics of fast glacier flow with emphasis on processes at glacier beds"; "investigation of ice-shelf stability"; and "identification and quantification of the feedback between ice dynamics and climate change". The broader impacts of this research effort will help answer societally relevant questions of future ice sheet stability and sea-level change. The research also will aid in the early career development of two young investigators and will contribute to the education of both graduate and undergraduate students directly involved in the research, and results will be incorporated into courses and informal presentations.
Sowers/Brook<br/>0538538<br/>This award supports a project to develop a high-resolution (every 50 yr) methane data set that will play a pivotal role in developing the timescale for the new deep ice core being drilled at the West Antarctic Ice Sheet Divide (WAIS Divde) site as well as providing a common stratigraphic framework for comparing climate records from Greenland and WAIS Divide. Certain key intervals will be measured at even higher resolution to assist in precisely defining the phasing of abrupt climate change between the northern and southern hemispheres. Concurrent analysis of a suit of samples from both the WAIS Divide and GISP2 ice cores throughout the last 110kyr is also proposed, to establish the inter-hemispheric methane gradient which will be used to identify geographic areas responsible for the climate-related methane emission changes. A large gas measurement inter-calibration of numerous laboratories, utilizing both compressed air cylinders and WAIS Divide ice core samples, will also be performed. The intellectual merit of the proposed work is that it will provide the chronological control needed to examine the timing of changes in climate proxies, and critical chronological ties to the Greenland ice core records via methane variations. In addition, the project addresses the question of what methane sources were active during the ice age and will help to answer the fundamental question of what part of the biosphere controlled past methane variations. The broader impact of the proposed work is that it will directly benefit all ice core paleoclimate research and will impact the paleoclimate studies that rely on ice core timescales for correlation purposes. The project will also support a Ph.D. student at Oregon State University who will have the opportunity to be involved in a major new ice coring effort with international elements. Undergraduates at Penn State will gain valuable laboratory experience and participate fully in the project. The proposed work will underpin the WAIS Divide chronology, which will be fundamental to all graduate student projects that involve the core. The international inter-calibration effort will strengthen ties between research institutions on four continents and will be conducted as part of the International Polar Year research agenda.
This award supports a two year project to develop a new method for measuring vertical strain rates in polar firn. Vertical strain rate measurements in the firn are important because they can aid in the understanding of the dynamics of firn compaction, a key factor in determining ice age/gas age difference estimates for ice cores. Vertical strain rate measurements also determine ice advection for borehole paleothermometry models, and most importantly can be used to date the shallow sections of ice cores where ambiguities in chemical dating or counting of annual layers hinder dating by traditional methods. In this project a video logging tool will be used to create a unique "optical fingerprint" of variations in the optical properties of the firn with depth, and track the movement and deformation of the features of this fingerprint. Preliminary work at Siple Dome, Antarctica using an improvised logging system shows a series of optically bright and dark zones as the tool transits up or down the hole. Borehole fingerprinting has the potential to improve measurements of vertical strain in firn holes. This project represents a unique opportunity to interface with an existing field program where a borehole vertical strain rate project is already underway. A graduate student will be supported to conduct the work on this project as part of a PhD. dissertation on climate and physical processes in polar firn.
This award supports analyses of stable isotopes of water, dD, d18O and deuterium excess in the proposed West Antarctic Ice Sheet Divide (WAIS) deep ice core. The project will produce a continuous and high-resolution reconstruction of stable isotope ratios for the new core. dD and d18O values provide estimates of temperature change at the ice core site. Deuterium excess provides estimates of ocean surface conditions, such as sea surface temperature, at the moisture source areas. This new ice core is ideally situated to address questions ranging from ice sheet stability to abrupt climate change. WAIS Divide has high enough snowfall rates to record climate changes on annual to decadal time scales. It should also have ice old enough to capture the last interglacial period in detail. The West Antarctic ice sheet is the subject of great scrutiny as our modern climate warms and sea level rises. What are the prospects for added sea level rise from ice released by this ice sheet? Understanding how this ice sheet has responded to climate change in the past, which the data collected in this project will help to assess, is critical to answering this question. The high temporal resolution available in the WAIS Divide core will provide the best available basis for inter-comparison of millennial-scale climate changes between the poles, and thus a better understanding of the spatial expression and dynamics of rapid climate change events. Finally, the location of this core in the Pacific sector of West Antarctica makes it well situated for examining the influence of the tropical Pacific on Antarctica climate, on longer timescales than are available from the instrumental climate record. Analyses will include the measurement of sub-annually resolved isotope variations in the uppermost parts of the core, measurements at annual resolution throughout the last 10,000 years and during periods of rapid climate change prior to that, and measurements at 50-year resolution throughout the entire length of the core that is collected and processed during the period of this grant. We anticipate that this will be about half of the full core expected to be drilled. In terms of broader impacts, the PIs will share the advising of two graduate students, who will make this ice core the focus of their thesis projects. It will be done in an innovative multi-campus approach designed to foster a broader educational experience. As noted above, the data and interpretations generated by this proposal will address climate change questions not only of direct and immediate scientific interest, but also of direct and immediate policy interest.
This award supports a project to strengthen collaborations between the various research groups working on iceberg calving. Relatively little is known about the calving process, especially the physics that governs the initiation and propagation of fractures within the ice. This knowledge gap exists in part because of the diverse range in spatial and temporal scales associated with calving (ranging from less than one meter to over a hundred kilometers in length scale). It is becoming increasingly clear that to predict the future behavior of the Antarctic Ice Sheet and its contribution to sea level rise, it is necessary to improve our understanding of iceberg calving processes. Further challenges stem from difficulties in monitoring and quantifying short-time and spatial-scale processes associated with ice fracture, including increased fracturing events in ice shelves or outlet glaciers that may be a precursor to disintegration, retreat or increased calving rates. Coupled, these fundamental problems currently prohibit the inclusion of iceberg calving into numerical ice sheet models and hinder our ability to accurately forecast changes in sea level in response to climate change. Seismic data from four markedly different environmental regimes forms the basis of the proposed research, and researchers most familiar with the datasets will perform all analyses. Extracting the similarities and differences across the full breadth of calving processes embodies the core of the proposed work, combining and improving methods previously developed by each group. Techniques derived from solid Earth seismology, including waveform cross-correlation and clustering will be applied to each data set allowing quantitative process comparisons on a significantly higher level than previously possible. This project will derive catalogues of glaciologically produced seismic events; the events will then be located and categorized based on their location, waveform and waveform spectra both within individual environments and between regions. The intellectual merit of this work is that it will lead to a better understanding of iceberg calving and the teleconnections between seismic events and other geophysical processes around the globe. The broader impacts of this work are that it relates directly to socio-environmental impacts of global change and sea level rise. Strong collaborations will form as a result of this research, including bolstered collaborations between the glacier and ice sheet communities, as well as the glaciology and seismology communities. Outreach and public dissemination of findings will be driven by SIO's Visualization Center, and Birch Aquarium, hosting presentations devoted to the role of the cryosphere in global change. Time-lapse movies of recent changes at Columbia Glacier will be used to engage potential young scientists. A program of presentations outside the university setting to at-risk and gifted youth will be continued. This study will also involve undergraduates in analyses and interpretation and presentation of the seismic data assembled. The work will also support two junior scientists who will be supported by this project.
Waddington/0636997<br/><br/>This award supports a project to integrate three lines of glaciology research, previously treated independently. First, internal layers in ice sheets, detected by ice-penetrating radar, retain information about past spatial and temporal patterns of ice accumulation. Ice-flow modelers can recover this information, using geophysical inverse methods; however, the ages of the layers must be known, through interpolation where they intersect a well-dated ice core. <br/>Second, concentrations of methane and some other atmospheric constituents vary through time as climate changes. However, the atmosphere is always well mixed, and concentrations are similar world-wide at any one time, so gas variations from an undated core can be correlated with those in a well-dated core such as GISP2. Because air in near-surface firn mixes readily with the atmosphere above, the air that is trapped in bubbles deep in the firn is typically hundreds to thousands of years younger than that firn. Gas geochemists must calculate this age difference, called delta-age, with a firn-densification model before the ice enclosing the gas can be dated accurately. To calculate delta-age, they must know the temperature and the snow accumulation rate at the time and place where the snow fell. Third, gases can be correlated between cores only at times when the atmosphere changed, so ice-core dates must be interpolated at depths between the sparse dated points. Simplistic interpolation schemes can create undesirable artifacts in the depth-age profile. The intellectual merit of this project is that it will develop new interpolation methods that calculate layer thinning over time due to ice-flow mechanics. Accurate interpolation also requires a spatial and temporal accumulation history. These three issues are coupled through accumulation patterns and ice-core dates. This project will develop an integrated inversion procedure to solve all three problems simultaneously. The new method will incorporate ice-penetrating radar profile data and ice-core data, and will find self-consistent: spatial/temporal accumulation patterns; delta-age profiles for ice cores; and reliably interpolated depth-age profiles. The project will then: recalculate the depth-age profile at Byrd Station, Antarctica; provide a preliminary depth-age at the West Antarctic Ice Sheet (WAIS) in the initial stages of drilling, using radar layers with estimated ages traced from Byrd Station; and generate a self-consistent depth-age relationship for Taylor Dome, Antarctica over the past 20ka, where low accumulation has created uncertainty in dating, accumulation, and controversy over delta-age estimates. The broader impacts of the project are that it will support the PhD research of a female graduate student, and her continued outreach work with Making Connections, a non-profit program through the University of Washington Women's Center, which matches professional women mentors with minority high-school women interested in mathematics and science, disciplines where they are traditionally under-represented. The graduate student will also work with Girls on Ice, a ten-day glacier field program, taught by women scientist instructors, emphasizing scientific observation through immersion, leadership skills and safety awareness.
Pettit/0636795<br/><br/>This award supports a project to constrain the accumulation rate, thickness, and temperature history for Siple Dome using a vertical velocity profile that includes the effects of an evolving fabric on deformation through time, to invert the depth-profile of fabric determined from sonic velocity measurements and grain size observed in thin sections in Siple Dome for the surface temperature and accumulation rate changes in the past, focusing on the apparent abrupt climate change events at 22ka and 15ka. The intellectual merit of the work is that it will extract past climate information from a number of physical properties of the deep ice using a coupled fabric evolution and ice-sheet flow model. The focus will be on the deep ice-age ice at Siple Dome, where the ice-core record shows puzzling signals and where modeling results imply intriguing deformation patterns. The method will also be applied to the records from Byrd Station and Taylor Dome to ultimately form a basis for future analysis of the West Antarctic Divide core. The broader impacts of the project are that it will ultimately contribute to our understanding of the effects of anisotropy on ice flow dynamics in West Antarctica. It will contribute to our understanding of the connection between ice flow and the paleoclimate record in ice cores, particularly with respect to the relationship between the chemical record and ice deformation. And it will contribute a new ice-flow model that includes the effects of anisotropy and fabric evolution. The project will also contribute to advancing the career of a new, young, female investigator and will support a couple of graduate students. Finally, the work will encouraging diversity in the physical sciences by directly helping to support the Girls on Ice a program that encourages young women to explore science and the natural world.
Whillans, Wilson, Goad OPP 9527571 Abstract This award supports a project to initiate Global Positioning System (GPS) measurements for rock motions in South Victoria Land and vicinity. The results will be used to test some of the leading models for ice-sheet change and tectonism, in particular, whether the continent is rebounding due to reduced ice load from East or West Antarctica and whether there is tectonic motion due to Terror Rift or uplift of the Transantarctic Mountains. A modest program to measure ice motion will be conducted as well. The motive is to test models for ice flow in the Allan Hills meteorite concentration region and to determine whether small glaciers in the Dry Valleys are thickening or thinning. Monuments will be set into rock and ice and GPS receivers used to determine their locations. Repeats in later years will determine motion. Field activities will involve close cooperation with the USGS.
This project studies remnant magnetization in igneous rocks from the Dufek igneous complex, Antarctica. Its primary goal is to understand variations in the Earth's magnetic field during the Mesozoic Dipole Low (MDL), a period when the Earth's magnetic field underwent dramatic weakening and rapid reversals. This work will resolve the MDL's timing and nature, and assess connections between reversal rate, geomagnetic intensity and directional variability, and large-scale geodynamic processes. The project also includes petrologic studies to determine cooling rate effects on magnetic signatures, and understand assembly of the Dufek as an igneous body. Poorly studied, the Dufek is amongst the world's largest intrusions and its formation is connected to the break-up of Gondwana. <br/><br/>The broader impacts of this project include graduate and undergraduate education and international collaboration with a German and Chilean IPY project.
Winckler/0636898<br/><br/>This award supports a project to study dust sources in Antarctic ice cores. Atmospheric aerosols play an important role both in global biogeochemical cycles as well as in the climate system of the Earth. Records extracted from Antarctic ice cores inform us that dust deposition from the atmosphere to the ice sheet was 15-20 times greater during glacial periods than during interglacials, which raises the possibility that dust may be a key player in climate change on glacial-interglacial timescales. By characterizing potential source areas from South America, South Africa, and Australia as well as fresh glacial flour from Patagonia, the project will determine if the interglacial dust was mobilized from a distinct geographical region (e.g., Australia) or from a more heavily weathered source region in South America. The intellectual merit of the project is that it will contribute to reconstructing climate-related changes in the rate of dust deposition, and in the provenance of the dust, it will provide critical constraints on hydrology and vegetation in the source regions, as well as on the nature of the atmospheric circulation transporting dust to the archive location. In a recent pilot study it was found that there is a dramatic glacial to Holocene change in the 4He/Ca ratio in the dust extracted from ice from Dronning Maud Land, Antarctica, indicating a shift in the source of dust transported to Antarctica. The broader impacts of the project are that Helium isotopes and calcium measurements provide a wealth of information that can then be turned into critical input for dust-climate models. Improved models, which are able to accurately reconstruct paleo dust distribution, will help us to predict changes in dust in response to future climate variability. This information will contribute to an improvement of our integrated understanding of the Earth's climate system and, in turn, will better inform policy makers of those processes and conditions most susceptible to perturbation by climate change, thereby leading to more meaningful climate-change policy. The project will support a graduate student in the dual masters Earth and Environmental Science Journalism program. The lead-PI manages the rock noble gas laboratory at Lamont. Her leadership role in this facility impacts the training of undergraduate and graduate students as well as visiting scientists.
Barletta <br/>0828786<br/><br/>This award supports a Small Grant for Exploratory Research (SGER) for a project to conduct a limited scope, proof-of-concept study of the application of Raman spectroscopy to the analysis of ice cores. As a non-destructive analytical tool with high spatial resolution, Raman spectroscopy has found widespread application in situations where water is a major constituent in the sample, including marine science and the analysis of clathrates in ice-cores themselves. Raman can provide information at high enough sensitivity (ppm to ppb) to make its use as a non-destructive survey tool for ice core samples attractive. Laser-based techniques such as Raman can be used to obtain chemical information at near diffraction-limited resolution allowing particulates on the order of 1micron or less to be characterized. Preliminary work has demonstrated the selectivity of Raman spectroscopy for determining related polyatomic species (ions and compounds), and the ability to discern oxidation state from such analysis. In spite of the potential of this technique, instrumentation necessary to analyze ice core samples using micro-Raman spectroscopy with UV excitation is not readily available. Even with visible excitation, libraries of Raman spectra necessary for mixture de-convolution are not available. The proposed effort is a novel extension of Raman into the area of polar and climatic research, providing data on chemical speciation hitherto unavailable, of critical importance to the understanding of the biology present in glacial ice as well as the sources of particulate material found in ice cores. Since the availability of ice-core material at critical horizons is limited, this non-destructive technique will help to maximize the information obtained from these samples. The broader impacts of the work are that it will bring a new researcher into the field of polar ice core analysis and it has the potential to also bring a new non-destructive technique into the field. Finally, the research will take place at a predominately undergraduate institution in South Alabama with a large proportion (24% of undergraduates) of minority students. The proposed effort is high-risk because, although based upon established principles of vibrational spectroscopy, the application to the analytical problems of trace environmental analysis are unique, and the precision requirements are stringent. Moreover, this work will demonstrate the feasibility of an integrated approach to ice core analysis, while addressing specific problems in glaciology.
This award supports a project to investigate fabrics with ground-based radar measurements near the Ross/Amundsen Sea ice-flow divide where a deep ice core will be drilled. The alignment of crystals in ice (crystal-orientation fabric) has an important effect on ice deformation. As ice deforms, anisotropic fabrics are produced, which, in turn, influence further deformation. Measurement of ice fabric variations can help reveal the deformation history of the ice and indicate how the ice will deform in the future. Ice cores provide opportunities to determine a vertical fabric profile, but horizontal variations of fabrics remain unknown. Remote sensing with ice-penetrating radar is the only way to do that over large areas. Preliminary results show that well-established polarimetric methods can detect the degree of horizontal anisotropy of fabrics and their orientation, even when they are nearly vertical-symmetric fabrics. In conjunction with ice deformation history, our first mapping of ice fabrics will contribute to modeling ice flow near the future ice core site. The project will train a graduate student and provide research experiences for two under graduate students both in field and laboratory. The project will contribute to ongoing West Antarctic ice sheet program efforts to better understand the impact of the ice sheet on global sea level rise. This project also supports an international collaboration between US and Japanese scientists.
This award supports a project to make measurements of methane and other trace gases in firn air collected at South Pole, Antarctica. The analyses will include: methane isotopes (delta-13CH4 and delta-DCH4), light non-methane hydrocarbons (ethane, propane, and n-butane), sulfur gases (COS, CS2), and methyl halides (CH3Cl and CH3Br). The atmospheric burdens of these trace gases reflect changes in atmospheric OH, biomass burning, biogenic activity in terrestrial, oceanic, and wetland ecosystems, and industrial/agricultural activity. The goal of this project is to develop atmospheric histories for these trace gases over the last century through examination of depth profiles of these gases in South Pole firn air. The project will involve two phases: 1) a field campaign at South Pole, Antarctica to drill two firn holes and fill a total of ~200 flasks from depths reaching 120 m, 2) analysis of firn air at University of California, Irvine, Penn State University, and several other collaborating laboratories. Atmospheric histories will be inferred from the measurements using a one dimensional advective/diffusive model of firn air transport. This study will provide new information about the recent changes in atmospheric levels of these gases, providing about a 90 year long time series record that connects the earlier surface and firn air measurements to present day. The project will also explore the possibility of in- situ production of light non-methane hydrocarbons in firn air that is relevant to the interpretation of ice core records. The broader impacts of this research are that it has the potential for significant societal impact by improving our understanding of climate change and man's input to the atmosphere. The results of this work will be disseminated through the peer review process, and will contribute to environmental assessments, such as the Inter-governmental Panel on Climate Change (IPCC) Climate Assessment and the Word Meteorological Organization (WMO) Stratospheric Ozone Assessment. This research will provide educational opportunities for graduate and undergraduate students, and will contribute to a teacher training program for K-12 teachers in minority school districts.
