IEDA
Project Information
Collaborative Proposal: A High-Latitude Conjugate Area Array Experiment to Investigate Solar Wind - Magnetosphere - Ionosphere Coupling
Short Title:
High-Latitude Conjugate Area Array for SWMI Coupling Investigation
Start Date:
2018-08-15
End Date:
2022-07-31
Project Website(s)
Description/Abstract
The Geospace environment comprises a complex system of interlaced domains that interacts with the incoming solar wind plasma flow and transfers its energy and momentum from the Earth's magnetosphere outer layers down to the ionosphere and upper atmosphere. These physical processes take place mainly on the Earth's dayside, diverting most of the energy along geomagnetic field lines toward both the northern and southern polar regions. Understanding this complex interaction process that couples both polar ionospheres is important for developing the physical models that can describe and predict space weather disturbances and help mitigate their impacts on humans' technological systems - from near-Earth space assets down to electrical grids and long pipelines. There is a strong need to collect sufficient geophysical data to investigate the above-mentioned processes, particularly from the southern hemisphere. With this award, the grantees will build and deploy additional ground-based observations platforms in the East Antarctic Plateau, enhancing capabilities of the existing meridional array of already deployed autonomous, low-powered magnetometers. This will make the southern array of magnetometers two-dimensional and geomagnetically conjugate to similar instruments deployed in Greenland and Svalbard, thus making possible a global view of the magnetospheric regions where natural, ultra-low frequency electromagnetic waves are generated. The project involves young scientists who will operate remote Antarctic magnetometers and analyze collected data to investigate space weather events and validate models. This project expands the Virginia Tech's partnership with the University of New Hampshire, New Jersey Institute of Technology, Polar Research Institute of China, and Technical University of Denmark. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Personnel
Person Role
Xu, Zhonghua Investigator and contact
Clauer, Calvin Co-Investigator
Coyle, Shane Other
Funding
Antarctic Astrophysics and Geospace Sciences Award # 1745041
Antarctic Astrophysics and Geospace Sciences Award # 1744861
Antarctic Astrophysics and Geospace Sciences Award # 1744828
AMD - DIF Record(s)
Data Management Plan
None in the Database
Product Level:
0 (raw data)
Publications
  1. Pilipenko, V. A., Fedorov, E. N., Hartinger, M. D., & Engebretson, M. J. (2019). Electromagnetic fields of magnetospheric ULF disturbances in the ionosphere: Current/voltage dichotomy. Journal of Geophysical Research: Space Physics, 124. (doi:10.1029/2018JA026030)
  2. Xu, Z., Hartinger, M. D., Oliveira, D. M., Coyle, S., Clauer, C. R., Weimer, D., & Edwards, T. R. (2020). Interhemispheric Asymmetries in the Ground Magnetic Response to Interplanetary Shocks: The Role of Shock Impact Angle. Space Weather, 18(3). (doi:10.1029/2019sw002427)
  3. Chu, X., Chen, Y., Cullens, C. Y., Yu, Z., Xu, Z., Zhang, S.-R., et al. (2021). Mid-latitude thermosphere-ionosphere Na (TINa) layers observed with high-sensitivity Na Doppler lidar over Boulder (40.13°N, 105.24°W). Geophysical Research Letters, 48, e2021GL093729. (doi:10.1029/2021GL093729)
  4. Coyle, S., Clauer, C. R., Hartinger, M. D., Xu, Z., and Peng, Y. (2021). The Impact and Resolution of the GPS Week Number Rollover of April 2019 on Autonomous Geophysical Instrument Platforms, Geosci. Instrum. Method. Data Syst., 10, 161-168. (doi:10.5194/gi-2020-47)
