[{"awards": "1918338 VanTongeren, Jill", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Thu, 03 Apr 2025 00:00:00 GMT", "description": "Voluminous outpourings of iron-rich molten rock (magma), which can initiate from deep within the earth, occur regularly throughout geologic time. Understanding volcanic eruptions requires knowledge of the magmatic plumbing systems and magma chambers that feed eruptions. While many magma chambers are typically emplaced in the shallow subsurface of the earth, only rarely are the entirety of the solidified remnants of these chambers later exposed at the surface of the earth for study. One such magma chamber, the Dufek Intrusion, exists in Antarctica. The Dufek Intrusion is part of the Ferrar magmatic event, which was triggered by the separation or rifting of South America, Africa and Antarctic continents approximately 182 million years ago. The research objectives focus on analyzing existing samples to understand the thermal and chemical evolution of the magma in the Dufek Intrusion magma chamber and deciphering whether the exposed sections are part of the same magma chamber or represent two separate magma chambers. Results from this study may result in the research community questioning the assumption that small intrusions crystallized faster than larger layered intrusions such as the Dufek Intrusion. This project supports multiple early career researchers and provides laboratory training for undergraduate students. Preliminary high-precision U-Pb ages from zircon throughout the Dufek Intrusion show that rocks thought to represent the lowermost section of stratigraphy (the Dufek Massif) are younger than the rocks thought to represent the uppermost section (the Forrestal Range). This study tests whether the zircon ages represent a cooling profile of a single large layered intrusion, or whether the Dufek Massif and Forrestal Range are two separate smaller intrusions. Crystallization temperatures of the cumulus phases (plagioclase and clinopyroxene) and the zircons, as well as cooling rates from the cumulus phases will be obtained to test the cooling profile hypothesis. The research team will construct thermal models of emplacement and cooling to compare with the laboratory analyses. In order to test the two intrusions hypothesis, the team will analyze zircon Hf isotopic compositions and whole rock Sr, Nd, Pb isotopes from samples of the two intrusions to determine whether they are similar and therefore genetically related. Results will provide important constraints on the duration of magmatism associated with continental breakup and present a coherent picture of the construction of (possibly) one of the largest magmatic intrusions exposed on earth today. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "AGE DETERMINATIONS; Ferrar Magmatic Province", "locations": "Ferrar Magmatic Province", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "VanTongeren, Jill", "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "The Dufek Intrusion Ages: Crystallization or Cooling?", "uid": "p0010505", "west": null}, {"awards": "2114454 Greenbaum, Jamin", "bounds_geometry": "POLYGON((-107.5 -74.5,-107.3 -74.5,-107.1 -74.5,-106.9 -74.5,-106.7 -74.5,-106.5 -74.5,-106.3 -74.5,-106.1 -74.5,-105.9 -74.5,-105.7 -74.5,-105.5 -74.5,-105.5 -74.6,-105.5 -74.7,-105.5 -74.8,-105.5 -74.9,-105.5 -75,-105.5 -75.1,-105.5 -75.2,-105.5 -75.3,-105.5 -75.4,-105.5 -75.5,-105.7 -75.5,-105.9 -75.5,-106.1 -75.5,-106.3 -75.5,-106.5 -75.5,-106.7 -75.5,-106.9 -75.5,-107.1 -75.5,-107.3 -75.5,-107.5 -75.5,-107.5 -75.4,-107.5 -75.3,-107.5 -75.2,-107.5 -75.1,-107.5 -75,-107.5 -74.9,-107.5 -74.8,-107.5 -74.7,-107.5 -74.6,-107.5 -74.5))", "dataset_titles": "AXCTD and AXBT Profiles from the Amundsen Sea", "datasets": [{"dataset_uid": "601894", "doi": "10.15784/601894", "keywords": "Amundsen Sea; Antarctica; Araon; AXBT; AXCTD; Cryosphere; CTD; Helicopter; Icebreaker; Oceans; Thwaites Glacier; XBT", "people": "Greenbaum, Jamin Stevens; Greenbaum, Jamin", "repository": "USAP-DC", "science_program": null, "title": "AXCTD and AXBT Profiles from the Amundsen Sea", "url": "https://www.usap-dc.org/view/dataset/601894"}], "date_created": "Mon, 10 Feb 2025 00:00:00 GMT", "description": "The ice shelves around the perimeter Antarctica hold back inland ice that has the potential to raise global sea level by meters. By how much and how rapidly this could occur is a central question in glaciology. The underside of these ice shelves is in contact with the ocean, and there are signs that warming of ocean water is causing melting and retreat of these shelves, with direct implications for sea-level rise. This project will seize an emergent opportunity to work with Australian and South Korean colleagues to acquire snapshot profiles of ocean temperature, salinity, and velocity, and improve bathymetric knowledge, where no prior data exist. The team will work near three glaciers draining ice with substantial sea-level potential from the East and West Antarctic Ice Sheets. The targets are Shackleton and Cook Ice Shelves in East Antarctica, and Thwaites Glacier in West Antarctica. An undergraduate student will be engaged through the Scripps Undergraduate Research Fellowship program and the team will work through the Scripps Educational Alliances program to identify educational outreach opportunities through which to build community engagement in this project. The team will use high-resolution general circulation model simulations to optimize sensor targeting (to be deployed from helicopter and fixed-wing aircraft) and evaluate the relative roles of subglacial freshwater discharge and ocean forcing on subglacial melt rates. The aim is to better understand why grounding-line melt rates are higher at the East Antarctic sites despite data indicating warmer ambient ocean temperatures at the West Antarctic sites. Such behavior could be explained by discharge of subglacial freshwater into ice-shelf cavities, but insufficient data currently exist to test this hypothesis. The team aims to build on ongoing international, collaborative airborne oceanographic sampling with colleagues in the Republic of Korea, Australia, and the United States. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -105.5, "geometry": "POINT(-106.5 -75)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e BEIDOU \u003e GNSS RECEIVER", "is_usap_dc": true, "keywords": "ROTORCRAFT/HELICOPTER; CONDUCTIVITY; OCEAN TEMPERATURE; Amundsen Sea", "locations": "Amundsen Sea", "north": -74.5, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Greenbaum, Jamin", "platforms": "AIR-BASED PLATFORMS \u003e ROTORCRAFT/HELICOPTER", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -75.5, "title": "RAPID: International Collaborative Airborne Sensor Deployments near Antarctic Ice Shelves", "uid": "p0010497", "west": -107.5}, {"awards": "1853291 Girton, James; 1558448 Girton, James", "bounds_geometry": "POLYGON((-70 -58,-69 -58,-68 -58,-67 -58,-66 -58,-65 -58,-64 -58,-63 -58,-62 -58,-61 -58,-60 -58,-60 -58.8,-60 -59.6,-60 -60.4,-60 -61.2,-60 -62,-60 -62.8,-60 -63.6,-60 -64.4,-60 -65.2,-60 -66,-61 -66,-62 -66,-63 -66,-64 -66,-65 -66,-66 -66,-67 -66,-68 -66,-69 -66,-70 -66,-70 -65.2,-70 -64.4,-70 -63.6,-70 -62.8,-70 -62,-70 -61.2,-70 -60.4,-70 -59.6,-70 -58.8,-70 -58))", "dataset_titles": "APL-UW Southern Ocean Wave Glider Data from 2019/20 Mission; Data from 2016 WG launch cruise LMG1612; Data from 2017 WG recovery cruise LMG1703; Data from 2019 WG launch cruise LMG1909; Data from 2020 WG recovery cruise LMG2002; Expedition Data; Expedition data of LMG1612; Expedition Data of LMG1909; LMG2002 Expedtition Data; Wave Glider Data from 2016/17 Mission", "datasets": [{"dataset_uid": "200448", "doi": "", "keywords": null, "people": null, "repository": "University of Washington", "science_program": null, "title": "Wave Glider Data from 2016/17 Mission", "url": "http://faculty.washington.edu/jmt3rd/Waveglider/"}, {"dataset_uid": "001365", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1703"}, {"dataset_uid": "200446", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Data from 2017 WG recovery cruise LMG1703", "url": "https://www.rvdata.us/search/cruise/LMG1703"}, {"dataset_uid": "200445", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Data from 2019 WG launch cruise LMG1909", "url": "https://www.rvdata.us/search/cruise/LMG1909"}, {"dataset_uid": "200444", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Data from 2016 WG launch cruise LMG1612", "url": "https://www.rvdata.us/search/cruise/LMG1612"}, {"dataset_uid": "200431", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of LMG1909", "url": "https://www.rvdata.us/search/cruise/LMG1909"}, {"dataset_uid": "200429", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1612", "url": "https://www.rvdata.us/search/cruise/LMG1612"}, {"dataset_uid": "601902", "doi": "10.15784/601902", "keywords": "Antarctica; Cryosphere; Drake Passage; LMG1909; LMG2002; R/v Laurence M. Gould; Temperature; Wave Glider; Wind Speed", "people": "Girton, James", "repository": "USAP-DC", "science_program": null, "title": "APL-UW Southern Ocean Wave Glider Data from 2019/20 Mission", "url": "https://www.usap-dc.org/view/dataset/601902"}, {"dataset_uid": "200222", "doi": "10.7284/908802", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "LMG2002 Expedtition Data", "url": "https://www.rvdata.us/search/cruise/LMG2002"}, {"dataset_uid": "200447", "doi": "10.7284/908802", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Data from 2020 WG recovery cruise LMG2002", "url": "https://www.rvdata.us/search/cruise/LMG2002"}], "date_created": "Wed, 15 Jan 2025 00:00:00 GMT", "description": "Surface and upper-ocean processes in the Antarctic Circumpolar Current (ACC) play an important role in ocean heat transport, air-sea gas fluxes (such as pCO2) and in sea-ice formation. The net of these in turn modulate global climate, sea level rise and global circulation. This project continues the field development of a surface autonomous vehicle (https://www.liquid-robotics.com/wave-glider/overview/ ) to better measure and study these processes in the remote Southern Ocean, where continuous data is otherwise very difficult to obtain. Mobile autonomous surface vehicles, powered by sunlight and wave action provide a very cost effective manner of solving the problem of obtaining unattended observational coverage in the remote Southern Ocean. The project will support ongoing education and outreach efforts by the PIs including school presentations, visits to science centers and the development of educational materials. The WaveGlider has an established track record of navigating successful spatial surveys and positioned time series measurements in otherwise inhospitable waters and sea-states. The study includes the addition of some new measurement capabilities such as an (upper mixed) layer profiling CTD winch, a high frequency acoustic Doppler turbulence system, and a biogeochemical chlorophyll fluorescence sensor. This augmented instrumentation package will be used for a set of Austral summer season experiments observing ocean-shelf exchange along with frontal air-sea interactions in the vicinity of the West Antarctic Peninsula. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -60.0, "geometry": "POINT(-65 -62)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e CURRENT METERS; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e SONIC ANEMOMETER; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERA; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS", "is_usap_dc": true, "keywords": "SEA SURFACE TEMPERATURE; WAVE GLIDER; TURBULENCE; SURFACE PRESSURE; OCEAN MIXED LAYER; LMG1703; Palmer Station; SALINITY/DENSITY; SURFACE WINDS; OCEAN CURRENTS; HEAT FLUX; SURFACE AIR TEMPERATURE; HUMIDITY; Drake Passage; R/V NBP; R/V LMG; Antarctic Peninsula; WIND STRESS", "locations": "Drake Passage; Antarctic Peninsula; Palmer Station", "north": -58.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Girton, James; Thomson, Jim", "platforms": "WATER-BASED PLATFORMS \u003e UNCREWED VEHICLES \u003e SURFACE \u003e WAVE GLIDER; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "University of Washington", "repositories": "R2R; University of Washington; USAP-DC", "science_programs": null, "south": -66.0, "title": "Wave Glider Observations of Surface Fluxes and Mixed-layer Processes in the Southern Ocean", "uid": "p0010493", "west": -70.0}, {"awards": "1744961 Olesik, John", "bounds_geometry": "POLYGON((161.711586 -77.75758,161.71322740000002 -77.75758,161.7148688 -77.75758,161.71651020000002 -77.75758,161.7181516 -77.75758,161.719793 -77.75758,161.72143440000002 -77.75758,161.7230758 -77.75758,161.72471720000001 -77.75758,161.7263586 -77.75758,161.728 -77.75758,161.728 -77.75784200000001,161.728 -77.758104,161.728 -77.758366,161.728 -77.758628,161.728 -77.75889000000001,161.728 -77.759152,161.728 -77.75941399999999,161.728 -77.759676,161.728 -77.759938,161.728 -77.7602,161.7263586 -77.7602,161.72471720000001 -77.7602,161.7230758 -77.7602,161.72143440000002 -77.7602,161.719793 -77.7602,161.7181516 -77.7602,161.71651020000002 -77.7602,161.7148688 -77.7602,161.71322740000002 -77.7602,161.711586 -77.7602,161.711586 -77.759938,161.711586 -77.759676,161.711586 -77.75941399999999,161.711586 -77.759152,161.711586 -77.75889000000001,161.711586 -77.758628,161.711586 -77.758366,161.711586 -77.758104,161.711586 -77.75784200000001,161.711586 -77.75758))", "dataset_titles": "Elemental composition of individual nanoparticles and fine particles in 28 Taylor Glacier ice core samples 9000 to 44000 yrs BP; Taylor Glacier Atmospheric Mineral Nanoparticles and Microparticles in Antarctic Ice during the last Climatic Cycle", "datasets": [{"dataset_uid": "200426", "doi": "https://doi.org/10.25921/bd1k-mv46", "keywords": null, "people": null, "repository": "NOAA\u0027s National Centers for Environmental Information World Data Service Paleo archive", "science_program": null, "title": "Taylor Glacier Atmospheric Mineral Nanoparticles and Microparticles in Antarctic Ice during the last Climatic Cycle", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/40380"}, {"dataset_uid": "601879", "doi": "10.15784/601879", "keywords": "Antarctica; Cryosphere; Particle Size; Taylor Glacier", "people": "Kutuzov, Stanislav; Gabrielli, Paolo; Olesik, John; Lowry, Greg; Sullivan, Ryan; Carter, Lucas; Lomax-Vogt, Madeleine", "repository": "USAP-DC", "science_program": null, "title": "Elemental composition of individual nanoparticles and fine particles in 28 Taylor Glacier ice core samples 9000 to 44000 yrs BP", "url": "https://www.usap-dc.org/view/dataset/601879"}], "date_created": "Mon, 06 Jan 2025 00:00:00 GMT", "description": "The main goal of this project is to identify and geochemically characterize atmospheric mineral nanoparticles in pre-industrial Antarctic ice during the last climatic cycle. Recent technological and industrial development is introducing a large number of natural and engineered nanoparticles into Earth\u0027s atmosphere. These constitute a concern for human health, mainly due to their high chemical reactivity. While many atmospheric nanoparticle studies have been performed in modern urban environments, there is essentially no information about their occurrence in a pristine pre-industrial atmosphere. This information is critical, as it constitutes an important benchmark for comparison to the modern atmosphere. Information on nanoparticles from the pre-industrial atmosphere can be obtained from atmospheric mineral nanoparticles that are entrapped in remote pre-industrial Antarctic ice covering the last climatic cycles. Mineral nanoparticles can also affect several climatic processes. First, they directly influence the global energy balance by reflecting solar radiation and indirectly influence through changes in cloud formation (and clouds also reflect solar radiation). Second, atmospheric mineral nanoparticles such as iron oxides could have fertilized the oceans, causing blooms of marine phytoplankton that may have drawn part of the atmospheric carbon dioxide into the oceans during glacial ages (the \"biological pump\"). Third, a significant amount of extraterrestrial material entering the Earth atmosphere is thought to be transported to the poles as nanoparticles called \"meteoric smoke\" that form polar stratospheric clouds implicated in changes of the ozone hole. This project aims to establish the natural background of unknown classes of glacial particles whose size is below the detection limit of the conventional dust analyzers. The team will take advantage of ice samples from the \"horizontal ice core\", already extracted from the remote Taylor Glacier (coastal East Antarctica) covering the last ~44,000 years. These ancient samples are particularly suited to project scope because i) a large ice volume is available ii) the team expects to find a markedly different geochemistry between nanoparticles deposited during the last glacial age and during the current interglacial. A set of advanced techniques including Transmission Electron Microscopy, Single Particle Inductively Coupled Plasma Mass Spectrometry (spICP-MS), spICP-Time of Flight MS, and Field Flow Fractionation will be employed to determine mineral nanoparticle sizes, number/volume, and chemical composition. So far, the elemental composition of dust entrapped in polar ice has been mainly determined by Inductively Coupled Plasma Sector Field Mass Spectrometry and it is generally assumed to be descriptive of the coarse aeolian dust fraction. However, project will test whether or not the determined elemental composition is instead mainly linked to the previously unobserved smaller mineral nanoparticle content. Results on nanoparticles will be compared with a set of new experiments of total dust composition measured by Inductively Coupled Plasma Sector Field Mass Spectrometry, using the same ice samples from Taylor Glacier. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 161.728, "geometry": "POINT(161.719793 -77.75889000000001)", "instruments": null, "is_usap_dc": true, "keywords": "MICROPARTICLE CONCENTRATION; Taylor Glacier", "locations": "Taylor Glacier", "north": -77.75758, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Olesik, John", "platforms": null, "repo": "NOAA\u0027s National Centers for Environmental Information World Data Service Paleo archive", "repositories": "NOAA\u0027s National Centers for Environmental Information World Data Service Paleo archive; USAP-DC", "science_programs": null, "south": -77.7602, "title": "Atmospheric Mineral Nanoparticles in Antarctic Ice during the last Climatic Cycle", "uid": "p0010492", "west": 161.711586}, {"awards": "8020002 Kyle, Philip", "bounds_geometry": "POLYGON((163.6 -73,163.76 -73,163.92 -73,164.07999999999998 -73,164.23999999999998 -73,164.39999999999998 -73,164.56 -73,164.72 -73,164.88 -73,165.04 -73,165.2 -73,165.2 -73.05,165.2 -73.1,165.2 -73.15,165.2 -73.2,165.2 -73.25,165.2 -73.3,165.2 -73.35,165.2 -73.4,165.2 -73.45,165.2 -73.5,165.04 -73.5,164.88 -73.5,164.72 -73.5,164.56 -73.5,164.39999999999998 -73.5,164.23999999999998 -73.5,164.07999999999998 -73.5,163.92 -73.5,163.76 -73.5,163.6 -73.5,163.6 -73.45,163.6 -73.4,163.6 -73.35,163.6 -73.3,163.6 -73.25,163.6 -73.2,163.6 -73.15,163.6 -73.1,163.6 -73.05,163.6 -73))", "dataset_titles": "Mount Overlord, northern Victoria Land. Age, mineralogical and geochemical data", "datasets": [{"dataset_uid": "601799", "doi": "10.15784/601799", "keywords": "Antarctica; Cryosphere; Geochemistry; Mount Overlord", "people": "Kyle, Philip", "repository": "USAP-DC", "science_program": null, "title": "Mount Overlord, northern Victoria Land. Age, mineralogical and geochemical data", "url": "https://www.usap-dc.org/view/dataset/601799"}], "date_created": "Tue, 29 Oct 2024 00:00:00 GMT", "description": "Not Available", "east": 165.2, "geometry": "POINT(164.39999999999998 -73.25)", "instruments": null, "is_usap_dc": true, "keywords": "Victoria Land; LAVA COMPOSITION/TEXTURE; FIELD INVESTIGATION; FIELD SURVEYS; GEOCHEMISTRY", "locations": "Victoria Land", "north": -73.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kyle, Philip", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -73.5, "title": "Petrogenesis of the McMurdo Volcanic Group and the Nature of the Subcontinental Mantle in Victoria Land, Antarctica", "uid": "p0010487", "west": 163.6}, {"awards": "1953960 Smith, Selena; 1953993 Atkinson, Brian", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Sat, 19 Oct 2024 00:00:00 GMT", "description": "Part I: Nontechnical Description Flowering plants are the dominant land plant group on Earth today. They play essential roles in climate-life interactions and are fundamental for human well-being (health, food, materials). Despite their importance to us, their early evolution has remained enigmatic. Without the geological context of how these plants evolved, we will not fully understand their roles in regulating climate and structuring environments. This is important as terrestrial ecosystems today are undergoing many changes. The fossil record indicates that critical events relating to the early diversification of flowering plants occurred during the Cretaceous period (145\u201366 million years ago). Recent discoveries of fossil flowers and fruits from this time period have significantly furthered our understanding of early flowering plant evolution. However, the majority of these discoveries are from the Northern Hemisphere while similar discoveries from the Southern Hemisphere are relatively lacking. This project will address this paucity of data by collecting and describing Late Cretaceous flowering plant fossils from Western Antarctica and placing them in evolutionary frameworks to better understand early flowering plant evolution, biogeographic history, and Antarctica\u2019s role in the formation of modern ecosystems. Western Antarctica is the only place in the Southern Hemisphere that is reported to contain Late Cretaceous-aged (100\u201366 million years ago) three-dimensionally preserved flowers and fruits. Therefore, the recovery and study of these fossils can meaningfully further our understanding of the early phases of flowering plant evolution. This work will result in the description of new species that will be placed in evolutionary analyses and biogeographic frameworks, which will help clarify the Cretaceous diversification of flowering plants in the Southern Hemisphere. These fossils will provide insights that will allow us to anticipate which plants might thrive in a warming Antarctic and world. Part II: Technical Description The Late Cretaceous diversification of flowering plants (angiosperms) in the Southern Hemisphere is poorly understood due in part to the limited amount of well-characterized fossil plant reproductive structures. Paleobotanical studies indicate that Antarctica was an important area for the Cretaceous diversification of flowering plants and is the only place in the Southern Hemisphere that is known to contain permineralized Late Cretaceous-aged angiosperm reproductive structures. The proposed research will elucidate Antarctica\u2019s role in the evolution of angiosperms and assembly of modern ecosystems by recovering and characterizing Late Cretaceous Antarctic angiosperms, placing them within a phylogenetic context, and testing for biogeographic links between North America and Gondwana as has been observed for animals. Fieldwork will be conducted in the James Ross Basin of West Antarctica where previous reports and preliminary data indicate the presence of Late Cretaceous-aged floras that include structurally preserved reproductive structures. The exceptional preservation of these fossils allows us to record data essential for placing them in a phylogenetic framework from which their evolutionary and biogeographical context can be determined. The taxonomically informative and well-preserved angiosperm reproductive structures within the James Ross Basin are of a crucial age and from an important geographic area for understanding the phylogenetic diversification of Southern Hemisphere angiosperms and ecosystems. Collected fossils will be examined using standard physical techniques and microCT imaging. The study of these fossils will result in the description of new species and possibly higher taxa and provide a unique perspective into the floral diversity and composition of West Antarctica during the Cretaceous. In addition, the fossils will be placed within a phylogenetic framework, which will help to elucidate which lineages were diversifying in Antarctica. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Angiosperms; Cretaceous; Antarctica; PLANTS", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Atkinson, Brian; Smith, Selena", "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Unearthing Antarctica\u0027s role in the Late Cretaceous Evolution of Flowering Plants", "uid": "p0010486", "west": null}, {"awards": "2317997 Keogh, Molly", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 17 Oct 2024 00:00:00 GMT", "description": "Climate change is disproportionately affecting polar regions, with the Arctic now warming nearly four times faster than the global average. Polar warming drives coastal erosion and increases sediment delivery to the coastal ocean, affecting ecosystem processes ranging from primary productivity to carbon sequestration. Tracking changes in sedimentation rate is urgently needed to determine current conditions and measure further change. In polar regions, however, two of the most globally reliable sediment tracers, the radioisotopes lead-210 (210Pb) and cesium-137 (137Cs), have yielded mixed results. To understand the distribution and usefulness of these radioisotopes at high latitudes, this research makes use of a wealth of polar sediment cores archived at the Oregon State University Marine and Geology Repository combined with data synthesized from the literature. Results provide the first systematic study of Arctic and Antarctic sediment accretion. Improving the tools we use to track changes in sedimentation will help coastal managers and decisionmakers understand how climate change is impacting polar coastlines and marine environments, and what local communities should expect in the future. Sediment cores will be subsampled and analyzed for the activities of 210Pb (half-life = 22.3 years) and 137Cs (half-life = 30.1 years) using alpha and gamma spectroscopy, respectively. To provide context related to depositional environment, select subsamples will also be analyzed for sediment bulk density, grain size distribution, and organic content. A subset of samples with no measurable 210Pb or 137Cs activity will be analyzed for 14C to determine whether the lack of radioisotopes in a sample is because the core is simply too old, the true surface layer is missing, or because the shorter-lived radioisotopes did not accumulate. By undertaking comprehensive spatial analysis of the distribution of 210Pb and 137Cs in Arctic and Antarctic sediments, this research will achieve three goals: first, measure the activity of short-lived radioisotopes in archived sediment cores, a service to the science community that is urgently needed before the isotopes decay beyond detection; second, produce a comprehensive pole-wide atlas of sediment accretion rates; and finally, conduct a temporal analysis of sedimentation rate changes over the last ~60 to 125 years along the Beaufort Sea coast of northern Alaska, an ecologically and economically important region experiencing environmental transformation due to climate warming. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Alpha Spectrometry; Sediment Dynamics; Polar; SEDIMENTATION; MARINE SEDIMENTS; Pb-210; Geochronology; SEDIMENTS", "locations": "Polar", "north": -60.0, "nsf_funding_programs": "Post Doc/Travel; Antarctic Earth Sciences", "paleo_time": null, "persons": "Keogh, Molly", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "Postdoctoral Fellowship: OPP-PRF: Tracing Polar Sediments with Short-lived Radioisotopes in 75 years of Arctic and Antarctic Sediment Cores", "uid": "p0010484", "west": -180.0}, {"awards": "2142914 Baker, Bill; 2142912 Murray, Alison; 2142913 Tresguerres, Martin", "bounds_geometry": "POLYGON((-180 -60,-168 -60,-156 -60,-144 -60,-132 -60,-120 -60,-108 -60,-96 -60,-84 -60,-72 -60,-60 -60,-60 -62,-60 -64,-60 -66,-60 -68,-60 -70,-60 -72,-60 -74,-60 -76,-60 -78,-60 -80,-72 -80,-84 -80,-96 -80,-108 -80,-120 -80,-132 -80,-144 -80,-156 -80,-168 -80,180 -80,178 -80,176 -80,174 -80,172 -80,170 -80,168 -80,166 -80,164 -80,162 -80,160 -80,160 -78,160 -76,160 -74,160 -72,160 -70,160 -68,160 -66,160 -64,160 -62,160 -60,162 -60,164 -60,166 -60,168 -60,170 -60,172 -60,174 -60,176 -60,178 -60,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 17 Oct 2024 00:00:00 GMT", "description": "Non-technical description Marine invertebrates often have mutually beneficial partnerships with microorganisms that biosynthesize compounds with nutritive or defensive functions and are integral for survival. Additionally, these \u201cnatural products\u201d often have bioactive properties with human health applications fighting infection or different types of cancer. This project focuses on the ascidian (\u201csea squirt\u201d) Synoicum adareanum, found in the Anvers Island region of the Antarctic Peninsula, and was recently discovered to contain high levels of a natural product, palmerolide A (palA) in its tissues. The microorganism that produces palA is a new bacterial species, Candidatus Synoicihabitans palmerolidicus, found in a persistent partnership with the sea squirt. There is still much to be learned about the fundamental properties of this sea squirt-microbe-palA system including the geographical range of the animal-microbe partnership, its chemical and microbiome complexity and diversity, and the biological effect of palA in the sea squirt. To address these questions, this multidisciplinary research team will investigate the sea squirt-microbiome partnership in the Antarctic Peninsula and McMurdo Sound regions of the Ross Sea using a state-of-the-art strategy that will advance our understanding of the structural and functional features of the sea squirt and microbiome in detail, and reveal the roles that the palA natural product plays in the host ecology in its native Antarctic seafloor habitat. The project will broaden diversity and provide new opportunities for early career students and postdoctoral researchers to participate in field and laboratory-based research that builds an integrative understanding of Antarctic marine biology, ecology, physiology and chemistry. In addition, advancing the understanding of palA and its biological properties may be of future benefit to biomedicine and human health. Technical description Marine invertebrates and their associated microbiomes can produce bioactive natural products; in fact, \u003e600 such compounds have been identified in species from polar waters. Although such compounds are typically hypothesized to serve ecological roles in host survival through deterring predation, fouling, and microbial infection, in most cases neither the producing organism nor the genome-encoded biosynthetic enzymes are known. This project will study an emerging biosynthetic system from a polar ascidian-microbe association that produces palA, a natural product with bioactivity against the proton-pumping enzyme V-type H+-ATPase (VHA). The objectives include: (i) Determining the microbiome composition, metabolome complexity, palA levels, and mitochondrial DNA sequence of S. adareanum morphotypes at sites in the Antarctic Peninsula and in McMurdo Sound, (ii) Characterizing the Synoicum microbiome using a multi-omics strategy, and (iii) Assessing the potential for co-occurrence of Ca. S. palmerolidicus-palA-VHA in host tissues, and (iv) exploring the role of palA in modulating VHA activity in vivo and its effects on ascidian-microbe ecophysiology. Through a coupled study of palA-producing and non-producing S. adareanum specimens, structural and functional features of the ascidian microbiome metagenome will be characterized to better understand the relationship between predicted secondary metabolite pathways and whether they are expressed in situ using a paired metatranscriptome sequencing and secondary metabolite detection strategy. Combined with tissue co-localization results, functional ecophysiological assays aim to determine the roles that the natural product plays in the host ecology in its native Antarctic seafloor habitat. The contributions of the project will inform this intimate host-microbial association in which the ascidian host bioaccumulates VHA-inhibiting palA, yet its geo-spatial distribution, cellular localization, ecological and physiological role(s) are not known. In addition to elucidating the ecophysiological roles of palA in their native ascidian-microbe association, the results will contribute to the success of translational science, which aligns with NSF\u2019s interests in promoting basic research that leads to advances in Biotechnology and Bioeconomy. The project will also broaden diversity and provide new opportunities for early career students and postdoctoral researchers to participate in field and laboratory-based research that builds an integrative understanding of Antarctic marine biology, ecology, physiology and chemistry. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 160.0, "geometry": "POINT(-130 -70)", "instruments": null, "is_usap_dc": true, "keywords": "ECOSYSTEM FUNCTIONS; BACTERIA/ARCHAEA; BENTHIC; R/V NBP; Antarctic Peninsula; ANIMALS/INVERTEBRATES", "locations": "Antarctic Peninsula", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Baker, Bill; Murray, Alison; Tresguerres, Martin", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repositories": null, "science_programs": null, "south": -80.0, "title": "Collaborative Research: ANT LIA: Diving into the Ecology of an Antarctic Ascidian-Microbiome-Palmerolide Association using a Multi-omic and Functional Approach", "uid": "p0010485", "west": -60.0}, {"awards": "1841228 Lyons, W. Berry", "bounds_geometry": "POLYGON((163.37428 -77.558627,163.3922735 -77.558627,163.410267 -77.558627,163.4282605 -77.558627,163.446254 -77.558627,163.4642475 -77.558627,163.482241 -77.558627,163.5002345 -77.558627,163.518228 -77.558627,163.5362215 -77.558627,163.554215 -77.558627,163.554215 -77.56397510000001,163.554215 -77.5693232,163.554215 -77.5746713,163.554215 -77.5800194,163.554215 -77.5853675,163.554215 -77.59071560000001,163.554215 -77.5960637,163.554215 -77.60141180000001,163.554215 -77.6067599,163.554215 -77.612108,163.5362215 -77.612108,163.518228 -77.612108,163.5002345 -77.612108,163.482241 -77.612108,163.4642475 -77.612108,163.446254 -77.612108,163.4282605 -77.612108,163.410267 -77.612108,163.3922735 -77.612108,163.37428 -77.612108,163.37428 -77.6067599,163.37428 -77.60141180000001,163.37428 -77.5960637,163.37428 -77.59071560000001,163.37428 -77.5853675,163.37428 -77.5800194,163.37428 -77.5746713,163.37428 -77.5693232,163.37428 -77.56397510000001,163.37428 -77.558627))", "dataset_titles": "Commonwealth Stream Diel Water Chemistry; Hyporheic zone geochemistry of Wales Stream, Taylor Valley, Antarctica; isotopic signature of massive buried ice, eastern Taylor Valley, Antarctica", "datasets": [{"dataset_uid": "601848", "doi": "10.15784/601848", "keywords": "Antarctica; Buried Ice; Cryosphere; Stable Isotopes; Stable Water Isotopes; Taylor Valley", "people": "Gardner, Christopher B.", "repository": "USAP-DC", "science_program": null, "title": "isotopic signature of massive buried ice, eastern Taylor Valley, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601848"}, {"dataset_uid": "601844", "doi": "10.15784/601844", "keywords": "Antarctica; Commonwealth Stream; Cryosphere; Diel; Inlandwaters; McMurdo Dry Valleys; Stream Chemistry; Water Chemisty", "people": "Gardner, Christopher B.", "repository": "USAP-DC", "science_program": null, "title": "Commonwealth Stream Diel Water Chemistry", "url": "https://www.usap-dc.org/view/dataset/601844"}, {"dataset_uid": "601847", "doi": "10.15784/601847", "keywords": "Antarctica; Cryosphere; Nutrients; Stable Isotopes; Taylor Valley; Trace Elements", "people": "Gardner, Christopher B.", "repository": "USAP-DC", "science_program": null, "title": "Hyporheic zone geochemistry of Wales Stream, Taylor Valley, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601847"}], "date_created": "Wed, 16 Oct 2024 00:00:00 GMT", "description": "Phytoplankton, or microscopic marine algae, are an important part of the carbon cycle and can lower the rates of atmospheric carbon dioxide by transferring the atmospheric carbon into the oceans. The concentration of phytoplankton in the Southern Ocean is regularly limited by the availability of marine iron. This in turn influences the rate of carbon transfer from the atmosphere to the ocean. The primary source of iron in the Southern Ocean is eroded continental rock. Understanding the current and future sources of iron to the Southern Ocean as a result of increased melting of terrestrial glaciers is necessary for predicting future concentrations of Southern Ocean phytoplankton and the subsequent influence on the carbon cycle. A poorly understood source of iron to the Southern Ocean is stream input from ice-free regions such as the McMurdo Dry Valleys in Antarctica. This source of iron is likely to become larger if glaciers retreat. This study investigates the sources and amount of iron transported by McMurdo Dry Valley streams directly into the Southern Ocean. Because not all forms of iron can be used by phytoplankton, experiments will be performed to determine how available iron is to phytoplankton and how iron mixes with seawater. Immersive 360-degree video, infographics, and educational videos of findings from this project will be shared on social media, at schools and science events, and in an urban science center. In the Southern Ocean (SO) there is an excess of macronutrients but regional primary production is limited or co-limited due to iron. An addition of iron to the ocean will affect biochemical cycles, increase primary production, and affect the structure and composition of phytoplankton communities in the SO. Iron flux to the SO is globally significant, as increased Fe fertilization leads to increased carbon sequestration which acts as a negative feedback to increased atmospheric pCO2. One source of potentially bioavailable iron to the coastal regions of the SO is from direct sub-aerial stream discharge in ice-free areas of Antarctica, a source that may become more important if terrestrial glaciers retreat. It is imperative to understand the source, nature, potential fate, and flux of iron to the SO if better predictive models for the carbon cycle and atmospheric chemistry are to be developed. This project will investigate in-stream processes and characteristics controlling dissolved iron draining into the Ross Sea including photoreduction, temperature, and complexation with organic matter. The novel study will quantify bioavailability of particulate iron and bioavailability of dissolved iron in Antarctic in streams draining into the SO. On-site speciation measurements will be performed on dissolved iron species, particulate iron speciation will be determined using high-resolution spectroscopy, mixing experiments will be performed with coastal marine water, and the bioavailability of Fe will be determined through marine bioassays. This project will provide two students with valuable Antarctic field experience and reach thousands of individuals through existing partnerships with K-12 schools, public STEM events, an urban science center, and a strong social media presence. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 163.554215, "geometry": "POINT(163.4642475 -77.5853675)", "instruments": null, "is_usap_dc": true, "keywords": "SURFACE WATER CHEMISTRY; Iron Fertilization; McMurdo Dry Valleys; Weathering", "locations": "McMurdo Dry Valleys", "north": -77.558627, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Lyons, W. Berry; Gardner, Christopher B.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.612108, "title": "Fe Behavior and Bioavailability in Sub-aerial Runoff into the Ross Sea", "uid": "p0010483", "west": 163.37428}, {"awards": null, "bounds_geometry": null, "dataset_titles": "Deuterium isotopic composition of atmospheric methane across Dansgaard Oesgher Event 8, Talos Dome Ice Core, Antarctica", "datasets": [{"dataset_uid": "601814", "doi": "10.15784/601814", "repository": "USAP-DC", "science_program": null, "title": "Deuterium isotopic composition of atmospheric methane across Dansgaard Oesgher Event 8, Talos Dome Ice Core, Antarctica", "url": "http://www.usap-dc.org/view/dataset/601814"}], "date_created": "Tue, 23 Jul 2024 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Abrupt Climate Change; Antarctica; Biogeochemical Cycles; Carbon Cycle; Cryosphere; Ice Core Records; Talos Dome", "locations": "Talos Dome; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lee, James; Iseli, Rene; Bauska, Thomas; Riddell-Young, Benjamin; Menking, James; Clark, Reid; Schmitt, Jochen; Brook, Edward J.; Fischer, Hubertus", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": null, "uid": null, "west": null}, {"awards": "2336354 Juarez Rivera, Marisol", "bounds_geometry": "POLYGON((160 -76.5,160.45 -76.5,160.9 -76.5,161.35 -76.5,161.8 -76.5,162.25 -76.5,162.7 -76.5,163.15 -76.5,163.6 -76.5,164.05 -76.5,164.5 -76.5,164.5 -76.7,164.5 -76.9,164.5 -77.1,164.5 -77.3,164.5 -77.5,164.5 -77.7,164.5 -77.9,164.5 -78.1,164.5 -78.3,164.5 -78.5,164.05 -78.5,163.6 -78.5,163.15 -78.5,162.7 -78.5,162.25 -78.5,161.8 -78.5,161.35 -78.5,160.9 -78.5,160.45 -78.5,160 -78.5,160 -78.3,160 -78.1,160 -77.9,160 -77.7,160 -77.5,160 -77.3,160 -77.1,160 -76.9,160 -76.7,160 -76.5))", "dataset_titles": "Lake Fryxell 2022-2023 benthic microbial mat thickness and number of laminae", "datasets": [{"dataset_uid": "601839", "doi": "10.15784/601839", "keywords": "Antarctica; Cryosphere; Dry Valleys; Lake Fryxell; Laminae; Microbial Mat; Thickness", "people": "Mackey, Tyler; Juarez Rivera, Marisol; Sumner, Dawn; Paul, Ann; Hawes, Ian", "repository": "USAP-DC", "science_program": null, "title": "Lake Fryxell 2022-2023 benthic microbial mat thickness and number of laminae", "url": "https://www.usap-dc.org/view/dataset/601839"}], "date_created": "Fri, 05 Jul 2024 00:00:00 GMT", "description": "Perennially ice-covered lakes in the McMurdo Dry Valleys of Antarctica contain abundant microbial mats, and the export of this mat material can fertilize the surrounding polar desert ecosystems. These desert soils are one of the most organic-poor on earth yet host a community of microorganisms. Microbial mat material is exported from the shallow, gas-supersaturated regions of the lakes when gas bubbles form in the mats, lifting them to the ice cover; the perennial ice cover maintains gas supersaturation. These mats freeze in and are exported to the surrounding soils through ice ablation. The largest seasonal decrease and thinnest ice cover in the history of Lake Fryxell was recorded during the 2022-2023 Austral summer. In this thin ice year, the water column dissolved oxygen increased over prior observations, and the lake bottom surface area with bubble-disrupted mat was more than double that observed in 1980-1981 and 2006-2007. This work will constrain mat mobilization within and out of Lake Fryxell in the McMurdo Dry Valleys during a period of unprecedented ice thinning to understand how future changing regional climate and predicted seasonal loss of lake ice cover will affect nutrient transport in the McMurdo Dry Valleys. Exceptional years of mat export are hypothesized to have the most significant impact on nutrient export to soil communities; variability in mat liftoff may thus play a role in the McMurdo Dry Valleys ecosystem response to changing climate. The perennial ice cover of lakes in the McMurdo Dry Valleys of Antarctica modulates the transfer of gasses, organic and inorganic material, between the lakes and surrounding soils. The export of biomass in these lakes is driven by the supersaturation of atmospheric gasses in the shallow regions under perennial ice cover. Gas bubbles nucleate in the mats, producing buoyancy that lifts them to the bottom of the ice, where they freeze in and are exported to the surrounding soils through ice ablation. These mats represent a significant source of biomass and nutrients to the McMurdo Dry Valleys soils, which are among the most organic-poor on earth. Nevertheless, this biomass remains unaccounted for in organic carbon cycling models for the McMurdo Dry Valleys. Ice cover data from the McMurdo Dry Valleys Long Term Ecological Research Project shows that the ice thickness has undergone cyclical variation over the last 40 years, reaching the largest seasonal decrease and thinnest ice-cover in the recorded history of Lake Fryxell during the 2022-2023 austral summer. Preliminary work shows that the surface area with mat liftoff at Lake Fryxell is more than double that observed in 1980-1981 and 2006-2007, coinciding with this unprecedented thinning of the ice-cover and an increase in the water column dissolved O2. This research will constrain biomass mobilization within and out of Lake Fryxell in the McMurdo Dry Valleys during a period of unprecedented ice thinning. The researchers hypothesize that a thinner ice cover promotes more biomass mobilization by 1) stimulating additional production of gas bubbles from the existing gas-supersaturated waters during summertime photosynthesis to create microbial mat liftoff and 2) promoting mat liftoff in deeper, thicker microbial mats, and 3) that this biomass can be traced into the soils by characterizing its chemistry and modeling the most likely depositional settings. This work will use microbial mat samples, lake dissolved oxygen and photosynthetically active radiation data and underwater drone footage documenting the depth distribution of liftoff mats in January 2023, and long-term ice cover thickness, photosynthetically active radiation, and lake level change data collected by the McMurdo Dry Valleys Long Term Ecological Research Project to test hypotheses 1-3. The dispersal of the liftoff mat exposed at Lake Fryxell surface will be modeled using a Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Exceptional liftoff years like the present are hypothesized to have the most significant impact on the soil communities as the rates of soil respiration increase with the addition of carbon. However, continued warming in the next 10 - 40 years may result in seasonal loss of the ice cover and cessation of liftoff mat export. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 164.5, "geometry": "POINT(162.25 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Stable Isotopes; MINERALS; LAKE/POND; ISOTOPES; Organic Matter; McMurdo Dry Valleys; SEDIMENTARY ROCKS", "locations": "McMurdo Dry Valleys", "north": -76.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Earth Sciences", "paleo_time": null, "persons": "Juarez Rivera, Marisol", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.5, "title": "RAPID: Is Biomass Mobilization at Ice-covered Lake Fryxell, Antarctica reaching a Critical Threshold?", "uid": "p0010467", "west": 160.0}, {"awards": "1903681 Brook, Edward J.", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Final N2O isotopic data including isotopomer ratios for the last deglaciation and Heinrich Stadia 4/Dansgaard Oeschger Event 8; Preliminary nitrous oxide site preference isotopic data for last deglaciation from Taylor Glacier", "datasets": [{"dataset_uid": "601592", "doi": "10.15784/601592", "keywords": "Antarctica; Nitrous Oxide; Taylor Glacier", "people": "Menking, Andy; Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "Preliminary nitrous oxide site preference isotopic data for last deglaciation from Taylor Glacier", "url": "https://www.usap-dc.org/view/dataset/601592"}, {"dataset_uid": "601803", "doi": "10.15784/601803", "keywords": "Antarctica; Cryosphere; Ice Core; Nitrous Oxide; Taylor Glacier", "people": "Menking, Andy; Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "Final N2O isotopic data including isotopomer ratios for the last deglaciation and Heinrich Stadia 4/Dansgaard Oeschger Event 8", "url": "https://www.usap-dc.org/view/dataset/601803"}], "date_created": "Wed, 19 Jun 2024 00:00:00 GMT", "description": "The objective of this project is to understand why the nitrous oxide (N2O) content of the atmosphere was lower during the last ice age (about 20,000-100,000 years ago) than in the subsequent warm period (10,000 years ago to present) and why it fluctuated during climate changes within the ice age. Nitrous oxide is a greenhouse gas that contributes to modern global warming. It is thought that modern warming will in turn cause increases in natural sources of nitrous oxide from bacteria in soils and the ocean, creating a \"positive feedback.\" However, the amount these sources will increase is uncertain because the different ways that nitrous oxide are produced, and how sensitive they are to warmer climate, are not well known. This project will measure a unique property of the nitrous oxide molecule in very large ancient air samples from a glacier in Antarctica. This method can distinguish between different microbial processes that produce nitrous oxide but it has not been applied yet to the time periods in question. The data will provide information about how natural climate changes affect nitrous oxide production. This, in turn, will be useful for predicting future changes and for understanding why the Earth\u0027s climate shifts from ice ages to warm periods and back again. Ice-core records of greenhouse gas isotopic composition are useful for determining past changes in natural source and sink strengths and for understanding how natural emissions are linked to climate change. This project will develop two records of the intramolecular site preference of Nitrogen-15 in N2O. One record spans the last deglaciation (10,000-21,000 years ago) when atmospheric N2O concentration rose by 30 percent, and the other record spans millennial-scale climate changes during the last ice age when N2O varied by smaller amounts (Heinrich Stadial 4 and Dansgaard Oeschger 8, 35,000-41,000 years ago). The records will be used to understand what changes in the nitrogen cycle caused atmospheric N2O concentration to vary and what mechanisms link the N2O emissions to climate change. Ideally, studying the two different time periods will isolate the millennial climate responses entangled with the full deglacial sequence, creating a clearer picture of how N2O biogeochemistry responds to climate change. This work will also allow exploration of an isotopic tracer for in situ production of N2O that contaminates the atmospheric signal in particularly dusty ice. The project will use a unique, well-dated suite of ice samples from Taylor Glacier, Antarctica and continuous flow isotope ratio mass spectrometry on a custom gas extraction line operated in the Oregon State University laboratory. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Taylor Glacier; Nitrous Oxide; TRACE GASES/TRACE SPECIES; Ice Core; Stable Isotopes; NITROUS OXIDE", "locations": "Taylor Glacier", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY", "persons": "Brook, Edward", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Deciphering Changes in Atmospheric Nitrous Oxide Concentration During the Last Ice Age Using the Intramolecular Site-Preference of Nitrogen Isotopes", "uid": "p0010465", "west": -180.0}, {"awards": "2301026 Amsler, Charles", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Thu, 16 May 2024 00:00:00 GMT", "description": "General abstract Most organisms alternate between life stages that vary in the number and arrangement of their chromosomes, in the number of cells they possess, and in the environmental conditions in which they are best adapted to live. Much of what we understand about these alternations comes from organisms like animals and land plants in which one of the two stages dominates the life cycle with the other small and short-lived. However, across the tree of life there are countless examples of organisms in which both stages are of long duration, multicellular, or both. These life cycles challenge common ideas used to explain ecological and evolutionary patterns we see in nature. Macroalgae (seaweeds) display a wide range of life cycle types and consequently are excellent models to test and expand ideas about how life cycles evolve. Undersea forests of seaweeds with a variety of life cycle types dominate the shallow waters of the western Antarctic Peninsula where they are ecologically important and, for most of the species, at the southern end of their geographic range. Using existing samples from previous expeditions to Antarctica, the investigators are uniquely positioned to test and expand knowledge of life cycle evolution and how this intersects with reproductive mode variation. This project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the public. The project will support a postdoctoral scholar as well as a faculty member new to US Antarctic research. The investigators will take advantage of an existing program to include high school or undergraduate students in the work which will also expand mentorship experience for the postdoc. All team members will contribute by writing for blogs produced by professional societies for the public. Technical abstract Existing macroalgal taxa samples from across a latitudinal gradient in the western Antarctic Peninsula will be used to explore patterns of genetic diversity from the center to the southern latitudinal limits of their range. Not only will genetic diversity be documented for an understudied and critical group of Antarctic organisms, but how it changes with latitude, compounded by high levels of endemism, will be explored. This will be accomplished by (i) characterization of latitudinal gradients in genetic diversity of many species and (ii) determination of the reproductive system of five focal foundation species. At present, there are few genetic data for macroalgae, dominant primary producers in coastal ecosystems around the world. This gap is particularly acute along Antarctic coastlines that are experiencing rapid climate change. Furthermore, Antarctica is isolated by the Southern Ocean, decreasing the likelihood of regular migration from other land masses. Latitudinal reproductive system patterns are predicted to be largely driven by recolonization events that increase with latitude due to changes in iceberg scour and sea ice coverage. Thus, Antarctica is the best place to understand what processes underlie reproductive mode variation in populations that are isolated, including many endemic taxa, while simultaneously extending our knowledge about how marginal environments converge with complex life cycles. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "MACROALGAE (SEAWEEDS); Antarctic Peninsula", "locations": "Antarctic Peninsula", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Amsler, Charles; Krueger-Hadfield, Stacy", "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "Historical and Contemporary Drivers of Macroalgal Reproductive System Variation along the Western Antarctic Peninsula", "uid": "p0010460", "west": null}, {"awards": "2325046 Thurber, Andrew", "bounds_geometry": "POLYGON((162 -77,162.6 -77,163.2 -77,163.8 -77,164.4 -77,165 -77,165.6 -77,166.2 -77,166.8 -77,167.4 -77,168 -77,168 -77.1,168 -77.2,168 -77.3,168 -77.4,168 -77.5,168 -77.6,168 -77.7,168 -77.8,168 -77.9,168 -78,167.4 -78,166.8 -78,166.2 -78,165.6 -78,165 -78,164.4 -78,163.8 -78,163.2 -78,162.6 -78,162 -78,162 -77.9,162 -77.8,162 -77.7,162 -77.6,162 -77.5,162 -77.4,162 -77.3,162 -77.2,162 -77.1,162 -77))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 10 May 2024 00:00:00 GMT", "description": "This RAPID project aims to study a sporadic occurrence of sea star wasting disease in McMurdo sound by leveraging diving resources of a CAREER grant to Thurber. The disease was first noted in 2019, with a second occurrence documented by the group at their study site near a methane seep at Cinder Cone in McMurdo Sound in 2022. Sea stars are key species in many benthic ecosystems, including the Antarctic, and this disease has caused significant losses in populations worldwide. In the Southern Ocean, the sea star Odontaster validus preys upon Acodontaster conspicuous, a predator of Antarctic giant sponges. In 2022, about 30% of the O. validus at the methane seep were affected. The conditions associated with the disease in other areas are environmental hypoxia, warm temperatures, and organic enrichment. This recent outbreak provides the opportunity to study how the disease may progress in the SO, and test the hypothesis that oxygen dynamics play a key role in the development of SSWS. The investigators aim to measure oxygen concentrations on and off the Cinder Cone methane seep and at the surface of affected and unaffected sea stars and identify whether the disease causes and microbiome characteristics of SSWS are similar between Antarctic and non-Antarctic outbreaks. These findings can be used to understand the potential effects of future climate conditions on disease outbreaks of Southern Ocean marine organisms critical to ecosystem function and health. In addition to disease dynamics, the study will also help to understand how methane seepage impacts benthic oxygen dynamics. Other broader impacts include communicating the research through a student led YouTube documentary and facilitating the transition of an early career URM researcher from NSF postdoc to a faculty position (lead on viral component of the project). This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 168.0, "geometry": "POINT(165 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "BENTHIC; Antarctica; Sea Star Wasting Disease", "locations": "Antarctica", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Thurber, Andrew; Moran, Amy", "platforms": null, "repositories": null, "science_programs": null, "south": -78.0, "title": "Collaborative Research: RAPID: Sea Star Wasting Disease in the High Antarctic: Deciphering the Role of Shifting Carbon and Climate Cycles on a Keystone Predator", "uid": "p0010458", "west": 162.0}, {"awards": "2207011 Granger, Julie", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Phytoplankton growth rates with siderophore and phytic acid", "datasets": [{"dataset_uid": "601929", "doi": null, "keywords": "Antarctica; Cryosphere; Diatom; Phytoplankton; Siderophore", "people": "Granger, Julie", "repository": "USAP-DC", "science_program": null, "title": "Phytoplankton growth rates with siderophore and phytic acid", "url": "https://www.usap-dc.org/view/dataset/601929"}], "date_created": "Mon, 04 Mar 2024 00:00:00 GMT", "description": "Phytoplankton are microscopic single-celled plants that grow at the sun-lit surface of the ocean. In the Southern Ocean around Antarctica, phytoplankton live in sub-optimal conditions because the amount of iron in seawater is insufficient for growth. Moreover, the chemical composition of Southern Ocean phytoplankton is distinct from that in other ocean regions, with a higher proportion of phosphorus relative to other elements, a characteristic that ultimately influences the distribution of nutrients ocean-wide. The researchers hypothesize that the high phosphorus composition of phytoplankton in the Southern Ocean is caused by their low iron content. Specifically, they postulate that a phosphorus-rich molecule, phytic acid, is synthesized by phytoplankton in order to assist in the storage of iron in designated cellular compartments, such as vacuoles. Recent observations show that some phytoplankton can absorb phytic acid, suggesting that it may be produced by certain species. Phytic acid is pervasive in soils, wherein it aids absorption of iron via plant roots and could similarly help phytoplankton in the Southern Ocean acquire iron via the cell membranes. This project benefits the National Science Foundation\u0027s goals of improving understanding of interactions between the Southern Ocean and the global ocean, of expanding fundamental knowledge of Antarctic biota and associated processes by focusing on phytoplankton species unique to the Antarctic. As part of this project, the Department of Marine Sciences from the College of Liberal Arts and Sciences at the University of Connecticut will sponsor the recruitment, relocation and mentorship of a graduate student under-represented in the sciences. This project aims to determine whether the unusual elemental composition of phytoplankton at the Southern Ocean is a result of anemia. The work will query whether inositol hexakisphosphate (phytic acid) aids Antarctic phytoplankton acquire and store iron, resulting in an elevated fraction of cellular phosphorus relative to other elements. The researchers, including a graduate student, will conduct laboratory culture experiments with phytoplankton strains isolated from the Southern Ocean. They will grow cells in iron- deficient versus iron-replete media to see if their phosphorus content is higher in iron-deficient conditions. They will test whether cells grown with sufficient phosphorus acquire more iron, allowing them to grow better in iron-deficient conditions than cells deriving from phosphorus-poor conditions. They will also query whether cells grown in iron-deficient conditions achieve faster growth rates in the presence of phytic acid. Results will inform the design of CRISPR mutants with which to investigate phosphorus and iron co-metabolism in Antarctic marine phytoplankton. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Dinoflagellates; Iron; United States Of America; Iron Acquisition; Siderophore; TRACE ELEMENTS; Iron Limitation", "locations": "United States Of America", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Granger, Julie; Lin, Senjie", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Siderophore utilization by dinoflagellates as a strategy for iron acquisition", "uid": "p0010455", "west": -180.0}, {"awards": "1939139 Scherer, Reed; 1939146 Siddoway, Christine", "bounds_geometry": "POLYGON((-120 -66,-117.5 -66,-115 -66,-112.5 -66,-110 -66,-107.5 -66,-105 -66,-102.5 -66,-100 -66,-97.5 -66,-95 -66,-95 -67.1,-95 -68.2,-95 -69.3,-95 -70.4,-95 -71.5,-95 -72.6,-95 -73.7,-95 -74.8,-95 -75.9,-95 -77,-97.5 -77,-100 -77,-102.5 -77,-105 -77,-107.5 -77,-110 -77,-112.5 -77,-115 -77,-117.5 -77,-120 -77,-120 -75.9,-120 -74.8,-120 -73.7,-120 -72.6,-120 -71.5,-120 -70.4,-120 -69.3,-120 -68.2,-120 -67.1,-120 -66))", "dataset_titles": "Pliocene diatom abundance, IODP 379-U1532; Population morphometrics of the Southern Ocean diatom Fragilariopsis kerguelensis related to Sea Surface Temperature; U-Pb zircon and apatite fission track dates for IRD (ice-rafted cobbles and mineral grains) from IODP379 drill sites", "datasets": [{"dataset_uid": "601769", "doi": null, "keywords": "Antarctica; Biogenic Silica; Diatom", "people": "Furlong, Heather; Scherer, Reed Paul", "repository": "USAP-DC", "science_program": null, "title": "Pliocene diatom abundance, IODP 379-U1532", "url": "https://www.usap-dc.org/view/dataset/601769"}, {"dataset_uid": "601828", "doi": "10.15784/601828", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Geochronology; Marie Byrd Land; Subglacial Bedrock; Thermochronology", "people": "Siddoway, Christine", "repository": "USAP-DC", "science_program": null, "title": "U-Pb zircon and apatite fission track dates for IRD (ice-rafted cobbles and mineral grains) from IODP379 drill sites", "url": "https://www.usap-dc.org/view/dataset/601828"}, {"dataset_uid": "601804", "doi": "10.15784/601804", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Oceanography; Sabrina Coast; Sea Surface Temperature; Southern Ocean", "people": "Ruggiero, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Population morphometrics of the Southern Ocean diatom Fragilariopsis kerguelensis related to Sea Surface Temperature", "url": "https://www.usap-dc.org/view/dataset/601804"}], "date_created": "Tue, 20 Feb 2024 00:00:00 GMT", "description": "Part I, Non-technical Abstract Concerns that the West Antarctic Ice Sheet (WAIS) might be susceptible to releasing its ice as giant icebergs into the Southern Ocean due to a warming climate, raising global sea level, were first expressed more than 40 years ago. To best-assess this threat, scientists need to know whether such events occurred in the geologically recent past, during warm intervals of past glacial-interglacial cycles. Ocean drilling near the most vulnerable sector of the WAIS, in 2019, yielded seafloor geologic records demonstrating times when icebergs dropped large volumes of sands and pebbles, called ice-rafted detritus (IRD) in deep water of the Amundsen Sea. Occurring together with IRD that was eroded from bedrock beneath the ice sheets, there are abundant microfossils of diatoms (algal plankton), which indicate high biological productivity in the open ocean. The new sediment cores provide a complete, uninterrupted record of a time of dramatic fluctuations of ice sheet extent that occurred over the last 3 million years. Therefore, they provide the means to obtain clear answers to the question whether ice sheet collapse occurred in the past and offering clues to its potential future. This project will investigate sediment intervals where IRD coincides with evidence of high diatom production, to test whether these two criteria indicate rapid ice sheet collapse. Geochemical analysis of IRD pebbles will help trace the source of the icebergs to likely on-land sites. By analyzing conditions of high diatom and IRD accumulation in deep ocean sediment, where local coastal influences can be avoided, we will assess oceanographic and climatic conditions associated with past ice sheet collapse events. Diatoms provide powerful evidence of temperature and ocean productivity changes in the past, that, when linked to time, can translate into rates of ice sheet drawdown. These results will provide critical data for designing, constraining and testing the next suite computer models that can determine the likelihood and timing of future ice sheet collapse in a warming world. The project will include training of undergraduate and graduate students from diverse backgrounds, and the public will be introduced to Antarctic science and engaged through several different outreach efforts. Part 2, Technical Abstract New drillcores from the Amundsen Sea, Antarctica (IODP Expedition 379) contain a continuous record of oceanographic changes and iceberg rafted debris (IRD) spanning the last 5 million years. This study aims to identify the signature of retreat/collapse of the West Antarctic Ice Sheet (WAIS) in these continental margin, deep-sea sediments by quantitatively analyzing, in detail, diatom and IRD records across glacial-interglacial lithostratigraphic transitions to establish the timing and frequency of Late Pliocene and Pleistocene WAIS collapse events. The investigators will secure age constraints and diagnostic observations of marine paleoenvironmental conditions for selected interglacial intervals of cores from sites U1532 and U1533, using high resolution micropaleontology of diatom assemblages coupled with microstratigraphic analysis of IRD depositional events, while petrography, geochronology and thermochronology of iceberg rafted clasts will provide evidence of iceberg sources and pathways. Depositional paleotemperatures will be assessed via a new paleotemperature proxy based on quantitative assessment of morphologic changes in the dominant Southern Ocean diatom Fragilariopsis kerguelensis. Their results will contribute to parameterization of new ice sheet models that seek to reconstruct and forecast West Antarctic Ice Sheet behavior. This project will directly contribute to undergraduate education at an undergraduate-only college and at a public university that serves a demographic typified by first generation university students and underrepresented groups. Spanning geology, geochemistry, sedimentology, paleontology and paleoceanography, the proposed work will allow undergraduate students to develop diverse skills through hands-on research within a collaborative team that is dedicated to societally relevant research. The two graduate students will conduct original research and work alongside/mentor undergraduates, making for a well-rounded research experience that prepares them for success in future academic or employment sectors. The discoveries that come from this deep-sea record from West Antarctica will be communicated by students and investigators at national and international conferences and an array of public science outreach events. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -95.0, "geometry": "POINT(-107.5 -71.5)", "instruments": null, "is_usap_dc": true, "keywords": "ICEBERGS; SEA SURFACE TEMPERATURE; Amundsen Sea; MICROFOSSILS", "locations": "Amundsen Sea", "north": -66.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY; PHANEROZOIC \u003e CENOZOIC \u003e NEOGENE \u003e PLIOCENE", "persons": "Scherer, Reed Paul; Siddoway, Christine", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Collaborative Research: Testing the Linchpin of WAIS Collapse with Diatoms and IRD in Pleistocene and Late Pliocene Strata of the Resolution Drift, Amundsen Sea, Antarctica", "uid": "p0010451", "west": -120.0}, {"awards": "2023355 Schmandt, Brandon", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "A seismic catalog for the southernmost continent", "datasets": [{"dataset_uid": "601805", "doi": "10.15784/601805", "keywords": "Antarctica; Cryosphere; Earthquakes; Icequakes; Volcanic Events", "people": "Pena Castro, Andres", "repository": "USAP-DC", "science_program": null, "title": "A seismic catalog for the southernmost continent", "url": "https://www.usap-dc.org/view/dataset/601805"}], "date_created": "Tue, 20 Feb 2024 00:00:00 GMT", "description": "Part 1: Nontechnical Unlike other locations on the globe Antarctica is not known for having large earthquakes and the remote nature and harsh conditions make it difficult to install and maintain seismometers for earthquake detection. Some researchers believe the lack of large earthquakes is due to the continent being surrounded by inactive tectonic margins. However, in the last two decades, scientists have discovered that more earthquakes occur in the interior of the continent than previously observed. This suggests that there are many earthquakes missing from historic earthquake catalogs. This study aims to find the missing earthquakes using novel earthquake detection and location techniques from seismic data collected from temporary and permanent seismic stations in Antarctica over the last 25 years. Locating these earthquakes will help understand if and where earthquakes are located in Antarctica and will help in planning future seismic deployments. As part of the project broader impacts, a field expedition with the Girls on Rock program will be conducted to teach high school age girls, and especially those from underrepresented backgrounds, data visualization techniques using scientific data. Part 2: Technical The spatial distribution of seismicity and the number of moderate magnitude earthquakes in Antarctica is not well-defined. The current catalog of earthquakes may be biased by uneven and sparse seismograph distribution on the continent. We will mine existing broadband seismic data from both permanent and temporary deployments to lower the earthquake detection threshold across Interior Antarctica, with a focus on tectonic earthquakes. The hypothesis is that Interior Antarctica has abundant moderate magnitude earthquakes, previously undetected. These earthquakes are likely collocated with major tectonic features such as the Transantarctic Mountains, the suspected Vostok collision zone, the West Antarctic Rift System, the crustal compositional boundary between East and West Antarctica, and the Cretaceous East Antarctic Rift. Previous seismic deployments have recorded earthquakes in the Antarctic interior, suggesting there are many earthquakes missing from the current catalog. We propose to use novel earthquake location techniques designed for automated detection and location using 25 years of continuous data archived at IRIS from PASSCAL experiments and permanent stations. The approach will use STA/LTA detectors on the first arrival P-wave to 90 degrees distance, Reverse Time Imaging to locate events, and beamforming at dense arrays strategically located on cratons for enhanced detection and location. The combination of detection and location techniques used in this work has not been used on teleseismic body waves, although similar methods have worked well for surface wave studies. If successful the project would provide an excellent training dataset for future scrutiny of newly discovered Antarctic seismicity with machine learning approaches and/or new targeted data collection. We plan to collaborate with Girls on Rock, a local and international organization committed to building a culturally diverse community in science, art, and wilderness exploration, in a summer field expedition and integrating computer coding into post-field scientific projects. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Seismic Events; Icequakes; TECTONICS; Earthquakes", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Polar Special Initiatives; Antarctic Earth Sciences", "paleo_time": null, "persons": "Schmandt, Brandon", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "EAGER: Lowering the detection threshold of Antarctic seismicity to reveal undiscovered intraplate deformation", "uid": "p0010450", "west": -180.0}, {"awards": "1841607 Banwell, Alison; 1841467 MacAyeal, Douglas", "bounds_geometry": "POLYGON((-68.28 -71.1,-68.202 -71.1,-68.124 -71.1,-68.046 -71.1,-67.968 -71.1,-67.89 -71.1,-67.812 -71.1,-67.734 -71.1,-67.656 -71.1,-67.578 -71.1,-67.5 -71.1,-67.5 -71.14999999999999,-67.5 -71.19999999999999,-67.5 -71.25,-67.5 -71.3,-67.5 -71.35,-67.5 -71.39999999999999,-67.5 -71.44999999999999,-67.5 -71.5,-67.5 -71.55,-67.5 -71.6,-67.578 -71.6,-67.656 -71.6,-67.734 -71.6,-67.812 -71.6,-67.89 -71.6,-67.968 -71.6,-68.046 -71.6,-68.124 -71.6,-68.202 -71.6,-68.28 -71.6,-68.28 -71.55,-68.28 -71.5,-68.28 -71.44999999999999,-68.28 -71.39999999999999,-68.28 -71.35,-68.28 -71.3,-68.28 -71.25,-68.28 -71.19999999999999,-68.28 -71.14999999999999,-68.28 -71.1))", "dataset_titles": "Dataset for: Banwell et al. 2024, \u0027Observed meltwater-induced flexure and fracture at a doline on George VI Ice Shelf, Antarctica\u0027, Journal of Glaciology.", "datasets": [{"dataset_uid": "601771", "doi": "10.15784/601771", "keywords": "Antarctica; Antarctic Peninsula; AWS; Cryosphere; GNSS; GPS Data; Ice-Shelf Flexure; Ice Shelf Fracture; Ice-Shelf Melt; Timelaps Images", "people": "Banwell, Alison; Willis, Ian; Stevens, Laura; Dell, Rebecca; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Dataset for: Banwell et al. 2024, \u0027Observed meltwater-induced flexure and fracture at a doline on George VI Ice Shelf, Antarctica\u0027, Journal of Glaciology.", "url": "https://www.usap-dc.org/view/dataset/601771"}], "date_created": "Thu, 15 Feb 2024 00:00:00 GMT", "description": "The evolution of surface and shallow subsurface meltwater across Antarctic ice shelves has important implications for their (in)stability, as demonstrated by the 2002 rapid collapse of the Larsen B Ice Shelf. It is vital to understand the causes of ice-shelf (in)stability because ice shelves buttress against the discharge of inland ice and therefore influence ice-sheet contributions to sea-level rise. Ice-shelf break-up may be triggered by stress variations associated with surface meltwater movement, ponding, and drainage. These variations may cause an ice shelf to flex and fracture. This four-year project will provide key geophysical observations to improve understanding of ice-shelf meltwater and its effects on (in)stability. The work will be conducted on the George VI Ice Shelf on the Antarctic Peninsula, where hundreds of surface lakes form each summer. Over a 27-month period, global positioning systems, seismometers, water pressure transducers, automatic weather stations, and in-ice thermistor strings will be deployed to record ice shelf flexure, fracture seismicity, water depths, and surface and subsurface melting, respectively, in and around several surface lakes on the George VI Ice Shelf, within roughly 20 km of the British Antarctic Survey\u0027s Fossil Bluff Station. Field data will be used to validate and extend the team\u0027s approach to modelling ice-shelf flexure and stress, and possible \"Larsen-B style\" ice-shelf instability and break-up. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -67.5, "geometry": "POINT(-67.89 -71.35)", "instruments": null, "is_usap_dc": true, "keywords": "ICE SHEETS; Antarctica; ICE MOTION; Ice-Shelf Flexure; GPS Data", "locations": "Antarctica", "north": -71.1, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Banwell, Alison; Macayeal, Douglas", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -71.6, "title": "NSFGEO-NERC: Ice-shelf Instability Caused by Active Surface Meltwater Production, Movement, Ponding and Hydrofracture", "uid": "p0010449", "west": -68.28}, {"awards": "2325922 Couradeau, Estelle", "bounds_geometry": "POLYGON((-73.783 4.679,-73.7827 4.679,-73.7824 4.679,-73.7821 4.679,-73.7818 4.679,-73.7815 4.679,-73.7812 4.679,-73.7809 4.679,-73.7806 4.679,-73.7803 4.679,-73.78 4.679,-73.78 4.6789,-73.78 4.6788,-73.78 4.6787,-73.78 4.6786,-73.78 4.6785,-73.78 4.6784,-73.78 4.6783,-73.78 4.6782,-73.78 4.6781,-73.78 4.678,-73.7803 4.678,-73.7806 4.678,-73.7809 4.678,-73.7812 4.678,-73.7815 4.678,-73.7818 4.678,-73.7821 4.678,-73.7824 4.678,-73.7827 4.678,-73.783 4.678,-73.783 4.6781,-73.783 4.6782,-73.783 4.6783,-73.783 4.6784,-73.783 4.6785,-73.783 4.6786,-73.783 4.6787,-73.783 4.6788,-73.783 4.6789,-73.783 4.679))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 06 Feb 2024 00:00:00 GMT", "description": "P\u00e1ramos are high-altitude tundra ecosystems nested at the heart of the Andes mountains. These cold and humid environments are home to a multitude of plants, animals, and insects. P\u00e1ramos are a critical water source for downstream urban centers, including Colombia\u0027s capital city, Bogota. Additionally, the P\u00e1ramos soils contain substantial organic carbon reserves due to slow rates of organic matter decomposition. Beyond being a pool of carbon sequestered away from the atmosphere, this large reservoir of organic matter controls the soils\u2019 hydraulic and fertility properties. The P\u00e1ramos\u2019 unique geographic location, at an elevation above 2,800 m above sea level, makes them highly vulnerable to the impacts of climate change. In fact, these ecosystems\u2019 surface areas are projected to shrink by half within the next 50 years possibly causing loss of the essential services they provide. This project aims to characterize the microbial diversity in the P\u00e1ramos soils in Colombia and investigate how climate change will affect microbes\u2019 functions. The research is of high importance, considering that immediate and long-term changes in microbial metabolism could impact the ability of P\u00e1ramos soils to store organic carbon and regulate downstream water flow. To study the cascading effect of climate change on P\u00e1ramos ecosystems, this project will jumpstart collaborations among transdisciplinary experts that will integrate the research of below-ground microbial communities with above-ground vegetation functions. The project will also engage high school and undergraduate students that will work together to develop and deploy low-cost long-term soil monitoring data loggers in Chingaza National Natural Park, near the city of Bogota. This project will address the critical need to disentangle the effect of moisture and temperature on the fate of organic carbon in P\u00e1ramos soils while building a transdisciplinary team capable of expanding the scope of the research to an ecosystem level. The project includes establishing controlled soil mesocosms that will allow to independently vary moisture and temperature levels. Additionally, functions of the soil microbiome will be investigated using metagenomics and amplicon sequencing, and probes will be deployed to initiate long-term monitoring of the soil response to climate change in situ. This project will culminate in the organization of an international P\u00e1ramos symposium that will set up priorities for future systems research. The symposium will bring together scientists from diverse fields to discuss the linkages between above-ground and below-ground ecosystem functions and plan future collaborations in predicting P\u00e1ramos-wide effects of climate change. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -73.78, "geometry": "POINT(-73.7815 4.6785)", "instruments": null, "is_usap_dc": true, "keywords": "TERRESTRIAL ECOSYSTEMS; Chingaza Paramos Colombia; ORGANIC MATTER; SOIL MECHANICS", "locations": "Chingaza Paramos Colombia", "north": 4.679, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Couradeau, Estelle; Maximova, Siela; Machado, Jose Luis", "platforms": null, "repositories": null, "science_programs": null, "south": 4.678, "title": "Collaborative Research: BoCP-Design: Climate change alteration of soils functional biodiversity of the P\u00e1ramos, Colombia", "uid": "p0010445", "west": -73.783}, {"awards": "1443522 Wannamaker, Philip", "bounds_geometry": "POLYGON((166 -77.15,166.34 -77.15,166.68 -77.15,167.02 -77.15,167.36 -77.15,167.7 -77.15,168.04 -77.15,168.38 -77.15,168.72 -77.15,169.06 -77.15,169.4 -77.15,169.4 -77.22500000000001,169.4 -77.30000000000001,169.4 -77.375,169.4 -77.45,169.4 -77.525,169.4 -77.60000000000001,169.4 -77.67500000000001,169.4 -77.75,169.4 -77.825,169.4 -77.9,169.06 -77.9,168.72 -77.9,168.38 -77.9,168.04 -77.9,167.7 -77.9,167.36 -77.9,167.02 -77.9,166.68 -77.9,166.34 -77.9,166 -77.9,166 -77.825,166 -77.75,166 -77.67500000000001,166 -77.60000000000001,166 -77.525,166 -77.45,166 -77.375,166 -77.30000000000001,166 -77.22500000000001,166 -77.15))", "dataset_titles": "Erebus volcano/Ross Island Magnetotelluric (MT) data", "datasets": [{"dataset_uid": "601493", "doi": "10.15784/601493", "keywords": "Antarctica; Mantle Melting; Mount Erebus", "people": "Hill, Graham; Wannamaker, Philip", "repository": "USAP-DC", "science_program": null, "title": "Erebus volcano/Ross Island Magnetotelluric (MT) data", "url": "https://www.usap-dc.org/view/dataset/601493"}], "date_created": "Mon, 05 Feb 2024 00:00:00 GMT", "description": "General Description: This project is intended to reveal the magma source regions, staging areas, and eruptive pathways within the active volcano Mount Erebus. This volcano is an end-member type known as phonolitic, which refers to the lava composition, and is almost purely carbon-dioxide-bearing and occurs in continental rift settings. It is in contrast to the better known water-bearing volcanoes which occur at plate boundary settings (such as Mount St Helens or Mount Fuji). Phonolitic volcanic eruptions elsewhere such as Tamboro or Vesuvius have caused more than 50,000 eruption related fatalities. Phonolites are also associated with rare earth element deposits, giving them economic interest. To illuminate the inner workings of Mount Erebus, we will cover the volcano with a dense network of geophysical probes based on magnetotelluric (MT) measurements. MT makes use of naturally occurring electromagnetic (EM) waves generated mainly by the sun as sources to provide images of the electrical conductivity structure of the Earth\u0027s interior. Conductivity is sensitive to the presence of fluids and melts in the Earth and so is well suited to understanding volcanic processes. The project is a cooperative effort between scientists from the United States, New Zealand, Japan and Canada. It implements new technology developed by the lead investigator and associates that allows such measurements to be taken on snow-covered terrains. This has applicability for frozen environments generally, such as resource exploration in the Arctic. The project supports a new post-doctoral researcher, and leverages imaging and measurement methods developed through support by other agencies and interfaced with commercial platforms. Technical Description: The investigators propose to test magmatic evolution models for Mount Erebus volcano, Antarctica, using the magnetotelluric (MT) method. The phonolite lava flow compositions on Mount Erebus are uncommon, but provide a window into the range of upper mantle source compositions and melt differentiation paths. Explosive phonolite eruptions have been known worldwide for devastating eruptions such as Tambora and Vesuvius, and commonly host rare earth element deposits. In the MT method, temporal variations in the Earth\u0027s natural electromagnetic (EM) field are used as source fields to probe the electrical resistivity structure in the depth range of 1 to 100 kilometers. This effort will consist of approximately 100 MT sites, with some concentration in the summit area. Field acquisition will take place over two field seasons. The main goals are to 1) confirm the existence and the geometry of the uppermost magma chamber thought to reside at 5-10 kilometer depths; 2) attempt to identify, in the deeper resistivity structure, the magma staging area near the crust-mantle boundary; 3) image the steep, crustal-scale, near-vertical conduit carrying magma from the mantle; 4) infer the physical and chemical state from geophysical properties of a CO2-dominated mafic shield volcano; and 5) constrain the relationships between structural and magmatic/ hydrothermal activity related to the Terror Rift. Tomographic imaging of the interior resistivity will be performed using a new inversion platform developed at Utah, based on the deformable edge finite element method, that is the best available for accommodating the steep topography of the study area. The project is an international cooperation between University of Utah, GNS Science Wellington New Zealand (G. Hill, Co-I), and Tokyo Institute of Technology Japan (Y. Ogawa, Co-I), plus participation by University of Alberta (M. Unsworth) and Missouri State University (K. Mickus). Instrument deployments will be made exclusively by helicopter. The project implements new technology that allows MT measurements to be taken on snow-covered terrains. The project supports a new post-doctoral researcher, and leverages imaging and measurement methods developed through support by other agencies and interfaced with commercial platforms.", "east": 169.4, "geometry": "POINT(167.7 -77.525)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS", "is_usap_dc": true, "keywords": "MAGNETIC FIELD; FIELD SURVEYS; Ross Island; Magnetotelluric; Mount Erebus", "locations": "Ross Island; Mount Erebus", "north": -77.15, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Wannamaker, Philip", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Magma Sources, Residence and Pathways of Mount Erebus Phonolitic Volcano, Antarctica, from Magnetotelluric Resistivity Structure", "uid": "p0010444", "west": 166.0}, {"awards": "2333940 Zhong, Shijie", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 08 Jan 2024 00:00:00 GMT", "description": "Satellite observations of Earth\u2019s surface gravity and elevation changes indicate rapid melting of ice sheets in recent decades in northern Antarctica Peninsula and Amundsen Sea Embayment of West Antarctica. This rapid melting may lead to significant global sea level rise which is a major societal concern. Measurements from the Global Positioning System (GPS) show rapid land uplift in these regions as the ice sheets melt. When an ice sheet melts, the melt water flows to oceans, causing global sea level to rise. However, the sea level change at a given geographic location is also influenced by two other factors associated with the ice melting process: 1) the vertical motion of the land and 2) gravitational attraction. The vertical motion of the land is caused by the change of pressure force on the surface of the solid Earth. For example, the removal of ice mass reduces the pressure force on the land, leading to uplift of the land below the ice sheet, while the addition of water in oceans increases the pressure force on the seafloor, causing it to subside. The sea level always follows the equipotential surface of the gravity which changes as the mass on the Earth\u2019s surface (e.g., the ice and water) or/and in its interiors (e.g., at the crust-mantle boundary) is redistributed. Additionally, the vertical motion of the land below an ice sheet has important effects on the evolution and stability of the ice sheet and may determine whether the ice sheet will rapidly collapse or gradually stabilize. The main goal of this project is to build an accurate and efficient computer model to study the displacement and deformation of the Antarctic crust and mantle in response to recent ice melting. The project will significantly improve existing and publicly available computer code, CitcomSVE. The horizontal and vertical components of the Earth\u2019s surface displacement depends on mantle viscosity and elastic properties of the Earth. Although seismic imaging studies demonstrate that the Antarctica mantle is heterogeneous, most studies on the ice-melting induced deformation in Antarctica have assumed that mantle viscosity and elastic properties only vary with the depth due to computational limitations. In this project, the new computational method in CitcomSVE avoids such assumptions and makes it possible to include realistic 3-D mantle viscosity and elastic properties in computing the Antarctica crustal and mantle displacement. This project will interpret the GPS measurements of the surface displacements in northern Antarctica Peninsula and Amundsen Sea Embayment of West Antarctica and use the observations to place constraints on mantle viscosity and deformation mechanisms. The project will also seek to predict the future land displacement Antarctica, which will lead to a better understand of Antarctica ice sheets. Finally, the project has direct implications for the study of global sea level change and the dynamics of the Greenland ice sheet. Technical Description Glacial isostatic adjustment (GIA) is important for understanding not only fundamental science questions including mantle viscosity, mantle convection and lithospheric deformation but also societally important questions of global sea-level change, polar ice melting, climate change, and groundwater hydrology. Studies of rock deformation in laboratory experiments, post-seismic deformation, and mantle dynamics indicate that mantle viscosity is temperature- and stress-dependent. Although the effects of stress-dependent (i.e., non-Newtonian) viscosity and transient creep rheology on GIA process have been studied, observational evidence remains elusive. There has been significant ice mass loss in recent decades in northern Antarctica Peninsula (NAP) and Amundsen Sea Embayment (ASE) of West Antarctica. The ice mass loss has caused rapid bedrock uplift as measured by GPS techniques which require surprisingly small upper mantle viscosity of ~1018 Pas. The rapid uplifts may have important feedback effects on ongoing ice melting because of their influence on grounding line migration, and the inferred small viscosity may have implications for mantle rheology and deformation on decadal time scales. The main objective of the project is to test hypotheses that the GPS observations in NAP and ASE regions are controlled by 3-D non-Newtonian or/and transient creep viscosity by developing new GIA modeling capability based on finite element package CitcomSVE. The project will carry out the following three tasks: Task 1 is to build GIA models for the NAP and ASE regions to examine the effects of 3-D temperature-dependent mantle viscosity on the surface displacements and to test hypothesis that the 3-D mantle viscosity improves the fit to the GPS observations. Task 2 is to test the hypothesis that non-Newtonian or/and transient creep rheology controls GIA process on decadal time scales by computing GIA models and comparing model predictions with GPS observations for the NAP and ASE regions. Task 3 is to implement transient creep (i.e., Burgers model) rheology into finite element package CitcomSVE for modeling the GIA process on global and regional scales and to make the package publicly available to the scientific community. The project will develop the first numerical GIA model with Burgers transient rheology and use the models to examine the effects of 3-D temperature-dependent viscosity, non-Newtonian viscosity and transient rheology on GIA-induced surface displacements in Antarctica. The project will model the unique GPS observations of unusually large displacement rates in the NAP and ASE regions to place constraints on mantle rheology and to distinguish between 3-D temperature-dependent, non-Newtonian and transient mantle viscosity. The project will expand the capability of the publicly available software package CitcomSVE for modeling viscoelastic deformation and tidal deformation on global and regional scales. The project will advance our understanding in lithospheric deformation and mantle rheology on decadal time scales, which helps predict grounding line migration and understand ice sheet stability in West Antarctica. The project will strengthen the open science practice by improving the publicly available code CitcomSVE at github. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "WAIS; CRUSTAL MOTION; COMPUTERS; GLACIER MASS BALANCE/ICE SHEET MASS BALANCE", "locations": "WAIS", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Zhong, Shijie", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Investigating Effects of Transient and Non-Newtonian Mantle Viscosity on Glacial Isostatic Adjustment Process and their Implications for GPS Observations in Antarctica", "uid": "p0010441", "west": -180.0}, {"awards": "2034874 Salesky, Scott; 2035078 Giometto, Marco", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 08 Sep 2023 00:00:00 GMT", "description": "1. A non-technical explanation of the project\u0027s broader significance and importance, that serves as a public justification for NSF funding. This part should be understandable to an educated reader who is not a scientist or engineer. Katabatic or drainage winds, carry high-density air from a higher elevation down a slope under the force of gravity. Although katabatic flows are ubiquitous in alpine and polar regions, a surface-layer similarity theory is currently lacking for these flows, undermining the accuracy of numerical weather and climate prediction models. This project is interdisciplinary, and will give graduate and undergraduate students valuable experience interacting with researchers outside their core discipline. Furthermore, this project will broaden participating in science through recruitment of students from under-represented groups at OU and CU through established programs. The Antarctic Ice Sheet drives many processes in the Earth system through its modulation of regional and global atmospheric and oceanic circulations, storage of fresh water, and effects on global albedo and climate. An understanding of the surface mass balance of the ice sheets is critical for predicting future sea level rise and for interpreting ice core records. Yet, the evolution of the ice sheets through snow deposition, erosion, and transport in katabatic winds (which are persistent across much of the Antarctic) remains poorly understood due to the lack of an overarching theoretical framework, scarcity of in situ observational datasets, and a lack of accurate numerical modeling tools. Advances in the fundamental understanding and modeling capabilities of katabatic transport processes are urgently needed in view of the future climatic and snowfall changes that are projected to occur within the Antarctic continent. This project will leverage the expertise of a multidisciplinary team of investigators (with backgrounds spanning cryospheric science, environmental fluid mechanics, and atmospheric science) to address these knowledge gaps. 2. A technical description of the project that states the problem to be studied, the goals and scope of the research, and the methods and approaches to be used. In many cases, the technical project description may be a modified version of the project summary submitted with the proposal. Using field observations and direct numerical simulations of katabatic flow, this project is expected--- for the first time---to lead to a surface-layer similarity theory for katabatic flows relating turbulent fluxes to mean vertical gradients. The similarity theory will be used to develop surface boundary conditions for large eddy simulations (LES), enabling the first accurate LES of katabatic flow. The numerical tools that the PIs will develop will allow them to investigate how the partitioning between snow redistribution, transport, and sublimation depends on the environmental parameters typically encountered in Antarctica (e.g. atmospheric stratification, surface sloping angles, and humidity profiles), and to develop simple models to infer snow transport based on satellite remote sensing and regional climate models This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "TURBULENCE; ATMOSPHERIC RADIATION; DATA COLLECTIONS; SNOW/ICE; SNOW; FIELD INVESTIGATION; AIR TEMPERATURE; HUMIDITY", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Salesky, Scott; Giometto, Marco; Das, Indrani", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e DATA COLLECTIONS; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Snow Transport in Katabatic Winds and Implications for the Antarctic Surface Mass Balance: Observations, Theory, and Numerical Modeling", "uid": "p0010433", "west": null}, {"awards": "2142491 Young, Jodi", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 26 Jul 2023 00:00:00 GMT", "description": "Sea ice in Antarctic coastal waters shape ecosystems, both in the surface waters and at the bottom of the ocean, environments that depend on algae living in sea ice for their productivity. With high variability in sea ice formation and melt between years and as a response to climate change, it is of importance to obtain better understanding of the interaction of sea ice with algae, as well as provide better data for global climate models. This project will accomplish those goals by measuring phytoplankton growth and cellular properties in sea ice with experiments performed using an ice tank. Laboratory experiments will be based on previous observations in the Antarctic Peninsula coastal waters, providing realistic conditions to emulate. The scientific importance of the proposed work aligns with the National Science Foundation goals to understand the biological and chemical properties of sea ice bio-geo-chemistry and its feedbacks with seasonal sea ice dynamics and climate. The finding from this project will be of interest to a broad scientific community, including oceanographers, biologists, chemists, and ecosystem and ocean modelers. To address the scarcity of data on sea ice microbes that limits our ability to predict future Antarctic climate with accuracy, the principal investigator will develop an Antarctic Science Minor in order to train future scientists with an environmental perspective and prepare the future US workforce with a strong scientific background on Earth and Biological Sciences. There is a paucity of data to understand the processes underlying observed patters in sea ice quality and their interaction with the sea-ice microbial community. This project will provide a mechanistic understanding of primary production and physiology of sympagic algae over the seasonal cycle of formation and melt of Antarctic sea ice. Although sea ice is central to the Antarctic coastal ecosystems, little is known of how they affect, and are in turn affected, by sea-ice algae. This project concentrates on first-year sea ice, forming and melting each year, creating unique and very dynamic habitats. The study will be structured by 4 main objectives: 1) how different algal species adapt to the seasonal changes in sea ice conditions, 2) how different methods to measure primary production (carbon dioxide drawdown, oxygen production and variable fluorescence) relate in sea ice and differ from sea water measurements, 3) how sympagic algae influence the physical structure of sea ice, 4) how sympagic algae contribute to organic matter cycling during ice melt. Due to expected changes in sea ice due to climate change, this study is uniquely positioned to provide needed data on short-term and seasonal processes. Results from this study will be useful to refine models of algal production in Antarctic and Arctic ecosystems, data not available to date as sea ice and its biogeochemistry are often poorly represented in earth system models. This project will also provide education for graduate and undergraduate students as well as material to develop class curriculum for middle-school students. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "MARINE ECOSYSTEMS", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Young, Jodi", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "CAREER: Experimentally Testing the Role of Sympagic Algae in Sea-ice Environments using a Laboratory Scale Ice-tank.", "uid": "p0010425", "west": -180.0}, {"awards": "2228257 Michaud, Alexander", "bounds_geometry": "POINT(-112.05 -79.28)", "dataset_titles": null, "datasets": null, "date_created": "Wed, 31 May 2023 00:00:00 GMT", "description": "Ice cores from glaciers and ice sheets provide detailed archives of past environmental conditions, furthering our understanding of Earth\u2019s climate. Microorganisms in the West Antarctic Ice Sheet are buried over glaciological time and form a stratigraphy record providing the opportunity of analysis of the order and position of layers of geological events, with potential links to Southern Hemisphere climate. However, microbial cells that land on the ice sheet are subject to the stresses of changing habitat conditions due to burial and conditions associated with long-term isolation in ice. These processes may lead to a loss of fidelity within the stratigraphic record of microbial cells. We know little about how and if microorganisms survive burial and remain alive over glacial-interglacial time periods within an ice sheet. This analysis will identify the viable and preserved community of microorganisms and core genomic adaptation that permit cell viability, which will advance knowledge in the areas of microbiology and glaciology while increasing fidelity of ice core measurements relevant to past climate and potential future global climate impacts. This exploratory endeavor has the potential to be a transformative step toward understanding the ecology of one of the most understudied environments on Earth. The project will partner with the Museum of Science, Boston, to increase public scientific literacy via education and outreach. Additionally, this project will support two early-career scientists and two undergraduates in interdisciplinary research at the intersection of microbiology and climate science. Results from this project will provide the first DNA data based on single-cell whole genomic sequencing from the Antarctic Ice Sheet and inform whether post-depositional processes impact the interpretations of paleoenvironmental conditions from microbes. The goals to determine the taxonomic identity of viable and preserved microbial cells, and decode the genetic repertoire that confers survival of burial and long-term viability within glacial ice, will be achieved by utilizing subsamples from a ~60,000 year old record of the West Antarctic Ice Sheet Divide (WD) Ice Core. WD samples will be melted using the Desert Research Institute\u2019s ice core melting system that is optimized for glaciobiological sampling. Microbial cells from the meltwater will be sorted using fluorescence-activated cell sorting, and individually sorted cells will have their genomes sequenced. The fluorescence-based methods will discern the viable (metabolically active) cells from those cells that are non-viable but preserved in the ice (DNA-containing). The genomic analysis will identify the taxonomy of each cell, presence of known genes that confer survival in permanently frozen environments, and comparatively analyze genomes to determine the core set of genes required by viable cells to persist in an ice sheet. The outcomes of this work will expand the potential for biological measurements and contamination control from archived ice cores. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -112.05, "geometry": "POINT(-112.05 -79.28)", "instruments": null, "is_usap_dc": true, "keywords": "WAIS Divide; TERRESTRIAL ECOSYSTEMS; ICE SHEETS; BACTERIA/ARCHAEA; ICE CORE RECORDS", "locations": "WAIS Divide", "north": -79.28, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Michaud, Alexander; Winski, Dominic A.", "platforms": null, "repositories": null, "science_programs": null, "south": -79.28, "title": "EAGER: ANT LIA: Persist or Perish: Records of Microbial Survival and Long-term Persistence from the West Antarctic Ice Sheet", "uid": "p0010421", "west": -112.05}, {"awards": "1643575 Kanatous, Shane; 1644004 Trumble, Stephen; 1644256 Costa, Daniel", "bounds_geometry": "POLYGON((-66.534369 -52.962091,-65.3857434 -52.962091,-64.2371178 -52.962091,-63.0884922 -52.962091,-61.9398666 -52.962091,-60.791241 -52.962091,-59.6426154 -52.962091,-58.4939898 -52.962091,-57.3453642 -52.962091,-56.1967386 -52.962091,-55.048113 -52.962091,-55.048113 -54.530129,-55.048113 -56.098167000000004,-55.048113 -57.666205000000005,-55.048113 -59.234243,-55.048113 -60.802281,-55.048113 -62.370319,-55.048113 -63.938357,-55.048113 -65.506395,-55.048113 -67.074433,-55.048113 -68.642471,-56.1967386 -68.642471,-57.3453642 -68.642471,-58.4939898 -68.642471,-59.6426154 -68.642471,-60.791241 -68.642471,-61.9398666 -68.642471,-63.0884922 -68.642471,-64.2371178 -68.642471,-65.3857434 -68.642471,-66.534369 -68.642471,-66.534369 -67.074433,-66.534369 -65.506395,-66.534369 -63.938356999999996,-66.534369 -62.370319,-66.534369 -60.802281,-66.534369 -59.234243,-66.534369 -57.666205,-66.534369 -56.098167000000004,-66.534369 -54.530129,-66.534369 -52.962091))", "dataset_titles": "Data from: Whiskers provide time-series of toxic and essential trace elements, Se:Hg molar ratios, and stable isotope values of an apex Antarctic predator, the leopard seal; Leopard Seal Diving behavior data; Leopard Seal movement data", "datasets": [{"dataset_uid": "601690", "doi": "10.15784/601690", "keywords": "Antarctica; Antarctic Peninsula; Biota; Body Mass; Diving Behavior; Leopard Seal; Seals", "people": "Costa, Daniel", "repository": "USAP-DC", "science_program": null, "title": "Leopard Seal Diving behavior data", "url": "https://www.usap-dc.org/view/dataset/601690"}, {"dataset_uid": "200361", "doi": "https://doi.org/10.5061/dryad.ksn02v75b", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Data from: Whiskers provide time-series of toxic and essential trace elements, Se:Hg molar ratios, and stable isotope values of an apex Antarctic predator, the leopard seal", "url": "https://datadryad.org/stash/dataset/doi:10.5061%2Fdryad.ksn02v75b"}, {"dataset_uid": "601689", "doi": "10.15784/601689", "keywords": "Antarctica; Antarctic Peninsula; Biota; Body Mass; Diving Behavior; Leopard Seal; Movement Data; Seals", "people": "Costa, Daniel", "repository": "USAP-DC", "science_program": null, "title": "Leopard Seal movement data", "url": "https://www.usap-dc.org/view/dataset/601689"}], "date_created": "Fri, 12 May 2023 00:00:00 GMT", "description": "This research project is a multidisciplinary effort that brings together a diverse team of scientists from multiple institutions together to understand the foraging behavior and physiology of leopard seals and their role in the Southern Ocean food web. The project will examine the physiology and behavior of leopard seals to in an effort to determine their ability to respond to potential changes in their habitat and foraging areas. Using satellite tracking devices the team will examine the movement and diving behavior of leopard seals and couple this information with measurements of their physiological capacity. The project will determine whether leopard seals- who feed on diverse range of prey- are built differently than their deep diving relatives the Weddell and elephant seal who feed on fish and squid. The team will also determine whether leopard seals are operating at or near their physiological capability to determine how much, if any, ?reserve capacity? they might have to forage and live in changing environments. A better understanding of their home ranges, movement patterns, and general behavior will also be informative to help in managing human-leopard seal interactions. The highly visual nature of the data and analysis for this project lends itself to public and educational display and outreach, particularly as they relate to the changing Antarctic habitats. The project will use the research results to educate the public on the unique physiological and ecological adaptations to extreme environments seen in diving marine mammals, including adaptations to exercise under low oxygen conditions and energy utilization, which affect and dictate the lifestyle of these exceptional organisms. The results of the project will also contribute to the broader understanding that may enhance the aims of managing marine living resources. The leopard seal is an apex predator in the Antarctic ecosystem. This project seeks to better understand the ability of the leopard seal to cope with a changing environment. The project will first examine the foraging behavior and habitat utilization of leopard seals using satellite telemetry. Specifically, satellite telemetry tags will be used to obtain dive profiles and movement data for individuals across multiple years. Diet and trophic level positions across multiple temporal scales will then be determined from physiological samples (e.g., blood, vibrissae, blubber fatty acids, stable isotopes, fecal matter). Oceanographic data will be integrated with these measures to develop habitat models that will be used to assess habitat type, habitat utilization, habitat preference, and home range areas for individual animals. Diet composition for individual seals will be evaluated to determine whether specific animals are generalists or specialists. Second, the team will investigate the physiological adaptations that allow leopard seals to be apex predators and determine to what extent leopard seals are working at or near their physiological limit. Diving behavior and physiology of leopard seals will be evaluated (for instance the aerobic dive limit for individual animals and skeletal muscle adaptations will be determined for diving under hypoxic conditions). Data from time-depth recorders will be used to determine foraging strategies for individual seals, and these diving characteristics will be related to physiological variables (e.g., blood volume, muscle oxygen stores) to better understand the link between foraging behavior and physiology. The team will compare myoglobin storage in swimming muscles associated with both forelimb and hind limb propulsion and the use of anaerobic versus aerobic metabolic systems while foraging.", "east": -55.048113, "geometry": "POINT(-60.791241 -60.802281)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctic Peninsula; Diving Behavior; MAMMALS; MARINE ECOSYSTEMS; Movement Patterns; Leopard Seal", "locations": "Antarctic Peninsula", "north": -52.962091, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Costa, Daniel; Trumble, Stephen J; Kanatous, Shane", "platforms": null, "repo": "USAP-DC", "repositories": "Dryad; USAP-DC", "science_programs": null, "south": -68.642471, "title": "Collaborative Research: Foraging Ecology and Physiology of the Leopard Seal", "uid": "p0010419", "west": -66.534369}, {"awards": "1745078 Brook, Edward J.", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Atmospheric methane across the Last Glacial Maximum and deglaciation from the GISP2, NEEM and WAIS Divide ice cores ; Atmospheric methane interpolar difference and four-box troposphere model output across the Last Glacial Maximum and Deglaciation; Carbon-13 and Deuterium isotopic composition of atmospheric methane across Heinrich Stadial 4, and Dansgaard Oesgher Event 8, WAIS Divide Replicate Ice Core, Antarctica; Carbon-13 isotopic composition of atmospheric methane across Heinrich Stadials 1 and 5, and Dansgaard Oesgher Event 12, WAIS Divide Ice Core, Antarctica", "datasets": [{"dataset_uid": "601737", "doi": "10.15784/601737", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Greenland; Ice Core Records; Methane; West Antarctic Ice Sheet", "people": "Edwards, Jon S.; Rosen, Julia; Martin, Kaden; Lee, James; Riddell-Young, Benjamin; Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "Atmospheric methane across the Last Glacial Maximum and deglaciation from the GISP2, NEEM and WAIS Divide ice cores ", "url": "https://www.usap-dc.org/view/dataset/601737"}, {"dataset_uid": "601736", "doi": "10.15784/601736", "keywords": "Antarctica; Greenland; Methane; Paleoclimate; West Antarctic Ice Sheet", "people": "Brook, Edward J.; Edwards, Jon S.; Lee, James; Martin, Kaden; Blunier, Thomas; Fischer, Hubertus; Schmitt, Jochen; Rosen, Julia; Buizert, Christo; Riddell-Young, Benjamin; M\u00fchl, Michaela", "repository": "USAP-DC", "science_program": null, "title": "Atmospheric methane interpolar difference and four-box troposphere model output across the Last Glacial Maximum and Deglaciation", "url": "https://www.usap-dc.org/view/dataset/601736"}, {"dataset_uid": "601813", "doi": "10.15784/601813", "keywords": "Abrupt Climate Change; Antarctica; Atmospheric Gases; Biogeochemical Cycles; Carbon Cycle; Cryosphere; Greenhouse Gas; Methane; West Antarctic Ice Sheet Divide", "people": "Bauska, Thomas; Brook, Edward J.; Clark, Reid; Iseli, Rene; Menking, Andy; Fischer, Hubertus; Schmitt, Jochen; Lee, James; Riddell-Young, Benjamin", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Carbon-13 and Deuterium isotopic composition of atmospheric methane across Heinrich Stadial 4, and Dansgaard Oesgher Event 8, WAIS Divide Replicate Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601813"}, {"dataset_uid": "601683", "doi": "10.15784/601683", "keywords": "Antarctica; Methane; West Antarctic Ice Sheet", "people": "Riddell-Young, Benjamin", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Carbon-13 isotopic composition of atmospheric methane across Heinrich Stadials 1 and 5, and Dansgaard Oesgher Event 12, WAIS Divide Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601683"}], "date_created": "Mon, 01 May 2023 00:00:00 GMT", "description": "This project will develop methods to measure the ratios of carbon-13 to carbon-12, and heavy to light hydrogen in methane in air trapped in ice cores. The ratios of the different forms of carbon and hydrogen are \"fingerprints\" of different sources of this gas in the past--for example wetlands in the tropics versus methane frozen in the sea floor. Once the analysis method is developed, the measurements will be used to examine why methane changed abruptly in the past, both during the last ice age, and during previous warm periods. The data will be used to understand how methane sources like wildfires, methane hydrates, and wetlands respond to climate change. This information is needed to understand future risks of large changes in methane in the atmosphere as Earth warms. The project involves two tasks. First, the investigators will build and test a gas extraction system for methane isotopic measurements using continuous flow methods, with the goal of equaling or bettering the precision attained by the few other laboratories that make these measurements. The system will be interfaced with existing mass spectrometers at Oregon State University. The system consists of a vacuum chamber and sequence of traps, purification columns, and furnaces that separate methane from other gases and convert it to carbon dioxide or hydrogen for mass spectrometry. Second, the team will measure the isotopic composition of methane across large changes in concentration associated with two past interglacial periods and during abrupt methane changes of the last ice age. These measurements will be used to understand if the main reason for these concentration changes is climate-driven changes in emissions from wetlands, or whether other sources are involved, for example methane hydrates or wildfires. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctic Ice Sheet; TRACE GASES/TRACE SPECIES; METHANE", "locations": "Antarctic Ice Sheet", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Brook, Edward", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores", "uid": "p0010416", "west": -180.0}, {"awards": "2224679 Miller, Lauren; 2224681 Venturelli, Ryan; 2224680 Prothro, Lindsay", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 24 Feb 2023 00:00:00 GMT", "description": "Sediments that collect on the seafloor provide a wealth of information about past and present environmental change. Around Antarctica, these seafloor sediments are influenced by an ice sheet that grinds and transports sediments from the continent\u2019s interior into the surrounding ocean. Since the Last Glacial Maximum (about 20,000 years ago) when the ice sheet extended hundreds to thousands of kilometers seaward, ice has retreated inland to the configuration we observe today and left behind signatures of its growth and decline, as well as indicators of ocean change, in the seafloor sediments. Ongoing glacial and ocean processes are reflected in the characteristics of contemporary sediments, whereas older sediments beneath the seafloor offer a longer temporal perspective of changes to the ice sheet and surrounding ocean. Using data generated from archived sediment cores that are predominantly housed in the Antarctic Core Collection at Oregon State University, we aim to confirm if recent sediments clearly reflect the specific instrumental and historical field-based observations of ocean and glacial change seen in different regions of Antarctica. These modern changes will be placed into context with those recorded by sediments deposited on the seafloor hundreds to thousands of years ago. This project will explore interlinked physical, biological, and geochemical properties of seafloor sediments to address the influence of glacial and oceanographic processes on ice-proximal marine sedimentation during the 20th and 21st centuries and since the Last Glacial Maximum, with a focus on sediment fluxes, meltwater drainage, ice-rafted debris deposition, and radiocarbon chronologies. We will integrate multi-proxy analyses to interrogate the seafloor sediment record around Antarctica, targeting regions offshore of relatively fast-flowing and fast-changing glacial systems today and regions offshore of slower flowing, more stable (i.e., unchanging or relatively minimally changing) parts of the ice sheet. This work will leverage the application of new techniques and knowledge to legacy sediment cores that NSF has invested greatly in collecting and archiving. This project is led by three early-career women project investigators who seek to foster collaborative and open research practices and professional growth of the project team which will include three graduate students, numerous undergraduate students, and a postdoctoral research associate. The project team will co-produce educational materials with Math4Science, an organization that connects STEM professionals with public secondary education students and their math and science teachers through curricula; and develop and implement best practices in working with marine sediment core data through a collaboration with the Oregon State University Marine and Geology Repository and the United States Antarctic Program - Data Center. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "MARINE SEDIMENTS; GLACIERS/ICE SHEETS; Antarctica; Geochemistry; Stratigraphy; Glacial Processes; SEDIMENTS; Last Glacial Maximum", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Prothro, Lindsay; Venturelli, Ryan A; Miller, Lauren", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: Circum-Antarctic Processes from Archived Marine Sediment Cores (ANTS)", "uid": "p0010406", "west": -180.0}, {"awards": "1542723 Alexander, Becky", "bounds_geometry": "POINT(-112.05 -79.28)", "dataset_titles": "WAIS Divide ice core nitrate isotopes", "datasets": [{"dataset_uid": "601456", "doi": "10.15784/601456", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Chemistry; Ice Core Records; Nitrate; Nitrate Isotopes; WAIS Divide Ice Core; West Antarctic Ice Sheet", "people": "Alexander, Becky", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide ice core nitrate isotopes", "url": "https://www.usap-dc.org/view/dataset/601456"}], "date_created": "Mon, 13 Feb 2023 00:00:00 GMT", "description": "The Earth\u0027s atmosphere is a highly oxidizing medium. The abundance of oxidants such as ozone in the atmosphere strongly influences the concentrations of pollutants and greenhouse gases, with implications for human health and welfare. Because oxidants are not preserved in geological archives, knowledge of how oxidants have varied in the past under changing climate conditions is extremely limited. This award will measure a proxy for oxidant concentrations in a West Antarctic ice core over several major climate transitions over the past 50,000 years. These measurements will complement similar measurements from a Greenland ice core, which showed significant changes in atmospheric oxidants over major climate transitions covering this same time period. The addition of measurements from Antarctica will allow researchers to examine if the oxidant changes suggested by the Greenland ice core record are regional or global in scale. Knowledge of how oxidants vary naturally with climate will better inform predictions of the composition of the future atmosphere under a warming climate. This award will support measurements of the isotopic composition of nitrate in a West Antarctic ice core as a proxy for oxidant concentrations in the past atmosphere. The nitrogen isotopes of nitrate provide information on the degree of preservation of nitrate in the ice core record, and thus aid in the interpretation of the observed variability in the observed nitrate concentrations and oxygen isotopes in ice core records. By providing information about the spatial scale of oxidant changes over abrupt climate change events during the last glacial period, this project may also improve our understanding of mechanisms driving these abrupt events. Insight from this project will prove valuable for forecasting the response of stratospheric circulation to climate change, which has large implications for climate feedbacks and tropospheric composition. In addition, the information gleaned from this project on the mechanisms and feedbacks during abrupt climate change events will help determine the likelihood of such rapid events occurring in the future, which would have dramatic impacts on humankind. This award will provide training for one graduate and one undergraduate student, and will support the development of a hands-on activity related to rapid climate change to be used at the annual Polar Science Weekend at the Pacific Science Center in Seattle, WA.", "east": -112.05, "geometry": "POINT(-112.05 -79.28)", "instruments": null, "is_usap_dc": true, "keywords": "Nitrate Isotopes; ICE CORE RECORDS; WAIS Divide; LABORATORY", "locations": "WAIS Divide", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Alexander, Becky", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.28, "title": "Measuring an Ice-core Proxy for Relative Oxidant Abundances over Glacial-interglacial and Rapid Climate changes in a West Antarctic Ice Core", "uid": "p0010403", "west": -112.05}, {"awards": "1644004 Trumble, Stephen", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Data from: Whiskers provide time-series of toxic and essential trace elements, Se:Hg molar ratios, and stable isotope values of an apex Antarctic predator, the leopard seal", "datasets": [{"dataset_uid": "200338", "doi": "doi:10.5061/dryad.ksn02v75b", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Data from: Whiskers provide time-series of toxic and essential trace elements, Se:Hg molar ratios, and stable isotope values of an apex Antarctic predator, the leopard seal", "url": "https://datadryad.org/stash/share/h6UwXvfhZG26jtPTtDqyXNMnx2UWknOqmv05EBz6A10"}], "date_created": "Tue, 06 Dec 2022 00:00:00 GMT", "description": "This research project is a multidisciplinary effort that brings together a diverse team of scientists from multiple institutions together to understand the foraging behavior and physiology of leopard seals and their role in the Southern Ocean food web. The project will examine the physiology and behavior of leopard seals to in an effort to determine their ability to respond to potential changes in their habitat and foraging areas. Using satellite tracking devices the team will examine the movement and diving behavior of leopard seals and couple this information with measurements of their physiological capacity. The project will determine whether leopard seals- who feed on diverse range of prey- are built differently than their deep diving relatives the Weddell and elephant seal who feed on fish and squid. The team will also determine whether leopard seals are operating at or near their physiological capability to determine how much, if any, ?reserve capacity? they might have to forage and live in changing environments. A better understanding of their home ranges, movement patterns, and general behavior will also be informative to help in managing human-leopard seal interactions. The highly visual nature of the data and analysis for this project lends itself to public and educational display and outreach, particularly as they relate to the changing Antarctic habitats. The project will use the research results to educate the public on the unique physiological and ecological adaptations to extreme environments seen in diving marine mammals, including adaptations to exercise under low oxygen conditions and energy utilization, which affect and dictate the lifestyle of these exceptional organisms. The results of the project will also contribute to the broader understanding that may enhance the aims of managing marine living resources. The leopard seal is an apex predator in the Antarctic ecosystem. This project seeks to better understand the ability of the leopard seal to cope with a changing environment. The project will first examine the foraging behavior and habitat utilization of leopard seals using satellite telemetry. Specifically, satellite telemetry tags will be used to obtain dive profiles and movement data for individuals across multiple years. Diet and trophic level positions across multiple temporal scales will then be determined from physiological samples (e.g., blood, vibrissae, blubber fatty acids, stable isotopes, fecal matter). Oceanographic data will be integrated with these measures to develop habitat models that will be used to assess habitat type, habitat utilization, habitat preference, and home range areas for individual animals. Diet composition for individual seals will be evaluated to determine whether specific animals are generalists or specialists. Second, the team will investigate the physiological adaptations that allow leopard seals to be apex predators and determine to what extent leopard seals are working at or near their physiological limit. Diving behavior and physiology of leopard seals will be evaluated (for instance the aerobic dive limit for individual animals and skeletal muscle adaptations will be determined for diving under hypoxic conditions). Data from time-depth recorders will be used to determine foraging strategies for individual seals, and these diving characteristics will be related to physiological variables (e.g., blood volume, muscle oxygen stores) to better understand the link between foraging behavior and physiology. The team will compare myoglobin storage in swimming muscles associated with both forelimb and hind limb propulsion and the use of anaerobic versus aerobic metabolic systems while foraging.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "MAMMALS; Stable Isotopes; Livingston Island", "locations": "Livingston Island", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Trumble, Stephen J", "platforms": null, "repo": "Dryad", "repositories": "Dryad", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Foraging Ecology and Physiology of the Leopard Seal", "uid": "p0010394", "west": -180.0}, {"awards": "2037963 Smith, Heidi", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 11 Oct 2022 00:00:00 GMT", "description": "Glacial ice cores serve as a museum back in time, providing detailed records of past climatic conditions. In addition to chronological records such as temperature, chemistry and gas composition, ice provides a unique environment for preserving microbes and other biological materials through time. These microbes provide invaluable insight into the physiological capabilities necessary for survival in the Earth\u2019s cryosphere and other icy planetary bodies, yet little is known about them. This award supports fundamental research into the activity of microbes in ice, and directly supports major research priorities regarding Antarctic biota identified in the 2015 National Academies of Sciences, Engineering, and Medicine report, A Strategic Vision for NSF Investments in Antarctic and Southern Ocean Research. The broader impacts of this work are that it will be relevant to researchers across paleoclimate and biological fields. It will support two early career researchers, a graduate and an undergraduate student who will conduct laboratory analyses, participate in outreach activities, publish papers in scientific journals and present at conferences. This work will use previously collected ice cores to investigate englacial microbial activity from the Holocene back to the Last Glacial Maximum from the blue ice area of Taylor Glacier, Antarctica. The proposal identified making significant contributions to 1) investing how Antarctic organisms evolve and adapt to changing environment, 2) understanding how microbes alter the preservation of paleorecord-relevant gas and trace element information in ice cores, and 3) identifying microbial life in cores and their activity in relation to dust depositional events. Two recently developed complementary techniques (bio-orthogonal noncanonical amino acid tagging and deuterium isotope probing) in combination with Raman Confocal Microspectroscopy will be used to assess and quantify microbial activity in ice. During phase one of the project, these methods will be optimized using deaccessioned ice cores available at the National Science Foundation\u2019s Ice Core Facility. In phase two, ice cores in a time series from the Taylor Glacier will be analyzed for geochemistry and microbial activity. Research results will provide a comprehensive view of englacial microbial communities, including their metabolic diversity and activity, and the effect of geochemical parameters on microbial assemblages from different climate periods. Given the dearth of information available on englacial microbial communities, the results of this research will be of particular significance. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Microbial Activity; LABORATORY; Paleoclimate; CAMP; Taylor Glacier; Microbiology; Alaska; ICE CORE RECORDS", "locations": "CAMP; Alaska; Taylor Glacier", "north": null, "nsf_funding_programs": "Antarctic Integrated System Science", "paleo_time": null, "persons": "Smith, Heidi; Foreman, Christine; Dieser, Markus", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "Life in Ice: Probing Microbial Englacial Activity through Time", "uid": "p0010385", "west": null}, {"awards": "1645087 Catchen, Julian", "bounds_geometry": null, "dataset_titles": "Chromosome-Level Genome Assembly and Circadian Gene Repertoire of the Patagonia Blennie Eleginops maclovinus\u2014The Closest Ancestral Proxy of Antarctic Cryonotothenioids; Evaluating Illumina-, Nanopore-, and PacBio-based genome assembly strategies with the bald notothen, Trematomus borchgrevinki; Genomics of Secondarily Temperate Adaptation in the Only Non-Antarctic Icefish", "datasets": [{"dataset_uid": "200380", "doi": "", "keywords": null, "people": null, "repository": "NCBI", "science_program": null, "title": "Genomics of Secondarily Temperate Adaptation in the Only Non-Antarctic Icefish", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA857989"}, {"dataset_uid": "200381", "doi": "", "keywords": null, "people": null, "repository": "NCBI", "science_program": null, "title": "Chromosome-Level Genome Assembly and Circadian Gene Repertoire of the Patagonia Blennie Eleginops maclovinus\u2014The Closest Ancestral Proxy of Antarctic Cryonotothenioids", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA917608"}, {"dataset_uid": "200331", "doi": "10.5061/dryad.ghx3ffbs3", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Evaluating Illumina-, Nanopore-, and PacBio-based genome assembly strategies with the bald notothen, Trematomus borchgrevinki", "url": "https://datadryad.org/stash/dataset/doi:10.5061/dryad.ghx3ffbs3"}, {"dataset_uid": "200330", "doi": "", "keywords": null, "people": null, "repository": "NCBI ", "science_program": null, "title": "Evaluating Illumina-, Nanopore-, and PacBio-based genome assembly strategies with the bald notothen, Trematomus borchgrevinki", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA861284"}], "date_created": "Mon, 10 Oct 2022 00:00:00 GMT", "description": "As plate tectonics pushed Antarctica into a polar position, by ~34 million years ago, the continent and its surrounding Southern Ocean (SO) became geographically and thermally isolated by the Antarctic Circumpolar Current. Terrestrial and marine glaciation followed, resulting in extinctions as well as the survival and radiation of unique flora and fauna. The notothenioid fish survived and arose from a common ancestral stock into tax with 120 species that dominates today?s SO fish fauna. The Notothenioids evolved adaptive traits including novel antifreeze proteins for survival in extreme cold, but also suffered seemingly adverse trait loss including red blood cells in the icefish family, and the ability to mount cellular responses to mitigate heat stress ? otherwise ubiquitous across all life. This project aims to understand how the notothenoid genomes have changed and contributed to their evolution in the cold. The project will sequence, analyze and compare the genomes of two strategic pairs of notothenioid fishes representing both red-blooded and white-blooded species. Each pair will consist of one Antarctic species and one that has readapted to the temperate waters of S. America or New Zealand. The project will also compare the Antarctic species genomes to a genome of the closet non-Antarctic relative representing the temperate notothenioid ancestor. The work aims to uncover the mechanisms that enabled the adaptive evolution of this ecologically vital group of fish in the freezing Southern Ocean, and shed light on their adaptability to a warming world. The finished genomes will be made available to promote and advance Antarctic research and the project will host a symposium of Polar researchers to discuss the cutting edge developments regarding of genomic adaptations in the polar region. Despite subzero, icy conditions that are perilous to teleost fish, the fish fauna of the isolated Southern Ocean (SO) surrounding Antarctica is remarkably bountiful. A single teleost group ? the notothenioid fishes ? dominate the fauna, comprising over 120 species that arose from a common ancestor. When Antarctica became isolated and SO temperatures began to plunge in early Oligocene, the prior temperate fishes became extinct. The ancestor of Antarctic notothenioids overcame forbidding polar conditions and, absent niche competition, it diversified and filled the SO. How did notothenioids adapt to freezing environmental selection pressures and achieve such extraordinary success? And having specialized to life in chronic cold for 30 myr, can they evolve in pace with today?s warming climate to stay viable? Past studies of Antarctic notothenioid evolutionary adaptation have discovered various remarkable traits including the key, life-saving antifreeze proteins. But life specialized to cold also led to paradoxical trait changes such as the loss of the otherwise universal heat shock response, and of the O2-transporting hemoglobin and red blood cells in the icefish family. A few species interestingly regained abilities to live in temperate waters following the escape of their ancestor out of the freezing SO. This proposed project is the first major effort to advance the field from single trait studies to understanding the full spectrum of genomic and genetic responses to climatic and environmental change during notothenioid evolution, and to evaluate their adaptability to continuing climate change. To this end, the project will sequence the genomes of four key species that embody genomic responses to different thermal selection regimes during notothenioids? evolutionary history, and by comparative analyses of genomic structure, architecture and content, deduce the responding changes. Specifically, the project will (i) obtain whole genome assemblies of the red-blooded T. borchgrevinki and the S. American icefish C. esox; (ii) using the finished genomes from (i) as template, obtain assemblies of the New Zealand notothenioid N. angustata, and the white-blooded icefish C. gunnari, representing a long (11 myr) and recent (1 myr) secondarily temperate evolutionary history respectively. Genes that are under selection in the temperate environment but not in the Antarctic environment can be inferred to be directly necessary for that environment ? and the reverse is also true for genes under selection in the Antarctic but not in the temperate environment. Further, genes important for survival in temperate waters will show parallel selection between N. angustata and C. esox despite the fact that the two fish left the Antarctic at far separated time points. Finally, gene families that expanded due to strong selection within the cold Antarctic should show a degradation of duplicates in the temperate environment. The project will test these hypotheses using a number of techniques to compare the content and form of genes, the structure of the chromosomes containing those genes, and through the identification of key characters, such as selfish genetic elements, introns, and structural variants.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Genome Assembly; FISH; McMurdo Sound; Icefish; SHIPS; Notothenioid; Puerto Natales, Chile", "locations": "McMurdo Sound; Puerto Natales, Chile", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Catchen, Julian; Cheng, Chi-Hing", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "NCBI", "repositories": "Dryad; NCBI; NCBI ", "science_programs": null, "south": null, "title": "Evolutionary Genomic Responses in Antarctic Notothenioid Fishes", "uid": "p0010384", "west": null}, {"awards": "2135185 Resing, Joseph; 2135184 Arrigo, Kevin; 2135186 Baumberger, Tamara", "bounds_geometry": "POLYGON((155 -61,156.5 -61,158 -61,159.5 -61,161 -61,162.5 -61,164 -61,165.5 -61,167 -61,168.5 -61,170 -61,170 -61.2,170 -61.4,170 -61.6,170 -61.8,170 -62,170 -62.2,170 -62.4,170 -62.6,170 -62.8,170 -63,168.5 -63,167 -63,165.5 -63,164 -63,162.5 -63,161 -63,159.5 -63,158 -63,156.5 -63,155 -63,155 -62.8,155 -62.6,155 -62.4,155 -62.2,155 -62,155 -61.8,155 -61.6,155 -61.4,155 -61.2,155 -61))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 30 Sep 2022 00:00:00 GMT", "description": "Phytoplankton blooms throughout the world\u2019s oceans support critical marine ecosystems and help remove carbon dioxide (CO2) from the atmosphere. Traditionally, it has been assumed that phytoplankton blooms in the Southern Ocean are stimulated by iron from either nearby land or sea-ice. However, recent work demonstrates that hydrothermal vents may be an additional iron source for phytoplankton blooms. This enhancement of phytoplankton productivity by different iron sources supports rich marine ecosystems and leads to the sequestration of carbon in the deep ocean. Our proposed work will uncover the importance of hydrothermal activity in stimulating a large phytoplankton bloom along the southern boundary of the Antarctic Circumpolar Current just north of the Ross Sea. It will also lead towards a better understanding of the overall impact of hydrothermal activity on the carbon cycle in the Southern Ocean, which appears to trigger local hotspots of biological activity which are a potential sink for atmospheric CO2. This project will encourage the participation of underrepresented groups in ocean sciences, as well as providing educational opportunities for high school and undergraduate students, through three different programs. Stanford University\u2019s Summer Undergraduate Research in Geoscience and Engineering (SURGE) program provides undergraduates from different US universities and diverse cultural backgrounds the opportunity to spend a summer doing a research project at Stanford. The Stanford Earth Summer Undergraduate Research Program (SESUR) is for Stanford undergraduates who want to learn more about environmental science by performing original research. Finally, Stanford\u2019s School of Earth, Energy, and Environmental Sciences High School Internship Program enables young scientists to serve as mentors, prepares high school students for college, and serves to strengthen the partnership between Stanford and local schools. Students present their results at the Fall AGU meeting as part of the AGU Bright STaRS program. This project will form the basis of at least two PhD dissertations. The Stanford student will participate in Stanford\u2019s Woods Institute Rising Environmental Leaders Program (RELP), a year-round program that helps graduate students hone their leadership and communication skills to maximize the impact of their research. The graduate student will also participate in Stanford\u2019s Grant Writing Academy where they will receive training in developing and articulating research strategies to tackle important scientific questions. This interdisciplinary program combines satellite and ship-based measurements of a large poorly understood phytoplankton bloom (the AAR bloom) in the northwestern Ross Sea sector of the Southern Ocean with a detailed modeling study of the physical processes linking deep dissolved iron (DFe) reservoirs to the surface phytoplankton bloom. Prior to the cruise, we will implement a numerical model (CROCO) for our study region so that we can better understand the circulation, plumes, turbulence, fronts, and eddy field around the AAR bloom and how they transport and mix hydrothermally produced DFe vertically. Post cruise, observations of the vertical distribution of 3He (combined with DMn and DFe), will be used as initial conditions for a passive tracer in the model, and tracer dispersal will be assessed to better quantify the role of the various turbulent processes in upwelling DFe-rich waters to the upper ocean. The satellite-based component of the program will characterize the broader sampling region before, during, and after our cruise. During the cruise, our automated software system at Stanford University will download and process images of sea ice concentration, Chl-a concentration, sea surface temperature (SST), and sea surface height (SSH) and send them electronically to the ship. Operationally, our goal is to use all available satellite data and preliminary model results to target shipboard sampling both geographically and temporally to optimize sampling of the AAR bloom. We will use available BGC-Argo float data to help characterize the AAR bloom. In collaboration with SOCCOM, we will deploy additional BGC-Argo floats (if available) during our transit through the study area to allow us to better characterize the bloom. The centerpiece of our program will be a 40-day process study cruise in austral summer. The cruise will consist of an initial \u201cradiator\u201d pattern of hydrographic surveys/sections along the AAR followed by CTDs to selected submarine volcanoes. When/if eddies are identified, they will be sampled either during or after the initial surveys. The radiator pattern, or parts thereof, will be repeated 2-3 times. Hydrographic survey stations will include vertical profiles of temperature, salinity, oxygen, oxidation-reduction potential, light scatter, and PAR (400-700 nm). Samples will be collected for trace metals, ligands, 3He, and total suspended matter. Where intense hydrothermal activity is identified, samples for pH and total CO2 will also be collected to characterize the hydrothermal system. Water samples will be collected for characterization of macronutrients, and phytoplankton physiology, abundance, species composition, and size. During transits, we will continuously measure atmospheric conditions, current speed and direction, and surface SST, salinity, pCO2, and fluorescence from the ship\u2019s systems to provide detailed maps of these parameters. The ship will be used as a platform for conducting phytoplankton DFe bioassay experiments at key stations throughout the study region both inside and outside the bloom. We will also perform detailed comparisons of algal taxonomic composition, physiology, and size structure inside and outside the bloom to determine the potential importance of each community on local biogeochemistry. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 170.0, "geometry": "POINT(162.5 -62)", "instruments": null, "is_usap_dc": true, "keywords": "BIOGEOCHEMICAL CYCLES; Antarctica; TRACE ELEMENTS; Hydrothermal Vent; Phytoplankton; Primary Production", "locations": "Antarctica", "north": -61.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science", "paleo_time": null, "persons": "Arrigo, Kevin; Thomas, Leif N; Baumberger, Tamara; Resing, Joseph", "platforms": null, "repositories": null, "science_programs": null, "south": -63.0, "title": "Collaborative Research: Understanding the Massive Phytoplankton Blooms over the Australian-Antarctic Ridge", "uid": "p0010381", "west": 155.0}, {"awards": "1644118 Dunbar, Robert", "bounds_geometry": "POLYGON((-108 -73,-107.3 -73,-106.6 -73,-105.9 -73,-105.2 -73,-104.5 -73,-103.8 -73,-103.1 -73,-102.4 -73,-101.7 -73,-101 -73,-101 -73.3,-101 -73.6,-101 -73.9,-101 -74.2,-101 -74.5,-101 -74.8,-101 -75.1,-101 -75.4,-101 -75.7,-101 -76,-101.7 -76,-102.4 -76,-103.1 -76,-103.8 -76,-104.5 -76,-105.2 -76,-105.9 -76,-106.6 -76,-107.3 -76,-108 -76,-108 -75.7,-108 -75.4,-108 -75.1,-108 -74.8,-108 -74.5,-108 -74.2,-108 -73.9,-108 -73.6,-108 -73.3,-108 -73))", "dataset_titles": "Antarctic Seawater d18O isotope data from SE Amundsen Sea: 2000, 2007, 2009, 2019, 2020", "datasets": [{"dataset_uid": "601611", "doi": "10.15784/601611", "keywords": "Amundsen Sea; Antarctica; Chemistry:Water; CTD; D18O; NBP0001; NBP0702; NBP0901; NBP1901; NBP2002; Oceans; Oxygen Isotope; R/v Nathaniel B. Palmer; Seawater Isotope; Southern Ocean", "people": "Hennig, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Seawater d18O isotope data from SE Amundsen Sea: 2000, 2007, 2009, 2019, 2020", "url": "https://www.usap-dc.org/view/dataset/601611"}], "date_created": "Wed, 21 Sep 2022 00:00:00 GMT", "description": "Estimating Antarctic ice sheet growth or loss is important to predicting future sea level rise. Such estimates rely on field measurements or remotely sensed based observations of the ice sheet surface, ice margins, and or ice shelves. This work examines the introduction of freshwater into the ocean to surrounding Antarctica to track meltwater from continental ice. Polar ice is depleted in two stable isotopes, 18O and D, deuterium, relative to Southern Ocean seawater and precipitation. Measurements of seawater isotopic composition in conjunction with precise observations of seawater temperature and salinity, will permit discrimination of freshwater derived from melting glacial ice from that derived from regional precipitation or sea ice melt. This research describes an accepted method for determining rates and locations of meltwater entering the oceans from polar ice sheets. As isotopic and salinity perturbations are cumulative in many Antarctic coastal seas, the method allows for the detection of any marked acceleration in meltwater introduction in specific regions, using samples collected and analyzed over a period of years to decades. Impact of the project derives from use of an independent method capable of constraining knowledge about current ice sheet melt rates, their stability and potential impact on sea level rise. The project allows for sample collection taken from foreign vessels of opportunity sailing in Antarctic waters, and subsequent sharing and interpretation of data. Research partners include the U.S., Korea, China, New Zealand, the United Kingdom, and Germany. Participating collaborators will collect seawater samples for isotopic and salinity analysis at Stanford University. USAP cruises will concentrate on sampling the Ross Sea, and the West Antarctic. The work plan includes interpretation of isotopic data using box model and mixing curve analyses as well as using isotope enabled ROMS (Regional Ocean Modeling System) models. The broader impacts of the research will include development of an educational module that illustrates the scientific method and how ocean observations help society understand how Earth is changing.", "east": -101.0, "geometry": "POINT(-104.5 -74.5)", "instruments": null, "is_usap_dc": true, "keywords": "Stable Isotopes; WATER TEMPERATURE; SALINITY; Oxygen Isotope; Meltwater Inventory; Pine Island Bay; OCEAN CHEMISTRY", "locations": "Pine Island Bay", "north": -73.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Dunbar, Robert", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.0, "title": "Estimation of Antarctic Ice Melt using Stable Isotopic Analyses of Seawater", "uid": "p0010380", "west": -108.0}, {"awards": "2026648 Tobin, Thomas; 2025724 Harwood, David; 2020728 Huber, Brian", "bounds_geometry": "POLYGON((-56.93 -64.2,-56.894 -64.2,-56.858 -64.2,-56.822 -64.2,-56.786 -64.2,-56.75 -64.2,-56.714 -64.2,-56.678 -64.2,-56.642 -64.2,-56.606 -64.2,-56.57 -64.2,-56.57 -64.214,-56.57 -64.22800000000001,-56.57 -64.242,-56.57 -64.256,-56.57 -64.27000000000001,-56.57 -64.284,-56.57 -64.298,-56.57 -64.312,-56.57 -64.32600000000001,-56.57 -64.34,-56.606 -64.34,-56.642 -64.34,-56.678 -64.34,-56.714 -64.34,-56.75 -64.34,-56.786 -64.34,-56.822 -64.34,-56.858 -64.34,-56.894 -64.34,-56.93 -64.34,-56.93 -64.32600000000001,-56.93 -64.312,-56.93 -64.298,-56.93 -64.284,-56.93 -64.27000000000001,-56.93 -64.256,-56.93 -64.242,-56.93 -64.22800000000001,-56.93 -64.214,-56.93 -64.2))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 15 Sep 2022 00:00:00 GMT", "description": "Non-technical description: This 4-year project is evaluating evidence of extinction patterns and depositional conditions from a high southern latitude Cretaceous-Paleogene (K-Pg) outcrop section found on Seymore Island, in the Western Antarctic Peninsula. The team is using sediment samples collected below the weathering horizon to evaluate detailed sedimentary structures, geochemistry, and microfossils in targeted stratigraphic intervals. The study will help determine if the K-Pg mass extinction was a single or double phased event and whether Seymour Island region in the geological past was a restricted, suboxic marine environment or an open well-mixed shelf. The award includes an integrated plan for student training at all levels, enhanced by a highlighted partnership with a high school earth sciences teacher working in a school serving underrepresented students. Technical description: The proposed research is applying multiple techniques to address an overarching research question for which recent studies are in disagreement: Is the fossil evidence from a unique outcropping on Seymour Island, Antarctica consistent with a single or double phased extinction? In a two-phased model, the first extinction would affect primarily benthic organisms and would have occurred ~150 kiloyears prior to a separate extinction at the K-Pg boundary. However, this early extinction could plausibly be explained by an unrecognized facies control that is obscured by surficial weathering. This team is using microfossil evidence with detailed sedimentary petrology and geochemistry data to evaluate if the fossil evidence from Seymour Island is consistent with a single or double phased extinction process. The team is using detailed sedimentary petrology and geochemistry methods to test for facies changes across the K-PG interval that would explain the apparent early extinction. Samples of core sedimentary foraminifera, siliceous microfossils, and calcareous nannofossils are being evaluated to provide a high-resolution stratigraphic resolution and to evaluate whether evidence for an early extinction is present. Additionally, the team is using multiple geochemical methods to evaluate whether there is evidence for intermittent anoxia or euxinia and/or physical restriction of the Seymore region basin. Data from this analysis will indicate if this region was a restricted, suboxic marine environment or an open well-mixed shelf. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -56.57, "geometry": "POINT(-56.75 -64.27000000000001)", "instruments": null, "is_usap_dc": true, "keywords": "Seymour Island; PALEOCLIMATE RECONSTRUCTIONS; SEDIMENTARY ROCKS; MICROFOSSILS; FIELD INVESTIGATION", "locations": "Seymour Island", "north": -64.2, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Tobin, Thomas; Totten, Rebecca", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": -64.34, "title": "Collaborative Research: Coring Seymour Island (CSI) Antarctica: Evaluating Causes and Effects of the End Cretaceous Mass Extinction", "uid": "p0010377", "west": -56.93}, {"awards": "1744562 Loose, Brice", "bounds_geometry": "POLYGON((-180 -71,-179.9 -71,-179.8 -71,-179.7 -71,-179.6 -71,-179.5 -71,-179.4 -71,-179.3 -71,-179.2 -71,-179.1 -71,-179 -71,-179 -71.7,-179 -72.4,-179 -73.1,-179 -73.8,-179 -74.5,-179 -75.2,-179 -75.9,-179 -76.6,-179 -77.3,-179 -78,-179.1 -78,-179.2 -78,-179.3 -78,-179.4 -78,-179.5 -78,-179.6 -78,-179.7 -78,-179.8 -78,-179.9 -78,180 -78,177.5 -78,175 -78,172.5 -78,170 -78,167.5 -78,165 -78,162.5 -78,160 -78,157.5 -78,155 -78,155 -77.3,155 -76.6,155 -75.9,155 -75.2,155 -74.5,155 -73.8,155 -73.1,155 -72.4,155 -71.7,155 -71,157.5 -71,160 -71,162.5 -71,165 -71,167.5 -71,170 -71,172.5 -71,175 -71,177.5 -71,-180 -71))", "dataset_titles": "Expedition Data of NBP1704; NBP1704 Expedition Data; PIPERS Noble Gases", "datasets": [{"dataset_uid": "200329", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "Expedition Data of NBP1704", "url": "https://www.marine-geo.org/tools/entry/NBP1704"}, {"dataset_uid": "001363", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1704 Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1704"}, {"dataset_uid": "601609", "doi": "10.15784/601609", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Mass Spectrometer; NBP1704; Noble Gas; Oceans; Ross Sea; R/v Nathaniel B. Palmer", "people": "Loose, Brice", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Noble Gases", "url": "https://www.usap-dc.org/view/dataset/601609"}], "date_created": "Wed, 14 Sep 2022 00:00:00 GMT", "description": "Near the Antarctic coast, polynyas are open-water regions where extreme heat loss in winter causes seawater to become cold, salty, and dense enough to sink into the deep sea. The formation of this dense water has regional and global importance because it influences the ocean current system. Polynya processes are also tied to the amount of sea ice formed, ocean heat lost to atmosphere, and atmospheric CO2 absorbed by the Southern Ocean. Unfortunately, the ocean-atmosphere interactions that influence the deep ocean water properties are difficult to observe directly during the Antarctic winter. This project will combine field measurements and laboratory experiments to investigate whether differences in the concentration of noble gasses (helium, neon, argon, xenon, and krypton) dissolved in ocean waters can be linked to environmental conditions at the time of their formation. If so, noble gas concentrations could provide insight into the mechanisms controlling shelf and bottom-water properties, and be used to reconstruct past climate conditions. Project results will contribute to the Southern Ocean Observing System (SOOS) theme of The Future and Consequences of Carbon Uptake in the Southern Ocean. The project will also train undergraduate and graduate students in environmental monitoring, and earth and ocean sciences methods. Understanding the causal links between Antarctic coastal processes and changes in the deep ocean system requires study of winter polynya processes. The winter period of intense ocean heat loss and sea ice production impacts two important Antarctic water masses: High-Salinity Shelf Water (HSSW), and Antarctic Bottom Water (AABW), which then influence the strength of the ocean solubility pump and meridional overturning circulation. To better characterize how sea ice cover, ocean-atmosphere exchange, brine rejection, and glacial melt influence the physical properties of AABW and HSSW, this project will analyze samples and data collected from two Ross Sea polynyas during the 2017 PIPERS winter cruise. Gas concentrations will be measured in seawater samples collected by a CTD rosette, from an underwater mass-spectrometer, and from a benchtop Membrane Inlet Mass Spectrometer. Noble gas concentrations will reveal the ocean-atmosphere (dis)equilibrium that exists at the time that surface water is transformed into HSSW and AABW, and provide a fingerprint of past conditions. In addition, nitrogen (N2), oxygen (O2), argon, and CO2 concentration will be used to determine the net metabolic balance, and to evaluate the efficacy of N2 as an alternative to O2 as glacial meltwater tracer. Laboratory experiments will determine the gas partitioning ratios during sea ice formation. Findings will be synthesized with PIPERS and related projects, and so provide an integrated view of the role of the wintertime Antarctic coastal system on deep water composition. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -179.0, "geometry": "POINT(168 -74.5)", "instruments": null, "is_usap_dc": true, "keywords": "Helium Isotopes; R/V NBP; DISSOLVED GASES; POLYNYAS; Ross Sea", "locations": "Ross Sea", "north": -71.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Loose, Brice", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "MGDS", "repositories": "MGDS; R2R; USAP-DC", "science_programs": null, "south": -78.0, "title": "Measuring Dissolved Gases to Reveal the Processes that Drive the Solubility Pump and Determine Gas Concentration in Antarctic Bottom Water", "uid": "p0010376", "west": 155.0}, {"awards": "2147045 Learman, Deric", "bounds_geometry": "POLYGON((-180 -60,-168 -60,-156 -60,-144 -60,-132 -60,-120 -60,-108 -60,-96 -60,-84 -60,-72 -60,-60 -60,-60 -62,-60 -64,-60 -66,-60 -68,-60 -70,-60 -72,-60 -74,-60 -76,-60 -78,-60 -80,-72 -80,-84 -80,-96 -80,-108 -80,-120 -80,-132 -80,-144 -80,-156 -80,-168 -80,180 -80,171 -80,162 -80,153 -80,144 -80,135 -80,126 -80,117 -80,108 -80,99 -80,90 -80,90 -78,90 -76,90 -74,90 -72,90 -70,90 -68,90 -66,90 -64,90 -62,90 -60,99 -60,108 -60,117 -60,126 -60,135 -60,144 -60,153 -60,162 -60,171 -60,-180 -60))", "dataset_titles": "Physical and geochemical data from shelf sediments eastern Antarctica", "datasets": [{"dataset_uid": "601876", "doi": "10.15784/601876", "keywords": "Antarctica; Cryosphere", "people": "Learman, Deric", "repository": "USAP-DC", "science_program": null, "title": "Physical and geochemical data from shelf sediments eastern Antarctica", "url": "https://www.usap-dc.org/view/dataset/601876"}], "date_created": "Tue, 30 Aug 2022 00:00:00 GMT", "description": "Microbes in Antarctic surface marine sediments have an important role in degrading organic matter and releasing nutrients to the ocean. Organic matter degradation is at the center of the carbon cycle in the ocean, providing valuable information on nutrient recycling, food availability to animals and carbon dioxide release to the atmosphere. The functionality of these microbes has been inferred by their genomics, however these methods only address the possible function, not their actual rates. In this project the PIs plan to combine genomics methods with cellular estimates of enzyme abundance and activity as a way to determine the rates of carbon degradation. This project aims to sample in several regions of Antarctica to provide a large-scale picture of the processes under study and understand the importance of microbial community composition and environmental factors, such as primary productivity, have on microbial activity. The proposed work will combine research tools such as metagenomics, meta-transcriptomics, and metabolomics coupled with chemical data and enzyme assays to establish degradation of organic matter in Antarctic sediments. This project benefits NSFs goals of understanding the adaptation of Antarctic organisms to the cold and isolated environment, critical to predict effects of climate change to polar organisms, as well as contribute to our knowledge of how Antarctic organisms have adapted to this environment. Society will benefit from this project by education of 2 graduate students, undergraduates and K-12 students as well as increase public literacy through short videos production shared in YouTube. The PIs propose to advance understanding of polar microbial community function, by measuring enzyme and gene function of complex organic matter degradation in several ocean regions, providing a circum-Antarctic description of sediment processes. Two hypotheses are proposed. The first hypothesis states that many genes for the degradation of complex organic matter will be shared in sediments throughout a sampling transect and that where variations in gene content occur, it will reflect differences in the quantity and quality of organic matter, not regional variability. The second hypothesis states that a fraction of gene transcripts for organic matter degradation will not result in measurable enzyme activity due to post-translational modification or rapid degradation of the enzymes. The PIs will analyze sediment cores already collected in a 2020 cruise to the western Antarctic Peninsula with the additional request of participating in a cruise in 2023 to East Antarctica. The PIs will analyze sediments for metagenomics, meta-transcriptomics, and metabolomics coupled with geochemical data and enzyme assays to establish microbial degradation of complex organic matter in Antarctic sediments. Organic carbon concentrations and content in sediments will be measured with \u03b413C, \u03b415N, TOC porewater fluorescence in bulk organic carbon. Combined with determination of geographical variability as well as dependence on carbon sources, results from this study could provide the basis for new hypotheses on how climate variability, with increased water temperature, affects geochemistry in the Southern Ocean. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 90.0, "geometry": "POINT(-165 -70)", "instruments": null, "is_usap_dc": true, "keywords": "BENTHIC; ECOSYSTEM FUNCTIONS; Weddell Sea; Antarctic Peninsula; SEDIMENT CHEMISTRY; R/V NBP", "locations": "Antarctic Peninsula; Weddell Sea", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Learman, Deric", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.0, "title": "Collaborative Research: ANT LIA: Connecting Metagenome Potential to Microbial Function: Investigating Microbial Degradation of Complex Organic Matter Antarctic Benthic Sediments", "uid": "p0010373", "west": -60.0}, {"awards": "1842542 Morgan, Daniel", "bounds_geometry": "POLYGON((160 -77,160.4 -77,160.8 -77,161.2 -77,161.6 -77,162 -77,162.4 -77,162.8 -77,163.2 -77,163.6 -77,164 -77,164 -77.1,164 -77.2,164 -77.3,164 -77.4,164 -77.5,164 -77.6,164 -77.7,164 -77.8,164 -77.9,164 -78,163.6 -78,163.2 -78,162.8 -78,162.4 -78,162 -78,161.6 -78,161.2 -78,160.8 -78,160.4 -78,160 -78,160 -77.9,160 -77.8,160 -77.7,160 -77.6,160 -77.5,160 -77.4,160 -77.3,160 -77.2,160 -77.1,160 -77))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 09 Aug 2022 00:00:00 GMT", "description": "The goal of this study is to identify and distinguish different source areas of glacial sediment in the McMurdo Dry Valleys, Antarctica to determine past glacial flow direction. Understanding ice flow is critical for determining how the Antarctic Ice Sheets have behaved in the past. Such insight is fundamental for allowing scientists to predict how the Antarctic Ice Sheets will evolve and, in turn, forecast how much and how fast sea level may rise. The project study site, the McMurdo Dry Valleys, contain a tremendous record of glacial deposits on land that extends back at least 14 million years. Chemistry of the rocks within the glacial deposits hold clues to the sources of ice that deposited the material. The chemical analyses of the glacial deposits will allow mapping of the former extent of glaciations providing a better understand of ice flow history. The mapping of the largest ice sheet expansion of the past 14 million years in the McMurdo Dry Valleys is of broad interest to the global climate change community. Undergraduate students comprise the majority of the field teams and will be responsible for sample preparation and analysis in the laboratory. This project utilizes new geochemical techniques to test hypotheses about the source, extent, and flow patterns of the glacier ice that deposited glacial tills in the McMurdo Dry Valleys, Antarctica (MDV). The MDV contain an unparalleled terrestrial archive of glacial deposits, which record multiple sources of ice that deposited them. These include the northeast flowing ice that overrode the Transantarctic Mountains, the eastward expansion of the East Antarctic Ice Sheet, the westward extension of the Ross Ice Shelf representing an expansion of the West Antarctic Ice Sheet, and the growth of local alpine glaciers. The glacial tills and drifts in the Antarctic are typically isolated in patches or disjointed outcrop patterns making it difficult to correlate tills and determine their source. This project will undertake a systematic study of the tills in the McMurdo Dry Valleys to determine their provenance with a variety of geochemical techniques including major and minor element analyses with X-ray fluorescence, heavy mineral composition, soil salt concentration, and determining the uranium-lead (U-Pb) ages of zircon sands contained in these tills. The primary tool will be the age distribution of the population of detrital zircon in a glacial drift because it reflects the source of the tills and provides a unique geochemical \"fingerprint\" used to distinguish source areas while correlating units across different sites. A deliverable from this project will be a community available library of zircon fingerprints for mapped glacial tills from archived samples at the Polar Rock Repository and the systematic collection of samples in the MDV. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 164.0, "geometry": "POINT(162 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIATION; Dry Valleys", "locations": "Dry Valleys", "north": -77.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Morgan, Daniel", "platforms": null, "repositories": null, "science_programs": null, "south": -78.0, "title": "Unlocking the Glacial History of the McMurdo Dry Valleys, Antarctica by Fingerprinting Glacial Tills with Detrital Zircon U-Pb Age Populations", "uid": "p0010368", "west": 160.0}, {"awards": "1853377 Shero, Michelle", "bounds_geometry": "POLYGON((162 -76,162.6 -76,163.2 -76,163.8 -76,164.4 -76,165 -76,165.6 -76,166.2 -76,166.8 -76,167.4 -76,168 -76,168 -76.2,168 -76.4,168 -76.6,168 -76.8,168 -77,168 -77.2,168 -77.4,168 -77.6,168 -77.8,168 -78,167.4 -78,166.8 -78,166.2 -78,165.6 -78,165 -78,164.4 -78,163.8 -78,163.2 -78,162.6 -78,162 -78,162 -77.8,162 -77.6,162 -77.4,162 -77.2,162 -77,162 -76.8,162 -76.6,162 -76.4,162 -76.2,162 -76))", "dataset_titles": "Weddell seal dive behavior and rhythmicity from 2010-2012 in the Ross Sea; Weddell seal iron dynamics and oxygen stores across lactation", "datasets": [{"dataset_uid": "601587", "doi": "10.15784/601587", "keywords": "Aerobic; Antarctica; Dive Capacity; Iron; McMurdo Sound; Weddell Seal", "people": "Shero, Michelle", "repository": "USAP-DC", "science_program": null, "title": "Weddell seal iron dynamics and oxygen stores across lactation", "url": "https://www.usap-dc.org/view/dataset/601587"}, {"dataset_uid": "601835", "doi": "10.15784/601835", "keywords": "Aerobic; Antarctica; Cryosphere; Weddell Seal", "people": "Shero, Michelle", "repository": "USAP-DC", "science_program": null, "title": "Weddell seal dive behavior and rhythmicity from 2010-2012 in the Ross Sea", "url": "https://www.usap-dc.org/view/dataset/601835"}], "date_created": "Tue, 09 Aug 2022 00:00:00 GMT", "description": "Within any population, some individuals perform better than others. These individuals may survive longer or produce more offspring. Weddell seals in Erebus Bay, Antarctica, provide an unparalleled opportunity to investigate how an animal\u0027s physiology, behavior, and genetic make-up contribute to lifetime reproductive success because they have been the subject of a long-term population monitoring study and are easily accessible during their reproductive season. This project will distinguish key differences in energy allocation, reproductive timing, and dive capacities between female Weddell seals with a history of frequently producing pups (\"high-quality\" group), versus females that have produced pups only infrequently (\"low-quality\" group). For each group of females, physiology and behavior during the nursing period will be analyzed to assess whether investments influence their probability of reproducing the following year. Whole genomes will be compared between groups to identify underlying genes that govern reproductive success and population stability in a long-lived mammal. This collaborative project will provide research opportunities and training to several undergraduate and graduate students at the three participating institutions. Results will be broadly disseminated through presentations and peer-reviewed publications, and to students via an extensive public outreach collaboration with museum programming, curriculum-aligned science lessons, and pedagogy training. Within any wild animal population there is substantial heterogeneity in reproductive rates and animal fitness. Not all individuals contribute to the population equally; some are able to produce more offspring than others and thus are considered to be of higher quality. This study aims to distinguish which physiological mechanisms (energy dynamics, aerobic capacity, and fertility) and underlying genetic factors make some Weddell seal females particularly successful at producing pups year after year, while others produce far fewer pups than the population average. In this project, an Organismal Energetics approach will identify key differences between high- and low-quality females in how they balance current and future reproductive success by tracking lactation costs, midsummer foraging success and pregnancy rates, and overwinter foraging patterns and live births the next year. Repeated sampling of individuals\u0027 physiological status (body composition, endocrinology, ovulation and pregnancy timing), will be paired with a whole-genome sequencing study. The second component of this study uses a Genome to Phenome approach to better understand how genetic differences between high- and low-quality females directly correspond to functional differences in transcription, translation, and ultimately phenotype. This component will contribute to the functional analysis and annotation of the Weddell seal genome. In combination, this project will make strides towards distinguishing the roles that plastic (physiological, behavioral) and fixed (genetic) factors play in complex, multifaceted traits such as fitness in a long-lived wild mammal. The project partners with established programs to implement extensive educational and outreach activities that will ensure wide dissemination to educators, students, and the public. It will contribute to a marine mammal exhibit at the Pink Palace Museum, and a PolarTREC science educator will participate in field work in Antarctica. This award is co-funded by the GEO-OPP-Antarctic Organisms and Ecosystems Program, BIO-IOS-Physiological Mechanisms and Biomechanics Program, and the Established Program to Stimulate Competitive Research (EPSCoR). This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 168.0, "geometry": "POINT(165 -77)", "instruments": null, "is_usap_dc": true, "keywords": "McMurdo; MAMMALS", "locations": "McMurdo", "north": -76.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Shero, Michelle; Hindle, Allyson; Burns, Jennifer; Briggs, Brandon", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research: Physiological and Genetic Correlates of Reproductive Success in High- versus Low-Quality Weddell seals", "uid": "p0010369", "west": 162.0}, {"awards": "2147553 Rotella, Jay; 2147554 Chen, Nancy; 1640481 Rotella, Jay", "bounds_geometry": "POLYGON((162 -74.95,162.8 -74.95,163.6 -74.95,164.4 -74.95,165.2 -74.95,166 -74.95,166.8 -74.95,167.6 -74.95,168.4 -74.95,169.2 -74.95,170 -74.95,170 -75.295,170 -75.64,170 -75.985,170 -76.33,170 -76.67500000000001,170 -77.02000000000001,170 -77.36500000000001,170 -77.71000000000001,170 -78.055,170 -78.4,169.2 -78.4,168.4 -78.4,167.6 -78.4,166.8 -78.4,166 -78.4,165.2 -78.4,164.4 -78.4,163.6 -78.4,162.8 -78.4,162 -78.4,162 -78.055,162 -77.71000000000001,162 -77.36500000000001,162 -77.02000000000001,162 -76.67500000000001,162 -76.33,162 -75.985,162 -75.64,162 -75.295,162 -74.95))", "dataset_titles": "Demographic data for Weddell Seal colonies in Erebus Bay through the 2023 Antarctic field season", "datasets": [{"dataset_uid": "601837", "doi": "10.15784/601837", "keywords": "AMD; Amd/Us; Antarctica; Cryosphere; McMurdo Sound; Population Dynamics; USA/NSF; USAP-DC; Weddell Seal", "people": "Rotella, Jay", "repository": "USAP-DC", "science_program": null, "title": "Demographic data for Weddell Seal colonies in Erebus Bay through the 2023 Antarctic field season", "url": "https://www.usap-dc.org/view/dataset/601837"}], "date_created": "Sun, 07 Aug 2022 00:00:00 GMT", "description": "Part 1: Non-technical description This is a continuation of a long-term population dynamics study (1978-present) using an intensive mark-recapture tagging of Weddell seals in Erebus Bay, Antarctica. Past work has become a global model for population studies of large animals. Results have documented strong annual variation in reproduction, abundance, and population composition. This program will add components to evaluate the demographic role of immigrant mothers, evaluate possible drivers of annual variation in overall population dynamics, assess genetic differences between immigrant and locally born mothers, and document patterns of gene flow among seal colonies in the Ross Sea region. These new aspects will focus on understanding of population structure, function, and genetics and provide key information for predicting how the seal population will respond to environmental change. The addition of genetic approaches will advance available data for multiple groups in multiple countries working on Weddell Seals. This work includes an early career scientists training program for faculty university graduate and undergraduate students and well as a defined program for data sharing. The research is paired with active education and outreach programs, social media, websites, educational resources, videos and high-profile public lecture activities. The informal science education program will expand on the project\u2019s successful efforts at producing and delivering short-form videos that have been viewed over 1.6 million times to date. In addition, the education program will add new topics such as learning about seals using genomics and how seals respond to a changing world to a multimedia-enhanced electronic book about the project\u2019s long-term research on Weddell seals, which will be freely available to the public early in the project. Part 2: Technical description Reliable predictions are needed for how populations of wild species, especially those at high latitudes, will respond to future environmental conditions. This study will use a strategic extension of the long-term demographic research program that has been conducted annually on the Erebus Bay population of Weddell seals since 1978 to help meet that need. Recent analyses of the study population indicate strong annual variation in reproduction, abundance, and population composition. The number of new immigrant mothers that join the population each year has recently grown such that most new mothers are now immigrants. Despite the growing number of immigrants, the demographic importance and geographic origins of immigrants are unknown. The research will (1) add new information on drivers of annual variation in immigrant numbers, (2) compare and combine information on the vital rates and demographic role of immigrant females and their offspring with that of locally born females, and (3) add genomic analyses that will quantify levels of genetic variation in and gene flow among the study population and other populations in the Ross Sea. The project will continue the long-term monitoring of the population at Erebus Bay and characterize population dynamics and the role of immigration using a combination of mark-recapture analyses, stochastic population modeling, and genomic analyses. The study will continue to provide detailed data on individual seals to other science teams, educate and mentor individuals in the next generation of ecologists, introduce two early-career, female scientists to Antarctic research, and add genomics approaches to the long-term population study of Erebus Bay Weddell seals. The research will be complemented with a robust program of training and an informal science education program. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 170.0, "geometry": "POINT(166 -76.67500000000001)", "instruments": null, "is_usap_dc": true, "keywords": "SPECIES/POPULATION INTERACTIONS; McMurdo Sound", "locations": "McMurdo Sound", "north": -74.95, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Rotella, Jay; Chen, Nancy", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.4, "title": "Collaborative Research: The Drivers and Role of Immigration in the Dynamics of the Largest Population of Weddell Seals in Antarctica under Changing Conditions", "uid": "p0010361", "west": 162.0}, {"awards": "1744649 Christianson, Knut", "bounds_geometry": "POLYGON((-120 -85.5,-117.5 -85.5,-115 -85.5,-112.5 -85.5,-110 -85.5,-107.5 -85.5,-105 -85.5,-102.5 -85.5,-100 -85.5,-97.5 -85.5,-95 -85.5,-95 -85.62,-95 -85.74,-95 -85.86,-95 -85.98,-95 -86.1,-95 -86.22,-95 -86.34,-95 -86.46000000000001,-95 -86.58,-95 -86.7,-97.5 -86.7,-100 -86.7,-102.5 -86.7,-105 -86.7,-107.5 -86.7,-110 -86.7,-112.5 -86.7,-115 -86.7,-117.5 -86.7,-120 -86.7,-120 -86.58,-120 -86.46000000000001,-120 -86.34,-120 -86.22,-120 -86.1,-120 -85.98,-120 -85.86,-120 -85.74,-120 -85.62,-120 -85.5))", "dataset_titles": "Hercules Dome ApRES Data; Hercules Dome High-Frequency Impulse Ice-Penetrating Radar Data; Hercules Dome Ice-Penetrating Radar Swath Topographies; Ice Dynamics at the Intersection of the West and East Antarctic Ice Sheets; ITASE Impulse Radar Hercules Dome to South Pole", "datasets": [{"dataset_uid": "601739", "doi": "10.15784/601739", "keywords": "Antarctica; Apres; Crystal Orientation Fabric; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hercules Dome; Ice Dynamic; Ice Penetrating Radar; Radar Interferometry; Radar Polarimetry", "people": "Christianson, Knut; Hills, Benjamin; Holschuh, Nicholas; Hoffman, Andrew; Fudge, Tyler J; Horlings, Annika; Erwin, Emma; Steig, Eric J.", "repository": "USAP-DC", "science_program": "Hercules Dome Ice Core", "title": "Hercules Dome ApRES Data", "url": "https://www.usap-dc.org/view/dataset/601739"}, {"dataset_uid": "601606", "doi": "10.15784/601606", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Ice Penetrating Radar; Snow/ice; Snow/Ice", "people": "Christianson, Knut", "repository": "USAP-DC", "science_program": null, "title": "Ice Dynamics at the Intersection of the West and East Antarctic Ice Sheets", "url": "https://www.usap-dc.org/view/dataset/601606"}, {"dataset_uid": "601710", "doi": "10.15784/601710", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Hercules Dome; Ice Penetrating Radar; Snow/ice; Snow/Ice", "people": "Hills, Benjamin; Hoffman, Andrew; Christianson, Knut; Christian, John; Holschuh, Nicholas; Horlings, Annika; O\u0027Connor, Gemma", "repository": "USAP-DC", "science_program": "Hercules Dome Ice Core", "title": "Hercules Dome High-Frequency Impulse Ice-Penetrating Radar Data", "url": "https://www.usap-dc.org/view/dataset/601710"}, {"dataset_uid": "601711", "doi": "10.15784/601711", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Hercules Dome; Ice Penetrating Radar; Snow/ice; Snow/Ice", "people": "Holschuh, Nicholas; Hoffman, Andrew; Christianson, Knut; Paden, John", "repository": "USAP-DC", "science_program": "Hercules Dome Ice Core", "title": "Hercules Dome Ice-Penetrating Radar Swath Topographies", "url": "https://www.usap-dc.org/view/dataset/601711"}, {"dataset_uid": "601712", "doi": "10.15784/601712", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Hercules Dome; Ice Penetrating Radar; Snow/ice; Snow/Ice", "people": "Welch, Brian; Jacobel, Robert; Christianson, Knut; Hoffman, Andrew", "repository": "USAP-DC", "science_program": "Hercules Dome Ice Core", "title": "ITASE Impulse Radar Hercules Dome to South Pole", "url": "https://www.usap-dc.org/view/dataset/601712"}], "date_created": "Tue, 02 Aug 2022 00:00:00 GMT", "description": "The response of the Antarctic ice sheet to climate change is a central issue in projecting global sea-level rise. While much attention is focused on the ongoing rapid changes at the coastal margin of the West Antarctic Ice Sheet, obtaining records of past ice-sheet and climate change is the only way to constrain how an ice sheet changes over millennial timescales. Whether the West Antarctic Ice Sheet collapsed during the last interglacial period (~130,000 to 116,000 years ago), when temperatures were slightly warmer than today, remains a major unsolved problem in Antarctic glaciology. Hercules Dome is an ice divide located at the intersection of the East Antarctic and West Antarctic ice sheets. It is ideally situated to record the glaciological and climatic effects of changes in the West Antarctic Ice Sheet. This project will establish whether Hercules Dome experienced major changes in flow due to changes in the elevation of the two ice sheets. The project will also ascertain whether Hercules Domes is a suitable site from which to recover climate records from the last interglacial period. These records could be used to determine whether the West Antarctic Ice Sheet collapsed during that period. The project will support two early-career researchers and train students at the University of Washington. Results will be communicated through outreach programs in coordination the Ice Drilling Project Office, the University of Washington\u0027s annual Polar Science Weekend in Seattle, and art-science collaboration. This project will develop a history of ice dynamics at the intersection of the East and West Antarctic ice sheets, and ascertain whether the site is suitable for a deep ice-coring operation. Ice divides provide a unique opportunity to assess the stability of past ice flow. The low deviatoric stresses and non-linearity of ice flow causes an arch (a \"Raymond Bump\") in the internal layers beneath a stable ice divide. This information can be used to determine the duration of steady ice flow. Due to the slow horizontal ice-flow velocities, ice divides also preserve old ice with internal layering that reflects past flow conditions caused by divide migration. Hercules Dome is an ice divide that is well positioned to retain information of past variations in the geometry of both the East and West Antarctic Ice Sheets. This dome is also the most promising location at which to recover an ice core that can be used to determine whether the West Antarctic Ice Sheet collapsed during the last interglacial period. Limited ice-penetrating radar data collected along a previous scientific surface traverse indicate well-preserved englacial stratigraphy and evidence suggestive of a Raymond Bump, but the previous survey was not sufficiently extensive to allow thorough characterization or determination of past changes in ice dynamics. This project will conduct a dedicated survey to map the englacial stratigraphy and subglacial topography as well as basal properties at Hercules Dome. The project will use ground-based ice-penetrating radar to 1) image internal layers and the ice-sheet basal interface, 2) accurately measure englacial attenuation, and 3) determine englacial vertical strain rates. The radar data will be combined with GPS observations for detailed topography and surface velocities and ice-flow modeling to constrain the basal characteristics and the history of past ice flow. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -95.0, "geometry": "POINT(-107.5 -86.1)", "instruments": null, "is_usap_dc": true, "keywords": "West Antarctica; ICE DEPTH/THICKNESS; East Antarctica", "locations": "West Antarctica; East Antarctica", "north": -85.5, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Christianson, Knut; Hoffman, Andrew; Holschuh, Nicholas", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -86.7, "title": "Ice Dynamics at the Intersection of the West and East Antarctic Ice Sheets", "uid": "p0010359", "west": -120.0}, {"awards": "2002422 TBD", "bounds_geometry": null, "dataset_titles": "Clumped-isotope composition of molecular oxygen trapped in the Allan Hills S27 ice core", "datasets": [{"dataset_uid": "601593", "doi": "10.15784/601593", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Clumped-isotope composition of molecular oxygen trapped in the Allan Hills S27 ice core", "url": "http://www.usap-dc.org/view/dataset/601593"}], "date_created": "Tue, 02 Aug 2022 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Allan Hills; Antarctica; Last Interglacial; Oxygen", "locations": "Antarctica; Allan Hills", "north": null, "nsf_funding_programs": null, "paleo_time": null, "persons": "Yeung, Laurence; Yan, Yuzhen; Banerjee, Asmita", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": null, "title": null, "uid": null, "west": null}, {"awards": "1744767 Sanders, Robert", "bounds_geometry": "POLYGON((-68 -64,-67.4 -64,-66.8 -64,-66.2 -64,-65.6 -64,-65 -64,-64.4 -64,-63.8 -64,-63.2 -64,-62.6 -64,-62 -64,-62 -64.5,-62 -65,-62 -65.5,-62 -66,-62 -66.5,-62 -67,-62 -67.5,-62 -68,-62 -68.5,-62 -69,-62.6 -69,-63.2 -69,-63.8 -69,-64.4 -69,-65 -69,-65.6 -69,-66.2 -69,-66.8 -69,-67.4 -69,-68 -69,-68 -68.5,-68 -68,-68 -67.5,-68 -67,-68 -66.5,-68 -66,-68 -65.5,-68 -65,-68 -64.5,-68 -64))", "dataset_titles": "Companion datasets to Diversity of microbial eukaryotes along the West Antarctic peninsula in austral spring.; Expedition Data of NBP1910; Expedition Data of NBP 2205; LMG1904 expedition data; NBP1910_protist_community_RNA Raw sequence reads; NBP2205_protist_community_RNA Raw sequence reads will be made available here after processing is completed", "datasets": [{"dataset_uid": "200325", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP1910", "url": "https://www.rvdata.us/search/cruise/NBP1910"}, {"dataset_uid": "200365", "doi": "", "keywords": null, "people": null, "repository": "NCBI", "science_program": null, "title": "NBP1910_protist_community_RNA Raw sequence reads; NBP2205_protist_community_RNA Raw sequence reads will be made available here after processing is completed", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=PRJNA807326"}, {"dataset_uid": "200320", "doi": "10.6084/m9.figshare.19514110.v3", "keywords": null, "people": null, "repository": "Figshare", "science_program": null, "title": "Companion datasets to Diversity of microbial eukaryotes along the West Antarctic peninsula in austral spring.", "url": "https://doi.org/10.6084/m9.figshare.19514110.v3"}, {"dataset_uid": "200366", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP 2205", "url": "https://www.rvdata.us/search/cruise/NBP2205"}, {"dataset_uid": "200147", "doi": "10.7284/908260", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "LMG1904 expedition data", "url": "https://www.rvdata.us/search/cruise/LMG1904"}], "date_created": "Wed, 27 Jul 2022 00:00:00 GMT", "description": "Traditional models of oceanic food chains have consisted of photosynthetic algae (phytoplankton) being ingested by small animals (zooplankton), which were ingested by larger animals (fish). These traditional models changed as new methods allowed recognition of the importance of bacteria and other non-photosynthetic protozoa in more complex food webs. More recently, the wide-spread existence of mixotrophs (organisms that can both photosynthesize and ingest food particles) and their importance as microbial predators has been recognized in many oceanographic areas. In the Southern Ocean, the only two surveys of mixotrophs have suggested that there may be seasonal differences in their importance as predators. During the long polar night (winter), the ability of mixotrophs to ingest particulate food may aid in their survival thus ensuring a sufficient population in spring to support a phytoplankton bloom once photosynthesis rates can increase. Thus mixotrophs may provide a critical early food source upon which zooplankton and larger animals depend on for growth and reproduction. This project will advance understanding of mixotroph diversity and their ecological impact within the Southern Ocean microbial food web. Specifically, efforts will be focused on mixotrophy in the western Antarctica peninsula region during the austral spring and autumn when there are likely to be changes in the relative importance of photosynthesis and ingestion to mixotrophs. The project will provide research opportunities for undergraduate and graduate students and a post-doctoral researcher. There will be real-time outreach from the Southern Ocean to the public via blogs and interviews, and to high school art students through an established program that blends science and art education. Despite traditional views of protists as either \"phototrophic\" or \"heterotrophic,\" there are many photosynthetic protists that consume prey (mixotrophy). Mixotrophy is a widespread phenomenon in aquatic systems and phytoplankton groups with known mixotrophic species, notably chrysophytes, cryptophytes, prymnesiophytes, prasinophytes and dinoflagellates, are present and often abundant in Antarctic waters. However, in the Southern Ocean, the presence of mixotrophic phytoflagellates has been surveyed only twice: in the Ross Sea during Austral spring 2008 and summer 2011. The primary goals of the project are to gain better understanding of mixotroph diversity and their ecological impact with respect to the Southern Ocean microbial food web. The contribution of mixotrophs to primary production and bacterial consumption is likely linked to the taxonomic composition of the community and the abundance of particular species. Abundances of novel mixotrophic species will be evaluated via qPCR, which will be coupled with assessments of rates of feeding and photosynthesis with the goal of describing how active mixotrophs direct the movement of carbon through food webs. These experiments will help the determination of how viable and widespread mixotrophy is as a nutritional strategy in polar waters and give direct information on the currently unknown diversity of mixotrophic taxa under different environmental conditions occurring in austral spring and autumn. Furthermore, the methods will simultaneously yield information on the whole communities of protists - mixotrophic, phototrophic and heterotrophic. In addition, a method to examine aspects of the taxonomic and functional diversities of the bacterivorous/mixotrophic community will be employed. A thymidine analog (BrdU) will be used to label DNA of eukaryotes feeding on bacteria. The BrdU-labeled eukaryotic DNA will be isolated using immunoprecipitation. High-throughput sequencing of the labeled DNA (bacterivores) versus unlabeled community DNA will determine the diversity of bacterivorous mixotrophs relative to other microeukaryotes. Flow cytometric sorting based on chlorophyll to focus on mixotrophic species. These approaches will elucidate a gap in current knowledge of the influence of microbial interactions in the Southern Ocean under different conditions. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -62.0, "geometry": "POINT(-65 -66.5)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctic Peninsula; PLANKTON; COASTAL", "locations": "Antarctic Peninsula", "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Sanders, Robert; Gast, Rebecca; Jeffrey, Wade H.", "platforms": null, "repo": "R2R", "repositories": "Figshare; NCBI; R2R", "science_programs": null, "south": -69.0, "title": "Collaborative Research: Diversity and ecological impacts of Antarctic mixotrophic phytoplankton", "uid": "p0010357", "west": -68.0}, {"awards": "2138277 Gallagher, Katherine", "bounds_geometry": "POLYGON((-78 -62,-76.2 -62,-74.4 -62,-72.6 -62,-70.8 -62,-69 -62,-67.2 -62,-65.4 -62,-63.6 -62,-61.8 -62,-60 -62,-60 -63,-60 -64,-60 -65,-60 -66,-60 -67,-60 -68,-60 -69,-60 -70,-60 -71,-60 -72,-61.8 -72,-63.6 -72,-65.4 -72,-67.2 -72,-69 -72,-70.8 -72,-72.6 -72,-74.4 -72,-76.2 -72,-78 -72,-78 -71,-78 -70,-78 -69,-78 -68,-78 -67,-78 -66,-78 -65,-78 -64,-78 -63,-78 -62))", "dataset_titles": "Current velocity and direction data from Regional Ocean Modeling System simulations (2006-2007 \u0026 2010-2011); Current velocity and direction data from Regional Ocean Modeling System simulations (2008-2009 \u0026 2018-2019); Passive particle trajectories from Regional Ocean Modeling System simulations 2008-2009 \u0026 2018-2019; Simulated krill trajectory data from Regional Ocean Modeling System simulations 2006-2007 \u0026 2010-2011; Simulated krill trajectory data from Regional Ocean Modeling System simulations 2008-2009 \u0026 2018-2019; Simulated marine debris trajectories along the West Antarctic Peninsula in 2008-2009 and 2018-2019", "datasets": [{"dataset_uid": "601656", "doi": "10.15784/601656", "keywords": "Antarctica; Model Data; Ocean Currents; Physical Oceanography; Regional Ocean Modeling System; ROMS; West Antarctic Shelf", "people": "Gallagher, Katherine", "repository": "USAP-DC", "science_program": null, "title": "Current velocity and direction data from Regional Ocean Modeling System simulations (2008-2009 \u0026 2018-2019)", "url": "https://www.usap-dc.org/view/dataset/601656"}, {"dataset_uid": "601779", "doi": "10.15784/601779", "keywords": "Antarctica; Cryosphere; Model Data; Ocean Currents; Physical Oceanography; Regional Ocean Modeling System; ROMS; West Antarctic Shelf", "people": "Gallagher, Katherine", "repository": "USAP-DC", "science_program": null, "title": "Current velocity and direction data from Regional Ocean Modeling System simulations (2006-2007 \u0026 2010-2011)", "url": "https://www.usap-dc.org/view/dataset/601779"}, {"dataset_uid": "601655", "doi": "10.15784/601655", "keywords": "Antarctica; Antarctic Krill; Model Data; Physical Oceanography; Regional Ocean Modeling System; ROMS; West Antarctic Shelf", "people": "Gallagher, Katherine", "repository": "USAP-DC", "science_program": null, "title": "Simulated krill trajectory data from Regional Ocean Modeling System simulations 2008-2009 \u0026 2018-2019", "url": "https://www.usap-dc.org/view/dataset/601655"}, {"dataset_uid": "601682", "doi": "10.15784/601682", "keywords": "Antarctica; Physical Oceanography; Regional Ocean Modeling System; ROMS", "people": "Gallagher, Katherine", "repository": "USAP-DC", "science_program": null, "title": "Passive particle trajectories from Regional Ocean Modeling System simulations 2008-2009 \u0026 2018-2019", "url": "https://www.usap-dc.org/view/dataset/601682"}, {"dataset_uid": "601780", "doi": "10.15784/601780", "keywords": "Antarctica; Antarctic Krill; Cryosphere; Model Data; Physical Oceanography; Regional Ocean Modeling System; ROMS; West Antarctic Shelf", "people": "Gallagher, Katherine", "repository": "USAP-DC", "science_program": null, "title": "Simulated krill trajectory data from Regional Ocean Modeling System simulations 2006-2007 \u0026 2010-2011", "url": "https://www.usap-dc.org/view/dataset/601780"}, {"dataset_uid": "601734", "doi": "10.15784/601734", "keywords": "Antarctica; Modeling; Regional Ocean Modeling System; West Antarctic Shelf", "people": "Gallagher, Katherine", "repository": "USAP-DC", "science_program": null, "title": "Simulated marine debris trajectories along the West Antarctic Peninsula in 2008-2009 and 2018-2019", "url": "https://www.usap-dc.org/view/dataset/601734"}], "date_created": "Tue, 19 Jul 2022 00:00:00 GMT", "description": "Pygoscelis penguins are central place foragers during the summer while they raise their chicks. They leave and return to the same colony location after hunting for food and rely on the availability of Antarctic krill, their primary food source. This research focuses on whether penguin diets and colony location reflect the retention of prey around and near colonies on the West Antarctic Peninsula. Eddies and other oceanographic processes may facilitate prey retention at certain locations, driving penguin colony establishment and success. This project hypothesizes that Pygoscelis penguin diets will be composed of more Antarctic krill (Euphausia superba) when local prey retention is high, possibly due to subsurface eddies. This hypothesis will be tested using satellite-based estimates of Pygoscelis penguin diet composition using multispectral sensor data to estimate nitrogen values and infer trophic level. Prey retention will be calculated along the peninsula using the Regional Ocean Modeling System (ROMS). Simulated particles and diel vertical migration will be used to mimic krill behavior. These particles can be experimentally seeded across multiple depths in multiple years to assess residence times in the system. Using penguin colony data from the Mapping Application for Penguin Populations and Projected Dynamics (MAPPPD), the PI will correlate diet and retention metrics to local penguin colony growth and persistence and build a predictive model of where colonies may form in the future. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -60.0, "geometry": "POINT(-69 -67)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctic Peninsula; PENGUINS; SPECIES/POPULATION INTERACTIONS; OCEAN CURRENTS", "locations": "Antarctic Peninsula", "north": -62.0, "nsf_funding_programs": "Post Doc/Travel", "paleo_time": null, "persons": "Gallagher, Katherine", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -72.0, "title": "OPP-PRF Pygoscelis Penguin Response to Potential Prey Retention along the West Antarctic Peninsula", "uid": "p0010349", "west": -78.0}, {"awards": "1643664 Severinghaus, Jeffrey; 1643669 Petrenko, Vasilii; 1643716 Buizert, Christo", "bounds_geometry": "POLYGON((112 -66,112.2 -66,112.4 -66,112.6 -66,112.8 -66,113 -66,113.2 -66,113.4 -66,113.6 -66,113.8 -66,114 -66,114 -66.1,114 -66.2,114 -66.3,114 -66.4,114 -66.5,114 -66.6,114 -66.7,114 -66.8,114 -66.9,114 -67,113.8 -67,113.6 -67,113.4 -67,113.2 -67,113 -67,112.8 -67,112.6 -67,112.4 -67,112.2 -67,112 -67,112 -66.9,112 -66.8,112 -66.7,112 -66.6,112 -66.5,112 -66.4,112 -66.3,112 -66.2,112 -66.1,112 -66))", "dataset_titles": "Concentration and isotopic composition of atmospheric N2O over the last century; Law Dome DE08-OH firn air 15N, O2/N2, Ar/N2, 18O of O2; Law Dome DE08-OH site noble gases in ice: testing the 86Krexcess proxy; Law Dome firn air and ice core 14CO concentration", "datasets": [{"dataset_uid": "601846", "doi": "10.15784/601846", "keywords": "Antarctica; Carbon-14; Cryosphere; Firn Air; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Law Dome; Snow/ice; Snow/Ice", "people": "Petrenko, Vasilii", "repository": "USAP-DC", "science_program": null, "title": "Law Dome firn air and ice core 14CO concentration", "url": "https://www.usap-dc.org/view/dataset/601846"}, {"dataset_uid": "601693", "doi": "10.15784/601693", "keywords": "Antarctic; Antarctica; Anthropogenic Emission; Atmosphere; Greenhouse Gas; Greenland; Ice Core Data; Nitrification And Denitrification Processes; Nitrous Oxide; Site-Specific 15N Isotopomer; Styx Glacier", "people": "Ghosh, Sambit; Etheridge, David; Ahn, Jinho ; Joong Kim, Seong; Yoshida, Naohiro ; Langenfelds, Ray L ; Buizert, Christo ; Toyoda, Sakae ", "repository": "USAP-DC", "science_program": null, "title": "Concentration and isotopic composition of atmospheric N2O over the last century", "url": "https://www.usap-dc.org/view/dataset/601693"}, {"dataset_uid": "601598", "doi": "10.15784/601598", "keywords": "Antarctica; Firn; Firn Density; Gravitational Settling; Inert Gases; Law Dome", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Law Dome DE08-OH firn air 15N, O2/N2, Ar/N2, 18O of O2", "url": "https://www.usap-dc.org/view/dataset/601598"}, {"dataset_uid": "601597", "doi": "10.15784/601597", "keywords": "Antarctica; Ice Core; Law Dome; Noble Gas", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Law Dome DE08-OH site noble gases in ice: testing the 86Krexcess proxy", "url": "https://www.usap-dc.org/view/dataset/601597"}], "date_created": "Fri, 17 Jun 2022 00:00:00 GMT", "description": "Hydroxyl radicals are responsible for removal of most atmospheric trace gases, including pollutants and important greenhouse gases. They have been called the \"detergent of the atmosphere\". Changes in hydroxyl radical concentration in response to large changes in reactive trace gas emissions, which may happen in the future, are uncertain. This project aims to provide the first estimates of the variability of atmospheric hydroxyl radicals since about 1880 AD when anthropogenic emissions of reactive trace gases were minimal. This will improve understanding of their stability in response to large changes in emissions. The project will also investigate whether ice cores record past changes in Southern Hemisphere westerly winds. These winds are a key component of the global climate system, and have an important influence on ocean circulation and possibly on atmospheric carbon dioxide concentrations. The project team will include three early career scientists, a postdoctoral researcher, and graduate and undergraduate students, working in collaboration with senior scientists and Australian collaborators. Firn air and shallow ice to a depth of about 233 m will be sampled at the Law Dome high-accumulation coastal site in East Antarctica. Trapped air will be extracted from the ice cores on site immediately after drilling. Carbon-14 of carbon monoxide (14CO) will be analyzed in firn and ice-core air samples. Corrections will be made for the in situ cosmogenic 14CO component in the ice, allowing for the atmospheric 14CO history to be reconstructed. This 14CO history will be interpreted with the aid of a chemistry-transport model to place the first observational constraints on the variability of Southern Hemisphere hydroxyl radical concentration after about 1880 AD. An additional component of the project will analyze Krypton-86 in the firn-air and ice-core samples. These measurements will explore whether ice-core Krypton-86 acts as a proxy for barometric pressure variability, and whether this proxy can be used in Antarctic ice cores to infer past movement of the Southern Hemisphere westerly winds. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 114.0, "geometry": "POINT(113 -66.5)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; TRACE GASES/TRACE SPECIES; Law Dome; Amd/Us; USAP-DC; LABORATORY; ICE CORE AIR BUBBLES; USA/NSF", "locations": "Law Dome", "north": -66.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Petrenko, Vasilii; Murray, Lee T; Buizert, Christo; Petrenko, Vasilii; Murray, Lee T", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.0, "title": "Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability", "uid": "p0010341", "west": 112.0}, {"awards": "1543367 Shubin, Neil", "bounds_geometry": "POLYGON((158.3 -77.5,158.54000000000002 -77.5,158.78 -77.5,159.02 -77.5,159.26 -77.5,159.5 -77.5,159.74 -77.5,159.98 -77.5,160.22 -77.5,160.45999999999998 -77.5,160.7 -77.5,160.7 -77.605,160.7 -77.71,160.7 -77.815,160.7 -77.92,160.7 -78.025,160.7 -78.13,160.7 -78.235,160.7 -78.34,160.7 -78.445,160.7 -78.55,160.45999999999998 -78.55,160.22 -78.55,159.98 -78.55,159.74 -78.55,159.5 -78.55,159.26 -78.55,159.02 -78.55,158.78 -78.55,158.54000000000002 -78.55,158.3 -78.55,158.3 -78.445,158.3 -78.34,158.3 -78.235,158.3 -78.13,158.3 -78.025,158.3 -77.92,158.3 -77.815,158.3 -77.71,158.3 -77.605,158.3 -77.5))", "dataset_titles": "Vertebrate Fossils from the Aztec Siltstone (Mid-Late Devonian); Vertebrate Fossils from the Aztec Siltstone (Mid-Late Devonian) 2 (2018-2019)", "datasets": [{"dataset_uid": "601580", "doi": "10.15784/601580", "keywords": "Acanthodii; Antarctica; Chondrichthyes; Early Vertebrates; Osteolepiformes; Paleontology; Placodermi; Transantarctic Mountains; Vertebrate Evolution", "people": "Daeschler, Ted", "repository": "USAP-DC", "science_program": null, "title": "Vertebrate Fossils from the Aztec Siltstone (Mid-Late Devonian)", "url": "https://www.usap-dc.org/view/dataset/601580"}, {"dataset_uid": "601584", "doi": "10.15784/601584", "keywords": "Acanthodii; Antarctica; Chondrichthyes; Early Vertebrates; Osteolepiformes; Paleontology; Placodermi; Transantarctic Mountains; Vertebrate Evolution", "people": "Daeschler, Ted", "repository": "USAP-DC", "science_program": null, "title": "Vertebrate Fossils from the Aztec Siltstone (Mid-Late Devonian) 2 (2018-2019)", "url": "https://www.usap-dc.org/view/dataset/601584"}], "date_created": "Fri, 17 Jun 2022 00:00:00 GMT", "description": "This research will provide new insights into the relationships and history of sharks, fish and limbed animals. Understanding these relationships forms the backbone for both basic and applied science because fish often serve as models of human traits and diseases. Some of the main lines of evidence for these relationships come from fossils in rocks over 380 million years old that were originally deposited as ancient rivers and streams. Because rocks of this type and age are abundantly exposed along a number of the dry valleys and mountains of Antarctica, the investigation of these areas holds exceptional promise for discoveries that can have a broad impact. The fieldwork will involve geological mapping and assessment of the rocks with detailed reconnaissance for the fossils that they may hold. Fossil discoveries form the backbone for public communication of the methods and results of scientific research-- these studies will be used as vehicles for training of students at multiple levels as well as communication of science to the broader non-science citizen base. The discovery, description, and analysis of Middle to Late Devonian (390-355 Million years ago) vertebrates and depositional environments provide important data on the emergence of novel anatomical structures, faunas, and habitats during a critical interval in the history of life and earth. Biological innovation during this time includes the early evolution of freshwater fish, the origins of major groups of vertebrates (e.g., sharks, lobe and ray-finned fish, tetrapods), and the expansion and elaboration of non-marine ecosystems. Accordingly, expanding our knowledge of vertebrate diversity during the Middle and Late Devonian will provide new evidence on the relationships of the major groups of vertebrates, the assembly of novelties that ultimately enabled tetrapods to invade land, the origin and early evolution of sharks and their relatives, and the assembly and expansion of non-marine ecosystems generally. The Aztec Siltstone of Antarctica Middle-Late Devonian; Givetian-Frasnian Stages) has exceptional potential to produce new paleontological evidence of these events and to illuminate the temporal, ecological, and geographic context in which they occurred. It is essentially fossiliferous throughout its known exposure range, something that is rare for Middle-Late Devonian non-marine rocks anywhere in the world. In addition, fine-grained meandering stream deposits are abundantly exposed in the Aztec Siltstone and are recognized as an important locus for the discovery of well-preserved Devonian fish, including stem tetrapods and their relatives. Given the exceedingly fossiliferous nature of the Aztec Siltstone, the large number of taxa known only from partial material, and the amount of promising exposure yet to be worked, a dedicated reconnaissance, collection, and research effort is designed to recover important new fossil material and embed it in a stratigraphic and sedimentological context. The first major objective of this study is the recovery, preparation, and description of Middle-Late Devonian fossil taxa. Ensuing investigation of the phylogenetic affinities, taphonomic occurrence, and stratigraphic position of fossil assemblages will allow both local and global comparisons of biotic diversity. These analyses will inform: 1) higher level phylogenetic hypotheses of jawed vertebrates, 2) biostratigraphic and biogeographic analysis of the distribution of the Middle-Late Devonian fish, and 3) paleobiological investigation of the elaboration of terrestrial and freshwater habitats. The broader impacts are derived from the utility of paleontology and Antarctic expeditionary science as educational tools with powerful narratives. Specific goals include affiliations with local urban secondary schools (using established relationships for broadening participation) and collegiate and graduate training. Wider dissemination of knowledge to the general public is a direct product of ongoing interactions with national and international media (print, television, internet).", "east": 160.7, "geometry": "POINT(159.5 -78.025)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; AMD; FIELD INVESTIGATION; Transantarctic Mountains; USA/NSF; MACROFOSSILS; Fossils; USAP-DC", "locations": "Transantarctic Mountains", "north": -77.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e PALEOZOIC \u003e DEVONIAN", "persons": "Shubin, Neil; Daeschler, Edward B", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.55, "title": "Middle-Late Devonian Vertebrates of Antarctica", "uid": "p0010340", "west": 158.3}, {"awards": "2201129 Fischer, Karen", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Crustal thicknesses in Antarctica from Sp receiver functions; Lithospheric thicknesses in Antarctica from Sp receiver functions", "datasets": [{"dataset_uid": "601899", "doi": "10.15784/601899", "keywords": "Antarctica; Cryosphere; LAB; Lithosphere; Lithospheric Thickness", "people": "Brown, Sarah; Fischer, Karen", "repository": "USAP-DC", "science_program": null, "title": "Lithospheric thicknesses in Antarctica from Sp receiver functions", "url": "https://www.usap-dc.org/view/dataset/601899"}, {"dataset_uid": "601898", "doi": "10.15784/601898", "keywords": "Antarctica; Crust; Cryosphere; Moho", "people": "Fischer, Karen; Brown, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Crustal thicknesses in Antarctica from Sp receiver functions", "url": "https://www.usap-dc.org/view/dataset/601898"}], "date_created": "Tue, 14 Jun 2022 00:00:00 GMT", "description": "The western portion of the Antarctic continent is very active in terms of plate tectonic processes that can produce significant variations in the Earths mantle temperature as well as partial melting of the mantle. In addition to these internal processes, the ice sheet in western Antarctica is melting due to Earths warming climate and adding water to the ocean. These changes in ice mass cause adjustments in rocks within the Earth\u0027s crust, allowing the surface to rebound in some locations and fall in others, altering the geographical pattern of sea-level change. However, the solid Earth response depends strongly on the strength of the rocks at a wide range of timescales which is not well-known and varies with temperature and other rock properties. This project has three primary goals. (1) It will assess how processes such as rifting, mantle upwelling and lithospheric instability have altered the lithosphere and underlying asthenosphere of western Antarctica, contributing to a planet-wide understanding of these processes. (2) It will use new measurements of mantle and crust properties to estimate the rate at which heat from the solid Earth flows into the base of the ice, which is important for modeling the rates at which the ice melts and flows. (3) It will places bounds on mantle viscosity, which is key for modeling the interaction of the solid Earth with changing ice and water masses and their implications for sea-level rise. To accomplish these goals, new resolution of crust and mantle structure will be obtained by analyzing seismic waves from distant earthquakes that have been recorded at numerous seismic stations in Antarctica. These analyses will include new combinations of seismic wave data that provide complementary information about mantle temperature, heat flow and viscosity. This project will provide educational and career opportunities to a Brown University graduate student, undergraduates from groups underrepresented in science who will come to Brown University for a summer research program, and other undergraduates. The project will bring together faculty and students for a seminar at Brown that explores the connections between the solid Earth and ice processes in Antarctica. Project research will be incorporated in outreach to local public elementary schools and high schools. This research addresses key questions about mantle processes and properties in western Antarctica. What are the relative impacts of rifting, mantle plumes, and lithospheric delamination in the evolution of the lithosphere and asthenosphere? Where is topography isostatically compensated, and where are dynamic processes such as plate flexure or tractions from 3-D mantle flow required? What are the bounds on heat flow and mantle viscosity, which represent important inputs to models of ice sheet evolution and its feedback from the solid Earth? To address these questions, this project will measure mantle and crust properties using seismic tools that have not yet been applied in Antarctica: regional-scale measurement of mantle attenuation from surface waves; Sp body wave phases to image mantle velocity gradients such as the lithosphere-asthenosphere boundary; and surface wave amplification and ellipticity. The resulting models of seismic attenuation and velocity will be jointly interpreted to shed new light on temperature, bulk composition, volatile content, and partial melt, using a range of laboratory-derived constitutive laws, while considering data from mantle xenoliths. To test the relative roles of rifting, mantle plumes, and delamination, and to assess isostatic support for Antarctic topography, the predictions of these processes will be compared to the new models of crust and mantle properties. To improve bounds on western Antarctic heat flow, seismic attenuation and velocity will be used in empirical comparisons and in direct modeling of vertical temperature gradients. To better measure mantle viscosity at the timescales of glacial isostatic adjustment, frequency-dependent viscosity will be estimated from the inferred mantle conditions. This project will contribute to the education and career development of the following: a Brown University Ph.D. student, Brown undergraduates, and undergraduates from outside the university will be involved through the Department of Earth, Environmental and Planetary Sciences (DEEPS) Leadership Alliance NSF Research Experience for Undergraduates (REU) Site which focuses on geoscience summer research experiences for underrepresented students. The project will be the basis for a seminar at Brown that explores the connections between the solid Earth and cryosphere in Antarctica and will contribute to outreach in local public elementary and high schools. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": true, "keywords": "USAP-DC; West Antarctica; USA/NSF; SEISMIC SURFACE WAVES; AMD; PLATE TECTONICS; Amd/Us; GLACIERS/ICE SHEETS; FIELD INVESTIGATION", "locations": "West Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Fischer, Karen; Dalton, Colleen", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Probing the Western Antarctic Lithosphere and Asthenosphere with New Approaches to Imaging Seismic Wave Attenuation and Velocity", "uid": "p0010339", "west": -180.0}, {"awards": "2203487 Ben Mansour, Walid", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 06 Jun 2022 00:00:00 GMT", "description": "Non-Technical abstract The physical state of the mantle beneath the Antarctic Ice Sheet plays a key role in the interaction between the Antarctic ice cover and the solid earth, strongly influencing the glacial system\u0027s evolution. Generally, mantle temperature profiles are determined by analyzing rock samples from the mantle to determine pressure-temperature conditions, and/or by conversion of seismic velocity anomalies to temperature anomalies. However, mantle rocks have been found only in a very few places in Antarctica, and seismic anomalies reflect not only thermal anomalies but also compositional variations. In this project, the investigators will (1) use the most recent geophysical datasets sensitive to temperature and composition (high-resolution seismic velocity model, topography, satellite gravity), (2) Combine the sensitivity of these datasets in a to retrieve the most reliable model of thermal and compositional structure, (3) translate the results into 2-dimensional maps of temperature slices and the composition of iron in the mantle,(4) compare the results with results from other continents to better understand Antarctic geological history, and (5) use the new thermal model along with established rock relationships to estimate mantle viscosity. Technical abstract The thermochemical structure of the lithosphere beneath Antarctica is fundamental for understanding the geological evolution of the continent and its relationship to surrounding Gondwana continents. In addition, the thermal structure controls the solid earth response to glacial unloading, with important implications for ice sheet models and the future of the West Antarctic Ice Sheet. However, it is challenging to get an accurate picture of temperature and composition from only sparse petrological/geochemical analysis, and most previous attempts to solve this problem geophysically have relied on seismic or gravity data alone. Here, we propose to use a probabilistic joint inversion (high resolution regional seismic data, satellite gravity data, topography) and petrological modelling approach to determine the 3D thermochemical structure of the mantle. The inversion will be carried out using a Markov-chain Bayesian Monte Carlo methodology, providing quantitative estimates of uncertainties. Mapping the 3-dimensional thermochemical structure (thermal and composition) will provide a comprehensive view of the horizontal (50-100 km resolution) and vertical (from the surface down to 380 km) variations. This new model will give us the temperature variation from the surface down to 380 km and the degree of depletion of the lithospheric mantle and the sub-lithospheric mantle. This new model will also be compared to recent models of Gondwana terranes 200 Myrs to build a new model of the thermochemical evolution of the cratonic mantle. The new thermal and chemical structures can be used to better understand the geothermal heat flux beneath the ice sheet as well as improve glacial isostatic adjustment and ice sheet models. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; GRAVITY FIELD; AMD; COMPUTERS; GEOCHEMISTRY; PLATE BOUNDARIES; Amd/Us; SEISMIC SURFACE WAVES; USA/NSF; USAP-DC", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Ben-Mansour, Walid; Wiens, Douglas", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Thermal and Compositional Structure of Antarctica from Probabilistic Joint Inversion of Seismic, Gravity, and Topography Data and Petrological Modelling", "uid": "p0010334", "west": -180.0}, {"awards": "1951090 Stukel, Michael", "bounds_geometry": "POLYGON((-80 -63,-78.2 -63,-76.4 -63,-74.6 -63,-72.8 -63,-71 -63,-69.2 -63,-67.4 -63,-65.6 -63,-63.8 -63,-62 -63,-62 -63.7,-62 -64.4,-62 -65.1,-62 -65.8,-62 -66.5,-62 -67.2,-62 -67.9,-62 -68.6,-62 -69.3,-62 -70,-63.8 -70,-65.6 -70,-67.4 -70,-69.2 -70,-71 -70,-72.8 -70,-74.6 -70,-76.4 -70,-78.2 -70,-80 -70,-80 -69.3,-80 -68.6,-80 -67.9,-80 -67.2,-80 -66.5,-80 -65.8,-80 -65.1,-80 -64.4,-80 -63.7,-80 -63))", "dataset_titles": "BCO-DMO Project Page", "datasets": [{"dataset_uid": "200294", "doi": null, "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "BCO-DMO Project Page", "url": "https://www.bco-dmo.org/project/838048"}], "date_created": "Fri, 03 Jun 2022 00:00:00 GMT", "description": "Algae in the surface ocean convert carbon dioxide into organic carbon through photosynthesis. The biological carbon pump transports this organic carbon from the atmosphere to the deep ocean where it can be stored for tens to hundreds of years. Annually, the amount transported is similar to that humans are currently emitting by burning fossil fuels. However, at present we cannot predict how this important process will change with a warming ocean. These investigators plan to develop a 15+ year time-series of vertical carbon transfer for the Western Antarctic Peninsula; a highly productive Antarctic ecosystem. This region is also rapid transition to warmer temperatures leading to reduced sea ice coverage. This work will help researchers better understand how the carbon cycle in the Western Antarctic Peninsula will respond to climate change. The researchers will develop the first large-scale time-series of carbon flux anywhere in the ocean. This research will also support the education and training of a graduate student and support the integration of concepts in Antarctic research into two undergraduate courses designed for non-science majors and advanced earth science students. The researchers will also develop educational modules for introducing elementary and middle-school age students to important concepts such as gross and net primary productivity, feedbacks in the marine and atmospheric systems, and the differences between correlation and causation. Results from this proposal will also be incorporated into a children\u2019s book, \u201cPlankton do the Strangest Things\u201d, that is targeted at 5-7 year olds and is designed to introduce them to the incredible diversity and fascinating adaptations of microscopic marine organisms. This research seeks to leverage 6 years (2015-2020) of 234Th samples collected on Palmer LTER program, 5 years of prior measurements (2009-2010, 2012-2014), and upcoming cruises (2021-2023) to develop a time-series of summertime particle flux in the WAP that stretches for 15 years. The 238U-234Th disequilibrium approach utilizes changes in the activity of the particle-active radio-isotope 234Th relative to its parent nuclide 238U to quantify the flux of sinking carbon out of the surface ocean (over a time-scale of ~one month). This proposal will fund 234Th analyses from nine years\u2019 worth of cruises (2015-2023) and extensive analyses designed to investigate the processes driving inter-annual variability in the BCP. These include: 1) physical modeling to quantify the importance of advection and diffusion in the 234Th budget, 2) time-series analyses of particle flux, and 3) statistical modeling of the relationships between particle flux and multiple presumed drivers (biological, chemical, physical, and climate indices) measured by collaborators in the Palmer LTER program. This multi-faceted approach is critical for linking the measurements to models and for predicting responses to climate change. It will also test the hypothesis that export flux is decreasing in the northern WAP, increasing in the southern WAP, and increasing when integrated over the entire region as a result of earlier sea ice retreat and a larger ice-free zone. The project will also investigate relationships between carbon export and multiple potentially controlling factors including: primary productivity, algal biomass and taxonomic composition, biological oxygen saturation, zooplankton biomass and taxonomic composition, bacterial production, temperature, wintertime sea ice extent, date of sea ice retreat, and climate modes. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -62.0, "geometry": "POINT(-71 -66.5)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; AMD; FIELD INVESTIGATION; Palmer Station; USAP-DC; BIOGEOCHEMICAL CYCLES; USA/NSF", "locations": "Palmer Station", "north": -63.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Stukel, Michael", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "BCO-DMO", "repositories": "BCO-DMO", "science_programs": null, "south": -70.0, "title": "Quantifying Processes Driving Interannual Variability in the Biological Carbon Pump in the Western Antarctic Peninsula", "uid": "p0010332", "west": -80.0}, {"awards": "2019719 Brook, Edward", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "2019-2020 Allan Hills Field Report; 2022-23 Allan Hills Intermediate Ice Core Site Selection Field Report; 2023-2024 Allan Hills End-of-Season Science Report; Airborne Radar Data: 2022-23 (CXA1) flight based HDF5/matlab format data; Airborne Radar Data: 2022-23 (CXA1) transect based (science organized) unfocused data; Airborne Radar Data: 2023-24 (CXA2) flight based data HDF5/matlab format; Airborne Radar Data: 2023-24 (CXA2) transect based (science organized) unfocused data; ALHIC2201 and ALHIC2302 3D ECM and Layer Orientations; Allan Hills 2022-23 Shallow Ice Core Field Report; Allan Hills CMC3 ice core d18Oatm, d15N, dO2/N2, dAr/N2, d40/36Ar, d40/38Ar 2021 \u0026 2022; Allan Hills I-188 Field Season Report 2022-2023; Allan Hills ice water stable isotope record for dD, d18O; Basal Ice Unit Thickness Mapped by the NSF COLDEX MARFA Ice Penetrating Radar; CO2 and CH4 from Allan Hills ice cores ALHIC1901, 1902, and 1903; COLDEX VHF MARFA Open Polar Radar radargrams; Concentration and flux of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area; Heavy noble gases (Ar/Xe/Kr) from ALHIC1901, 1902, and 1903; I-165-M GPR Field Report 2019-2020; MOT data (Xe/Kr) from Allan Hills ice cores ALHIC1901, 1902, and 1903; NSF COLDEX 2022-23 Level 2 Basal Specularity Content Profiles; NSF COLDEX 2022-23 Riegl Laser Altimeter Level 2 Geolocated Surface Elevation Triplets; NSF COLDEX 2023-24 Level 2 Basal Specularity Content Profiles; NSF COLDEX 2023-24 Riegl Laser Altimeter Level 2 Geolocated Surface Elevation Triplets; NSF COLDEX Ice Penetrating Radar Derived Grids of the Southern Flank of Dome C; NSF COLDEX/Open Polar Radar Example Delay Doppler Classification of Englacial Reflectors; NSF COLDEX Raw MARFA Ice Penetrating Radar data; Oxygen and hydrogen isotope compositions and associated d-excess of ice from ALHIC1903 drilled at the Allan Hills Blue Ice Area; Rare earth elemental concentrations of leached ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area; Replicate O-17-excess by continuous flow laser spectroscopy for an ice core section at Summit, Greenland; Rising Seas: Representations of Antarctica, Climate Change, and Sea Level Rise in U.S. Newspaper Coverage; Snapshot record of CO2 and CH4 from the Allan Hills, Antarctica, ranging from 400,000 to 3 million years old; Social network analysis to understand participant engagement in transdisciplinary team science: a large U.S. science and technology center case study; Strontium and neodymium isotope compositions of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "datasets": [{"dataset_uid": "200435", "doi": "10.18738/T8/PNBFOL", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX 2023-24 Riegl Laser Altimeter Level 2 Geolocated Surface Elevation Triplets", "url": "https://doi.org/10.18738/T8/PNBFOL"}, {"dataset_uid": "601768", "doi": "10.15784/601768", "keywords": "Antarctica; Coldex; East Antarctic Plateau; Glaciology; Radar Echo Sounder", "people": "Kempf, Scott D.; Ng, Gregory; Buhl, Dillon; Kerr, Megan; Greenbaum, Jamin; Blankenship, Donald D.; Young, Duncan A.; Chan, Kristian", "repository": "USAP-DC", "science_program": "COLDEX", "title": "NSF COLDEX Raw MARFA Ice Penetrating Radar data", "url": "https://www.usap-dc.org/view/dataset/601768"}, {"dataset_uid": "200419", "doi": "", "keywords": null, "people": null, "repository": "University Digital Conservancy", "science_program": null, "title": "Rising Seas: Representations of Antarctica, Climate Change, and Sea Level Rise in U.S. Newspaper Coverage", "url": "https://hdl.handle.net/11299/265195"}, {"dataset_uid": "200420", "doi": "10.18738/T8/J38CO5", "keywords": null, "people": null, "repository": "OPR", "science_program": null, "title": "Airborne Radar Data: 2022-23 (CXA1) flight based HDF5/matlab format data", "url": "https://data.cresis.ku.edu/data/rds/2022_Antarctica_BaslerMKB/"}, {"dataset_uid": "200421", "doi": "10.18738/T8/J38CO5", "keywords": null, "people": null, "repository": "OPR", "science_program": null, "title": "Airborne Radar Data: 2023-24 (CXA2) flight based data HDF5/matlab format", "url": "https://data.cresis.ku.edu/data/rds/2023_Antarctica_BaslerMKB/"}, {"dataset_uid": "200470", "doi": "doi:10.15784/601822", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "Oxygen and hydrogen isotope compositions and associated d-excess of ice from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "url": "https://www.usap-dc.org/view/dataset/601822"}, {"dataset_uid": "200469", "doi": "https://doi.org/10.15784/601821", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "Rare earth elemental concentrations of leached ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "url": "https://www.usap-dc.org/view/dataset/601821"}, {"dataset_uid": "200468", "doi": "https://doi.org/10.15784/601820", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "Strontium and neodymium isotope compositions of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "url": "https://www.usap-dc.org/view/dataset/601820"}, {"dataset_uid": "601819", "doi": "10.15784/601819", "keywords": "Allan Hills; Antarctica; Cryosphere", "people": "Kuhl, Tanner; Morton, Elizabeth; Zajicek, Anna; Nesbitt, Ian; Carter, Austin; Morgan, Jacob; Shackleton, Sarah; Higgins, John; Epifanio, Jenna", "repository": "USAP-DC", "science_program": "COLDEX", "title": "2019-2020 Allan Hills Field Report", "url": "https://www.usap-dc.org/view/dataset/601819"}, {"dataset_uid": "601824", "doi": "10.15784/601824", "keywords": "Allan Hills; Antarctica; Coldex; Cryosphere", "people": "Brook, Edward J.; Epifanio, Jenna; Mayo, Emalia; Goverman, Ashley; Jayred, Michael; Morton, Elizabeth; Banerjee, Asmita; Hudak, Abigail; Manos, John-Morgan; Carter, Austin; Shackleton, Sarah; Higgins, John; Marks Peterson, Julia", "repository": "USAP-DC", "science_program": "COLDEX", "title": "2023-2024 Allan Hills End-of-Season Science Report", "url": "https://www.usap-dc.org/view/dataset/601824"}, {"dataset_uid": "601826", "doi": "10.15784/601826", "keywords": "Allan Hills; Antarctica; Cryosphere", "people": "Shaya, Margot; Manos, John-Morgan; Horlings, Annika; Epifanio, Jenna; Conway, Howard", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Allan Hills I-188 Field Season Report 2022-2023", "url": "https://www.usap-dc.org/view/dataset/601826"}, {"dataset_uid": "601697", "doi": "10.15784/601697", "keywords": "Allan Hills; Antarctica; Apres; Ice Core; Ice Penetrating Radar; Temperature Profiles", "people": "Conway, Howard; Brook, Edward J.", "repository": "USAP-DC", "science_program": "COLDEX", "title": "2022-23 Allan Hills Intermediate Ice Core Site Selection Field Report", "url": "https://www.usap-dc.org/view/dataset/601697"}, {"dataset_uid": "601696", "doi": "10.15784/601696", "keywords": "Allan Hills; Antarctica; Ice Core", "people": "Brook, Edward J.; Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills 2022-23 Shallow Ice Core Field Report", "url": "https://www.usap-dc.org/view/dataset/601696"}, {"dataset_uid": "200467", "doi": "doi:10.15784/601825", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "Concentration and flux of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "url": "https://www.usap-dc.org/view/dataset/601825"}, {"dataset_uid": "200465", "doi": "10.18738/T8/DM10IG", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "COLDEX VHF MARFA Open Polar Radar radargrams", "url": "https://doi.org/10.18738/T8/DM10IG"}, {"dataset_uid": "200464", "doi": "10.18738/T8/DM10IG", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX/Open Polar Radar Example Delay Doppler Classification of Englacial Reflectors", "url": "https://doi.org/10.18738/T8/DM10IG"}, {"dataset_uid": "200463", "doi": "10.18738/T8/M77ANK", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX Ice Penetrating Radar Derived Grids of the Southern Flank of Dome C", "url": "https://doi.org/10.18738/T8/M77ANK"}, {"dataset_uid": "200462", "doi": "10.18738/T8/KHUT1U", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX 2023-24 Level 2 Basal Specularity Content Profiles", "url": "https://doi.org/10.18738/T8/KHUT1U"}, {"dataset_uid": "200461", "doi": "10.18738/T8/6T5JS6", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX 2022-23 Level 2 Basal Specularity Content Profiles", "url": "https://doi.org/10.18738/T8/6T5JS6"}, {"dataset_uid": "601669", "doi": "10.15784/601669", "keywords": "Allan Hills; Antarctica; GPR; Ice Core; Report", "people": "Nesbitt, Ian; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "I-165-M GPR Field Report 2019-2020", "url": "https://www.usap-dc.org/view/dataset/601669"}, {"dataset_uid": "601854", "doi": "10.15784/601854", "keywords": "Allan Hills; Antarctica; Cryosphere", "people": "Kirkpatrick, Liam; Carter, Austin; Marks Peterson, Julia; Shackleton, Sarah; Fudge, T. J.", "repository": "USAP-DC", "science_program": "COLDEX", "title": "ALHIC2201 and ALHIC2302 3D ECM and Layer Orientations", "url": "https://www.usap-dc.org/view/dataset/601854"}, {"dataset_uid": "601659", "doi": "10.15784/601659", "keywords": "Antarctica; Continuous Flow; Glaciology; Greenland; Ice Core Data; Laser Spectroscopy; Oxygen Isotope; Triple Oxygen Isotopes", "people": "Davidge, Lindsey", "repository": "USAP-DC", "science_program": "Hercules Dome Ice Core", "title": "Replicate O-17-excess by continuous flow laser spectroscopy for an ice core section at Summit, Greenland", "url": "https://www.usap-dc.org/view/dataset/601659"}, {"dataset_uid": "601863", "doi": null, "keywords": "Allan Hills; Antarctica; Cryosphere; Isotope Data", "people": "Mayewski, Paul A.; Introne, Douglas; Severinghaus, Jeffrey P.; Kurbatov, Andrei V.; Higgins, John; Brook, Edward", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills ice water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601863"}, {"dataset_uid": "601863", "doi": null, "keywords": "Allan Hills; Antarctica; Cryosphere; Isotope Data", "people": "Higgins, John; Introne, Douglas; Brook, Edward; Mayewski, Paul A.; Severinghaus, Jeffrey P.; Kurbatov, Andrei V.", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Allan Hills ice water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601863"}, {"dataset_uid": "200433", "doi": "10.18738/T8/FV6VNT", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "Airborne Radar Data: 2023-24 (CXA2) transect based (science organized) unfocused data", "url": "https://dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T8/FV6VNT"}, {"dataset_uid": "200434", "doi": "10.18738/T8/99IEOG", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX 2022-23 Riegl Laser Altimeter Level 2 Geolocated Surface Elevation Triplets", "url": "https://doi.org/10.18738/T8/99IEOG"}, {"dataset_uid": "601620", "doi": "10.15784/601620", "keywords": "18O; Allan Hills; Allan Hills Blue Ice; Antarctica; Blue Ice; Delta 15N; Delta 18O; Dole Effect; Firn Thickness; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Chronology; Ice Core Records", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills CMC3 ice core d18Oatm, d15N, dO2/N2, dAr/N2, d40/36Ar, d40/38Ar 2021 \u0026 2022", "url": "https://www.usap-dc.org/view/dataset/601620"}, {"dataset_uid": "601878", "doi": "10.15784/601878", "keywords": "Allan Hills; Antarctica; Blue Ice; Carbon Dioxide; Cryosphere; Methane", "people": "Shackleton, Sarah; Severinghaus, Jeffrey P.; Hishamunda, Valens; Kalk, Michael; Brook, Edward; Marks Peterson, Julia", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Snapshot record of CO2 and CH4 from the Allan Hills, Antarctica, ranging from 400,000 to 3 million years old", "url": "https://www.usap-dc.org/view/dataset/601878"}, {"dataset_uid": "200432", "doi": "10.18738/T8/XPMLCC", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "Airborne Radar Data: 2022-23 (CXA1) transect based (science organized) unfocused data", "url": "https://dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T8/XPMLCC"}, {"dataset_uid": "200452", "doi": "https://hdl.handle.net/11299/270020", "keywords": null, "people": null, "repository": "UMN University Digital Conservancy", "science_program": null, "title": "Social network analysis to understand participant engagement in transdisciplinary team science: a large U.S. science and technology center case study", "url": "https://hdl.handle.net/11299/270020"}, {"dataset_uid": "601895", "doi": "10.15784/601895", "keywords": "Allan Hills; Antarctica; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Noble Gas", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Heavy noble gases (Ar/Xe/Kr) from ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601895"}, {"dataset_uid": "601896", "doi": "10.15784/601896", "keywords": "Allan Hills; Antarctica; Ch4; CO2; Cryosphere; Glaciology; Glaciology; Ice Core Data; Ice Core Records", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "CO2 and CH4 from Allan Hills ice cores ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601896"}, {"dataset_uid": "601897", "doi": "10.15784/601897", "keywords": "Allan Hills; Antarctica; Cryosphere; Glaciology; Ice Core Data; MOT; Ocean Temperature; Paleoclimate; Xe/Kr", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "MOT data (Xe/Kr) from Allan Hills ice cores ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601897"}, {"dataset_uid": "601912", "doi": "10.15784/601912", "keywords": "Antarctica; Coldex; Cryosphere; East Antarctica; East Antarctic Plateau; Glaciology; Radar Echo Sounder", "people": "Vega Gonzalez, Alejandra; Kerr, Megan; Young, Duncan A.; Yan, Shuai; Blankenship, Donald D.; Singh, Shivangini", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Basal Ice Unit Thickness Mapped by the NSF COLDEX MARFA Ice Penetrating Radar", "url": "https://www.usap-dc.org/view/dataset/601912"}], "date_created": "Sat, 21 May 2022 00:00:00 GMT", "description": "Cores drilled through the Antarctic ice sheet provide a remarkable window on the evolution of Earth\u2019s climate and unique samples of the ancient atmosphere. The clear link between greenhouse gases and climate revealed by ice cores underpins much of the scientific understanding of climate change. Unfortunately, the existing data do not extend far enough back in time to reveal key features of climates warmer than today. COLDEX, the Center for Oldest Ice Exploration, will solve this problem by exploring Antarctica for sites to collect the oldest possible record of past climate recorded in the ice sheet. COLDEX will provide critical information for understanding how Earth\u2019s near-future climate may evolve and why climate varies over geologic time. New technologies will be developed for exploration and analysis that will have a long legacy for future research. An archive of old ice will stimulate new research for the next generations of polar scientists. COLDEX programs will galvanize that next generation of polar researchers, bring new results to other scientific disciplines and the public, and help to create a more inclusive and diverse scientific community. Knowledge of Earth\u2019s climate history is grounded in the geologic record. This knowledge is gained by measuring chemical, biological and physical properties of geologic materials that reflect elements of climate. Ice cores retrieved from polar ice sheets play a central role in this science and provide the best evidence for a strong link between atmospheric carbon dioxide and climate on geologic timescales. The goal of COLDEX is to extend the ice-core record of past climate to at least 1.5 million years by drilling and analyzing a continuous ice core in East Antarctica, and to much older times using discontinuous ice sections at the base and margin of the ice sheet. COLDEX will develop and deploy novel radar and melt-probe tools to rapidly explore the ice, use ice-sheet models to constrain where old ice is preserved, conduct ice coring, develop new analytical systems, and produce novel paleoclimate records from locations across East Antarctica. The search for Earth\u2019s oldest ice also provides a compelling narrative for disseminating information about past and future climate change and polar science to students, teachers, the media, policy makers and the public. COLDEX will engage and incorporate these groups through targeted professional development workshops, undergraduate research experiences, a comprehensive communication program, annual scientific meetings, scholarships, and broad collaboration nationally and internationally. COLDEX will provide a focal point for efforts to increase diversity in polar science by providing field, laboratory, mentoring and networking experiences for students and early career scientists from groups underrepresented in STEM, and by continuous engagement of the entire COLDEX community in developing a more inclusive scientific culture. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; AMD; Antarctica; Amd/Us; Coldex; USAP-DC; FIELD SURVEYS; ICE DEPTH/THICKNESS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Polar Special Initiatives", "paleo_time": null, "persons": "Brook, Edward J.; Neff, Peter", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "Texas Data Repository", "repositories": "OPR; Texas Data Repository; UMN University Digital Conservancy; University Digital Conservancy; USAP-DC", "science_programs": "COLDEX", "south": -90.0, "title": "Center for Oldest Ice Exploration", "uid": "p0010321", "west": -180.0}, {"awards": "1341429 Ball, Becky", "bounds_geometry": "POLYGON((-68.205783 -60.706633,-65.9444531 -60.706633,-63.6831232 -60.706633,-61.4217933 -60.706633,-59.1604634 -60.706633,-56.8991335 -60.706633,-54.6378036 -60.706633,-52.3764737 -60.706633,-50.1151438 -60.706633,-47.8538139 -60.706633,-45.592484 -60.706633,-45.592484 -62.1204014,-45.592484 -63.5341698,-45.592484 -64.9479382,-45.592484 -66.3617066,-45.592484 -67.775475,-45.592484 -69.1892434,-45.592484 -70.6030118,-45.592484 -72.0167802,-45.592484 -73.4305486,-45.592484 -74.844317,-47.8538139 -74.844317,-50.1151438 -74.844317,-52.3764737 -74.844317,-54.6378036 -74.844317,-56.8991335 -74.844317,-59.1604634 -74.844317,-61.4217933 -74.844317,-63.6831232 -74.844317,-65.9444531 -74.844317,-68.205783 -74.844317,-68.205783 -73.4305486,-68.205783 -72.0167802,-68.205783 -70.6030118,-68.205783 -69.1892434,-68.205783 -67.775475,-68.205783 -66.3617066,-68.205783 -64.9479382,-68.205783 -63.5341698,-68.205783 -62.1204014,-68.205783 -60.706633))", "dataset_titles": "Climatic and environmental constraints on aboveground-belowground linkages and diversity across a latitudinal gradient in Antarctica", "datasets": [{"dataset_uid": "200289", "doi": "", "keywords": null, "people": null, "repository": "OSF - Center for Open Science", "science_program": null, "title": "Climatic and environmental constraints on aboveground-belowground linkages and diversity across a latitudinal gradient in Antarctica", "url": "https://osf.io/8xfrc/"}], "date_created": "Thu, 14 Apr 2022 00:00:00 GMT", "description": "The Antarctic Peninsula is experiencing rapid environmental changes, which will influence the community of organisms that live there. However, we know very little about the microscopic organisms living in the soil in this region. Soil biology (including bacteria, fungi, and invertebrates) are responsible for many important processes that sustain ecosystems, such as nutrient recycling. Without understanding the environmental conditions that influence soil biodiversity along the Antarctic Peninsula, our ability to predict the consequences of global change is strongly limited. This project will identify the soil community at many sites along the Antarctic Peninsula to discover how the community changes with environmental conditions from north to south. The project will also identify how the soil community at each site differs under different types of plants. Understanding more about the ways in which plant cover and climate conditions influence soil biodiversity will allow predictions of how communities will respond to future changes such as climate warming and invasive plant species. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. The investigators will engage with outreach to K-12 students and the general public both directly and through a blog and will participate in workshops for K-12 teachers. Additionally, the project will provide the opportunity for many undergraduate and graduate students of diverse backgrounds to be trained in interdisciplinary research. The investigators will determine the nature and strength of plant-soil linkages in influencing soil community composition and diversity over a latitudinal gradient of environmental and climatic conditions. The goals are to (1) increase our understanding of current biogeography and diversity by providing in-depth knowledge of soil community composition and complexity as it relates to environmental and climatic characteristics; and (2) determine the nature of aboveground-belowground community linkages over varying spatial scales. The team will identify the composition and diversity of soil communities under key habitat types (grass, moss, algae, etc.). Microbial communities (bacteria, fungi, archaea) will be investigated using pyrosequencing for community composition analysis and metagenomic sequencing to identify functional capabilities. Invertebrates (nematodes, tardigrades, rotifers, microarthropods) will be extracted and identified to the lowest possible taxonomic level. Soil chemistry (pH, nutrient content, soil moisture, etc.) and climate conditions will be measured to determine the relationship between soil communities and physical and chemical properties. Structural equation modeling will be used to identify aboveground-belowground linkage pathways and quantify link strengths under varying environmental conditions.", "east": -45.592484, "geometry": "POINT(-56.8991335 -67.775475)", "instruments": null, "is_usap_dc": true, "keywords": "FUNGI; FIELD INVESTIGATION; AMD; Amd/Us; TERRESTRIAL ECOSYSTEMS; USA/NSF; ANIMALS/INVERTEBRATES; SOIL CHEMISTRY; BACTERIA/ARCHAEA; Antarctic Peninsula; ECOSYSTEM FUNCTIONS; USAP-DC", "locations": "Antarctic Peninsula", "north": -60.706633, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ball, Becky; Van Horn, David", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "OSF - Center for Open Science", "repositories": "OSF - Center for Open Science", "science_programs": null, "south": -74.844317, "title": "Collaborative Research: Climatic and Environmental Constraints on Aboveground-Belowground Linkages and Diversity across a Latitudinal Gradient in Antarctica", "uid": "p0010314", "west": -68.205783}, {"awards": "1543361 Kurbatov, Andrei; 1543454 Dunbar, Nelia", "bounds_geometry": "POINT(0 -90)", "dataset_titles": "Cryptotephra in SPC-14 ice core; SPICEcore visable tephra", "datasets": [{"dataset_uid": "601667", "doi": "10.15784/601667", "keywords": "Antarctica; Electron Microprobe; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; South Pole; Tephra", "people": "Iverson, Nels", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SPICEcore visable tephra", "url": "https://www.usap-dc.org/view/dataset/601667"}, {"dataset_uid": "601666", "doi": "10.15784/601666", "keywords": "Antarctica; Cryptotephra; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; South Pole; SPICEcore; Tephra", "people": "Yates, Martin; Helmick, Meredith; Hartman, Laura; Kurbatov, Andrei V.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Cryptotephra in SPC-14 ice core", "url": "https://www.usap-dc.org/view/dataset/601666"}], "date_created": "Fri, 01 Apr 2022 00:00:00 GMT", "description": "Dunbar/1543454 Antarctic ice cores offer unparalleled records of earth?s climate back to almost one million years and perhaps beyond. Layers of volcanic ash (tephra) embedded in glacial ice can be used to establish an accurate ice core chronology. In order to use a visible or ultrafine volcanic ash layer as a time-stratigraphic marker, a unique geochemical fingerprint must be established, and this forms the basis of our research. This award will investigate the volcanic record in the 1751 m ice core that was completed at the South Pole during the 2015/16 field season. The core is in an ideal location to link the existing, established, volcanic records in East and West Antarctica, and therefore to connect and integrate those records, allowing the climate records of ice cores to be directly compared, as well as to focus research on the most widespread and significant volcanic eruptions from West Antarctica. Tephra derived from well-dated, large, tropical volcanic eruptions that may have had an impact on climate will also be studied. Recent success in identifying and analyzing very fine ash particles from these types of eruptions makes it likely that we will be able to pinpoint some of these eruptions, which will allow the sulfate peaks associated with these layers to be positively identified and dated. Volcanic forcing time series developed from earlier South Pole ice cores based on preserved sulfate were crucial for testing climate models, but without tephra analysis, the origin of these layers remains uncertain. Work on the tephra layers in the South Pole ice core has a number of significant specific objectives, some with practical applications to the basic science goals of Antarctic ice coring, and others that represent independent scientific contributions in their own right. These include: (1) providing independently dated time-intervals in the core, particularly for the deepest ice, (2) quantitatively linking tephra records across Antarctica with the goal of allowing direct and robust climate comparisons between these different parts of the continent, (3) providing information for large local eruptions, that will lead to direct estimates of eruption magnitude and dispersal patterns of Antarctic volcanoes, several of which will likely erupt again. The initial stages of the work will be carried out by identifying silicate-bearing horizons in the ice core, using several methods. Once found, silicate particles will be imaged so that morphological characteristics of the particles can be used to identify volcanic origin. Particles identified as tephra will then be chemically analyzed using electron microprobe and laser ablation ICP-MS. Samples that yield a robust chemical fingerprint will be statistically correlated to known eruptions, and this will be used to address the goals described above. Broader impacts of this project fall into the areas of education of future generation of researchers, outreach and international cooperation. These activities will continue to promote forward progress in integrating the Antarctic tephra record and more broadly tying it to the global volcanic record.", "east": 0.0, "geometry": "POINT(0 -90)", "instruments": null, "is_usap_dc": true, "keywords": "VOLCANIC DEPOSITS; South Pole", "locations": "South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Dunbar, Nelia; Iverson, Nels; Kurbatov, Andrei V.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: Tephrochronology of a South Pole Ice Core", "uid": "p0010311", "west": 0.0}, {"awards": "2148517 Hancock, Cathrine", "bounds_geometry": "POLYGON((-60 -55,-51 -55,-42 -55,-33 -55,-24 -55,-15 -55,-6 -55,3 -55,12 -55,21 -55,30 -55,30 -57,30 -59,30 -61,30 -63,30 -65,30 -67,30 -69,30 -71,30 -73,30 -75,21 -75,12 -75,3 -75,-6 -75,-15 -75,-24 -75,-33 -75,-42 -75,-51 -75,-60 -75,-60 -73,-60 -71,-60 -69,-60 -67,-60 -65,-60 -63,-60 -61,-60 -59,-60 -57,-60 -55))", "dataset_titles": "Trajectories for APEX floats 9223 and 9224 from acoustic tracking using artoa4argo, Mar 2022-Feb 2023; Under ice trajectories for RAFOS enabled profiling floats in the Weddell Gyre", "datasets": [{"dataset_uid": "601652", "doi": "10.15784/601652", "keywords": "Antarctica; ANTXXIV/3; Argo Float; Artoa4argo; GPS Data; RAFOS; US Argo Program; Weddell Sea", "people": "Hancock, Cathrine", "repository": "USAP-DC", "science_program": null, "title": "Under ice trajectories for RAFOS enabled profiling floats in the Weddell Gyre", "url": "https://www.usap-dc.org/view/dataset/601652"}, {"dataset_uid": "601852", "doi": "10.15784/601852", "keywords": "Antarctica; Continental Slope; Cryosphere; Eddy; Float Trajectory; HAFOS; Weddell Sea", "people": "Boebel, Olaf; Hancock, Cathrine", "repository": "USAP-DC", "science_program": null, "title": "Trajectories for APEX floats 9223 and 9224 from acoustic tracking using artoa4argo, Mar 2022-Feb 2023", "url": "https://www.usap-dc.org/view/dataset/601852"}], "date_created": "Fri, 25 Mar 2022 00:00:00 GMT", "description": "The Weddell Gyre is one of the major components of the Southern Ocean circulation system, linking heat and carbon fluxes in the Antarctic Circumpolar Current to the continental margins. Water masses entering the Weddell Gyre are modified as they move in a great circular route around the gyre margin and change through processes involving air-sea-cryosphere interactions as well as through ocean eddies that mix properties across the gyre boundaries. Some of the denser water masses exit the gyre through pathways along the northern boundary, and ultimately ventilate the global deep ocean as Antarctic Bottom Water. While in-situ and satellite observations, as well as computer modeling efforts, provide estimates of the large-scale average flow within the gyre, details of the smaller-scale, or \"mesoscale\" eddy flow remain elusive. The proposed research will quantify mixing due to mesoscale eddies within the Weddell Gyre, as well as the transport of incoming deep water from the northeast, thought to be a result of transient eddies. Since the Weddell Gyre produces source water for about 40% of Antarctic Bottom Water formation, understanding the dynamics in this region helps to identify causes of documented changes in global bottom waters. This in turn, will give insight into how climate change is affecting global oceans, through modification of dense polar waters and Antarctic Bottom Water characteristics. This project aims to track 153 RAFOS-enabled Argo floats in the ice-covered regions of the Weddell Gyre. The resultant tracks along with all available Argo and earlier float data will be used to calculate Eulerian and Lagrangian means and eddy statistics for the Weddell Gyre. The study will link RAFOS tracks with Argo profiles under ice, allowing one to characterize the importance of eddies in water column modification at critical ice-edge boundaries and leads. With RAFOS tracks near the northeastern limit of the gyre, the project will investigate the eddy-driven processes of incoming Circumpolar Deep Water, to understand better the mechanisms and volume fluxes involved. Previous work shows that a large fraction of the mean circulation in the southern and western limits of the gyre, where it contacts the Antarctic continent, occurs in a narrow boundary layer above the slope. The research here will integrate this flow structure into a complete interior and boundary layer mean circulation synthesis. The findings and products from the proposed work will improve the positioning of Argo profiles in the polar regions, which would allow for more accurate climatological maps and derived quantities. Estimates of meso-scale mixing may serve as a foundation for the development of new parameterization schemes employed in climate models, as well as local and global ocean circulation models in polar regions. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 30.0, "geometry": "POINT(-15 -65)", "instruments": null, "is_usap_dc": true, "keywords": "OCEAN CURRENTS; WATER MASSES; BUOYS; USA/NSF; Weddell Sea; AMD; USAP-DC; Amd/Us", "locations": "Weddell Sea", "north": -55.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Hancock, Cathrine; Speer, Kevin", "platforms": "WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED \u003e BUOYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -75.0, "title": "Weddell Gyre Mean Circulation and Eddy Statistics from Floats", "uid": "p0010310", "west": -60.0}, {"awards": "1643534 Cassar, Nicolas", "bounds_geometry": "POLYGON((-83 -62,-80.3 -62,-77.6 -62,-74.9 -62,-72.2 -62,-69.5 -62,-66.8 -62,-64.1 -62,-61.4 -62,-58.7 -62,-56 -62,-56 -63.1,-56 -64.2,-56 -65.3,-56 -66.4,-56 -67.5,-56 -68.6,-56 -69.7,-56 -70.8,-56 -71.9,-56 -73,-58.7 -73,-61.4 -73,-64.1 -73,-66.8 -73,-69.5 -73,-72.2 -73,-74.9 -73,-77.6 -73,-80.3 -73,-83 -73,-83 -71.9,-83 -70.8,-83 -69.7,-83 -68.6,-83 -67.5,-83 -66.4,-83 -65.3,-83 -64.2,-83 -63.1,-83 -62))", "dataset_titles": "Palmer LTER 18S rRNA gene metabarcodin; rDNA amplicon sequencing of WAP microbial community", "datasets": [{"dataset_uid": "200286", "doi": "", "keywords": null, "people": null, "repository": "NCBI", "science_program": null, "title": "rDNA amplicon sequencing of WAP microbial community", "url": "https://www.ncbi.nlm.nih.gov/sra/SRR6162326/"}, {"dataset_uid": "200285", "doi": "", "keywords": null, "people": null, "repository": "NCBI", "science_program": null, "title": "Palmer LTER 18S rRNA gene metabarcodin", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA508517"}], "date_created": "Thu, 03 Mar 2022 00:00:00 GMT", "description": "This project seeks to make detailed measurements of the oxygen content of the surface ocean along the Western Antarctic Peninsula. Detailed maps of changes in net oxygen content will be combined with measurements of the surface water chemistry and phytoplankton distributions. The project will determine the extent to which on-shore or offshore phytoplankton blooms along the peninsula are likely to lead to different amounts of carbon being exported to the deeper ocean. The project team members will participate in the development of new learning tools at the Museum of Life and Science. They will also teach secondary school students about aquatic biogeochemistry and climate, drawing directly from the active science supported by this grant. The project will analyze oxygen in relation to argon that will allow determination of the physical and biological contributions to surface ocean oxygen dynamics. These assessments will be combined with spatial and temporal distributions of nutrients (iron and macronutrients) and irradiances. This will allow the investigators to unravel the complex interplay between ice dynamics, iron and physical mixing dynamics as they relate to Net Community Production (NCP) in the region. NCP measurements will be normalized to Particulate Organic Carbon (POC) and be used to help identify area of \"High Biomass and Low NCP\" and those with \"Low Biomass and High NCP\" as a function of microbial plankton community composition. The team will use machine learning methods- including decision tree assemblages and genetic programming- to identify plankton groups key to facilitating biological carbon fluxes. Decomposing the oxygen signal along the West Antarctic Peninsula will also help elucidate biotic and abiotic drivers of the O2 saturation to further contextualize the growing inventory of oxygen measurements (e.g. by Argo floats) throughout the global oceans.", "east": -56.0, "geometry": "POINT(-69.5 -67.5)", "instruments": null, "is_usap_dc": true, "keywords": "West Antarctica; USAP-DC; BIOGEOCHEMICAL CYCLES; AMD; USA/NSF; LABORATORY; Amd/Us", "locations": "West Antarctica", "north": -62.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Cassar, Nicolas", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "NCBI", "repositories": "NCBI", "science_programs": null, "south": -73.0, "title": "Biological and Physical Drivers of Oxygen Saturation and Net Community Production Variability along the Western Antarctic Peninsula", "uid": "p0010303", "west": -83.0}, {"awards": "1847067 Levy, Joseph", "bounds_geometry": "POLYGON((161 -76,161.35 -76,161.7 -76,162.05 -76,162.4 -76,162.75 -76,163.1 -76,163.45 -76,163.8 -76,164.15 -76,164.5 -76,164.5 -76.2,164.5 -76.4,164.5 -76.6,164.5 -76.8,164.5 -77,164.5 -77.2,164.5 -77.4,164.5 -77.6,164.5 -77.8,164.5 -78,164.15 -78,163.8 -78,163.45 -78,163.1 -78,162.75 -78,162.4 -78,162.05 -78,161.7 -78,161.35 -78,161 -78,161 -77.8,161 -77.6,161 -77.4,161 -77.2,161 -77,161 -76.8,161 -76.6,161 -76.4,161 -76.2,161 -76))", "dataset_titles": "Biogeochemical measurements of water tracks and adjacent dry soils from the McMurdo Dry Valleys; Surface Water Geochemistry from the McMurdo Dry Valleys", "datasets": [{"dataset_uid": "601684", "doi": "10.15784/601684", "keywords": "Antarctica; Cation Exchange; Chemistry:soil; Chemistry:Soil; Dry Valleys; Organic Matter; Salt; Soil", "people": "Levy, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Biogeochemical measurements of water tracks and adjacent dry soils from the McMurdo Dry Valleys", "url": "https://www.usap-dc.org/view/dataset/601684"}, {"dataset_uid": "601703", "doi": "10.15784/601703", "keywords": "Antarctica; Dry Valleys", "people": "Levy, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Surface Water Geochemistry from the McMurdo Dry Valleys", "url": "https://www.usap-dc.org/view/dataset/601703"}], "date_created": "Fri, 24 Dec 2021 00:00:00 GMT", "description": "Antarctic groundwater drives the regional carbon cycle and can accelerate permafrost thaw shaping Antarctic surface features. However, groundwater extent, flow, and processes on a continent virtually locked in ice are poorly understood. The proposed work investigates the interplay between groundwater, sediment, and ice in Antarctica\u0027s cold desert landscape to determine when, where, and why Antarctic groundwater is flowing, and how it may evolve Antarctic frozen deserts from dry and stable to wet and dynamic. Mapping the changing extent of Antarctic near-surface groundwater requires the ability to measure soil moisture rapidly and repeatedly over large areas. The research will capture changes in near-surface groundwater distribution through an unmanned aerial vehicle (UAV) mapping approach. The project integrates a diverse range of sensors with new UAV technologies to provide a higher-resolution and more frequent assessment of Antarctic groundwater extent and composition than can be accomplished using satellite observations alone. To complement the research objectives, the PI will develop a new UAV summer field school, the Geosciences UAV Academy, focused on training undergraduate-level UAV pilots in conducting novel earth sciences research using cutting edge imaging tools. The integration of research and technology will prepare students for careers in UAV-related industries and research. The project will deliver new UAV tools and workflows for soil moisture mapping relevant to arid regions including Antarctica as well as temperate desert and dryland systems and will train student research pilots to tackle next generation airborne challenges. Water tracks are the basic hydrological unit that currently feeds the rapidly-changing permafrost and wetlands in the Antarctic McMurdo Dry Valleys (MDV). Despite the importance of water tracks in the MDV hydrologic cycle and their influence on biogeochemistry, little is known about how these water tracks control the unique brine processes operating in Antarctic ice-free areas. Both groundwater availability and geochemistry shape Antarctic microbial communities, connecting soil geology and hydrology to carbon cycling and ecosystem functioning. The objectives of this CAREER proposal are to 1) map water tracks to determine the spatial distribution and seasonal magnitude of groundwater impacts on the MDV near-surface environment to determine how near-surface groundwater drives permafrost thaw and enhances chemical weathering and biogeochemical cycling; 2) establish a UAV academy training earth sciences students to answer geoscience questions using drone-based platforms and remote sensing techniques; and 3) provide a formative step in the development of the PI as a teacher-scholar. UAV-borne hyperspectral imaging complemented with field soil sampling will determine the aerial extent and timing of inundation, water level, and water budget of representative water tracks in the MDV. Soil moisture will be measured via near-infrared reflectance spectroscopy while bulk chemistry of soils and groundwater will be analyzed via ion chromatography and soil x-ray fluorescence. Sedimentological and hydrological properties will be determined via analysis of intact core samples. These data will be used to test competing hypotheses regarding the origin of water track solutions and water movement through seasonal wetlands. The work will provide a regional understanding of groundwater sources, shallow groundwater flux, and the influence of regional hydrogeology on solute export to the Southern Ocean and on soil/atmosphere linkages in earth\u0027s carbon budget. The UAV school will 1) provide comprehensive instruction at the undergraduate level in both how and why UAVs can advance geoscience research and learning; and 2) provide educational infrastructure for an eventual self-sustaining summer program for undergraduate UAV education. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 164.5, "geometry": "POINT(162.75 -77)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; Amd/Us; USA/NSF; AMD; USAP-DC; FROZEN GROUND; Taylor Valley", "locations": "Taylor Valley", "north": -76.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Levy, Joseph", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Linking Antarctic Cold Desert Groundwater to Thermokarst \u0026 Chemical Weathering in Partnership with the Geoscience UAV Academy", "uid": "p0010286", "west": 161.0}, {"awards": "2039419 Swanger, Kate", "bounds_geometry": "POLYGON((161 -77.3,161.2 -77.3,161.4 -77.3,161.6 -77.3,161.8 -77.3,162 -77.3,162.2 -77.3,162.4 -77.3,162.6 -77.3,162.8 -77.3,163 -77.3,163 -77.35,163 -77.4,163 -77.45,163 -77.5,163 -77.55,163 -77.6,163 -77.65,163 -77.7,163 -77.75,163 -77.8,162.8 -77.8,162.6 -77.8,162.4 -77.8,162.2 -77.8,162 -77.8,161.8 -77.8,161.6 -77.8,161.4 -77.8,161.2 -77.8,161 -77.8,161 -77.75,161 -77.7,161 -77.65,161 -77.6,161 -77.55,161 -77.5,161 -77.45,161 -77.4,161 -77.35,161 -77.3))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 16 Dec 2021 00:00:00 GMT", "description": "The McMurdo Dry Valleys are the largest ice-free region in Antarctica and home to a seasonally active hydrologic system, with streams and saline lakes. Streams are fed by summer meltwater from local glaciers and snowbanks. Therefore, streamflow is tied to summer climate conditions such as air temperatures, ground temperatures, winds, and incoming solar radiation. Based on 50 years of monitoring, summer stream activity has been observed to change, and it likely varied during the geologic past in response to regional climate change and fluctuating glaciers. Thus, deposits from these streams can address questions about past climate, meltwater, and lake level changes in this region. How did meltwater streamflow respond to past climate change? How did streamflow vary during periods of glacial advance and retreat? At what times did large lakes fill many of the valleys and what was their extent? The researchers plan to acquire a record of stream activity for the Dry Valleys that will span the three largest valleys and a time period of about 100,000 years. This record will come from a series of active and ancient alluvial fans that were deposited by streams as they flowed from valley sidewalls onto valley floors. The study will provide a long-term context with which to assess recent observed changes to stream activity and lake levels. The research will be led by two female mid-career investigators and contribute significantly to student research opportunities and education. The research will contribute to graduate and undergraduate education by including students in both field and laboratory research, as well as incorporating data and results into the classroom. The research will be disseminated to K-12 and non-scientific communities through outreach that includes professional development training for K-12 teachers in eastern Massachusetts, development of hands-on activities, visits to K-12 classrooms, and STEM education and literacy activities in North Carolina. The PIs propose to constrain rates of fluvial deposition and periods of increased fluvial activity in the McMurdo Dry Valleys during the Holocene and late Pleistocene. During 50 years of hydrologic monitoring in the Dry Valleys, scientists have observed that streams exhibit significant response to summer conditions. Previous studies of glacial and lacustrine deposits indicate regional glacier advance in the Dry Valleys during recent interglacial periods and high lake levels during and after the Last Glacial Maximum (LGM), with potentially significant low and high stands during the Holocene. However, the geologic record of meltwater activity is poorly constrained. The PIs seek to develop the first spatially-extensive record of stream deposition in the Dry Valleys by analyzing and dating alluvial fans. Given that alluvial fans are deposited by summer meltwater streams in a relatively stable tectonic setting, this record will serve as a proxy of regional summer climate conditions. Meltwater streams are an important component of the regional hydrologic system, connecting glaciers to lakes and affecting ecosystems and soils. A record of fluvial deposition is key to understanding the relationship between past climate change and regional hydrology. The proposed research will include remote- and field-based mapping of alluvial fans, stream channels, and meltwater sources as well as modeling potential incoming solar radiation to the fans and moisture sources during the austral summer. In the field, the PIs will document stratigraphy, collect near-surface sediments from 25 fans across four valleys (Taylor, Pearse, Wright, and Victoria), and collect 2- to 3-m vertical cores of ice-cemented sediments from three alluvial fan complexes. The PIs will then conduct depositional dating of fluvial sands via optically stimulated luminescence, and analyze mineralogy and bulk major element chemistry with X-ray powder diffraction and X-ray fluorescence. From these analyses, the PIs propose to (1) determine the timing of local- to regional-scale periods of high fluvial deposition, (2) calculate depositional rates, and (3) constrain depositional environments and sediment provenance. Given that many of the alluvial fans occur below the hypothesized maximum extents of glacially-dammed lakes in Wright and Victoria valleys, detailed stratigraphy, sediment provenance, and OSL dating of these fans could shed light on ongoing debates regarding the timing and extent of LGM and post-LGM lakes. The work will support a postdoctoral researcher, a PhD student, and many undergraduate and master\u2019s students in cross-disciplinary research that spans stratigraphy, geochemistry, paleoclimatology and physics. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 163.0, "geometry": "POINT(162 -77.55)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; Amd/Us; SEDIMENTS; USA/NSF; AMD; Dry Valleys; USAP-DC", "locations": "Dry Valleys", "north": -77.3, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Swanger, Kate", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -77.8, "title": "Collaborative Research: Holocene and Late Pleistocene Stream Deposition in the McMurdo Dry Valleys, Antarctica as a Proxy for Glacial Meltwater and Paleoclimate", "uid": "p0010285", "west": 161.0}, {"awards": "1643394 Buizert, Christo", "bounds_geometry": "POLYGON((-180 -65,-144 -65,-108 -65,-72 -65,-36 -65,0 -65,36 -65,72 -65,108 -65,144 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.5,-180 -85,-180 -82.5,-180 -80,-180 -77.5,-180 -75,-180 -72.5,-180 -70,-180 -67.5,-180 -65))", "dataset_titles": "Antarctica 40,000 Year Temperature and Elevation Reconstructions; GISP2 and WAIS Divide Ice Cores 60,000 Year Surface Temperature Reconstructions; WAIS Divide 67-6ka nssS Data and EDML, EDC and TALDICE Volcanic Tie Points", "datasets": [{"dataset_uid": "200256", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "WAIS Divide 67-6ka nssS Data and EDML, EDC and TALDICE Volcanic Tie Points", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/24530"}, {"dataset_uid": "200255", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Antarctica 40,000 Year Temperature and Elevation Reconstructions", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/32632"}, {"dataset_uid": "200257", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "GISP2 and WAIS Divide Ice Cores 60,000 Year Surface Temperature Reconstructions", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/34133"}], "date_created": "Wed, 10 Nov 2021 00:00:00 GMT", "description": "Buizert/1643394 This award supports a project to use ice cores to study teleconnections between the northern hemisphere, tropics, and Antarctica during very abrupt climate events that occurred during the last ice age (from 70,000 to 11,000 years ago). The observations can be used to test scientific theories about the role of the westerly winds on atmospheric carbon dioxide. In a warming world, snow fall in Antarctica is expected to increase, which can reduce the Antarctic contribution to sea level rise, all else being equal. The study will investigate how snow fall changed in the past in response to changes in temperature and atmospheric circulation, which can help improve projections of future sea level rise. Antarctica is important for the future evolution of our planet in several ways; it has the largest inventory of land-based ice, equivalent to about 58 m of global sea level and currently contributes about 0.3 mm per year to global sea level rise, which is expected to increase in the future due to global warming. The oceans surrounding Antarctica help regulate the uptake of human-produced carbon dioxide. Shifts in the position and strength of the southern hemisphere westerly winds could change the amount of carbon dioxide that is absorbed by the ocean, which will influence the rate of global warming. The climate and winds near and over Antarctica are linked to the rest of our planet via so-called climatic teleconnections. This means that climate changes in remote places can influence the climate of Antarctica. Understanding how these climatic teleconnections work in both the ocean and atmosphere is an important goal of climate research. The funds will further contribute towards training of a postdoctoral researcher and an early-career researcher; outreach to public schools; and the communication of research findings to the general public via the media, local events, and a series of Wikipedia articles. The project will help to fully characterize the timing and spatial pattern of millennial-scale Antarctic climate change during the deglaciation and Dansgaard-Oeschger (DO) cycles using multiple synchronized Antarctic ice cores. The phasing of Antarctic climate change relative to Greenland DO events can distinguish between fast atmospheric teleconnections on sub-decadal timescales, and slow oceanic ones on centennial time scales. Preliminary work suggests that the spatial pattern of Antarctic change can fingerprint specific changes to the atmospheric circulation; in particular, the proposed work will clarify past movements of the Southern Hemisphere westerly winds during the DO cycle, which have been hypothesized. The project will help resolve a discrepancy between two previous seminal studies on the precise timing of interhemispheric coupling between ice cores in both hemispheres. The study will further provide state-of-the-art, internally-consistent ice core chronologies for all US Antarctic ice cores, as well as stratigraphic ties that can be used to integrate them into a next-generation Antarctic-wide ice core chronological framework. Combined with ice-flow modeling, these chronologies will be used for a continent-wide study of the relationship between ice sheet accumulation and temperature during the last deglaciation.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "ISOTOPES; Antarctica; USA/NSF; AMD; ICE CORE RECORDS; USAP-DC; VOLCANIC DEPOSITS; MODELS; Amd/Us", "locations": "Antarctica", "north": -65.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Buizert, Christo; Wettstein, Justin", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repo": "NCEI", "repositories": "NCEI", "science_programs": null, "south": -90.0, "title": "Collaborative Research: The Timing and Spatial Expression of the Bipolar Seesaw in Antarctica from Synchronized Ice Cores", "uid": "p0010279", "west": -180.0}, {"awards": "2139051 Guitard, Michelle", "bounds_geometry": "POLYGON((-45 -57,-44.3 -57,-43.6 -57,-42.9 -57,-42.2 -57,-41.5 -57,-40.8 -57,-40.1 -57,-39.4 -57,-38.7 -57,-38 -57,-38 -57.5,-38 -58,-38 -58.5,-38 -59,-38 -59.5,-38 -60,-38 -60.5,-38 -61,-38 -61.5,-38 -62,-38.7 -62,-39.4 -62,-40.1 -62,-40.8 -62,-41.5 -62,-42.2 -62,-42.9 -62,-43.6 -62,-44.3 -62,-45 -62,-45 -61.5,-45 -61,-45 -60.5,-45 -60,-45 -59.5,-45 -59,-45 -58.5,-45 -58,-45 -57.5,-45 -57))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 05 Nov 2021 00:00:00 GMT", "description": "Antarctic Ice Sheet stability remains a large uncertainty in predicting future sea level. Presently, the greatest ice mass loss is observed in locations where relatively warm water comes into contact with glaciers and ice shelves, melting them from below. This has led researchers to hypothesize that the interactions that occur between the ocean and the ice are important for determining ice sheet stability and that increased warm water presence will accelerate Antarctic ice mass loss and lead to greater sea level rise in the coming century. To better predict future ice sheet behavior, it is critical to understand past ice-ocean interactions around Antarctica, especially during warm periods and at times when Earth\u2019s climate was undergoing major changes. Past Antarctic ice mass and environmental conditions like ocean temperature can be reconstructed using sediments, which capture an environmental record as they accumulate on the ocean floor. By looking at sediment composition and by analyzing geochemical signatures within the sediment, it is possible to piece together a record of climate change on hundred- to million-year timescales. This project will reconstruct upper ocean temperatures and Antarctic ice retreat/advance cycles from 2.6 to 0.7 million years ago, which encompasses the Mid-Pleistocene Transition, a time in Earth\u2019s history that marks the shift from 41-thousand year glacial cycles to 100-thousand year glacial cycles. A record will be generated from existing sediment cores collected from the Scotia Sea during International Ocean Discovery Program Expedition 382. The Mid-Pleistocene Transition (MPT; ~1.25\u20130.7 Ma) marks the shift from glacial-interglacial cycles paced by obliquity (~41 kyr cycles) to those paced by eccentricity (~100-kyr cycles). This transition occurred despite little variation in Earth\u2019s orbital parameters, suggesting a role for internal climate feedbacks. The MPT was accompanied by decreasing atmospheric pCO2, increasing deep ocean carbon storage, and changes in deep water formation and distribution, all of which are linked to Antarctic margin atmosphere-ice-ocean interactions. However, Pleistocene records that document such interactions are rarely preserved on the shelf due to repeated Antarctic Ice Sheet (AIS) advance; instead, they are preserved in deep Southern Ocean basins. This project takes advantage of the excellent preservation and recovery of continuous Pleistocene sediment sequences collected from the Scotia Sea during International Ocean Discovery Program Expedition 382 to test the following hypotheses: 1) Southern Ocean upper ocean temperatures vary on orbital timescales during the early to middle Pleistocene (2.6\u20130.7 Ma), and 2) Southern Ocean temperatures co-vary with AIS advance/retreat cycles. Paleotemperatures will be reconstructed using the TetraEther indeX of 86 carbons (TEX86), a proxy that utilizes marine archaeal biomarkers. The Scotia Sea TEX86-based paleotemperature record will be compared to records of AIS variability, including ice rafted debris. Expedition 382 records will be compared to orbitally paced climatic time series and the benthic oxygen isotope record of global ice volume and bottom water temperature to determine if a correlation exists between upper ocean temperature, AIS retreat/advance, and orbital climate forcing. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -38.0, "geometry": "POINT(-41.5 -59.5)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; SEA SURFACE TEMPERATURE; USAP-DC; USA/NSF; LABORATORY; AMD; Scotia Sea", "locations": "Scotia Sea", "north": -57.0, "nsf_funding_programs": "Post Doc/Travel", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Michelle, Guitard", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -62.0, "title": "Investigating the influence of ocean temperature on Antarctic Ice Sheet evolution during the early to middle Pleistocene ", "uid": "p0010275", "west": -45.0}, {"awards": "1745015 Zimmerer, Matthew; 1744927 Mitrovica, Jerry; 1744949 Campbell, Seth", "bounds_geometry": "POLYGON((-145 -74,-141.6 -74,-138.2 -74,-134.8 -74,-131.4 -74,-128 -74,-124.6 -74,-121.2 -74,-117.8 -74,-114.4 -74,-111 -74,-111 -74.6,-111 -75.2,-111 -75.8,-111 -76.4,-111 -77,-111 -77.6,-111 -78.2,-111 -78.8,-111 -79.4,-111 -80,-114.4 -80,-117.8 -80,-121.2 -80,-124.6 -80,-128 -80,-131.4 -80,-134.8 -80,-138.2 -80,-141.6 -80,-145 -80,-145 -79.4,-145 -78.8,-145 -78.2,-145 -77.6,-145 -77,-145 -76.4,-145 -75.8,-145 -75.2,-145 -74.6,-145 -74))", "dataset_titles": "Mt. Waesche ground-penetrating radar data 2018-2019", "datasets": [{"dataset_uid": "601490", "doi": "10.15784/601490", "keywords": "Antarctica; GPR; Mt. Waesche", "people": "Braddock, Scott", "repository": "USAP-DC", "science_program": null, "title": "Mt. Waesche ground-penetrating radar data 2018-2019", "url": "https://www.usap-dc.org/view/dataset/601490"}], "date_created": "Fri, 22 Oct 2021 00:00:00 GMT", "description": "This study will collect a novel dataset to determine how the West Antarctic Ice Sheet (WAIS) responded to a warmer climate during the last interglacial period (~125,000 years ago) by reconstructing the glacial history at the Mt. Waesche volcano. Reconstructing WAIS geometry when the ice sheet was smaller than present is difficult and data are lacking because the evidence lies beneath the present ice sheet. This study will drill through the ice sheet and recover bedrock that can be analyzed for its surface exposure history to help determine when the surface became overridden by the ice sheet. This study will provide constraints on the past maximum and minimum spatial extent of WAIS during the last glacial-interglacial cycle. Understanding the geometry of a reduced WAIS during intervals when the planet was warmer than present may provide a possible analogue for future environmental conditions given predicted temperature trends. A reduction of WAIS results in rising sea levels which threatens coastal communities across the globe. The data will help improve numerical ice sheet models to better predict WAIS response to current and future climate trends. The project supports a teacher educational workshop and the training of graduate and undergraduate students. The goal of this project is to obtain rock samples from beneath the WAIS through shallow (\u003c80 m) drilling at Mt. Waesche, a volcano in Marie Byrd Land, near an ice dome of WAIS (2000 m elevation). The lithologies of lava flows exposed on the flank of the volcano are well-suited for cosmogenic 3He and 36Cl as well as 40Ar/39Ar measurements which will establish eruption and exposure age. Existing 40Ar/39Ar data indicate basaltic lava flows on the volcano flank as young as 350 ka. Thus, measured cosmogenic nuclides measured in rock cores from beneath the ice surface will be indicative of relatively recent exposure during periods of reduced ice elevation, most likely, during the last interglacial. The first field season is focused on identifying appropriate locations for drilling and a ground penetrating radar (GPR) survey of the subglacial topography \u003c100m under the blue ice area. Mapping and dating the adjacent exposed lava flows will allow tracing of lava flows of known age and composition below the ice margin that will be targeted for drilling the following year. The second field season activities include drilling 8 boreholes (two transects) through blue ice with the Winkie drill near the ice margin to 80 m depth to obtain rock cores from the sub-ice lava flows. 3He exposure ages will constrain the duration and minimum extent of past surface lowering of the WAIS in Marie Byrd Land. Deeper GPR imaging (up to 700 m) will hope to reveal additional evidence of lava/ice interactions that would independently place constraints on lower ice levels during past eruptions. Results from this study will be compared with the modeled ice elevation histories at Mt. Waesche to validate ice sheet modeling efforts. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -111.0, "geometry": "POINT(-128 -77)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; Mt. Waesche; USA/NSF; SNOW/ICE; GLACIER THICKNESS/ICE SHEET THICKNESS; PALEOCLIMATE RECONSTRUCTIONS; LABORATORY; LAVA COMPOSITION/TEXTURE; Amd/Us; AMD; USAP-DC", "locations": "Mt. Waesche", "north": -74.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Braddock, Scott; Campbell, Seth; Ackert, Robert; Zimmerer, Matthew; Mitrovica, Jerry", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.0, "title": "Collaborative Research: Constraining West Antarctic Ice Sheet elevation during the last interglacial", "uid": "p0010272", "west": -145.0}, {"awards": "2035637 Tabor, Clay; 2035580 Aarons, Sarah", "bounds_geometry": null, "dataset_titles": "Concentration and flux of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area; Oxygen and hydrogen isotope compositions and associated d-excess of ice from ALHIC1903 drilled at the Allan Hills Blue Ice Area.; Rare earth elemental concentrations of leached ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area.; Strontium and neodymium isotope compositions of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area.", "datasets": [{"dataset_uid": "601825", "doi": "10.15784/601825", "keywords": "Accumulation Rate; ALHIC1903; Allan Hills; Antarctica; Blue Ice; Concentration; Cryosphere; Dust; Flux", "people": "Carter, Austin", "repository": "USAP-DC", "science_program": null, "title": "Concentration and flux of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "url": "https://www.usap-dc.org/view/dataset/601825"}, {"dataset_uid": "601822", "doi": "10.15784/601822", "keywords": "ALHIC1903; Allan Hills; Antarctica; Cryosphere; Deuterium; Hydrogen; Ice; Ice Core Data; Isotope; Oxygen; Water", "people": "Carter, Austin", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Oxygen and hydrogen isotope compositions and associated d-excess of ice from ALHIC1903 drilled at the Allan Hills Blue Ice Area.", "url": "https://www.usap-dc.org/view/dataset/601822"}, {"dataset_uid": "601821", "doi": "10.15784/601821", "keywords": "ALHIC1903; Allan Hills; Antarctica; Blue Ice; Cryosphere; Dust; Leach; Rare Earth Element", "people": "Carter, Austin", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Rare earth elemental concentrations of leached ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area.", "url": "https://www.usap-dc.org/view/dataset/601821"}, {"dataset_uid": "601820", "doi": "10.15784/601820", "keywords": "ALHIC1903; Allan Hills; Antarctica; Cryosphere; Dust; Ice Core Data; Isotope; Nd; Neodymium; Sr; Strontium", "people": "Carter, Austin", "repository": "USAP-DC", "science_program": null, "title": "Strontium and neodymium isotope compositions of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area.", "url": "https://www.usap-dc.org/view/dataset/601820"}], "date_created": "Wed, 06 Oct 2021 00:00:00 GMT", "description": "This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). The spatial extent of the West Antarctic Ice Sheet during the last interglacial period (129,000 to 116,000 years ago) is currently unknown, yet this information is fundamental to projections of the future stability of the ice sheet in a warming climate. Paleoclimate records and proxy evidence such as dust can inform on past environmental conditions and ice-sheet coverage. This project will combine new, high-sensitivity geochemical measurements of dust from Antarctic ice collected at Allan Hills with existing water isotope records to document climate and environmental changes through the last interglacial period. These changes will then be compared with Earth-system model simulations of dust and water isotopes to determine past conditions and constrain the sensitivity of the West Antarctic Ice Sheet to warming. The project will test the hypothesis that the uncharacteristically volcanic dust composition observed at another peripheral ice core site at Taylor Glacier during the last interglacial period is related to changes in the spatial extent of the West Antarctic Ice Sheet. This project aims to characterize mineral dust transport during the penultimate glacial-interglacial transition. The team will apply high-precision geochemical techniques to the high-volume, high-resolution ice core drilled at the Allan Hills site in combination with Earth system model simulations to: (1) determine if the volcanic dust signature found in interglacial ice from Taylor Glacier is also found at Allan Hills, (2) determine the likely dust source(s) to this site during the last interglacial, and (3) probe the atmospheric and environmental changes during the last interglacial with a diminished West Antarctic Ice Sheet. The team will develop a suite of measurements on previously drilled ice from Allan Hills, including isotopic compositions of Strontium and Neodymium, trace element concentrations, dust-size distribution, and imaging of ice-core dust to confirm the original signal observed and provide a broader spatial reconstruction of dust transport. In tandem, the team will conduct Earth system modeling with prognostic dust and water-isotope capability to test the sensitivity of dust transport under several plausible ice-sheet and freshwater-flux configurations. By comparing dust reconstruction and model simulations, the team aims to elucidate the driving mechanisms behind dust transport during the last interglacial period. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "MICROPARTICLE CONCENTRATION; FIELD SURVEYS; GEOCHEMISTRY; ICE EXTENT; Amd/Us; USA/NSF; PALEOCLIMATE RECONSTRUCTIONS; AMD; Allan Hills; ICE CORE RECORDS; USAP-DC", "locations": "Allan Hills", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Aarons, Sarah; Tabor, Clay", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Peripheral East Antarctic ice as a unique recorder of climate variability during the Last Interglacial", "uid": "p0010270", "west": null}, {"awards": "1745043 Simkins, Lauren; 1745055 Stearns, Leigh", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Circum-Antarctic grounding-line sinuosity; Elevation transects from Pine Island Bay; Pennell Trough, Ross Sea bathymetry and glacial landforms", "datasets": [{"dataset_uid": "601484", "doi": "10.15784/601484", "keywords": "Antarctica; Bed Roughness; Bed Slope; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Pinning Points", "people": "Riverman, Kiya; Stearns, Leigh; Simkins, Lauren", "repository": "USAP-DC", "science_program": null, "title": "Circum-Antarctic grounding-line sinuosity", "url": "https://www.usap-dc.org/view/dataset/601484"}, {"dataset_uid": "601474", "doi": "10.15784/601474", "keywords": "Antarctica; Bathymetry; Elevation; Geomorphology; Glacial History; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marine Geoscience; NBP1502; Pennell Trough; Ross Sea; R/v Nathaniel B. Palmer", "people": "Simkins, Lauren; Prothro, Lindsay; Anderson, John; Greenwood, Sarah; Eareckson, Elizabeth; Munevar Garcia, Santiago", "repository": "USAP-DC", "science_program": null, "title": "Pennell Trough, Ross Sea bathymetry and glacial landforms", "url": "https://www.usap-dc.org/view/dataset/601474"}, {"dataset_uid": "601774", "doi": "10.15784/601774", "keywords": "Antarctica; Bed Roughness; Cryosphere; Geomorphology; Pine Island Bay", "people": "Munevar Garcia, Santiago", "repository": "USAP-DC", "science_program": null, "title": "Elevation transects from Pine Island Bay", "url": "https://www.usap-dc.org/view/dataset/601774"}], "date_created": "Tue, 28 Sep 2021 00:00:00 GMT", "description": "Current ice mass loss in Antarctica is largely driven by changes at glacier grounding lines, where inland ice transitions from being grounded to floating in the ocean. The rate and pattern of glacier retreat in these circumstances is thought to be controlled by the terrain under the ice. This project incorporates evidence of past ice-retreat events and other field data, such as grounding-line positions and dates, subglacial topography, and meltwater features, into numerical models of ice flow to investigate the influence that grounding-line processes and subglacial topography have on glacier retreat rates over the past 15,000 years. Recent observations suggest that Antarctic ice mass loss is largely driven by perturbations at or near the grounding line. However, the lack of information on subglacial and grounding-line environments causes large uncertainties in projections of mass loss and sea-level rise. This project will integrate geologic data from the deglaciated continental shelf into numerical models of varying complexity from one to three-dimensions. Rarely do numerical ice-sheet models of Antarctica have multiple constraints on dynamics over the past ~15,000 years (a period that spans the deglaciation of the Antarctic continental shelf since the Last Glacial Maximum). The geologic constraints include grounding-line positions, deglacial chronologies, and information on grounding line-ice shelf processes. The models will be used to investigate necessary perturbations and controls that meet the geological constraints. The multidisciplinary approach of merging geologic reconstructions of paleo-ice behavior with numerical models of ice response will allow the research team to test understanding of subglacial controls on grounding-line dynamics and assess the stability of modern grounding lines. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "MARINE SEDIMENTS; USAP-DC; Amd/Us; GLACIERS; BATHYMETRY; GLACIAL LANDFORMS; Antarctica; AMD; USA/NSF; R/V NBP", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Simkins, Lauren; Stearns, Leigh; Anderson, John; van der Veen, Cornelis", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Topographic controls on Antarctic Ice Sheet grounding line retreat - integrating models and observations", "uid": "p0010269", "west": -180.0}, {"awards": "1327248 Kohut, Josh; 1324313 Winsor, Peter; 1326167 Fraser, William; 1331681 Bernard, Kim; 1326541 Oliver, Matthew", "bounds_geometry": "POLYGON((-65 -62,-64.5 -62,-64 -62,-63.5 -62,-63 -62,-62.5 -62,-62 -62,-61.5 -62,-61 -62,-60.5 -62,-60 -62,-60 -62.3,-60 -62.6,-60 -62.9,-60 -63.2,-60 -63.5,-60 -63.8,-60 -64.1,-60 -64.4,-60 -64.7,-60 -65,-60.5 -65,-61 -65,-61.5 -65,-62 -65,-62.5 -65,-63 -65,-63.5 -65,-64 -65,-64.5 -65,-65 -65,-65 -64.7,-65 -64.4,-65 -64.1,-65 -63.8,-65 -63.5,-65 -63.2,-65 -62.9,-65 -62.6,-65 -62.3,-65 -62))", "dataset_titles": "Expedition Data; Expedition data of LMG1509", "datasets": [{"dataset_uid": "001378", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1509"}, {"dataset_uid": "002730", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1509", "url": "https://www.rvdata.us/search/cruise/LMG1509"}], "date_created": "Mon, 27 Sep 2021 00:00:00 GMT", "description": "The application of innovative ocean observing and animal telemetry technology over Palmer Deep (Western Antarctic Peninsula; WAP) is leading to new understanding, and also to many new questions related to polar ecosystem processes and their control by bio-physical interactions in the polar environment. This multi-platform field study will investigate the impact of coastal physical processes (e.g. tides, currents, upwelling events, sea-ice) on Ad\u00e9lie penguin foraging ecology in the vicinity of Palmer Deep, off Anvers Island, WAP. Guided by real-time surface convergence and divergences based on remotely sensed surface current maps derived from a coastal network of High Frequency Radars (HFRs), a multidisciplinary research team will adaptively sample the distribution of phytoplankton and zooplankton, which influence Ad\u00e9lie penguin foraging ecology, to understand how local oceanographic processes structure the ecosystem. Core educational objectives of this proposal are to increase awareness and understanding of (i) global climate change, (ii) the unique WAP ecosystem, (iii) innovative methods and technologies used by the researchers, and (iv) careers in ocean sciences, through interactive interviews with scientists, students, and technicians, during the field work. These activities will be directed towards instructional programming for K-16 students and their teachers. Researchers and educators will conduct formative and summative evaluation to improve the educational program and measure its impacts respectively.", "east": -60.0, "geometry": "POINT(-62.5 -63.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "R/V LMG; Palmer Station; PELAGIC; USA/NSF; Amd/Us; USAP-DC; AMD; LMG1509", "locations": "Palmer Station", "north": -62.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Bernard, Kim; Kohut, Josh; Oliver, Matthew; Fraser, William; Winsor, Peter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.0, "title": "Collaborative Research: Impacts of Local Oceanographic Processes on Adelie Penguin Foraging Ecology Over Palmer Deep", "uid": "p0010268", "west": -65.0}, {"awards": "2046240 Khan, Alia", "bounds_geometry": "POLYGON((-75 -62,-73.5 -62,-72 -62,-70.5 -62,-69 -62,-67.5 -62,-66 -62,-64.5 -62,-63 -62,-61.5 -62,-60 -62,-60 -62.85,-60 -63.7,-60 -64.55,-60 -65.4,-60 -66.25,-60 -67.1,-60 -67.95,-60 -68.8,-60 -69.65,-60 -70.5,-61.5 -70.5,-63 -70.5,-64.5 -70.5,-66 -70.5,-67.5 -70.5,-69 -70.5,-70.5 -70.5,-72 -70.5,-73.5 -70.5,-75 -70.5,-75 -69.65,-75 -68.8,-75 -67.95,-75 -67.1,-75 -66.25,-75 -65.4,-75 -64.55,-75 -63.7,-75 -62.85,-75 -62))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 10 Sep 2021 00:00:00 GMT", "description": "________________________________________________________________________________________________ Part I: Non-technical Summary The Antarctic Peninsula is one of the most rapidly warming regions on the planet. This 5-yr time-series program will build on an ongoing international collaboration with scientists from the Chilean Antarctic Program to evaluate the role of temperature, light absorbing particles, snow-algae growth, and their radiative forcing effects on snow and ice melt in the Western Antarctic Peninsula. There is strong evidence that these effects may be intensifying due to a warming climate. Rising temperatures can increase the growth rate of coastal snow algae as well as enhance the input of particles from sources such as the long-range transport of black carbon to the Antarctic continent from intensifying Southern Hemisphere wildfire seasons. Particle and algae feedbacks can have immediate local impacts on snow melt and long-term regional impacts on climate because reduced snow cover alters how the Antarctic continent interacts with the rest of the global climate. A variety of ground-based and remote sensing data collected across multiple spatial scales will be used. Ground measurements will be compared to satellite imagery to develop novel computer algorithms to map ice algal bloom effects under changing climates. The project is expected to fundamentally advance knowledge of the spatial and temporal snow algae growing season, which is needed to quantify impacts on regional snow and ice melt. The program also has a strong partnership with the International Association of Antarctic Tour Operators to involve cruise passengers as citizen scientists for sample collection. Antarctic research results will be integrated into undergraduate curricula and research opportunities through studies to LAPs and snow algae in the Pacific Northwest. The PI will recruit and train a diverse pool of students in cryosphere climate related research methods on Mt. Baker in Western Washington. Trained undergraduate will then serve as instructors for a local Snow School that takes middle school students to Mt. Baker to learn about snow science. Resulting datasets from Antarctica and Mt. Baker will be used in University classes to explore regional effects of climate change. Along with enhancing cryosphere-oriented place-based undergraduate field courses in the Pacific Northwest, the PI will recruit and train a diverse pool of undergraduate students to serve as instructors for the Mt. Baker Snow School program. This award will advance our understanding of cryosphere-climate feedbacks, which are likely changing and will continue to evolve in a warming world, while also increasing under-represented student engagement in the polar geosciences. Part 2: Technical Summary Rapid and persistent climate warming in the Western Antarctic Peninsula is likely resulting in intensified snow-algae growth and an extended bloom season in coastal areas. Similarly, deposition of light absorbing particles (LAPs) onto Antarctica cryosphere surfaces, such as black carbon from intensifying Southern Hemisphere wildfire seasons, and dust from the expansion of ice-free regions in the Antarctic Peninsula, may be increasing. The presence of snow algae blooms and LAPs enhance the absorption of solar radiation by snow and ice surfaces. This positive feedback creates a measurable radiative forcing, which can have immediate local and long-term regional impacts on albedo, snow melt and downstream ecosystems. This project will investigate the spatial and temporal distribution of snow algae, black carbon and dust across the Western Antarctica Peninsula region, their response to climate warming, and their role in regional snow and ice melt. Data will be collected across multiple spatial scales from in situ field measurements and sample collection to imagery from ground-based photos and high resolution multi-spectral satellite sensors. Ground measurements will inform development and application of novel algorithms to map algal bloom extent through time using 0.5-3m spatial resolution multi-spectral satellite imagery. Results will be used to improve snow algae parameterization in a new version of the Snow Ice Aerosol Radiation model (SNICARv3) that includes bio-albedo feedbacks, eventually informing models of ice-free area expansion through incorporation of SNICARv3 in the Community Earth System Model. Citizen scientists will be mentored and engaged in the research through an active partnership with the International Association of Antarctic Tour Operators that frequently visits the region. The cruise ship association will facilitate sampling to develop a unique snow algae observing network to validate remote sensing algorithms that map snow algae with high-resolution multi-spectral satellite imagery from space. These time-series will inform instantaneous and interannual radiative forcing calculations to assess impacts of snow algae and LAPs on regional snow melt. Quantifying the spatio-temporal growing season of snow algae and impacts from black carbon and dust will increase our ability to model their impact on snow melt, regional climate warming and ice-free expansion in the Antarctic Peninsula region. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -60.0, "geometry": "POINT(-67.5 -66.25)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; Antarctic Peninsula; Amd/Us; AMD; SNOW/ICE CHEMISTRY; USA/NSF; USAP-DC; SNOW", "locations": "Antarctic Peninsula", "north": -62.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Khan, Alia", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -70.5, "title": "CAREER: Coastal Antarctic Snow Algae and Light Absorbing Particles: Snowmelt, Climate and Ecosystem Impacts", "uid": "p0010263", "west": -75.0}, {"awards": "2039432 Grapenthin, Ronni", "bounds_geometry": "POLYGON((165.5 -77.1,165.91 -77.1,166.32 -77.1,166.73 -77.1,167.14 -77.1,167.55 -77.1,167.96 -77.1,168.37 -77.1,168.78 -77.1,169.19 -77.1,169.6 -77.1,169.6 -77.18,169.6 -77.26,169.6 -77.34,169.6 -77.42,169.6 -77.5,169.6 -77.58,169.6 -77.66,169.6 -77.74,169.6 -77.82,169.6 -77.9,169.19 -77.9,168.78 -77.9,168.37 -77.9,167.96 -77.9,167.55 -77.9,167.14 -77.9,166.73 -77.9,166.32 -77.9,165.91 -77.9,165.5 -77.9,165.5 -77.82,165.5 -77.74,165.5 -77.66,165.5 -77.58,165.5 -77.5,165.5 -77.42,165.5 -77.34,165.5 -77.26,165.5 -77.18,165.5 -77.1))", "dataset_titles": "Erebus GPS timeseries ", "datasets": [{"dataset_uid": "601471", "doi": "10.15784/601471", "keywords": "Antarctica; GPS; Mount Erebus; Ross Island", "people": "Grapenthin, Ronni", "repository": "USAP-DC", "science_program": null, "title": "Erebus GPS timeseries ", "url": "https://www.usap-dc.org/view/dataset/601471"}], "date_created": "Fri, 03 Sep 2021 00:00:00 GMT", "description": "Nontechnical Abstract Mount Erebus volcano on Ross Island, Antarctica, is the southernmost active volcano on the planet. It provides a natural laboratory to study a volcanic system that has been in a continuous state of activity with a persistent lava lake over at least the last 40 years. Worldwide only four other volcanoes with such long-lived lava lakes exist: Erta Ale, Ethiopia; Kilauea, Hawaii; Nyiragongo, Congo; and Ambrym, Vanuatu. These volcanoes are a rare anomaly that provide a window into the underlying magmatic system and behavior. Erebus is of particular interest as it cycles through phases of very explosive activity every 20 thousand years. This project will investigate interactions between the magmatic system, the rift it is located in, and the impact of the gravitational load the volcano imposes on the underlying crust and its own magmatic system. Possible interactions between these factors may explain the changes in activity. The project will analyze geophysical data that have been collected at Erebus over at least the last two decades. The results of this work will be available to the public and scientific community and inform geodynamic models in this region. The project funds an early-career scientist and a graduate student at New Mexico Tech and contributes to the development of the next generation of scientists. Technical Abstract The proposed work targets scientific questions recently formulated by the community during the 2016 NSF-sponsored Scientific Drivers and Future of Mount Erebus Volcano Observatory workshop. The location and geometry of the magmatic plumbing from vent to lower crust system remain poorly constrained, particularly below 1 km depth. The style and causes for changes in volcanic and magmatic activity over the short term (minutes to hours) and on the decadal scale remains enigmatic. Two decades of campaign and continuous GPS data on Ross Island will inform about the longer term dynamics of both, Ross Island growing within the Terror Rift, and Erebus? deeper magmatic system. This project will organize and analyze all existing GPS data for Ross Island, and interpret any anomalies in the resulting time series. These activities require organization, consistent processing and interpretation/modeling of the existing ~20 years of GPS data, which include campaign, continuous, and high-rate GPS observations. We will generate these position time series in a consistent local reference frame and make the results, including models of transient deformation available to the community. Volcanic, tectonic and isostatic adjustment related deformation will be modeled to place Erebus in a broad volcano-tectonic framework of West Antarctica. During the data analysis phase, the utility of existing GPS data for reflection studies of snow and sea-level dynamics will also be evaluated.", "east": 169.6, "geometry": "POINT(167.55 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Ross Island; TECTONICS; USAP-DC; Amd/Us; AMD; CRUSTAL MOTION; USA/NSF; FIELD SURVEYS", "locations": "Ross Island", "north": -77.1, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Instrumentation and Facilities", "paleo_time": null, "persons": "Grapenthin, Ronni", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Collaborative Research: Multi-Parameter Geophysical Constraints on Volcano Dynamics of Mt. Erebus and Ross Island, Antarctica", "uid": "p0010255", "west": 165.5}, {"awards": "1744832 Severinghaus, Jeffrey; 1745007 Mayewski, Paul; 1745006 Brook, Edward J.; 0838843 Kurbatov, Andrei; 1744993 Higgins, John", "bounds_geometry": "POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.719998,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.7,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.673336,159.16667 -76.66667))", "dataset_titles": "Allan Hills 2022-23 Shallow Ice Core Field Report; Allan Hills CMC3 ice core d18Oatm, d15N, dO2/N2, dAr/N2, d40/36Ar, d40/38Ar 2021 \u0026 2022; Allan Hills Stable Water Isotopes; CO2 and CH4 from Allan Hills ice cores ALHIC1901, 1902, and 1903; Heavy noble gases (Ar/Xe/Kr) from ALHIC1901, 1902, and 1903; I-165-M GPR Field Report 2019-2020; MOT data (Xe/Kr) from Allan Hills ice cores ALHIC1901, 1902, and 1903; Snapshot record of CO2 and CH4 from the Allan Hills, Antarctica, ranging from 400,000 to 3 million years old", "datasets": [{"dataset_uid": "601897", "doi": "10.15784/601897", "keywords": "Allan Hills; Antarctica; Cryosphere; Glaciology; Ice Core Data; MOT; Ocean Temperature; Paleoclimate; Xe/Kr", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "MOT data (Xe/Kr) from Allan Hills ice cores ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601897"}, {"dataset_uid": "601896", "doi": "10.15784/601896", "keywords": "Allan Hills; Antarctica; Ch4; CO2; Cryosphere; Glaciology; Glaciology; Ice Core Data; Ice Core Records", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "CO2 and CH4 from Allan Hills ice cores ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601896"}, {"dataset_uid": "601895", "doi": "10.15784/601895", "keywords": "Allan Hills; Antarctica; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Noble Gas", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Heavy noble gases (Ar/Xe/Kr) from ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601895"}, {"dataset_uid": "601878", "doi": "10.15784/601878", "keywords": "Allan Hills; Antarctica; Blue Ice; Carbon Dioxide; Cryosphere; Methane", "people": "Shackleton, Sarah; Severinghaus, Jeffrey P.; Hishamunda, Valens; Kalk, Michael; Brook, Edward; Marks Peterson, Julia", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Snapshot record of CO2 and CH4 from the Allan Hills, Antarctica, ranging from 400,000 to 3 million years old", "url": "https://www.usap-dc.org/view/dataset/601878"}, {"dataset_uid": "601620", "doi": "10.15784/601620", "keywords": "18O; Allan Hills; Allan Hills Blue Ice; Antarctica; Blue Ice; Delta 15N; Delta 18O; Dole Effect; Firn Thickness; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Chronology; Ice Core Records", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills CMC3 ice core d18Oatm, d15N, dO2/N2, dAr/N2, d40/36Ar, d40/38Ar 2021 \u0026 2022", "url": "https://www.usap-dc.org/view/dataset/601620"}, {"dataset_uid": "601696", "doi": "10.15784/601696", "keywords": "Allan Hills; Antarctica; Ice Core", "people": "Brook, Edward J.; Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills 2022-23 Shallow Ice Core Field Report", "url": "https://www.usap-dc.org/view/dataset/601696"}, {"dataset_uid": "609541", "doi": "10.7265/N5NP22DF", "keywords": "Allan Hills; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Isotope", "people": "Spaulding, Nicole; Mayewski, Paul A.; Introne, Douglas; Kurbatov, Andrei V.