This award supports a project to understand how recent changes in atmospheric chemistry, and historical changes as recorded in snow, firn and ice, have affected atmospheric photochemistry over Antarctica. Atmospheric, snow and firn core measurements of selected gas, meteorological and snow physical properties will be made and modeling of snow-atmosphere exchange will be carried out. The intellectual merit of the project is that it will lead to a better an understanding of the atmospheric chemistry in West Antarctica, its bi-directional linkages with the snowpack, and how it responds to regional influences. There are at least four broader impacts of this work. First is education of university students at both the graduate and undergraduate levels. One postdoctoral researcher and one graduate student will carry out much of the work, and a number of undergraduates will be involved. Second, involvement with the WAIS-Divide coring program will be used to help recruit under-represented groups as UC Merced students. As part of UC Merced's outreach efforts in the San Joaquin Valley, whose students are under-represented in the UC system, the PI and co-PI give short research talks to groups of prospective students, community college and high school educators and other groups. They will develop one such talk highlighting this project. Including high-profile research in these recruiting talks has proven to be an effective way to promote dialog, and interest students in UC Merced. Third, talks such as this also contribute to the scientific literacy of the general public. The PI and grad student will all seek opportunities to share project information with K-14 and community audiences. Fourth, results of the research will be disseminated broadly to the scientific community, and the researchers will seek additional applications for the transfer functions as tools to improve interpretation of ice-cores. This research is highly collaborative, and leverages the expertise and data from a number of other groups.
0538120<br/>Catania<br/>This award supports a project to identify and map ice surface and internal features that chronicle the sequence of events leading to the shut-down of Kamb ice stream. In particular, the project will study past grounding line migration and the relationship between that process and ice stream shutdown. The intellectual merits of the project include the fact that an understanding of such processes has important implications for our ability to accurately predict mass balance changes in this region. Currently, one of the five major West Antarctic ice streams, Kamb, is quiescent, and another, Whillans, is slowing in its downstream reaches. The Kamb shutdown appears to have begun at its downstream end but beyond that simple observation, it is not possible, yet, to draw meaningful comparisons between the two adjacent streams. We do not know if current events on Whillans Ice Stream are similar to what transpired during the Kamb shut-down. The work proposed here intends to bridge that gap. It is expected that this effort will yield useful insights into the influence of grounding line dynamics on ice stream flow. The work will involve a combination of field investigations using radio-echo sounding and GPS combined with computational efforts involving the interpretation of ice-surface features such as relict flow traces and crevasses. The broader impacts of the project will be in addressing a global environmental problem with critical societal implications, training the next generation of scientists and engineers to serve the nation, and encouraging women to pursue scientific or engineering careers. Participants from both institutions are involved in a range of public outreach activities.
Edwards/0739780<br/><br/>This award supports a project to develop a 2,000-year high-temporal resolution record of biomass burning from the analysis of black carbon in the WAIS Divide bedrock ice core. Pilot data for the WAIS WD05A core demonstrates that we now have the ability to reconstruct this record with minimal impact on the amount of ice available for other projects. The intellectual merit of this project is that black carbon (BC) aerosols result solely from combustion and play a critical but poorly quantified role in global climate forcing and the carbon cycle. When incorporated into snow and ice, BC increases absorption of solar radiation making seasonal snow packs, mountain glaciers, polar ice sheets, and sea ice much more vulnerable to climate warming. BC emissions in the Southern Hemisphere are dominated by biomass burning in the tropical regions of Southern Africa, South America and South Asia. Biomass burning, which results from both climate and human activities, alters the atmospheric composition of greenhouse gases, aerosols and perturbs key biogeochemical cycles. A long-term record of biomass burning is needed to aid in the interpretation of ice core gas composition and will provide important information regarding human impacts on the environment and climate before instrumental records. The broader impacts of the project are that it represents a paradigm shift in our ability to reconstruct the history of fire from ice core records and to understand its impact on atmospheric chemistry and climate over millennial time scales. This type of data is especially needed to drive global circulation model simulations of black carbon aerosols, which have been found to be an important component of global warming and which may be perturbing the hydrologic cycle. The project will also employ undergraduate students and is committed to attracting underrepresented groups to the physical sciences. The project?s outreach component will be conducted as part of the WAIS project outreach program and will reach a wide audience.
This award supports a project of scientific investigations along two overland traverses in East Antarctica: one going from the Norwegian Troll Station (72deg. S, 2deg. E) to the United States South Pole Station (90deg. S, 0deg. E) in 2007-2008; and a return traverse starting at South Pole Station and ending at Troll Station by a different route in 2008-2009. The project will investigate climate change in East Antarctica, with the goals of understanding climate variability in Dronning Maud Land of East Antarctica on time scales of years to centuries and determining the surface and net mass balance of the ice sheet in this sector to understand its impact on sea level. The project will also investigate the impact of atmospheric and oceanic variability and human activities on the chemical composition of firn and ice in the region, and will revisit areas and sites first explored by traverses in the 1960's, for detection of possible changes and to establish benchmark datasets for future research efforts. In terms of broader impacts, the results of this study will add to understanding of climate variability in East Antarctica and its contribution to global sea level change. The project includes international exchange of graduate students between the institutions involved and international education of undergraduate students through classes taught by the PI's at UNIS in Svalbard. It involves extensive outreach to the general public both in Scandinavia and North America through the press, television, science museums, children's literature, and web sites. Active knowledge sharing and collaboration between pioneers in Antarctic glaciology from Norway and the US, with the international group of scientists and students involved in this project, provide a unique opportunity to explore the changes that half a century have made in climate proxies from East Antarctica, scientific tools, and the culture and people of science. The project is relevant to the International Polar Year (IPY) since it is a genuine collaboration between nations: the scientists involved have complementary expertise, and the logistics involved relies on assets unique to each nation. It is truly an endeavor that neither nation could accomplish alone. This project is a part of the Trans- Antarctic Scientific Traverse Expeditions Ice Divide of East Antarctica (TASTE-IDEA) which is also part of IPY.
This project studies ancient ice buried in the Dry Valleys of Antarctica. The ice, which may approach ten million years in age, will be dated using argon and uranium radioisotope techniques. High-risk work, if successful it will offer the first and perhaps only samples of the Earth's atmosphere from millions of years in the past. These samples could offer critically important tests of paleoclimate records and proxies, as well as a glimpse into the characteristics of a past world much like the predicted future, warmer Earth. The broader impacts are graduate student education, and potentially contributing to society's understanding of global climate change and sea level rise.
This project develops power and communications systems to support the operation of seismometers and GPS receivers in Antarctica throughout the polar night. In terms of intellectual merit, this system would allow a new class of geophysical questions to be approached, in areas as varied as ice sheet movement, plate tectonics, and deep earth structure. In terms of broader impacts, this project represents research infrastructure of potential use to many scientific disciplines. In addition, the results will improve society's understanding of the Antarctic ice sheet and its behavior in response to global warming.
During previous NSF-sponsored research, the PI's discovered that southern elephant seal colonies once existed along the Victoria Land coast (VLC) of Antarctica, a region where they are no longer observed. Molted seal skin and hair occur along 300 km of coastline, more than 1000 km from any extant colony. The last record of a seal at a former colony site is at ~A.D. 1600. Because abandonment occurred prior to subantarctic sealing, disappearance of the VLC colony probably was due to environmental factors, possibly cooling and encroachment of land-fast, perennial sea ice that made access to haul-out sites difficult. The record of seal inhabitation along the VLC, therefore, has potential as a proxy for climate change. Elephant seals are a predominantly subantarctic species with circumpolar distribution. Genetic studies have revealed significant differentiation among populations, particularly with regard to that at Macquarie I., which is the extant population nearest to the abandoned VLC colony. Not only is the Macquarie population unique genetically, but it is has undergone unexplained decline of 2%/yr over the last 50 years3. In a pilot study, genetic analyses showed a close relationship between the VLC seals and those at Macquarie I. An understanding of the relationship between the two populations, as well as of the environmental pressures that led to the demise of the VLC colonies, will provide a better understanding of present-day population genetic structure, the effect of environmental change on seal populations, and possibly the reasons underlying the modern decline at Macquarie Island.<br/>This project addresses several key research problems: (1) Why did elephant seals colonize and then abandon the VLC? (2) What does the elephant seal record reveal about Holocene climate change and sea-ice conditions? (3) What were the foraging strategies of the seals and did these strategies change over time as climate varied? (4) How does the genetic structure of the VLC seals relate to extant populations? (5) How did genetic diversity change over time and with colony decline? (6) Using ancient samples to estimate mtDNA mutation rates, what can be learned about VLC population dynamics over time? (7) What was the ecological relationship between elephant seals and Adelie penguins that occupied the same sites, but apparently at different times? The proposed work includes the professional training of young researchers and incorporation of data into graduate and undergraduate courses.
This award supports a project to test whether Kamb Ice Stream (formerly Ice Stream C (ISC)), an ice stream<br/>that is thought to have stopped ~150 years ago, may be already in the process of restarting. If yes, it will help establish what is the rate of ice stream reactivation and what mechanisms are controlling this rate. If there is no evidence for ongoing ice stream reactivation, the physical controls that are preventing it will be examined and alternative scenarios for near-future evolution of this ice stream will be explored. One such scenario is an increase in ice diversion toward the neighboring Whillans Ice Stream. Such diversion may help prevent a complete stoppage of Whillans Ice Stream,which has been slowing down for at least the last 24 years. This project will consist of two components: (1) field observations of bed properties,geometry of internal radar reflectors, as well as surface strain rates and velocity/topography changes using Ice-Penetrating Radar and differential Global Positioning System, (2) numerical modeling study of near future(~100-1000 years) evolution of Kamb Ice Stream. The field component will be focused on the bulge-to-trunk transition, which is located at the present time just downstream of the so-called camp UpC. Reactivation of Kamb Ice Stream should be reflected in a downstream migration of the bulge-trunk transition at possibly high rates (bulge migration rates of ~km/yr occur on surging mountain glaciers). The modeling<br/>component will be used to generate predictions regarding the near-future behavior of Kamb Ice Stream. This project will provide training opportunities for at least two undergraduate students (per year) at St. Olaf College and for one<br/>undergraduate student (per year) at UCSC. This collaboration will bring together scientists from three different types of US institutions: (1) a liberal arts college (St.Olaf College), (2) a public research university (UCSC) and (3) a NASA research laboratory (JPL). The project will also help build a new glaciological research program at UCSC. Project results will be incorporated into undergraduate and graduate courses at UCSC and will be made available<br/>to the general public and educators through downloadable graphics and animations posted on the research website of the UCSC PI. Field data resulting from the project will be posted in the Antarctic Glaciological Data Center for use by other investigators.
0538097<br/>Anandakrishnan<br/><br/>This award supports a project to intensively study a subglacial Antarctic lake near the geographic South Pole using seismic and radar methods. These ground-based experiments are better suited to determine the presence of water and its thickness than are airborne methods. We hypothesize that there are two end-member explanations for this feature: either the lake is thawed, but freezing on (and likely to have been freezing on through much of the current interglacial period), or it is a frozen, relict lake for which the high basal radar reflectivity is due to intergranular water in a permafrost-like layer beneath the ice. The seismic experiment we propose is ideally suited to examine these alternatives. Intermediate cases of, e.g., a thawed saturated sedimentary base or a smooth crystalline basement layer would also be resolved by this experiment. Seismic reflections are sensitive to changes in acoustic impedance which is strongly variable with fluid content, porosity, and lithology. Water has low density relative to most rocks and low seismic velocity (and nil shear wave velocity) relative to both ice and rock. Thus, discriminating between subglacial water and subglacial rock is a task ideally suited to the seismic reflection technique. This project has significant impacts outside the directly affected fields of Antarctic glaciology and geology. The lake (either thawed or sediments with thin liquid layers around the matrix particles) will have the potential for harboring novel life forms. The experiment has the potential for expanding our information about the newest frontier in life on Earth. The collaboration between PIs in the seismic community and the marine acoustics community will foster cross-disciplinary pollination of ideas, techniques, and tools. In addition to traditional seismic techniques, new methods of data analysis that have been developed by acousticians will be applied to this problem as an independent measure of lake properties. We will train students who will have a wider view of seismology than would be possible in a traditional ocean acoustics or traditional geoscience seismology program of study.
Cole-Dai<br/>0538553<br/><br/>This award supports a project that will contribute to the US West Antarctica Ice Sheet Ice Divide ice core (WAIS Divide) project by developing new instrumentation and analytical procedures to measure concentrations of major ions (Cl-, NO3-, SO42-, Na+, K+, NH4+, Mg2+, Ca2+). A melter-based, continuous flow, multi-ion-chromatograph technique (CFA-IC) has been developed recently at South Dakota State University (SDSU). This project will further expand and improve the CFA-IC technique and instrumentation and develop procedures for routine analysis of major ions in ice cores. In addition, training of personnel (operators) to perform continuous, high resolution major ion analysis of the deep core will be accomplished through this project. The temporal resolution of the major ion measurement will be as low as 0.5 cm with the fully developed CFA-IC technique. At this resolution, it will be possible to use annual cycles of sulfate and sea-salt ion concentrations to determine annual layers in the WAIS Divide ice core. Annual layer counting using CFA-IC chemical measurements and other high resolution measurements will contribute significantly to the major WAIS Divide project objective of producing precisely (i.e., annually) dated climate records. The project will support the integration of research and education, train future scientists and promote human resource development through the participation of graduate and undergraduate students. In particular, undergraduate participation will contribute to a current REU (Research Experience for Undergraduates) chemistry site program at SDSU. Development and utilization of multi-user instrumentation will promote research collaboration and advance environmental science. NSF support for SDSU will contribute to the economic development and strengthen the infrastructure for research and education in South Dakota.
The proposed work is part of an integrated research program into the oceanographic structure of the western Weddell Sea. It is to be carried out from an ice camp jointly occupied by U.S. and USSR scientists from February to June 1992. This project concerns the determination of the energy exchange between the sea ice cover and the atmospheric boundary layer. The objectives are to measure time series of the individual components of the sea ice/atmosphere energy budget for the duration of the drift, and to determine the bulk transfer coefficients for the exchange of momentum and sensible and latent heat. The purpose of the measurements is to expand our capability for numerical and analytical modelling of the antarctic environment. Turbulent fluctuations in the temperature, wind, and humidity fields will be measured directly with small, fast-responding sensors. These observations will be complemented by other synoptic meteorological data and with upper air soundings.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). This project will deploy a new Fabry-Perot interferometer (FPI) at the U.S. Palmer Station located in the Antarctic Peninsula. The FPI will observe mesospheric and thermospheric neutral winds and temperatures using multiple nightglow emissions (OH, 892 nm, 87 km; O 557.7 nm, 97 km; O 630 nm, 250 km; and O2 (0-1) 865 nm, 94 km). The project's team will collaborate with Australian scientists who operate similar FPI instruments at their Antarctic stations Mawson and Davis to jointly analyze the neutral wind and temperature data distributions over the continent and address the following scientific problems: (1) Thermospheric neutral winds effects on the Weddell Sea Anomaly, (2) Non-migrating tides in the mesosphere and lower thermosphere, (3) Lower thermospheric meridional wind circulation and mesosphere wind shear, (4) High-latitude geomagnetic field effects on the mid-latitude thermosphere, and (4) Conjugacy studies of the mesosphere and thermosphere with the incoherent scatter radar and FPI observations from Millstone Hill, Massachusetts. The fieldwork and analysis efforts associated with this project are highly suitable for involvement and research training of graduate students.
0538657<br/>Severinghaus<br/>This award supports a project to develop high-resolution (20-yr) nitrogen and oxygen isotope records on trapped gases in the WAIS Divide ice core (Antarctica), with a comparison record for chronological purposes in the GISP2 (Greenland) ice core. The main scientific objective is to provide an independent temperature-change record for the past 100,000 years in West Antarctica that is not subject to the uncertainty inherent in ice isotopes (18O and deuterium), the classical paleothermometer. Nitrogen isotopes (Delta 15N) in air bubbles in glacial ice record rapid surface temperature change because of thermal fractionation of air in the porous firn layer, and this isotopic anomaly is recorded in bubbles as the firn becomes ice. Using this gas-based temperature-change record, in combination with methane data as interpolar stratigraphic markers, the proposed work will define the precise relative timing of abrupt warming in Greenland and abrupt cooling at the WAIS Divide site during the millennial-scale climatic oscillations of Marine Isotopic Stage 3 (30-70 kyr BP) and the last glacial termination. The nitrogen isotope record also provides constraints on past firn thickness, which inform temperature and accumulation rate histories from the ice core. A search for possible solar-related cycles will be conducted with the WAIS Divide Holocene (Delta 15N.) Oxygen isotopes of O2 (Delta 18Oatm) are obtained as a byproduct of the (Delta 15N) measurement. The gas-isotopic records will enhance the value of other atmospheric gas measurements in WAIS Divide, which are expected to be of unprecedented quality. The high-resolution (Delta 18Oatm) records will provide chronological control for use by the international ice coring community and for surface glacier ice dating. Education of a graduate student, and training of a staff member in the laboratory, will contribute to the nation's human resource base. Outreach activities in the context of the International Polar Year will be enhanced. International collaboration is planned with the laboratory of LSCE, University of Paris.
0538494<br/>Meese<br/>This award supports a project for physical properties research on snow pits and firn/ice cores with specific objectives that include stratigraphic analysis including determination of accumulation rates, annual layers, depth hoar, ice and wind crusts and rates of grain growth with depth. Studies of firn densification rates and how these parameters relate to the meteorology and climatology over the last 200 years of snow accumulation in Antarctica will also be investigated. The project will also determine the seasonality of accumulation by co-registration of stratigraphy and chemistry and determination of chemical species at the grain boundaries, how these may change with depth/densification (and therefore temperature), precipitation, and may affect grain growth. Fabric analyses will be made, including variation with depth, location on undulations and if any variation exists with climate/chemistry. The large spatial coverage of the US ITASE program offers the opportunity to determine how these parameters are affected by a large range of temperature, precipitation and topographic effects. The intellectual merit of the project includes the fact that ITASE is the terrestrial equivalent of a polar research vessel that provides a unique, logistically efficient, multi-dimensional (x, y, z and time) view of the atmosphere, ice sheet and their histories. Physical properties measurements/ analyses are an integral part of understanding the dynamic processes to which the accumulated snow is subjected. Recent advancements in the field along with multiple core sites provide an excellent opportunity to gain a much broader understanding of the spatial, temporal and physical variables that impact firnification and the possible resultant impact on climatic interpretation. In terms of broader impacts, the data collected by US ITASE and its international ITASE partners is available to a broad scientific community. US ITASE has an extensive program of public outreach and provides significant opportunities for many students to experience multidisciplinary Antarctic research. A graduate student, a post-doctoral fellow and at least one undergraduate would be funded by this work. Dr. Meese is also a member of the New England Science Collaborative, an organization that educates the public on climate change based on recent scientific advancements.
