Project Information
Collaborative Research: Resolving earth structure influence on ice-sheet stability in the Wilkes Subglacial Basin (RESISSt)
Short Title:
Start Date:
End Date:
Part I: Nontechnical
Earths warming climate has the potential to drive widespread collapse of glaciers and ice sheets across the planet, driving global sea-level rise. Understanding both the rate and magnitude of such changes is essential for predicting future sea-level and how it will impact infrastructure and property. Collapse of the ice sheets of Antarctica has the potential to raise global sea-level by up to 60 meters. However, not all regions of Antarctica are equally suspectable to collapse. One area with potential for collapse is the Wilkes Subglacial Basin in East Antarctica, a region twice the size of California's Central Valley. Geologic evidence indicates that the ice-sheet in this region has retreated significantly in response to past global warming events. While the geologic record clearly indicates ice-sheets in this area are vulnerable, the rate and magnitude of any future retreat will be influenced significantly by geology of the region. Constraining the geologic controls on the stability of the ice-sheets of the Wilkes Subglacial Basin remains challenging since the ice-sheet hides the geology beneath kilometers of ice. As a step in understanding the potential for future ice loss in the Wilkes Subglacial Basin this project will conduct geophysical analysis of existing data to better constrain the geology of the region. These results will constrain new models designed to understand the tectonics that control the behavior of the ice-sheets in the region. These new models will highlight the geological properties that exert the most significant control on the future of the ice-sheets of the Wilkes Subglacial Basin. Such insights are critical to guide future efforts aimed at collecting in-situ observations needed to more fully constrain Antarctica's potential for future sea-level.

Part II: Technical Description
In polar environments, inward-sloping marine basins are susceptible to an effect known as the marine ice-sheet instability (MISI): run-away ice stream drainage caused by warm ocean water eroding the ice shelf from below. The magnitude and time-scale of the ice-sheet response strongly depend on the physical conditions along the ice-bed interface, which are, to a first order, controlled by the tectonic evolution of the basin. Topography, sedimentology, geothermal heat flux, and mantle viscosity all play critical roles in ice-sheet stability. However, in most cases, these solid-Earth parameters for regions susceptible to the MISI are largely unknown. One region with potential susceptibility to MISI is the Wilkes Subglacial Basin of East Antarctica. The project will provide an integrated investigation of the Wilkes Subglacial Basin, combining geophysical analyses with both mantle flow and ice-sheet modeling to understand the stability of the ice sheet in this region, and the associated potential sea level rise. The work will be focused on four primary objectives: (1) to develop an improved tectonic model for the region based on existing seismic observations as well as existing geophysical and geological data; (2) to use the new tectonic model and seismic data to estimate the thermal, density, and viscosity structure of the upper mantle and to develop a heat flow map for the WSB; (3) to simulate mantle flow and to assess paleotopography based on our density and viscosity constraints; and (4) to assess ice-sheet behavior by modeling (a) past ice-sheet stability using our paleotopography estimates and (b) future ice-sheet stability using our heat flow and mantle viscosity estimates. Ultimately, the project will generate improved images of the geophysical structure beneath the WSB that will allow us to assess the geodynamic origin for this region and to assess the influence of geologic parameters on past, current, and future ice-sheet behavior. These efforts will then highlight areas and geophysical properties that should be the focus of future geophysical deployments.
Person Role
Becker, Thorsten Investigator and contact
Binder, April Co-Investigator
Hansen, Samantha Investigator
Aschwanden, Andy Investigator
Winberry, Paul Investigator and contact
Antarctic Earth Sciences Award # 1914767
Antarctic Earth Sciences Award # 1914743
Antarctic Earth Sciences Award # 1914698
Antarctic Earth Sciences Award # 1914668
AMD - DIF Record(s)
Data Management Plan
None in the Database
Product Level:
4 (model output and interpretations)
Repository Title (link) Format(s) Status
USAP-DC East Antarctic Seismicity from different Automated Event Detection Algorithms ASCII exists
USAP-DC Full Waveform Ambient Noise Tomography for East Antarctica ASCII; NETCDF exists
Platforms and Instruments

This project has been viewed 30 times since May 2019 (based on unique date-IP combinations)