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills Stable Water Isotopes", "url": "https://www.usap-dc.org/view/dataset/609541"}, {"dataset_uid": "601669", "doi": "10.15784/601669", "keywords": "Allan Hills; Antarctica; GPR; Ice Core; Report", "people": "Nesbitt, Ian; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "I-165-M GPR Field Report 2019-2020", "url": "https://www.usap-dc.org/view/dataset/601669"}], "date_created": "Fri, 27 Aug 2021 00:00:00 GMT", "description": "Bubbles of ancient air trapped in ice cores have been used to directly reconstruct atmospheric composition, and its links to Antarctic and global climate, over the last 800,000 years. Previous field expeditions to the Allan Hills Blue Ice Area, Antarctica, have recovered ice cores that extend as far back as 2.7 million years, by far the oldest polar ice samples yet recovered. These ice cores extend direct observations of atmospheric carbon dioxide and methane concentrations and indirect records of Antarctic climate into a period of Earth\u0027s climate history that represents a plausible geologic analogue to future anthropogenic climate change. The results demonstrate a smaller glacial-interglacial variability of climate and greenhouse gases, and a persistent linkage between Antarctic climate and atmospheric carbon dioxide, between 1 and 2 million years ago. Through this project, the team will return to the Allan Hills Blue Ice Area to recover additional ice cores that date to 2 million years or older. The climate records developed from these ice cores will provide new insights into the chemical composition of the atmosphere and Antarctic climate during times of comparable or even greater warmth than the present day. Project results will help answer questions about issues associated with anthropogenic change including the relationship between temperature change and the mass balance of Antarctic ice and the relationship between atmospheric greenhouse gases and global climate change. Earth has been cooling, and ice sheets expanding, over the past ~52 million years. Superimposed on this cooling are periodic changes in Earth\u0027s climate system driven by variations in the eccentricity, precession, and obliquity of Earth\u0027s orbit around the Sun. Climate reconstructions based on measurements of oxygen isotopes in foraminiferal calcite indicate that, from ~2.8 to 1.2 million years before present (Ma), Earth\u0027s climate system oscillated between glacial and interglacial states every ~40,000 years (the \"40k world\"). Between 1.2-0.8 Ma and continuing to the present, the period of glacial cycles increased in amplitude and lengthened to ~100,000 years (the \"100k world\"). Ice cores preserve ancient air that allows direct reconstructions of atmospheric carbon dioxide and methane. They also archive proxy records of regional climate, mean ocean temperature, global oxygen cycling, and the aridity of nearby continents. Studies of stratigraphically continuous ice cores, extending to 800,000 years before present, have demonstrated that atmospheric carbon dioxide is strongly linked to climate, and it is of great interest to extend the ice-core record into the 40k world. Recent discoveries of well-preserved ice dating from 1.0 to 2.7 Ma from ice cores drilled in the Allan Hills Blue Ice Area (BIA), Antarctica, demonstrate the potential to retrieve stratigraphically discontinuous old ice at shallow depths (\u003c200 meters). This project will continue this work by retrieving new large-volume ice cores and measuring paleoclimate properties in both new and existing ice from the Allan Hills BIA. The experimental objectives are to more fully characterize fundamental properties of the climate system and the carbon cycle during the 40k world. Project results will have implications for Pleistocene climate change, and will provide new constraints on the processes that regulate atmospheric carbon dioxide, methane, and oxygen on geologic timescales. Given a demonstrated age of the ice at the Allan Hills BIA of at least 2 million years, the team will drill additional cores to prospect for ice that predates the initiation of Northern Hemisphere glaciation at the Plio-Pleistocene transition (~2.8 Ma). This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 159.41667, "geometry": "POINT(159.29167 -76.7)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; USAP-DC; SNOW/ICE; Allan Hills; FIELD SURVEYS; USA/NSF; Amd/Us; LABORATORY", "locations": "Allan Hills", "north": -76.66667, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Mayewski, Paul A.; Kurbatov, Andrei V.; Brook, Edward J.; Severinghaus, Jeffrey P.; Higgins, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73333, "title": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area ", "uid": "p0010253", "west": 159.16667}, {"awards": "2114839 Passchier, Sandra", "bounds_geometry": null, "dataset_titles": "Argon thermochronological data on Pliocene ice-rafted detrital mineral grains from IODP Expedition 379 in the Amundsen Sea sector; Grain-size data for the Pliocene section at IODP Site U1533, Amundsen Sea", "datasets": [{"dataset_uid": "601900", "doi": "10.15784/601900", "keywords": "Amundsen Sea Sector; Antarctica; Cryosphere; Glaciation; Grain Size; Pliocene; Sediment Core Data; Sedimentology", "people": "Mino-Moreira, Lisbeth; Passchier, Sandra", "repository": "USAP-DC", "science_program": null, "title": "Grain-size data for the Pliocene section at IODP Site U1533, Amundsen Sea", "url": "https://www.usap-dc.org/view/dataset/601900"}, {"dataset_uid": "601907", "doi": "10.15784/601907", "keywords": "40Ar/39Ar; Amundsen Sea; Amundsen Sea Sector; Antarctica; Cryosphere; Ice-Rafted Detritus; IODP; Paleoclimate; Pliocene; Provenance; Sedimentology", "people": "Hemming, Sidney R.; Passchier, Sandra", "repository": "USAP-DC", "science_program": null, "title": "Argon thermochronological data on Pliocene ice-rafted detrital mineral grains from IODP Expedition 379 in the Amundsen Sea sector", "url": "https://www.usap-dc.org/view/dataset/601907"}], "date_created": "Wed, 25 Aug 2021 00:00:00 GMT", "description": "The West Antarctic Ice Sheet is the most vulnerable polar ice mass to warming and already a major contributor to global mean sea level rise. Its fate in the light of prolonged warming is a topic of major uncertainty. Accelerated sea level rise from ice mass loss in the polar regions is a major concern as a cause of increased coastal flooding affecting millions of people. This project will disclose a unique geological archive buried beneath the seafloor off the Amundsen Sea, Antarctica, which will reveal how the West Antarctic Ice Sheet behaved in a warmer climate in the past. The data and insights can be used to inform ice-sheet and ocean modeling used in coastal policy development. The project will also support the development of a competitive U.S. STEM workforce. Online class exercises for introductory geology classes will provide a gateway for qualified students into undergraduate research programs and this project will enhance the participation of women in science by funding the education of current female Ph.D. students. The project targets the long-term variability of the West Antarctic Ice Sheet over several glacial-interglacial cycles in the early Pliocene sedimentary record drilled by the International Ocean Discovery Program (IODP) Expedition 379 in the Amundsen Sea. Data collection includes 1) the sand provenance of ice-rafted debris and shelf diamictites and its sources within the Amundsen Sea and Antarctic Peninsula region; 2) sedimentary structures and sortable silt calculations from particle size records and reconstructions of current intensities and interactions; and 3) the bulk provenance of continental rise sediments compared to existing data from the Amundsen Sea shelf with investigations into downslope currents as pathways for Antarctic Bottom Water formation. The results are analyzed within a cyclostratigraphic framework of reflectance spectroscopy and colorimetry (RSC) and X-ray fluorescence scanner (XRF) data to gain insight into orbital forcing of the high-latitude processes. The early Pliocene Climatic Optimum (PCO) ~4.5-4.1 Ma spans a major warm period recognized in deep-sea stable isotope and sea-surface temperature records. This period also coincides with a global mean sea level highstand of \u003e 20 m requiring contributions in ice mass loss from Antarctica. The following hypotheses will be tested: 1) that the West Antarctic Ice Sheet retreated from the continental shelf break through an increase in sub iceshelf melt and iceberg calving at the onset of the PCO ~4.5 Ma, and 2) that dense shelf water cascaded down through slope channels after ~4.5 Ma as the continental shelf became exposed during glacial terminations. The project will reveal for the first time how the West Antarctic Ice Sheet operated in a warmer climate state prior to the onset of the current \u201cicehouse\u201d period ~3.3 Ma. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; TERRIGENOUS SEDIMENTS; Amd/Us; SEDIMENTS; FIELD SURVEYS; Amundsen Sea; USAP-DC; AMD", "locations": "Amundsen Sea", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Passchier, Sandra", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "West Antarctic Ice-sheet Change and Paleoceanography in the Amundsen Sea Across the Pliocene Climatic Optimum", "uid": "p0010252", "west": null}, {"awards": "1941304 Sherrell, Robert; 1941308 Fitzsimmons, Jessica; 1941483 Yager, Patricia; 1941327 Stammerjohn, Sharon; 1941292 St-Laurent, Pierre", "bounds_geometry": "POLYGON((-120 -71,-118 -71,-116 -71,-114 -71,-112 -71,-110 -71,-108 -71,-106 -71,-104 -71,-102 -71,-100 -71,-100 -71.4,-100 -71.8,-100 -72.2,-100 -72.6,-100 -73,-100 -73.4,-100 -73.8,-100 -74.2,-100 -74.6,-100 -75,-102 -75,-104 -75,-106 -75,-108 -75,-110 -75,-112 -75,-114 -75,-116 -75,-118 -75,-120 -75,-120 -74.6,-120 -74.2,-120 -73.8,-120 -73.4,-120 -73,-120 -72.6,-120 -72.2,-120 -71.8,-120 -71.4,-120 -71))", "dataset_titles": "Dataset: A numerical simulation of the ocean, sea ice and ice shelves in the Amundsen Sea (Antarctica) over the period 2006-2022 and its associated code and input files; Expedition Data of NBP2202; Numerical experiments examining the response of onshore oceanic heat supply to yearly changes in the Amundsen Sea icescape (Antarctica); Vertical ocean profiles collected by a Conductivity-Temperature-Depth (CTD) package in the Amundsen Sea", "datasets": [{"dataset_uid": "601785", "doi": "10.15784/601785", "keywords": "Amundsen Sea; Antarctica; Cryosphere; CTD; NBP2202; Oceanography; R/v Nathaniel B. Palmer", "people": "Stammerjohn, Sharon", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Vertical ocean profiles collected by a Conductivity-Temperature-Depth (CTD) package in the Amundsen Sea", "url": "https://www.usap-dc.org/view/dataset/601785"}, {"dataset_uid": "200399", "doi": "10.25773/bt54-sj65", "keywords": null, "people": null, "repository": "William \u0026 Mary ScholarWorks", "science_program": null, "title": "Dataset: A numerical simulation of the ocean, sea ice and ice shelves in the Amundsen Sea (Antarctica) over the period 2006-2022 and its associated code and input files", "url": "https://doi.org/10.25773/bt54-sj65"}, {"dataset_uid": "200400", "doi": "10.17882/99231", "keywords": null, "people": null, "repository": "SEANOE", "science_program": null, "title": "Numerical experiments examining the response of onshore oceanic heat supply to yearly changes in the Amundsen Sea icescape (Antarctica)", "url": "https://doi.org/10.17882/99231"}, {"dataset_uid": "200311", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP2202", "url": "https://www.rvdata.us/search/cruise/NBP2202"}], "date_created": "Fri, 20 Aug 2021 00:00:00 GMT", "description": "Part I: Non-technical summary: The Amundsen Sea is adjacent to the West Antarctic Ice Sheet (WAIS) and hosts the most productive coastal ecosystem in all of Antarctica, with vibrant green waters visible from space and an atmospheric carbon dioxide uptake rate ten times higher than the Southern Ocean average. The region is also an area highly impacted by climate change and glacier ice loss. Upwelling of warm deep water is causing melt under the ice sheet, which is contributing to sea level rise and added nutrient inputs to the region. This is a project that is jointly funded by the National Science Foundation\u2019s Directorate of Geosciences (NSF/GEO) and the National Environment Research Council (NERC) of the United Kingdom (UK) via the NSF/GEO-NERC Lead Agency Agreement. This Agreement allows a single joint US/UK proposal to be submitted and peer-reviewed by the Agency whose investigator has the largest proportion of the budget. Upon successful joint determination of an award, each Agency funds the proportion of the budget and the investigators associated with its own country. In this collaboration, the US team will undertake biogeochemical sampling alongside a UK-funded physical oceanographic program to evaluate the contribution of micronutrients such as iron from glacial meltwater to ecosystem productivity and carbon cycling. Measurements will be incorporated into computer simulations to examine ecosystem responses to further glacial melting. Results will help predict future impacts on the region and determine whether the climate sensitivity of the Amundsen Sea ecosystem represents the front line of processes generalizable to the greater Antarctic. This study is aligned with the large International Thwaites Glacier Collaboration (ITGC) and will make data available to the full scientific community. The program will provide training for undergraduate, graduate, post-doctoral, and early-career scientists in both science and communication. The team will also develop out-of-school science experiences for middle and high schoolers related to climate change and Antarctica. Part II: Technical summary: The Amundsen Sea hosts the most productive polynya in all of Antarctica, with atmospheric carbon dioxide uptake rates ten times higher than the Southern Ocean average. The region is vulnerable to climate change, experiencing rapid losses in sea ice, a changing icescape and some of the fastest melting glaciers flowing from the West Antarctic Ice Sheet, a process being studied by the International Thwaites Glacier Collaboration. The biogeochemical composition of the outflow from the glaciers surrounding the Amundsen Sea is largely unstudied. In collaboration with a UK-funded physical oceanographic program, ARTEMIS is using shipboard sampling for trace metals, carbonate system, nutrients, organic matter, and microorganisms, with biogeochemical sensors on autonomous vehicles to gather data needed to understand the impact of the melting ice sheet on both the coastal ecosystem and the regional carbon cycle. These measurements, along with access to the advanced physical oceanographic measurements will allow this team to 1) bridge the gap between biogeochemistry and physics by adding estimates of fluxes and transport of limiting micronutrients; 2) provide biogeochemical context to broaden understanding of the global significance of ocean-ice shelf interactions; 3) determine processes and scales of variability in micronutrient supply that drive the ten-fold increase in carbon dioxide uptake, and 4) identify small-scale processes key to iron and carbon cycling using optimized field sampling. Observations will be integrated into an ocean model to enhance predictive capabilities of regional ocean function. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -100.0, "geometry": "POINT(-110 -73)", "instruments": null, "is_usap_dc": true, "keywords": "BIOGEOCHEMICAL CYCLES; USA/NSF; USAP-DC; AMD; Amundsen Sea; Amd/Us; SHIPS", "locations": "Amundsen Sea", "north": -71.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Yager, Patricia; Medeiros, Patricia; Sherrell, Robert; St-Laurent, Pierre; Fitzsimmons, Jessica; Stammerjohn, Sharon", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "USAP-DC", "repositories": "R2R; SEANOE; USAP-DC; William \u0026 Mary ScholarWorks", "science_programs": "Thwaites (ITGC)", "south": -75.0, "title": "NSFGEO-NERC: Collaborative Research: Accelerating Thwaites Ecosystem Impacts for the Southern Ocean (ARTEMIS)", "uid": "p0010249", "west": -120.0}, {"awards": "2122248 Waters, Laura", "bounds_geometry": "POLYGON((-127.143608 -77.1380528,-127.1012394 -77.1380528,-127.0588708 -77.1380528,-127.0165022 -77.1380528,-126.9741336 -77.1380528,-126.931765 -77.1380528,-126.8893964 -77.1380528,-126.8470278 -77.1380528,-126.8046592 -77.1380528,-126.7622906 -77.1380528,-126.719922 -77.1380528,-126.719922 -77.14809141,-126.719922 -77.15813002,-126.719922 -77.16816863,-126.719922 -77.17820724,-126.719922 -77.18824585,-126.719922 -77.19828446,-126.719922 -77.20832307,-126.719922 -77.21836168,-126.719922 -77.22840029,-126.719922 -77.2384389,-126.7622906 -77.2384389,-126.8046592 -77.2384389,-126.8470278 -77.2384389,-126.8893964 -77.2384389,-126.931765 -77.2384389,-126.9741336 -77.2384389,-127.0165022 -77.2384389,-127.0588708 -77.2384389,-127.1012394 -77.2384389,-127.143608 -77.2384389,-127.143608 -77.22840029,-127.143608 -77.21836168,-127.143608 -77.20832307,-127.143608 -77.19828446,-127.143608 -77.18824585,-127.143608 -77.17820724,-127.143608 -77.16816863,-127.143608 -77.15813002,-127.143608 -77.14809141,-127.143608 -77.1380528))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 19 Aug 2021 00:00:00 GMT", "description": "This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). The geologic record reveals that volcanic activity increases when glaciers retreat and major ice sheets thin. This relationship produces a positive feedback mechanism where the uptick in volcanism increases greenhouse gasses concentrations, leading to climate warming and further deglaciation. Although the pattern between volcanism and deglaciation is observed in the geologic record, the exact mechanism(s) by which glaciers impact a volcanic plumbing system is unknown. This project focuses on Mount Waesche, a volcano in West Antarctica, that frequently erupts during warm, interglacial periods and undergoes a period of less activity during cold, glacial periods. This project will examine compositions of the rocks and minerals from Mount Waesche to determine magma storage depths, allowing the investigators to understand how magma plumbing systems change in response to glacial cycles. These results will be compared with geodynamic simulations to understand the physics behind the effects of deglaciation on the magmatic plumbing systems within Earth\u2019s crust. The investigators will additionally partner with Mentoring Kids Works to develop several Polar and Earth Science Educational Modules aimed at improving reading skills in third grade students in New Mexico. The proposed Polar and Earth Science program consists of modules that include readings of books introducing students to Earth and Polar science themes, paired with Earth and Polar Science activities, followed by simple experiments, where students make predictions and collect data. Information required to implement our Polar and Earth Science curriculum will be made available online. Isotopic and sedimentary datasets reveal that volcanic activity typically increases during interglacial periods. However, the physical mechanisms through which changes in the surface loading affect volcanic magmatic plumbing systems remain unconstrained. Recently generated 40Ar/39Ar eruption ages indicate that 86% of the dated samples from Mt. Waesche, a late Quaternary volcano in Marie Byrd land, correlate with interglacial periods, suggesting this volcano uniquely responds to changes in the West Antarctic Ice Sheet. We propose to combine the petrology of Mount Waesche\u2019s volcanic record, constraints on changing ice loads through time, and geodynamic modelling to: (1) Determine how pre-eruptive storage conditions change during glacial and interglacial periods using whole rock and mineral compositions of volcanic rocks; (2) Conduct geodynamic modeling to elucidate the relationship between lithospheric structure, temporal variations in ice sheet thickness, and subsequent changes in crustal stresses and magmatic transport and, therefore, the mechanism(s) by which deglaciation impacts magmatic plumbing systems; (3) Use the outcomes of objectives (1) and (2) to provide new constraints on the changes in ice sheet thickness through time that could plausibly trigger future volcanic and magmatic activity in West Antarctica. This collaborative approach will provide a novel methodology to determine prior magnitudes and rates of ice load changes within the Marie Byrd Land region of Antarctica. Lastly, estimates of WAIS elevation changes from this study will be compared to ongoing studies at Mount Waesche focused on constraining last interglacial ice sheet draw down using cosmogenic exposure ages obtained from shallow drilling. The scope of work also includes a partnership with Mentoring Kids Works to develop several Polar and Earth Science Educational Modules aimed at improving reading skills in third grade students in New Mexico. The proposed Polar and Earth Science program consists of modules that include readings of books introducing students to Earth and Polar science themes, paired with Earth and Polar Science activities, followed by simple experiments, where students make predictions and collect data. Information required to implement our Polar and Earth Science curriculum will be made available online. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -126.719922, "geometry": "POINT(-126.931765 -77.18824585)", "instruments": null, "is_usap_dc": true, "keywords": "Mt. Waesche; GEOCHEMISTRY; LITHOSPHERIC PLATE MOTION; STRESS; Amd/Us; West Antarctica; Executive Committee Range; NOT APPLICABLE; USAP-DC; AMD; MAJOR ELEMENTS; USA/NSF; ROCKS/MINERALS/CRYSTALS", "locations": "West Antarctica; Mt. Waesche; Executive Committee Range", "north": -77.1380528, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Waters, Laura; Naliboff, John; Zimmerer, Matthew", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repositories": null, "science_programs": null, "south": -77.2384389, "title": "Integrating petrologic records and geodynamics: Quantifying the effects of glaciation on crustal stress and eruptive patterns at Mt. Waesche, Executive Committee Range, Antarctica", "uid": "p0010248", "west": -127.143608}, {"awards": "2046437 Zitterbart, Daniel", "bounds_geometry": "POLYGON((-60 -55,-53 -55,-46 -55,-39 -55,-32 -55,-25 -55,-18 -55,-11 -55,-4 -55,3 -55,10 -55,10 -57.5,10 -60,10 -62.5,10 -65,10 -67.5,10 -70,10 -72.5,10 -75,10 -77.5,10 -80,3 -80,-4 -80,-11 -80,-18 -80,-25 -80,-32 -80,-39 -80,-46 -80,-53 -80,-60 -80,-60 -77.5,-60 -75,-60 -72.5,-60 -70,-60 -67.5,-60 -65,-60 -62.5,-60 -60,-60 -57.5,-60 -55))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 16 Aug 2021 00:00:00 GMT", "description": "Part I: Non-technical description: Understanding human-induced changes on biodiversity is one of the most important scientific challenges we face today. This is especially true for marine environments that are home to much of the world\u2019s biomass and biodiversity. A particularly effective approach to investigate the effects of climate change on marine ecosystems is to monitor top-predator populations such as seabirds or marine mammals. The food web in the Southern Ocean in relatively small and involves few species, therefore climate-induced variations at the prey species level directly affect the predator species level. For example, seabirds, like penguins, are ideal to detect and study these ecosystem changes. This study combines traditional methods to study emperor penguin population dynamics with the use of an autonomous vehicle to conduct the population dynamic measurements with less impact and higher accuracy. This project leverages an existing long-term emperor penguin observatory at the Atka Bay colony which hosts penguins living in the Weddell sea and the Atlantic sector of the Southern Ocean. The study will kickstart the collection of a multi-decadal data set in an area of the Southern Ocean that has been understudied. It will fill important gaps in ecological knowledge on the state of the Emperor penguin and its adaptive capabilities within a changing world. Finally, the project supports NSF goals of training new generations of scientists through collaborative training of undergraduate students and the creation of a new class on robotics for ecosystem study. Emperor penguins are an iconic species that few people will ever see in the wild. Through the technology developed in this proposal, the public can be immersed in real-time into the life of an emperor penguin colony. Public outreach will be achieved by showcasing real-time video and audio footage of emperor penguins from the field as social media science and engineering-themed educational materials. Part II: Technical description: Polar ecosystems currently experience significant impacts due to global changes. Measurable negative effects on polar wildlife have already occurred, such as population decreases of numerous seabird species, including the complete loss of colonies of one of the most emblematic species of the Antarctic, the emperor penguin. These existing impacts on polar species are alarming, especially because many polar species still remain poorly studied due to technical and logistical challenges imposed by the harsh environment and extreme remoteness. Developing technologies and tools for monitoring such wildlife populations is, therefore, a matter of urgency. This project aims to help close major knowledge gaps about the emperor penguin, in particular about their adaptive capability to a changing environment, by the development of next-generation tools to remotely study entire colonies. Specifically, the main goal of this project is to implement and test an autonomous unmanned ground vehicle equipped with Radio-frequency identification (RFID) antennas and wireless mesh communication data-loggers to: 1) identify RFID-tagged emperor penguins during breeding to studying population dynamics without human presence; and 2) receive Global Positioning System-Time Domain Reflectometry (GPS-TDR) datasets from Very High Frequency VHF-GPS-TDR data-loggers without human presence to study animal behavior and distribution at sea. The autonomous vehicles navigation through the colony will be aided by an existing remote penguin observatory (SPOT). Properly implemented, this technology can be used to study of the life history of individual penguins, and therefore gather data for behavioral and population dynamic studies. The new data will contribute to intelligent establishment of marine protected areas in Antarctica. The education objectives of this CAREER project are designed to increase the interest in a STEM education for the next generation of scientists by combining the charisma of the emperor penguin with robotics research. Within this project, a new class on ecosystem robotics will be developed and taught, Robotics boot-camps will allow undergraduate students to remotely participate in Antarctic field trips, and an annual curriculum will be developed that allows K-12 students to follow the life of the emperor penguin during the breeding cycle, powered by real-time data obtained using the unmanned ground vehicle as well as the existing emperor penguin observatory. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 10.0, "geometry": "POINT(-25 -67.5)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; Antarctica; Dronning Maud Land; FIELD SURVEYS; Amd/Us; Atka Bay; MARINE ECOSYSTEMS; USAP-DC; USA/NSF", "locations": "Atka Bay; Antarctica; Dronning Maud Land", "north": -55.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Zitterbart, Daniel", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -80.0, "title": "\r\nCAREER: Development of Unmanned Ground Vehicles for Assessing the Health of Secluded Ecosystems (ECHO)", "uid": "p0010245", "west": -60.0}, {"awards": "1644171 Blackburn, Terrence", "bounds_geometry": "POLYGON((162 -77.5,162.2 -77.5,162.4 -77.5,162.6 -77.5,162.8 -77.5,163 -77.5,163.2 -77.5,163.4 -77.5,163.6 -77.5,163.8 -77.5,164 -77.5,164 -77.525,164 -77.55,164 -77.575,164 -77.6,164 -77.625,164 -77.65,164 -77.675,164 -77.7,164 -77.725,164 -77.75,163.8 -77.75,163.6 -77.75,163.4 -77.75,163.2 -77.75,163 -77.75,162.8 -77.75,162.6 -77.75,162.4 -77.75,162.2 -77.75,162 -77.75,162 -77.725,162 -77.7,162 -77.675,162 -77.65,162 -77.625,162 -77.6,162 -77.575,162 -77.55,162 -77.525,162 -77.5))", "dataset_titles": "Isotopic ratios for subglacial precipitates from East Antarctica; U-Th isotopes and major elements in sediments from Taylor Valley, Antarctica", "datasets": [{"dataset_uid": "601806", "doi": "10.15784/601806", "keywords": "Antarctica; Cryosphere; Erosion; Isotope Data; Major Elements; Soil; Taylor Glacier; Taylor Valley", "people": "Tulaczyk, Slawek; Edwards, Graham; Piccione, Gavin; Blackburn, Terrence", "repository": "USAP-DC", "science_program": null, "title": "U-Th isotopes and major elements in sediments from Taylor Valley, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601806"}, {"dataset_uid": "200240", "doi": "10.26022/IEDA/111548 ", "keywords": null, "people": null, "repository": "EarthChem", "science_program": null, "title": "Isotopic ratios for subglacial precipitates from East Antarctica", "url": "https://doi.org/10.26022/IEDA/111548"}], "date_created": "Fri, 13 Aug 2021 00:00:00 GMT", "description": "A\u00a0nontechnical\u00a0description of the project The primary scientific goal of the project is to test whether Taylor Valley, Antarctica has been eroded significantly by glaciers in the last ~2 million years (Ma). Taylor Valley is one of the Dry Valleys of the Transantarctic Mountains, which are characterized by low mean annual temperatures, low precipitation, and limited erosion. These conditions have allowed fragile glacial landforms to be preserved for up to 15 Ma. Sediment eroded and deposited by glaciers is found on the valley walls and floors, with progressively younger deposits preserved at lower elevations. Scientists can date glacial deposits to understand the process and timing of past glacial erosion. Previous work in the Dry Valleys region suggested that extremely cold glaciers like Taylor Glacier, a major outlet glacier entering the valleys, were not erosive during the last several million years. This research will test a new hypothesis that glacial erosion and sediment production beneath Taylor Glacier have been active in the last few million years. This hypothesis will be tested using a new isotopic dating method called \"comminution dating\u0027 which determines when fine-grained sediment particles called silt were formed. If the sediment age is young, then the results will suggest that glacial processes have been more dynamic than previously thought. Overall, this study will increase our understanding of the nature and extent of past glaciations in Antarctica. Because the silt produced by erosion sediment is a nutrient for local ecosystems, the results will also shed light on delivery of nutrients to soils, streams, and coastal zones in high polar regions. This project will be led by an early career scientist and includes training of a Ph.D. student. A\u00a0technical description of the project There is a long-standing scientific controversy about the stability of the East Antarctic Ice Sheet with much evidence centered in the Dry Valleys region of South Victoria Land. A prevailing view of geomorphologists is that the landscape has been very stable and that the effects of glaciation have been minimal for the past ~15 Ma. This project will distinguish between two end-member scenarios of glacial erosion and deposition by Taylor Glacier, an outlet glacier of the East Antarctic Ice Sheet that terminates in Taylor Valley in the Dry Valleys region of Antarctica. In the first scenario, all valley relief is generated prior to 15 Ma when non-polar climates enabled warm-based glaciers to incise and widen ancient river channels. In this case, younger glacial deposits record advances of cold-based glaciers of decreasing ice volume and limited glacial erosion, and sediment generation resulted in glacial deposits composed primarily of older recycled sediments. In the second scenario, selective erosion of the valley floor has continued to deepen Taylor Valley but has not affected the adjacent peaks over the last 2 Ma. In this scenario, the \"bathtub rings\" of Quaternary glacial deposits situated at progressively lower elevations through time could be due to the lowering of the valley floor by subglacial erosion and with it, production of new sediment which is now incorporated into these deposits. While either scenario would result in the present-day topography, they differ in the implied evolution of regional glacial ice volume over time and the timing of both valley relief production and generation of fine-grained particles. The two scenarios will be tested by placing time constraints on fine particle production using U-series comminution dating. This new geochronologic tool exploits the loss of 234U due to alpha-recoil. The deficiency in 234U only becomes detectable in fine-grained particles with a sufficiently high surface-area-to-volume ratio which can incur appreciable 234U loss. The timing of comminution and particle size controls the magnitude of 234U loss. While this geochronologic tool is in its infancy, the scientific goal of this proposal can be achieved by resolving between ancient and recently comminuted fine particles, a binary question that the preliminary modeling and measured data show is readily resolved.", "east": 164.0, "geometry": "POINT(163 -77.625)", "instruments": null, "is_usap_dc": true, "keywords": "ICE SHEETS; Taylor Valley", "locations": "Taylor Valley", "north": -77.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Blackburn, Terrence; Tulaczyk, Slawek", "platforms": null, "repo": "USAP-DC", "repositories": "EarthChem; USAP-DC", "science_programs": null, "south": -77.75, "title": "U-Series Comminution Age Constraints on Taylor Valley Erosion", "uid": "p0010243", "west": 162.0}, {"awards": "1744871 Robinson, Rebecca", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Diatom assemblage from IODP Site U1357; Diatom-bound and bulk sedimentary N isotopes from ODP Site 1098, Western Antarctic Peninsula; Diatom-bound and bulk sedimentary nitrogen isotopes from IODP Site U1357; Dissolved nutrients, cell counts, and nitrogen isotope measurements from Chaetoceros socialis culture experiments; ODP Site 1098 deglacial diatom assemblage; Sediment chemistry of ODP Site 1098", "datasets": [{"dataset_uid": "601816", "doi": "10.15784/601816", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Geochemistry; Sediment", "people": "Robinson, Rebecca; Kelly, Roger; Jones, Colin; Dove, Isabel", "repository": "USAP-DC", "science_program": null, "title": "Diatom-bound and bulk sedimentary N isotopes from ODP Site 1098, Western Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601816"}, {"dataset_uid": "601818", "doi": "10.15784/601818", "keywords": "Antarctica; Cryosphere; Geochemistry; Sediment; Wilkes Land", "people": "Dove, Isabel", "repository": "USAP-DC", "science_program": null, "title": "Diatom assemblage from IODP Site U1357", "url": "https://www.usap-dc.org/view/dataset/601818"}, {"dataset_uid": "601727", "doi": "10.15784/601727", "keywords": "Antarctica", "people": "Dove, Isabel", "repository": "USAP-DC", "science_program": null, "title": "Dissolved nutrients, cell counts, and nitrogen isotope measurements from Chaetoceros socialis culture experiments", "url": "https://www.usap-dc.org/view/dataset/601727"}, {"dataset_uid": "601777", "doi": "10.15784/601777", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Sediment Core Data", "people": "Dove, Isabel", "repository": "USAP-DC", "science_program": null, "title": "ODP Site 1098 deglacial diatom assemblage", "url": "https://www.usap-dc.org/view/dataset/601777"}, {"dataset_uid": "601778", "doi": "10.15784/601778", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere", "people": "Dove, Isabel", "repository": "USAP-DC", "science_program": null, "title": "Sediment chemistry of ODP Site 1098", "url": "https://www.usap-dc.org/view/dataset/601778"}, {"dataset_uid": "601817", "doi": "10.15784/601817", "keywords": "Antarctica; Cryosphere; Wilkes Land", "people": "Kelly, Roger; Dove, Isabel; Robinson, Rebecca", "repository": "USAP-DC", "science_program": null, "title": "Diatom-bound and bulk sedimentary nitrogen isotopes from IODP Site U1357", "url": "https://www.usap-dc.org/view/dataset/601817"}], "date_created": "Wed, 28 Jul 2021 00:00:00 GMT", "description": "The chemical composition of diatom fossils in the Southern Ocean provides information about the environmental history of Antarctica, including sea ice extent, biological production, and ocean nutrient distribution. The sea ice zone is an important habitat for a group of diatoms, largely from the genus Chaetoceros, that have a unique life cycle stage under environmental stress, when they produce a structure called a resting spore. Resting spores are meant to reseed the surface ocean when conditions are more favorable. The production of these heavy resting spores tends to remove significant amounts of carbon and silicon, essential nutrients, out of the surface ocean. As a result, this group has the potential to remove carbon from the surface ocean and can impact the sedimentary record scientists use to reconstruct environmental change. This project explores the role of resting spores in the sedimentary record using the nitrogen isotopic signature of these fossils and how those measurements are used to estimate carbon cycle changes. The work will include laboratory incubations of these organisms to answer if and how the chemistry of the resting spores differs from that of a typical diatom cell. The incubation results will be used to evaluate nutrient drawdown in sea ice environments during two contrasting intervals in earth history, the last ice age and the warm Pliocene. This work should have significant impact on how the scientific community considers the impact of seasonal sea ice cover in the Southern Ocean in terms of how it responds to and regulates global climate. The project provides training and research opportunities for undergraduate and graduate students. Ongoing research efforts in Antarctic earth sciences will be disseminated through an interactive display at the home institution. The work proposed here will address uncertainties in how Chaetoceros resting spores record surface nutrient conditions in their nitrogen stable isotopic composition, the relative impact of their specific signal with respect to the full sedimentary assemblage, and their potential to bias or enhance environmental reconstructions in the sea ice zone. Measurements of nitrogen stable isotopes of nitrate, biomass, and diatom-bound nitrogen and silicon-to-nitrogen ratios of individual species grown in the laboratory will be used to quantify how resting spores record nutrient drawdown in the water column and to what degree their signature is biased toward low nutrient conditions. These relationships will be used to inform diatom-bound nitrogen isotope reconstructions of nutrient drawdown from a Pliocene coastal polyna and an open ocean core that spans the last glacial maximum. This proposal capitalizes on the availability of Southern Ocean isolates of Chaetoceros spp. collected in 2017 for the proposed culture work and archived sediment cores and/or existing data. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; USAP-DC; Antarctica; ISOTOPES; MARINE SEDIMENTS; LABORATORY; USA/NSF; NITROGEN; AMD", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Robinson, Rebecca", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information?", "uid": "p0010234", "west": -180.0}, {"awards": null, "bounds_geometry": null, "dataset_titles": "Common-era black carbon deposition and atmospheric modeling for 6 Antarctic ice cores", "datasets": [{"dataset_uid": "601464", "doi": "10.15784/601464", "repository": "USAP-DC", "science_program": null, "title": "Common-era black carbon deposition and atmospheric modeling for 6 Antarctic ice cores", "url": "http://www.usap-dc.org/view/dataset/601464"}], "date_created": "Fri, 16 Jul 2021 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Antarctic Peninsula; Biomass Burning; Black Carbon; Dronning Maud Land; East Antarctic Plateau; Ice Core", "locations": "Antarctic Peninsula; Dronning Maud Land; East Antarctic Plateau; Antarctica", "north": null, "nsf_funding_programs": null, "paleo_time": null, "persons": "Chellman, Nathan; McConnell, Joseph", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": null, "uid": null, "west": null}, {"awards": "1744878 Lazzara, Matthew; 1745097 Cassano, John", "bounds_geometry": "POLYGON((-115 -79,-114.4 -79,-113.8 -79,-113.2 -79,-112.6 -79,-112 -79,-111.4 -79,-110.8 -79,-110.2 -79,-109.6 -79,-109 -79,-109 -79.1,-109 -79.2,-109 -79.3,-109 -79.4,-109 -79.5,-109 -79.6,-109 -79.7,-109 -79.8,-109 -79.9,-109 -80,-109.6 -80,-110.2 -80,-110.8 -80,-111.4 -80,-112 -80,-112.6 -80,-113.2 -80,-113.8 -80,-114.4 -80,-115 -80,-115 -79.9,-115 -79.8,-115 -79.7,-115 -79.6,-115 -79.5,-115 -79.4,-115 -79.3,-115 -79.2,-115 -79.1,-115 -79))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 06 Jul 2021 00:00:00 GMT", "description": "The near surface atmosphere over West Antarctica is one of the fastest warming locations on the planet. This atmospheric warming, along with oceanic forcing, is contributing to ice sheet melt and hence rising global sea levels. An observational campaign, focused on the atmospheric boundary layer over the West Antarctic ice sheet, is envisioned. A robust set of year-round, autonomous, atmospheric and surface measurements, will be made using an instrumented 30-m tall tower at the West Antarctic ice sheet divide field camp. An additional unmanned aerial system field campaign will be conducted during the second year of this project and will supplement the West Antarctic ice sheet tall tower observations by sampling the depths of the boundary layer. The broader subject of the Antarctic ABL clearly supports a range of research activities ranging from the physics of turbulent mixing, its parameterization and constraints on meteorological forecasts, and even climatological effects, such as surface mass and energy balances. With the coming of the Thwaites WAIS program, a suite of metrological observables would be a welcome addition to the joint NSF/NERC (UK) Thwaites field campaigns. The meteorologists of this proposal have pioneered 30-m tall tower (TT) and unmanned aerial system (UAS) development in the Antarctic, and are well positioned to successfully carry out and analyze this work. In turn, the potential for these observations to advance our understanding of how the atmosphere exchanges heat with the ice sheet is high. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -109.0, "geometry": "POINT(-112 -79.5)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; Amd/Us; HUMIDITY; ATMOSPHERIC TEMPERATURE; West Antarctic Ice Sheet; BOUNDARY LAYER TEMPERATURE; USAP-DC; ATMOSPHERIC PRESSURE MEASUREMENTS; FIELD SURVEYS; BOUNDARY LAYER WINDS; USA/NSF", "locations": "West Antarctic Ice Sheet", "north": -79.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Cassano, John; Lazzara, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -80.0, "title": "Collaborative Research: Observing the Atmospheric Boundary over the West Antarctic Ice Sheet", "uid": "p0010225", "west": -115.0}, {"awards": "2000992 Romans, Brian", "bounds_geometry": "POINT(-172.873074 -74.274008)", "dataset_titles": "Grain size of Plio-Pleistocene continental slope and rise sediments, Hillary Canyon, Ross Sea", "datasets": [{"dataset_uid": "601807", "doi": "10.15784/601807", "keywords": "Antarctica; Cryosphere; Grain Size; Ross Sea", "people": "Romans, Brian W.; Varela, Natalia", "repository": "USAP-DC", "science_program": null, "title": "Grain size of Plio-Pleistocene continental slope and rise sediments, Hillary Canyon, Ross Sea", "url": "https://www.usap-dc.org/view/dataset/601807"}], "date_created": "Tue, 06 Jul 2021 00:00:00 GMT", "description": "Part I: Non-technical description: Predicting how polar ice sheets will respond to future global warming is difficult because all the processes that contribute to their melting are not well understood. This is important because the more ice on land that melts, the higher sea levels will rise. The most significant uncertainty in current estimates of sea-level rise in the coming decades is the potential contribution from the Antarctic Ice Sheet. One way to increase our knowledge about how large ice sheets respond to climate change in response to natural factors is to examine the geologic past. Natural global warming (and cooling) events in Earth\u2019s history provide examples that we can use to better understand processes, interactions, and responses we can\u2019t directly observe today. One such time period, approximately three million years ago (known as the Pliocene), was the last time atmospheric carbon dioxide levels were as high as they are today and, therefore, represents a time period to study to better understand the ice sheet response to a warming climate. Specifically, this project is interested in understanding how ocean currents near Antarctica, which transport heat and store carbon, behaved during these past climate events. The history of past ice sheet-ocean interactions are recorded in sediments that were deposited, layer upon layer, in the deep sea offshore Antarctica. In January-February 2018, a team of scientists and crew set sail to the Ross Sea, offshore west Antarctica, on the scientific ocean drilling vessel JOIDES Resolution to recover such sediment archives. This project focuses on a sediment core from that expedition, which captures the relatively warm Pliocene time interval, as well as the subsequent transition into cooler climates typical of the past two million years. The researchers will analyze the sediment with multiple complementary measurements, including: grain size, composition, chemistry of organic matter, physical structures, microfossil type and abundance, and more. These analyses will be done by the research team, including several students, at their respective laboratories and will then integrated into a unified record of ice sheet-ocean interactions. Ultimately, the results will be used to improve modeled projections of how the Antarctic Ice Sheet could respond to future climate change. Part II: Technical description: Geological records from the Antarctic Ice Sheet (AIS) margin demonstrate that the ice sheet oscillated in response to orbital variations in insolation (i.e., ~400, 100, 41, and 20 kyr), and it appears to be more sensitive to specific frequencies that regulate mean annual insolation (i.e., 41-kyr obliquity), particularly when the ice sheet extends into marine environments and is impacted by ocean circulation. However, the relationship between orbital forcing and the production of Antarctic Bottom Water (AABW) is unconstrained. Thus, a knowledge gap exists in understanding how changing insolation impacts ice marginal and Southern Ocean conditions that directly influence ventilation of the global ocean. The researchers hypothesize that insolation-driven changes directly affected the production and export of AABW to the Southern Ocean from the Pliocene through the Pleistocene. For example, obliquity amplification during the warmer Pliocene may have led to enhanced production and export of dense waters from the shelf due to reduced AIS extent, which, in turn, led to greater AABW outflow. To determine the relationship of AABW production to orbital regime, they plan to reconstruct both from a single, continuous record from the levee of Hillary Canyon, a major conduit of AABW outflow, on the Ross Sea continental rise. To test their hypothesis, they will analyze sediment from IODP Site U1524 (recovered in 2018 during International Ocean Discovery Program Expedition 374) and focus on three data sets. (1) They will use the occurrence, frequency, and character of mm-scale turbidite beds as a proxy of dense-shelf-water cascading outflow and AABW production. They will estimate the down-slope flux via numerical modeling of turbidity current properties using morphology, grain size, and bed thickness as input parameters. (2) They will use grain-size data, physical properties, XRF core scanning, CT imaging, and hyperspectral imaging to guide lithofacies analysis to infer processes occurring during glacial, deglacial, and interglacial periods. Statistical techniques and optimization methods will be applied to test for astronomical forcing of sedimentary packages in order to provide a cyclostratigraphic framework and interpret the orbital-forcing regime. (3) They will use bulk sedimentary carbon and nitrogen abundance and isotope data to determine how relative contributions of terrigenous and marine organic matter change in response to orbital forcing. All of these data will be integrated with sedimentological records to deconvolve organic matter production from its deposition or remobilization due to AABW outflow as a function of the oscillating extent of the AIS. These data sets will be integrated into a unified chronostratigraphy to determine the relationship between AABW outflow and orbital-forcing scenarios under the varying climate regimes of the Plio-Pleistocene. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -172.873074, "geometry": "POINT(-172.873074 -74.274008)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; LABORATORY; AMD; USA/NSF; SEDIMENTS; Amd/Us; Ross Sea", "locations": "Ross Sea", "north": -74.274008, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Patterson, Molly; Ash, Jeanine; Kulhanek, Denise; Ash, Jeannie", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -74.274008, "title": "COLLABORATIVE RESEARCH: Orbital-scale Variability of the West Antarctic Ice Sheet and the Formation of Bottom Water in the Ross Sea during the Pliocene-Pleistocene", "uid": "p0010227", "west": -172.873074}, {"awards": "2032473 Kurbatov, Andrei; 2032463 Talghader, Joseph", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Visual, thermal, chemical, and stable isotope effects of near-infrared laser cutting on freezer ice", "datasets": [{"dataset_uid": "601753", "doi": "10.15784/601753", "keywords": "Antarctica; Sampling", "people": "Mah, Merlin; Kurbatov, Andrei V.; Talghader, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Visual, thermal, chemical, and stable isotope effects of near-infrared laser cutting on freezer ice", "url": "https://www.usap-dc.org/view/dataset/601753"}], "date_created": "Wed, 30 Jun 2021 00:00:00 GMT", "description": "This project will take initial development steps toward a laser-cut ice-sampling capability in glaciers and ice sheets. The collection of ice samples from the Polar Ice Sheets involves large amounts of time, effort, and expense. However, the most important science data are often retrieved from small sections of an ice core and, while replicate coring can supplement this section of ice core, there is often a need to retrieve additional ice samples based on subsequent scientific findings or borehole logging at a research site. In addition, there are currently no easy methods of extracting ice samples from a borehole drilled by non-coring mechanical drills that are faster, lighter, and less expensive to operate. There are numerous science applications that could potentially benefit from laser-cut ice samples, including sampling ice overlying buried impact craters and bolides, filling critical gaps in chemical records retrieved from damaged ice cores, and obtaining ice samples from sites where coring drills apply stresses that may fracture the ice. This award will explore a laser cutting technology to rapidly extract high-quality ice samples from a borehole wall. The project will investigate and validate the existing technology of laser ice sampling and will use a fiberoptic cable to deliver light pulses to a borehole instrument rather than attempting to assemble a complete laser system in an instrument deployed in a borehole. This offers a new way of retrieving ice samples from a polar ice sheet without the need to drill a borehole to collect ice-core samples (i.e., the hole could be mechanically drilled). This technology could also be used in existing boreholes or those that are made by augering through ice (i.e., not coring) or made with hot water. If successful, this technique would create the ability to rapidly retrieve ice samples with a small logistical footprint and enable science that might not be supportable otherwise. The proposed technology could eventually provide better access to ice-core samples to study past atmospheric composition for understanding past climate and inform on future potential for ice-sheet change. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; Laser Cutting; Ice Core; USA/NSF; AMD; SULFATE; FIELD SURVEYS; OXYGEN COMPOUNDS; USAP-DC; LABORATORY; Sulfate", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Instrumentation and Facilities; Antarctic Instrumentation and Facilities", "paleo_time": null, "persons": "Talghader, Joseph; Kurbatov, Andrei V.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Laser Cutting Technology for Borehole Sampling", "uid": "p0010218", "west": -180.0}, {"awards": "1341376 Tabor, Neil; 1341475 Smith, Nathan; 2001033 Makovicky, Peter; 1341304 Sidor, Christian; 1341645 Makovicky, Peter", "bounds_geometry": "POLYGON((-180 -84,-178 -84,-176 -84,-174 -84,-172 -84,-170 -84,-168 -84,-166 -84,-164 -84,-162 -84,-160 -84,-160 -84.3,-160 -84.6,-160 -84.9,-160 -85.2,-160 -85.5,-160 -85.8,-160 -86.1,-160 -86.4,-160 -86.7,-160 -87,-162 -87,-164 -87,-166 -87,-168 -87,-170 -87,-172 -87,-174 -87,-176 -87,-178 -87,180 -87,178.5 -87,177 -87,175.5 -87,174 -87,172.5 -87,171 -87,169.5 -87,168 -87,166.5 -87,165 -87,165 -86.7,165 -86.4,165 -86.1,165 -85.8,165 -85.5,165 -85.2,165 -84.9,165 -84.6,165 -84.3,165 -84,166.5 -84,168 -84,169.5 -84,171 -84,172.5 -84,174 -84,175.5 -84,177 -84,178.5 -84,-180 -84))", "dataset_titles": "Lower Triassic Antarctic vertebrate fossils at Field Museum, Chicago, IL", "datasets": [{"dataset_uid": "601511", "doi": "10.15784/601511", "keywords": "Allan Hills; Antarctica; Fremouw Formation; Lystrosaurus; Permo-Triassic Extinction; Prolacerta; Sample Location; Thrinaxofon; Triassic", "people": "Makovicky, Peter", "repository": "USAP-DC", "science_program": null, "title": "Lower Triassic Antarctic vertebrate fossils at Field Museum, Chicago, IL", "url": "https://www.usap-dc.org/view/dataset/601511"}], "date_created": "Tue, 29 Jun 2021 00:00:00 GMT", "description": "Around 252 million years ago, a major mass extinction wiped out upwards of 90% of species on Earth. Coincident with this extinction, the Antarctic portion of the supercontinent of Pangea transitioned to a warmer climatic regime and became devoid of glaciers. Little is known about the survivors of the extinction in Antarctica, although it has been hypothesized that the continent\u0027s high latitude location shielded it from the worst of the extinction\u0027s effects. The Shackleton Glacier region is the best place to study this extinction in Antarctica because it exposes an abundance of correct age rocks and relevant fossils were found there in the 1960s and 1980s. For this research, paleontologists will study fossil vertebrates that span from about 260 to 240 million years ago to understand how life evolved at high latitudes in the face of massive climate change. In addition, geologists will use fossil soils and fossil plant matter to more precisely reconstruct the climate of Antarctica across this extinction boundary. These data will allow for a more complete understanding of ancient climates and how Antarctic life compared to that at lower latitudes. Undergraduate and graduate students will be actively involved in this research. Public engagement in Antarctic science will be accomplished at several natural history museums. This three-year project will examine the evolution of Permo-Triassic paleoenvironments and their vertebrate communities by conducting fieldwork in the Shackleton Glacier region of Antarctica. The team will characterize the Permo-Triassic boundary within Shackleton area strata and correlate it to other stratigraphic successions in the region (e.g. via stable carbon isotope stratigraphy of fossilized plant organic matter). The researchers will use multiple types of data to assess the paleoenvironment, including: 1) paleosol morphology; 2) paleosol geochemistry; 3) pedogenic organic matter; and 4) fossil wood chronology and stable isotopes. The Fremouw Formation of Antarctica preserves the highest paleolatitude (~70\u00b0 S) tetrapod fauna of the entire Triassic and thus has the potential to shed important light on the evolution of polar life during the early Mesozoic. The biology of Triassic vertebrates from Antarctica will be compared to conspecifics from lower paleolatitudes through analysis of growth in bone and tusk histology. An interdisciplinary approach will be used to address relationships between environmental change, faunal composition, and biogeographic patterns in the context of the high-latitude strata preserved in the Buckley and Fremouw formations in the Shackleton Glacier region.", "east": -160.0, "geometry": "POINT(-177.5 -85.5)", "instruments": null, "is_usap_dc": true, "keywords": "REPTILES; FIELD SURVEYS; USA/NSF; PALEOCLIMATE RECONSTRUCTIONS; Triassic; USAP-DC; TERRESTRIAL ECOSYSTEMS; MACROFOSSILS; Amd/Us; Fossils; Shackleton Glacier; LAND RECORDS; ANIMALS/VERTEBRATES; AMD", "locations": "Shackleton Glacier", "north": -84.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Sidor, Christian; Smith, Nathan; Makovicky, Peter; Tabor, Neil", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.0, "title": "Collaborative Research: Understanding the evolution of high-latitude Permo-Triassic paleoenvironments and their vertebrate communities", "uid": "p0010213", "west": 165.0}, {"awards": "1851022 Fudge, Tyler; 1851094 Baker, Ian", "bounds_geometry": null, "dataset_titles": "Code for calculating mean gradient for EDC sulfate data; EPICA Dome C Sulfate Data 7-3190m; Forward Diffusion Model used to calculate widening of volcanic layer widths; Volcanic Widths in Dome C Interglacials and Glacials", "datasets": [{"dataset_uid": "601759", "doi": "10.15784/601759", "keywords": "Antarctica", "people": "Severi, Mirko; Fudge, T. J.", "repository": "USAP-DC", "science_program": "COLDEX", "title": "EPICA Dome C Sulfate Data 7-3190m", "url": "https://www.usap-dc.org/view/dataset/601759"}, {"dataset_uid": "601857", "doi": "10.15784/601857", "keywords": "Antarctica; Cryosphere", "people": "Fudge, T. J.", "repository": "USAP-DC", "science_program": null, "title": "Forward Diffusion Model used to calculate widening of volcanic layer widths", "url": "https://www.usap-dc.org/view/dataset/601857"}, {"dataset_uid": "601856", "doi": "10.15784/601856", "keywords": "Antarctica; Cryosphere", "people": "Fudge, T. J.", "repository": "USAP-DC", "science_program": null, "title": "Code for calculating mean gradient for EDC sulfate data", "url": "https://www.usap-dc.org/view/dataset/601856"}, {"dataset_uid": "601855", "doi": "10.15784/601855", "keywords": "Antarctica; Cryosphere", "people": "Fudge, T. J.", "repository": "USAP-DC", "science_program": null, "title": "Volcanic Widths in Dome C Interglacials and Glacials", "url": "https://www.usap-dc.org/view/dataset/601855"}], "date_created": "Mon, 28 Jun 2021 00:00:00 GMT", "description": "The ice of the polar ice sheets is among the purest substances on Earth, yet the small amount of impurities --such as acids-- are important to how the ice flows and what can be learned from ice cores about past climate. The goal of this project is to understand the role of such acids on the deformation of polycrystalline ice by comparing the deformation behavior of pure and sulfuric acid-doped samples. Sulfuric acid was chosen both because of its importance for interpreting past climate and because it can lead to water veins in ice at low temperatures. This work will focus on the location, movement, and impact of acids in polycrystalline ice that are more complex than in single crystals of ice. By deforming samples and performing microstructural characterization, the role of acids on deformation rate, grain evolution, and the movement of the acids themselves, will be assessed. The work will lead to the education of a Ph.D. student at Dartmouth College, introduce undergraduate students to research at both the University of Washington and Dartmouth College. Despite the ubiquitous use of the constitutive relation for ice commonly referred to as \"Glen\u0027s Flow Law\", significant uncertainty exists particularly with regard to the role of impurities and the development of oriented fabrics. The aim of this project is to improve the constitutive relationship for ice by performing deformation tests and microstructural characterization of pure and sulfuric acid-doped ice. The project will focus on sulfuric acid\u0027s impact on ice viscosity, fabric evolution, and diffusivity. Sulfuric acid can have both direct and indirect effects on the mechanical properties of polycrystalline ice. The direct effects change the dislocation velocity and/or density, and the indirect effects change the grain size and fabric. The complexity and interaction of these effects means that it is not possible to understand the effects of sulfuric acid by simply examining ice core specimens. In this project, the team will deform four types of ice: lab-grown ice samples doped with similar-to-natural concentrations of sulfuric acid, lab-grown high-purity ice, layered doped and pure ice, and natural ice from Antarctic ice cores. Deformation will be performed in both uniaxial compression and simple shear. The addition of simple shear tests is critical for relating the laboratory-observed deformation behavior to the behavior of polar ice sheets where the shear strain dominates ice motion in basal ice. After deformation to strains from 5 percent up to 25 percent, the microstructural development will be assessed with methods including a variety of scanning electron microscope techniques, Raman microscopy, synchrotron-based Nano-X-ray fluorescence, and ion chromatography. These analysis techniques will allow the determination of 1) the segregation and movement of impurities, 2) the rate of grain-boundary migration, 3) the number of recrystallized grains; and 4) the full orientation of the ice crystals. The results will enable both microstructural modeling of the effects of sulfuric acid and numerical modeling of diffusion in ice cores. The net result will be a better understanding of ice deformation that improves ice-core interpretation and ice-sheet modeling. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "AMD; Polycrystalline Ice; LABORATORY; Epica Dome C; SNOW/ICE; USA/NSF; USAP-DC; Ice Core; Amd/Us", "locations": "Epica Dome C", "north": null, "nsf_funding_programs": "Antarctic Science and Technology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Baker, Ian; Fudge, T. J.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: The Impact of Impurities and Stress State on Polycrystalline Ice Deformation", "uid": "p0010211", "west": null}, {"awards": "1933764 Enderlin, Ellyn; 1643455 Enderlin, Ellyn", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Crane Glacier centerline observations and modeling results ; Remotely-sensed iceberg geometries and meltwater fluxes", "datasets": [{"dataset_uid": "601617", "doi": "10.15784/601617", "keywords": "Antarctica; Antarctic Peninsula; Crane Glacier; Glacier Dynamics; Glacier Mass Discharge; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Modeling; Model Output", "people": "Enderlin, Ellyn; Aberle, Rainey; Marshall, Hans-Peter; Kopera, Michal; Meehan, Tate", "repository": "USAP-DC", "science_program": null, "title": "Crane Glacier centerline observations and modeling results ", "url": "https://www.usap-dc.org/view/dataset/601617"}, {"dataset_uid": "601679", "doi": "10.15784/601679", "keywords": "Antarctica; Elevation; Glaciology; Iceberg; Meltwater; Submarine Melt", "people": "Enderlin, Ellyn; Aberle, Rainey; Oliver, Caitlin; Dryak, Mariama; Miller, Emily; Dickson, Adam", "repository": "USAP-DC", "science_program": null, "title": "Remotely-sensed iceberg geometries and meltwater fluxes", "url": "https://www.usap-dc.org/view/dataset/601679"}], "date_created": "Mon, 28 Jun 2021 00:00:00 GMT", "description": "Enderlin/1643455 This award supports a project that will use a novel remote sensing method, which was initially developed to investigate melting of icebergs around Greenland, to examine spatial and temporal variations in ocean forcing around the Antarctic ice sheet periphery. Nearly three-quarters of the Antarctic ice sheet is fringed by regions of floating glacier ice called ice shelves. These ice shelves play an important role in modulating the flow of ice from the ice sheet interior towards the coast, similar to how dams regulate the downstream flow of water from reservoirs. Therefore, a reduction in ice shelf size due to changing air and ocean temperatures can have serious implications for the flux of glacier ice reaching the Antarctic coast, and thus, sea level change. Observations of recent ocean warming in the Amundsen Sea, thinning of the ice shelves, and increased ice flux from the West Antarctic ice sheet interior suggests that ice shelf destabilization triggered by ocean warming may already be underway in some regions. Although detailed observations are available in the Amundsen Sea region, our understanding of spatial and temporal variations in ocean conditions and their influence on ice shelf stability is limited by the scarceness of observations spanning the ice sheet periphery. The project will yield insights into variability in the submarine melting of ice shelves and will help advance the career of a female early-career scientist in a male-dominated field. The project will use repeat, very high-resolution (~0.5 m pixel width and length) satellite images acquired by the WorldView satellites, to estimate rates of iceberg melting in key coastal regions around Antarctica. The satellite images will be used to construct maps of iceberg surface elevation, which will be differenced in time to derive time series of iceberg volume change and area-averaged melt rates. Where ocean data are available, the melt rates will be compared to these data to assess whether variations in ocean temperature can explain observed iceberg melt variability. Large spatial gradients in melt rates will be compared to estimates of iceberg drift rates, which will be inferred from the repeat satellite images as well as numerically modeled drift rates produced by (unfunded) collaborators, to quantify the effects of water shear on iceberg melt rates. Spatial and temporal patterns in iceberg melting will also be compared to independently derived ice shelf thickness datasets. Overall, the analysis should yield insights into the effects of changes in ocean forcing on the submarine melting of Antarctic ice shelves and icebergs. The project does not require field work in Antarctica.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Amery Ice Shelf; FIELD SURVEYS; Totten Glacier; GLACIER MASS BALANCE/ICE SHEET MASS BALANCE; USAP-DC; Antarctic Peninsula; ICEBERGS; Mertz Glacier; OCEAN TEMPERATURE; USA/NSF; Amd/Us; Amundsen Sea; Ronne Ice Shelf; Filchner Ice Shelf; AMD", "locations": "Antarctic Peninsula; Totten Glacier; Ronne Ice Shelf; Filchner Ice Shelf; Amery Ice Shelf; Mertz Glacier; Amundsen Sea", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Enderlin, Ellyn", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Antarctic Submarine Melt Variability from Remote Sensing of Icebergs", "uid": "p0010210", "west": -180.0}, {"awards": "1643494 Saal, Alberto", "bounds_geometry": "POLYGON((-68.074 -57.345,-66.6033 -57.345,-65.1326 -57.345,-63.6619 -57.345,-62.1912 -57.345,-60.7205 -57.345,-59.2498 -57.345,-57.7791 -57.345,-56.3084 -57.345,-54.8377 -57.345,-53.367 -57.345,-53.367 -58.12517,-53.367 -58.90534,-53.367 -59.68551,-53.367 -60.46568,-53.367 -61.24585,-53.367 -62.02602,-53.367 -62.80619,-53.367 -63.58636,-53.367 -64.36653,-53.367 -65.1467,-54.8377 -65.1467,-56.3084 -65.1467,-57.7791 -65.1467,-59.2498 -65.1467,-60.7205 -65.1467,-62.1912 -65.1467,-63.6619 -65.1467,-65.1326 -65.1467,-66.6033 -65.1467,-68.074 -65.1467,-68.074 -64.36653,-68.074 -63.58636,-68.074 -62.80619,-68.074 -62.02602,-68.074 -61.24585,-68.074 -60.46568,-68.074 -59.68551,-68.074 -58.90534,-68.074 -58.12517,-68.074 -57.345))", "dataset_titles": "Major, trace elements contents and radiogenic isotopes of erupted lavas Antarctic Peninsula and Phoenix Ridge", "datasets": [{"dataset_uid": "601519", "doi": "10.15784/601519", "keywords": "Antarctica; Antarctic Peninsula; Chemical Composition; Chemistry:rock; Chemistry:Rock; Geochemistry; Isotope Data; Trace Elements", "people": "Saal, Alberto", "repository": "USAP-DC", "science_program": null, "title": "Major, trace elements contents and radiogenic isotopes of erupted lavas Antarctic Peninsula and Phoenix Ridge", "url": "https://www.usap-dc.org/view/dataset/601519"}], "date_created": "Tue, 22 Jun 2021 00:00:00 GMT", "description": "The Earth\u0027s mantle influences the movement of tectonic plates and volcanism on the surface. One way to understand the composition and nature of the Earth\u0027s mantle is by studying the chemistry of basalts, which originate by volcanic eruptions of partially melting mantle rocks. This study will establish the budget and distribution of volatile elements (hydrogen, carbon, fluorine, chlorine, sulfur) in volcanic basalts to better understand the composition of the Earth\u0027s interior. Volatiles influence mantle melting, magma crystallization, magma migration and volcanic eruptions. Their abundances and spatial distribution provide important constraints on models of mantle flow and temperature. Moreover, volatiles are key constituents of the Earth\u0027s atmosphere and oceans. Establishing the cycles of volatiles between the Earth\u0027s interior and surface is of fundamental importance to understand the long-term evolution of our planet. This project supports a graduate student and research scientist at Brown University. It promotes the collaboration with geochemists from eleven institutions representing six different countries: USA, Germany, United Kingdom, Argentina, South Korea and Japan, and utilizes several NSF-funded USA analytical facilities. Communication of results will occur through: 1) peer-reviewed journals, presentations at conferences and invited university lectures, 2) hands-on science learning activities for local elementary and high school classes, and 3) outreach to the general audience through public lectures. Over the last 60 years of funded research, the Antarctic Peninsula and nearby ocean ridges have been extensively investigated providing information on the origin of the magmatism, and the composition, structure, temperature and evolution of the lithospheric and asthenospheric mantle. Diverse hypotheses have been proposed for the origin of the magmatism in the Antarctic Peninsula, from flux melting of the mantle wedge during devolatilization of the subducted Phoenix plate, to adiabatic decompression melting of a carbonated and hydrous asthenosphere, to melting of a volatile-rich metasomatized subcontinental lithospheric mantle. All proposed hypotheses invoke the role of volatiles. Surprisingly, data on the volatile contents of basalts and mantle from this region are non-existent. This is a significant omission from the geochemical data set, given the important role volatile elements play in the generation and composition of magmas and their sources. The focus of our research is to examine the regional variations in volatile contents (C, H, F, S, Cl) in geochemically well-characterized Pliocene-recent basalts from the Antarctic Peninsula and Phoenix ridge. Our goal is to establish the budget and distribution of volatiles in the mantle to understand 1) the processes responsible for the generation of chemically diverse basalts in close spatial and temporal proximity and 2) the nature (lithology, composition and temperature) of the heterogeneous mantle source beneath the Antarctic Peninsula and Phoenix ridge.", "east": -53.367, "geometry": "POINT(-60.7205 -61.24585)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctic Peninsula; USA/NSF; USAP-DC; TRACE ELEMENTS; MAJOR ELEMENTS; Amd/Us; LABORATORY; ROCKS/MINERALS/CRYSTALS; Magmatic Volatiles; AMD", "locations": "Antarctic Peninsula", "north": -57.345, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Saal, Alberto", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.1467, "title": "Magmatic Volatiles, Unraveling the Reservoirs and Processes of the Volcanism in the Antarctic Peninsula", "uid": "p0010196", "west": -68.074}, {"awards": "1848887 McClintock, James", "bounds_geometry": "POINT(-64.0527 -64.77423)", "dataset_titles": "2020 and 2023 Underwater video transect community analysis data; 2020 daily seawater carbonate chemistry; 2023 daily seawater carbonate chemistry; Amphipod counts from 2020 ocean acidification experiment; Feeding of Gondogeneia antarctica maintained under ambient and low pH treatments; Palatability of Desmarestia menziesii extracts from ambient and low pH treatments; Palatability of Palmaria decipiens thallus from ambient and low pH treatments; Underwater transect videos used for 2020 and 2023 community analyses", "datasets": [{"dataset_uid": "601792", "doi": "10.15784/601792", "keywords": "Antarctica; Cryosphere; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Palatability of Palmaria decipiens thallus from ambient and low pH treatments", "url": "https://www.usap-dc.org/view/dataset/601792"}, {"dataset_uid": "601787", "doi": "10.15784/601787", "keywords": "Antarctica; Antarctic Peninsula; Biota; Cryosphere; Species Abundance; Video Transects", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "2020 and 2023 Underwater video transect community analysis data", "url": "https://www.usap-dc.org/view/dataset/601787"}, {"dataset_uid": "601702", "doi": "10.15784/601702", "keywords": "Antarctica; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Amphipod counts from 2020 ocean acidification experiment", "url": "https://www.usap-dc.org/view/dataset/601702"}, {"dataset_uid": "601791", "doi": "10.15784/601791", "keywords": "Antarctica; Cryosphere; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Palatability of Desmarestia menziesii extracts from ambient and low pH treatments", "url": "https://www.usap-dc.org/view/dataset/601791"}, {"dataset_uid": "601701", "doi": "10.15784/601701", "keywords": "Antarctica; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "2023 daily seawater carbonate chemistry", "url": "https://www.usap-dc.org/view/dataset/601701"}, {"dataset_uid": "601700", "doi": "10.15784/601700", "keywords": "Antarctica; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "2020 daily seawater carbonate chemistry", "url": "https://www.usap-dc.org/view/dataset/601700"}, {"dataset_uid": "601796", "doi": "10.15784/601796", "keywords": "Antarctica; Biota; Cryosphere; Oceans; Southern Ocean; Video Transects", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Underwater transect videos used for 2020 and 2023 community analyses", "url": "https://www.usap-dc.org/view/dataset/601796"}, {"dataset_uid": "601793", "doi": "10.15784/601793", "keywords": "Antarctica; Cryosphere; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Feeding of Gondogeneia antarctica maintained under ambient and low pH treatments", "url": "https://www.usap-dc.org/view/dataset/601793"}], "date_created": "Mon, 21 Jun 2021 00:00:00 GMT", "description": "Undersea forests of seaweeds dominate the shallow waters of the central and northern coast of the western Antarctic Peninsula and provide critical structural habitat and carbon resources (food) for a host of marine organisms. Most of the seaweeds are chemically defended against herbivores yet support very high densities of herbivorous shrimp-like grazers (crustaceans, primarily amphipods) which greatly benefit their hosts by consuming filamentous and microscopic algae that otherwise overgrow the seaweeds. The amphipods benefit from the association with the chemically defended seaweeds by gaining an associational refuge from fish predation. The project builds on recent work that has demonstrated that several species of amphipods that are key members of crustacean assemblages associated with the seaweeds suffer significant mortality when chronically exposed to increased seawater acidity (reduced pH) and elevated temperatures representative of near-future oceans. By simulating these environmental conditions in the laboratory at Palmer Station, Antarctica, the investigators will test the overall hypothesis that ocean acidification and ocean warming will play a significant role in structuring crustacean assemblages associated with seaweeds. Broader impacts include expanding fundamental knowledge of the impacts of global climate change by focusing on a geographic region of the earth uniquely susceptible to climate change. This project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. This includes training graduate students and early career scientists with an emphasis on diversity, presentations to K-12 groups and the general public, and a variety of social media-based outreach programs. The project will compare population and assemblage-wide impacts of natural (ambient), carbon dioxide enriched, and elevated temperature seawater on assemblages of seaweed-associated crustacean grazers. Based on prior results, it is likely that some species will be relative \"winners\" and some will be relative \"losers\" under the changed conditions. The project will then aim to carry out measurements of growth, calcification, mineralogy, the incidence of molts, and biochemical and energetic body composition for two key amphipod \"winners\" and two key amphipod \"losers\". These measurements will allow an assessment of what factors drive species-specific enhanced or diminished performance under conditions of ocean acidification and sea surface warming. The project will expand on what little is known about prospective impacts of changing conditions on benthic marine Crustacea, in Antarctica, a taxonomic group that faces the additional physiological stressor of molting. The project is likely to provide additional insight on the indirect regulation of the seaweeds that comprise Antarctic undersea forests that provide key architectural components of the coastal marine ecosystem. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -64.0527, "geometry": "POINT(-64.0527 -64.77423)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; Amd/Us; AMD; COASTAL; BENTHIC; USAP-DC; Palmer Station; ANIMALS/INVERTEBRATES; FIELD INVESTIGATION; MACROALGAE (SEAWEEDS)", "locations": "Palmer Station", "north": -64.77423, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Amsler, Charles; McClintock, James", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.77423, "title": "Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica", "uid": "p0010193", "west": -64.0527}, {"awards": "2045611 Rasbury, Emma; 2042495 Blackburn, Terrence", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": " Subglacial Precipitates Record Antarctic Ice Sheet Response to Pleistocene Millennial Climate Cycles; Subglacial precipitates record Antarctic ice sheet response to Southern Ocean warming ; Thermogenic Methane Production in Antarctic Subglacial Hydrocarbon Seeps; U-Th isotopes and major elements in sediments from Taylor Valley, Antarctica", "datasets": [{"dataset_uid": "601806", "doi": "10.15784/601806", "keywords": "Antarctica; Cryosphere; Erosion; Isotope Data; Major Elements; Soil; Taylor Glacier; Taylor Valley", "people": "Tulaczyk, Slawek; Edwards, Graham; Piccione, Gavin; Blackburn, Terrence", "repository": "USAP-DC", "science_program": null, "title": "U-Th isotopes and major elements in sediments from Taylor Valley, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601806"}, {"dataset_uid": "601594", "doi": "10.15784/601594", "keywords": "Antarctica; East Antarctica", "people": "Blackburn, Terrence; Piccione, Gavin", "repository": "USAP-DC", "science_program": null, "title": " Subglacial Precipitates Record Antarctic Ice Sheet Response to Pleistocene Millennial Climate Cycles", "url": "https://www.usap-dc.org/view/dataset/601594"}, {"dataset_uid": "601918", "doi": "10.15784/601918", "keywords": "Antarctica; Carbon Isotopes; Cryosphere; East Antarctica; Elephant Moraine; Geochronology; Isotope Data; Subglacial", "people": "Piccione, Gavin", "repository": "USAP-DC", "science_program": null, "title": "Thermogenic Methane Production in Antarctic Subglacial Hydrocarbon Seeps", "url": "https://www.usap-dc.org/view/dataset/601918"}, {"dataset_uid": "601911", "doi": null, "keywords": "Antarctica; Cryosphere", "people": "Gagliardi, Jessica", "repository": "USAP-DC", "science_program": null, "title": "Subglacial precipitates record Antarctic ice sheet response to Southern Ocean warming ", "url": "https://www.usap-dc.org/view/dataset/601911"}], "date_created": "Fri, 18 Jun 2021 00:00:00 GMT", "description": "Over the past century, climate science has constructed an extensive record of Earth\u2019s ice age cycles through the chemical and isotopic characterization of various geologic archives such as polar ice cores, deep-ocean sediments, and cave speleothems. These climatic archives provide an insightful picture of ice age cycles and of the related large global sea level fluctuations triggered by these significant climate rhythms. However, such records still provide limited insight as to how or which of Earth\u2019s ice sheets contributed to higher sea levels during past warm climate periods. This is of particular importance for our modern world: the Antarctic ice sheet is currently the world\u2019s largest freshwater reservoir, which, if completely melted, would raise the global sea level by over 60 meters (200 feet). Yet, geologic records of Antarctic ice sheet sensitivity to warm climates are particularly limited and difficult to obtain, because the direct records of ice sheet geometry smaller than the modern one are still buried beneath the mile-thick ice covering the continent. Therefore, it remains unclear how much this ice sheet contributed to past sea level rise during warm climate periods or how it will respond to the anticipated near-future climate warming. In the proposed research we seek to develop sub-ice chemical precipitates\u2014minerals that form in lakes found beneath the ice sheet\u2014as a climatic archive, one that records how the Antarctic ice sheet responded to past climatic change. These sub-ice mineral formations accumulated beneath the ice for over a hundred thousand years, recording the changes in chemical and isotopic subglacial properties that occur in response to climate change. Eventually these samples were eroded by the ice sheet and moved to the Antarctic ice margin where they were collected and made available to study. This research will utilize advanced geochemical, isotopic and geochronologic techniques to develop record of the Antarctica ice sheet\u2019s past response to warm climate periods, directly informing efforts to understand how Antarctica will response to future warming. Efforts to improve sea level forecasting on a warming planet have focused on determining the temperature, sea level and extent of polar ice sheets during Earth\u2019s past warm periods. Large uncertainties, however, in reconstructions of past and future sea levels, result from the poorly constrained climate sensitivity of the Antarctic Ice sheet (AIS). This research project aims to develop the use of subglacial precipitates as an archive the Antarctic ice sheet (AIS) past response to climate change. The subglacial precipitates from East Antarctica form in water bodies beneath Antarctic ice and in doing so provide an entirely new and unique measure of how the AIS responds to climate change. In preliminary examination of these precipitates, we identified multiple samples consisting of cyclic opal and calcite that spans hundreds of thousands of years in duration. Our preliminary geochemical characterization of these samples indicates that the observed mineralogic changes result from a cyclic change in subglacial water compositions between isotopically and chemically distinct waters. Opal-forming waters are reduced (Ce* \u003c1 and high Fe/Mn) and exhibit elevated 234U/238U compositions similar to the saline groundwater brines found at the periphery of the AIS. Calcite-forming waters, are rather, oxidized and exhibit \u03b418O compositions consistent with derivation from the depleted polar plateau (\u003c -50 \u2030). 234U-230Th dates permit construction of a robust timeseries describing these mineralogic and compositional changes through time. Comparisons of these time series with other Antarctic climate records (e.g., ice core records) reveal that calcite forming events align with millennial scale changes in local temperature or \u201cAntarctic isotopic maximums\u201d, which represent Southern Hemisphere warm periods resulting in increased Atlantic Meridional overturing circulation. Ultimately, this project seeks to develop a comprehensive model as to how changes in the thermohaline cycle induce a glaciologic response which in turn induces a change in the composition of subglacial waters and the mineralogic phase recorded within the precipitate archive. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; FIELD INVESTIGATION; AMD; USA/NSF; Amd/Us; USAP-DC; East Antarctica", "locations": "East Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Blackburn, Terrence; Tulaczyk, Slawek; Hain, Mathis; Rasbury, Troy", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Reconstructing East Antarctica\u2019s Past Response to Climate using Subglacial Precipitates", "uid": "p0010192", "west": -180.0}, {"awards": "1745130 Moran, Amy", "bounds_geometry": "POLYGON((163 -76,163.3 -76,163.6 -76,163.9 -76,164.2 -76,164.5 -76,164.8 -76,165.1 -76,165.4 -76,165.7 -76,166 -76,166 -76.2,166 -76.4,166 -76.6,166 -76.8,166 -77,166 -77.2,166 -77.4,166 -77.6,166 -77.8,166 -78,165.7 -78,165.4 -78,165.1 -78,164.8 -78,164.5 -78,164.2 -78,163.9 -78,163.6 -78,163.3 -78,163 -78,163 -77.8,163 -77.6,163 -77.4,163 -77.2,163 -77,163 -76.8,163 -76.6,163 -76.4,163 -76.2,163 -76))", "dataset_titles": "Benthic seawater temperature and conductivity measurements at six sites in McMurdo Sound; Effect of temperature on cleavage rate of Antarctic invertebrates; Effect of temperature on oxygen consumption rates of larvae of four Antarctic marine invertebrates; Egg diameters of Colossendeis megalonyx; Survey Metadata. All counts of Odontaster validus from SSWS surveys at the McMurdo Intake Jetty and Cinder Cones.; Temperature acclimation and acclimatization of sea spider larvae; Temperature effects on proximal composition and development rate of embryos and larvae of four Antarctic invertebrates; Video of Colossendeis megalonyx behavior around egg mass", "datasets": [{"dataset_uid": "601869", "doi": null, "keywords": "Antarctica; Cryosphere; McMurdo; McMurdo Sound", "people": "Thurber, Andrew; Moran, Amy", "repository": "USAP-DC", "science_program": null, "title": "Survey Metadata. All counts of Odontaster validus from SSWS surveys at the McMurdo Intake Jetty and Cinder Cones.", "url": "https://www.usap-dc.org/view/dataset/601869"}, {"dataset_uid": "601887", "doi": "10.15784/601887", "keywords": "Antarctica; Cryosphere; McMurdo; Temperature", "people": "Moran, Amy; Toh, Ming Wei Aaron; Lobert, Graham", "repository": "USAP-DC", "science_program": null, "title": "Effect of temperature on cleavage rate of Antarctic invertebrates", "url": "https://www.usap-dc.org/view/dataset/601887"}, {"dataset_uid": "601886", "doi": "10.15784/601886", "keywords": "Antarctica; Cryosphere; McMurdo; Temperature", "people": "Toh, Ming Wei Aaron; Moran, Amy; Lobert, Graham", "repository": "USAP-DC", "science_program": null, "title": "Temperature effects on proximal composition and development rate of embryos and larvae of four Antarctic invertebrates", "url": "https://www.usap-dc.org/view/dataset/601886"}, {"dataset_uid": "601870", "doi": "10.15784/601870", "keywords": "Antarctica; Cryosphere; McMurdo Sound; Salinity; Temperature", "people": "Moran, Amy", "repository": "USAP-DC", "science_program": null, "title": "Benthic seawater temperature and conductivity measurements at six sites in McMurdo Sound", "url": "https://www.usap-dc.org/view/dataset/601870"}, {"dataset_uid": "601717", "doi": "10.15784/601717", "keywords": "Antarctica; McMurdo", "people": "Moran, Amy", "repository": "USAP-DC", "science_program": null, "title": "Egg diameters of Colossendeis megalonyx", "url": "https://www.usap-dc.org/view/dataset/601717"}, {"dataset_uid": "601888", "doi": "10.15784/601888", "keywords": "Antarctica; Cryosphere; McMurdo; Temperature", "people": "Moran, Amy; Toh, MIng Wei Aaron; Lobert, Graham", "repository": "USAP-DC", "science_program": null, "title": "Effect of temperature on oxygen consumption rates of larvae of four Antarctic marine invertebrates", "url": "https://www.usap-dc.org/view/dataset/601888"}, {"dataset_uid": "601889", "doi": "10.15784/601889", "keywords": "Antarctica; Cryosphere; McMurdo; Temperature", "people": "Moran, Amy; Toh, MIng Wei Aaron; Lobert, Graham", "repository": "USAP-DC", "science_program": null, "title": "Temperature acclimation and acclimatization of sea spider larvae", "url": "https://www.usap-dc.org/view/dataset/601889"}, {"dataset_uid": "601716", "doi": "10.15784/601716", "keywords": "Antarctica; McMurdo; Pycnogonida; Sea Spider", "people": "Lobert, Graham; Moran, Amy", "repository": "USAP-DC", "science_program": null, "title": "Video of Colossendeis megalonyx behavior around egg mass", "url": "https://www.usap-dc.org/view/dataset/601716"}], "date_created": "Wed, 09 Jun 2021 00:00:00 GMT", "description": "Cold-blooded animals in the Antarctic ocean have survived in near-constant, extreme cold conditions for millions of years and are very sensitive to even small changes in water temperature. However, the consequences of this extreme thermal sensitivity for the energetics, development, and survival of developing embryos is not well understood. This award will investigate the effect of temperature on the metabolism, growth rate, developmental rate, and developmental energetics of embryos and larvae of Antarctic marine ectotherms. The project will also measure annual variation in temperature and oxygen at different sites in McMurdo Sound, and compare embryonic and larval metabolism in winter and summer to determine the extent to which these life stages can acclimate to seasonal shifts. This research will provide insight into the ability of polar marine animals and ecosystems to withstand warming polar ocean conditions. Antarctic marine ectotherms exhibit universally slow growth, low metabolic rates, and extended development, yet many of their rate processes related to physiology and metabolism are highly thermally sensitive. This suggests that small changes in temperature may result in dramatic changes to energy metabolism, growth, and the rate and duration of development. This project will measure the effects of temperature on metabolism, developmental rate, and the energetic cost of development of four common and ecologically important species of benthic Antarctic marine invertebrates. These effects will be measured over the functional ranges of the organisms and in the context of environmentally relevant seasonal shifts in temperature around McMurdo Sound. Recent data show that seasonal warming of ~1 deg C near McMurdo Station is accompanied by long-lasting hyperoxic events that impact the benthos in the nearshore boundary layer. This research will provide a more comprehensive understanding of both annual variation in environmental oxygen and temperature across the Sound, and whether this variation drives changes in developmental rate and energetics that are consistent with physiological acclimatization. These data will provide key information about potential impacts of warming Antarctic ectotherms. In addition, this project will support undergraduate and graduate research and partner with large-enrollment undergraduate courses and REU programs at an ANNH and AANAPISI Title III minority-serving institution. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 166.0, "geometry": "POINT(164.5 -77)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; Amd/Us; McMurdo Sound; AMD; BENTHIC; USA/NSF; FIELD INVESTIGATION", "locations": "McMurdo Sound", "north": -76.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Moran, Amy", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Thermal Sensitivity of Antarctic Embryos and Larvae: Effects of Temperature on Metabolism, Developmental Rate, and the Metabolic Cost of Development ", "uid": "p0010187", "west": 163.0}, {"awards": "1643355 Steig, Eric; 1643394 Buizert, Christo", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctica 40,000 Year Temperature and Elevation Reconstructions; Layer and Thinning based Accumulation Rate Reconstructions; WAIS Divide 67-6ka nssS Data and EDML, EDC and TALDICE Volcanic Tie Points", "datasets": [{"dataset_uid": "601448", "doi": "10.15784/601448", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Snow/ice; Snow/Ice", "people": "Fudge, T. J.", "repository": "USAP-DC", "science_program": null, "title": "Layer and Thinning based Accumulation Rate Reconstructions", "url": "https://www.usap-dc.org/view/dataset/601448"}, {"dataset_uid": "200219", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Antarctica 40,000 Year Temperature and Elevation Reconstructions", "url": "https://www.ncdc.noaa.gov/paleo-search/study/32632"}, {"dataset_uid": "200220", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "WAIS Divide 67-6ka nssS Data and EDML, EDC and TALDICE Volcanic Tie Points", "url": "https://www.ncdc.noaa.gov/paleo/study/24530"}], "date_created": "Fri, 28 May 2021 00:00:00 GMT", "description": "Buizert/1643394 This award supports a project to use ice cores to study teleconnections between the northern hemisphere, tropics, and Antarctica during very abrupt climate events that occurred during the last ice age (from 70,000 to 11,000 years ago). The observations can be used to test scientific theories about the role of the westerly winds on atmospheric carbon dioxide. In a warming world, snow fall in Antarctica is expected to increase, which can reduce the Antarctic contribution to sea level rise, all else being equal. The study will investigate how snow fall changed in the past in response to changes in temperature and atmospheric circulation, which can help improve projections of future sea level rise. Antarctica is important for the future evolution of our planet in several ways; it has the largest inventory of land-based ice, equivalent to about 58 m of global sea level and currently contributes about 0.3 mm per year to global sea level rise, which is expected to increase in the future due to global warming. The oceans surrounding Antarctica help regulate the uptake of human-produced carbon dioxide. Shifts in the position and strength of the southern hemisphere westerly winds could change the amount of carbon dioxide that is absorbed by the ocean, which will influence the rate of global warming. The climate and winds near and over Antarctica are linked to the rest of our planet via so-called climatic teleconnections. This means that climate changes in remote places can influence the climate of Antarctica. Understanding how these climatic teleconnections work in both the ocean and atmosphere is an important goal of climate research. The funds will further contribute towards training of a postdoctoral researcher and an early-career researcher; outreach to public schools; and the communication of research findings to the general public via the media, local events, and a series of Wikipedia articles. The project will help to fully characterize the timing and spatial pattern of millennial-scale Antarctic climate change during the deglaciation and Dansgaard-Oeschger (DO) cycles using multiple synchronized Antarctic ice cores. The phasing of Antarctic climate change relative to Greenland DO events can distinguish between fast atmospheric teleconnections on sub-decadal timescales, and slow oceanic ones on centennial time scales. Preliminary work suggests that the spatial pattern of Antarctic change can fingerprint specific changes to the atmospheric circulation; in particular, the proposed work will clarify past movements of the Southern Hemisphere westerly winds during the DO cycle, which have been hypothesized. The project will help resolve a discrepancy between two previous seminal studies on the precise timing of interhemispheric coupling between ice cores in both hemispheres. The study will further provide state-of-the-art, internally-consistent ice core chronologies for all US Antarctic ice cores, as well as stratigraphic ties that can be used to integrate them into a next-generation Antarctic-wide ice core chronological framework. Combined with ice-flow modeling, these chronologies will be used for a continent-wide study of the relationship between ice sheet accumulation and temperature during the last deglaciation.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Fudge, T. J.; Steig, Eric J.; Buizert, Christo", "platforms": null, "repo": "USAP-DC", "repositories": "NCEI; USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: The Timing and Spatial Expression of the Bipolar Seesaw", "uid": "p0010183", "west": -180.0}, {"awards": "1543344 Soreghan, Gerilyn", "bounds_geometry": null, "dataset_titles": "Data and metadata for \"Quantifying surface area in muds from the Antarctic Dry Valleys: Implications for weathering in glacial systems\"", "datasets": [{"dataset_uid": "601599", "doi": "10.15784/601599", "keywords": "Antarctica; Anza Borrego; Iceland; McMurdo Dry Valleys; Norway; Peru; Puerto Rico; Taylor Valley; Washington; Wright Valley", "people": "Demirel-Floyd, Cansu", "repository": "USAP-DC", "science_program": null, "title": "Data and metadata for \"Quantifying surface area in muds from the Antarctic Dry Valleys: Implications for weathering in glacial systems\"", "url": "https://www.usap-dc.org/view/dataset/601599"}], "date_created": "Tue, 18 May 2021 00:00:00 GMT", "description": "As glaciers creep across the landscape, they can act as earthmovers, plucking up rocks and grinding them into fine sediments. Glaciers have moved across the Antarctic landscape over thousands to millions of years, leaving these ground-up sediments in their wake. This study builds on pilot discoveries by the investigators that revealed remarkably large and variable measurements of surface area in glacially-derived fine-grained sediments found in the McMurdo Dry Valleys (MDV), one of the few landscapes on the Antarctic continent not currently covered by ice. Surface area is key to chemical weathering, the process by which rock is converted to soils as ions are carried away in streams and groundwater. These chemical weathering processes are also one of the primary means by which the Earth system naturally removes carbon dioxide from the atmosphere. Hence, high surface areas observed in sediments implies high \"weatherability\" which in turn translates to more potential carbon dioxide removed from the atmosphere. Therefore, chemical weathering in high surface area glacial sediments may have significant impacts on Earth\u0027s carbon cycle. The researchers will measure the chemical and physical properties of sediments previously collected from the Dry Valleys to understand what factors lead to production of sediment with high-surface area and potential \"weather ability\" and investigate how sediment produced in these glacial systems could ultimately impact Earth\u0027s carbon budget. Results from this research will help scientists (including modelers) refine predictions of the effects of melting glaciers- and attendant exposure of glacial sediment? on atmospheric carbon levels. These results may also contribute to applied research efforts on development of carbon-dioxide removal technologies utilizing principles of rock weathering. In addition to the scientific benefits, this research will involve several students at the undergraduate, graduate, and post-doctoral levels, including science education undergraduates, thus contributing to training of the next-generation STEM workforce. Physical weathering produces fresh surfaces, greatly enhancing specific surface area (SSA) and reactive surface area (RSA) of primary minerals. Quantifying SSA and RSA of sediments is key to determining dissolution and leaching rates during natural weathering, but few data exist on distribution of sediment SA, particularly in glacial and fluvial systems. Pilot data from glacial stream systems in Taylor Valley and Wright Valley (located in the MDV) exhibit remarkably high and variable values in both SSA and RSA, values that in some cases greatly exceed values from muds in temperate glacial systems. This discovery motivates the current research, which aims to investigate the hypothesis that high and variable SAs of muds within Wright and Taylor Valleys reflect textural and/or compositional inheritance from the differing depositional settings within the MDV, biologic controls, dust additions, and/or pedogenic processes. These hypotheses will be tested by sedimentologically, mineralogically, and geochemically characterizing muds from glacially derived sediment deposited in various environments (cold vs. wet based glaciation; fluvial, lacustrine, dust, and drift deposits) and of varying age (Miocene to Modern) from the MDV and quantifying variation of SA and reactivity. Comparisons with analyzed muds from temperate glacial systems will enable polar-temperate comparisons. Analyses will focus on muds of previously collected sediment from the MDVs. Grain size and SSA will be measured by Laser Analysis and N2 adsorption BET, respectively. After carbonate removal, samples will be re-analyzed for SSA, and muds characterized geochemically. Mineralogy and bulk chemistry will also be assessed on co-occurring sand fractions, and textural attributes documented. SSA-normalized dissolution experiments will be used to compare solutes released from sediments to determine RSAs. Results will be integrated with the various sedimentologic and geochemical analyses to test the posed hypotheses. Ultimately, this research should shed light on how weathering in Antarctic systems contributes to global carbon cycling.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; AMD; FIELD INVESTIGATION; USA/NSF; Dry Valleys; SEDIMENT CHEMISTRY; Amd/Us; Antarctica; Weathering", "locations": "Antarctica; Dry Valleys", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Soreghan, Gerilyn; Elwood Madden, Megan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Quantifying surface area in muds from the Antarctic Dry Valleys: Implications for weathering in glacial systems", "uid": "p0010181", "west": null}, {"awards": "1935870 Ballard, Grant; 1935901 Dugger, Katie", "bounds_geometry": "POLYGON((-180 -60,-177 -60,-174 -60,-171 -60,-168 -60,-165 -60,-162 -60,-159 -60,-156 -60,-153 -60,-150 -60,-150 -61.8,-150 -63.6,-150 -65.4,-150 -67.2,-150 -69,-150 -70.8,-150 -72.6,-150 -74.4,-150 -76.2,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178.5 -78,177 -78,175.5 -78,174 -78,172.5 -78,171 -78,169.5 -78,168 -78,166.5 -78,165 -78,165 -76.2,165 -74.4,165 -72.6,165 -70.8,165 -69,165 -67.2,165 -65.4,165 -63.6,165 -61.8,165 -60,166.5 -60,168 -60,169.5 -60,171 -60,172.5 -60,174 -60,175.5 -60,177 -60,178.5 -60,-180 -60))", "dataset_titles": "Adelie penguin resighting data 1997-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science; P2P 2022-2023 Adelie Penguin Biologging Data", "datasets": [{"dataset_uid": "601444", "doi": "10.15784/601444", "keywords": "Adelie Penguin; Antarctica; Biota; Demography; Mark-Recapture; Monitoring; Penguin; Ross Island", "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin resighting data 1997-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "url": "https://www.usap-dc.org/view/dataset/601444"}, {"dataset_uid": "601928", "doi": null, "keywords": "Adelie Penguin; Antarctica; Biologging; Cape Crozier; Cryosphere; Ross Sea", "people": "Ainley, David; Ballard, Grant; Schmidt, Annie", "repository": "USAP-DC", "science_program": null, "title": "P2P 2022-2023 Adelie Penguin Biologging Data", "url": "https://www.usap-dc.org/view/dataset/601928"}], "date_created": "Wed, 12 May 2021 00:00:00 GMT", "description": "Part 1: Non-technical description Polar regions are experiencing some of the most dramatic effects of climate change resulting in large-scale changes in sea ice cover. Despite this, there are relatively few long-term studies on polar species that evaluate the full scope of these effects. Over the last two decades, this team has conducted globally unique demographic studies of Ad\u00e9lie penguins in the Ross Sea, Antarctica, to explore several potential mechanisms for population change. This five-year project will use penguin-borne sensors to evaluate foraging conditions and behavior and environmental conditions on early life stages of Ad\u00e9lie penguins. Results will help to better understand population dynamics and how populations might respond to future environmental change. To promote STEM literacy, education and public outreach efforts will include multiple activities. The PenguinCam and PenguinScience.com website (impacts of \u003e1 million hits per month and use by \u003e300 classrooms/~10,000 students) will be continued. Each field season will also have \u2018Live From the Penguins\u2019 Skype calls to classes (~120/season). Classroom-ready activities that are aligned with Next Generation Science Standards will be developed with media products and science journal papers translated to grade 5-8 literacy level. The project will also train early career scientists, postdoctoral scholars, graduate students and post-graduate interns. Finally, in partnership with an Environmental Leadership Program, the team will host 2-year Roger Arliner Young Conservation Fellow, which is a program designed to increase opportunities for recent college graduates of color to learn about, engage with, and enter the environmental conservation sector. Part II: Technical description: Leveraging 25 years of data on marked individuals from two Ad\u00e9lie penguin colonies in the Ross Sea, combined with new biologging tags that track detailed penguin foraging efforts and environmental conditions, researchers will accomplish three major goals: 1) assess the quality of natal conditions by determining how environmental conditions, relative prey availability, and diet composition influence parental foraging behavior, chick provisioning, and fledging mass; 2) determine the spatial distribution and foraging behavior of juvenile Ad\u00e9lie penguins and the relative influence of natal versus post-fledging environmental conditions on their survival; and 3) determine the role of natal and post-fledging conditions in shaping individual life history traits and colony growth. Data from several types of penguin-borne biologging devices will be used to provide multiple lines of evidence for how early-life conditions and penguin behavior relate to penguin energetics and population size. This study is the first to integrate salinity, temperature, light level, depth, accelerometry, video loggers, and GPS data with longitudinal demographic information, providing an unprecedented ability to understand how penguins use the environment and enabling new insights from previously collected data. Changes in salinity due to increased glacial melt have important implications for sea ice formation, ocean circulation and productivity of the Southern Ocean, and potentially global temperature change. The penguin-borne sensors deployed in this study will support the NSF Office of Polar Programs priority: How does society more efficiently observe and measure the polar regions? It represents only the second study to track juvenile Ad\u00e9lie penguins at sea, the first in the Ross Sea region, the first with substantial sample sizes, and the first to assess juvenile survival rates directly, integrating early life factors and environmental conditions to better understand colony growth trajectories. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -150.0, "geometry": "POINT(-172.5 -69)", "instruments": null, "is_usap_dc": true, "keywords": "Ross Island; AMD; MARINE ECOSYSTEMS; Amd/Us; Adelie Penguin; USAP-DC; USA/NSF; FIELD SURVEYS", "locations": "Ross Island", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ballard, Grant; Schmidt, Annie; Varsani, Arvind; Dugger, Katie; Orben, Rachael", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Population Growth at the Southern Extreme: Effects of Early Life Conditions on Adelie penguin Individuals and Colonies", "uid": "p0010179", "west": 165.0}, {"awards": "1543459 Dugger, Katie; 1543498 Ballard, Grant; 1543541 Ainley, David", "bounds_geometry": "POLYGON((-180 -60,-177 -60,-174 -60,-171 -60,-168 -60,-165 -60,-162 -60,-159 -60,-156 -60,-153 -60,-150 -60,-150 -61.8,-150 -63.6,-150 -65.4,-150 -67.2,-150 -69,-150 -70.8,-150 -72.6,-150 -74.4,-150 -76.2,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178.5 -78,177 -78,175.5 -78,174 -78,172.5 -78,171 -78,169.5 -78,168 -78,166.5 -78,165 -78,165 -76.2,165 -74.4,165 -72.6,165 -70.8,165 -69,165 -67.2,165 -65.4,165 -63.6,165 -61.8,165 -60,166.5 -60,168 -60,169.5 -60,171 -60,172.5 -60,174 -60,175.5 -60,177 -60,178.5 -60,-180 -60))", "dataset_titles": "Adelie penguin banding data 1994-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science; Adelie penguin resighting data 1997-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science; Locations of Adelie penguins from geolocating dive recorders 2017-2019; Penguinscience Data Sharing Website", "datasets": [{"dataset_uid": "601482", "doi": "10.15784/601482", "keywords": "Adelie Penguin; Animal Behavior Observation; Antarctica; Biologging; Biota; Foraging Ecology; Geolocator; GPS Data; Migration; Ross Sea; Winter", "people": "Lescroel, Amelie; Ballard, Grant; Schmidt, Annie; Dugger, Katie; Ainley, David; Lisovski, Simeon", "repository": "USAP-DC", "science_program": null, "title": "Locations of Adelie penguins from geolocating dive recorders 2017-2019", "url": "https://www.usap-dc.org/view/dataset/601482"}, {"dataset_uid": "601443", "doi": "10.15784/601443", "keywords": "Adelie Penguin; Antarctica; Biota; Demography; Penguin; Ross Sea; Seabirds", "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin banding data 1994-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "url": "https://www.usap-dc.org/view/dataset/601443"}, {"dataset_uid": "601444", "doi": "10.15784/601444", "keywords": "Adelie Penguin; Antarctica; Biota; Demography; Mark-Recapture; Monitoring; Penguin; Ross Island", "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin resighting data 1997-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "url": "https://www.usap-dc.org/view/dataset/601444"}, {"dataset_uid": "200278", "doi": "", "keywords": null, "people": null, "repository": "California Avian Data Center", "science_program": null, "title": "Penguinscience Data Sharing Website", "url": "https://data.pointblue.org/apps/penguin_science/"}], "date_created": "Tue, 11 May 2021 00:00:00 GMT", "description": "The Ross Sea region of the Southern Ocean is experiencing growing sea ice cover in both extent and duration. These trends contrast those of the well-studied, western Antarctic Peninsula area, where sea ice has been disappearing. Unlike the latter, little is known about how expanding sea ice coverage might affect the regional Antarctic marine ecosystem. This project aims to better understand some of the potential effects of the changing ice conditions on the marine ecosystem using the widely-recognized indicator species - the Ad\u00e9lie Penguin. A four-year effort will build on previous results spanning 19 seasons at Ross Island to explore how successes or failures in each part of the penguin\u0027s annual cycle are effected by ice conditions and how these carry over to the next annual recruitment cycle, especially with respect to the penguin\u0027s condition upon arrival in the spring. Education and public outreach activities will continually be promoted through the PenguinCam and PenguinScience websites (sites with greater than 1 million hits a month) and \"NestCheck\" (a site that is logged-on by \u003e300 classrooms annually that allows students to follow penguin families in their breeding efforts). To encourage students in pursuing educational and career pathways in the Science Technology Engineering and Math fields, the project will also provide stories from the field in a Penguin Journal, develop classroom-ready activities aligned with New Generation Science Standards, increase the availability of instructional presentations as powerpoint files and short webisodes. The project will provide additional outreach activities through local, state and national speaking engagements about penguins, Antarctic science and climate change. The annual outreach efforts are aimed at reaching over 15,000 students through the website, 300 teachers through presentations and workshops, and 500 persons in the general public. The project also will train four interns (undergraduate and graduate level), two post-doctoral researchers, and a science writer/photographer. The project will accomplish three major goals, all of which relate to how Ad\u00e9lie Penguins adapt to, or cope with environmental change. Specifically the project seeks to determine 1) how changing winter sea ice conditions in the Ross Sea region affect penguin migration, behavior and survival and alter the carry-over effects (COEs) to subsequent reproduction; 2) the interplay between extrinsic and intrinsic factors influencing COEs over multiple years of an individual?s lifetime; and 3) how local environmental change may affect population change via impacts to nesting habitat, interacting with individual quality and COEs. Retrospective analyses will be conducted using 19 years of colony based data and collect additional information on individually marked, known-age and known-history penguins, from new recruits to possibly senescent individuals. Four years of new information will be gained from efforts based at two colonies (Cape Royds and Crozier), using radio frequency identification tags to automatically collect data on breeding and foraging effort of marked, known-history birds to explore penguin response to resource availability within the colony as well as between colonies (mates, nesting material, habitat availability). Additional geolocation/time-depth recorders will be used to investigate travels and foraging during winter of these birds. The combined efforts will allow an assessment of the effects of penguin behavior/success in one season on its behavior in the next (e.g. how does winter behavior affect arrival time and body condition on subsequent breeding). It is at the individual level that penguins are responding successfully, or not, to ongoing marine habitat change in the Ross Sea region.", "east": -150.0, "geometry": "POINT(-172.5 -69)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; AMD; Adelie Penguin; Amd/Us; FIELD INVESTIGATION; MARINE ECOSYSTEMS; Ross Island; USAP-DC; Penguin", "locations": "Ross Island", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Instrumentation and Support; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ballard, Grant; Ainley, David; Dugger, Katie", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "California Avian Data Center; USAP-DC", "science_programs": null, "south": -78.0, "title": "A Full Lifecycle Approach to Understanding Ad\u00e9lie Penguin Response to Changing Pack Ice Conditions in the Ross Sea.", "uid": "p0010177", "west": 165.0}, {"awards": "1246151 Bromirski, Peter; 1246416 Stephen, Ralph", "bounds_geometry": "POLYGON((-180 -77,-179.5 -77,-179 -77,-178.5 -77,-178 -77,-177.5 -77,-177 -77,-176.5 -77,-176 -77,-175.5 -77,-175 -77,-175 -77.4,-175 -77.8,-175 -78.2,-175 -78.6,-175 -79,-175 -79.4,-175 -79.8,-175 -80.2,-175 -80.6,-175 -81,-175.5 -81,-176 -81,-176.5 -81,-177 -81,-177.5 -81,-178 -81,-178.5 -81,-179 -81,-179.5 -81,180 -81,179 -81,178 -81,177 -81,176 -81,175 -81,174 -81,173 -81,172 -81,171 -81,170 -81,170 -80.6,170 -80.2,170 -79.8,170 -79.4,170 -79,170 -78.6,170 -78.2,170 -77.8,170 -77.4,170 -77,171 -77,172 -77,173 -77,174 -77,175 -77,176 -77,177 -77,178 -77,179 -77,-180 -77))", "dataset_titles": "Collaborative Research: Dynamic Response of the Ross Ice Shelf to Wave-Induced Vibrations and Collaborative Research: Mantle Structure and Dynamics of the Ross Sea from a Passive Seismic Deployment on the Ross Ice Shelf. International Federation of Digital Seismograph Networks. ; Dynamic Response of the Ross Ice Shelf to Wave-induced Vibrations 2015/2016, UNAVCO, Inc., GPS/GNSS Observations Dataset", "datasets": [{"dataset_uid": "200209", "doi": "10.7283/58E3-GA46", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Dynamic Response of the Ross Ice Shelf to Wave-induced Vibrations 2015/2016, UNAVCO, Inc., GPS/GNSS Observations Dataset", "url": "https://doi.org/10.7283/58E3-GA46"}, {"dataset_uid": "200207", "doi": "10.7914/SN/XH_2014", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Collaborative Research: Dynamic Response of the Ross Ice Shelf to Wave-Induced Vibrations and Collaborative Research: Mantle Structure and Dynamics of the Ross Sea from a Passive Seismic Deployment on the Ross Ice Shelf. International Federation of Digital Seismograph Networks. ", "url": "http://www.fdsn.org/networks/detail/XH_2014/"}], "date_created": "Thu, 15 Apr 2021 00:00:00 GMT", "description": "Bromirski/1246151 This award supports a project intended to discover, through field observations and numerical simulations, how ocean wave-induced vibrations on ice shelves in general, and the Ross Ice Shelf (RIS), in particular, can be used (1) to infer spatial and temporal variability of ice shelf mechanical properties, (2) to infer bulk elastic properties from signal propagation characteristics, and (3) to determine whether the RIS response to infragravity (IG) wave forcing observed distant from the front propagates as stress waves from the front or is \"locally\" generated by IG wave energy penetrating the RIS cavity. The intellectual merit of the work is that ocean gravity waves are dynamic elements of the global ocean environment, affected by ocean warming and changes in ocean and atmospheric circulation patterns. Their evolution may thus drive changes in ice-shelf stability by both mechanical interactions, and potentially increased basal melting, which in turn feed back on sea level rise. Gravity wave-induced signal propagation across ice shelves depends on ice shelf and sub-shelf water cavity geometry (e.g. structure, thickness, crevasse density and orientation), as well as ice shelf physical properties. Emphasis will be placed on observation and modeling of the RIS response to IG wave forcing at periods from 75 to 300 s. Because IG waves are not appreciably damped by sea ice, seasonal monitoring will give insights into the year-round RIS response to this oceanographic forcing. The 3-year project will involve a 24-month period of continuous data collection spanning two annual cycles on the RIS. RIS ice-front array coverage overlaps with a synergistic Ross Sea Mantle Structure (RSMS) study, giving an expanded array beneficial for IG wave localization. The ice-shelf deployment will consist of sixteen stations equipped with broadband seismometers and barometers. Three seismic stations near the RIS front will provide reference response/forcing functions, and measure the variability of the response across the front. A linear seismic array orthogonal to the front will consist of three stations in-line with three RSMS stations. Passive seismic array monitoring will be used to determine the spatial and temporal distribution of ocean wave-induced signal sources along the front of the RIS and estimate ice shelf structure, with the high-density array used to monitor and localize fracture (icequake) activity. The broader impacts include providing baseline measurements to enable detection of ice-shelf changes over coming decades which will help scientists and policy-makers respond to the socio-environmental challenges of climate change and sea-level rise. A postdoctoral scholar in interdisciplinary Earth science will be involved throughout the course of the research. Students at Cuyamaca Community College, San Diego County, will develop and manage a web site for the project to be used as a teaching tool for earth science and oceanography classes, with development of an associated web site on waves for middle school students.", "east": 170.0, "geometry": "POINT(177.5 -79)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; GLACIER MOTION/ICE SHEET MOTION; USAP-DC; Amd/Us; AMD; USA/NSF; Iris; Ross Ice Shelf", "locations": "Ross Ice Shelf", "north": -77.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Bromirski, Peter; Gerstoft, Peter; Stephen, Ralph", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "UNAVCO", "repositories": "IRIS; UNAVCO", "science_programs": null, "south": -81.0, "title": "Collaborative Research: Dynamic Response of the Ross Ice Shelf to Wave-induced Vibrations", "uid": "p0010169", "west": -175.0}, {"awards": "2317097 Venturelli, Ryan; 1738989 Venturelli, Ryan", "bounds_geometry": "POLYGON((-114 -74,-112.2 -74,-110.4 -74,-108.6 -74,-106.8 -74,-105 -74,-103.2 -74,-101.4 -74,-99.6 -74,-97.8 -74,-96 -74,-96 -74.2,-96 -74.4,-96 -74.6,-96 -74.8,-96 -75,-96 -75.2,-96 -75.4,-96 -75.6,-96 -75.8,-96 -76,-97.8 -76,-99.6 -76,-101.4 -76,-103.2 -76,-105 -76,-106.8 -76,-108.6 -76,-110.4 -76,-112.2 -76,-114 -76,-114 -75.8,-114 -75.6,-114 -75.4,-114 -75.2,-114 -75,-114 -74.8,-114 -74.6,-114 -74.4,-114 -74.2,-114 -74))", "dataset_titles": "200 MHz ground-penetrating radar from Winkie Nunatak, West Antarctica; Cosmogenic-Nuclide data at ICE-D; Firn and Ice Density at Winkie Nunatak; Ice-penetrating radar data from the northern embayment of the Mt. Murphy massif; Ice-penetrating radar data from the Thwaites Glacier grounding zone; In situ 14C data from a subglacial bedrock core near Pope and Thwaites glaciers; NBP1902 Expedition data; Pine Island Bay Relative Sea-Level Data", "datasets": [{"dataset_uid": "200083", "doi": "10.7284/908147", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1902 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1902"}, {"dataset_uid": "200296", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic-Nuclide data at ICE-D", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "601705", "doi": "10.15784/601705", "keywords": "Antarctica; Cosmogenic Radionuclides; Mount Murphy; Subglacial Bedrock", "people": "Balco, Gregory; Goehring, Brent; Venturelli, Ryan", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "In situ 14C data from a subglacial bedrock core near Pope and Thwaites glaciers", "url": "https://www.usap-dc.org/view/dataset/601705"}, {"dataset_uid": "601677", "doi": "10.15784/601677", "keywords": "Antarctica; Ice Penetrating Radar; Pine Island Glacier; Subglacial Bedrock", "people": "Braddock, Scott", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "200 MHz ground-penetrating radar from Winkie Nunatak, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/601677"}, {"dataset_uid": "601838", "doi": "10.15784/601838", "keywords": "Antarctica; Cryosphere; Density; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Density; Ice Core Records; Snow/ice; Snow/Ice", "people": "Venturelli, Ryan", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Firn and Ice Density at Winkie Nunatak", "url": "https://www.usap-dc.org/view/dataset/601838"}, {"dataset_uid": "601860", "doi": "10.15784/601860", "keywords": "Antarctica; Cryosphere; Grounding Zone; Ice Penetrating Radar; Thwaites Glacier", "people": "Goehring, Brent; Balco, Greg; Campbell, Seth", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Ice-penetrating radar data from the Thwaites Glacier grounding zone", "url": "https://www.usap-dc.org/view/dataset/601860"}, {"dataset_uid": "601834", "doi": "10.15784/601834", "keywords": "Antarctica; Cryosphere; Mount Murphy", "people": "Campbell, Seth; Balco, Greg; Goehring, Brent", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Ice-penetrating radar data from the northern embayment of the Mt. Murphy massif", "url": "https://www.usap-dc.org/view/dataset/601834"}, {"dataset_uid": "601554", "doi": "10.15784/601554", "keywords": "Antarctica; Pine Island Bay; Radiocarbon; Raised Beaches", "people": "Braddock, Scott; Hall, Brenda", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Pine Island Bay Relative Sea-Level Data", "url": "https://www.usap-dc.org/view/dataset/601554"}], "date_created": "Tue, 16 Mar 2021 00:00:00 GMT", "description": "This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. The Thwaites Glacier system dominates the contribution to sea-level rise from Antarctica. Predicting how this system will evolve in coming decades, and thereby its likely contribution to sea level, requires detailed understanding of how it has responded to changes in climate and oceanographic conditions in the past. This project will provide a record of regional sea-level change by establishing chronologies for raised marine beaches as well as the timing and duration of periods of retreat of Thwaites Glacier during the past 10,000 years by sampling and dating bedrock presently covered by Thwaites Glacier via subglacial drilling. Together with climatic and oceanographic conditions from other records, these will provide boundary conditions for past-to-present model simulations as well as those used to predict future glacier changes under a range of climate scenarios. Specifically, the project will test the hypothesis--implied by existing geological evidence from the region--that present rapid retreat of the Thwaites Glacier system is reversible. The team aims to utilize two approaches: 1. To reconstruct relative sea level during the Holocene, it will map and date raised marine and shoreline deposits throughout Pine Island Bay. Chronological constraints on sea-level change will be provided by radiocarbon dating of organic material in landforms and sediments that are genetically related to past sea level, such as shell fragments, bones of marine fauna, and penguin guano. 2. To obtain geological evidence for past episodes of grounding-line retreat, the team will apply cosmogenic-nuclide exposure-dating of subglacial bedrock. Using drill systems recently developed for subglacial bedrock recovery, the team will obtain subglacial bedrock from sites where ice thickness is dynamically linked to grounding-line position in the Thwaites system (specifically in the Hudson Mountains, and near Mount Murphy). Observation of significant cosmogenic-nuclide concentrations--the team will primarily measure Beryllium-10 and in situ Carbon-14--in these samples would provide direct, unambiguous evidence for past episodes of thinning linked to grounding-line retreat as well as constraints on their timing and duration. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -96.0, "geometry": "POINT(-105 -75)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; FIELD INVESTIGATION; GLACIERS/ICE SHEETS; GLACIAL LANDFORMS; LABORATORY; Amd/Us; USAP-DC; GLACIATION; Amundsen Sea; USA/NSF", "locations": "Amundsen Sea", "north": -74.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Goehring, Brent; Hall, Brenda; Campbell, Seth; Venturelli, Ryan A; Balco, Gregory", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "R2R", "repositories": "ICE-D; R2R; USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -76.0, "title": "NSF-NERC: Geological History Constraints on the Magnitude of Grounding Line Retreat in the Thwaites Glacier System", "uid": "p0010165", "west": -114.0}, {"awards": "2048351 Lindow, Julia", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 26 Feb 2021 00:00:00 GMT", "description": "Part I: Nontechnical Antarcticas ice sheets constitute the largest ice mass on Earth, with approximately 53 meters of sea level equivalent stored in the East Antarctic Ice Sheet alone. The history of the East Antarctic Ice Sheet is therefore important to understanding and predicting changes in sea level and Earths climate. There is conflicting evidence regarding long-term stability of the East Antarctic Ice Sheet, over the last twenty million years. To better understand past ice sheet changes, together with the history of the Transantarctic Mountains, accurate time scales are needed. One of the few dating methods applicable to the Antarctic glacial deposits, that record past ice sheet changes, is the measurement of rare isotopes produced by cosmic rays in surface rock samples, referred to as cosmogenic nuclides. Whenever a rock surface is exposed/free of cover, cosmic rays produce rare isotopes such as helium-3, beryllium-10, and neon-21within the minerals. This project will involve measurement of all three isotopes in some of the oldest glacial deposits found at high elevation in the Transantarctic Mountains. Because the amount of each isotope is directly linked to the exposure time, this can be used to calculate the age of a surface. This method requires knowledge of the rates that cosmic radiation produces each isotope, which depends upon mineral composition, and is presently a limitation of the method. The goal of this project is to advance and enhance existing measurement methods and expand the range of possibilities in surface dating with new measurements of all three isotopes in pyroxene, a mineral that is commonly found throughout the Transantarctic Mountains. This technological progress will allow a better application of the surface exposure dating method, which in turn will help to reconstruct Antarctic ice sheet history and provide valuable knowledge of former ice-extent. Understanding Antarcticas ice-sheet history is crucial to predict its influence on past and future sea level changes. Part II: Technical Description Measurements of in-situ produced cosmogenic nuclides in Antarctic surficial rock samples provide unique time scales for glacial and landscape evolution processes. However, due to analytical challenges, pyroxene-bearing and widely distributed lithologies like the Ferrar dolerite of the Transantarctic Mountains, are underutilized. This proposal aims to changes this and to improve the cosmogenic nuclide methodologies for stable isotopes (21Ne and 3He) and radioactive nuclides (10Be) in pyroxenes. Proposed methodological improvements will be directly applicable to erosion rates and deposition ages of important glacial deposits, such as the controversial Sirius Group tills, and also to younger glacial features. Bennett Platform is the focus of this study because it is one of the southern-most Sirius Group outcrops along the Transantarctic Mountains, where cosmogenic ages are sparse. Preliminary measurements demonstrate large discrepancies between 3He and 21Ne age determinations in Sirius Group pyroxenes. One possible explanation is composition dependence of the 21Ne production rates. Coupled measurements of 3He, 21Ne, and 10Be in well-characterized pyroxene mineral separates from Ferrar dolerite will be used to better constrain the production rates, major element and trace element dependencies, the assumptions of the method, and ultimately advance the application of cosmogenic nuclides to mafic Antarctic lithologies. The main goals of this study are to improve measurement protocols for 10Be in pyroxene, and the determination of the composition dependence of 21Ne production rates by measuring mineral compositions (by electron microprobe), and nuclide concentrations in mineral pairs from young lava flows. Further aims are the validation of the nucleogenic contributions and the effects of helium diffusive loss through measurements of 3He/21Ne production ratios, combined with measurements of shielded samples of the Ferrar dolerite. Combined measurements of 3He, 21Ne and 10Be in pyroxenes have rarely been published for individual samples in Antarctica. The new and unique measurements of this study will advance the applicability of in-situ produced cosmogenic nuclides to both young and ancient Antarctic surfaces. The study will be performed using existing samples: no field work is requested. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; AMD; FIELD INVESTIGATION; LABORATORY; Transantarctic Mountains; USAP-DC; GLACIAL LANDFORMS; Amd/Us", "locations": "Transantarctic Mountains", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Lindow, Julia; Kurz, Mark D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "New Cosmogenic 21Ne and 10Be Measurements in the Transantarctic Mountains", "uid": "p0010163", "west": null}, {"awards": "1738992 Pettit, Erin C; 1929991 Pettit, Erin C", "bounds_geometry": "POLYGON((-114 -74,-113 -74,-112 -74,-111 -74,-110 -74,-109 -74,-108 -74,-107 -74,-106 -74,-105 -74,-104 -74,-104 -74.2,-104 -74.4,-104 -74.6,-104 -74.8,-104 -75,-104 -75.2,-104 -75.4,-104 -75.6,-104 -75.8,-104 -76,-105 -76,-106 -76,-107 -76,-108 -76,-109 -76,-110 -76,-111 -76,-112 -76,-113 -76,-114 -76,-114 -75.8,-114 -75.6,-114 -75.4,-114 -75.2,-114 -75,-114 -74.8,-114 -74.6,-114 -74.4,-114 -74.2,-114 -74))", "dataset_titles": "AMIGOS-IIIa \"Cavity\" Aquadopp current data Jan 2020 - Mar 2021; AMIGOS-IIIa \"Cavity\" Seabird CTD data Jan 2020 - Dec 2021; AMIGOS-III Cavity and Channel Snow Height and Thermistor Snow Temperature Data; AMIGOS-IIIc \"Channel\" Aquadopp current data Jan 2020 - Mar 2021; AMIGOS-IIIc \"Channel\" Seabird CTD data Jan 2020 - Dec 2021; CTD data from the NBP 19/02 cruise as part of the TARSAN project in the Amundsen Sea during austral summer 2018/2019; Dotson-Crosson Ice Shelf data from a tale of two ice shelves paper; Pinning-point shear-zone fractures in Thwaites Eastern Ice Shelf (2002 - 2022); Sentinel-1-derived monthly-averaged velocity components from Thwaites Eastern Ice Shelf, 2016 - 2022; SIIOS Temporary Deployment; Sub-ice-shelf seafloor elevation derived from point-source active-seismic data on Thwaites Eastern Ice Shelf and Dotson Ice Shelf, December 2019 and January 2020; Thwaites Eastern Ice Shelf GPS displacements; Thwaites Glacier grounding lines for 2014 and 2019/20 from height above flotation; Two-year velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2001-2020; Visala WXT520 weather station data at the Cavity and Channel AMIGOS-III sites; Yearly velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2013-2022", "datasets": [{"dataset_uid": "601547", "doi": "10.15784/601547", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIa \"Cavity\" Aquadopp current data Jan 2020 - Mar 2021", "url": "https://www.usap-dc.org/view/dataset/601547"}, {"dataset_uid": "601478", "doi": "10.15784/601478", "keywords": "Antarctica; Glaciology; Ice Shelf; Ice Velocity; Strain Rate; Thwaites Glacier", "people": "Klinger, Marin; Wild, Christian; Scambos, Ted; Wallin, Bruce; Truffer, Martin; Alley, Karen; Pettit, Erin; Muto, Atsu", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Two-year velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2001-2020", "url": "https://www.usap-dc.org/view/dataset/601478"}, {"dataset_uid": "601925", "doi": "10.15784/601925", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GNSS; Ice Shelf; Ice Velocity; Thwaites Glacier", "people": "Pettit, Erin; Alley, Karen; Wild, Christian; Scambos, Ted; Truffer, Martin", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Thwaites Eastern Ice Shelf GPS displacements", "url": "https://www.usap-dc.org/view/dataset/601925"}, {"dataset_uid": "601499", "doi": "10.15784/601499", "keywords": "Amundsen Sea; Antarctica; Glaciology; Grounding Line; Ice Shelf; Thwaites Glacier", "people": "Truffer, Martin; Pettit, Erin; Scambos, Ted; Muto, Atsu; Alley, Karen; Wild, Christian", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Thwaites Glacier grounding lines for 2014 and 2019/20 from height above flotation", "url": "https://www.usap-dc.org/view/dataset/601499"}, {"dataset_uid": "601914", "doi": null, "keywords": "Antarctica; Cryosphere; Glaciology; Ice Shelf; Thwaites Glacier; Velocity", "people": "Wild, Christian; Alley, Karen; Muto, Atsuhiro; Scambos, Ted; Pettit, Erin; Truffer, Martin; Luckman, Adrian; Lilien, David; Banerjee, Debangshu", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Sentinel-1-derived monthly-averaged velocity components from Thwaites Eastern Ice Shelf, 2016 - 2022", "url": "https://www.usap-dc.org/view/dataset/601914"}, {"dataset_uid": "601904", "doi": "10.15784/601904", "keywords": "Antarctica; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Glaciology; Ice Shelf; Remote Sensing; Satellite Imagery; Thwaites; Thwaites Glacier; Velocity", "people": "Pettit, Erin; Alley, Karen; Wild, Christian; Banerjee, Debangshu; Lilien, David; Truffer, Martin; Muto, Atsuhiro; Luckman, Adrian; Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Yearly velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2013-2022", "url": "https://www.usap-dc.org/view/dataset/601904"}, {"dataset_uid": "601903", "doi": "10.15784/601903", "keywords": "Antarctica; Cryosphere; Fractures; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Thwaites", "people": "Lilien, David; Alley, Karen; Truffer, Martin; Luckman, Adrian; Wild, Christian; Banerjee, Debangshu; Pettit, Erin; Scambos, Ted; Muto, Atsuhiro", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Pinning-point shear-zone fractures in Thwaites Eastern Ice Shelf (2002 - 2022)", "url": "https://www.usap-dc.org/view/dataset/601903"}, {"dataset_uid": "601544", "doi": "10.15784/601544", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Salinity; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIa \"Cavity\" Seabird CTD data Jan 2020 - Dec 2021", "url": "https://www.usap-dc.org/view/dataset/601544"}, {"dataset_uid": "601545", "doi": "10.15784/601545", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Salinity; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIc \"Channel\" Seabird CTD data Jan 2020 - Dec 2021", "url": "https://www.usap-dc.org/view/dataset/601545"}, {"dataset_uid": "601548", "doi": "10.15784/601548", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIc \"Channel\" Aquadopp current data Jan 2020 - Mar 2021", "url": "https://www.usap-dc.org/view/dataset/601548"}, {"dataset_uid": "601549", "doi": "10.15784/601549", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Pine Island Bay; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Visala WXT520 weather station data at the Cavity and Channel AMIGOS-III sites", "url": "https://www.usap-dc.org/view/dataset/601549"}, {"dataset_uid": "601552", "doi": "10.15784/601552", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Pine Island Bay; Snow Accumulation; Snow Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-III Cavity and Channel Snow Height and Thermistor Snow Temperature Data", "url": "https://www.usap-dc.org/view/dataset/601552"}, {"dataset_uid": "601578", "doi": "10.15784/601578", "keywords": "Antarctica; Dotson Ice Shelf; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology", "people": "Segabinazzi-Dotto, Tiago; Wild, Christian", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Dotson-Crosson Ice Shelf data from a tale of two ice shelves paper", "url": "https://www.usap-dc.org/view/dataset/601578"}, {"dataset_uid": "200204", "doi": "https://doi.org/10.7914/SN/1L_2019", "keywords": null, "people": null, "repository": "International Federation of Digital Seismograph Networks", "science_program": null, "title": "SIIOS Temporary Deployment", "url": "http://www.fdsn.org/networks/detail/1L_2019/"}, {"dataset_uid": "200321", "doi": "10.5285/e338af5d-8622-05de-e053-6c86abc06489", "keywords": null, "people": null, "repository": "British Oceanographic Data Centre", "science_program": null, "title": "CTD data from the NBP 19/02 cruise as part of the TARSAN project in the Amundsen Sea during austral summer 2018/2019", "url": "https://www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/e338af5d-8622-05de-e053-6c86abc06489/"}, {"dataset_uid": "601827", "doi": "10.15784/601827", "keywords": "Antarctica; Cryosphere; Dotson Ice Shelf; Thwaites Glacier", "people": "Pettit, Erin; Wild, Christian; Alley, Karen; Scambos, Ted; Muto, Atsuhiro; Truffer, Martin; Pomraning, Dale; Wallin, Bruce; Roccaro, Alexander", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Sub-ice-shelf seafloor elevation derived from point-source active-seismic data on Thwaites Eastern Ice Shelf and Dotson Ice Shelf, December 2019 and January 2020", "url": "https://www.usap-dc.org/view/dataset/601827"}], "date_created": "Mon, 22 Feb 2021 00:00:00 GMT", "description": "This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Thwaites and neighboring glaciers in the Amundsen Sea Embayment are rapidly losing mass in response to recent climate warming and related changes in ocean circulation. Mass loss from the Amundsen Sea Embayment could lead to the eventual collapse of the West Antarctic Ice Sheet, raising the global sea level by up to 2.5 meters (8 feet) in as short as 500 years. The processes driving the loss appear to be warmer ocean circulation and changes in the width and flow speed of the glacier, but a better understanding of these changes is needed to refine predictions of how the glacier will evolve. One highly sensitive process is the transitional flow of glacier ice from land onto the ocean to become a floating ice shelf. This flow of ice from grounded to floating is affected by changes in air temperature and snowfall at the surface; the speed and thickness of ice feeding it from upstream; and the ocean temperature, salinity, bathymetry, and currents that the ice flows into. The project team will gather new measurements of each of these local environmental conditions so that it can better predict how future changes in air, ocean, or the ice will affect the loss of ice to the ocean in this region. Current and anticipated near-future mass loss from Thwaites Glacier and nearby Amundsen Sea Embayment region is mainly attributed to reduction in ice-shelf buttressing due to sub-ice-shelf melting by intrusion of relatively warm Circumpolar Deep Water into sub-ice-shelf cavities. Such predictions for mass loss, however, still lack understanding of the dominant processes at and near grounding zones, especially their spatial and temporal variability, as well as atmospheric and oceanic drivers of these processes. This project aims to constrain and compare these processes for the Thwaites and the Dotson Ice Shelves, which are connected through upstream ice dynamics, but influenced by different submarine troughs. The team\u0027s specific objectives are to: 1) install atmosphere-ice-ocean multi-sensor remote autonomous stations on the ice shelves for two years to provide sub-daily continuous observations of concurrent oceanic, glaciologic, and atmospheric conditions; 2) measure ocean properties on the continental shelf adjacent to ice-shelf fronts (using seal tagging, glider-based and ship-based surveys, and existing moored and conductivity-temperature-depth-cast data), 3) measure ocean properties into sub-ice-shelf cavities (using autonomous underwater vehicles) to detail ocean transports and heat fluxes; and 4) constrain current ice-shelf and sub-ice-shelf cavity geometry, ice flow, and firn properties for the ice-shelves (using radar, active-source seismic, and gravimetric methods) to better understand the impact of ocean and atmosphere on the ice-sheet change. The team will also engage the public and bring awareness to this rapidly changing component of the cryosphere through a \"Live from the Ice\" social media campaign in which the public can follow the action and data collection from the perspective of tagged seals and autonomous stations. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -104.0, "geometry": "POINT(-109 -75)", "instruments": null, "is_usap_dc": true, "keywords": "Thwaites Glacier; FIELD SURVEYS; GLACIERS/ICE SHEETS", "locations": "Thwaites Glacier", "north": -74.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences; Antarctic Glaciology; Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science", "paleo_time": null, "persons": "Truffer, Martin; Scambos, Ted; Muto, Atsu; Heywood, Karen; Boehme, Lars; Hall, Robert; Wahlin, Anna; Lenaerts, Jan; Pettit, Erin", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "British Oceanographic Data Centre; International Federation of Digital Seismograph Networks; USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -76.0, "title": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment", "uid": "p0010162", "west": -114.0}, {"awards": "1443448 Schaefer, Joerg; 1443144 Steig, Eric", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Simulations of 10Be over Antarctica; South Pole ice Core 10Be CE", "datasets": [{"dataset_uid": "601431", "doi": "10.15784/601431", "keywords": "Antarctica; South Pole", "people": "Schaefer, Joerg; Ding, Qinghua; Steig, Eric J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Simulations of 10Be over Antarctica", "url": "https://www.usap-dc.org/view/dataset/601431"}, {"dataset_uid": "601535", "doi": "10.15784/601535", "keywords": "Antarctica; South Pole", "people": "Schaefer, Joerg", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole ice Core 10Be CE", "url": "https://www.usap-dc.org/view/dataset/601535"}], "date_created": "Thu, 04 Feb 2021 00:00:00 GMT", "description": "This project will acquire measurements of the concentration of beryllium-10 (10Be) from an ice core from the South Pole, Antarctica. An isotope of the element beryllium, 10Be, is produced in the atmosphere by high-energy protons (cosmic rays) that enter Earth\u0027s atmosphere from space. It is removed from the atmosphere by settling or by scavenging by rain or snowfall. Hence, concentrations of 10Be in snow at the South Pole reflect the production rate of 10Be in the atmosphere. Because the rate of production of 10Be over Antarctica depends primarily on the strength of the Sun\u0027s magnetic field, measurements of 10Be in the South Pole ice core will provide a record of changes in solar activity. The South Pole ice core will reach an age of 40,000 years at the bottom. The project will result in measurements of 10Be at annual resolution for the last 100 years and selected periods in the more distant past, such as the Maunder Minimum, a period during the late 17th century during which no sunspots were observed, or the last glacial cold period, about 20,000 years ago. A climate model that can simulate the production of 10Be in the atmosphere, it\u0027s transport through the atmosphere, and its deposition at the snow surface in Antarctica will be used to aid in using the 10Be data to determine past changes in solar activity from decadal to millennial scale, and in turn to evaluate the role of the Sun in Earth?s climate from a new perspective. The production of 10Be in Earth\u0027s atmosphere results from the spallation of oxygen and nitrogen in the atmosphere by cosmic rays. Cosmic ray variations in the high latitudes are primarily modulated by solar variability. Time-series records of 10Be from ice cores are therefore important for deriving variations in solar activity through time, which is fundamental to understanding climate variability. Deposition of 10Be to the ice surface is also influenced by variability in atmospheric circulation and deposition processes, and South Pole is the best available location for minimizing the influence of variable atmospheric circulation on 10Be deposition. To date, only one record of 10Be exists from South Pole; that record is widely used in solar forcing estimates used in climate models, but covers only the last millennium and ends in CE 1982. We will obtain 10Be concentration measurements in a 1500-m, 40000-year long ice core from the South Pole. This will extend the existing record both further back in time and forward to the present, providing overlap with the modern instrumental record of solar and climate variability. High resolution (annual to biannual) measurements will be made in targeted areas of interest, including the last 100 years, the Maunder Minimum (CE 1650-1715), and the last glacial maximum. The novel data will be used in conjunction with climate model experiments that incorporate 10Be production, transport, and deposition physics. Together, data and modeling will create an updated record of atmospheric 10Be production and hence of solar activity.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "COSMIC RAYS; LABORATORY; BERYLLIUM-10 ANALYSIS; SNOW/ICE; South Pole; GLACIERS; ICE CORE RECORDS", "locations": "South Pole", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Schaefer, Joerg; Steig, Eric J.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: A High-sensitivity Beryllium-10 Record from an Ice Core at South Pole", "uid": "p0010158", "west": -180.0}, {"awards": "0838783 Conway, Howard; 0838256 Todd, Claire; 0838784 Balco, Gregory", "bounds_geometry": "POLYGON((-66.27517 -83.23921,-65.341961 -83.23921,-64.408752 -83.23921,-63.475543 -83.23921,-62.542334 -83.23921,-61.609125 -83.23921,-60.675916 -83.23921,-59.742707 -83.23921,-58.809498 -83.23921,-57.876289 -83.23921,-56.94308 -83.23921,-56.94308 -83.359865,-56.94308 -83.48052,-56.94308 -83.601175,-56.94308 -83.72183,-56.94308 -83.842485,-56.94308 -83.96314,-56.94308 -84.083795,-56.94308 -84.20445,-56.94308 -84.325105,-56.94308 -84.44576,-57.876289 -84.44576,-58.809498 -84.44576,-59.742707 -84.44576,-60.675916 -84.44576,-61.609125 -84.44576,-62.542334 -84.44576,-63.475543 -84.44576,-64.408752 -84.44576,-65.341961 -84.44576,-66.27517 -84.44576,-66.27517 -84.325105,-66.27517 -84.20445,-66.27517 -84.083795,-66.27517 -83.96314,-66.27517 -83.842485,-66.27517 -83.72183,-66.27517 -83.601175,-66.27517 -83.48052,-66.27517 -83.359865,-66.27517 -83.23921))", "dataset_titles": "Interface to observational data collected in this project and geologic age information derived therefrom. Dynamic content, continuously updated.; Web page linking to documents containing data collected in this project. Static content", "datasets": [{"dataset_uid": "200195", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Web page linking to documents containing data collected in this project. Static content", "url": "http://noblegas.berkeley.edu/~balcs/pensacola/"}, {"dataset_uid": "200194", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Interface to observational data collected in this project and geologic age information derived therefrom. Dynamic content, continuously updated.", "url": "https://version2.ice-d.org/antarctica/nsf/"}], "date_created": "Sat, 19 Dec 2020 00:00:00 GMT", "description": "This award supports a project to find and date geologic evidence of past ice-marginal positions in the Pensacola Mountains, which border the Foundation Ice Stream at the head of the Weddell Sea embayment. The project will involve glacial geologic mapping and cosmogenic-nuclide surface exposure dating of glacially transported erratics. An ice-flow model will be used to link our exposure-dating results together in a glaciologically consistent way, and to relate them to regional LGM to Holocene elevation changes. A secondary focus of the project seeks to improve the effectiveness of exposure-dating methods in understanding ice sheet change. Changes in the location of the ice margin, and thus the exposure ages that record these changes, are controlled not only by regional ice sheet mass balance, but also by local effects on snow- and icefields immediately adjacent to the exposure-dating sites. This part of the project will combine glaciological observations near the present ice margin with targeted exposure- age sampling in an effort to better understand the processes controlling the ice margin location, and improve the interpretation of very recent exposure-age data as a record of latest Holocene to present ice sheet changes. The intellectual merit of the project is that it will provide direct geologic evidence of LGM-to-Holocene ice volume change in a region of Antarctica where no such evidence now exists. The broader impacts of the work involve both gathering information needed for accurate understanding of past and present global sea level change. Secondly, this project will help to develop and maintain the human and intellectual resources necessary for continued excellence in polar research and global change education, by linking experienced Antarctic researchers with early career scientists who seek to develop their expertise in both research and education. In addition, it brings together two early career scientists whose careers are focused at opposite ends of the research-education spectrum, thus facilitating better integration of research and education both in the careers of these scientists and in the outcome of this project. This award has field work in Antarctica.", "east": -56.94308, "geometry": "POINT(-61.609125 -83.842485)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; GLACIER THICKNESS/ICE SHEET THICKNESS; NOT APPLICABLE; GLACIER ELEVATION/ICE SHEET ELEVATION; Antarctica", "locations": "Antarctica", "north": -83.23921, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Balco, Gregory; Todd, Claire; Conway, Howard", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "PI website", "repositories": "ICE-D; PI website", "science_programs": null, "south": -84.44576, "title": "Collaborative Research: Last Glacial Maximum and Deglaciation Chronology for the Foundation Ice Stream and Southeastern Weddell Sea Embayment", "uid": "p0010151", "west": -66.27517}, {"awards": "1842059 Huber, Matthew; 1842049 Kim, Sora; 1842115 Jahn, Alexandra; 1842176 Bizimis, Michael", "bounds_geometry": "POLYGON((-56.693516 -64.209061,-56.6823452 -64.209061,-56.6711744 -64.209061,-56.6600036 -64.209061,-56.6488328 -64.209061,-56.637662 -64.209061,-56.6264912 -64.209061,-56.6153204 -64.209061,-56.6041496 -64.209061,-56.5929788 -64.209061,-56.581808 -64.209061,-56.581808 -64.2143344,-56.581808 -64.2196078,-56.581808 -64.2248812,-56.581808 -64.2301546,-56.581808 -64.235428,-56.581808 -64.2407014,-56.581808 -64.2459748,-56.581808 -64.2512482,-56.581808 -64.2565216,-56.581808 -64.261795,-56.5929788 -64.261795,-56.6041496 -64.261795,-56.6153204 -64.261795,-56.6264912 -64.261795,-56.637662 -64.261795,-56.6488328 -64.261795,-56.6600036 -64.261795,-56.6711744 -64.261795,-56.6823452 -64.261795,-56.693516 -64.261795,-56.693516 -64.2565216,-56.693516 -64.2512482,-56.693516 -64.2459748,-56.693516 -64.2407014,-56.693516 -64.235428,-56.693516 -64.2301546,-56.693516 -64.2248812,-56.693516 -64.2196078,-56.693516 -64.2143344,-56.693516 -64.209061))", "dataset_titles": "Data from: Probing the ecology and climate of the Eocene Southern Ocean with sand tiger sharks Striatolamia macrota", "datasets": [{"dataset_uid": "200183", "doi": "https://doi.org/10.6071/M34T1Z", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Data from: Probing the ecology and climate of the Eocene Southern Ocean with sand tiger sharks Striatolamia macrota", "url": "https://datadryad.org/stash/dataset/doi:10.6071/M34T1Z"}], "date_created": "Tue, 15 Dec 2020 00:00:00 GMT", "description": "The Earth\u0027s climate has changed through time and during the Eocene Epoch (56 to 34 million years ago) there was a transition from \u0027greenhouse\u0027 to \u0027icehouse\u0027 conditions. During the Eocene, a shift to cooler temperatures at high latitudes resulted in the inception of polar glaciation. This in turn affected the environment for living organisms. This project looks to uncover the interaction between biological, oceanographic, and climate systems for the Eocene in Antarctica using chemical analysis of fossil shark teeth collected during past expeditions. The combination of paleontological and geochemical analyses will provide insight to the past ecology and ocean conditions; climate models will be applied to test the role of tectonics, greenhouse gas concentration and ocean circulation on environmental change during this time period. The study contributes to understanding the interaction of increased atmospheric carbon dioxide and ocean circulation. This project also seeks to improve diversity, equity, and inclusion within the geosciences workforce with efforts targeted to undergraduate, graduate, postdoctoral, and early career faculty. The research goal is to elucidate the processes leading from the Eocene greenhouse to Oligocene icehouse conditions. Previous explanations for this climate shift centers on Antarctica, where tectonic configurations influenced oceanic gateways, ocean circulation reduced heat transport, and/or greenhouse gas declines prompted glaciation. The team will reconstruct watermass, current, and climate fluctuations proximal to the Antarctic Peninsula using geochemical indicators (oxygen and neodymium isotope composition) from fossil shark teeth collected from Seymour Island. The approach builds on previous shark paleontological studies, incorporates geochemical analyses for environmental reconstruction (i.e., temperature gradients and ocean circulation), and tests hypotheses on Earth System dynamics using novel global climate model simulations with geochemical tracers. This project will advance global climate modeling capabilities with experiments that consider Eocene tectonic configuration within isotope-enabled climate model simulations. A comparison of geochemical results from Eocene climate simulations and empirical records of shark teeth will reveal processes and mechanisms central to the Eocene Antarctic climatic shift. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -56.581808, "geometry": "POINT(-56.637662 -64.235428)", "instruments": null, "is_usap_dc": true, "keywords": "FISH; USA/NSF; OXYGEN ISOTOPE ANALYSIS; WATER MASSES; Amd/Us; AMD; USAP-DC; OXYGEN ISOTOPES; LABORATORY; Seymour Island; Sharks; Striatolamia Macrota", "locations": "Seymour Island", "north": -64.209061, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Integrated System Science; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e PALEOGENE \u003e EOCENE", "persons": "Kim, Sora; Scher, Howard; Huber, Matthew; Jahn, Alexandra", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "Dryad", "repositories": "Dryad", "science_programs": null, "south": -64.261795, "title": "Collaborative Research: Integrating Eocene Shark Paleoecology and Climate Modeling to reveal Southern Ocean Circulation and Antarctic Glaciation", "uid": "p0010146", "west": -56.693516}, {"awards": "1842021 Campbell, Seth", "bounds_geometry": "POLYGON((-168 -82,-162.3 -82,-156.6 -82,-150.9 -82,-145.2 -82,-139.5 -82,-133.8 -82,-128.1 -82,-122.4 -82,-116.7 -82,-111 -82,-111 -82.5,-111 -83,-111 -83.5,-111 -84,-111 -84.5,-111 -85,-111 -85.5,-111 -86,-111 -86.5,-111 -87,-116.7 -87,-122.4 -87,-128.1 -87,-133.8 -87,-139.5 -87,-145.2 -87,-150.9 -87,-156.6 -87,-162.3 -87,-168 -87,-168 -86.5,-168 -86,-168 -85.5,-168 -85,-168 -84.5,-168 -84,-168 -83.5,-168 -83,-168 -82.5,-168 -82))", "dataset_titles": "2017 GPR Observations of the Whillans and Mercer Ice Streams; Whillans and Mercer Shear Margin Ice Flow simulation in ISSM", "datasets": [{"dataset_uid": "601404", "doi": "10.15784/601404", "keywords": "Antarctica; Glaciology; Ice Sheet Flow Model; Ice Shelf Dynamics; Mercer Ice Stream; Model Data; Snow/ice; Snow/Ice; Whillans Ice Stream", "people": "Kaluzienski, Lynn", "repository": "USAP-DC", "science_program": null, "title": "Whillans and Mercer Shear Margin Ice Flow simulation in ISSM", "url": "https://www.usap-dc.org/view/dataset/601404"}, {"dataset_uid": "601403", "doi": "10.15784/601403", "keywords": "Antarctica; Crevasses; Glaciology; GPR; GPS; Ice Sheet Flow Model; Ice Shelf Dynamics; Snow/ice; Snow/Ice; Whillans Ice Stream", "people": "Kaluzienski, Lynn", "repository": "USAP-DC", "science_program": null, "title": "2017 GPR Observations of the Whillans and Mercer Ice Streams", "url": "https://www.usap-dc.org/view/dataset/601403"}], "date_created": "Mon, 14 Dec 2020 00:00:00 GMT", "description": "The Siple Coast in West Antarctica has undergone significant glacier changes over the last millenium. Several ice streams--rapidly moving streams of ice bordered by slow-moving ice--exist in this region that feeds into the Ross Ice Shelf. A long-term slowdown of Whillans Ice Stream appears to be occurring, and this is affecting the zone between the Whillans and Mercer Ice Streams. However, the consistency of this slowdown and resulting changes to the shear margin between the two ice streams are unknown. The goal of this project is to quantify the observed changes over the past decade and understand the dynamic processes that cause them. A collateral benefit of and driver for this as a RAPID project is to test a method for assessing where crevassing will develop in this zone of steep velocity gradients. Such a method may benefit not only near-term field-project planning in the 2018-19 field season, but also planning for future fieldwork and traverses. The team will use remote sensing feature-tracking techniques to determine transient velocity patterns and shifts in the shear-zone location over the last 10-plus years. This velocity time series will be incorporated into a large-scale ice-sheet model to estimate ice-sheet susceptibility to changing boundary conditions over the next century based on likely regional ice-flux scenarios. This approach is an extension of recent work conducted by the team that shows promise for predicting areas of changing high strain rates indicative of an active glacier shear margin. The ultimate objectives are to characterize the flow field of merging ice streams over time and investigate lateral boundary migration. This will provide a better understanding of shear-margin control on ice-shelf and up-glacier stability. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -111.0, "geometry": "POINT(-139.5 -84.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "FIELD SURVEYS; Whillans Ice Stream; USAP-DC; Amd/Us; USA/NSF; GLACIER MOTION/ICE SHEET MOTION; MODELS; AMD", "locations": "Whillans Ice Stream", "north": -82.0, "nsf_funding_programs": "Antarctic Glaciology; Polar Special Initiatives", "paleo_time": null, "persons": "Campbell, Seth; Koons, Peter", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e MODELS \u003e MODELS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.0, "title": "RAPID Proposal: Constraining kinematics of the Whillans/Mercer Ice Stream Confluence", "uid": "p0010145", "west": -168.0}, {"awards": "1908399 Bizimis, Michael; 1908548 Feakins, Sarah", "bounds_geometry": "POLYGON((74.787 -67.27617,74.816483 -67.27617,74.845966 -67.27617,74.875449 -67.27617,74.904932 -67.27617,74.934415 -67.27617,74.963898 -67.27617,74.993381 -67.27617,75.022864 -67.27617,75.052347 -67.27617,75.08183 -67.27617,75.08183 -67.31817,75.08183 -67.36017,75.08183 -67.40217,75.08183 -67.44417,75.08183 -67.48617,75.08183 -67.52817,75.08183 -67.57017,75.08183 -67.61217,75.08183 -67.65417,75.08183 -67.69617,75.052347 -67.69617,75.022864 -67.69617,74.993381 -67.69617,74.963898 -67.69617,74.934415 -67.69617,74.904932 -67.69617,74.875449 -67.69617,74.845966 -67.69617,74.816483 -67.69617,74.787 -67.69617,74.787 -67.65417,74.787 -67.61217,74.787 -67.57017,74.787 -67.52817,74.787 -67.48617,74.787 -67.44417,74.787 -67.40217,74.787 -67.36017,74.787 -67.31817,74.787 -67.27617))", "dataset_titles": "Ejtibbett/EOTproxymodel: Proxy Model Comparison for the Eocene-Oligocene Transition [Computational Notebook]; Paleoceanography and biomarker data from the Antarctic Peninsula over the past 37-3 million years; Prydz Bay East Antarctica, biomarkers and pollen, 36-33 million years; Sabrina Coast East Antarctica, Pollen and Biomarker Data from 59-38 million years ago; Southern High Latitude Temperature Proxies from the Late Eocene and Early Oligocene [Dataset]", "datasets": [{"dataset_uid": "200317", "doi": "10.25921/n9kg-yw91", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Paleoceanography and biomarker data from the Antarctic Peninsula over the past 37-3 million years", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/35613"}, {"dataset_uid": "200335", "doi": "10.5281/zenodo.7254536", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Southern High Latitude Temperature Proxies from the Late Eocene and Early Oligocene [Dataset]", "url": "https://zenodo.org/record/7254536#.Y2BLgOTMI2w"}, {"dataset_uid": "200334", "doi": "10.5281/zenodo.7254786", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Ejtibbett/EOTproxymodel: Proxy Model Comparison for the Eocene-Oligocene Transition [Computational Notebook]", "url": "https://zenodo.org/record/7254786#.Y2BLAeTMI2w"}, {"dataset_uid": "200206", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Prydz Bay East Antarctica, biomarkers and pollen, 36-33 million years", "url": "https://www.ncdc.noaa.gov/paleo-search/study/32052"}, {"dataset_uid": "200259", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Sabrina Coast East Antarctica, Pollen and Biomarker Data from 59-38 million years ago", "url": "https://www.ncdc.noaa.gov/paleo/study/34772"}], "date_created": "Sat, 05 Dec 2020 00:00:00 GMT", "description": "The East Antarctic Ice Sheet holds the largest volume of freshwater on the planet, in total enough to raise sea level by almost two hundred feet. Even minor adjustments in the volume of ice stored have major implications for coastlines and climates around the world. The question motivating this project is how did the ice grow to cover the continent over thirty million years ago when Antarctica changed from a warmer environment to an ice-covered southern continent? The seafloor of Prydz Bay, a major drainage basin of the East Antarctic Ice Sheet (EAIS), has been drilled previously to recover sediments dating from millions of years prior to and across the time when inception of continental ice sheets occurred in Antarctica. The last remnants of plant material found as \u0027biomarkers\u0027 in the ocean sediments record the chemical signatures of rain and snowfall that fed the plants and later the expanding glaciers. Sediment carried by glaciers was also deposited on the seafloor and can be analyzed to discover how glaciers flowed across the landscape. Here, the researchers will identify precipitation changes that result from, and drive, ice sheet growth. This study will gather data and further analyze samples from the seafloor sediment archives of the International Ocean Discovery Program\u0027s (IODP) core repositories. Ultimately these findings can help inform temperature-precipitation-ice linkages within climate and ice sheet models. The project will support the training of three female, early career scientists (PhD \u0026 MS students, and research technician) and both PIs and the PhD student will continue their engagement with broadening participation efforts (e.g., Women in Science and Engineering Program; local chapters of Society for the advancement of Native Americans and Chicanos in Science and other access programs) to recruit undergraduate student participants from underrepresented minorities at both campuses and from local community colleges. Antarctic earth science education materials will be assisted by professional illustrations to be open access and used in public education and communication efforts to engage local communities in Los Angeles CA and Columbia SC. The researchers at the University of Southern California and the University of South Carolina will together study the penultimate moment of the early Cenozoic greenhouse climate state: the ~4 million years of global cooling that culminated in the Eocene/Oligocene transition (~34 Ma). Significant gaps remain in the understanding of the conditions that preceded ice expansion on Antarctica. In particular, the supply of raw material for ice sheets (i.e., moisture) and the timing, frequency, and duration of precursor glaciations is poorly constrained. This collaborative proposal combines organic and inorganic proxies to examine how Antarctic hydroclimate changed during the greenhouse to icehouse transition. The central hypothesis is that the hydrological cycle weakened as cooling proceeded. Plant-wax hydrogen and carbon isotopes (hydroclimate proxies) and Hf-Nd isotopes of lithogenous and hydrogenous sediments (mechanical weathering proxies) respond strongly and rapidly to precipitation and glacial advance. This detailed and sensitive combined approach will test whether there were hidden glaciations (and/or warm events) that punctuated the pre-icehouse interval. Studies will be conducted on Prydz Bay marine sediment cores in a depositional area for products of weathering and erosion that were (and are) transported through Lambert Graben from the center of Antarctica. The project will yield proxy information about the presence of plants and the hydroclimate of Antarctica and the timing of glacial advance, and is expected to show drying associated with cooling and ice-sheet growth. The dual approach will untangle climate signals from changes in fluvial versus glacial erosion of plant biomarkers. This proposal is potentially transformative because the combination of organic and inorganic proxies can reveal rapid transitions in aridity and glacial expansion, that may have been missed in slower-response proxies and more distal archives. The research is significant as hydroclimate seems to be a key player in the temperature-cryosphere hysteresis. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 75.08183, "geometry": "POINT(74.934415 -67.48617)", "instruments": null, "is_usap_dc": true, "keywords": "MICROFOSSILS; Prydz Bay; PALEOCLIMATE RECONSTRUCTIONS; Sabrina Coast; DROUGHT/PRECIPITATION RECONSTRUCTION; ISOTOPES; AIR TEMPERATURE RECONSTRUCTION", "locations": "Prydz Bay; Sabrina Coast", "north": -67.27617, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Feakins, Sarah; Scher, Howard", "platforms": null, "repo": "NCEI", "repositories": "NCEI; Zenodo", "science_programs": null, "south": -67.69617, "title": "Collaborative Research: Organic and Inorganic Geochemical Investigation of Hydrologic Change in East Antarctica in the 4 Million Years Before Full Glaciation", "uid": "p0010143", "west": 74.787}, {"awards": "1341736 Adams, Byron", "bounds_geometry": "POLYGON((-177.4099 -84.4661,-177.08229 -84.4661,-176.75468 -84.4661,-176.42707 -84.4661,-176.09946 -84.4661,-175.77185 -84.4661,-175.44424 -84.4661,-175.11663000000001 -84.4661,-174.78902 -84.4661,-174.46141 -84.4661,-174.1338 -84.4661,-174.1338 -84.56828,-174.1338 -84.67045999999999,-174.1338 -84.77264,-174.1338 -84.87482,-174.1338 -84.977,-174.1338 -85.07918,-174.1338 -85.18136,-174.1338 -85.28354,-174.1338 -85.38571999999999,-174.1338 -85.4879,-174.46141 -85.4879,-174.78902 -85.4879,-175.11663000000001 -85.4879,-175.44424 -85.4879,-175.77185 -85.4879,-176.09946 -85.4879,-176.42707 -85.4879,-176.75468 -85.4879,-177.08229 -85.4879,-177.4099 -85.4879,-177.4099 -85.38571999999999,-177.4099 -85.28354,-177.4099 -85.18136,-177.4099 -85.07918,-177.4099 -84.977,-177.4099 -84.87482,-177.4099 -84.77264,-177.4099 -84.67045999999999,-177.4099 -84.56828,-177.4099 -84.4661))", "dataset_titles": "Dataset DS-TAMS: Genetic diversity of Collembola from the Transantarctic Mountains; GenBank accession numbers MN619477 to MN619610; Meteoric 10Be data of soils from the Shackleton Glacier region; Shackleton Glacier region soil water-soluble geochemical data; Shackleton Glacier region water-soluble salt isotopes; Soil invertebrate surveys from the Shackleton Glacier region of Antarctica during the 2017-2018 austral summer", "datasets": [{"dataset_uid": "200258", "doi": "doi:10.6073/pasta/7959821e5f6f8d56d94bb6a26873b3ae", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "Soil invertebrate surveys from the Shackleton Glacier region of Antarctica during the 2017-2018 austral summer", "url": "https://doi.org/10.6073/pasta/7959821e5f6f8d56d94bb6a26873b3ae"}, {"dataset_uid": "200174", "doi": "10.5883/DS-TAMS", "keywords": null, "people": null, "repository": "Barcode of Life Datasystems (BOLD)", "science_program": null, "title": "Dataset DS-TAMS: Genetic diversity of Collembola from the Transantarctic Mountains", "url": "http://dx.doi.org/10.5883/DS-TAMS"}, {"dataset_uid": "200175", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "GenBank accession numbers MN619477 to MN619610", "url": "https://www.ncbi.nlm.nih.gov/nuccore/MN619477"}, {"dataset_uid": "601418", "doi": "10.15784/601418", "keywords": "Antarctica; Geochemistry; Shackleton Glacier", "people": "Gardner, Christopher B.; Lyons, W. Berry; Diaz, Melisa A.", "repository": "USAP-DC", "science_program": null, "title": "Shackleton Glacier region soil water-soluble geochemical data", "url": "https://www.usap-dc.org/view/dataset/601418"}, {"dataset_uid": "601419", "doi": "10.15784/601419", "keywords": "Antarctica; Geochemistry; Nitrate; Shackleton Glacier; Stable Isotopes; Sulfate; Transantarctic Mountains", "people": "Lyons, W. Berry; Gardner, Christopher B.; Diaz, Melisa A.", "repository": "USAP-DC", "science_program": null, "title": "Shackleton Glacier region water-soluble salt isotopes", "url": "https://www.usap-dc.org/view/dataset/601419"}, {"dataset_uid": "601421", "doi": "10.15784/601421", "keywords": "Antarctica; Be-10; Beryllium-10; Cosmogenic Radionuclides; Geochemistry; Geomorphology; Shackleton Glacier; Surface Exposure Dates", "people": "Diaz, Melisa A.", "repository": "USAP-DC", "science_program": null, "title": "Meteoric 10Be data of soils from the Shackleton Glacier region", "url": "https://www.usap-dc.org/view/dataset/601421"}], "date_created": "Mon, 02 Nov 2020 00:00:00 GMT", "description": "The project will characterize the functional, taxonomic, biotic and abiotic drivers of soil ecosystems in the Trans Antarctic Mountains (one of the most remote and harsh terrestrial landscapes on the planet). The work will utilize new high-throughput DNA and RNA sequencing technologies to identify members of the microbial communities and determine if the microbial community structures are independent of local environmental heterogeneities. In addition the project will determine if microbial diversity and function are correlated with time since the last glacial maximum (LGM). The expected results will greatly contribute to our knowledge regarding rates of microbial succession and help define the some of the limits to life and life-maintaining processes on Earth. The project will analyze genomes and RNA derived from these genomes to describe the relationships between biodiversity and ecosystem functioning from soils above and below LGM elevations and to correlate these with the environmental drivers associated with their development during the last ~18,000 years. The team will identify the taxonomic diversity and the functional genetic composition within a broad suite of soil biota and examine their patterns of assembly and distribution within the framework of their geological legacies. The project will mentor participants from undergraduate students to postdoctoral researchers and prepare them to effectively engage in research to meet their career aspirations. The project will contribute to ongoing public education efforts through relationships with K-12 teachers and administrators- to include University-Public School partnerships. Less formal activities include public lecture series and weblogs aimed at providing information on Antarctic polar desert ecosystems to the general public. Targeted classrooms near each PI\u0027s institution will participate in online, real-time discussions about current topics in Antarctic ecosystems research.", "east": -174.1338, "geometry": "POINT(-175.77185 -84.977)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; LABORATORY; AMD; Amd/Us; USA/NSF; TERRESTRIAL ECOSYSTEMS; Transantarctic Mountains; USAP-DC", "locations": "Transantarctic Mountains", "north": -84.4661, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Earth Sciences", "paleo_time": null, "persons": "Adams, Byron; Fierer, Noah; Wall, Diana; Diaz, Melisa A.; Gardner, Christopher B.; Lyons, W. Berry", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "EDI", "repositories": "Barcode of Life Datasystems (BOLD); EDI; NCBI GenBank; USAP-DC", "science_programs": null, "south": -85.4879, "title": "Collaborative Research: The Role of Glacial History on the Structure and Functioning of Ecological Communities in the Shackleton Glacier Region of the Transantarctic Mountains", "uid": "p0010140", "west": -177.4099}, {"awards": "1643873 Hansen, Samantha; 1643798 Emry, Erica", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "GEOSCOPE Network; IU: Global Seismograph Network; Shear Wave Velocity of the Antarctic Upper Mantle from Full Waveform Inversion and Long Period Ambient Seismic Noise; XP (2000-2004): A Broadband Seismic Investigation of Deep Continental Structure Across the East-West Antarctic Boundary ; YT (2007-2023): IPY POLENET-Antarctica: Investigating links between geodynamics and ice sheets; ZJ (2012-2015): Transantarctic Mountains Northern Network ; ZM (2007-2013): A Broadband Seismic Experiment to Image the Lithosphere beneath the Gamburtsev Mountains, East Antarctica", "datasets": [{"dataset_uid": "200169", "doi": "10.7914/SN/IU", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IU: Global Seismograph Network", "url": "http://www.fdsn.org/networks/detail/IU/"}, {"dataset_uid": "200171", "doi": "10.7914/SN/YT_2007", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "YT (2007-2023): IPY POLENET-Antarctica: Investigating links between geodynamics and ice sheets", "url": "http://www.fdsn.org/networks/detail/YT_2007/"}, {"dataset_uid": "200172", "doi": "10.7914/SN/ZM_2007", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": " ZM (2007-2013): A Broadband Seismic Experiment to Image the Lithosphere beneath the Gamburtsev Mountains, East Antarctica", "url": "http://www.fdsn.org/networks/detail/ZM_2007/"}, {"dataset_uid": "601909", "doi": "10.15784/601909", "keywords": "Ambient Seismic Noise; Antarctica; Cryosphere; Full-Waveform Inversion; Seismic Tomography; Shear Wave Velocity", "people": "Hansen, Samantha; Emry, Erica", "repository": "USAP-DC", "science_program": null, "title": "Shear Wave Velocity of the Antarctic Upper Mantle from Full Waveform Inversion and Long Period Ambient Seismic Noise", "url": "https://www.usap-dc.org/view/dataset/601909"}, {"dataset_uid": "200170", "doi": "10.7914/SN/XP_2000", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "XP (2000-2004): A Broadband Seismic Investigation of Deep Continental Structure Across the East-West Antarctic Boundary ", "url": "http://www.fdsn.org/networks/detail/XP_2000/"}, {"dataset_uid": "200168", "doi": "10.18715/GEOSCOPE.G", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "GEOSCOPE Network", "url": "http://geoscope.ipgp.fr/networks/detail/G/"}, {"dataset_uid": "200173", "doi": "10.7914/SN/ZJ_2012", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "ZJ (2012-2015): Transantarctic Mountains Northern Network ", "url": "http://www.fdsn.org/networks/detail/ZJ_2012/"}], "date_created": "Thu, 15 Oct 2020 00:00:00 GMT", "description": "Nontechnical description of proposed research: This project will apply cutting-edge seismic imaging methods to existing seismic data to study the three-dimensional structure of the Earth beneath the ice-covered Antarctic continent. The study will improve understanding of Earth structure and hotspots and geologically recent and ancient rift systems. The results will be useful for models of ice movement and bedrock elevation changes due to variation in ice sheet thickness. The results will also help guide future seismic data collection. The researchers will transfer existing software from the high-performance computers at The University of Rhode Island to the Alabama supercomputer facilities. The project will also broaden public understanding of scientific research in Antarctica by engaging with the students and teachers in Socorro County, New Mexico to discuss career opportunities in science, technology, engineering, and mathematics (STEM), the Earth Sciences, and the importance of computers in scientific research. Project personnel from Alabama will visit Socorro and share research with students at New Mexico Tech and at the Socorro High School. The project will also train undergraduate and graduate students in the expanding field of computational seismology, by applying these approaches to study Antarctic geology. Technical description of proposed research: The project seeks to better resolve the three-dimensional Antarctic mantle structure and viscosity and to identify locations of ancient rifts within the stable East Antarctic lithosphere. To accomplish this, the researchers will utilize full-waveform tomographic inversion techniques that combine long-period ambient noise data with earthquake constraints to more accurately resolve structure than traditional tomographic approaches. The proposed research will be completed using the Alabama supercomputer facilities and the programs and methodology developed at The University of Rhode Island. The new tomographic results will be useful in assessing lithospheric structure beneath Dronning Maud Land as well as the Wilkes and Aurora Subglacial Basins in East Antarctica, where previous rifting episodes and mid-lithospheric discontinuities will be explored. In West Antarctica, the work will elucidate the easternmost extent of the West Antarctic Rift System as well as rifted structure and possible compositional variations within the Weddell Sea. The accuracy of existing Antarctic seismic models will be quantified through model validation approaches. The researchers will highlight regions of Antarctica where tomographic resolution is still lacking and where future deployments would improve resolution.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": true, "keywords": "SEISMIC SURFACE WAVES; USA/NSF; USAP-DC; SEISMOLOGICAL STATIONS; Amd/Us; AMD; POLNET; TECTONICS; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Emry, Erica; Hansen, Samantha", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS", "repo": "IRIS", "repositories": "IRIS; USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Imaging Seismic Heterogeneity within the Antarctic Mantle with Full Waveform Ambient Noise Tomography", "uid": "p0010139", "west": -180.0}, {"awards": "1341500 Ryberg, Patricia", "bounds_geometry": null, "dataset_titles": "Images of Fossil Plants of Antarctica", "datasets": [{"dataset_uid": "601066", "doi": "10.15784/601066", "keywords": "Antarctica; Biota; Fossil; Sample/collection Description; Sample/Collection Description; Transantarctic Mountains", "people": "Ryberg, Patricia", "repository": "USAP-DC", "science_program": null, "title": "Images of Fossil Plants of Antarctica", "url": "https://www.usap-dc.org/view/dataset/601066"}], "date_created": "Fri, 09 Oct 2020 00:00:00 GMT", "description": "This project will involve examination of Glossopteridales, fossil plants from Upper Permian deposits, in samples from the central Transantarctic Mountains and Southern Victoria Land, Antarctica. The glossopterids are an important fossil group because they are possible ancestors to the flowering plants. Permian sedimentary rocks (295-270 Ma before present) are important because they record a time of rapid biotic change, as the Late Paleozoic Age ended and the Mesozoic greenhouse environment began. The proposed research will rely entirely on specimens collected during recent field excursions to the central Transantarctic Mountains (CTM; 2010?2011) and southern Victoria Land (SVL; 2012?2013). Only a few of the specimens have been studied, but already have yielded anatomically well-preserved glossopterids with a complete pollen cone, which has never been found before. Additionally, several seed-bearing structures, which have never before been observed in Antarctica, have been found in both CTM and SVL. The project will allow comparison of whole-plant fossil glossopterids from the CTM with other paleo-latitudes, and will document the floral diversity within and between two depositional basins (CTM \u0026 SVL) during a time of global change, with the overall goal of linking environmental changes with fossil morphology. Broader impacts: The Broader Impacts of this project will include mentoring undergraduates in research projects, at an institution with a substantial minority enrollment. Public outreach will focus on involving middle/high school students through the ?Expanding Your Horizons? programs in Kansas and Missouri, as well as interactive presentations at schools in the Kansas City Area. The lead PI is an early-career scientist at an institution that serves minorities.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; AMD; PLANTS; Victoria Land Basin; Transantarctic Mountains; Amd/Us; USA/NSF; Fossils; SEDIMENTS; FIELD INVESTIGATION; USAP-DC", "locations": "Antarctica; Transantarctic Mountains; Victoria Land Basin", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Ryberg, Patricia", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "RUI: Antarctic Paleobotany: Permian Floral Characteristics in a Sedimentary Setting", "uid": "p0010134", "west": null}, {"awards": "0732711 Smith, Craig; 0732917 McCormick, Michael; 0732450 Van Dover, Cindy; 0732983 Vernet, Maria", "bounds_geometry": "POLYGON((-60.5 -63.1,-59.99 -63.1,-59.48 -63.1,-58.97 -63.1,-58.46 -63.1,-57.95 -63.1,-57.44 -63.1,-56.93 -63.1,-56.42 -63.1,-55.91 -63.1,-55.4 -63.1,-55.4 -63.29,-55.4 -63.48,-55.4 -63.67,-55.4 -63.86,-55.4 -64.05,-55.4 -64.24,-55.4 -64.43,-55.4 -64.62,-55.4 -64.81,-55.4 -65,-55.91 -65,-56.42 -65,-56.93 -65,-57.44 -65,-57.95 -65,-58.46 -65,-58.97 -65,-59.48 -65,-59.99 -65,-60.5 -65,-60.5 -64.81,-60.5 -64.62,-60.5 -64.43,-60.5 -64.24,-60.5 -64.05,-60.5 -63.86,-60.5 -63.67,-60.5 -63.48,-60.5 -63.29,-60.5 -63.1))", "dataset_titles": "LARISSA: Impact of ice-shelf loss on geochemical profiles and microbial community composition in marine sediments of the Larsen A embayment, Antarctic Peninsula; NBP1001 cruise data; NBP1203 cruise data; Species Abundance Data from the Larsen Ice Shelf Ice acquired during R/V Nathaniel B. Palmer expedition NBP1203", "datasets": [{"dataset_uid": "601073", "doi": "10.15784/601073", "keywords": "Antarctica; Antarctic Peninsula; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; LARISSA; Microbiology", "people": "McCormick, Michael", "repository": "USAP-DC", "science_program": null, "title": "LARISSA: Impact of ice-shelf loss on geochemical profiles and microbial community composition in marine sediments of the Larsen A embayment, Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601073"}, {"dataset_uid": "000142", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1001 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP1001"}, {"dataset_uid": "000143", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1203 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP1203"}, {"dataset_uid": "601304", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Biota; Box Corer; LARISSA; Larsen Ice Shelf; Macrofauna; Megafauna; NBP1203; Oceans; R/v Nathaniel B. Palmer; Seafloor Sampling; Species Abundance", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Species Abundance Data from the Larsen Ice Shelf Ice acquired during R/V Nathaniel B. Palmer expedition NBP1203", "url": "https://www.usap-dc.org/view/dataset/601304"}], "date_created": "Fri, 09 Oct 2020 00:00:00 GMT", "description": "A profound transformation in ecosystem structure and function is occurring in coastal waters of the western Weddell Sea, with the collapse of the Larsen B ice shelf. This transformation appears to be yielding a redistribution of energy flow between chemoautotrophic and photosynthetic production, and to be causing the rapid demise of the extraordinary seep ecosystem discovered beneath the ice shelf. This event provides an ideal opportunity to examine fundamental aspects of ecosystem transition associated with climate change. We propose to test the following hypotheses to elucidate the transformations occurring in marine ecosystems as a consequence of the Larsen B collapse: (1) The biogeographic isolation and sub-ice shelf setting of the Larsen B seep has led to novel habitat characteristics, chemoautotrophically dependent taxa and functional adaptations. (2) Benthic communities beneath the former Larsen B ice shelf are fundamentally different from assemblages at similar depths in the Weddell sea-ice zone, and resemble oligotrophic deep-sea communities. Larsen B assemblages are undergoing rapid change. (3) The previously dark, oligotrophic waters of the Larsen B embayment now support a thriving phototrophic community, with production rates and phytoplankton composition similar to other productive areas of the Weddell Sea. To document rapid changes occurring in the Larsen B ecosystem, we will use a remotely operated vehicle, shipboard samplers, and moored sediment traps. We will characterize microbial, macrofaunal and megafaunal components of the seep community; evaluate patterns of surface productivity, export flux, and benthic faunal composition in areas previously covered by the ice shelf, and compare these areas to the open sea-ice zone. These changes will be placed within the geological, glaciological and climatological context that led to ice-shelf retreat, through companion research projects funded in concert with this effort. Together these projects will help predict the likely consequences of ice-shelf collapse to marine ecosystems in other regions of Antarctica vulnerable to climate change. The research features international collaborators from Argentina, Belgium, Canada, Germany, Spain and the United Kingdom. The broader impacts include participation of a science writer; broadcast of science segments by members of the Jim Lehrer News Hour (Public Broadcasting System); material for summer courses in environmental change; mentoring of graduate students and postdoctoral fellows; and showcasing scientific activities and findings to students and public through podcasts.", "east": -55.4, "geometry": "POINT(-57.95 -64.05)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NBP1203; USAP-DC; Amd/Us; LARISSA; Larsen Ice Shelf; Species Abundance Data; R/V NBP; Antarctic Peninsula; NBP1001; USA/NSF; AMD; Antarctica; MARINE ECOSYSTEMS", "locations": "Antarctica; Antarctic Peninsula; Larsen Ice Shelf", "north": -63.1, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "McCormick, Michael; Vernet, Maria; Van Dover, Cindy; Smith, Craig", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": "LARISSA", "south": -65.0, "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine Ecosystems.", "uid": "p0010135", "west": -60.5}, {"awards": "1644197 Simms, Alexander", "bounds_geometry": "POLYGON((-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-60 -61,-59 -61,-58 -61,-57 -61,-56 -61,-55 -61,-55 -61.4,-55 -61.8,-55 -62.2,-55 -62.6,-55 -63,-55 -63.4,-55 -63.8,-55 -64.2,-55 -64.6,-55 -65,-56 -65,-57 -65,-58 -65,-59 -65,-60 -65,-61 -65,-62 -65,-63 -65,-64 -65,-65 -65,-65 -64.6,-65 -64.2,-65 -63.8,-65 -63.4,-65 -63,-65 -62.6,-65 -62.2,-65 -61.8,-65 -61.4,-65 -61))", "dataset_titles": "Electron Microprobe Analysis of feldspar separates from rock and sediment OSL samples from Joinville and Livingston Island Beaches; Granulometry of Joinville and Livingston Island beaches; Ground-Penetrating Radar data from Livingston Island in the Antarctic Peninsula; Ground Penetrating Radar Profiles from Beaches on Joinville Island, Antarctic Peninsula; Joinville and Livingston Islands - rock and sediment OSL ages; OSL data - Joinville and Livingston Islands - Raw data; Radiocarbon Ages from Beaches on Joinville Island, Antarctic Peninsula", "datasets": [{"dataset_uid": "601400", "doi": "10.15784/601400", "keywords": "Antarctica; Grain Size; Granulometry; Joinville Island; Livingston Island; LMG0412; Raised Beaches", "people": "Theilen, Brittany; Simms, Alexander", "repository": "USAP-DC", "science_program": null, "title": "Granulometry of Joinville and Livingston Island beaches", "url": "https://www.usap-dc.org/view/dataset/601400"}, {"dataset_uid": "601632", "doi": "10.15784/601632", "keywords": "Antarctica; Joinville Island", "people": "Simms, Alexander", "repository": "USAP-DC", "science_program": null, "title": "Ground Penetrating Radar Profiles from Beaches on Joinville Island, Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601632"}, {"dataset_uid": "601534", "doi": "10.15784/601534", "keywords": "Antarctica; Geochronology; Joinville Island; Livingston Island; OSL dating; Raised Beaches", "people": "DeWitt, Regina", "repository": "USAP-DC", "science_program": null, "title": "Joinville and Livingston Islands - rock and sediment OSL ages", "url": "https://www.usap-dc.org/view/dataset/601534"}, {"dataset_uid": "601633", "doi": "10.15784/601633", "keywords": "Antarctica; Joinville Island", "people": "Simms, Alexander", "repository": "USAP-DC", "science_program": null, "title": "Ground-Penetrating Radar data from Livingston Island in the Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601633"}, {"dataset_uid": "601531", "doi": "10.15784/601531", "keywords": "Antarctica; Geochronology; Joinville Island; Livingston Island; OSL dating; Raised Beaches", "people": "DeWitt, Regina", "repository": "USAP-DC", "science_program": null, "title": "Electron Microprobe Analysis of feldspar separates from rock and sediment OSL samples from Joinville and Livingston Island Beaches", "url": "https://www.usap-dc.org/view/dataset/601531"}, {"dataset_uid": "601532", "doi": "10.15784/601532", "keywords": "Antarctica; Geochronology; Joinville Island; Livingston Island; OSL dating; Raised Beaches", "people": "DeWitt, Regina", "repository": "USAP-DC", "science_program": null, "title": "OSL data - Joinville and Livingston Islands - Raw data", "url": "https://www.usap-dc.org/view/dataset/601532"}, {"dataset_uid": "601634", "doi": "10.15784/601634", "keywords": "Antarctica; Joinville Island; Raised Beaches; Sea Level", "people": "Simms, Alexander", "repository": "USAP-DC", "science_program": null, "title": "Radiocarbon Ages from Beaches on Joinville Island, Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601634"}], "date_created": "Thu, 08 Oct 2020 00:00:00 GMT", "description": "Nontechnical Description Glacier ice loss from Antarctica has the potential to lead to a significant rise in global sea level. One line of evidence for accelerated glacier ice loss has been an increase in the rate at which the land has been rising across the Antarctic Peninsula as measured by GPS receivers. However, GPS observations of uplift are limited to the last two decades. One goal of this study is to determine how these newly observed rates of uplift compare to average rates of uplift across the Antarctic Peninsula over a longer time interval. Researchers will reconstruct past sea levels using the age and elevation of ancient beaches now stranded above sea level on the low-lying coastal hills of the Antarctica Peninsula to determine the rate of uplift over the last 5,000 years. The researchers will also analyze the structure of the beaches using ground-penetrating radar and the characteristics of beach sediments to understand how sea-level rise and past climate changes are recorded in beach deposits. The benefits of these new records will be threefold: (1) they will help determine the natural variability of the Antarctic Ice Sheet and relative sea level (2) they will provide new insight about uplift and the structure of the Earth\u0027s interior; and 3) they will help researchers refine the methods used to determine the age of geologic deposits. The study results will be shared in outreach events at K-12 schools and with visitors of the Santa Barbara Natural History Museum. Three graduate students will be supported through this project. Technical description Paleo sea-level data is critical for reconstructing the size and extent of past ice sheets, documenting increased uplift following glacial retreat, and correcting gravity-based measurements of ice-mass loss for the impacts of post-glacial rebound. However, there are only 14 sites with relative sea-level data for Antarctica compared to over 500 sites used in a recent study of the North American Ice-Sheet complex. The purpose of this project is to use optically stimulated luminescence to date a series of newly discovered raised beaches along the eastern Antarctic Peninsula and an already known, but only preliminarily dated, series of raised beaches in the South Shetland Islands. Data to be collected at the raised beaches include the age and elevation, ground-penetrating radar profiles, and the roundness of cobbles and the lithology of ice-rafted debris. The study will test three hypotheses: (1) uplift rates have increased in modern times relative to the late Holocene across the Antarctic Peninsula, (2) the sea-level history at the northern tip of the Antarctic Peninsula is distinctly different than that of the South Shetland Islands, and (3) cobble roundness and the source of ice-rafted debris on raised beaches varied systematically through time reflecting the climate history of the northern Antarctic Peninsula.", "east": -55.0, "geometry": "POINT(-60 -63)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "Antarctic Peninsula; COASTAL LANDFORMS/PROCESSES; USAP-DC; SEA LEVEL RECONSTRUCTION; South Shetland Islands; AMD; FIELD INVESTIGATION; Amd/Us; USA/NSF", "locations": "South Shetland Islands; Antarctic Peninsula", "north": -61.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Simms, Alexander; DeWitt, Regina", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Collaborative Research: New Constraints on Post-Glacial Rebound and Holocene Environmental History along the Northern Antarctic Peninsula from Raised Beaches", "uid": "p0010132", "west": -65.0}, {"awards": "1443433 Licht, Kathy; 1443213 Kaplan, Michael", "bounds_geometry": "POLYGON((159 -83.8,159.5 -83.8,160 -83.8,160.5 -83.8,161 -83.8,161.5 -83.8,162 -83.8,162.5 -83.8,163 -83.8,163.5 -83.8,164 -83.8,164 -83.87,164 -83.94,164 -84.01,164 -84.08,164 -84.15,164 -84.22,164 -84.29,164 -84.36,164 -84.43,164 -84.5,163.5 -84.5,163 -84.5,162.5 -84.5,162 -84.5,161.5 -84.5,161 -84.5,160.5 -84.5,160 -84.5,159.5 -84.5,159 -84.5,159 -84.43,159 -84.36,159 -84.29,159 -84.22,159 -84.15,159 -84.08,159 -84.01,159 -83.94,159 -83.87,159 -83.8))", "dataset_titles": "10Be and 26Al cosmogenic nuclide surface exposure data; 3He input data", "datasets": [{"dataset_uid": "601376", "doi": "10.15784/601376", "keywords": "Antarctica; Transantarctic Mountains", "people": "Schaefer, Joerg; Kaplan, Michael; Winckler, Gisela", "repository": "USAP-DC", "science_program": null, "title": "3He input data", "url": "https://www.usap-dc.org/view/dataset/601376"}, {"dataset_uid": "601375", "doi": "10.15784/601375", "keywords": "Antarctica; Cosmogenic Dating; Transantarctic Mountains", "people": "Kaplan, Michael; Winckler, Gisela; Schaefer, Joerg", "repository": "USAP-DC", "science_program": null, "title": "10Be and 26Al cosmogenic nuclide surface exposure data", "url": "https://www.usap-dc.org/view/dataset/601375"}], "date_created": "Tue, 29 Sep 2020 00:00:00 GMT", "description": "Licht/1443433 Sediments deposited by the Antarctic ice sheet are an archive of its history with time and help geologists to determine how the remote interior of the ice sheet has changed over the past several hundred thousand years. This project will focus on the formation and dynamics of moraines (accumulations of dirt and rocks that are incorporated in the glacier surface or have been pushed along by the glacier as it moves) near the blue ice area of Mt. Achernar in the central Transantarctic Mountains in Antarctica.. The study will improve basic understanding of the formation of these moraines. Fieldwork at the site will focus on imaging the internal structure of the moraine to determine the processes by which it, and others like it, form over time. Additional analyses will include measurements of ice flow and collection of rock samples to determine the timing of debris deposition and the changes in the sources of sediments from deep within the Antarctic continent. The project will provide both graduate and undergraduate students training in paleoclimate studies, geology, and numerical modeling approaches. The broader impacts of the proposed work include hands on training in the Earth Sciences for graduate and undergraduate students, collaboration with colleagues in New Zealand and Sweden to provide an international research experience for students from the US, and three educational modules to be delivered by student researchers regarding Antarctica\u0027s role in global environments. The research is societally relevant and multidisciplinary and the topics are ideal for sharing with the public. All research findings will be made publicly available to others via timely publication in high-impact, peer-reviewed journals and all data will be submitted to the National Snow and Ice Data Center, and excess samples will be provided to the U.S. Polar Rock Repository. Direct observations of ice sheet history from the margins of Antarctica\u0027s polar plateau are essential for testing numerical ice sheet models, and the laterally extensive, blue-ice moraines of the Mt. Achernar Moraine complex in the central Transantarctic Mountains contain a unique and nearly untapped direct, quasi-continuous record of ice sheet change over multiple glacial cycles. The project objectives include improved understanding of processes and rates of blue ice moraine formation, as well as identifying the topographic, glaciological, and climatic controls on their evolution. Data to be collected with fieldwork in Antarctica include: imaging of internal ice structure with ground-penetrating radar, measurement of ice flow velocity and direction with a global positioning system (GPS) array, analysis of debris concentration and composition in glacier ice, state-of-the-art cosmogenic multi-nuclide analyses to determine exposure ages of moraine debris, mapping of trimlines and provenance analysis. Numerical model simulations, constrained by field data, will be used to evaluate the factors influencing changes in glacier flow that potentially impact the accumulation of the moraine debris. All together, the new data and modeling efforts will improve conceptual models of blue ice moraine formation, and thereby make them a more valuable proxy for developing a better understanding of the history of the ice sheet.", "east": 164.0, "geometry": "POINT(161.5 -84.15)", "instruments": null, "is_usap_dc": true, "keywords": "SEDIMENTS; GLACIAL PROCESSES; Mt. Achernar; ABLATION ZONES/ACCUMULATION ZONES; GLACIER ELEVATION/ICE SHEET ELEVATION; Antarctica; Antarctic Ice Sheet; Transantarctic Mountains; GLACIATION; USAP-DC; ICE MOTION; AMD; LABORATORY; Amd/Us", "locations": "Transantarctic Mountains; Antarctic Ice Sheet; Mt. Achernar; Antarctica", "north": -83.8, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Kaplan, Michael; Schaefer, Joerg; Winckler, Gisela; Licht, Kathy", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.5, "title": "Collaborative Research: Multidisciplinary Analysis of Antarctic Blue Ice Moraine Formation and their Potential as Climate Archives over Multiple Glacial Cycles", "uid": "p0010131", "west": 159.0}, {"awards": "1724670 Williams, Trevor", "bounds_geometry": "POLYGON((-70 -60,-65 -60,-60 -60,-55 -60,-50 -60,-45 -60,-40 -60,-35 -60,-30 -60,-25 -60,-20 -60,-20 -62.5,-20 -65,-20 -67.5,-20 -70,-20 -72.5,-20 -75,-20 -77.5,-20 -80,-20 -82.5,-20 -85,-25 -85,-30 -85,-35 -85,-40 -85,-45 -85,-50 -85,-55 -85,-60 -85,-65 -85,-70 -85,-70 -82.5,-70 -80,-70 -77.5,-70 -75,-70 -72.5,-70 -70,-70 -67.5,-70 -65,-70 -62.5,-70 -60))", "dataset_titles": "Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment", "datasets": [{"dataset_uid": "601378", "doi": "10.15784/601378", "keywords": "40Ar/39Ar Thermochronology; Antarctica; Argon; Chemistry:sediment; Chemistry:Sediment; Detrital Minerals; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marine Sediments; Mass Spectrometer; Provenance; R/v Polarstern; Sediment Core Data; Subglacial Till; Till; Weddell Sea", "people": "Williams, Trevor", "repository": "USAP-DC", "science_program": null, "title": "Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment", "url": "https://www.usap-dc.org/view/dataset/601378"}, {"dataset_uid": "601377", "doi": "10.15784/601377", "keywords": "40Ar/39Ar Thermochronology; Antarctica; Argon; Chemistry:sediment; Chemistry:Sediment; Detrital Minerals; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marine Sediments; Mass Spectrometer; Provenance; R/v Polarstern; Sediment Core Data; Subglacial Till; Till; Weddell Sea", "people": "Williams, Trevor", "repository": "USAP-DC", "science_program": null, "title": "Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment", "url": "https://www.usap-dc.org/view/dataset/601377"}, {"dataset_uid": "601379", "doi": "10.15784/601379", "keywords": "40Ar/39Ar Thermochronology; Antarctica; Argon; Chemistry:sediment; Chemistry:Sediment; Detrital Minerals; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marine Geoscience; Mass Spectrometer; Provenance; R/v Polarstern; Sediment Core Data; Subglacial Till; Till; Weddell Sea", "people": "Williams, Trevor", "repository": "USAP-DC", "science_program": null, "title": "Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment", "url": "https://www.usap-dc.org/view/dataset/601379"}], "date_created": "Thu, 10 Sep 2020 00:00:00 GMT", "description": "Abstract for the general public: The margins of the Antarctic ice sheet have advanced and retreated repeatedly over the past few million years. Melting ice from the last retreat, from 19,000 to 9,000 years ago, raised sea levels by 8 meters or more, but the extents of previous retreats are less well known. The main goal of this project is to understand how Antarctic ice retreats: fast or slow, stepped or steady, and which parts of the ice sheet are most prone to retreat. Antarctica loses ice by two main processes: melting of the underside of floating ice shelves and calving of icebergs. Icebergs themselves are ephemeral, but they carry mineral grains and rock fragments that have been scoured from Antarctic bedrock. As the icebergs drift and melt, this \u0027iceberg-rafted debris\u0027 falls to the sea-bed and is steadily buried in marine sediments to form a record of iceberg activity and ice sheet retreat. The investigators will read this record of iceberg-rafted debris to find when and where Antarctic ice destabilized in the past. This information can help to predict how Antarctic ice will behave in a warming climate. The study area is the Weddell Sea embayment, in the Atlantic sector of Antarctica. Principal sources of icebergs are the nearby Antarctic Peninsula and Weddell Sea embayment, where ice streams drain about a quarter of Antarctic ice. The provenance of the iceberg-rafted debris (IRD), and the icebergs that carried it, will be found by matching the geochemical fingerprint (such as characteristic argon isotope ages) of individual mineral grains in the IRD to that of the corresponding source area. In more detail, the project will: 1. Define the geochemical fingerprints of the source areas of the glacially-eroded material using samples from each major ice stream entering the Weddell Sea. Existing data indicates that the hinterland of the Weddell embayment is made up of geochemically distinguishable source areas, making it possible to apply geochemical provenance techniques to determine the origin of Antarctica icebergs. Few samples of onshore tills are available from this area, so this project includes fieldwork to collect till samples to characterize detritus supplied by the Recovery and Foundation ice streams. 2. Document the stratigraphic changes in provenance of iceberg-rafted debris (IRD) and glacially-eroded material in two deep water sediment cores in the NW Weddell Sea. Icebergs calved from ice streams in the embayment are carried by the Weddell Gyre and deposit IRD as they pass over the core sites. The provenance information identifies which groups of ice streams were actively eroding and exporting detritus to the ocean (via iceberg rafting and bottom currents), and the stratigraphy of the cores shows the relative sequence of ice stream activity through time. A further dimension is added by determining the time lag between fine sediment erosion and deposition, using a new method of uranium-series isotope measurements in fine grained material. Technical abstract: The behavior of the Antarctic ice sheets and ice streams is a critical topic for climate change and future sea level rise. The goal of this proposal is to constrain ice sheet response to changing climate in the Weddell Sea during the three most recent glacial terminations, as analogues for potential future warming. The project will also examine possible contributions to Meltwater Pulse 1A, and test the relative stability of the ice streams draining East and West Antarctica. Much of the West Antarctic ice may have melted during the Eemian (130 to 114 Ka), so it may be an analogue for predicting future ice drawdown over the coming centuries. Geochemical provenance fingerprinting of glacially eroded detritus provides a novel way to reconstruct the location and relative timing of glacial retreat during these terminations in the Weddell Sea embayment. The two major objectives of the project are to: 1. Define the provenance source areas by characterizing Ar, U-Pb, and Nd isotopic signatures, and heavy mineral and Fe-Ti oxide compositions of detrital minerals from each major ice stream entering the Weddell Sea, using onshore tills and existing sediment cores from the Ronne and Filchner Ice Shelves. Pilot data demonstrate that detritus originating from the east and west sides of the Weddell Sea embayment can be clearly distinguished, and published data indicates that the hinterland of the embayment is made up of geochemically distinguishable source areas. Few samples of onshore tills are available from this area, so this project includes fieldwork to collect till to characterize detritus supplied by the Recovery and Foundation ice streams. 2. Document the stratigraphic changes in provenance of iceberg-rafted debris (IRD) and glacially-eroded material in two deep water sediment cores in the NW Weddell Sea. Icebergs calved from ice streams in the embayment are carried by the Weddell Gyre and deposit IRD as they pass over the core sites. The provenance information will identify which ice streams were actively eroding and exporting detritus to the ocean (via iceberg rafting and bottom currents). The stratigraphy of the cores will show the relative sequence of ice stream activity through time. A further time dimension is added by determining the time lag between fine sediment erosion and deposition, using U-series comminution ages.", "east": -20.0, "geometry": "POINT(-45 -72.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "TERRIGENOUS SEDIMENTS; Subglacial Till; USAP-DC; ICEBERGS; AMD; USA/NSF; ISOTOPES; AGE DETERMINATIONS; Argon; Provenance; Till; Amd/Us; R/V POLARSTERN; FIELD INVESTIGATION; SEDIMENT CHEMISTRY; Weddell Sea; Antarctica; LABORATORY", "locations": "Weddell Sea; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Williams, Trevor; Hemming, Sidney R.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V POLARSTERN", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.0, "title": "Collaborative Research: Deglacial Ice Dynamics in the Weddell Sea Embayment using Sediment Provenance", "uid": "p0010128", "west": -70.0}, {"awards": "1543450 Countway, Peter", "bounds_geometry": "POLYGON((-66 -63,-65.7 -63,-65.4 -63,-65.1 -63,-64.8 -63,-64.5 -63,-64.2 -63,-63.9 -63,-63.6 -63,-63.3 -63,-63 -63,-63 -63.3,-63 -63.6,-63 -63.9,-63 -64.2,-63 -64.5,-63 -64.8,-63 -65.1,-63 -65.4,-63 -65.7,-63 -66,-63.3 -66,-63.6 -66,-63.9 -66,-64.2 -66,-64.5 -66,-64.8 -66,-65.1 -66,-65.4 -66,-65.7 -66,-66 -66,-66 -65.7,-66 -65.4,-66 -65.1,-66 -64.8,-66 -64.5,-66 -64.2,-66 -63.9,-66 -63.6,-66 -63.3,-66 -63))", "dataset_titles": "Biogenic Sulfur Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments; Dissolved Inorganic Nutrient Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments ; Dissolved Organic Carbon (DOC) and Total Dissolved Nitrogen (TDN) Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments; Flow Cytometry Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments; Heterotrophic Bacterial Production Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments; Western Antarctic Peninsula plankton raw sequence reads", "datasets": [{"dataset_uid": "200337", "doi": "", "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Western Antarctic Peninsula plankton raw sequence reads", "url": "https://dataview.ncbi.nlm.nih.gov/object/PRJNA870587?reviewer=bmud2tbbrqbus79i2n2hb83uio"}, {"dataset_uid": "601645", "doi": "10.15784/601645", "keywords": "Antarctica; Nitrate; Nitrite; Palmer Station; Phosphate", "people": "Countway, Peter; Matrai, Patricia", "repository": "USAP-DC", "science_program": null, "title": "Dissolved Inorganic Nutrient Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments ", "url": "https://www.usap-dc.org/view/dataset/601645"}, {"dataset_uid": "601647", "doi": "10.15784/601647", "keywords": "Antarctica; Palmer Station; Phytoplankton", "people": "Countway, Peter; Matrai, Patricia", "repository": "USAP-DC", "science_program": null, "title": "Flow Cytometry Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments", "url": "https://www.usap-dc.org/view/dataset/601647"}, {"dataset_uid": "601646", "doi": "10.15784/601646", "keywords": "Antarctica; Carbon; Dissolved Organic Carbon; Nitrogen; Palmer Station; TDN; Total Dissolved Nitrogen", "people": "Matrai, Patricia; Countway, Peter", "repository": "USAP-DC", "science_program": null, "title": "Dissolved Organic Carbon (DOC) and Total Dissolved Nitrogen (TDN) Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments", "url": "https://www.usap-dc.org/view/dataset/601646"}, {"dataset_uid": "601648", "doi": "10.15784/601648", "keywords": "Antarctica; Biota; Dimethyl Sulfide; Dimethylsulfoniopropionate; Dimethylsulfoxide; DMSP; DMSP Lyase; Palmer Station", "people": "Matrai, Patricia; Countway, Peter", "repository": "USAP-DC", "science_program": null, "title": "Biogenic Sulfur Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments", "url": "https://www.usap-dc.org/view/dataset/601648"}, {"dataset_uid": "601644", "doi": "10.15784/601644", "keywords": "3H-Leu; Antarctica; Bacteria; Biota; DMSP; Heterotrophic Bacterial Production; Palmer Station", "people": "Matrai, Patricia; Countway, Peter", "repository": "USAP-DC", "science_program": null, "title": "Heterotrophic Bacterial Production Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments", "url": "https://www.usap-dc.org/view/dataset/601644"}], "date_created": "Sat, 01 Aug 2020 00:00:00 GMT", "description": "The Southern Ocean in the vicinity of Antarctica is a region characterized by seasonally-driven marine phytoplankton blooms that are often dominated by microalgal species which produce large amounts of dimethylsulfoniopropionate (DMSP). DMSP can be converted to the compound dimethylsulfide (DMS) which is a molecule that can escape into the atmosphere where it is known to have strong condensation properties that are involved in regional cloud formation. Production of DMSP can influence the diversity and composition of microbial assemblages in seawater and the types and activities of microbes in the seawater will likely affect the magnitude of DMSP\\DMS production. The proposal aims to examine the role of DMSP in structuring the microbial communities in Antarctic waters and how this structuring may influence DMSP cycling. The project will leverage the Antarctic research to introduce concepts and data linking microbial diversity and biogeochemistry to a range of audiences (including high school and undergraduate students in Maine). The project will also engage teacher and students in rural K-8 schools and will allow a collaboration with a science writer and illustrator who will join the team in the field. The writer will use the southern ocean experience as the setting for a poster and a book about the proposed research and the scientists studying extreme environments. The project will examine (1) the extent to which the cycling of DMSP in southern ocean waters influences the composition and diversity of bacterial and protistan assemblages; (2) conversely, whether the composition and diversity of southern ocean protistan and bacterial assemblages influence the magnitude and rates of DMSP cycling; (3) the expression of DMSP degradation genes by marine bacteria seasonally and in response to additions of DMSP; and, to synthesize these results by quantifying (4) the microbial networks resulting from the presence of DMSP-producers and DMSP-consumers along with their predators, all involved in the cycling of DMSP in southern ocean waters. The work will be accomplished by conducting continuous growth experiments with DMSP-amended natural samples during field sampling of different microbial communities present in summer and fall. Data from the molecular (such as 16S/ 18S tag sequences, DMSP-cycle gene transcripts) and biogeochemical (such as biogenic sulfur cycling, bacterial production, microbial biomass) investigations will be integrated via network analysis.", "east": -63.0, "geometry": "POINT(-64.5 -64.5)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; COMMUNITY DYNAMICS; FIELD INVESTIGATION; AMD; PLANKTON; Amd/Us; BIOGEOCHEMICAL CYCLES; Palmer Station; USA/NSF", "locations": "Palmer Station", "north": -63.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Countway, Peter", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "GenBank", "repositories": "GenBank; USAP-DC", "science_programs": null, "south": -66.0, "title": "Microbial Community Structure and Expression of Functional Genes Involved in the Seasonal Cycling of DMSP in the Southern Ocean", "uid": "p0010120", "west": -66.0}, {"awards": "1543396 Christner, Brent; 1543453 Lyons, W. Berry; 1543537 Priscu, John; 1543441 Fricker, Helen; 1543347 Rosenheim, Brad; 1543405 Leventer, Amy", "bounds_geometry": "POLYGON((-163.611 -84.33543,-162.200034 -84.33543,-160.789068 -84.33543,-159.378102 -84.33543,-157.967136 -84.33543,-156.55617 -84.33543,-155.145204 -84.33543,-153.734238 -84.33543,-152.323272 -84.33543,-150.912306 -84.33543,-149.50134 -84.33543,-149.50134 -84.3659157,-149.50134 -84.3964014,-149.50134 -84.4268871,-149.50134 -84.4573728,-149.50134 -84.4878585,-149.50134 -84.5183442,-149.50134 -84.5488299,-149.50134 -84.5793156,-149.50134 -84.6098013,-149.50134 -84.640287,-150.912306 -84.640287,-152.323272 -84.640287,-153.734238 -84.640287,-155.145204 -84.640287,-156.55617 -84.640287,-157.967136 -84.640287,-159.378102 -84.640287,-160.789068 -84.640287,-162.200034 -84.640287,-163.611 -84.640287,-163.611 -84.6098013,-163.611 -84.5793156,-163.611 -84.5488299,-163.611 -84.5183442,-163.611 -84.4878585,-163.611 -84.4573728,-163.611 -84.4268871,-163.611 -84.3964014,-163.611 -84.3659157,-163.611 -84.33543))", "dataset_titles": "Antarctica - PI Continuous - GZ01-WIS_GroundingZone_01 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - GZ13-WIS_GroundingZone_13 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - LA02-WIS_LAKES_02 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - LA06-WIS_LAKES_06 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - LA07-WIS_LAKES_07 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - LA09-WIS_LAKES_09 P.S. - GPS/GNSS Observations Dataset; Bistatic Radar Sounding of Whillans Ice Stream, Antarctica and Store Glacier, Greenland; CTD data from Mercer Subglacial Lake and access borehole; Discrete bulk sediment properties data from Mercer Subglacial Lake; Isotopic data from Whillans Ice Stream grounding zone, West Antarctica; Mercer Subglacial Lake radiocarbon and stable isotope data ; Mercer Subglacial Lake (SLM) microbial composition: 16S rRNA genes (Sequence Read Archive; BioProject: PRJNA790995); Mercer Subglacial Lake (SLM) noble gas and isotopic data; Mercer Subglacial Lake water column viral metagenomic sequencing; Salsa sediment cores; Sediment porewater properties data from Mercer Subglacial Lake; Water column biogeochemical data from Mercer Subglacial Lake", "datasets": [{"dataset_uid": "200215", "doi": "10.7283/C503-KS23", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - LA06-WIS_LAKES_06 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/C503-KS23"}, {"dataset_uid": "200212", "doi": "10.7283/PT0Q-JB95", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - GZ01-WIS_GroundingZone_01 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/PT0Q-JB95"}, {"dataset_uid": "200213", "doi": "10.7283/F7BB-JH05", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - GZ13-WIS_GroundingZone_13 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/F7BB-JH05"}, {"dataset_uid": "200214", "doi": "10.7283/YW8Z-TK03", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - LA02-WIS_LAKES_02 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/YW8Z-TK03"}, {"dataset_uid": "200216", "doi": "10.7283/F8NH-CV04", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - LA07-WIS_LAKES_07 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/F8NH-CV04"}, {"dataset_uid": "601498", "doi": "10.15784/601498", "keywords": "Antarctica; Mercer Subglacial Lake; Noble Gas", "people": "Lyons, W. Berry; Gardner, Christopher B.", "repository": "USAP-DC", "science_program": null, "title": "Mercer Subglacial Lake (SLM) noble gas and isotopic data", "url": "https://www.usap-dc.org/view/dataset/601498"}, {"dataset_uid": "200282", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Mercer Subglacial Lake (SLM) microbial composition: 16S rRNA genes (Sequence Read Archive; BioProject: PRJNA790995)", "url": "https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA790995"}, {"dataset_uid": "601657", "doi": "10.15784/601657", "keywords": "Antarctica; Conductivity; CTD; Depth; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hot Water Drill; Mercer Subglacial Lake; Physical Properties; SALSA; Subglacial Lake; Temperature", "people": "Priscu, John; Rosenheim, Brad; Leventer, Amy; Dore, John", "repository": "USAP-DC", "science_program": null, "title": "CTD data from Mercer Subglacial Lake and access borehole", "url": "https://www.usap-dc.org/view/dataset/601657"}, {"dataset_uid": "200246", "doi": "", "keywords": null, "people": null, "repository": "OSU-MGR", "science_program": null, "title": "Salsa sediment cores", "url": "https://osu-mgr.org"}, {"dataset_uid": "601360", "doi": "10.15784/601360", "keywords": "Antarctica; Radiocarbon; Sediment; Whillans Ice Stream", "people": "Venturelli, Ryan A", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Isotopic data from Whillans Ice Stream grounding zone, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/601360"}, {"dataset_uid": "601672", "doi": "10.15784/601672", "keywords": "Antarctica; Isotope; Mercer Subglacial Lake; Radiocarbon; Subglacial Lake", "people": "Venturelli, Ryan; Rosenheim, Brad", "repository": "USAP-DC", "science_program": null, "title": "Mercer Subglacial Lake radiocarbon and stable isotope data ", "url": "https://www.usap-dc.org/view/dataset/601672"}, {"dataset_uid": "200342", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Mercer Subglacial Lake water column viral metagenomic sequencing", "url": "https://www.ncbi.nlm.nih.gov/biosample/32811410"}, {"dataset_uid": "200217", "doi": "10.7283/3JMY-Y504", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - LA09-WIS_LAKES_09 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/3JMY-Y504"}, {"dataset_uid": "601664", "doi": "10.15784/601664", "keywords": "Antarctica; Gas; Geochemistry; Glacier; Glaciology; Mercer Subglacial Lake; Methane; SALSA; Sediment Core; West Antarctic Ice Sheet", "people": "Michaud, Alexander; Dore, John; Science Team, SALSA; Steigmeyer, August; Tranter, Martyn; Skidmore, Mark", "repository": "USAP-DC", "science_program": null, "title": "Sediment porewater properties data from Mercer Subglacial Lake", "url": "https://www.usap-dc.org/view/dataset/601664"}, {"dataset_uid": "601663", "doi": "10.15784/601663", "keywords": "Antarctica; Carbon; Cell Counts; Geochemistry; Glacier; Glaciers/ice Sheet; Glaciers/Ice Sheet; Mercer Subglacial Lake; Microbes; Nutrients; SALSA; Stable Isotopes; Trace Elements; West Antarctic Ice Sheet", "people": "Steigmeyer, August; Hawkings, Jon; Skidmore, Mark; Dore, John; Science Team, SALSA; Priscu, John; Tranter, Martyn; Barker, Joel; Li, Wei", "repository": "USAP-DC", "science_program": null, "title": "Water column biogeochemical data from Mercer Subglacial Lake", "url": "https://www.usap-dc.org/view/dataset/601663"}, {"dataset_uid": "601661", "doi": "10.15784/601661", "keywords": "Antarctica; Carbon; Glacier; Glaciers/ice Sheet; Glaciers/Ice Sheet; Iron; Mercer Subglacial Lake; Mineralogy; Particle Size; Physical Properties; SALSA; Sediment Core; Sulfur; West Antarctic Ice Sheet", "people": "Campbell, Timothy; Dore, John; Michaud, Alexander; Hawkings, Jon; Skidmore, Mark; Tranter, Martyn; Venturelli, Ryan A; Science Team, SALSA", "repository": "USAP-DC", "science_program": null, "title": "Discrete bulk sediment properties data from Mercer Subglacial Lake", "url": "https://www.usap-dc.org/view/dataset/601661"}, {"dataset_uid": "601472", "doi": "10.15784/601472", "keywords": "Antarctica; Bistatic Radar; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS Data; Greenland; Lake Whillans; Radar; Store Glacier; Whillans Ice Stream; WISSARD", "people": "Christoffersen, Poul; Peters, Sean; Bienert, Nicole; Siegfried, Matthew; Schroeder, Dustin; Dawson, Eliza; MacKie, Emma", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Bistatic Radar Sounding of Whillans Ice Stream, Antarctica and Store Glacier, Greenland", "url": "https://www.usap-dc.org/view/dataset/601472"}], "date_created": "Thu, 16 Jul 2020 00:00:00 GMT", "description": "The Antarctic subglacial environment remains one of the least explored regions on Earth. This project will examine the physical and biological characteristics of Subglacial Lake Mercer, a lake that lies 1200m beneath the West Antarctic Ice Sheet. This study will address key questions relating to the stability of the ice sheet, the subglacial hydrological system, and the deep-cold subglacial biosphere. The education and outreach component aims to widely disseminate results to the scientific community and to the general public through short films, a blog, and a website. Subglacial Lake Mercer is one of the larger hydrologically active lakes in the southern basin of the Whillans Ice Plain, West Antarctica. It receives about 25 percent of its water from East Antarctica with the remainder originating from West Antarctica, is influenced by drain/fill cycles in a lake immediately upstream (Subglacial Lake Conway), and lies about 100 km upstream of the present grounding line of the Ross Ice Shelf. This site will yield information on the history of the Whillans and Mercer Ice Streams, and on grounding line migration. The integrated study will include direct sampling of basal ice, water, and sediment from the lake in concert with surface geophysical surveys over a three-year period to define the hydrological connectivity among lakes on the Whillans Ice Plain and their flow paths to the sea. The geophysical surveys will furnish information on subglacial hydrology, aid the site selection for hot-water drilling, and provide spatial context for interpreting findings. The hot-water-drilled boreholes will be used to collect basal ice samples, provide access for direct measurement of subglacial physical, chemical, and biological conditions in the water column and sediments, and to explore the subglacial water cavities using a remotely operated vehicle equipped with sensors, cameras, and sampling equipment. Data collected from this study will address the overarching hypothesis \"Contemporary biodiversity and carbon cycling in hydrologically-active subglacial environments associated with the Mercer and Whillans ice streams are regulated by the mineralization and cycling of relict marine organic matter and through interactions among ice, rock, water, and sediments\". The project will be undertaken by a collaborative team of scientists, with expertise in microbiology, biogeochemistry, hydrology, geophysics, glaciology, marine geology, paleoceanography, and science communication.", "east": -149.50134, "geometry": "POINT(-156.55617 -84.4878585)", "instruments": null, "is_usap_dc": true, "keywords": "SEDIMENTS; Antarctica; ISOTOPES; Subglacial Lake; USAP-DC; VIRUSES; PALEOCLIMATE RECONSTRUCTIONS; BACTERIA/ARCHAEA; LABORATORY; Radiocarbon; Whillans Ice Stream; AMD; SALSA; ECOSYSTEM FUNCTIONS; RADIOCARBON; FIELD INVESTIGATION; ICE MOTION; Mercer Ice Stream; Amd/Us; USA/NSF; GLACIERS/ICE SHEETS", "locations": "Antarctica; Mercer Ice Stream; Whillans Ice Stream", "north": -84.33543, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Instrumentation and Support; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Rosenheim, Brad; Fricker, Helen; Priscu, John; Leventer, Amy; Dore, John; Lyons, W. Berry; Christner, Brent", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "UNAVCO", "repositories": "GenBank; NCBI GenBank; OSU-MGR; UNAVCO; USAP-DC", "science_programs": null, "south": -84.640287, "title": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments", "uid": "p0010119", "west": -163.611}, {"awards": "1443482 Mak, John", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Carbon monoxide mixing ratios and stable isotopic values, SPICE", "datasets": [{"dataset_uid": "601356", "doi": "10.15784/601356", "keywords": "Antarctica; CO; Delta 13C; Delta 18O; South Pole; SPICEcore", "people": "Mak, John", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Carbon monoxide mixing ratios and stable isotopic values, SPICE", "url": "https://www.usap-dc.org/view/dataset/601356"}], "date_created": "Thu, 09 Jul 2020 00:00:00 GMT", "description": "Mak/1443482 This project will compare current atmospheric conditions with those of the remote past prior to human influence. This is important in order to understand the impact of human activities on Earth\u0027s atmosphere, and to determine the stability of the composition of the atmosphere in the past. How humans have impacted Earth?s atmospheric composition is important for developing accurate predictions of future global atmospheric conditions. In addition to training students, the investigators will support continuing education of high school science teachers on Long Island through specifically tailored, interactive seminars on various topics in earth science, atmospheric sciences, physics and biology. A pilot program at Mount Sinai School District, near Stony Brook University will be the first implementation of this program. The investigators plan to reconstruct historical variations in the sources of atmospheric carbon monoxide (CO) from measurements of the concentration and stable isotopic abundance of carbon monoxide ([CO], 13CO and C18O) in the South Pole Ice Core, which is being drilled in 2014-2016. The goal is to strategically sample and reconstruct the relative variations in CO source strengths over the past 20,000 years. These will be the first measurements to extend the CO record beyond 650 years before present, back to the last glacial maximum. Both atmospheric chemical processes and variations in CO sources can impact the CO budget, and variations in the CO budget are useful in identifying and quantifying chemistry-climate interactions.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "LABORATORY; TRACE GASES/TRACE SPECIES; FIELD INVESTIGATION; South Pole", "locations": "South Pole", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Mak, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: Using Stable Isotopes to Constrain the Atmospheric Carbon Monoxide Budget over the Last 20,000 Years", "uid": "p0010117", "west": -180.0}, {"awards": "1443690 Young, Duncan", "bounds_geometry": "POLYGON((95 -68,100.5 -68,106 -68,111.5 -68,117 -68,122.5 -68,128 -68,133.5 -68,139 -68,144.5 -68,150 -68,150 -70.2,150 -72.4,150 -74.6,150 -76.8,150 -79,150 -81.2,150 -83.4,150 -85.6,150 -87.8,150 -90,144.5 -90,139 -90,133.5 -90,128 -90,122.5 -90,117 -90,111.5 -90,106 -90,100.5 -90,95 -90,95 -87.8,95 -85.6,95 -83.4,95 -81.2,95 -79,95 -76.8,95 -74.6,95 -72.4,95 -70.2,95 -68))", "dataset_titles": "Airborne potential fields data from Titan Dome, Antarctica; ICECAP Basal Interface Specularity Content Profiles: IPY and OIB; ICECAP: Gridded boundary conditions for Little Dome C, Antarctica, and extracted subglacial lake locations; ICECAP: High resolution survey of the Little Dome C region in support of the IPICS Old Ice goal; ICECAP radargrams in support of the international old ice search at Dome C - 2016; Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau; SPICECAP/ICECAP II Instrument Measurements (LASER, MAGNETICS and POSITIONING); Titan Dome, East Antarctica, Aerogeophysical Survey", "datasets": [{"dataset_uid": "200235", "doi": "10.26179/jydx-yz69", "keywords": null, "people": null, "repository": "AADC", "science_program": null, "title": "SPICECAP/ICECAP II Instrument Measurements (LASER, MAGNETICS and POSITIONING)", "url": "https://data.aad.gov.au/metadata/records/AAS_4346_ICECAP_OIA_Level1B_AEROGEOPHYSICS"}, {"dataset_uid": "200233", "doi": "http://dx.doi.org/doi:10.26179/5wkf-7361", "keywords": null, "people": null, "repository": "AADC", "science_program": null, "title": "ICECAP radargrams in support of the international old ice search at Dome C - 2016", "url": "https://data.aad.gov.au/metadata/records/AAS_4346_ICECAP_OIA_RADARGRAMS"}, {"dataset_uid": "601355", "doi": "10.15784/601355", "keywords": "Aerogeophysics; Antarctica; Bed Elevation; Bed Reflectivity; Epica Dome C; Ice Thickness", "people": "Blankenship, Donald D.; Young, Duncan A.; van Ommen, Tas; Richter, Thomas; Greenbaum, Jamin; Cavitte, Marie G. P; Beem, Lucas H.; Quartini, Enrica; Tozer, Carly; Ng, Gregory; Habbal, Feras; Roberts, Jason; Kempf, Scott D.; Ritz, Catherine", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "ICECAP: High resolution survey of the Little Dome C region in support of the IPICS Old Ice goal", "url": "https://www.usap-dc.org/view/dataset/601355"}, {"dataset_uid": "601437", "doi": "10.15784/601437", "keywords": "Airborne Laser Altimetry; Airborne Radar; Airplane; Antarctica; Bedrock Elevation; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness; Radar Echo Sounder; Surface Elevation; Titan Dome", "people": "Beem, Lucas H.; Young, Duncan A.; Greenbaum, Jamin; Ng, Gregory; Young, Duncan; Blankenship, Donald D.; Cavitte, Marie G. P; Jingxue, Guo; Bo, Sun", "repository": "USAP-DC", "science_program": null, "title": "Titan Dome, East Antarctica, Aerogeophysical Survey", "url": "https://www.usap-dc.org/view/dataset/601437"}, {"dataset_uid": "601411", "doi": "10.15784/601411", "keywords": "Antarctica; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; ICECAP; Ice Penetrating Radar; Internal Reflecting Horizons", "people": "Blankenship, Donald D.; Mulvaney, Robert; Cavitte, Marie G. P; Ritz, Catherine; Greenbaum, Jamin; Ng, Gregory; Kempf, Scott D.; Quartini, Enrica; Muldoon, Gail R.; Paden, John; Frezzotti, Massimo; Roberts, Jason; Tozer, Carly; Young, Duncan A.; Schroeder, Dustin", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau", "url": "https://www.usap-dc.org/view/dataset/601411"}, {"dataset_uid": "601463", "doi": "10.15784/601463", "keywords": "Antarctica; Epica Dome C; ICECAP; Ice Penetrating Radar; Subglacial Lake", "people": "Ritz, Catherine; Roberts, Jason; Young, Duncan A.; Blankenship, Donald D.; Van Ommen, Tas; Corr, Hugh F. J.; Urbini, Stefano; Steinhage, Daniel; Tozer, Carly; Cavitte, Marie G. P; Quartini, Enrica; Frezzotti, Massimo", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "ICECAP: Gridded boundary conditions for Little Dome C, Antarctica, and extracted subglacial lake locations", "url": "https://www.usap-dc.org/view/dataset/601463"}, {"dataset_uid": "601461", "doi": "10.15784/601461", "keywords": "Antarctica; ICECAP; Titan Dome", "people": "Young, Duncan A.; Jingxue, Guo; Bo, Sun; Greenbaum, Jamin; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": null, "title": "Airborne potential fields data from Titan Dome, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601461"}, {"dataset_uid": "601371", "doi": "10.15784/601371", "keywords": "Antarctica; East Antarctica; ICECAP; Ice Penetrating Radar; Radar Echo Sounder; Radar Echo Sounding; Subglacial Hydrology", "people": "Schroeder, Dustin; Young, Duncan A.; Roberts, Jason; Blankenship, Donald D.; Siegert, Martin; van Ommen, Tas; Greenbaum, Jamin", "repository": "USAP-DC", "science_program": null, "title": "ICECAP Basal Interface Specularity Content Profiles: IPY and OIB", "url": "https://www.usap-dc.org/view/dataset/601371"}], "date_created": "Tue, 07 Jul 2020 00:00:00 GMT", "description": "Non-technical description: East Antarctica holds a vast, ancient ice sheet. The bedrock hidden beneath this ice sheet may provide clues to how today\u0027s continents formed, while the ice itself contains records of Earth\u0027s atmosphere from distant eras. New drilling technologies are now available to allow for direct sampling of these materials from more than two kilometers below the ice surface. However, getting this material will require knowing where to look. The Southern Plateau Ice-sheet Characterization and Evolution of the Central Antarctic Plate (SPICECAP) project will use internationally collected airborne survey data to search East Antarctica near the South Pole for key locations that will provide insight into Antarctica\u0027s geology and for locating the oldest intact ice on Earth. Ultimately, scientists are interested in obtaining samples of the oldest ice to address fundamental questions about the causes of changes in the timing of ice-age conditions from 40,000 to 100,000 year cycles. SPICECAP data analysis will provide site survey data for future drilling and will increase the overall understanding of Antarctica\u0027s hidden ice and geologic records. The project involves international collaboration and leveraging of internationally collected data. The SPICECAP project will train new interdisciplinary scientists at the undergraduate, graduate, and postdoctoral levels. Technical description: This study focuses on processing and interpretation of internationally collected aerogeophysical data from the Southern Plateau of the East Antarctic Ice Sheet. The data include ice penetrating radar data, laser altimetry, gravity and magnetics.