This award supports an investigation of spatial variations of ice temperature and subglacial conditions using available ice-penetrating radar data around a future deep ice coring site near the Ross and Amundsen flow divide of West Antarctic Ice Sheet. Besides geometry of reflection layers the focus will be on intensities of radar echoes from within ice deeper than several hundred meters and will also examine echoes from the bed. Preliminary studies on theory and comparison with Japanese radar data from East Antarctica suggest that large spatial variations of the vertical gradient of radar echoes from within ice exist and are caused primarily by ice temperature and secondarily by crystal-orientation fabric. The hypothesis that the vertical gradient is a proxy of ice temperature will be tested. The project will utilize an existing data set from the Support Office for Aerogeophysical Research in Antarctica (SOAR) and will complement work already underway at University of Texas to analyze the radar data. The project will provide undergraduate research experience with an emphasis on computer analysis of time series and large data sets as well as development of web-based resource of results and methods and will support an international collaboration between US and Japan through discussions on the preliminary results from their study sites. Practical procedures developed through this study will be downloadable from the project's web site in the third year and will allow investigation of other ice sheets using existing radar data sets. This project will contribute to the interpretation of the future inland West Antarctic ice core and will help in the understanding of ice sheet history and climate change.
The objectives of this proposal are to investigate the controls on the large-scale distribution and production of the two major bloom-forming phytoplankton taxa in the Southern Ocean, diatoms and Phaeocystis Antarctica. These two groups, through their involvement in the biogeochemical cycles of carbon, sulfur and nutrient elements, may have played important roles in the climate variations of the late Quaternary, and they also may be key players in future environmental change. A current paradigm is that irradiance and iron availability drive phytoplankton dynamics in the Southern Ocean. Recent work, however, suggests that carbon dioxide (CO2) concentrations may also be important in structuring algal assemblages, due to species-specific differences in the physiology. This proposal examines the interactive effects of iron, light and CO2 on the physiology, ecology and relative dominance of Phaeocystis and diatoms in the Southern Ocean. The Ross Sea is an ideal system in which to investigate the environmental factors that regulate the distribution and production of these two algal groups, since it is characterized by seasonal blooms of both P. Antarctica and diatoms that are typically separated in both space and time. This study will take the form of an interdisciplinary investigation that includes a field survey and statistical analysis of algal assemblage composition, iron, mixed layer depth, and CO2 levels in the southern Ross Sea, coupled with shipboard experiments to examine the response of diatom and P. Antarctica assemblages to high and low levels of iron, light and CO2 during spring and summer. <br/>This project will provide information on some of the major factors controlling the production and distribution of the two major bloom forming phytoplankton in the Southern Ocean and the related biogeochemical cycling of carbon, sulfur and nutrient elements. The results may ultimately advance the ability to predict how the Southern Ocean will be affected by and possibly modulate future climate change. This project will also make significant educational contributions at several levels, including the planned research involvement of graduate and undergraduate students, postdoctoral associates, a student teacher, and community outreach and educational activities. A number of activities are planned to interface the project with K-12 education. Presentations will be made at local schools to discuss the research and events of the research cruise. During the cruise there will be daily interactive email contact with elementary classrooms. Established websites will be used to allow students to learn about the ongoing research, and to allow researchers to communicate with students through text and downloaded images.
The Antarctic Site Inventory Project has collected biological data and site-descriptive information in the Antarctic Peninsula region since 1994. This research effort has provided data on those sites which are visited by tourists on shipboard expeditions in the region. The aim is to obtain data on the population status of several key species of Antarctic seabirds, which might be affected by the cumulative impact resulting from visits to the sites. This project will continue the effort by focusing on two heavily-visited Antarctic Peninsula sites: Paulet Island, in the northwestern Weddell Sea and Petermann Island, in the Lemaire Channel near Anvers Island. These sites were selected because both rank among the ten most visited sites in Antarctica each year in terms of numbers of visitors and zodiac landings; both are diverse in species composition, and both are sensitive to potential environmental disruptions from visitors. These data collected focus on two important biological parameters for penguins and blue-eyed shags: (1) breeding population size (number of occupied nests) and (2) breeding success (number of chicks per occupied nests). A long-term data program will be supported, with studies at the two sites over a five-year period. The main focus will be at Petermann Island, selected for intensive study due to its visitor status and location in the region near Palmer Station. This will allow for comparative data with the Palmer Long Term Ecological Research program. Demographic data will be collected in accordance with Standard Methods established by the Convention for the Conservation of Antarctic Marine Living Resources Ecosystem Monitoring Program and thus will be comparable with similar data sets being collected by other international Antarctic Treaty nation research programs. While separating human-induced change from change resulting from a combination of environmental factors will be difficult, this work will provide a first step to identify potential impacts. These long-term data sets will contribute to a better understanding of biological processes in the entire region and will contribute valuable information to be used by the Antarctic Treaty Parties as they address issues in environmental stewardship in Antarctica.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). <br/><br/>This award supports a project to reconstruct the past physical and chemical climate of Antarctica, with an emphasis on the region surrounding the Ross Sea Embayment, using >60 ice cores collected in this region by US ITASE and by Australian, Brazilian, Chilean, and New Zealand ITASE teams. The ice core records are annually resolved and exceptionally well dated, and will provide, through the analyses of stable isotopes, major soluble ions and for some trace elements, instrumentally calibrated proxies for past temperature, precipitation, atmospheric circulation, chemistry of the atmosphere, sea ice extent, and volcanic activity. These records will be used to understand the role of solar, volcanic, and human forcing on Antarctic climate and to investigate the character of recent abrupt climate change over Antarctica in the context of broader Southern Hemisphere and global climate variability. The intellectual merit of the project is that ITASE has resulted in an array of ice core records, increasing the spatial resolution of observations of recent Antarctic climate variability by more than an order of magnitude and provides the basis for assessment of past and current change and establishes a framework for monitoring of future climate change in the Southern Hemisphere. This comes at a critical time as global record warming and other impacts are noted in the Southern Ocean, the Antarctic Peninsula, and on the Antarctic ice sheet. The broader impacts of the project are that Post-doctoral and graduate students involved in the project will benefit from exposure to observational and modeling approaches to climate change research and working meetings to be held at the two collaborating institutions plus other prominent climate change institutions. The results are of prime interest to the public and the media Websites hosted by the two collaborating institutions contain climate change position papers, scientific exchanges concerning current climate change issues, and scientific contribution series.
0538639<br/>Waddington<br/>This award supports a project to study the patterns of accumulation variation and microstructural properties near the WAIS Divide ice core site in a 2.5 km array of 20 m boreholes. Borehole Optical Stratigraphy (BOS) is a novel optical measurement system that detects annual-scale layers in firn that result from changes in firn microstructure, giving annual-scale records of how accumulation varied spatially over the last 40-50 years. Data from borehole optical stratigraphy can eventually be calibrated against other data on the microstructural parameters of firn to calibrate BOS's sensitivity to density, pore-volume, and pore-shape variations, and to show by proxy how these parameters vary in space across the survey area. Statistical analysis of layer-thickness and layer-brightness data will enable prediction of: 1) interannual accumulation variability, 2) variability in layer-thickness at decadal scales due to changing spatial patterns in accumulation and 3) variability in microstructure-driven metamorphism due to changing spatial patterns of microstructure. With these statistics in hand, a scientist measuring climatic shifts found in the WAIS Divide ice core will be able to determine the fraction by which signals they measure exceed the signal due to background accumulation variations. As an added benefit, while still in the field, we will determine a preliminary depth-age scale for the firn by optical layer-counting, to the depth of the deepest air-filled firn hole available. This will be a valuable result for core-drilling operations and for preliminary data-analysis on the core. In terms of broader impacts, this project will advance education by training a post-doctoral student in field techniques. The P.I. and the post-doctoral researcher will participate in an undergraduate seminar called "What is Scientific Research?", incorporating progress and results from this project. They will also communicate about their progress and field experience with a middle-school science and math class.
This award supports development of a new modeling approach that will extract information about past snow accumulation rate in both space and time in the vicinity of the future ice core near the Ross-Amundsen divide of the West Antarctic Ice Sheet (WAIS). Internal layers, detected by ice-penetrating radar, are isochrones, or former ice-sheet surfaces that have been buried by subsequent snowfall, and distorted by ice flow. Extensive ice-penetrating radar data are available over the inland portion of the WAIS. Layers have been dated back to 17,000 years before present. The radar data add the spatial dimension to the temporally resolved accumulation record from ice cores. Accumulation rates are traditionally derived from the depths of young, shallow layers, corrected for strain using a local 1-D ice-flow model. Older, deeper layers have been more affected by flow over large horizontal distances. However, it is these deeper layers that contain information on longer-term climate patterns. This project will use geophysical inverse theory and a 2.5D flow-band ice-flow forward model comprising ice-surface and layer-evolution modules, to extract robust transient accumulation patterns by assimilating multiple deeper, more-deformed layers that have previously been intractable. Histories of divide migration, geothermal flux, and surface evolution will also be produced. The grant will support the PhD research of a female graduate student who is a mentor to female socio-economically disadvantaged high-school students interested in science, through the University of Washington Women's Center. It will also provide a research<br/>experience for an undergraduate student, and contribute to a freshman seminar on Scientific Research.
This award supports the coordination of an interdisciplinary and multi institutional deep ice coring program in West Antarctica. The program will develop interrelated climate, ice dynamics, and biologic records focused on understanding interactions of global earth systems. The records will have a year-by-year chronology for the most recent 40,000 years. Lower temporal resolution records will extend to 100,000 years before present. The intellectual activity of this project includes enhancing our understanding of the natural mechanisms that cause climate change. The study site was selected to obtain the best possible material, available from anywhere, to determine the role of greenhouse gas in the last series of major climate changes. The project will study the how natural changes in greenhouse gas concentrations influence climate. The influence of sea ice and atmospheric circulation on climate changes will also be investigated. Other topics that will be investigated include the influence of the West Antarctic ice sheet on changes in sea level and the biology deep in the ice sheet. The broader impacts of this project include developing information required by other science communities to improve predictions of future climate change. The <br/>project will use mass media to explain climate, glaciology, and biology issues to a broad audience. The next generation of ice core investigators will be trained and there will be an emphasis on exposing a diverse group of students to climate, glaciology and biology research.
This award supports a project to develop a quantitative understanding of the processes active in isotopic exchange between snow/firn and water vapor, which is of paramount importance to ice core interpretation. Carefully controlled laboratory studies will be conducted at a variety of temperatures to empirically measure the mass transfer coefficient (the rate at which water moves from the solid to the vapor phase) for sublimating snow and to determine the time scale for isotopic equilibration between water vapor and ice. In addition the isotopic fractionation coefficient for vapor derived from sublimating ice will be determined and the results will be used to update existing models of mass transfer and isotopic evolution in firn. It is well known that water vapor moves through firn due to diffusion, free convection and forced convection. Although vapor movement through variably-saturated firn due to these processes has been modeled, because of a lack of laboratory data the mass transfer coefficient had to be estimated. Field studies have documented the magnitudes of post-depositional changes, but field studies do not permit rigorous analysis of the relative importance of the many processes which are likely to act in natural snow packs. The results of these laboratory investigations will be broadly applicable to a number of studies and will allow for improvement of existing physically-based models of post-depositional isotopic change, isotopic diffusion in firn, and vapor motion in firn. A major component of this project will be the design and fabrication of the necessary, novel experimental apparatus, which will be facilitated by existing technical expertise, cold room facilities, and laboratory equipment at CRREL. This project is a necessary step toward a quantitative understanding of the isotopic effects of water vapor movement in firn. The proposed work has broader impacts in several different areas. The modeling results will be applicable to a wide range of studies of water in the polar environment, including studies of wind-blown or drifting snow. The proposed collaborative study will partially support a Dartmouth graduate student for three years. This project will also provide support for a young first-time NSF investigator at the University of Vermont. Undergraduate students from Dartmouth will be involved in the research through the Women in Science Project and undergraduate students at the University of Vermont will be supported through the Research Experiences for Undergraduates program. The principal investigators and graduate student will continue their tradition of k-12 school outreach by giving science lessons and talks in local schools each year. Research results will be disseminated through scientific conferences, journal publications, and institutional seminars.
This award supports a project to obtain stable isotope profiles from shallow (<100 m) ice cores from East Antarctica, to add to the growing database of environmental proxy data collected under the auspices of the "ITASE" (International TransAntarctic Scientific Expedition) program. In Antarctica, the instrumental record of climate is particularly short (~40 years except in a few isolated locations on the coast), and ice core proxy data are the only means available for extending this record into the past. The use of stable isotopes of water (18-O/16-O and D/H ratios) from ice cores as proxies for temperature is well established for both very short (i.e. seasonal) and long timescales (centuries, millennia). Using multivariate regression methods and shallow ice cores from West Antarctica, a reconstruction of Antarctic climate over the last ~150 years has been developed which suggests the continent has been warming, on average, at a rate of ~0.2 K/century. Further improving these reconstructions is the chief motivation for further extending the US ITASE project. Ten to fifteen shallow (~ 100 m) from Victoria Land, East Antarctica will be obtained and analyzed. The core will be collected along a traverse route beginning at Taylor Dome and ending at the South Pole. Age-depth relationships for the cores will be determined through a combination of stable isotopes, visual stratigraphy and seasonal chemical signatures and marker horizons. Reconstructions of Antarctic climate obtained from these cores will be incorporated into the global network of paleoclimate information, which has been important in science, policy and educational contexts. The project will include graduate student and postdoctoral training and field experience.
0086645<br/>Fountain<br/><br/>This award supports a Small Grant for Exploratory Research (SGER) to study glaciological change in the McMurdo Dry Valleys, Antarctica under the category of "application of new expertise or new approaches to established research topics". The purpose of the project is to assess the application of classified imagery to the study of the magnitude and rate of change of glacier extent and lake area as an indicator of climate change. Because the rate of change of both glacier extent and lake area is small compared to the resolution of unclassified imagery, the increased resolution of classified imagery is clearly needed. Access to classified imagery with 1 meter or better resolution will provide a baseline measurement against which future changes can be compared. Maximum use will be made of archived imagery but if necessary, one request will be made for new imagery to supplement the existing archive. This work will support on-going field measurements which are part of the Long-Term Ecological Research (LTER) site in the McMurdo Dry Valleys but which are limited by logistic constraints to only a few measurements during limited times of the year. If successful, the information gained in this project will enable researchers to better direct their efforts to identify the important physical processes controlling the changes in the valleys. The information acquired in conducting this project will be made available to the public, using appropriate security procedures to declassify the data. The "exploratory" and "high risk" nature of the proposed work and its "potential" to make an important "impact" on the field of Antarctic glacier studies are all reasons that this work is appropriate to support as an SGER.
0125794<br/>Price<br/><br/>This award supports research in climatology, geosciences, and life in extreme environments to be carried out with a newly developed optical borehole logger. The logger fits into a fluid-filled borehole in glacial ice. It emits light at 370 nm in a horizontal plane in order to probe optical properties of particles embedded in the ice out to several meters from the borehole. After leaving the borehole, the light is partially absorbed and scattered by dust, biomolecules, or microbes. A fraction of the light is scattered back into the borehole and is detected by a system of seven phototubes, each of which collects light with high efficiency in a separate wavelength band. One of them collects light that scatters off of dust and air bubbles without wavelength shift, and serves as a dust logger. The other six are covered with notch filters that measure six different wavelength bands and measure the shape of the fluorescence spectrum of microbes and biomolecules. Thus, the same instrument serves as both a dust logger and a microbe logger. Applications include: 1) Precise chronologies and long-period solar variability. With a resolution of 1 to 2 cm for both GISP2 and Siple Dome, the logger will record annual dust maxima and evaluate claims of modulations of dust concentration with periods ranging from 11 yrs (the solar cycle) to 2300 yrs; 2) Volcanism and age-depth markers. Dozens of volcanic ash bands will be detectable and will serve as primary age-depth markers for other boreholes; 3) Microorganisms and biomolecules. The vertical distribution of living, dormant, and dead microbes can be logged, and searches for archaea and aeolian polyaromatic hydrocarbons can be made. The logging experiments will be carried out at Siple Dome and Dome C in Antarctica and at GISP2 and GRIP in Greenland.
The award supports the development of high-resolution nitrogen and oxygen isotope records on trapped gases in the Byrd and Siple Dome ice cores, and the Holocene part of the GISP2 ice core. The primary scientific goals of this work are to understand the enigmatic d15N anomalies seen thus far in the Siple Dome record at 15.3 ka and 35 ka, and to find other events that may occur in both cores. At these events, d15N of trapped air approaches zero, implying little or no gravitational fractionation of gases in the firn layer at the time of formation of the ice. These events may represent times of low accumulation rate and arid meteorological conditions, and thus may contain valuable information about the climatic history of West Antarctica. Alternatively, they may stem from crevassing and thus may reveal ice-dynamical processes. Finding the events in the Byrd core, which is located 500 km from Siple Dome, would place powerful constraints on their origin and significance. A second major goal is to explore the puzzling absence of the abrupt warming event at 22 ka (seen at Siple Dome) in the nearby Byrd 18O/16O record in the ice (d18Oice), and search for a possible correlative signal in Byrd d15N. A third goal takes advantage of the fact that precise measurements of the oxygen isotopic composition of atmospheric O2 (d18Oatm) are obtained as a byproduct of the d15N measurement. The proposed gas-isotopic measurements will underpin an integrated suite of West Antarctic climate and atmospheric gas records, which will ultimately include the WAIS Divide core. These records will help separate regional from global climate signals, and may place constraints on the cause of abrupt climate change. Education of two graduate students, and training of two staff members in the laboratory, contribute to the nation's human resource base. Education and outreach will be an important component of the project.
0122520<br/>Gogineni<br/><br/>Sea level has been rising over the last century. Although the immediate impact of sea level rise may be less severe than other effects of global climate change, the long-term consequences can be much more devastating since nearly 60% of the world population lives in coastal regions. Scientists have postulated that excess water is being released from polar ice sheets due to long-term, global climate change, but there are insufficient data to confirm these theories. Understanding the interactions between the ice sheets, oceans and atmosphere is essential to quantifying the role of ice sheets in sea level rise. Toward that end, this research project involves the innovative application of information technology in the development and deployment of intelligent radar sensors for measuring key glaciological parameters. <br/><br/>Radar instrumentation will consist of a synthetic aperture radar (SAR) that can operate in bistatic or monostatic mode. One important application of the SAR will be in the determination of basal conditions, particularly the presence and distribution of basal water. Basal water lubricates the ice/bed interface, enhancing flow, and increasing the amount of ice discharged into the ocean. Another application of the SAR will be to measure ice thickness and map internal layers in both shallow and deep ice. Information on near-surface internal layers will be used to estimate the average, recent accumulation rate, while the deeper layers provide a history of past accumulation and flow rates. A tracked vehicle and an automated snowmobile will be used to test and demonstrate the utility of an intelligent radar in glaciological investigations.<br/><br/>The system will be developed to collect, process and analyze data in real time and in conjunction with a priori information derived from archived sources. The combined real time and archived information will be used onboard the vehicles to select and generate an optimum sensor configuration. This project thus involves innovative research in intelligent systems, sounding radars and ice sheet modeling. In addition it has a very strong public outreach and education program, which include near-real-time image broadcasts via the world wide web
This project uses geochemical studies to determine the origin of volcanic rocks from Marie Byrd Land (MBL), Antarctica. Surprisingly, adjacent volcanoes in the MBL have dramatically different compositions, ranging from phonolite to trachyte to rhyolite. This diversity offers an opportunity to constrain the processes responsible for generating silica oversaturated and undersaturated magmas in a single geologic setting. Previous work suggests that the most obvious and simplest explanation--crustal contamination--is not a significant factor, and that polybaric fractional crystallization is the major cause. This study evaluates these factors through analyses and interpretation of trace and rare earth element abundances, as well as Sr and Nd isotopic ratios. <br/><br/>The broader impacts include outreach programs to the Girl Scouts of America, and dissemination of results through publications and meetings.
