Population Growth at the Southern Extreme: Effects of Early Life Conditions on Adelie penguin Individuals and Colonies
Short Title:
Effects of early life conditions on Adelie Penguins
Start Date:
2020-09-01
End Date:
2025-08-31
Project Website(s)
Description/Abstract
Part 1: Non-technical description Polar regions are experiencing some of the most dramatic effects of climate change resulting in large-scale changes in sea ice cover. Despite this, there are relatively few long-term studies on polar species that evaluate the full scope of these effects. Over the last two decades, this team has conducted globally unique demographic studies of Adélie penguins in the Ross Sea, Antarctica, to explore several potential mechanisms for population change. This five-year project will use penguin-borne sensors to evaluate foraging conditions and behavior and environmental conditions on early life stages of Adélie penguins. Results will help to better understand population dynamics and how populations might respond to future environmental change. To promote STEM literacy, education and public outreach efforts will include multiple activities. The PenguinCam and PenguinScience.com website (impacts of >1 million hits per month and use by >300 classrooms/~10,000 students) will be continued. Each field season will also have ‘Live From the Penguins’ Skype calls to classes (~120/season). Classroom-ready activities that are aligned with Next Generation Science Standards will be developed with media products and science journal papers translated to grade 5-8 literacy level. The project will also train early career scientists, postdoctoral scholars, graduate students and post-graduate interns. Finally, in partnership with an Environmental Leadership Program, the team will host 2-year Roger Arliner Young Conservation Fellow, which is a program designed to increase opportunities for recent college graduates of color to learn about, engage with, and enter the environmental conservation sector. Part II: Technical description: Leveraging 25 years of data on marked individuals from two Adélie penguin colonies in the Ross Sea, combined with new biologging tags that track detailed penguin foraging efforts and environmental conditions, researchers will accomplish three major goals: 1) assess the quality of natal conditions by determining how environmental conditions, relative prey availability, and diet composition influence parental foraging behavior, chick provisioning, and fledging mass; 2) determine the spatial distribution and foraging behavior of juvenile Adélie penguins and the relative influence of natal versus post-fledging environmental conditions on their survival; and 3) determine the role of natal and post-fledging conditions in shaping individual life history traits and colony growth. Data from several types of penguin-borne biologging devices will be used to provide multiple lines of evidence for how early-life conditions and penguin behavior relate to penguin energetics and population size. This study is the first to integrate salinity, temperature, light level, depth, accelerometry, video loggers, and GPS data with longitudinal demographic information, providing an unprecedented ability to understand how penguins use the environment and enabling new insights from previously collected data. Changes in salinity due to increased glacial melt have important implications for sea ice formation, ocean circulation and productivity of the Southern Ocean, and potentially global temperature change. The penguin-borne sensors deployed in this study will support the NSF Office of Polar Programs priority: How does society more efficiently observe and measure the polar regions? It represents only the second study to track juvenile Adélie penguins at sea, the first in the Ross Sea region, the first with substantial sample sizes, and the first to assess juvenile survival rates directly, integrating early life factors and environmental conditions to better understand colony growth trajectories. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Personnel
Funding
AMD - DIF Record(s)
Data Management Plan
None in the Database
Product Level:
1 (processed data)
Datasets
Publications
Keywords
Platforms and Instruments
|
This project has been viewed 72 times since May 2019 (based on unique date-IP combinations)