CAREER: Foraging Ecology and Physiology of Emperor Penguins in the Ross Sea
Short Title:
Physiological Ecology of Emperor Penguins
Start Date:
2020-08-01
End Date:
2025-07-31
Description/Abstract
This project will identify behavioral and physiological variability in foraging Emperor Penguins that can be directly linked to individual success in the marine environment using an optimal foraging theory framework during two critical life history stages. First, this project will investigate the foraging energetics, ecology, and habitat use of Emperor Penguins at Cape Crozier using fine-scale movement and video data loggers during late chick-rearing, an energetically demanding life history phase. Specifically, this study will 1) Estimate the foraging efficiency and examine its relationship to foraging behavior and diet using an optimal foraging theory framework to identify what environmental or physiological constraints influence foraging behavior; 2) Investigate the inter- and intra-individual behavioral variability exhibited by emperor penguins, which is essential to predict how resilient they will be to climate change; and 3) Integrate penguin foraging efficiency data with environmental data to identify important habitat. Next the researchers will study the ecology and habitat preference after the molt and through early reproduction using satellite-linked data loggers. The researchers will: 1) Investigate the inter- and intra-individual behavioral variability exhibited by Emperor Penguins during the three-month post-molt and early winter foraging trips; and 2) Integrate penguin behavioral data with environmental data to identify which environmental features are indicative of habitat preference when penguins are not constrained to returning to the colony to feed a chick. These fine- and coarse-scale data will be combined with climate predictions to create predictive habitat models. The education objectives of this CAREER project are designed to inspire, engage, and train the next generation of scientists using the data and video generated while investigating Emperor Penguins in the Antarctic ecosystem. This includes development of two courses (general education and advanced techniques), training of undergraduate and graduate students, and a collaboration with the NSF funded “Polar Literacy: A model for youth engagement and learning” program to develop afterschool and camp curriculum that target underserved and underrepresented groups.
Personnel
Funding
AMD - DIF Record(s)
Deployment
Data Management Plan
Product Level:
0 (raw data)
Datasets
Keywords
Platforms and Instruments
|
This project has been viewed 70 times since May 2019 (based on unique date-IP combinations)