This award supports a project to improve understanding of atmospheric photochemistry over West Antarctica, as recorded in snow, firn and ice. Atmospheric and firn sampling will be undertaken as part of the U.S. International Trans-Antarctic Scientific Expedition (US ITASE) traverses. Measurements of hydrogen peroxide (H2O2) and formaldehyde (HCHO) will be made on these samples and a recently developed, physically based atmosphere-to-snow transfer model will be used to relate photochemical model estimates of these components to the concentrations of these parameters in the atmosphere and snow. The efficiency of atmosphere-to-snow transfer and the preservation of these components is strongly related to the rate and timing of snow accumulation. This information will be obtained by analyzing the concentration of seasonally dependent species such as hydrogen peroxide, nitric acid and stable isotopes of oxygen. Collection of samples along the US ITASE traverses will allow sampling at a wide variety of locations, reflecting both a number of different depositional environments and covering much of the West Antarctic region.
Dissolved organic matter (DOM) is a significant chemical component in aquatic systems because it acts as an important carbon source for microorganisms, absorbs harmful radiation in sunlight, is able to complex metals, and can participate in important biogeochemical reactions. This study will investigate the biogeochemical cycling of DOM in a small coastal Antarctic pond, Pony Lake, located on Cape Royds, Ross Island. Because there are no higher plants present at this site all of the DOM in this lake is derived from microorganisms. Thus, Pony Lake is an ideal site to study the effect of physical, chemical, and microbial processes on the composition and character of the DOM pool. Finally, Pony Lake is also an ideal site to collect an International Humic Substances Society (IHSS) fulvic acid standard. Unlike other IHSS standards, this standard will not contain DOM components derived from higher land plants. To better understand the role of physical influences, the project will study the changes in the DOM pool as the lake evolves from ice-covered to ice-free conditions during the summer, as well as the relationship of DOM to the observed turnover of dominant microbial communities in the lake. Scientists will also monitor changes in microbial abundance, diversity, and productivity that may occur during the ice to open-water transition period. This research will provide much needed information regarding the relationship between microbial diversity and DOM biogeochemistry. Middle school science students will be active participants in this project through the Internet, while scientists are in the field, and in the lab.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the role and fate of Boron in high-grade metamorphic rocks of the Larsemann Hills region of Antarctica. Trace elements provide valuable information on the changes sedimentary rocks undergo as temperature and pressure increase during burial. One such element, boron, is particularly sensitive to increasing temperature because of its affinity for aqueous fluids, which are lost as rocks are buried. Boron contents of unmetamorphosed pelitic sediments range from 20 to over 200 parts per million, but rarely exceed 5 parts per million in rocks subjected to conditions of the middle and lower crust, that is, temperatures of 700 degrees C or more in the granulite-facies, which is characterized by very low water activities at pressures of 5 to 10 kbar (18-35 km burial). Devolatization reactions with loss of aqueous fluid and partial melting with removal of melt have been cited as primary causes for boron depletion under granulite-facies conditions. Despite the pervasiveness of both these processes, rocks rich in boron are locally found in the granulite-facies, that is, there are mechanisms for retaining boron during the metamorphic process. The Larsemann Hills, Prydz Bay, Antarctica, are a prime example. More than 20 lenses and layered bodies containing four borosilicate mineral species crop out over a 50 square kilometer area, which thus would be well suited for research on boron-rich granulite-facies metamorphic rocks. <br/><br/>While most investigators have focused on the causes for loss of boron, this work will investigate how boron is retained during high-grade metamorphism. Field observations and mapping in the Larsemann Hills, chemical analyses of minerals and their host rocks, and microprobe age dating will be used to identify possible precursors and deduce how the precursor materials recrystallized into borosilicate rocks under granulite-facies conditions. The working hypothesis is that high initial boron content facilitates retention of boron during metamorphism because above a certain threshold boron content, a mechanism "kicks in" that facilitates retention of boron in metamorphosed rocks. For example, in a rock with large amounts of the borosilicate tourmaline, such as stratabound tourmalinite, the breakdown of tourmaline to melt could result in the formation of prismatine and grandidierite, two borosilicates found in the Larsemann Hills. This situation is rarely observed in rocks with modest boron content, in which breakdown of tourmaline releases boron into partial melts, which in turn remove boron when they leave the system. Stratabound tourmalinite is associated with manganese-rich quartzite, phosphorus-rich rocks and sulfide concentrations that could be diagnostic for recognizing a tourmalinite protolith in a highly metamorphosed complex where sedimentary features have been destroyed by deformation. Because partial melting plays an important role in the fate of boron during metamorphism, our field and laboratory research will focus on the relationship between the borosilicate units, granite pegmatites and other granitic intrusives. The results of our study will provide information on cycling of boron at deeper levels in the Earth's crust and on possible sources of boron for granites originating from deep-seated rocks.<br/><br/>An undergraduate student will participate in the electron microprobe age-dating of monazite and xenotime as part of a senior project, thereby integrating the proposed research into the educational mission of the University of Maine. In response to a proposal for fieldwork, the Australian Antarctic Division, which maintains Davis station near the Larsemann Hills, has indicated that they will support the Antarctic fieldwork.
9911617 Blankenship This award, provided jointly by the Antarctic Geology and Geophysics Program, the Antarctic Glaciology Program, and the Polar Research Support Section of the Office of Polar Programs, provides funds for continuation of the Support Office for Aerogeophysical Research (SOAR). From July 1994 to July 2000, SOAR served as a facility to accomplish aerogeophysical research in Antarctica under an agreement between the University of Texas at Austin and the National Science Foundation's Office of Polar Programs (NSF/OPP). SOAR operated and maintained an aerogeophysical instrument package that consists of an ice-penetrating radar sounder, a laser altimeter, a gravimeter and a magnetometer that are tightly integrated with each other as well as with the aircraft's avionics and power packages. An array of aircraft and ground-based GPS receivers supported kinematic differential positioning using carrier-phase observations. SOAR activities included: developing aerogeophysical research projects with NSF/OPP investigators; upgrading of the aerogeophysical instrumentation package to accommodate new science projects and advances in technology; fielding this instrument package to accomplish SOAR-developed projects; and management, reduction, and analysis of the acquired aerogeophysical data. In pursuit of 9 NSF-OPP funded aerogeophysical research projects (involving 14 investigators from 9 institutions), SOAR carried out six field campaigns over a six-year period and accomplished approximately 200,000 line kilometers of aerogeophysical surveying over both East and West Antarctica in 377 flights. This award supports SOAR to undertake a one year and 8 month program of aerogeophysical activities that are consistent with continuing U.S. support for geophysical research in Antarctica. - SOAR will conduct an aerogeophysical campaign during the 200/01 austral summer to accomplish surveys for two SOAR-developed projects: "Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Studies" (Co-PI's Bell and Studinger, LDEO); and "Collaborative Research: Seismic Investigation of the Deep Continental Structure Across the East-West Antarctic Boundary" (Co-PI's Weins, Washington U. and Anandakrishnan, U. Alabama). After configuration and testing of the survey aircraft in McMurdo, SOAR will conduct survey flights from an NSF-supported base adjacent to the Russian Station above Lake Vostok and briefly occupy one or two remote bases on the East Antarctic ice sheet. - SOAR will reduce these aerogeophysical data and produce profiles and maps of surface elevation, bed elevation, gravity and magnetic field intensity. These results will be provided to the respective project investigators within nine months of conclusion of field activities. We will also submit a technical manuscript that describes these results to a refereed scientific journal and distribute these results to appropriate national geophysical data centers within approximately 24 months of completion of field activities. - SOAR will standardize all previously reduced SOAR data products and transfer them to the appropriate national geophysical data centers by the end of this grant. - SOAR will convene a workshop to establish a community consensus for future U.S. Antarctic aerogeophysical research. This workshop will be co-convened by Ian Dalziel and Richard Alley and will take place during the spring of 2001. - SOAR will upgrade the existing SOAR in-field quality control procedures to serve as a web-based interface for efficient browsing of many low-level SOAR data streams. - SOAR will repair and/or refurbish equipment that was used during the 2000/01 field campaign. Support for SOAR is essential for accomplishing major geophysical investigations in Antarctica. Following data interpretation by the science teams, these data will provide valuable insights to the structure and evolution of the Antarctic continent.
This award supports a project to measure the elemental and isotopic composition of firn air and occluded air in shallow boreholes and ice cores from the WAIS Divide site, the location of a deep ice-coring program planned for 2006-07 and subsequent seasons. The three primary objectives are: 1) to establish the nature of firn air movement and trapping at the site to aid interpretations of gas data from the deep core; 2) to expand the suite of atmospheric trace gas species that can be measured in ice and replicate existing records of other species; and 3) to inter-calibrate all collaborating labs to insure that compositional and isotopic data sets are inter-comparable. The program will be initiated with a shallow drilling program during the 05/06 field season which will recover two 300+m cores and firn air samples. The ice core and firn air will provide more than 700 years of atmospheric history that will be used to address a number of important questions related to atmospheric change over this time period. The research team consists of six US laboratories that also plan to participate in the deep core program. This collaborative research program has a number of advantages. First, the scientists will be able to coordinate sample allocation a priori to maximize the resolution and overlap of records of interrelated species. Second, sample registration will be exact, allowing direct comparison of all records. Third, a coherent data set will be produced at the same time and all PI.s will participate in interpreting and publishing the results. This will insure that the best possible understanding of gas records at the WAIS Divide site will be achieved, and that all work necessary to interpret the deep core is conducted in a timely fashion. The collaborative structure created by the proposal will encourage sharing of techniques, equipment, and ideas between the laboratories. The research will identify impacts of various industrial/agricultural activities and help to distinguish them from natural variations, and will include species for which there are no long records of anthropogenic impact. The work will also help to predict future atmospheric loadings. The project will contribute to training scientists at several levels, including seven undergraduates, two graduate students and one post doctoral fellow.
This project uses cosmogenic nuclide dating and LIDAR studies of surface roughness to understand weathering and landscape evolution in the Dry Valleys of Antarctica. The work focuses on two processes: cryoturbation of frozen soils and the development of patterned, frozen ground on ancient lava flows. The approach includes innovative uses of He3 profiling. Results will also be applied to understanding the glacial history of the Dry Valleys. There are potential applications to understanding the history of the East Antarctic Ice Sheet and the formation of Martian landscapes. The broader impacts include graduate student education. As well, the work may contribute to our understanding of the history of the Antarctic ice sheets, which is important to modeling their behavior during global climate change.
#0125098<br/>Steve Emslie<br/><br/>Occupation History and Diet of Adelie Penguins in the Ross Sea Region<br/><br/>This project will build on previous studies to investigate the occupation history and diet of Adelie penguins (Pygoscelis adeliae) in the Ross Sea region, Antarctica, with excavations of abandoned and active penguin colonies. Numerous active and abandoned colonies exist on the Victoria Land coast, from Cape Adare to Marble Point will be sampled. Some of these sites have been radiocarbon-dated and indicate a long occupation history for Adelie penguins extending to 13,000 years before present (B. P.). The material recovered from excavations, as demonstrated from previous investigations, will include penguin bones, tissue, and eggshell fragments as well as abundant remains of prey (fish bones, otoliths, squid beaks) preserved in ornithogenic (formed from bird guano) soils. These organic remains will be quantified and subjected to radiocarbon analyses to obtain a colonization history of penguins in this region. Identification of prey remains in the sediments will allow assessment of penguin diet. Other data (ancient DNA) from these sites will be analyzed through collaboration with New Zealand scientists. Past climatic conditions will be interpreted from published ice-core and marine-sediment records. These data will be used to test the hypothesis that Adelie penguins respond to climate change, past and present, in a predictable manner. In addition, the hypothesis that Adelie penguins alter their diet in accordance with climate, sea-ice conditions, and other marine environmental variables along a latitudinal gradient will be tested. Graduate and undergraduate students will be involved in this project and a project Web site will be developed to report results and maintain educational interaction between the PI and students at local middle and high schools in Wilmington, NC.
Denitrification is the main process by which fixed nitrogen is lost from ecosystems and the regulation of this process may directly affect primary production and carbon cycling over short and long time scales. Previous investigations of the role of bioactive metals in regulating denitrification in bacteria from permanently ice-covered Lake Bonney in the Taylor Valley of East Antarctica indicated that denitrifying bacteria can be negatively affected by metals such as copper, iron, cadmium, lead, chromium, nickel, silver and zinc; and that there is a distinct difference in denitrifying activity between the east and west lobes of the lake. Low iron concentrations were found to exacerbate the potential toxicity of the other metals, while silver has the potential to specifically inhibit denitrification because of its ability to interfere with copper binding in redox proteins, such as nitrite reductase and nitrous oxide reductase. High silver concentrations might prevent the functioning of nitrous oxide reductase in the same way that simple copper limitation does, thereby causing the buildup of nitrous oxide and resulting in a nonfunctional nitrogen cycle. Other factors, such as oxygen concentration, are likely also to affect bacterial activity in Lake Bonney. This project will investigate silver toxicity, general metal toxicity and oxygen concentration to determine their effect on denitrification in the lake by using a suite of "sentinel" strains of denitrifying bacteria (isolated from the lake) incubated in Lake Bonney water and subjected to various treatments. The physiological responses of these strains to changes in metal and oxygen concentration will be quantified by flow cytometric detection of single cell molecular probes whose sensitivity and interpretation have been optimized for the sentinel strains. Understanding the relationships between metals and denitrification is expected to enhance our understanding of not only Lake Bonney's unusual nitrogen cycle, but more generally, of the potential role of metals in the regulation of microbial nitrogen transformations.<br/><br/>The broader impacts of this work include not only a better understanding of regional biogeochemistry and global perspectives on these processes; but also the training of graduate students and a substantial outreach effort for school children.
This award supports a project to perform ice radar studies of bedrock topography and internal layers along the second US ITASE traverse corridor extending from Taylor Dome to South Pole on the inland side of the Transantarctic Mountains. The radar will provide information immediately available in the field on ice thickness and internal layer structure to help in the selection of core sites as the traverse proceeds. These data will also be useful in locating additional radar and surface studies to characterize the drainage divides between major outlet glaciers flowing through the mountains and possible changes in them through time. Information from the radar on bed roughness and basal reflectivity, together with images of internal layer deformation will enable us to study changes in the character of ice flow as tributaries merge to trunk flow and velocities increase. Areas where wind scour and sublimation have brought old ice close to the surface will be investigated. Based on our results from the first ITASE traverse, it is also likely that there will be findings of opportunity, phenomena we have not anticipated that are revealed by the radar as the result of a discovery-based traverse. The interdisciplinary science goals of US ITASE are designed to accommodate a variety of interactive research programs and data collected are available to a broad scientific community. US ITASE also supports an extensive program of public outreach and the education and training of future scientists will be central to all activities of this proposal. St. Olaf College is an undergraduate liberal arts institution that emphasizes student participation in scientific research. This award supports two undergraduate students as well as a research associate and a graduate student who will be part of the US ITASE field team.
This award supports work on trapped gases in Antarctic and other ice cores for paleoenvironmental and chronological purposes. The project will complete a ~ 100,000 year, high-resolution record of atmospheric methane from the Siple Dome ice core and use these data to construct a precise chronology for climate events recorded by the Siple Dome record. In addition, the resolution of the GISP2 (Greenland) ice core record will be increased in some critical intervals to help with the Siple Dome chronology and that of future ice cores. Finally, an upgrade to the analytical capabilities of the laboratory, including increasing precision and throughput and decreasing sample size needed for ice core methane measurements will be an important goal of this work. The proposed work will contribute to the understanding of the timing of rapid climate change in the Northern and Southern hemispheres during the last glacial period, the evolution of the global methane budget in the late Quaternary, and the late Quaternary climate history of Antarctica. It will also improve our ability to generate methane records for future ice coring projects, and inform and enrich the educational and outreach activities of our laboratory.
This award supports a project to collect and develop high-resolution ice core records from the Dry Valleys region of Antarctica, and provide interpretations of interannual to decadal-scale climate variability during the last 2000 years (late Holocene). The project will test hypotheses related to ocean/atmosphere teleconnections (e.g., El Nino Southern Oscillation, Antarctic Oscillation) that may be responsible for major late Holocene climate events such as the Little Ice Age in the Southern Hemisphere. Conceptual and quantitative models of these processes in the Dry Valleys during the late Holocene are critical for understanding recent climate changes, and represent the main scientific merit of the project. We plan to collect intermediate-length ice cores (100-200m) at four sites along transects in Taylor Valley and Wright Valley, and analyze each core at high resolution for stable isotopes (d18O, dD), major ions (Na+, Mg2+, Ca2+, K+, NH4+, Cl-, NO3-, SO42-, MSA), and trace elements (Al, Fe, S, Sr, B). A suite of statistical techniques will be applied to the multivariate glaciochemical dataset to identify chemical associations and to calibrate the time-series records with available instrumental data. Broader impacts of the project include: 1) contributions to several ongoing interdisciplinary Antarctic research programs; 2) graduate and undergraduate student involvement in field, laboratory, and data interpretation activities; 3) use of project data and ideas in several UMaine courses and outreach activities; and 4) data dissemination through peer-reviewed publications, UMaine and other paleoclimate data archive websites, and presentations at national and international meetings.