  5. Pilipenko, V. A., Martines?Bedenko, V. A., Coyle, S., Fedorov, E. N., Hartinger, M. D., Engebretson, M. J., & Edwards, T. R. (2021). Conjugate properties of magnetospheric Pc5 waves: Antarctica?Greenland comparison. Journal of Geophysical Research: Space Physics, 126, e2020JA028048. (doi:10.1029/2020JA028048)
  6. Pilipenko V. A., Fedorov EN, Martines-Bedenko VA and Bering EA (2021) Electric Mode Excitation in the Atmosphere by Magnetospheric Impulses and ULF Waves. Front. Earth Sci. 8:619227. (doi:10.3389/feart.2020.619227)
  7. Chu, X., Nishimura, Y., Xu, Z., Yu, Z., Plane, J. M. C., Gardner, C. S., & Ogawa, Y. (2020). First simultaneous lidar observations of thermosphere- ionosphere Fe and Na (TIFe and TINa) layers at McMurdo (77.84°S, 166.67°E), Antarctica with concurrent measurements of aurora activity, enhanced ionization layers, and converging electric field. Geophysical Research Letters, 47, e2020GL090181. (doi:10.1029/2020GL090181)
  8. Shi, X., Hartinger, M. D., Baker, J. B. H., Ruohoniemi, J. M., Lin, D., Xu, Z., et al. (2020). Multipoint conjugate observations of dayside ULF waves during an extended period of radial IMF. Journal of Geophysical Research: Space Physics, 125, e2020JA028364. (doi:10.1029/2020JA028364)
  9. Feng, H.?T., Han, D.?S., Chen, X.?C., Liu, J.?J., & Xu, Z.?H. (2020). Interhemispheric conjugacy of concurrent onset and poleward traveling geomagnetic responses for throat aurora observed under quiet solar wind conditions. Journal of Geophysical Research: Space Physics, 125, e2020JA027995. (doi:10.1029/2020JA027995)
  10. Engebretson, M. J., Kirkevold, K. R., Steinmetz, E. S., Pilipenko, V. A., Moldwin, M. B., & McCuen, B. A., et al. (2020). Interhemispheric comparisons of large nighttime magnetic perturbation events relevant to GICs. Journal of Geophysical Research: Space Physics, 125, e2020JA028128. (doi:10.1029/2020JA028128)
  11. Xu Z H, Hartinger M D, Clauer R, et al. Newly established autonomous adaptive low-power instrument platform (AAL-PIP) chain on East Antarctic Plateau and operation. Adv Polar Sci, 2019, 30(4): 362-374. (doi:10.13679/j.advps.2019.0028)
  12. Pilipenko, V. A., Fedorov, E. N., Xu, Z., Hartinger, M. D., Engebretson, M. J., & Edwards, T. R. ( 2019). Incidence of Alfvenic SC pulse onto the conjugate ionospheres. Journal of Geophysical Research: Space Physics, 124. (doi:10.1029/2019JA027397)
  13. Kozyreva, O., Pilipenko, V., Lorentzen, D., Baddeley, L., & Hartinger, M. ( 2019). Transient oscillations near the dayside open?closed boundary: Evidence of magnetopause surface mode?. Journal of Geophysical Research: Space Physics, 124, 9058– 9074. (doi:10.1029/2018JA025684)
  14. Engebretson, M. J., Steinmetz, E. S., Posch, J. L., Pilipenko, V. A., Moldwin, M. B., Connors, M. G., et al. ( 2019). Nighttime magnetic perturbation events observed in Arctic Canada: 2. Multiple?instrument observations. Journal of Geophysical Research: Space Physics, 124. (doi:10.1029/2019JA026797)
  15. Peng, YuXiang, Scales, Wayne A., Esswein, Michael C., Hartinger, Michael D., "Small Satellite Formation Flying Simulation with Multi-Constellation GNSS and Applications to Future Multi-Scale Space Weather Observations," Proceedings of the 32nd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2019), Miami, Florida, September 2019, pp. 2035-2047. (doi:10.33012/2019.16883)
  16. Sigsbee, K., Kletzing, C. A., Faden, J. B., Jaynes, A. N., Reeves, G. D., & Jahn, J. ‐M. (2020). Simultaneous Observations of Electromagnetic Ion Cyclotron (EMIC) Waves and Pitch Angle Scattering During a Van Allen Probes Conjunction. Journal of Geophysical Research: Space Physics, 125(4). (doi:10.1029/2019ja027424)
