IEDA
Project Information
Collaborative Research: Understanding the evolution of high-latitude Permo-Triassic paleoenvironments and their vertebrate communities
Start Date:
2016-09-01
End Date:
2022-08-31
Description/Abstract
This project will advance our understanding of Antarctic life during the Permian and Triassic. We will apply an interdisciplinary approach to address relationships between environmental change, faunal composition, and biogeographic patterns in the context of the high-latitude strata preserved in the Buckley and Fremouw formations in the Shackleton Glacier region. We will use multiple types of data to assess paleoenvironment, including: 1) paleosol morphology; 2) paleosol geochemistry; 3) pedogenic organic matter; and 4) fossil wood chronology and stable isotopes. The Fremouw Formation of Antarctica preserves the highest paleolatitude tetrapod fauna of the entire Triassic (~70° S) and thus has the potential to shed important light on the evolution of polar life during the early Mesozoic. We will collect new fossils from known localities to understand the relationship between Antarctic and southern African tetrapod faunas. Furthermore, we will refine the stratigraphic, sedimentological, and geochronological framework for these Mesozoic faunas, which will include using U/Pb detrital zircon dating to provide the first dates for these vertebrate assemblages. In the lab, we will examine the biology of Triassic vertebrates from Antarctica by comparing their bone and tusk histology to conspecifics from lower paleolatitudes. In addition, we will test Bergmann’s Rule with six species (viz. Lystrosaurus curvatus, L. maccaigi, L. murrayi, Prolacerta broomi, Procolophon trigoniceps, and Thrinaxodon liorhinus). The Early Triassic presents a unique opportunity to perform such investigations as there is no other geologic interval in which species occurring in Antarctica can be compared to conspecifics across a range of paleolatitudes.
Personnel
Person Role
Sidor, Christian Investigator and contact
Smith, Nathan Investigator
Makovicky, Peter Investigator
Tabor, Neil Investigator
Funding
Antarctic Earth Sciences Award # 2001033
Antarctic Earth Sciences Award # 1341645
Antarctic Earth Sciences Award # 1341475
Antarctic Earth Sciences Award # 1341376
Antarctic Earth Sciences Award # 1341304
AMD - DIF Record(s)
Deployment
Deployment Type
Shackleton Glacier Deep Field Camp field camp
Data Management Plan
Product Level:
0 (raw data)
Datasets
Repository Title (link) Format(s) Status
USAP-DC Lower Triassic Antarctic vertebrate fossils at Field Museum, Chicago, IL Excel exists
Publications
  1. Whitney, M.R, and C.A. Sidor. 2020. Evidence of torpor in the tusks of Lystrosaurus from the Early Triassic of Antarctica. Nature Communications Biology. (doi:10.1038/s42003-020-01207-6 )
  2. Whitney, M.R., Y.T. Tse, and C.A. Sidor. 2019. Histological evidence of trauma in tusks of southern African dicynodonts. Palaeontologia Africana 53:75–80
  3. Gee, B.M., Sidor, C.A. 2021. First record of the amphibamiform Micropholis stowi from the lower Fremouw Formation (Lower Triassic) of Antarctica. Journal of Vertebrate Paleontology. (doi:10.1080/02724634.2021.1904251)
  4. Gianechini, F. A., Makovicky, P. J., Apesteguía, S., & Cerda, I. (2018). Postcranial skeletal anatomy of the holotype and referred specimens of Buitreraptor gonzalezorum Makovicky, Apesteguía and Agnolín 2005 (Theropoda, Dromaeosauridae), from the Late Cretaceous of Patagonia. PeerJ, 6, e4558. (doi:10.7717/peerj.4558)
  5. Spiekman, S. N. F. (2018). A new specimen of Prolacerta broomi from the lower Fremouw Formation (Early Triassic) of Antarctica, its biogeographical implications and a taxonomic revision. Scientific Reports, 8(1). (doi:10.1038/s41598-018-36499-6)
  6. Whitney, M. R., & Sidor, C. A. (2020). Evidence of torpor in the tusks of Lystrosaurus from the Early Triassic of Antarctica. Communications Biology, 3(1). (doi:10.1038/s42003-020-01207-6)
  7. Cullen, T. M., Canale, J. I., Apesteguía, S., Smith, N. D., Hu, D., & Makovicky, P. J. (2020). Osteohistological analyses reveal diverse strategies of theropod dinosaur body-size evolution. Proceedings of the Royal Society B: Biological Sciences, 287(1939), 20202258. (doi:10.1098/rspb.2020.2258)
  8. Prieto‐Márquez, A., Garcia‐Porta, J., Joshi, S. H., Norell, M. A., & Makovicky, P. J. (2020). Modularity and heterochrony in the evolution of the ceratopsian dinosaur frill. Ecology and Evolution, 10(13), 6288–6309. (doi:10.1002/ece3.6361)
  9. Cullen, T. M., Brown, C. M., Chiba, K., Brink, K. S., Makovicky, P. J., & Evans, D. C. (2021). Growth variability, dimensional scaling, and the interpretation of osteohistological growth data. Biology Letters, 17(11). (doi:10.1098/rsbl.2021.0383)
  10. Gee, B. M., Makovicky, P. J., & Sidor, C. A. (2021). Upside down: “Cryobatrachus” and the lydekkerinid record from Antarctica. Journal of Paleontology, 1–26. (doi:10.1017/jpa.2021.115)
  11. Woolley, C. H., Smith, N. D., & Sertich, J. J. W. (2020). New fossil lizard specimens from a poorly-known squamate assemblage in the Upper Cretaceous (Campanian) San Juan Basin, New Mexico, USA. PeerJ, 8, e8846. (doi:10.7717/peerj.8846)
  12. Saitta, E. T., Stockdale, M. T., Longrich, N. R., Bonhomme, V., Benton, M. J., Cuthill, I. C., & Makovicky, P. J. (2020). An effect size statistical framework for investigating sexual dimorphism in non-avian dinosaurs and other extinct taxa. Biological Journal of the Linnean Society, 131(2), 231–273. (doi:10.1093/biolinnean/blaa105)
Platforms and Instruments

This project has been viewed 27 times since May 2019 (based on unique date-IP combinations)