This award supports a three year project to develop the tools required to interpret complex patterns of flow features on the Ross Ice Shelf, which record the discharge history the ice streams flowing east off of the West Antarctic Ice Sheet. This work builds on previous research that used flow features visible in satellite image mosaics and numerical models of ice shelf flow to detect changes in grounding zone dynamics and redirection of ice stream outlets over hundreds of years. Recently observed changes on Whillans Ice Stream fit within this framework. The pattern of redirection is driven by the influence of rapid downstream thinning on the basal thermal gradient in the ice and associated "sticky spot" (ice rise) formation. In pursuing this work, the investigators recognized other records of discharge variation on the shelf that can be used to build a more complete history and understanding of ice-stream discharge variability. The intellectual merit of the proposed work lies in the fact that these records, including fracture patterns and spatial variation in ice thickness, when understood in the proper context, will yield quantitative information about the timing and dynamics of ice stream slowdowns, grounding line retreat, and the relative history of discharge between the ice streams. New tools will help further constrain this history. The laser altimeter on NASA's IceSAT has improved our knowledge of the surface elevation of Antarctic ice. IceSAT surface elevations provide a high-resolution map of ice-shelf thickness that, along with provenance maps from ice-shelf image mosaics, will be used to estimate the volumes of ice involved in past ice-stream discharge events (slowdowns, redirections, and so on). This project will develop new numerical models for fracture propagation; these will allow past variations in ice-shelf stress state to be investigated. Together, the dynamic and volume-flux histories will provide a powerful set of observations for understanding past variations in ice stream discharge and the underlying physical processes. The broader impacts of this project center on how it contributes to the ability to estimate West Antarctic contributions to global sea level rise and to answer outstanding questions about the causes of millennial and longer-scale evolution of ice streams. This work will provide a history of the most complex record of ice discharge known. In addition to the incorporation of this research into graduate student advising and normal teaching duties, the investigators are involved in other avenues of civic engagement and education. Outreach to high school students and the community at large is promoted on an annual basis by the investigators at both institutions. New outreach projects at Portland State University are developed with the assistance of researchers with expertise in student learning and achievement in science and mathematics. The collaborative research team includes two glaciologists with experience in the pairing of high resolution satellite imagery and a variety of ice-flow models and a geologist whose focus is the mechanics of rock deformation.
This award supports the study of the drift and break-up of Earth's largest icebergs, which were recently released into the Ross Sea of Antarctica as a result of calving from the Ross Ice Shelf. The scientific goals of the study are to determine the physics of iceberg motion within the dynamic context of ocean currents, winds, and sea ice, which determine the forces that drive iceberg motion, and the relationship between the iceberg and geographically and topographically determined pinning points on which the iceberg can ground. In addition, the processes by which icebergs influence the local environments (e.g., sea ice conditions near Antarctica, access to penguin rookeries, air-sea heat exchange and upwelling at iceberg margins, nutrient fluxes) will be studied. The processes by which icebergs generate globally far-reaching ocean acoustic signals that are detected within the global seismic (earthquake) sensing networks will also be studied. A featured element of the scientific research activity will be a field effort to deploy automatic weather stations, seismometer arrays and GPS-tracking stations on several of the largest icebergs presently adrift, or about to be adrift, in the Ross Sea. Data generated and relayed via satellite to home institutions in the Midwest will motivate theoretical analysis and computer simulation; and will be archived on an "iceberg" website (http://amrc.ssec.wisc.edu/amrc/iceberg.html) for access by scientists and the general public. At the most broad level, the study is justified by the fact that icebergs released by the Antarctic ice sheet represent the largest movements of fresh water within the natural environment (e.g., several of the icebergs to be studied, B15, C19 and others calved since 2000 CE, represent over 6000 cubic kilometers of fresh water-an amount roughly equivalent to 100 years of the flow of the Nile River). A better understanding of the impact of iceberg drift through the environment, and particularly the impact on ocean stratification and mixing, is essential to the understanding of the abrupt global climate changes witnessed by proxy during the ice age and of concern under conditions of future greenhouse warming. On a more specific level, the study will generate a knowledge base useful for the better management of Antarctic logistical resources (e.g., the shipping lanes to McMurdo Station) that can occasionally be influenced by adverse effects icebergs have on sea ice conditions.
This award supports a project to test whether Kamb Ice Stream (formerly Ice Stream C (ISC)), an ice stream<br/>that is thought to have stopped ~150 years ago, may be already in the process of restarting. If yes, it will help establish what is the rate of ice stream reactivation and what mechanisms are controlling this rate. If there is no evidence for ongoing ice stream reactivation, the physical controls that are preventing it will be examined and alternative scenarios for near-future evolution of this ice stream will be explored. One such scenario is an increase in ice diversion toward the neighboring Whillans Ice Stream. Such diversion may help prevent a complete stoppage of Whillans Ice Stream,which has been slowing down for at least the last 24 years. This project will consist of two components: (1) field observations of bed properties,geometry of internal radar reflectors, as well as surface strain rates and velocity/topography changes using Ice-Penetrating Radar and differential Global Positioning System, (2) numerical modeling study of near future(~100-1000 years) evolution of Kamb Ice Stream. The field component will be focused on the bulge-to-trunk transition, which is located at the present time just downstream of the so-called camp UpC. Reactivation of Kamb Ice Stream should be reflected in a downstream migration of the bulge-trunk transition at possibly high rates (bulge migration rates of ~km/yr occur on surging mountain glaciers). The modeling<br/>component will be used to generate predictions regarding the near-future behavior of Kamb Ice Stream. This project will provide training opportunities for at least two undergraduate students (per year) at St. Olaf College and for one<br/>undergraduate student (per year) at UCSC. This collaboration will bring together scientists from three different types of US institutions: (1) a liberal arts college (St.Olaf College), (2) a public research university (UCSC) and (3) a NASA research laboratory (JPL). The project will also help build a new glaciological research program at UCSC. Project results will be incorporated into undergraduate and graduate courses at UCSC and will be made available<br/>to the general public and educators through downloadable graphics and animations posted on the research website of the UCSC PI. Field data resulting from the project will be posted in the Antarctic Glaciological Data Center for use by other investigators.
This award supports a comprehensive study of land-based polar ice cliffs. Through field measurements, modeling, and remote sensing, the physics underlying the formation of ice cliffs at the margin of Taylor Glacier in the McMurdo Dry Valleys will be investigated. At three sites, measurements of ice deformation and temperature fields near the cliff face will be combined with existing energy balance data to quantify ice-cliff evolution over one full seasonal cycle. In addition, a small seismic network will monitor local "ice quakes" associated with calving events. Numerical modeling, validated by the field data, will enable determination of the sensitivity of ice cliff evolution to environmental variables. There are both local and global motivations for studying the ice cliffs of Taylor Glacier. On a global scale, this work will provide insight into the fundamental processes of calving and glacier terminus A better grasp of ice cliff processes will also improve boundary conditions required for predicting glaciers' response to climate change. Locally, the Taylor Glacier is an important component of the McMurdo Dry Valleys landscape and the results of this study will aid in defining ecologically-important sources of glacial meltwater and will lead to a better understanding of moraine formation at polar ice cliffs. This study will help launch the career of a female scientist, will support one graduate student, and provide experiential learning experiences for two undergraduates. The post-doctoral researcher will also use this research in the curriculum of a wilderness science experiential education program for high school girls.
Because of extreme isolation of the Antarctic continent since the Early Oligocene, one expects a unique invertebrate benthic fauna with a high degree of endemism. Yet some invertebrate taxa that constitute important ecological components of sedimentary benthic communities include more than 40 percent non-endemic species (e.g., benthic polychaetes). To account for non-endemic species, intermittent genetic exchange must occur between Antarctic and other (e.g. South American) populations. The most likely mechanism for such gene flow, at least for in-faunal and mobile macrobenthos, is dispersal of planktonic larvae across the sub- Antarctic and Antarctic polar fronts. To test for larval dispersal as a mechanism of maintaining genetic continuity across polar fronts, the scientists propose to (1) take plankton samples along transects across Drake passage during both the austral summer and winter seasons while concurrently collecting the appropriate hydrographic data. Such data will help elucidate the hydrographic mechanisms that allow dispersal across Drake Passage. Using a molecular phylogenetic approach, they will (2) compare seemingly identical adult forms from Antarctic and South America continents to identify genetic breaks, historical gene flow, and control for the presence of cryptic species. (3) Similar molecular tools will be used to relate planktonic larvae to their adult forms. Through this procedure, they propose to link the larval forms respectively to their Antarctic or South America origins. The proposed work builds on previous research that provides the basis for this effort to develop a synthetic understanding of historical gene flow and present day dispersal mechanism in South American/Drake Passage/Antarctic Peninsular region. Furthermore, this work represents one of the first attempts to examine recent gene flow in Antarctic benthic invertebrates. Graduate students and a postdoctoral fellow will be trained during this research.
Although the cold ocean ecosystems comprise seventy-two percent of the biosphere on Earth by volume, they remain sparsely inhabited and relatively unexploited, particularly in terms of metazoan phyla. Consequently, the few animals that can exist at this border of intracellular freezing represent ideal systems for exploring genomic-level processes of environmental adaptations. Understanding life at a margin of the biosphere is likely to convey significant insights into the essential genomic processes necessary for survival under intense selection pressures. This study of adaptive mechanisms in genomic networks focuses on an experimental system that faces a formidable challenge for viability at low water temperatures: embryonic development at sea water temperatures of -1.8 o C in two Antarctic echinoderms, the sea star Odontaster validus and the sea urchin Sterechinus neumayeri. The project strategy will quantify temperature effects on gene expression and protein turnover networks during early development using a Bayesian network analysis to identify clusters of genes and proteins whose expression levels are associated in fixed, synergistic interactions. Ultimately, there is a simple question to be addressed: Is it more or less difficult (complex) for an embryo to develop in an extreme environment? To answer this question, the research plan will decipher network topologies and subnet structuring to uncover gene connectivity patterns associated with embryo development in this polar environment. This is the new area of Environmental Genomics that the PI will explore by expanding his research experience into computational network analyses. Overall, there is a significant need for integrative biologists in the future development of environmental sciences, particularly for the application of genomic-scale technologies to answer ecological-scale questions. The educational goals of this CAREER proposal are focused at two levels in terms of interesting young students in the developing field of environmental genomics: 1) increasing the racial diversity of the scientists attracted to environmental research, and 2) increasing the awareness of career opportunities within environmental research.<br/>These educational objectives are incorporated into the research plan to engage students with the excitement of working in an extreme environment such as Antarctica and to interest them in the insights that genome-level research can reveal about how organisms are adapted to specific habitats. Working in a remote, extreme environment such as Antarctica is always a challenge. However, the adventurous nature of the work can be utilized to establish educational and outreach components of high interest to both undergraduate students and the public in general. The proposed plan will bring the experience of working in Antarctica to a larger audience through several means. These include the following: the project theme of environmental genomics will be incorporated into a new Bioinformatics curriculum currently being developed at the University of Delaware; an intern program will be implemented to involved minority undergraduate students in summer research in the United States and then to bring the students to Antarctica to participate in the research; and a K-12 education program will bring the excitement of working in Antarctica to the classrooms of thousands of children (U.S. and international) through a program produced with the Marine Science Public Education Office at the University of Delaware.
This award supports a project to use three downhole instruments - an optical logger; a<br/>miniaturized biospectral logger at 420 nm (miniBSL-420); and an Acoustic TeleViewer (ATV) - to log a 350-m borehole at the WAIS Divide drill site. In addition, miniBSL-224 (at 224 nm) and miniBSL-420 will scan ice core sections at NICL to look for abrupt climate changes, volcanic ash, microbial concentrations, and correlations among them. Using the optical logger and ATV to log bubble number densities vs depth in a WAIS Divide borehole, we will detect annual layers, from which we can establish the age vs depth relation to the bottom of the borehole that will be available during the three-year grant period. With the same instruments we will search for long-period modulation of bubble and dust concentrations in order to provide definitive evidence for or against an effect of long-period variability of the sun or solar wind on climate. We will detect and accurately date ash layers in a WAIS Divide borehole. We will match them with ash layers that we previously detected in the Siple Dome borehole, and also match them with sulfate and ash layers found by others at Vostok, Dome Fuji, Dome C, and GISP2. The expected new data will allow us to extend our recent study which showed that the Antarctic record of volcanism correlates with abrupt climate change at a 95% to >99.8% significance level and that the volcanic signatures at bipolar locations match at better than 3 sigma during the interval 2 to 45 kiloyears. The results to be obtained during this grant period will position us to extend an accurate age vs depth relation and volcano-climate correlations to earlier than 150 kiloyears ago in the future WAIS Divide borehole to be drilled to bedrock. Using the miniBSLs to identify biomolecules via their fluorescence, we will log a 350-m borehole at WAIS Divide, and we will scan selected lengths of ice core at NICL. Among the biomolecules the miniBSLs can identify will be chlorophyll, which will provide the first map of aerobic microbes in ice, and F420, which will provide the first map of methanogens in ice. We will collaborate with others in relating results from WAIS Divide and NICL ice cores to broader topics in climatology, volcanology, and microbial ecology. We will continue to give broad training to undergraduate and graduate students, to attract underrepresented minorities to science, engineering, and math, and to educate the press and college teachers. A deeper understanding of the causes of abrupt climate change, including a causal relationship with strong volcanic eruptions, can enable us to understand and mitigate adverse effects on climate.
This award supports a two-year collaborative effort to more fully understand the climatic history and physical properties of the Siple Dome, Antarctica deep ice core, to develop a new paleoclimatic technique based on bubble number-density, and to improve the U.S. capability to analyze ice-core physical properties rapidly and accurately. The Siple Dome ice core from West Antarctica is yielding important paleoclimatic insights, but has proven more difficult than some cores to interpret owing to the large iceflow effects on the paleoclimatic record. Paleoclimatic indicators that do not rely on iceflow corrections thus would be of value. The bubble number-density offers one such indicator, because it preserves information on mean temperature and accumulation rate during the transformation of firn to ice. We will focus on thin-section characteristics that are important to ice flow and the interpretation of the ice-core history, such as c-axis fabrics, and will use indicators that we have been developing, such as the correlation between grain elongation and the c-axis orientation, to gain additional information. To achieve this quickly and accurately, and to prepare for future projects, we propose to upgrade the automatic caxis- fabric analyzer that Wilen has built and housed at the National Ice Core Laboratory. The intellectual merit of the proposed activity includes improved estimates of paleoclimatic conditions in an important region, improved understanding of a new paleoclimatic research tool, greater understanding of ice flow and of linkages to physical properties, and a better instrument for further U.S. research in ice-core physical properties at the National Ice Core Laboratory. The broader impacts resulting from the proposed activity include providing better understanding of abrupt climate change and of ice flow, which eventually should help policy-makers, as well as an improved U.S. capability to analyze ice cores. The proposed research will assist the studies of two promising young scientists. Results of the research will be incorporated into courses and public outreach reaching at least hundreds or thousands of people per year.
9980452 Harvey This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for continuation of the Antarctic Search for Meteorites (ANSMET). Since 1976, ANSMET has recovered more than 10,000 meteorite specimens from locations along the Transantarctic Mountains. This award supports continued recovery of Antarctic meteorites during six successive austral summer field seasons, starting with the 2000-2001 season and ending with the 2005-2006 season. Under this project, systematic searches for meteorite specimens will take place at previously discovered stranding surfaces, and reconnaissance work will be conducted to discover and explore the extent of new areas with meteorite concentrations. ANSMET recovery teams will deploy by air to locations in the deep field for periods of 5-7 weeks. While at the meteorite stranding surface, field team members will search the ice visually, traversing on foot or on snowmobile. Specimens will be collected under the most sterile conditions practical and samples will remain frozen until returned to the Johnson Space Center (JSC) in Houston, Texas. At the JSC, initial characterization and sample distribution to all interested researchers takes place under the auspices of an interagency agreement between NSF, NASA, and the Smithsonian Institution. The impact of ANSMET has been substantial and this will continue under this award. The meteorites recovered by ANSMET are the best and most reliable source of new, non-microscopic extraterrestrial material, providing essential "ground-truth" concerning the materials that make up the asteroids, planets and other bodies of our solar system. The system for their characterization and distribution is unparalleled and their subsequent study has fundamentally changed our understanding of the solar system. ANSMET meteorites have helped researchers explore the conditions that were present in the nebula from which our solar system was born 4.556 billion years ago and provided samples of asteroids, ranging from primitive bodies unchanged since the formation of the solar system to complex, geologically active miniature planets. ANSMET samples proved, against the conventional wisdom, that some meteorites actually represent planetary materials, delivered to us from the Moon and Mars, completely changing our view of the geology of those bodies. ANSMET meteorites have even generated a new kind of inquiry into one of the most fundamental scientific questions possible; the question of biological activity in the universe as a whole. Over the past twenty years, ANSMET meteorites have economically provided a continuous and readily available supply of extraterrestrial materials for research, and should continue to do so in the future.
This Small Grant for Exploratory Research supports development of an innovative dating technique for application to ancient, relict ice bodies buried in the Western Dry Valleys of Antarctica. Dating of surrounding sediments and volcanic ashes indicates that these ice bodies may be up to six million years in age, offering the oldest direct atmospheric and climate records available. This SGER is a proof of concept to develop a new dating technique using beryllium (10Be) of cosmogenic origin from the atmosphere and extraterrestrial helium (3He) contained in interplanetary dust particles. Both tracers are deposited to the Earth's surface and likely incorporated into the ice matrix at constant rates. Radioactive decay of 10Be versus the stable extraterrestrial 3He signal may offer way to directly measure the age of the ice.<br/><br/>The broader impacts of this work are development of a new analytical technique that may improve society's understanding of the potential for global climate change from the perspective of the deep time record.
This project will determine the age, origin, and climatic significance of buried ice found in the western Dry Valleys of Antarctica. Previous studies indicate that this ice may be over a million years in age, making it by far the oldest ice yet discovered on Earth. An alternative view is that this ice is represents recently frozen groundwater. To distinguish between these hypotheses and characterize the ice, we are undertaking an interdisciplinary research program focused on: 1) understanding the surface processes that permit ice preservation; and 2) testing the efficacy of cosmogenic nuclides and 40Ar/39Ar analyses in dating both tills and volcanic ash associated with the ice. Our plan calls for the analysis of a minimum of six cosmogenic depth profiles to determine if and how cryoturbation reworks sublimation tills and assess the average rate of ice sublimation for three debris-covered glaciers. We will model through finite- element analyses at least three buried glaciers and compare flow rates with those based on radiometric dating of surface deposits. Ten ice cores will also be collected for measurement of d18O, dD, ice fabric, ice texture, total gas content/composition. Better understanding of surface processes above buried ice will permit researchers to gain access to a record of atmospheric and climate change that could well cover intervals that predate Quaternary time. The work may also add valuable insight into Martian history. In terms of broader impacts, we have recruited three female PhD students and developed interdisciplinary collaborations among geochemists at Columbia University, planetary geologists at Brown University, geomorphologists at Boston University, and numerical modelers at the University of Maine.