  17. Peng, Y., Scales, W. A., Hartinger, M. D., Xu, Z., & Coyle, S. (2021). Characterization of multi-scale ionospheric irregularities using ground-based and space-based GNSS observations. Satellite Navigation, 2(1). (doi:10.1186/s43020-021-00047-x)
  18. Chu, X., Chen, Y., Cullens, C. Y., Yu, Z., Xu, Z., Zhang, S., … Richmond, A. D. (2021). Mid‐Latitude Thermosphere‐Ionosphere Na (TINa) Layers Observed With High‐Sensitivity Na Doppler Lidar Over Boulder (40.13°N, 105.24°W). Geophysical Research Letters, 48(11). (doi:10.1029/2021gl093729)
  19. Engebretson, M. J., Steinmetz, E. S., Posch, J. L., Pilipenko, V. A., Moldwin, M. B., Connors, M. G., … Kistler, L. M. (2019). Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 2. Multiple‐Instrument Observations. Journal of Geophysical Research: Space Physics, 124(9), 7459–7476. (doi:10.1029/2019ja026797)
  20. Zhai, C., Shi, X., Wang, W., Hartinger, M. D., Yao, Y., Peng, W., … Baker, J. B. H. (2021). Characterization of High‐m ULF Wave Signatures in GPS TEC Data. Geophysical Research Letters, 48(14). (doi:10.1029/2021gl094282)
  21. Pilipenko, V. A., Fedorov, E. N., Xu, Z., Hartinger, M. D., Engebretson, M. J., & Edwards, T. R. (2020). Incidence of Alfvenic SC Pulse Onto the Conjugate Ionospheres. Journal of Geophysical Research: Space Physics, 125(2). (doi:10.1029/2019ja027397)
  22. Pilipenko, V. A., Fedorov, E. N., Hartinger, M. D., & Engebretson, M. J. (2019). Electromagnetic Fields of Magnetospheric ULF Disturbances in the Ionosphere: Current/Voltage Dichotomy. Journal of Geophysical Research: Space Physics, 124(1), 109–121. (doi:10.1029/2018ja026030)
  23. Kim, H., Schiller, Q., Engebretson, M. J., Noh, S., Kuzichev, I., Lanzerotti, L. J., … Fromm, T. (2021). Observations of Particle Loss due to Injection‐Associated Electromagnetic Ion Cyclotron Waves. Journal of Geophysical Research: Space Physics, 126(2). (doi:10.1029/2020ja028503)
  24. Kozyreva, O., Pilipenko, V., Lorentzen, D., Baddeley, L., & Hartinger, M. (2019). Transient Oscillations Near the Dayside Open‐Closed Boundary: Evidence of Magnetopause Surface Mode? Journal of Geophysical Research: Space Physics, 124(11), 9058–9074. (doi:10.1029/2018ja025684)
  25. Coyle, S. E., Baker, J. B. H., Chakraborty, S., Hartinger, M. D., Freeman, M. P., Clauer, C. R., Xu, Z., & Weimer, D. R. (2023). Substorms and Solar Eclipses: A Mutual Information Based Study. Geophysical Research Letters, 50(24). Portico. (doi:10.1029/2023gl106432)
  26. Coyle, S. E., Hartinger, M. D., Clauer, C. R., Baker, J. B. H., Cnossen, I., Freeman, M. P., & Weygand, J. M. (2023). The 2021 Antarctic Total Eclipse: Ground Magnetometer and GNSS Wave Observations From the 40 Degree Magnetic Meridian. Journal of Geophysical Research: Space Physics, 128(3). Portico. (doi:10.1029/2022ja031142)
  27. Shi, X., Hartinger, M. D., Baker, J. B. H., Ruohoniemi, J. M., Lin, D., Xu, Z., … Willer, A. (2020). Multipoint Conjugate Observations of Dayside ULF Waves During an Extended Period of Radial IMF. Journal of Geophysical Research: Space Physics, 125(11). (doi:10.1029/2020ja028364)
  28. Engebretson, M. J., Kirkevold, K. R., Steinmetz, E. S., Pilipenko, V. A., Moldwin, M. B., McCuen, B. A., … Rose, M. C. (2020). Interhemispheric Comparisons of Large Nighttime Magnetic Perturbation Events Relevant to GICs. (doi:10.1002/essoar.10502933.1)
Platforms and Instruments

This project has been viewed 72 times since May 2019 (based on unique date-IP combinations)