This award supports the development of a new laboratory capability in the U.S. to measure CO2 in ice cores and investigate millennial-scale changes in CO2 during the last glacial period using samples from the Byrd and Siple Dome ice cores. Both cores have precise relative chronologies based on correlation of methane and the isotopic composition of atmospheric oxygen with counterpart records from Greenland ice cores. The proposed work will therefore allow comparison of the timing of CO2 change, Antarctic temperature change, and Greenland temperature change on common time scales. Such comparisons are vital for evaluating models that explain changes in atmospheric CO2. The techniques being developed will also be available for future projects, specifically the proposed Inland WAIS ice core, for which a highly detailed CO2 record is a major objective, and studies greenhouse and other atmospheric gases and their isotopic composition for which dry extraction is necessary (stable isotopes in CO2, for example). There are many broad impacts of the proposed work. Ice core greenhouse gas records are central contributions of paleoclimatology to research and policy-making concerning global change. The proposed work will enhance those contributions by improving our understanding of the natural cycling of the most important greenhouse gas. It will contribute to the training of a postdoctoral researcher, who will be an integral part of an established research group and benefit from the diverse paleoclimate and geochemistry community at OSU. The PI teaches major and non-major undergraduate and graduate courses on climate and global change. The proposed work will enrich those courses and the courses will provide an opportunity for the postdoctoral researcher to participate in teaching by giving guest lectures. The PI also participates in a summer climate workshop for high school teachers at Washington State University and the proposed work will enrich that contribution. The extraction device that is built and the expertise gained in using it will be resources for the ice core community and available for future projects. Data will be made available through established national data center and the equipment designs will also be made available to other researchers.
9725882 Raymond This award is for support for a program of surface-based radio echo sounding to examine the geometry of the internal layering and the presence or absence of thawed zones outside the margins of active Ice Streams B and E and across the flow band feeding Ice Stream D. Melting in the marginal shear zone and/or on the bed outside an ice stream relates to the amount of support of the ice stream from the sides compared to the bed and the conditions that limit expansion of its width. Radar observations will be extended over the crest of adjacent inter-ice-stream ridges (B/C and D/E) and areas next to the flow band in the onset of D. The purpose is to examine internal layering indicative of the histories of these areas adjacent to ice streams and to determine whether ice streams have expanded into these presently stable areas in the past. These goals concerning the physical controls and history of ice stream width relate to how the discharge of ice streams has changed in the past and could change in the future to affect sea level.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a study to investigate paleoenvironmental conditions during the late Paleozoic and Mesozoic in central interior Antarctica. The 4 km thick sequence of sedimentary rocks, known as the Beacon Supergroup, in the Beardmore Glacier area records 90 million years of Permian through Jurassic history of this high-paleolatitude sector of Gondwana. It accumulated in a foreland basin with a rate of subsidence approximately equal to the rate of deposition. The deposits have yielded diverse vertebrate fossils, in situ fossil forests, and exceptionally well preserved plant fossils. They give a unique glimpse of glacial, lake, and stream/river environments and ecosystems and preserve an unparalleled record of the depositional, paleoclimatic, and tectonic history of the area. The excellent work done to date provides a solid base of information on which to build understanding of conditions and processes.<br/><br/>This project is a collaborative study of this stratigraphic section that will integrate sedimentologic, paleontologic, and ichnologic observations to answer focused questions, including: (1) What are the stratigraphic architecture and alluvial facies of Upper Permian to Jurassic rocks in the Beardmore area?; (2) In what tectonostratigraphic setting were these rocks deposited?; (3) Did vertebrates inhabit the cold, near-polar, Permian floodplains, as indicated by vertebrate burrows, and can these burrows be used to identify, for the first time, the presence of small early mammals in Mesozoic deposits?; and (4) How did bottom-dwelling animals in lakes and streams use substrate ecospace, how did ecospace use at these high paleolatitudes differ from ecospace use in equivalent environments at low paleolatitudes, and what does burrow distribution reveal about seasonality of river flow and thus about paleoclimate? Answers to these questions will (1) clarify the paleoclimatic, basinal, and tectonic history of this part of Gondwana, (2) elucidate the colonization of near-polar ecosystems by vertebrates, (3) provide new information on the environmental and paleolatitudinal distributions of early mammals, and (4) allow semi-quantitative assessment of the activity and abundance of bottom-dwelling animals in different freshwater environments at high and low latitudes. In summary, this project will contribute significantly to an understanding of paleobiology and paleoecology at a high latitude floodplain setting during a time in Earth history when the climate was much different than today.
0125610<br/>Waddington<br/><br/>This award provides three years of funding to study the transition from slow inland flow to fast ice stream flow by making use of a suite of geophysical measurements that have been made near the onset region of ice stream D in West Antarctica. These data provide a unique opportunity to develop and validate glaciological models of the controlling processes in ice stream onset zones. Important processes to quantify are motion at the bed and deformation in the ice. Previous analyses indicate that the controlling resistive forces shift from the bed to the sides during the transition from slow inland flow to fast, streaming flow. Model sensitivity analyses will be used to investigate the relative importance of feedbacks between basal processes and ice deformation in the transition from inland to ice stream flow. Model experiments will determine what factors control the location of the onset of streaming flow, and how that location might migrate when conditions at the bed, or along the flow direction, changes over time. The overall goal of this work is to improve understanding of the evolution of the WAIS drainage system. This study is a first step towards understanding the physics that govern the transition from slow inland flow to fast streaming flow.
This award supports a science management office for a pilot ice-core drilling and analysis program to test the feasibility of obtaining well-dated, high-resolution isotope and chemistry records from East Antarctica. Shallow ice cores will be obtained from two locations: 1) ~100 km from South Pole towards the Pole of Inaccessibility, as an extension of the Byrd Station-to-South Pole ITASE traverse [International Trans Antarctic Scientific Expedition]; 2) at Taylor Dome, near the original deep coring site, and (3) possibly at AGO 3 and AGO 4 as part of a logistics traverse to these sites. All of the cores collected will be sampled at very high resolution (~1/2 cm) and analyzed for major ions. Results from this calibration work, along with those from another project that is analyzing stable isotopes will be used to help plan a program of larger scope, with the objective of mapping the spatial expression of climate variability in East Antarctica. Funds are also provided to organize a community workshop for coordination of the second phase of US ITASE and for one workshop per year for two years dedicated to writing and preparation of scientific papers from phase one of US ITASE. In addition, route selection activities for the follow-on traverse activities in East Antarctica will be conducted using satellite image mapping. A summary document will be produced and made available to the community to help with planning of related field programs (e.g. deep ice radar, firn radar profiling, atmospheric chemistry, ice coring, snow surface properties for satellite observations, ice surface elevation and mass balance).
This award is for support for a three year project to measure the vertical strain rate as a function of depth at two sites on Siple Dome Antarctica. Ice flow near a divide such as Siple Dome is unique in that it is predominantly vertical. As a consequence, the component of ice deformation in the vertical direction, the "vertical strain rate" is dominant. Its measurement is therefore important for the calibration of dynamic models of ice flow. Two different, relatively new, high resolution systems for its measurement in hot water drilled holes will be employed. The ice flow model resulting from the measurements and flow law determination will be used to interpret the shapes of radar internal layering in terms of the dynamic history and accumulation patterns of Siple Dome over the past 10,000 years. The resulting improved model will also be applied to the interpretation of annual layers thicknesses (to produce annual accumulation rates) and borehole temperatures from the ice core to be drilled at Siple Dome during the 1997/98 field season. The results should permit an improved analysis of the ice core, relative to what was possible at recent coring sites in central Greenland. This is a collaborative project between the University of Alaska, the University of California, San Diego and the University of Washington.
This award supports a project to significantly improve our understanding of how Taylor Glacier flows and responds to climate changes. Taylor Glacier drains the Taylor Dome region of the East Antarctic Ice Sheet and terminates in Taylor Valley, one of the Dry Valleys of Victoria Land. It provides a crucial and unique link between two intensively studied Antarctic environments: the Taylor Dome, from which a 130 kyr ice core paleoclimate record has recently been extracted, and the Dry Valleys, a pivotal Long-Term Ecological Research (LTER) site and a focus of research on geomorphology and glacial geology. The proposed work will thus make an important contribution to ongoing efforts to exploit the Taylor Dome - Dry Valleys system to build a uniquely comprehensive view of regional long-term environmental changes. The proposed work has two complementary components: field research and numerical modelling. Two field seasons will be used to measure velocity, surface strain rate, mass balance, ice thickness, glacier bed reflectance, and subglacial topography, along a nearly complete longitudinal transect of the Taylor Glacier, and along select cross-valley transects. This information will be used to constrain numerical models of ice and heat flow for the Taylor Dome - Taylor Glacier system. These calibrated models will be used to analyze the time-dependent response of the Taylor Glacier to climate changes. The synthesis of results will be aimed to improve understanding of the glacial geomorphology of Taylor Valley, and to illuminate impacts on the Taylor Valley lakes ecosystem. The project will have a major role in furthering the careers of a doctoral-level graduate student and a post-doctoral researcher.
Kanagaratnam, Pannirselvam; Braaten, David; Bauer, Rob
No dataset link provided
This award supports a project to build and test a 12-18 GHz radar system with a plane wave antenna. This is a wideband radar operating over a frequency range of 12 to 18 GHz to detect near-surface internal firn layers of the ice sheet with better than 10 cm resolution to a depth of approximately 7 m. These measurements will allow determination of spatially continuous snow accumulation rate in the firn, which would be useful along a traverse and is of critical importance to the validation of CryoSat and ICESAT satellite missions aimed at assessing the current state of mass balance of the polar ice sheets. The antenna system planned for the radar is relatively compact, and will be located on the sledge carrying the radar systems. The broad scientific focus of this project will be to investigate important glacial processes relevant to ice sheet mass balance. The new radar will allow the characterization (with high depth resolution) of the spatial variability of snow accumulation rate along a traverse route for interpreting data from CryoSat and ICESAT missions. As part of this project, we will institute a strong outreach program involving K-12 education and a minority institution of higher education. We currently work closely with the Advanced Learning Technology Program (ALTec) at the University of Kansas to develop interactive, resource-based lessons for use on-line by students of all grade levels, and we will develop new resources related to this project. We currently have an active research and education collaboration with faculty and undergraduate students at neighboring Haskell Indian Nations University, in Lawrence, Kansas, and we will expand our collaboration to include this project.
This award supports a study of the chemical composition of air in the snow layer (firn) in a region of "megadunes" near Vostok station, Antarctica. It will test the hypothesis that a deep "convective zone" of vigorous wind-driven mixing can prevent gas fractionation in the upper one-third of the polar firn layer. In the megadunes, ultralow snow accumulation rates lead to structural changes (large grains, pipes, and cracks) that make the permeability of firn to air movement orders of magnitude higher than normal. The unknown thickness of the convective zone has hampered the interpretation of ice core 15N/14N and 40Ar/36Ar ratios as indicators of past firn thickness, which is a key constraint on the climatically important variables of temperature, accumulation rate, and gas age-ice age difference. Studying this "extreme end-member" example will better define the role of the convective zone in gas reconstructions. This study will pump air from a profile of ~20 depths in the firn, to definitively test for the presence of a convective zone based on the fit of observed 15 N/14N and 40Ar/36Ar to a molecular- and eddy-diffusion model. Permeability measurements on the core and 2-D air flow modeling (in collaboration with M. Albert) will permit a more physically realistic interpretation of the isotope data and will relate mixing vigor to air velocities. A new proxy indicator of convective zone thickness will be tested on firn and ice core bubble air, based on the principle that isotopes of slow-diffusing heavy noble gases (Kr, Xe) should be more affected by convection than isotopes of fast-diffusing N2 . These tools will be applied to a test of the hypothesis that the megadunes and a deep convective zone existed at the Vostok site during glacial periods, which would explain the anomalously low 15N/14N and 40Ar/36Ar in the Vostok ice core glacial periods. The broader impacts of this work include 1) clarification of phase relationships of greenhouse gases and temperature in ice core records, with implications for understanding of past and future climates, 2) education of one graduate student, and 3) building of collaborative relationships with five investigators.
This award supports a collaborative study between South Dakota State University (SDSU) and University of California, San Diego (UCSD) to investigate the oxygen and sulfur isotope composition of sulfates from a number of large volcanic eruptions in the past 1000 years. The project aims to drill a number of shallow ice cores at South Pole and return them to SDSU and UCSD lab for chemical and isotope analysis. Preliminary results from measurements of isotopes in sulfate samples from several volcanic eruptions in Antarctic snow and ice indicate that isotopic composition of volcanic sulfate contains abundant valuable information on atmospheric chemical and dynamic processes that have not been previously investigated. One tentative conclusion is that mass-independently fractionated sulfur isotopes reveal that atmospheric photolysis of sulfur compounds occurs at longer UV wavelengths than those in the Archean atmosphere, possibly reflecting the atmospheric ozone and/or oxygen concentration. This suggests that isotopic composition of atmospheric sulfate may be used to understand the role of UV radiation in sulfur dioxide conversion in the atmosphere and to track the evolution (i.e., oxygenation) of the atmosphere and the origin of life on Earth. Other major research objectives include understanding what impact massive volcanic eruptions have on the oxidative capacity of the atmosphere, what oxidants and mechanisms are involved in the oxidation or conversion of volcanic sulfur dioxide to sulfate in the stratosphere and what isotopic criteria may be used to differentiate ice core signals of stratospheric eruptions from those of tropospheric eruptions. By providing educational and research opportunities to graduate and undergraduate students at both SDSU and UCSD, the proposed project will promote the integration of research and education and contribute to human resource development in science and engineering. The project will contribute to a proposed REU chemistry site program at SDSU. This collaboration will utilize the complementary strengths of both labs and promote exchange between the two institutions. International collaboration will enhance scientific cooperation between France and US.
The summit crater of Mt. Moulton, in West Antarctica, contains a 600-m thick horizontally-exposed section of ice with intercalated tephra layers from nearby Mt Berlin. Argon-40/Argon-39 dating of the thick, near-source tephra indicates that the age of the horizontal ice section ranges between 15,000 and 492,000 years. Thus, the Mt Moulton site offers an unparalleled repository of ancient West Antarctic snow and trapped air that can be used to investigate West Antarctic climate over much of the past 500,000 years. The planar nature and consistent dips of the tephra layers suggests that, although the ice section has thinned, it is otherwise undeformed. The Mt. Moulton site was visited during the 1999/2000 field season, at which time a horizontal ice core representing approximately 400 meters of ice was collected, ranging in age from 15,000 to older than 480,000 years. In addition to this horizontal core, samples of ice at a range of depths were collected in order to test the quality of the climate record in the ice. Forty tephra layers intercalated in the ice were also collected in order to provide chronology for the ice section. The results of this first effort are extremely encouraging. Based on the d?18 O of ice, for example, there is clearly a useable record of past climate at Mt. Moulton extending back beyond 140,000 years. There is work to do, however, to realize the full potential of this horizontal ice core. The elemental and isotopic composition of trapped gases suggest some contamination with modern air, for example. As gas cross-dating of ice cores is the current standard by which climate records are intercompared, we need to understand why and how the gas record is compromised before adding Moulton to our arsenal of ice core paleoclimate records. This award supports a collaborative effort between three institutions with following objectives: 1) to evaluate more thoroughly the integrity of the climatic record through shallow drilling of the blue ice area, as well as the snow field upslope from the blue ice; 2) to improve the radioisotopic dating of specific tephra layers; 3) to obtain baseline information about modern snowfall deposition, mean annual temperature, and wind pumping around the summit of Mt. Moulton; and 4) to study how firn densification differs when surface accumulation changes from net accumulation to net ablation.
This award supports a three-year renewal project to complete measurement of cosmogenic nuclides in the Siple Dome ice core as part of the West Antarctic ice core program. The investigators will continue to measure profiles of Beryllium-10 (half-life = 1.5x10 6 years) and Chlorine-36 (half-life = 3.0x10 5 years) in the entire ice core which spans the time period from the present to about 100 kyr. It will be particularly instructive to compare the Antarctic record with the detailed Arctic record that was measured by these investigators as part of the GISP2 project. This comparison will help separate global from local effects at the different drill sites. Cosmogenic radionuclides in polar ice cores have been used to study the long-term variations in several important geophysical variables, including solar activity, geomagnetic field strength, atmospheric circulation, snow accumulation rates, and others. The time series of nuclide concentrations resulting from this work will be applied to several problem areas: perfecting the ice core chronology, deducing the history of solar activity, deducing the history of variations in the geomagnetic field, and studying the possible role of solar variations on climate. Comparison of Beryllium-10 and Chlorine-36 profiles in different cores will allow us to improve the ice core chronology and directly compare ice cores from different regions of the globe. Additional comparison with the Carbon-14 record will allow correlation of the ice core paleoenvironment record to other, Carbon-14 dated, paleoclimate records.
A 'horizontal ice core' was collected at the Mount Moulton blue ice field in West Antarctica and preliminary analyses of the sample material suggests that a ~500 kyr climate record is preserved in the ice at this site. This award will contribute to the understanding of the Mt Moulton record by assessing the potential for ice-flow induced deformation of the stratigraphic profile. In addition, this award builds on the recognition of blue ice areas as archives of long climate records by conducting reconnaissance studies for a potential horizontal ice core location at the Allan Hills in East Antarctica. The objectives of this project are to contribute to the glaciological understanding of blue ice areas in Antarctica. Ice flow conditions at the Mt Moulton blue ice field will be studied to assess the possibility that the stratigraphic record has been deformed and reconnaissance of a potential horizontal ice core site in the Allan Hills blue ice field will also be accomplished. Short field programs will be undertaken at each location to collect relevant measurements of ice flow and subglacial topography, and to conduct sampling of material that will enable the preservation of the stratigraphic sequences to be assessed.
High latitude deep ice cores contain fundamental records of polar temperatures, atmospheric dust loads (and continental aridity), greenhouse gas concentrations, the status of the biosphere, and other essential properties of past environments. An accurate chronology for these records is needed if their significance is to be fully realized. The dating challenge has stimulated efforts at orbital tuning. In this approach, one varies a timescale, within allowable limits, to optimize the match between a paleoenvironmental property and a curve of insolation through time. The ideal property would vary with time due to direct insolation forcing. It would be unaffected by complex climate feedbacks and teleconnections, and it would give a clean record with high signal/noise ratio. It is argued strongly that the O2/N2 ratio of ice core trapped gases is such a property, and evidence is presented that this property, whose atmospheric ratio is nearly constant, is tied to local summertime insolation. This award will support a project to analyze the O2/N2 ratios at 1 kyr intervals from ~ 115-400 ka in the Vostok ice core. Ancillary measurements will be made of Ar/N2, and Ne/N2 and heavy noble gas ratios, in order to understand bubble close-off fractionation and its manifestation in the Vostok trapped gas record. O2/N2 variations will be matched with summertime insolation at Vostok to achieve a high-accuracy chronology for the Vostok core. The Vostok and other correlatable climate records will then be reexamined to improve our understanding of the dynamics of Pleistocene climate change.
This award supports a program of field surveys of an area within the large, well-developed megadune field southeast of Vostok station. The objectives are to determine the physical characteristics of the firn across the dunes, including typical climate indicators such as stable isotopes and major chemical species, and to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. Field study will consist of surface snowpit and shallow core sampling, ground penetrating radar (GPR) profiling, GPS topographic and ice motion surveys, AWS installation, accumulation/ ablation measurements, subsurface temperature, and firn permeability studies. Field work in two successive seasons is proposed. Continent-wide remote sensing studies of the dunes will be continued, using the new group of instruments that are now, or will shortly be available (e.g., MODIS, MISR, GLAS, AMSR). The earlier study of topographic, passive microwave, and SAR characteristics will be extended, with the intent of determining the relationships of dune amplitude and wavelength to climate parameters, and further development of models of dune formation. Diffusion, ventilation, and vapor transport processes within the dune firn will be modeled as well. A robust program of outreach is planned and reporting to inform both the public and scientists of the fundamental in-situ and remote sensing characteristics of these uniquely Antarctic features will be an important part of the work. Because of their extreme nature, their broad extent, and their potential impact on the climate record, it is important to improve our current understanding of these. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on past terrestrial climate, or to processes active on other planets. Megadunes are likely to represent an end-member in firn diagenesis, and as such, may have much to teach us about the processes involved.
This award supports a detailed laboratory analysis of the mass-independent isotopic composition of processes associated with atmospheric nitrate trapped in the snow pack at the South Pole. The project will specifically test if the oxygen isotopes 16O, 17O, 18O of nitrate can be used to probe the denitrification of the Antarctic stratosphere. Despite decades of research, there are several important issues in Antarctic atmospheric science, which are presently inadequately resolved. This includes quantification over time of the sources of nitrate aerosols. Today, little is known about the past denitrification of the stratosphere in high latitude regions. This lack of knowledge significantly limits our ability to understand the chemical state of ancient atmospheres and therefore evaluate present and past-coupled climate/atmosphere models. The role of nitrogen in environmental degradation is well known. This issue will also be addressed in this proposal. Atmospheric aerosols have now been shown to possess a mass-independent oxygen isotopic content. The proposed research will investigate the stable oxygen isotope ratios of nitrate in Antarctica both collected in real time and from the snow. Two periods of time will be covered. Full year nitrate aerosol collections, with week resolution time horizons, will be performed at the South Pole. Weekly aerosol collections will help us to identify any seasonal trend of the oxygen-17 excess anomaly, and eventually link this anomaly to the denitrification of the Antarctic stratosphere. This data set will also be used to test our assumption that the oxygen isotopic anomaly of nitrate is mainly formed in the stratosphere and is well preserved in the snow pack. If true, we will for the first time resolve an atmospheric signal extracted from a nitrate profile. The snow pit will allow us to see any trend in the data on a multiple decade timescale.
This award supports the analysis, in Antarctic ice cores, of the ozone depleting substances methyl bromide (CH3Br) and methyl chloride (CH3Cl), and the sulfur-containing gas, carbonyl sulfide (OCS). The broad scientific goal is to assess the level and variability of these gases in the preindustrial atmosphere. This information will allow testing of current models for sources and sinks of these gases from the atmosphere, and to indirectly assess the impact of anthropogenic activities on their biogeochemical cycles. Longer-term records will shed light on the climatic sensitivity of the atmospheric burden of these gases, and ultimately on the biogeochemical processes controlling them. These gases are present in ice at parts per trillion levels, and the current database consists entirely of a small number of measurements made in from a shallow ice core from Siple Dome, Antarctica. This project will involve studies of ice core samples from three Antarctic sites: Siple Station, Siple Dome, and South Pole. The sampling strategy is designed to accomplish several objectives: 1) to verify the atmospheric mixing ratios previously observed in shallow Siple Dome ice for OCS, CH3Br, and CH3Cl at sites with very different accumulation rates and surface temperatures; 2) to obtain a well-dated, high resolution record from a high accumulation rate site (Siple Station), that can provide overlap in mean gas age with Antarctic firn air samples; 3) explore Holocene variability in trace gas mixing ratios; and 4) to make the first measurements of these trace gases in Antarctic glacial ice. In terms of broader impact on society, this research will help to provide a stronger scientific basis for policy decisions regulating the production and use of ozone-depleting and climate-active gases. Specifically, the methyl bromide results will contribute to the current debate on the impact of recent regulation (via the Montreal Protocol and its Amendments) on atmospheric levels. Determination of pre-industrial atmospheric variability of ozone-depleting substances will help place more realistic constraints on scenarios used for future projections of stratospheric ozone and its climatic impacts. This research will involve the participation of both graduate and undergraduate students.
9909518 Raymond This award provides support for three years of funding to study the scar-like features that are well-known from the Siple Coast ice stream system in West Antarctica. The objective of the proposed field work is to identify the nature of several as yet unvisited scars, and to further characterize previously-identified margin scars that are poorly dated. Advanced Very High Resolution Radiometer (AVHRR) and Radarsat image data will be used to locate and map the features, and place them in a regional context. The study seeks to describe the recent history of the Siple Coast glaciers and investigate the causes of their changes in configuration. The main investigative tools will be low-frequency RES and high-frequency ground penetrating radar (GPR) profiles to image internal layers and measure depths to buried crevasses or disrupted layering. This, coupled with accumulation rates determined from shallow ice cores, will provide "shutdown" ages for the margin features. The field data will provide input parameters for simple models of ice flow for margins and inter-ice stream ridges during active shearing and after shutdown. This modeling will estimate the initial elevation of a scar at the time of shut down and the corresponding ice stream elevation at that time.
This award supports continued acquisition of high resolution, radar reflection profiles of the snow and ice stratigraphy between core sites planned along traverse routes of the U.S. component of the International<br/>Trans-Antarctic Scientific Expedition (U.S.-ITASE). The purpose is to use the profiles to establish the structure and continuity of firn stratigraphic horizons over hundreds of kilometers and to quantitatively<br/>assess topographic and ice movement effects upon snow deposition. Other objectives are to establish the climatic extent that a single site represents and to investigate the cause of firn reflections. The radar<br/>will also be used to identify crevasses ahead of the traverse vehicles in order to protect the safety of the scientists and support personnel on the traverse. Collaboration with other ITASE investigators will use the radar horizons as continuous isochronic references fixed by the core dating to calculate historical snow accumulation rates. The primary radar system uses 400-MHz (center frequency) short-pulse antennas, which (with processing) gives the penetration of 50-70 meters. This is the depth which is required to exceed the 200-year deposition horizon along the traverse routes. Profiles at 200 MHz will also be recorded if depths greater than 70 meters are of interest. Processing will be accomplished by data compression (stacking) to reveal long distance stratigraphic deformation, range gain corrections to give proper weight to signal amplitudes, and GPS corrections to adjust the records for the present ice sheet topography. Near surface stratigraphy will allow topographic and ice movement effects to be separated. This work is critical to the success of the U.S.-ITASE program.
This award supports a program of radar studies of internal stratigraphy and bedrock topography along the traverses for the U.S. component of the International Trans-Antarctic Scientific Expedition (US ITASE). The radar will provide information immediately available in the field on ice thickness and internal layer structure to help in the selection of core sites as the traverse proceeds. These data will also be useful in siting deeper millennial scale cores planned at less frequent intervals along the traverse, and in the selection of the location for the deep inland core planned for the future. In addition to continuous coverage along the traverse route, more detailed studies on a grid surrounding each of the core locations will be made to better characterize accumulation and bedrock topography in each area. This proposal is complimentary to the one submitted by the Cold Regions Research and Engineering Laboratory (CRREL), which proposes a high frequency radar to examine the shallower portion of the record down to approximately 60 meters, including the presence of near-surface crevasses. The radar proposed herein is most sensitive at depths below 60 meters and can depict deep bedrock and internal layers to a substantial fraction of the ice thickness.
0086997<br/>Truffer<br/><br/>This award supports a two year project to investigate the dynamics of the marginal zone of the Siple Coast ice streams using existing velocity and temperature profiles. The flow and stress fields will be modeled using finite element methods and a thermo-mechanical model will be used to investigate the coupling of the flow and temperature fields. Direct comparison of these models with the observed velocity profiles will lead to estimates of the structure of the margins and the softening of the marginal ice. The distribution of basal and marginal shear stress will be investigated, leading to an estimate of the relative roles of the bed and the margins in the overall force balance of the ice streams.
0135989<br/>Wilen<br/><br/>This is a collaborative proposal by Principal Investigators at the University of Washington and Ohio University. Detailed knowledge about the interactions between micro-structure of ice and its deformation is needed to assess the integrity of stratigraphic layering and the depth-age relationship in ice cores, which is essential for interpreting the paleoclimate record. The Principal Investigators will use micro-structure to study fabric, the orientation distribution of crystal c-axes, and texture, the size and shape of crystals. Numerical modeling of ice deformation is a useful tool in understanding these interactions. Accurate modeling of ice deformation is complicated by factors, such as the fabric, grain size, dynamic recrystallization, stress level, and precise knowledge of initial conditions. For example, ice fabric evolves as the ice is strained and the deformation depends on the fabric. This complicated feedback mechanism must be understood to correctly model ice deformation. In another example, the usual assumption is that the initial fabric is isotropic or random, but there are excellent examples of near-surface ice in the ice cores that are apparently not isotropic. One must know the initial fabric to calculate the deformation rate in ice sheets. Dr. Wilen will combine results of his new automatic fabric analyzer (AFA) with predictions of detailed ice deformation models (Dr. Thorsteinsson) to refine and better constrain such models. The AFA gives new information in thin sections because the precision and number of measured c-axis orientations are greatly improved. The Principal Investigators will analyze existing data and collect new data on fabric and texture from ice cores to address questions regarding near-surface fabric, deformation mechanisms, dynamic recrystallization, and potential sources of layer disturbances. The data will be used to constrain models of fabric evolution and recrystallization processes. With the more refined models, scientists can address different questions and important problems related to ice deformation and ice cores. For example, the recent agreement between the climate records from the Greenland Ice Core Project (GRIP) and Greenland Ice Sheet Project 2 (GISP2) ice cores of the upper-90%, and the disagreement in the lower-10% emphasizes the need to understand and predict the mechanisms and probable depths of disruption in these and future deep ice cores. Evidence suggests that the stratigraphic disturbances arise from the anisotropic nature of ice crystals at a variety of scales. To properly model the deformation of anisotropic ice, the influence of fabric on deformation must be well known.
This award is for support for a program to make high resolution studies of variations in the concentration of methane, the oxygenisotope composition of paleoatmospheric oxygen, and the total gas content of deep Antarctic ice cores. Studies of the concentration and isotopic composition of air in the firn of the Antarctic ice sheet will also be continued. One objective of this work is to use the methane concentration and oxygen-isotope composition of oxygen of air in ice as time-stratigraphic markers for the precise intercorrelation of Greenland and Antarctic ice cores as well as the correlation of ice cores to other climatic records. A second objective is to use variations in the concentration and interhemispheric gradient of methane measured in Greenland and Antarctic ice cores to deduce changes in continental climates and biogeochemistry on which the atmospheric methane distribution depends. A third objective is to use data on the variability of total gas content in the Siple Dome ice core to reconstruct aspects of the glacial history of West Antarctica during the last glacial maximum. The fourth objective is to participate in collaborative studies of firn air chemistry at Vostok, Siple Dome, and South Pole which will yield much new information about gas trapping in ice as well as the concentration history and isotopic composition of greenhouse gases, oxygen, trace biogenic gases and trace anthropogenic gases during the last 100 years.
9316564 Mayewski This award is for support for a three year program to provide a high resolution record of the Antarctic climate through the acquisition, analysis, and interpretation of records of atmospheric chemical deposition taken from three ice cores located at sites within or immediately adjacent to the Ross Ice Drainage System (RIDS). These cores include one from Taylor Dome, and two from West Antarctic locations identified as potential deep drilling sites for the WAISCORES program. Collection of the two West Antarctic cores is intended to be a lightweight dry-drilling operation to depths of ~ 200 m, which will provide records of > 2 kyr. Glaciochemical analyses will focus on the major cations and anions found in the antarctic atmosphere, plus methanesulfonic acid and selected measurements of the hydrogen ion, aluminum, iron, and silica. These analyses, and companion stable isotope and particle measurements to be carried out by other investigators require < 7% by volume of each core, leaving > 90% for other investigators and storage at the U.S. National Ice Core Laboratory. These records are intended to solve a variety of scientific objectives while also providing spatial sampling and reconnaissance for future U.S. efforts in West Antarctica. ***
This award is for support of a study to establish a quantitative nuclear method for determination of Antarctic ablation and accumulation rates and to provide correction factors for the carbon 14 ages of ice samples dated using trapped carbon 14. Recent studies have established the presence of cosmogenic in-situ produced carbon 14 in polar ice. In conjunction with estimated carbon 14 production rates, measured concentrations of carbon 14 per gram of ice yield, ablation rates which are in good agreement with the values determined from stake measurements. Similar studies to determine accumulation rates have been tested and the estimates are consistent with previous studies. This study will expand the preliminary work done to date in order to improve the 14CO and 14CO2 vacuum extraction techniques, by lowering blank levels and by obtaining more complete separation of 14CO and 14CO2.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research project between the University of California-Santa Cruz, the University of Texas-Austin, and the Ohio State University to investigate sediment samples recovered from the base of the West Antarctic Ice Sheet (WAIS). West Antarctica is a remote polar region but its dynamic ice sheet, complicated tectonic history, and the sedimentary record of Cenozoic glaciation make it of particular interest to glaciologists and geologists. Glaciologists are concerned with the possibility of significant near-future changes in mass balance of the WAIS that may contribute to the ongoing global sea level rise. Geologists are investigating in West Antarctica the fundamental process of continental extension and are constructing models of a polar marine depositional system using this region as the prime modern example. The subglacial part of West Antarctica has escaped direct geological investigations and all that is known about subglacial geology comes from geophysical remote sensing. Recent acquisitions of new, high-quality geophysical data have led to generation of several enticing models. For instance, subglacial presence of high-magnitude, short-wavelength magnetic anomalies has prompted the proposition that there may be voluminous (>1 million cubic km), Late Cenozoic flood basalts beneath the ice sheet. Another important model suggests that the patterns of fast ice streaming (~100 meters/year) and slow ice motion (~1-10 meters/year) observed within the WAIS are controlled by subglacial distribution of sedimentary basins and resistant bedrock. These new geophysics-based models should be tested with direct observations because they are of such great importance to our understanding of the West Antarctic tectonic history and to our ability to predict the future behavior of the WAIS.<br/><br/>This research is designed as a pilot study to provide new geologic data, which may help to test the recent models inferred from geophysical observations. The new constraints on subglacial geology and on its interactions with the WAIS will be obtained through petrological and geochemical analyses of basal and subglacial sediments collected previously from seven localities. This investigation will take place in the context of testing the following three hypotheses: (A) the provenance of bedrock clasts in the glacial sediment samples is primarily from West Antarctica, (B) some clasts and muds from the West Antarctic subglacial sediments have been derived by erosion of the (inferred) subglacial Late Cenozoic flood basalts, and (C) the sediments underlying the West Antarctic ice streams were generated by glacial erosion of preglacial sedimentary basins but the sediments recovered from beneath the slow-moving parts of the WAIS were produced through erosion of resistant bedrock.<br/><br/>The individual hypotheses will be tested by collecting data on: (A) petrology, geochemistry and age of granitoid clasts, (B) petrology, geochemistry and age of basaltic clasts combined with mud geochemistry, and (C) clay mineralogy/paragenesis combined with textural maturity of sand and silt grains. The results of these tests will help evaluate the interesting possibility that subglacial geology may have first-order control on the patterns of fast ice flow within the WAIS. The new data will also help to determine whether the subglacial portion of West Antarctica is a Late Cenozoic flood basalt province. By combining glaciological and geological aspects of West Antarctic research the proposed collaborative project will add to the ongoing U.S. effort to create a multidisciplinary understanding of this polar region.
This award provides one year of support to use newly developed technology in which an ice-core melter is coupled with both an Inductively Coupled Plasma - Mass Spectrometer (ICP-MS) and a traditional Continuous Flow Analysis (CFA) system, to measure a continuous time series of chemical and trace element deposition on the Siple Dome ice core from West Antarctica. A coupled ice-core melter, ICP-MS, and CFA system will be used to measure concentrations of a number of elements, isotopes and chemical species at very high depth resolution (~2-cm) in the top 54 m of the Siple Dome A-core. Pilot data from analyses of ~6 m from the nearby but much lower accumulation J-core site at Siple Dome, together with more extensive results from Summit, Greenland, indicate that it will be possible to obtain exactly co-registered, high-quality records of at least 12 seasonally varying elements (sodium, magnesium, aluminum, potassium, calcium, iron, manganese, rubidium, strontium, zirconium, barium, lead) and three other chemical species and ions (ammonium, nitrate, calcium ion) with this system. Under this proposed research, we will also add continuous measurements of sulfate to our system. Because more than sufficient core from Siple Dome for these depths is archived at the National Ice Core Laboratory, the proposed research will require no fieldwork. The continuous, very high-resolution, ~350-y record of these elemental tracers will enhance the value of previous chemical and isotopic measurements that have been made on the Siple Dome core and will be particularly valuable for comparisons between ice-core proxies and modern instrumental data related to El Nino-Southern Oscillation (ENSO) as well as for validation of model simulations of atmospheric circulation. These data, and the expertise gained through this research, will be invaluable when this novel chemical analysis technology is eventually applied to deep ice-core records for the study of rapid climate-change events.
This award supports a two year project to analyze shallow (~150 m) ice cores from South Pole in order to construct an annually resolved, sulfate-based volcanic record covering the last 1400 years. Two shallow ice cores will be recovered at the South Pole during the 00/01 field season and will be used for this work. Volcanic records from polar ice cores provide valuable information for studies of the connection between volcanism and climate. The new records are expected to be continuous and to cover at least the last 1400 years. The information from these records will verify the volcanic events found in the few existing Antarctic records and resolve discrepancies in the timing and magnitude of major explosive eruptions <br/>determined from those earlier records. In order to achieve the objectives of the proposed research, funds are provided to assist with the construction of an analytical laboratory for ice core and environmental <br/>chemistry research.
This award is for support for four years of funding for a program of biogenic sulfur measurements on the Siple Dome ice core. Biogenic sulfur is a major aerosol-forming constituent of the atmosphere and has potentially important links to the earth's radiation budget. Previous work on the Vostok ice core has demonstrated a remarkable climate-related variability in biogenic sulfur, suggesting that the sulfur cycle may act to stabilize climate (keep the glacial atmosphere cool and the interglacial atmosphere warm) in the Southern Hemisphere. In this study, methane-sulfonate (MSA) will be measured on the Siple Dome ice core as part of the West Antarctic ice sheet program (WAIS). Siple Dome is located in a region which is strongly impacted by the incursion of marine air onto the Antarctic plateau. Because of its proximity to the coast and meteorological setting, it is expected that variability in high-latitude marine biogenic sulfur emissions should dominate the MSA record at this site. In addition to the deep ice core record, samples from shallow cores will also be analyzed to provide information about regional variability and decadal-to-centennial scale variability in the deposition of sulfur-containing aerosols from high latitude source regions over the past 200 years.
9980691 Wahlen This award is for support for three years of funding to reconstruct the atmospheric carbon dioxide (CO2) and carbon-13 isotope (d13C) concentration in ice cores from Antarctica over several climatic periods. Samples from the Holocene, the Last Glacial Maximum (LGM)-Holocene transition and glacial stadial/interstadial episodes will be examined. Samples from the Siple Dome ice core drilled in 1998/99 will be made, in addition to measurements from the Taylor Dome and Vostok ice cores. The major objectives are to investigate the phase relationships between variations in the concentration of atmospheric CO2, its carbon isotope composition, and temperature changes (indicated by 18dO and dD of the ice) during deglaciations as well as across rapid climate change events (e.g. Dansgaard-Oeschger events). This will help to determine systematic changes in the global carbon cycle during and between different climatic periods, and to ascertain if the widely spread northern hemisphere temperature stadial/interstadial events produced a global atmospheric carbon dioxide signal. Proven experimental techniques will be used.
This award is for support for a three year program to investigate the response of ice domes, such as Siple Dome in West Antarctica, to changing boundary conditions, for example as arising from fluctuations in thickness or position of bounding ice streams. A range of models will be used, from simple one-dimensional analytical models to coupled dynamic-thermodynamic flow models, to investigate the response of the ice dome to boundary forcing, and the record that boundary forcing can leave in the ice core record. Using radar, temperature, and ice core data from the currently funded field programs on Siple Dome, and ice flux and thickness values from the map view model as boundary conditions, a flow line across Siple Dome will be studied and possible ranges of time scales, the likely origin of ice near the bed, and the basal temperature conditions that exist now and existed in the past will be determined.The response of internal stratigraphy patterns to climate and dynamic forcing effects will be investigated and observed internal layers from ice cores will be used to infer the forcing history.
9909469 Scambos This award provides support for three years of funding to study the scar-like features that are well-known from the Siple Coast ice stream system in West Antarctica. The objective of the proposed field work is to identify the nature of several as yet unvisited scars, and to further characterize previously-identified margin scars that are poorly dated. Advanced Very High Resolution Radiometer (AVHRR) and Radarsat image data will be used to locate and map the features, and place them in a regional context. The study seeks to describe the recent history of the Siple Coast glaciers and investigate the causes of their changes in configuration. The main investigative tools will be low-frequency RES and high-frequency ground penetrating radar (GPR) profiles to image internal layers and measure depths to buried crevasses or disrupted layering. This, coupled with accumulation rates determined from shallow ice cores, will provide "shutdown" ages for the margin features. The field data will provide input parameters for simple models of ice flow for margins and inter-ice stream ridges during active shearing and after shutdown. This modeling will estimate the initial elevation of a scar at the time of shut down and the corresponding ice stream elevation at that time.
This award is for support for a program to measure the stable isotope (deuterium to hydrogen and oxygen-18 to oxygen-16) concentrations of ice cores retrieved from Siple Dome as part of the West Antarctic ice sheet program. In addition, the deuterium excess of samples from the Taylor Dome ice core will be determined. This project will approach the question of rapid climate change using ice cores to determine the history of temperature changes, moisture source changes, and elevational changes in the West Antarctic ice sheet. Results from ice cores taken to date in the interior of Antarctica (East and West) are surprisingly lacking in indications of abrupt climate changes, such as those that have been observed in the GISP2 ice core from Summit, Greenland. This work will address the question of whether rapid climate changes, which are known to have occurred in other parts of the southern hemi-sphere, may have also occurred in the coastal regions of West Antarctica. There is some indication from existing records of isotopes in ice cores that the West Antarctic ice sheet may have flushed ice in the past (as evidenced by large changes in elevation of the ice sheet).
This award is for two years of support to perform radar investigations across former shear margins at Roosevelt Island and Ice Stream C in order to measure changes in the configuration and continuity of internal layers and the bed. The broad goal of these investigations is to gain an understanding of ice stream flow and the timing and mechanisms of ice stream shutdown. A high-resolution short-pulse radar system will be used for detailed examination of the uppermost hundred meters of the firn and ice, and a monopulse sounding-radar system will be used to image the rest of the ice column (including internal layers) and the bed. Changes in the shape and continuity of layers will be used to interpret mechanisms and modes of ice stream flow including the possible migration of stagnation fronts and rates of shut-down. Variations in bed reflectivity will be used to deduce basal hydrology conditions across lineations. Accumulation rates deduced from snow pits and shallow cores will be used to estimate near-surface depth-age profiles. Improved understanding of ice stream history opens the possibility of linking changes in the West Antarctic ice sheet with the geologic evidence from Northern Victoria Land and the ocean record of the retreat of the grounding line in the Ross Sea.
This award is for support for two years to develop the technology and methodology for digitizing the photographs and analyzing the thin sections from ice cores. In addition, the application of digital technology for whole-core stratigraphy, using digital photography, image enhancement and image processing will be investigated. The thin section analysis will be piloted with samples already in hand from the Taylor Dome ice core. If successful, these techniques will be applied to samples from the Siple Dome ice core, in cooperation with Principal Investigators already funded to retrieve and examine these sections. The original digital images with all original data annotation files will be distributed to Siple Dome principal investigators for their use in the interpretation of their own data. All software and hardware acquired for this project will become part of the permanent equipment inventory at the U.S. National Ice Core Laboratory and will be available for use by clients at the facility.
This award is for support for a program to investigate the visual stratigraphy, index physical properties, relaxation characteristics and crystalline structure of ice cores from Siple Dome, West Antarctica. This investigation will include measurements of a time-priority nature that must be initiated at the drill site on freshly-drilled cores. This will be especially true of cores from the brittle ice zone, which is expected to comprise a significant fraction of the ice core. The brittle zone includes ice in which relaxation , resulting from the release of confining pressure is maximized and leads to significant changes in the mechanical condition of the core that must be considered in relation to the processing and analysis of ice samples for entrapped gas and chemical studies. This relaxation will be monitored via precision density measurements made initially at the drill site and repeated at intervals back in the U.S. Other studies will include measurement of the annual layering in the core to as great a depth as visual stratigraphy can be deciphered, crystal size measurements as a function of depth and age, c-axis fabric studies, and analysis of the physical properties of any debris-bearing basal ice and its relationship to the underlying bedrock. Only through careful documentation and analysis of these key properties can we hope to accurately assess the dynamic state of the ice and the age-depth relationships essential to deciphering the paleoclimate record at this location.
This award is for support for the measurement of electrical and optical properties of the Siple Dome ice core. The electrical methods can be used to determine the concentration of the hydrogen ions and the concentration of a weighted sum of all ions. The electrical measurements can resolve features as small as 1 cm. The albedo of the core is also measured with a laser system that can resolve features as small as 0.5 cm. The high spatial resolution of these methods makes them ideal for resolving narrow features in the core, which can be missed in larger composite samples. The measurements will be particularly useful for assisting to date the core and to identify short duration features in the record, such as volcanic eruptions. These measurements will also provide useful information for assessing the temporal variability of Holocene accumulation rate and atmospheric circulation.
This award is for support for a program of measurements to improve our understanding of the relationship between formaldehyde (HCHO) and hydrogen peroxide (H2O2) in the atmosphere and the concentrations of the same species in Antarctic snow, firn and ice. This work aims to relate changes in concentrations in the snow, firn and ice to corresponding changes in tropospheric chemistry. Atmospheric and firn sampling for formaldehyde and hydrogen peroxide at one or more of the WAIS ice core drilling sites will be undertaken and controlled laboratory studies to estimate thermodynamic and rate parameters will be performed. In addition, this work will involve modeling of atmosphere-snow exchange processes to infer the "transfer function" for reactive species at the sites and atmospheric photochemical modeling to relate changes in concentrations of formaldehyde and hydrogen peroxide in snow, firn and ice to atmospheric oxidation capacity. This work will contribute to a better understanding of the relationship between atmospheric concentrations of various species and those same species measured in snow and ice samples.
This award is for support for a program of glaciochemical analyses of shallow and deep ice cores from Siple Dome, West Antarctica. Measurements that have been proposed include chloride, nitrate, sulfate, calcium, magnesium, sodium, potassium, ammonium and methansulfonic acid. These measurements will provide information about past volcanic events, biomass source strength, sea ice fluctuations, atmospheric circulation, changes in ice-free areas and the environmental response to Earth orbit insolation changes and solar variability. The glaciochemical records from the Siple Dome core will be developed at a resolution sufficient to compare with the Summit, Greenland record, thus allowing a bipolar comparison of climate change event timing and magnitude. As part of this award, an international workshop will be held during the first year to formulate a science plan for the International Transantarctic Scientific Expedition (ITASE), a program of regional surveys documenting the spatial distribution of properties measured in ice cores .
Dunbar/Kyle OPP 9527373 Zielinski OPP 9527824 Abstract The Antarctic ice sheets are ideal places to preserve a record the volcanic ash (tephra) layers and chemical aerosol signatures of volcanic eruptions. This record, which is present both in areas of bare blue ice, as well as in deep ice cores, consists of a combination of local eruptions, as well as eruptions from more distant volcanic sources from which glassy shards can be chemically fingerprinted and related to a source volcano. Field work carried out during the 1994/1995 Antarctic field season in the Allan Hills area of Antarctica, and subsequent microbeam chemical analysis and 40Ar/39Ar dating has shown that tephra layers in deep Antarctic ice preserve a coherent, systematic stratigraphy, and can be successfully mapped, dated, chemically fingerprinted and tied to source volcanoes. The combination of chemical fingerprinting of glass shards, and chemical analysis of volcanic aerosols associated with ash layers will allow establishment of a high-resolution chronology of local and distant volcanism that can help understand patterns of significant explosive volcanisms and atmospheric loading and climactic effects associated with volcanic eruptions. Correlation of individual tephra layers, or sets of layers, in blue ice areas, which have been identified in many places the Transantarctic Mountains, will allow the geometry of ice flow in these areas to be better understood and will provide a useful basis for interpreting ice core records.
This award is for support of a program to reconstruct the record of atmospheric carbon dioxide (and the carbon-13 isotopes of carbon dioxide) over several intervals, including the Last Glacial Maximum-Holocene transition, interstadial episodes, the mid-Holocene, the last 1000 years and the penultimate glacial period, using ice from the Taylor Dome and Vostok ice cores. The major objective of this study is to investigate the phase relationship between variations of the greenhouse gases occluded in the ice cores and temperature changes (indicated by oxygen and deuterium isotopes) during the last deglaciation. In addition, the concentration of atmospheric carbon dioxide over the past 1000 years and during the mid-Holocene will be determined in these cores.
9316715 Taylor This award is for support to collect micrometeorites from the bottom of the new water well at South Pole Station, Antarctica. The large volume of firn and ice being melted provides the concentrating mechanism needed to collect large numbers of micrometeorites that occur in low concentrations in the ice. The first task of the project is to design a collection system to retrieve the micrometeorites from the bottom of the water well. The collector must be reliable, easy to operate, must collect all particles larger than 10 mm and should not contaminate the well's water quality. Following successful design and deployment of the collector, recovered particles will be catalogued and distributed to interested researchers. ***
This award supports an in situ and short traverse seismic reflection/refraction and magnetotelluric experiment in West Antarctica. This collaborative experiment involves four awards at four institutions. The four-fold purpose is 1) to investigate part of the Byrd Subglacial Basin, 2) to test techniques for this work that could be done in a long traverse, 3) to determine the viability of the magnetotelluric method on a thick (electrically resistive) ice sheet, and 4) to evaluate the relative merits of refraction with wide reflection versus reflection with narrow refraction seismic studies in imaging the lithosphere. The geophysical techniques that will be employed are capable of imaging the ice sheet, the continental lithosphere, and the upper mantle, as well as determining physical properties of parts of the lithosphere and mantle. Investigations of outcrop geology over the last thirty years in West Antarctica and the Transantarctic Mountains have lead to recent interpretations that the crust is made up of many different lithospheric blocks. Seismic reflection work is the only way to image the crust in detail and the refraction work is the only way to determine physical properties of the layers and blocks defined by the reflection work. The magnetotelluric work is scientifically risky because it may not yield useful information when used over the electrically resistive ice sheet; however, if it works it has the potential to image molten rock in the crust and upper mantle. In a continental rift region such as West Antarctica, the presence of melt in the lithosphere is likely and, if documented, has very important ramifications to ice sheet dynamics. Research work supported by this award is expected to provide constraints to models of a range of crustal processes from models of ice sheet dynamics to tectonic and kinematic models of lithospheric thinning and rifting.
9318121 Anandakrishnan This award is for support for a three year project to test the hypothesis that a controlling parameter of fast ice-stream flow is the hydrologic state of discrete zones of high friction ("sticky spots") at the bed of the ice streams. Previous work has discovered an enormous difference in basal microearthquake activity between fast-flowing ice stream B and ice stream C, which stopped flowing within the last 200 years. It is hypothesized that the basal water system is lubricating the sticky spots under the fast ice stream and thus inhibiting microearthquake activity, and at the same time permitting fast ice flow. This experiment is intended to collect a continuous record of wide-bandwidth microearthquake data from a variety of sites, on the ice streams, in the transition zone, and on the inland ice. ***
This award supports a project to examine the physical processes that affect the manner in which heat, vapor and chemical species in air are incorporated into snow and polar firn. The processes include advection, diffusion, and the effects of solar radiation penetration into the snow. An understanding of these processes is important because they control the rate at which reactive and non-reactive chemical species in the atmosphere become incorporated into the snow, firn, and polar ice, and thus will affect interpretation of polar ice core data. Currently, the interpretation of polar ice core data assumes that diffusion controls the rate at which chemical species are incorporated into firn. This project will determine whether ventilation, or advection of the species by air movement in the firn, and radiation penetration processes have a significant effect. Field studies at the two West Antarctic ice sheet deep drilling sites will be conducted to determine the spatial and temporal extent for key parameters, and boundary conditions needed to model the advection, conduction, and radiation transmission/absorption processes. An existing multidimensional numerical model is being expanded to simulate the processes and to serve as the basis for ongoing and future work in transport and distribution of reactive chemical species.
9725305 Severinghaus This award supports a project to develop and apply a new technique for quantifying temperature changes in the past based on the thermodynamic principle of thermal diffusion, in which gas mixtures in a temperature gradient become fractionated. Air in polar firn is fractionated by temperature gradients induced by abrupt climate change, and a record of this air is preserved in bubbles in the ice. The magnitude of the abrupt temperature change, the precise relative timing, and an estimate of the absolute temperature change can be determined. By providing a gas-phase stratigraphic marker of temperature change, the phasing of methane (with decadal precision) and hence widespread climate change (relative to local polar temperature changes) can be determined (across five abrupt warming events during the last glacial period).
This proposed work is the continued operation of the Antarctic Meteorological Research Center (AMRC) for three years through 2009. AMRC is a meteorological data acquisition and management system with nodes at McMurdo Station and at the University of Wisconsin, Madison. The system is a resource and archive for meteorological research and a test bed for improving operational synoptic forecasting. Its basis is a computer-based system for organizing, manipulating, and integrating antarctic environmental data, developed by the University of Wisconsin. It captures the flow of meteorological information from polar orbiting satellites, automatic weather stations, operational station synoptic observations, and research project data, producing a mosaic of antarctic satellite images on an operational basis. It also receives environmental data products, such as weather forecasts, from outside Antarctica, and acts as a repository for existing archived databases. The AMRC provides customized weather and climate information for a variety of antarctic users, including aircraft and ship operations of the US Antarctic Program. Currently the AMRC produces the Antarctic Composite Infrared Image, a mosaic of images from four geostationary and three polar-orbiting satellites, which is used for both forecasting and research purposes. In the current time period, AMRC will develop a data exploration/classification toolkit based on self-organizing maps to produce a new, satellite-based antarctic cloud climatology for regions. The AMRC will also be at the center of the evolving Antarctic-Internet Data Distribution (Antarctic-IDD) system, a reliable and formalized means of sharing and distributing Antarctic data among operational and research users. <br/>***
9316338 Jacobel This award is for support for a program of glaciological studies of Siple Dome and its surroundings between Ice Streams C and D. The purpose of the work is to characterize the dynamic environment and ice stratigraphy to aid in the assessment of Siple Dome as a potential deep ice core site, and to determine whether the configuration of ice stream flow in the region was different in the past than now. The work involves measurements of the configuration and continuity of internal layers in the ice, using radar echo sounding and determination of velocity field, based on standard GPS surveying. The goals of the work are relevant to understanding the dynamics of the West Antarctic Ice Sheet (WAIS), its past history and its potential future behavior, including possible effects on global sea level. This work is a collaborative project between the University of Washington, the University of Colorado and St. Olaf College. ***
This award is for support for a program of physical and visible studies on the shallow and deep ice cores to be retrieved from Siple Dome, West Antarctica. Visible examination of ice cores has proven to be a powerful technique for dating and paleoclimatic interpretation. Recent examination of a shallow core from Siple Dome indicates that annual-layer dating is possible and that visible examination will contribute significantly to the dating effort at Siple Dome. Once ages are obtained, distances between layers provide snow accumulation after correction for density variations and ice flow thinning. Thin- section examination of the core will contribute to understanding the visible stratigraphy, and will reveal c-axis fabrics which are related to past ice deformation. The results of this study should include a better understanding of rapid climate change in the Antarctic and should contribute to knowledge of the stability of the West Antarctic ice sheet.
Abstract<br/><br/>The Antarctic Meteorological Research Center (AMRC), located at the University of Wisconsin, Madison, serves several communities by maintaining and extending the stewardship of meteorological data pertinent to the Antarctic continent, its surrounding islands, ice sheets and ice margins and the adjacent Southern Ocean. This data will continue to be made freely available to interested researchers and the general public. Activities of particular interest for the current award include the development of an enhanced data portal to provide improved data and analysis tools to the research community, and to continue to add to the evolution of the Antarctic-Internet Data Distribution system, which is meant to overcome the costly and generally low bandwidth internet connectivity to and from the Antarctic continent. Operational forecasting for logistical activities in the Antarctic, as well as active Antarctic meteorological research programs, are clearly in need of a dependable, steady flow of meteorological observations, model output, and related data in what must be a collaborative environment in order to overcome the otherwise distributed nature of Antarctic meteorological and climatological observations.<br/><br/>AMRC interaction with the public through answering e-mail questions, giving informal public lectures and presentations to K-12 education institutions through visits to schools will help to raise science literacy with regards to meteorology and of the Antarctic and polar regions. <br/><br/><br/><br/>"This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5)."
This is a three-year project to maintain and augment as necessary, the network of approximately fifty automatic weather stations established on the antarctic continent and on several surrounding islands. These weather stations measure surface wind, pressure, temperature, humidity, and in some instances other atmospheric variables, such as snow accumulation and incident solar radiation, and report these via satellite to a number of ground stations. The data are used for operational weather forecasting in support of the United States Antarctic program, for global forecasting through the WMO Global Telecommunications System, for climatological records, and for research purposes. The AWS network, which began as a small-scale program in 1980, has been extremely reliable and has proven indispensable for both forecasting and research purposes.