\u00a0 The project will provide information on geological trends under the ice, the topography and character of the ice/rock interface, and the stratigraphy of the ice. The project will also provide baseline site characterization for future drilling. Future drilling sites and deep ice cores for old ice require that the base of the ice sheet be frozen to the bed (i.e. no free water at the interface between rock and ice) and the assessment will map the extent of frozen vs. thawed areas. Specifically, three main outcomes are anticipated for this project. First, the study will provide an assessment of the viability of Titan Dome, a subglacial highland region located near South Pole, as a potential old ice drilling prospect. The assessment will include determining the\u00a0hydraulic context of the bed by processing and interpreting the radar data,\u00a0ice sheet mass balance through time by mapping englacial reflectors in the ice and connecting them to ice stratigraphy in the recent South Pole,\u00a0and ice sheet geometry using laser altimetry. Second, the study will provide an assessment of the geological context of the Titan Dome region with respect to understanding regional geologic boundaries and the potential for bedrock sampling. For these two goals, we will use data opportunistically collected by China, and the recent PolarGAP dataset. Third, the study will provide an assessment of the risk posture for RAID site targeting in the Titan Dome region, and the Dome C region. This will use a high-resolution dataset the team collected previously at Dome C, an area similar to the coarser resolution data collected at Titan Dome, and will enable an understanding of what is missed by the wide lines spacing at Titan Dome. Specifically, we will model subglacial hydrology with and without the high resolution data, and statistically examine the detection of subglacial mountains (which could preserve old ice) and subglacial lakes (which could destroy old ice), as a function of line spacing.", "east": 150.0, "geometry": "POINT(122.5 -79)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e LIDAR ALTIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e NUCLEAR PRECESSION MAGNETOMETER", "is_usap_dc": true, "keywords": "BT-67; MAGNETIC ANOMALIES; Epica Dome C; GRAVITY ANOMALIES; GLACIER ELEVATION/ICE SHEET ELEVATION; GLACIER THICKNESS/ICE SHEET THICKNESS", "locations": "Epica Dome C", "north": -68.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Young, Duncan A.; Blankenship, Donald D.; Roberts, Jason; Bo, Sun", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e BT-67", "repo": "AADC", "repositories": "AADC; USAP-DC", "science_programs": "Dome C Ice Core", "south": -90.0, "title": "Collaborative Research: Southern Plateau Ice-sheet Characterization and Evolution of the Central Antarctic Plate (SPICECAP)", "uid": "p0010115", "west": 95.0}, {"awards": "1235094 Thurnherr, Andreas", "bounds_geometry": "POLYGON((-19 -19,-18.2 -19,-17.4 -19,-16.6 -19,-15.8 -19,-15 -19,-14.2 -19,-13.4 -19,-12.6 -19,-11.8 -19,-11 -19,-11 -19.4,-11 -19.8,-11 -20.2,-11 -20.6,-11 -21,-11 -21.4,-11 -21.8,-11 -22.2,-11 -22.6,-11 -23,-11.8 -23,-12.6 -23,-13.4 -23,-14.2 -23,-15 -23,-15.8 -23,-16.6 -23,-17.4 -23,-18.2 -23,-19 -23,-19 -22.6,-19 -22.2,-19 -21.8,-19 -21.4,-19 -21,-19 -20.6,-19 -20.2,-19 -19.8,-19 -19.4,-19 -19))", "dataset_titles": "Expedition Data; NBP1406 Expedition data; NBP1508 Expedition data; Processed Current Measurement Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508; Processed Current Measurement, Pressure and Temperature Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508 (2015); Processed Current Measurement, Pressure, Salinity and Temperature Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508", "datasets": [{"dataset_uid": "200154", "doi": "10.7284/906708", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1508 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1508"}, {"dataset_uid": "601353", "doi": null, "keywords": "CTD; CTD Data; Current Measurements; Current Meter; Mid-Ocean Ridge; Mooring; NBP1508; Oceans; Physical Oceanography; Pressure; R/v Nathaniel B. Palmer; Salinity; South Atlantic Ocean; Temperature", "people": "Thurnherr, Andreas", "repository": "USAP-DC", "science_program": null, "title": "Processed Current Measurement, Pressure and Temperature Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508 (2015)", "url": "https://www.usap-dc.org/view/dataset/601353"}, {"dataset_uid": "601354", "doi": "10.15784/601354", "keywords": "Current Measurements; LADCP; Mid-Ocean Ridge; NBP1508; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer; South Atlantic Ocean", "people": "Thurnherr, Andreas", "repository": "USAP-DC", "science_program": null, "title": "Processed Current Measurement Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508", "url": "https://www.usap-dc.org/view/dataset/601354"}, {"dataset_uid": "001408", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1406"}, {"dataset_uid": "200153", "doi": "10.7284/903009", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1406 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1406"}, {"dataset_uid": "601352", "doi": null, "keywords": "CTD; Mid-Ocean Ridge; Mooring; NBP1508; Oceans; Physical Oceanography; Pressure; R/v Nathaniel B. Palmer; Salinity; South Atlantic Ocean; Temperature", "people": "Thurnherr, Andreas", "repository": "USAP-DC", "science_program": null, "title": "Processed Current Measurement, Pressure, Salinity and Temperature Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508", "url": "https://www.usap-dc.org/view/dataset/601352"}], "date_created": "Thu, 02 Jul 2020 00:00:00 GMT", "description": "Overview: In order to close the global overturning circulation, high-density deep- and bottom waters produced at high latitudes must be made less dense and upwell to shallower depths. Available observations from the subtropical South Atlantic indicate that the bulk of the mixing in the deep ocean there takes place over the topographically rough Mid-Atlantic Ridge, in particular in the quasi-regularly spaced \"fracture zone canyons\" corrugating the ridge flanks. There, dense water is advected toward the ridge crest (i.e. upwelled) by persistent along-valley currents that flow down the unidirectional density gradients, which are maintained by strong turbulence (diapycnal mixing). Most of the data on which these inferences are based were collected during the Brazil Basin Tracer Release Experiment (BBTRE) along a single ridge-flank canyon in the western South Atlantic near 22S where previous analyses have shown that both tidal mixing and overflow processes are important. Therefore, it is likely that both processes must be considered in order to understand and parameterize the effects of turbulence and mixing in the canyons corrugating the flanks of all slow-spreading ridges, which make up large fractions of the sea floor, in particular in the Atlantic, Indian and Southern Oceans. The primary aim of this follow-on project is to improve our understanding of the dynamics over the corrugated flanks of slow-spreading mid-ocean ridges. Due to the coarse sampling resolution and choice of station locations it is not possible to answer important questions, such as the relative importance of tidal and sill mixing, from the BBTRE data. Therefore, high-resolution surveys of hydrography, three-dimensional flow, turbulence and mixing will be carried out in two neighboring canyons and over the intervening topographic spur in the BBTRE region to determine the relative contributions of tidal and sill-related mixing. Furthermore, profiling moorings deployed on two nearby sill regions will be used to derive time series of spatially integrated mixing related buoyancy fluxes and to investigate the strong but unexplained sub-inertial variability of the along-canyon flow recorded previously. Additionally, three small moorings will be deployed in saddles between the two canyons to investigate inter-canyon exchange. The data analysis will include available data from previous experiments, including a set of tracer profiles that has not been analyzed before. Intellectual Merit: The corrugated flanks of slow-spreading ridges cover large areas of the sea floor of several major ocean basins. Therefore, understanding the dynamics in the ~100 km of ridge-flank canyons and its effects on the buoyancy and upwelling budget of the abyssal ocean is of global significance. In addition to determining the relative importance of tidal mixing and cross-sill flows in two canyons, the temporal variability of turbulence and mixing from tidal to yearly time scales will be investigated to gain insights into the forcing of the along-canyon flows, the exchange between neighboring canyons, and the eventual fate of the canyon waters. Broader Impacts: It is anticipated that insights gained during this project will improve our understanding of abyssal mixing in many different regions with similar bottom topography and provide the basis for better parameterizations of the effects of turbulence and mixing in large-scale circulation and climate models that cannot resolve these small-scale processes. As part of the project, a graduate student and a post-doctoral researcher will be trained in all aspects of observational physical oceanography, from data acquisition to interpretation.", "east": -11.0, "geometry": "POINT(-15 -21)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "OCEAN CURRENTS; South Atlantic Ocean; R/V NBP; WATER MASSES", "locations": "South Atlantic Ocean", "north": -19.0, "nsf_funding_programs": null, "paleo_time": null, "persons": "Thurnherr, Andreas", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -23.0, "title": "Collaborative Research: Flow, Turbulence and Mixing in Mid-Ocean Ridge Fracture Zone Canyons", "uid": "p0010114", "west": -19.0}, {"awards": "1246465 Brook, Edward J.", "bounds_geometry": "POINT(-112.1115 -79.481)", "dataset_titles": "WAIS Divide Ice Core Marine Isotope Stage 3 CO2 record", "datasets": [{"dataset_uid": "601337", "doi": "10.15784/601337", "keywords": "Antarctica; Carbon Cycle; CO2; Gas Chromatograph; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; WAIS Divide", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core Marine Isotope Stage 3 CO2 record", "url": "https://www.usap-dc.org/view/dataset/601337"}], "date_created": "Mon, 22 Jun 2020 00:00:00 GMT", "description": "Brook/1246465 This award supports a project to measure the carbon dioxide (CO2) concentration in the WAIS Divide ice core covering the time period 25,000 to 60,000 years before present, and to analyze the isotopic composition of CO2 in selected time intervals. The research will improve understanding of how and why atmospheric CO2 varied during the last ice age, focusing particularly on abrupt transitions in the concentration record that are associated with abrupt climate change. These events represents large perturbations to the global climate system and better information about the CO2 response should inform our understanding of carbon cycle-climate feedbacks and radiative forcing of climate. The research will also improve analytical methods in support of these goals, including completing development of sublimation methods to replace laborious mechanical crushing of ice to release air for analysis. The intellectual merit of the proposed work is that it will increase knowledge about the magnitude and timing of atmospheric CO2 variations during the last ice age, and their relationship to regional climate in Antarctica, global climate history, and the history of abrupt climate change in the Northern Hemisphere. The temporal resolution of the proposed record will in most intervals be ~ 4 x higher than previous data sets for this time period, and for selected intervals up to 8-10 times higher. Broader impacts of the proposed work include a significant addition to the amount of data documenting the history of the most important long-lived greenhouse gas in the atmosphere and more information about carbon cycle-climate feedbacks - important parameters for predicting future climate change. The project will contribute to training a postdoctoral researcher, research experience for an undergraduate and a high school student, and outreach to local middle school and other students. It will also improve the analytical infrastructure at OSU, which will be available for future projects.", "east": -112.1115, "geometry": "POINT(-112.1115 -79.481)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Carbon Cycle; Ice Core Records; USAP-DC; CO2; FIELD INVESTIGATION; CARBON DIOXIDE; LABORATORY; WAIS Divide", "locations": "WAIS Divide", "north": -79.481, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Completing the WAIS Divide Ice Core CO2 record", "uid": "p0010110", "west": -112.1115}, {"awards": "1443576 Panter, Kurt", "bounds_geometry": "POLYGON((-154.1 -86.9,-154.03 -86.9,-153.96 -86.9,-153.89 -86.9,-153.82 -86.9,-153.75 -86.9,-153.68 -86.9,-153.61 -86.9,-153.54 -86.9,-153.47 -86.9,-153.4 -86.9,-153.4 -86.92,-153.4 -86.94,-153.4 -86.96,-153.4 -86.98,-153.4 -87,-153.4 -87.02,-153.4 -87.04,-153.4 -87.06,-153.4 -87.08,-153.4 -87.1,-153.47 -87.1,-153.54 -87.1,-153.61 -87.1,-153.68 -87.1,-153.75 -87.1,-153.82 -87.1,-153.89 -87.1,-153.96 -87.1,-154.03 -87.1,-154.1 -87.1,-154.1 -87.08,-154.1 -87.06,-154.1 -87.04,-154.1 -87.02,-154.1 -87,-154.1 -86.98,-154.1 -86.96,-154.1 -86.94,-154.1 -86.92,-154.1 -86.9))", "dataset_titles": "Volcanological and Petrological measurements on Mt. Early and Sheridan Bluff volcanoes, upper Scott Glacier, Antarctica ", "datasets": [{"dataset_uid": "601331", "doi": "10.15784/601331", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochronology; Glacial Volcanism; Magma Differentiation; Major Elements; Mantle Melting; Solid Earth; Trace Elements; Transantarctic Mountains", "people": "Panter, Kurt", "repository": "USAP-DC", "science_program": null, "title": "Volcanological and Petrological measurements on Mt. Early and Sheridan Bluff volcanoes, upper Scott Glacier, Antarctica ", "url": "https://www.usap-dc.org/view/dataset/601331"}], "date_created": "Fri, 05 Jun 2020 00:00:00 GMT", "description": "Predictions of future sea level rise require better understanding of the changing dynamics of the Greenland and Antarctic ice sheets. One way to better understand the past history of the ice sheets is to obtain records from inland ice for past geological periods, particularly in Antarctica, the world?s largest remaining ice sheet. Such records are exceedingly rare, and can be acquired at volcanic outcrops in the La Gorce Mountains of the central Transantarctic Mountains. Volcanoes now exposed within the La Gorce Mountains erupted beneath the East Antarctic ice sheet and the data collected will record how thick the ice sheet was in the past. In addition, information will be used to determine the thermal conditions at the base of the ice sheet, which impacts ice sheet stability. The project will also investigate the origin of volcanic activity in Antarctica and links to the West Antarctic Rift System (WARS). The WARS is a broad area of extended (i.e. stretched) continental crust, similar to that found in East Africa, and volcanism is wide spread and long-lived (65 million years to currently active) and despite more than 50 years of research, the fundamental cause of volcanism and rifting in Antarctica is still vigorously debated. The results of this award therefore also potentially impact the study of oceanic volcanism in the entire southwestern Pacific region (e.g., New Zealand and Australia), where volcanic fields of similar composition and age have been linked by common magma sources and processes. The field program includes a graduate student who will work on the collection, analysis, and interpretation of petrological data as part of his/her Masters project. The experience and specialized analytical training being offered will improve the quality of the student?s research and optimize their opportunities for their future. The proposed work fosters faculty and student national and international collaboration, including working with multi-user facilities that provide advanced technological mentoring of science students. Results will be broadly disseminated in peer-reviewed journals, public presentations at science meetings, and in outreach activities. Petrologic and geochemical data will be disseminated to be the community through the Polar Rock Repository. The study of subglacially erupted volcanic rocks has been developed to the extent that it is now the most powerful proxy methodology for establishing precise ?snapshots? of ice sheets, including multiple critical ice parameters. Such data should include measurements of ice thickness, surface elevation and stability, which will be used to verify, or reject, published semi-empirical models relating ice dynamics to sea level changes. In addition to establishing whether East Antarctic ice was present during the formation of the volcanoes, data will be used to derive the coeval ice thicknesses, surface elevations and basal thermal regime(s) in concert with a precise new geochronology using the 40Ar/39Ar dating method. Inferences from measurement of standard geochemical characteristics (major, trace elements and Sr, Nd, Pb, O isotopes) will be used to investigate a possible relationship between the volcanoes and the recently discovered subglacial ridge under the East Antarctic ice, which may be a rift flank uplift. The ridge has never been sampled, is undated and its significance is uncertain. The data will provide important new information about the deep Earth and geodynamic processes beneath this mostly ice covered and poorly understood sector of the Antarctic continent.", "east": -153.4, "geometry": "POINT(-153.75 -87)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; Mantle Melting; Magma Differentiation; Geochronology; Glacial Volcanism; GEOCHEMISTRY; Major Elements; ISOTOPES; Trace Elements; Transantarctic Mountains; LABORATORY; LAVA COMPOSITION/TEXTURE; USAP-DC; LAND RECORDS", "locations": "Transantarctic Mountains", "north": -86.9, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Panter, Kurt", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.1, "title": "Investigating Early Miocene Sub-ice Volcanoes in Antarctica for Improved Modeling and understanding of a Large Magmatic Province", "uid": "p0010105", "west": -154.1}, {"awards": "1744570 Galloway, Aaron; 1744550 Amsler, Charles; 1744584 Klein, Andrew; 1744602 Iken, Katrin", "bounds_geometry": "POLYGON((-70 -61,-69 -61,-68 -61,-67 -61,-66 -61,-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-60 -61,-60 -61.772,-60 -62.544,-60 -63.316,-60 -64.088,-60 -64.86,-60 -65.632,-60 -66.404,-60 -67.176,-60 -67.948,-60 -68.72,-61 -68.72,-62 -68.72,-63 -68.72,-64 -68.72,-65 -68.72,-66 -68.72,-67 -68.72,-68 -68.72,-69 -68.72,-70 -68.72,-70 -67.948,-70 -67.176,-70 -66.404,-70 -65.632,-70 -64.86,-70 -64.088,-70 -63.316,-70 -62.544,-70 -61.772,-70 -61))", "dataset_titles": "Average global horizontal solar irradiance at study sites; Carbon and nitrogen isotope data along a gradient at the Antarctic Peninsula; Chemical composition data for Desmarestia menziesii; Chemical composition data for Himantothallus grandifolius; Chemical composition data for Iridaea ; Chemical composition data for Sarcopeltis antarctica ; Computed fetch for project study sites; Five year mean annual and summer sea ice concentration grids for the Western Antarctic Peninsula from AMSR2, National Ice Center Charts and the Sea Ice Index ; Gridded sea ice concentrations from National Ice Center (NIC) Charts 2014-2019 for Western Antarctic Peninsula ; Initial release of code and data associated with Whippo et al. (2024) Fatty acid profiles and stable isotope composition of Antarctic macroalgae: A baseline for a combined biomarker approach in food web studies.; Landsat Sea Ice/Cloud classifications surrounding project study sites; Latitude and longitude data for project study sites; LMG1904 expedition data; Macroalgal species collected along horizontal transect components ; Modelled Solar Irradiance for Western Antarctic Pennisula; Sea Ice Concentration Timeseries for study sites; Underwater transect videos used for community analyses; Underwater video transect community analysis data; VIIRS KD(490) diffuse attenuation coefficients for study sites", "datasets": [{"dataset_uid": "601610", "doi": "10.15784/601610", "keywords": "Antarctica; Antarctic Peninsula; Benthic Communities; Biota; Macroalgae; Macroinvertebrates; Oceans; Video Transects", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Underwater transect videos used for community analyses", "url": "https://www.usap-dc.org/view/dataset/601610"}, {"dataset_uid": "200402", "doi": "10.5281/zenodo.10524919", "keywords": null, "people": null, "repository": "Zendo", "science_program": null, "title": "Initial release of code and data associated with Whippo et al. (2024) Fatty acid profiles and stable isotope composition of Antarctic macroalgae: A baseline for a combined biomarker approach in food web studies.", "url": "https://zenodo.org/records/10524920"}, {"dataset_uid": "200147", "doi": "10.7284/908260", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "LMG1904 expedition data", "url": "https://www.rvdata.us/search/cruise/LMG1904"}, {"dataset_uid": "601330", "doi": "10.15784/601330", "keywords": "Antarctica; Antarctic Peninsula; Biota; LMG1904; R/v Laurence M. Gould; Sample Location", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Latitude and longitude data for project study sites", "url": "https://www.usap-dc.org/view/dataset/601330"}, {"dataset_uid": "601619", "doi": "10.15784/601619", "keywords": "Antarctica; Antarctic Peninsula; Benthic Communities; Biota; Macroalgae; Macroinvertebrates; Oceans; Video Transects", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Underwater video transect community analysis data", "url": "https://www.usap-dc.org/view/dataset/601619"}, {"dataset_uid": "601639", "doi": "10.15784/601639", "keywords": "Antarctica; Antarctic Peninsula; Biota; Fetch; LMG1904; R/v Laurence M. Gould", "people": "Klein, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Computed fetch for project study sites", "url": "https://www.usap-dc.org/view/dataset/601639"}, {"dataset_uid": "601640", "doi": "10.15784/601640", "keywords": "Antarctica; Biota; Diffuse Attenuation Coefficient; LMG1904; R/v Laurence M. Gould; Turbidity", "people": "Klein, Andrew", "repository": "USAP-DC", "science_program": null, "title": "VIIRS KD(490) diffuse attenuation coefficients for study sites", "url": "https://www.usap-dc.org/view/dataset/601640"}, {"dataset_uid": "601641", "doi": "10.15784/601641", "keywords": "Antarctica; Average Global Horizontal Solar Irradiance; Biota; LMG1904; R/v Laurence M. Gould", "people": "Klein, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Average global horizontal solar irradiance at study sites", "url": "https://www.usap-dc.org/view/dataset/601641"}, {"dataset_uid": "601642", "doi": "10.15784/601642", "keywords": "Antarctica; Antarctic Peninsula; Biota; LMG1904; R/v Laurence M. Gould; Sea Ice Concentration", "people": "Klein, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Sea Ice Concentration Timeseries for study sites", "url": "https://www.usap-dc.org/view/dataset/601642"}, {"dataset_uid": "601643", "doi": "10.15784/601643", "keywords": "Antarctica; Antarctic Peninsula; LMG1904; National Ice Center Charts; R/v Laurence M. Gould; Sea Ice Concentration", "people": "Klein, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Gridded sea ice concentrations from National Ice Center (NIC) Charts 2014-2019 for Western Antarctic Peninsula ", "url": "https://www.usap-dc.org/view/dataset/601643"}, {"dataset_uid": "601649", "doi": "10.15784/601649", "keywords": "Antarctica; Antarctic Peninsula; LMG1904; National Ice Center Charts; Sea Ice Concentration", "people": "Klein, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Five year mean annual and summer sea ice concentration grids for the Western Antarctic Peninsula from AMSR2, National Ice Center Charts and the Sea Ice Index ", "url": "https://www.usap-dc.org/view/dataset/601649"}, {"dataset_uid": "601651", "doi": "10.15784/601651", "keywords": "Antarctica; Antarctic Peninsula; Biota; GIS; GIS Data; LMG1904; R/v Laurence M. Gould; Solar Radiation", "people": "Klein, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Modelled Solar Irradiance for Western Antarctic Pennisula", "url": "https://www.usap-dc.org/view/dataset/601651"}, {"dataset_uid": "601653", "doi": "10.15784/601653", "keywords": "Antarctica; Antarctic Peninsula; Biota; Carbon; Carbon Isotopes; LMG1904; Nitrogen Isotopes; Oceans", "people": "Iken, Katrin", "repository": "USAP-DC", "science_program": null, "title": "Carbon and nitrogen isotope data along a gradient at the Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601653"}, {"dataset_uid": "601654", "doi": "10.15784/601654", "keywords": "Antarctica; Antarctic Peninsula; GIS; LANDSAT; LMG1904; Remote Sensing; R/v Laurence M. Gould", "people": "Klein, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Landsat Sea Ice/Cloud classifications surrounding project study sites", "url": "https://www.usap-dc.org/view/dataset/601654"}, {"dataset_uid": "601725", "doi": "10.15784/601725", "keywords": "Antarctica; Antarctic Peninsula", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Macroalgal species collected along horizontal transect components ", "url": "https://www.usap-dc.org/view/dataset/601725"}, {"dataset_uid": "601882", "doi": "10.15784/601882", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Macroalgae", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Chemical composition data for Desmarestia menziesii", "url": "https://www.usap-dc.org/view/dataset/601882"}, {"dataset_uid": "601883", "doi": "10.15784/601883", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Macroalgae", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Chemical composition data for Himantothallus grandifolius", "url": "https://www.usap-dc.org/view/dataset/601883"}, {"dataset_uid": "601884", "doi": "10.15784/601884", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Macroalgae", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Chemical composition data for Iridaea ", "url": "https://www.usap-dc.org/view/dataset/601884"}, {"dataset_uid": "601885", "doi": "10.15784/601885", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Macroalgae", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Chemical composition data for Sarcopeltis antarctica ", "url": "https://www.usap-dc.org/view/dataset/601885"}], "date_created": "Thu, 04 Jun 2020 00:00:00 GMT", "description": "The western Antarctic Peninsula has become a model for understanding cold water communities and how they may be changing in Antarctica and elsewhere. Brown macroalgae (seaweeds) form extensive undersea forests in the northern portion of this region where they play a key role in providing both physical structure and a food (carbon) source for shallow water communities. Yet between Anvers Island (64 degrees S latitude) and Adelaide Island (67 S latitude) these macroalgae become markedly less abundant and diverse. This is probably because the habitat to the south is covered by more sea ice for a longer period, and the sea ice reduces the amount of light that reaches the algae. The reduced macroalgal cover undoubtedly impacts other organisms in the food web, but the ways in which it alters sea-floor community processes and organization is unknown. This project will quantitatively document the macroalgal communities at multiple sites between Anvers and Adelaide Islands using a combination of SCUBA diving, video surveys, and algal collections. Sea ice cover, light levels, and other environmental parameters on community structure will be modelled to determine which factors have the largest influence. Impacts on community structure, food webs, and carbon flow will be assessed through a mixture of SCUBA diving and video surveys. Broader impacts include the training of graduate students and a postdoctoral researcher, as well as numerous informal public education activities including lectures, presentations to K-12 groups, and a variety of social media-based outreach. Macroalgal communities are more abundance and diverse to the north along the Western Antarctic Peninsula, perhaps due to the greater light availability that is associated with shorter period of sea-ice cover. This project will determine the causes and community level consequence of this variation in algal community structure. First, satellite data on sea ice extent and water turbidity will be used to select study sites between 64 S and 69 S where the extent of annual sea ice cover is the primary factor influencing subsurface light levels. Then, variations in macroalgal cover across these study sites will be determined by video line-transect surveys conducted by SCUBA divers. The health, growth, and physiological status of species found at the different sites will be determined by quadrat sampling. The relative importance of macroalgal-derived carbon to the common invertebrate consumers in the foodweb will be assessed with stable isotope and fatty acid biomarker techniques. This will reveal how variation in macroalgal abundance and species composition across the sea ice cover gradient impacts sea floor community composition and carbon flow throughout the food web. In combination, this work will facilitate predictions of how the ongoing reductions in extent and duration of sea ice cover that is occurring in the region as a result of global climate change will impact the structure of nearshore benthic communities. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -60.0, "geometry": "POINT(-65 -64.86)", "instruments": null, "is_usap_dc": true, "keywords": "COASTAL; R/V LMG; MACROALGAE (SEAWEEDS); BENTHIC; USAP-DC; Antarctic Peninsula", "locations": "Antarctic Peninsula", "north": -61.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Amsler, Charles; McClintock, James; Iken, Katrin; Galloway, Aaron; Klein, Andrew", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "USAP-DC", "repositories": "R2R; USAP-DC; Zendo", "science_programs": null, "south": -68.72, "title": "Collaborative Research: Sea ice as a driver of Antarctic benthic macroalgal community composition and nearshore trophic connectivity", "uid": "p0010104", "west": -70.0}, {"awards": "1643722 Brook, Edward J.", "bounds_geometry": "POINT(0 -90)", "dataset_titles": "South Pole Ice Core Methane Data and Gas Age Time Scale; South Pole ice core (SPC14) total air content (TAC)", "datasets": [{"dataset_uid": "601329", "doi": "10.15784/601329", "keywords": "Antarctica; Gas Chromatography; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; South Pole", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Methane Data and Gas Age Time Scale", "url": "https://www.usap-dc.org/view/dataset/601329"}, {"dataset_uid": "601546", "doi": "10.15784/601546", "keywords": "Antarctica; South Pole", "people": "Epifanio, Jenna", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole ice core (SPC14) total air content (TAC)", "url": "https://www.usap-dc.org/view/dataset/601546"}], "date_created": "Tue, 02 Jun 2020 00:00:00 GMT", "description": "Brook/1643722 This award supports a project to measure the concentration of the gas methane in air trapped in an ice core collected from the South Pole. The data will provide an age scale (age as a function of depth) by matching the South Pole methane changes with similar data from other ice cores for which the age vs. depth relationship is well known. The ages provided will allow all other gas measurements made on the South Pole core (by the PI and other NSF supported investigators) to be interpreted accurately as a function of time. This is critical because a major goal of the South Pole coring project is to understand the history of rare gases in the atmosphere like carbon monoxide, carbon dioxide, ethane, propane, methyl chloride, and methyl bromide. Relatively little is known about what controls these gases in the atmosphere despite their importance to atmospheric chemistry and climate. Undergraduate assistants will work on the project and be introduced to independent research through their work. The PI will continue visits to local middle schools to introduce students to polar science, and other outreach activities (e.g. laboratory tours, talks to local civic or professional organizations) as part of the project. Methane concentrations from a major portion (2 depth intervals, excluding the brittle ice-zone which is being measured at Penn State University) of the new South Pole ice core will be used to create a gas chronology by matching the new South Pole ice core record with that from the well-dated WAIS Divide ice core record. In combination with measurements made at Penn State, this will provide gas dating for the entire 50,000-year record. Correlation will be made using a simple but powerful mid-point method that has been previously demonstrated, and other methods of matching records will be explored. The intellectual merit of this work is that the gas chronology will be a fundamental component of this ice core project, and will be used by the PI and other investigators for dating records of atmospheric composition, and determining the gas age-ice age difference independently of glaciological models, which will constrain processes that affected firn densification in the past. The methane data will also provide direct stratigraphic markers of important perturbations to global biogeochemical cycles (e.g., rapid methane variations synchronous with abrupt warming and cooling in the Northern Hemisphere) that will tie other ice core gas records directly to those perturbations. A record of the total air content will also be produced as a by-product of the methane measurements and will contribute to understanding of this parameter. The broader impacts include that the work will provide a fundamental data set for the South Pole ice core project and the age scale (or variants of it) will be used by all other investigators working on gas records from the core. The project will employ an undergraduate assistant(s) in both years who will conduct an undergraduate research project which will be part of the student\u0027s senior thesis or other research paper. The project will also offer at least one research position for the Oregon State University Summer REU site program. Visits to local middle schools, and other outreach activities (e.g. laboratory tours, talks to local civic or professional organizations) will also be part of the project.", "east": 0.0, "geometry": "POINT(0 -90)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "AMD; LABORATORY; METHANE; ICE CORE RECORDS; Gas Chromatography; South Pole; USAP-DC", "locations": "South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Brook, Edward J.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "A High Resolution Atmospheric Methane Record from the South Pole Ice Core", "uid": "p0010102", "west": 0.0}, {"awards": "1743643 Passchier, Sandra", "bounds_geometry": null, "dataset_titles": "Major and trace element analyses of Eocene-Oligocene marine sediments from ODP Site 696, South Orkney Microcontinent; Particle-size distributions of Eocene-Oligocene sediment from ODP Site 696, South Orkney Microcontinent", "datasets": [{"dataset_uid": "601582", "doi": "10.15784/601582", "keywords": "Antarctica; Glaciation; IODP 650; IODP 696; Paleoceanography; Provenance; Sediment Core Data; Weathering; Weddell Sea", "people": "Passchier, Sandra; Lepp, Allison; States, Abbey; Li, Xiaona; Hojnacki, Victoria", "repository": "USAP-DC", "science_program": null, "title": "Major and trace element analyses of Eocene-Oligocene marine sediments from ODP Site 696, South Orkney Microcontinent", "url": "https://www.usap-dc.org/view/dataset/601582"}, {"dataset_uid": "601581", "doi": "10.15784/601581", "keywords": "Antarctica; Glaciation; IODP 696; Marine Geoscience; Marine Sediments; Paleoceanography; Sediment Core Data; Weddell Sea", "people": "Horowitz Castaldo, Josie; Passchier, Sandra; Lepp, Allison; Light, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Particle-size distributions of Eocene-Oligocene sediment from ODP Site 696, South Orkney Microcontinent", "url": "https://www.usap-dc.org/view/dataset/601581"}], "date_created": "Tue, 26 May 2020 00:00:00 GMT", "description": "Abstract (non-technical) Sea level rise is a problem of global importance and it is increasingly affecting the tens of millions of Americans living along coastlines. The melting of glaciers in mountain areas worldwide in response to global warming is a major cause of sea level rise and increases in nuisance coastal flooding. However, the world\u0027s largest land-based ice sheets are situated in the Polar Regions and their response under continued warming is very difficult to predict. One reason for this uncertainty is a lack of observations of ice behavior and melt under conditions of warming, as it is a relatively new global climate state lasting only a few generations so far. Researchers will investigate ice growth on Antarctica under past warm conditions using geological archives embedded in the layers of sand and mud under the sea floor near Antarctica. By peeling back at the layers beneath the seafloor investigators can read the history book of past events affecting the ice sheet. The Antarctic continent on the South Pole, carries the largest ice mass in the world. The investigator\u0027s findings will substantially improve scientists understanding of the response of ice sheets to global warming and its effect on sea level rise. Abstract (technical) The melt of land based ice is raising global sea levels with at present only minor contributions from polar ice sheets. However, the future role of polar ice sheets in climate change is one of the most critical uncertainties in predictions of sea level rise around the globe. The respective roles of oceanic and atmospheric greenhouse forcing on ice sheets are poorly addressed with recent measurements of polar climatology, because of the extreme rise in greenhouse forcing the earth is experiencing at this time. Data on the evolution of the West Antarctic ice sheet is particularly sparse. To address the data gap, researchers will reconstruct the timing and spatial distribution of Antarctic ice growth through the last greenhouse to icehouse climate transition around 37 to 33 Ma. They will collect sedimentological and geochemical data on core samples from a high-latitude paleoarchive to trace the shutdown of the chemical weathering system, the onset of glacial erosion, ice rafting, and sea ice development, as East and West Antarctic ice sheets coalesced in the Weddell Sea sector. Their findings will lead to profound increases in the understanding of the role of greenhouse forcing in ice sheet development and its effect on the global climate system. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; AMD; SEDIMENTS; LABORATORY; USA/NSF; USAP-DC; Weddell Sea", "locations": "Weddell Sea", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Passchier, Sandra", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Timing and Spatial Distribution of Antarctic Ice Sheet Growth and Sea-ice Formation across the Eocene-Oligocene Transition", "uid": "p0010101", "west": null}, {"awards": "1443470 Aydin, Murat", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "South Pole ice core (SPC14) discrete methane data; SP19 Gas Chronology; SPC14 carbonyl sulfide, methyl chloride, and methyl bromide measurements from South Pole, Antarctica", "datasets": [{"dataset_uid": "601270", "doi": "10.15784/601270", "keywords": "Antarctica", "people": "Aydin, Murat", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SPC14 carbonyl sulfide, methyl chloride, and methyl bromide measurements from South Pole, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601270"}, {"dataset_uid": "601380", "doi": "10.15784/601380", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Core Stratigraphy; Methane; South Pole; SPICEcore", "people": "Epifanio, Jenna", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SP19 Gas Chronology", "url": "https://www.usap-dc.org/view/dataset/601380"}, {"dataset_uid": "601381", "doi": "10.15784/601381", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Methane; South Pole; SPICEcore", "people": "Winski, Dominic A.; Epifanio, Jenna; Brook, Edward J.; Buizert, Christo; Kreutz, Karl; Aydin, Murat; Edwards, Jon S.; Sowers, Todd A.; Kahle, Emma; Steig, Eric J.; Osterberg, Erich; Fudge, T. J.; Hood, Ekaterina; Kalk, Michael; Ferris, David G.; Kennedy, Joshua A.; Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole ice core (SPC14) discrete methane data", "url": "https://www.usap-dc.org/view/dataset/601381"}], "date_created": "Thu, 26 Mar 2020 00:00:00 GMT", "description": "In the past, Earth\u0027s climate underwent dramatic changes that influenced physical, chemical, geological, and biological processes on a global scale. Such changes left an imprint in Earth\u0027s atmosphere, as shown by the variability in abundances of trace gases like carbon dioxide and methane. In return, changes in the atmospheric trace gas composition affected Earth\u0027s climate. Studying compositional variations of the past atmosphere helps us understand the history of interactions between global biogeochemical cycles and Earth?s climate. The most reliable information on past atmospheric composition comes from analysis of air entrapped in polar ice cores. This project aims to generate ice-core records of relatively short-lived, very-low-abundance trace gases to determine the range of past variability in their atmospheric levels and investigate the changes in global biogeochemical cycles that caused this variability. This project measures three such gases: carbonyl sulfide, methyl chloride, and methyl bromide. Changes in carbonyl sulfide can indicate changes in primary productivity and photosynthetic update of carbon dioxide. Changes in methyl chloride and methyl bromide significantly impact natural variability in stratospheric ozone. In addition, the processes that control atmospheric levels of methyl chloride and methyl bromide are shared with those controlling levels of atmospheric methane. The measurements will be made in the new ice core from the South Pole, which is expected to provide a 40,000-year record. The primary focus of this project is to develop high-quality trace gas records for the entire Holocene period (the past 11,000 years), with additional, more exploratory measurements from the last glacial period including the period from 29,000-36,000 years ago when there were large changes in atmospheric methane. Due to the cold temperatures of the South Pole ice, the proposed carbonyl sulfide measurements are expected to provide a direct measure of the past atmospheric variability of this gas without the large hydrolysis corrections that are necessary for interpretation of measurements from ice cores in warmer settings. Furthermore, we will test the expectation that contemporaneous measurements from the last glacial period in the deep West Antarctic Ice Sheet Divide ice core will not require hydrolysis loss corrections. With respect to methyl chloride, we aim to verify and improve the existing Holocene atmospheric history from the Taylor Dome ice core in Antarctica. The higher resolution of our measurements compared with those from Taylor Dome will allow us to derive a more statistically significant relationship between methyl chloride and methane. With respect to methyl bromide, we plan to extend the existing 2,000-year database to 11,000 years. Together, the methyl bromide and methyl chloride records will provide strong measurement-based constraints on the natural variability of stratospheric halogens during the Holocene period. In addition, the methyl bromide record will provide insight into the correlation between methyl chloride and methane during the Holocene period due to common sources and sinks.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; CARBONYL SULFIDE; HALOCARBONS AND HALOGENS; TRACE GASES/TRACE SPECIES; Antarctic; USAP-DC", "locations": "Antarctic", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Aydin, Murat", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Carbonyl Sulfide, Methyl Chloride, and Methyl Bromide Measurements in the New Intermediate-depth South Pole Ice Core", "uid": "p0010089", "west": -180.0}, {"awards": "1543383 Postlethwait, John", "bounds_geometry": "POLYGON((-66 -62,-65.2 -62,-64.4 -62,-63.6 -62,-62.8 -62,-62 -62,-61.2 -62,-60.4 -62,-59.6 -62,-58.8 -62,-58 -62,-58 -62.4,-58 -62.8,-58 -63.2,-58 -63.6,-58 -64,-58 -64.4,-58 -64.8,-58 -65.2,-58 -65.6,-58 -66,-58.8 -66,-59.6 -66,-60.4 -66,-61.2 -66,-62 -66,-62.8 -66,-63.6 -66,-64.4 -66,-65.2 -66,-66 -66,-66 -65.6,-66 -65.2,-66 -64.8,-66 -64.4,-66 -64,-66 -63.6,-66 -63.2,-66 -62.8,-66 -62.4,-66 -62))", "dataset_titles": "C. aceratus pronephric kidney (head kidney) miRNA; mirtop\r\ncommand lines tool to annotate miRNAs with a standard mirna/isomir naming; Patagonotothen cornucola isolate Pcor_18_01 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial; Patagonotothen sima isolate Psim_18_11 cardiac muscle myosin heavy chain 6 (myh6) gene, partial cds; Patagonotothen sima isolate Psim_18_11 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial; Patagonotothen sima isolate Psim_18_12 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial; Prost!, a tool for miRNA annotation and next generation smallRNA sequencing experiment analysis; Quantifying expression levels of smallRNAs between tissues in Danio Rerio strain AB.; Quantifying expression levels of smallRNAs between tissues in three-spined stickleback", "datasets": [{"dataset_uid": "200130", "doi": "", "keywords": null, "people": null, "repository": "NCBI SRA", "science_program": null, "title": "C. aceratus pronephric kidney (head kidney) miRNA", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=SRP069031"}, {"dataset_uid": "200131", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Prost!, a tool for miRNA annotation and next generation smallRNA sequencing experiment analysis", "url": "https://github.com/uoregon-postlethwait/prost"}, {"dataset_uid": "200132", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "mirtop\r\ncommand lines tool to annotate miRNAs with a standard mirna/isomir naming", "url": "https://github.com/miRTop"}, {"dataset_uid": "200133", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Patagonotothen cornucola isolate Pcor_18_01 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=MN136231"}, {"dataset_uid": "200134", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Patagonotothen sima isolate Psim_18_11 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=MN136232"}, {"dataset_uid": "200135", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Patagonotothen sima isolate Psim_18_12 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=MN136233+"}, {"dataset_uid": "200136", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Patagonotothen sima isolate Psim_18_11 cardiac muscle myosin heavy chain 6 (myh6) gene, partial cds", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=MN136234+"}, {"dataset_uid": "200129", "doi": "", "keywords": null, "people": null, "repository": "NCBI SRA", "science_program": null, "title": "Quantifying expression levels of smallRNAs between tissues in Danio Rerio strain AB.", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=SRP039502"}, {"dataset_uid": "200128", "doi": "", "keywords": null, "people": null, "repository": "NCBI SRA", "science_program": null, "title": "Quantifying expression levels of smallRNAs between tissues in three-spined stickleback", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=SRP157992"}], "date_created": "Wed, 26 Feb 2020 00:00:00 GMT", "description": "Icefish live in frigid Antarctic seas, and have unique traits such as the absence of red blood cells, enlarged hearts, large diameter blood vessels, low bone mineral densities, and fat droplets that disrupt their muscles. These features would be harmful in other animals. In mammals and fish inhabiting warm waters, development of organs involved in these traits is modulated by genes that encode specific proteins, but the rate of protein production is often regulated by short RNA molecules called microRNAs (miRNAs). Genes that code for proteins must first make an RNA copy, and the actual protein is made from this RNA copy intermediate. MiRNAs regulate the amount of protein that is made by binding to the RNA intermediate and interrupting its production of protein. Binding of miRNAs to RNA depends strongly on temperature. Regulation of genes by miRNAs has not been studied in Antarctic fish, which live in seas with temperatures below the freezing point of fresh water. This project will compare miRNA regulation 1) in Antarctic fish vs. warm-water fish to learn how miRNAs regulate gene expression in constant cold; and 2) in Antarctic icefish with no red blood cells, enlarged hearts, and reduced bone density vs. closely related Antarctic fish containing red blood cells, normal hearts, and dense bones. The project will have broad impacts to science and society nationally and globally. First, this will be the first study of important factors in gene regulation (miRNAs) in Antarctic fish, which are an essential component of the entire ecology of the Southern Ocean, and will shed light on how these fish might respond to the warming of Antarctic waters. Second, it will bring Antarctic science to under-represented high school students at a local alternative downtown high school by conducting video conferences during the Antarctic field seasons and hosting student investigations of Antarctic fish in the research laboratory. microRNAs (miRNAs) are key post-transcriptional regulators of gene expression that modulate development and physiology in temperate animals. Although miRNAs act by binding to messenger RNAs (mRNAs), a process that is strongly sensitive to temperature, miRNAs have yet not been studied in Antarctic animals, including Notothenioid fish, which dominate the Southern Ocean. This project will compare miRNA regulation in 1) Antarctic vs. temperate fish to learn the roles of miRNA regulation in adaptation to constant cold; and in 2) bottom-dwelling, dense-boned, red-blooded Nototheniods vs. high buoyancy, osteopenic, white-blooded icefish to understand miRNA regulation in specialized organs after the evolution of the loss of hemoglobin genes and red blood cells, the origin of enlarged heart and vasculature, and the evolution of increased buoyancy, which arose by decreased bone mineralization and increased lipid deposition. Aim 1 is to test the hypothesis that Antarctic fish evolved miRNA-related genome specializations in response to constant cold. The project will compare four Antarctic Notothenioid species to two temperate Notothenioids and two temperate laboratory species to test the hypotheses that (a) Antarctic fish evolved miRNA genome repertoires by loss of ancestral genes and/or gain of new genes, (b) express miRNAs that are involved in cold tolerance, and (c) respond to temperature change by changing miRNA gene expression. Aim 2 is to test the hypothesis that the evolution of icefish from red-blooded bottom-dwelling ancestors was accompanied by an altered miRNA genomic repertoire, sequence, and/or expression. The project will test the hypotheses that (a) miRNAs in icefish evolved in sequence and/or in expression in icefish specializations, including head kidney (origin of red blood cells); heart (changes in vascular system), cranium and pectoral girdle (reduced bone mineral density); and skeletal muscle (lipid deposition), and (b) miRNAs that evolved in icefish specializations had ancestral functions related to their derived roles in icefish, as determined by functional tests of zebrafish orthologs of icefish miRNAs in developing zebrafish. The program will isolate, sequence, and determine the expression of miRNAs and mRNAs using high-throughput transcriptomics and novel software. Results will show how the microRNA system evolves in vertebrate animals pushed to physiological extremes and provide insights into the prospects of key species in the most rapidly warming part of the globe.", "east": -58.0, "geometry": "POINT(-62 -64)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; Palmer Station; NOT APPLICABLE; FISH", "locations": "Palmer Station", "north": -62.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Postlethwait, John; Desvignes, Thomas", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "NCBI SRA", "repositories": "GitHub; NCBI GenBank; NCBI SRA", "science_programs": null, "south": -66.0, "title": "Antarctic Fish and MicroRNA Control of Development and Physiology", "uid": "p0010085", "west": -66.0}, {"awards": "1341432 Brzezinski, Mark; 1341464 Robinson, Rebecca", "bounds_geometry": "POLYGON((-175 -54,-174 -54,-173 -54,-172 -54,-171 -54,-170 -54,-169 -54,-168 -54,-167 -54,-166 -54,-165 -54,-165 -55.3,-165 -56.6,-165 -57.9,-165 -59.2,-165 -60.5,-165 -61.8,-165 -63.1,-165 -64.4,-165 -65.7,-165 -67,-166 -67,-167 -67,-168 -67,-169 -67,-170 -67,-171 -67,-172 -67,-173 -67,-174 -67,-175 -67,-175 -65.7,-175 -64.4,-175 -63.1,-175 -61.8,-175 -60.5,-175 -59.2,-175 -57.9,-175 -56.6,-175 -55.3,-175 -54))", "dataset_titles": "Diatom assemblage counts from NBP17-02 shipboard carboy experiments; Dissolved nutrient profiles from along 170\u00b0W between 67 and 54\u00b0S; Expedition Data of NBP1702; Particle composition measurements from along 170\u00b0W between 67-54\u00b0S; Particulate silicon and nitrogen concentrations and isotopic composition measurements in McLane pump profiles from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean; Silicon concentration and isotopic composition measurements in pore waters and sediments from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean; Surface Southern Ocean community growouts to evaluate the diatom bound N isotope proxy", "datasets": [{"dataset_uid": "601522", "doi": "10.15784/601522", "keywords": "Antarctica; Nitrogen Isotopes; Oceans; Paleoproxies; Southern Ocean", "people": "Robinson, Rebecca; Jones, Colin; Brzezinski, Mark; Riesselman, Christina; Kelly, Roger; Closset, Ivia; Robinson, Rebecca ", "repository": "USAP-DC", "science_program": null, "title": "Surface Southern Ocean community growouts to evaluate the diatom bound N isotope proxy", "url": "https://www.usap-dc.org/view/dataset/601522"}, {"dataset_uid": "200126", "doi": "10.7284/907211", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP1702", "url": "https://www.rvdata.us/search/cruise/NBP1702"}, {"dataset_uid": "601523", "doi": "10.15784/601523", "keywords": "Antarctica; Biota; Carboy Growouts; Diatom; Diatom Assemblage Data; NBP1702; Oceans; R/v Nathaniel B. Palmer; Southern Ocean; Southern Ocean Summer", "people": "Robinson, Rebecca; Riesselman, Christina; Robinson, Rebecca ; Jones, Colin", "repository": "USAP-DC", "science_program": null, "title": "Diatom assemblage counts from NBP17-02 shipboard carboy experiments", "url": "https://www.usap-dc.org/view/dataset/601523"}, {"dataset_uid": "601269", "doi": "10.15784/601269", "keywords": "Antarctica; Chlorophyll; Southern Ocean", "people": "Brzezinski, Mark; Robinson, Rebecca", "repository": "USAP-DC", "science_program": null, "title": "Dissolved nutrient profiles from along 170\u00b0W between 67 and 54\u00b0S", "url": "https://www.usap-dc.org/view/dataset/601269"}, {"dataset_uid": "601276", "doi": "10.15784/601276", "keywords": "Antarctica; Biogenic Silica; Nitrogen Isotopes; Southern Ocean", "people": "Robinson, Rebecca; Brzezinski, Mark", "repository": "USAP-DC", "science_program": null, "title": "Particle composition measurements from along 170\u00b0W between 67-54\u00b0S", "url": "https://www.usap-dc.org/view/dataset/601276"}, {"dataset_uid": "601562", "doi": "10.15784/601562", "keywords": "Antarctica; Biogenic Silica; Chemistry:sediment; Chemistry:Sediment; Lithogenic Silica; Marine Geoscience; NBP1702; Pore Water Biogeochemistry; Sediment; Silicon Cycle; Silicon Stable Isotope; Southern Ocean", "people": "Jones, Janice L.; Brzezinski, Mark; Closset, Ivia", "repository": "USAP-DC", "science_program": null, "title": "Silicon concentration and isotopic composition measurements in pore waters and sediments from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean", "url": "https://www.usap-dc.org/view/dataset/601562"}, {"dataset_uid": "601576", "doi": "10.15784/601576", "keywords": "Antarctica; Biogenic Silica; Chemistry:sediment; Chemistry:Sediment; Diatom; Diatom Bound; Lithogenic Silica; Marine Geoscience; NBP1702; Nitrogen Isotopes; Silicon Cycle; Silicon Stable Isotope; Southern Ocean", "people": "Robinson, Rebecca; Jones, Janice L.; Closset, Ivia; Brzezinski, Mark", "repository": "USAP-DC", "science_program": null, "title": " Particulate silicon and nitrogen concentrations and isotopic composition measurements in McLane pump profiles from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean", "url": "https://www.usap-dc.org/view/dataset/601576"}], "date_created": "Wed, 26 Feb 2020 00:00:00 GMT", "description": "Collaborative Proposal: A field and laboratory examination of the diatom N and Si isotope proxies: Implications for assessing the Southern Ocean biological pump The rise in atmospheric carbon dioxide concentrations and associated climate changes make understanding the role of the ocean in large scale carbon cycle a priority. Geologic samples allow exploration of potential mechanisms for carbon dioxide drawdown during glacial periods through the use of geochemical proxies. Nitrogen and silicon isotope signatures from fossil diatoms (microscopic plants) are used to investigate changes in the physical supply and biological demand for nutrients (like nitrogen and silicon and carbon) in the Southern Ocean. The project will evaluate the use the nitrogen and silicon isotope proxies through a series of laboratory experiments and Southern Ocean field sampling. The results will provide quantification of real relationships between nitrogen and silicon isotopes and nutrient usage in the Southern Ocean and allow exploration of the role of other factors, including biological diversity, ice cover, and mixing, in altering the chemical signatures recorded by diatoms. Seafloor sediment samples will be used to evaluate how well the signal created in the water column is recorded by fossil diatoms buried in the seafloor. Improving the nutrient isotope proxies will allow for a more quantitative understanding of the role of polar biology in regulating natural variation in atmospheric carbon dioxide. The project will also result in the training of a graduate student and development of outreach materials targeting a broad popular audience. This project seeks to test the fidelity of the diatom nitrogen and silicon isotope proxies, two commonly used paleoceanographic tools for investigating the role of the Southern Ocean biological pump in regulating atmospheric CO2 concentrations on glacial-interglacial timescales. Existing ground-truthing data, including culture experiments, surface sediment data and downcore reconstructions, all suggest that nutrient utilization is the primary driver of isotopic variation in the Southern Ocean. However, strong contribution of interspecific variation is implied by recent culture results. Moreover, field and laboratory studies present some contradictory results in terms of the relative importance of interspecific variation and of inferred post-depositional alteration of the nutrient isotope signals. Here, a first order test of the N and Si diatom nutrient isotope paleo-proxies, involving water column dissolved and particulate sampling and laboratory culturing of field-isolates, is proposed. Southern Ocean water, biomass, live diatoms and fossil diatom sampling will be conducted to investigate species and assemblage related variability in diatom nitrogen and silicon isotopes and their relationship to surface nutrient fields and early diagenesis. Access to fresh materials produced in an analogous environmental context to the sediments of primary interest is critical for making robust paleoceanographic reconstructions. Field sampling will occur along 175\u00b0W, transecting the Antarctic Circumpolar Current from the subtropics to the marginal ice edge. Collection of water, sinking/suspended particles and multi-core samples from 13 stations and 3 shipboard incubation experiments will be used to test four proposed hypotheses that together evaluate the significance of existing culture results and seek to allow the best use of diatom nutrient isotope proxies in evaluating the biological pump.", "east": -165.0, "geometry": "POINT(-170 -60.5)", "instruments": null, "is_usap_dc": true, "keywords": "Southern Ocean; AMD; NITROGEN ISOTOPES; R/V NBP; NSF/USA; NUTRIENTS; USAP-DC; Amd/Us", "locations": "Southern Ocean", "north": -54.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Robinson, Rebecca; Brzezinski, Mark", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -67.0, "title": "Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump", "uid": "p0010083", "west": -175.0}, {"awards": "1341602 Crockett, Elizabeth; 1341663 O\u0027Brien, Kristin", "bounds_geometry": null, "dataset_titles": "Acclimation of cardiovascular function in Notothenia coriiceps; Adrenergic and adenosinergic regulation of the cardiovascular system in the Antarctic icefish Chaenocephalus aceratus; Cardiac metabolism in Antarctic fishes in response to an acute increase in temperature; Chaenocephalus aceratus HIF-1A mRNA, complete cds; Chionodraco rastrospinosus HIF-1A mRNA, partial cds; Effects of acute warming on cardiovascular performance of Antarctic fishes; Eleginops maclovinus HIF-1A mRNA, partial cds; Gymnodraco acuticeps HIF-1A mRNA, partial cds; Hypoxia response of hearts of Antarctic fishes; Maximum cardiac performance of Antarctic fishes that lack haemoglobin and myoglobin: exploring the effect of warming on nature\u2019s natural knockouts; Measurements of splenic contraction in Antarctic fishes; Mitochondrial membranes in cardiac muscle from Antarctic notothenioid fishes vary in phospholipid composition and membrane fluidity; Notothenia coriiceps HIF-1A mRNA, complete cds; Parachaenichthys charcoti HIF-1A mRNA, partial cds; Physical, chemical, and functional properties of neuronal membranes vary between species of Antarctic notothenioids differing in thermal tolerance; Thermal sensitivity of membrane fluidity and integrity in hearts of Antarctic fishes that vary in expression of hemoglobin and myoglobin", "datasets": [{"dataset_uid": "601410", "doi": "10.15784/601410", "keywords": "Antarctica; Antarctic Peninsula; Biota; Fish", "people": "O\u0027Brien, Kristin; Crockett, Elizabeth; Egginton, Stuart; Axelsson, Michael; Farrell, Anthony; Joyce, William", "repository": "USAP-DC", "science_program": null, "title": "Effects of acute warming on cardiovascular performance of Antarctic fishes", "url": "https://www.usap-dc.org/view/dataset/601410"}, {"dataset_uid": "200189", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Eleginops maclovinus HIF-1A mRNA, partial cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/KX950830"}, {"dataset_uid": "601407", "doi": "10.15784/601407", "keywords": "Antarctica; Antarctic Peninsula", "people": "Axelsson, Michael; Joyce, William; O\u0027Brien, Kristin", "repository": "USAP-DC", "science_program": null, "title": "Measurements of splenic contraction in Antarctic fishes", "url": "https://www.usap-dc.org/view/dataset/601407"}, {"dataset_uid": "200184", "doi": "10.5061/dryad.83vc5", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Maximum cardiac performance of Antarctic fishes that lack haemoglobin and myoglobin: exploring the effect of warming on nature\u2019s natural knockouts", "url": "https://doi.org/10.5061/dryad.83vc5"}, {"dataset_uid": "200185", "doi": "10.5061/dryad.k90h35k", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Mitochondrial membranes in cardiac muscle from Antarctic notothenioid fishes vary in phospholipid composition and membrane fluidity", "url": "https://doi.org/10.5061/dryad.k90h35k"}, {"dataset_uid": "200186", "doi": "10.5061/dryad.qm0b25h", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Physical, chemical, and functional properties of neuronal membranes vary between species of Antarctic notothenioids differing in thermal tolerance", "url": "https://doi.org/10.5061/dryad.qm0b25h"}, {"dataset_uid": "200187", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Chaenocephalus aceratus HIF-1A mRNA, complete cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/KX950828"}, {"dataset_uid": "601408", "doi": "10.15784/601408", "keywords": "Antarctica; Antarctic Peninsula", "people": "Farrell, Anthony; Crockett, Elizabeth; Axelsson, Michael; O\u0027Brien, Kristin; Egginton, Stuart; Joyce, William", "repository": "USAP-DC", "science_program": null, "title": "Acclimation of cardiovascular function in Notothenia coriiceps", "url": "https://www.usap-dc.org/view/dataset/601408"}, {"dataset_uid": "200188", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Notothenia coriiceps HIF-1A mRNA, complete cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/KX950829"}, {"dataset_uid": "601409", "doi": "10.15784/601409", "keywords": "Antarctica; Antarctic Peninsula", "people": "Joyce, Michael; O\u0027Brien, Kristin; Egginton, Stuart; Farrell, Anthony; Axelsson, Michael", "repository": "USAP-DC", "science_program": null, "title": "Adrenergic and adenosinergic regulation of the cardiovascular system in the Antarctic icefish Chaenocephalus aceratus", "url": "https://www.usap-dc.org/view/dataset/601409"}, {"dataset_uid": "601414", "doi": "10.15784/601414", "keywords": "Antarctica; Antarctic Peninsula", "people": "Evans, Elizabeth; Farnoud, Amir; Crockett, Elizabeth; O\u0027Brien, Kristin", "repository": "USAP-DC", "science_program": null, "title": "Thermal sensitivity of membrane fluidity and integrity in hearts of Antarctic fishes that vary in expression of hemoglobin and myoglobin", "url": "https://www.usap-dc.org/view/dataset/601414"}, {"dataset_uid": "200190", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Parachaenichthys charcoti HIF-1A mRNA, partial cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/KX950833"}, {"dataset_uid": "601405", "doi": "10.15784/601405", "keywords": "Antarctica; Antarctic Peninsula", "people": "O\u0027Brien, Kristin", "repository": "USAP-DC", "science_program": null, "title": "Cardiac metabolism in Antarctic fishes in response to an acute increase in temperature", "url": "https://www.usap-dc.org/view/dataset/601405"}, {"dataset_uid": "200191", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Gymnodraco acuticeps HIF-1A mRNA, partial cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/kx950832"}, {"dataset_uid": "200192", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Chionodraco rastrospinosus HIF-1A mRNA, partial cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/kx950831"}, {"dataset_uid": "601406", "doi": "10.15784/601406", "keywords": "Antarctica; Antarctic Peninsula", "people": "O\u0027Brien, Kristin", "repository": "USAP-DC", "science_program": null, "title": "Hypoxia response of hearts of Antarctic fishes", "url": "https://www.usap-dc.org/view/dataset/601406"}], "date_created": "Wed, 26 Feb 2020 00:00:00 GMT", "description": "The ocean surrounding Antarctica is home to an extraordinary assemblage of fishes, dominated by a single group that are extremely well-suited to life in icy waters and which are of significant ecological importance there. Of great concern is the capacity of these fishes to withstand increases in temperature as the region of the Western Antarctic Peninsula warms at a rate faster than any other area in the Southern hemisphere. One particular group of Antarctic fishes, known as the icefishes, are particularly vulnerable to increases in temperature because unlike all other vertebrates on earth, icefishes are white-blooded due to their lack of the oxygen-binding protein hemoglobin. This greatly reduces their capacity to transport and deliver oxygen to tissues compared to red-blooded Antarctic fishes. Previous studies have shown that icefishes are indeed less tolerant to elevations in temperature but the underlying factors are completely unknown. Additionally, it is not understood if red- or white-blooded Antarctic fishes can adjust, or acclimate, to modest increases in temperature, similar to those changes in temperature the animals might experience as the earth warms. The investigators will determine if heart function and/or nervous system function limits thermal tolerance of Antarctic fishes, and will determine their capacity to acclimate to warmer temperatures. The project will further the NSF goal of training new generations of scientists by training graduate and undergraduate students. In addition, the project will collaborate with a high school biology teacher from a school which serves a largely minority student body. The students will learn about the marine environment, and will construct a camera to be used in the field to learn more about Antarctic fishes. Two students and the teacher will also attend a summer marine biology internship program. Antarctic fishes within the suborder Notothenioidei (called \"notothenioids\") are among the organisms on earth least able to deal with changes in temperature. The hemoglobinless icefish are even less able to withstand temperature changes than are red-blooded notothenioids. While this is well documented, the underlying physiological and biochemical mechanisms responsible are unknown. The investigators will test the hypotheses that cardiac work is significantly greater in icefishes compared to red-blooded species, and that as temperature increases, the greater cardiac work of icefishes, coupled with reduced blood oxygen-carrying capacity, results in cardiac failure at a lower temperature compared to red-blooded species. They also hypothesize that neuronal function limits thermal tolerance of red-blooded notothenioids. These hypotheses will be tested using a wide variety of experiments. For example, the investigators will measure heart rate concurrently with critical thermal maximum. They will also characterize metabolic and gene-expression responses to elevated temperature and determine if mitochondrial function contributes to thermal tolerance using a variety of techniques. To determine if neuronal function limits thermal tolerance they will quantify behavioral responses to warming of whole animals and to warming of only the brain area. They will also determine if acclimation to warmer temperatures impacts heart function and they will measure activities of a variety of enzymes from central metabolic pathways.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Amd/Us; FISH; USA/NSF; FIELD INVESTIGATION; AMD; Antarctic Peninsula; LABORATORY; USAP-DC", "locations": "Antarctica; Antarctic Peninsula", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Crockett, Elizabeth; O\u0027Brien, Kristin", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "Dryad; GenBank; USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes", "uid": "p0010084", "west": null}, {"awards": "1341494 Gao, Yuan", "bounds_geometry": "POINT(-64.05 -64.77)", "dataset_titles": "Concentrations and Particle Size Distributions of Aerosol Trace Elements; Particle sizes of aerosol iron", "datasets": [{"dataset_uid": "601370", "doi": "10.15784/601370", "keywords": "Antarctica; Antarctic Peninsula; Palmer Station; Trace Elements", "people": "Gao, Yuan", "repository": "USAP-DC", "science_program": null, "title": "Concentrations and Particle Size Distributions of Aerosol Trace Elements", "url": "https://www.usap-dc.org/view/dataset/601370"}, {"dataset_uid": "601257", "doi": "10.15784/601257", "keywords": "Aerosol Concentration; Antarctica; Chemistry:gas; Chemistry:Gas; Iron; Palmer Station; Particle Size", "people": "Gao, Yuan", "repository": "USAP-DC", "science_program": null, "title": "Particle sizes of aerosol iron", "url": "https://www.usap-dc.org/view/dataset/601257"}], "date_created": "Thu, 20 Feb 2020 00:00:00 GMT", "description": "The research seeks to further quantify the input of atmospheric Fe into the sparsely sampled Southern Ocean (SO), specifically in the vicinity of the West Antarctic Peninsula (WAP) and adjacent continental shelf waters in the Drake Passage. This is typically a high nutrient low chlorophyll region where surface trace metal and primary productivity data are suggestive of Fe limitation. The WAP is characterized by high productivity in the austral summer, and at this time may be in the path of northern dust (aeolian Fe) input or subject to melt influx of elevated Fe accumulated from glacial and present-day sea ice sources. Primary scientific questions are: (1) to what extent does atmospheric Fe contribute to nutrient cycles and ecosystem dynamics in the SO? (2) How is warming climate occurring in the WAP affecting the aerosol composition of the maritime atmosphere. The primary productivity of the Southern Ocean is key to understanding oceanic uptake of anthropogenic greenhouse gases such as carbon dioxide.", "east": -64.05, "geometry": "POINT(-64.05 -64.77)", "instruments": null, "is_usap_dc": true, "keywords": "Aerosol Concentration; TRACE GASES/TRACE SPECIES; Particle Size; Palmer Station; FIELD INVESTIGATION; Trace Elements; Iron; AEROSOL OPTICAL DEPTH/THICKNESS; USAP-DC", "locations": "Palmer Station", "north": -64.77, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Gao, Yuan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.77, "title": "Quantifying Atmospheric Iron Properties over West Antarctic Peninsula", "uid": "p0010082", "west": -64.05}, {"awards": "1644020 Sims, Kenneth W.; 1644027 Wallace, Paul; 1644013 Gaetani, Glenn", "bounds_geometry": "POLYGON((164.1 -77.1,164.65 -77.1,165.2 -77.1,165.75 -77.1,166.3 -77.1,166.85 -77.1,167.4 -77.1,167.95 -77.1,168.5 -77.1,169.05 -77.1,169.6 -77.1,169.6 -77.235,169.6 -77.37,169.6 -77.505,169.6 -77.64,169.6 -77.775,169.6 -77.91,169.6 -78.045,169.6 -78.18,169.6 -78.315,169.6 -78.45,169.05 -78.45,168.5 -78.45,167.95 -78.45,167.4 -78.45,166.85 -78.45,166.3 -78.45,165.75 -78.45,165.2 -78.45,164.65 -78.45,164.1 -78.45,164.1 -78.315,164.1 -78.18,164.1 -78.045,164.1 -77.91,164.1 -77.775,164.1 -77.64,164.1 -77.505,164.1 -77.37,164.1 -77.235,164.1 -77.1))", "dataset_titles": "G170 Electron Microprobe Analyses of Melt Inclusions and Host Olivines; G170 Raman Spectroscopy \u0026 Tomography Volumes of Melt Inclusions and Vapor Bubbles; G170 Sample Locations Ross Island \u0026 Discovery Province; G170 Secondary Ion Mass Spectrometry Analses of Melt Inclusion Volatiles; G170 Secondary Ion Mass Spectrometry Analyses of Melt Inclusion Hydrogen Isotopes; Location and Description of Tephra Samples from the Erebus and Discovery Sub-provinces", "datasets": [{"dataset_uid": "601505", "doi": "10.15784/601505", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Electron Microprobe Analyses; Olivine; Petrography; Ross Island", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Electron Microprobe Analyses of Melt Inclusions and Host Olivines", "url": "https://www.usap-dc.org/view/dataset/601505"}, {"dataset_uid": "601507", "doi": "10.15784/601507", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Hydrogen; Ion Mass Spectrometry; Ross Island", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Secondary Ion Mass Spectrometry Analyses of Melt Inclusion Hydrogen Isotopes", "url": "https://www.usap-dc.org/view/dataset/601507"}, {"dataset_uid": "601506", "doi": "10.15784/601506", "keywords": "Antarctica; Ion Mass Spectrometry; Ross Island; Volatiles", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Secondary Ion Mass Spectrometry Analses of Melt Inclusion Volatiles", "url": "https://www.usap-dc.org/view/dataset/601506"}, {"dataset_uid": "601250", "doi": "10.15784/601250", "keywords": "Antarctica; Hut Point Peninsula; Mt. Bird; Mt. Morning; Mt. Terror; Ross Island; Turks Head; Turtle Rock", "people": "Gaetani, Glenn; Pamukcu, Ayla", "repository": "USAP-DC", "science_program": null, "title": "Location and Description of Tephra Samples from the Erebus and Discovery Sub-provinces", "url": "https://www.usap-dc.org/view/dataset/601250"}, {"dataset_uid": "601504", "doi": "10.15784/601504", "keywords": "Antarctica; Ross Island; Sample/collection Description; Sample/Collection Description; Sample Location", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Sample Locations Ross Island \u0026 Discovery Province", "url": "https://www.usap-dc.org/view/dataset/601504"}, {"dataset_uid": "601508", "doi": "10.15784/601508", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Melt Inclusions; Raman Spectroscopy; Ross Island; Vapor Bubbles; Volcanic", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Raman Spectroscopy \u0026 Tomography Volumes of Melt Inclusions and Vapor Bubbles", "url": "https://www.usap-dc.org/view/dataset/601508"}], "date_created": "Sat, 08 Feb 2020 00:00:00 GMT", "description": "Nontechnical project description Globally, 500 million people live near and are threatened by active volcanoes. An important step in mitigating volcanic hazards is understanding the variables that influence the explosivity of eruptions. The rate at which a magma ascends from the reservoir within the Earth to the surface is one such variable. However, magma ascent rates are particularly difficult to determine because of the lack of reliable methods for investigating the process. This research applies a new approach to study magma storage depths and ascent rates at the Erebus volcanic province of Antarctica, one of Earth\u0027s largest alkaline volcanic centers. Small pockets of magma that become trapped within growing olivine crystals are called melt inclusions. The concentrations of water and carbon dioxide in these melt inclusions preserve information on the depth of magma reservoirs. Changes to the concentration and isotopic composition of water in the inclusions provide information on how long it took for the host magma to rise to the surface. In combination, these data from samples of olivine-rich volcanic deposits in the Erebus volcanic province will be used to determine the depths at which magmas are stored and their ascent rates. The project results will provide a framework for understanding volcanic hazards associated with alkaline volcanism worldwide. In addition, this project facilitates collaboration among three institutions, and provides an important educational opportunity for a postdoctoral researcher. Technical project description The depths at which magmas are stored, their pre-eruptive volatile contents, and the rates at which they ascend to the Earth\u0027s surface are important controls on the dynamics of volcanic eruptions. Basaltic magmas are likely to be vapor undersaturated as they begin their ascent from the mantle through the crust, but volatile solubility drops with decreasing pressure. Once vapor saturation is achieved and the magma begins to degas, its pre-eruptive volatile content is determined largely by the depth at which it resides within the crust. Magma stored in deeper reservoirs tend to experience less pre-eruptive degassing and to be richer in volatiles than magma shallower reservoirs. Eruptive style is influenced by the rate at which a magma ascends from the reservoir to the surface through its effect on the efficiency of vapor bubble nucleation, growth, and coalescence. The proposed work will advance our understanding of pre-eruptive storage conditions and syn-eruptive ascent rates through a combined field and analytical research program. Volatile measurements from olivine-hosted melt inclusions will be used to systematically investigate magma storage depths and ascent rates associated with alkaline volcanism in the Erebus volcanic province. A central goal of the project is to provide a spatial and temporal framework for interpreting results from studies of present-day volcanic processes at Mt Erebus volcano. The Erebus volcanic province of Antarctica is especially well suited to this type of investigation because: (1) there are many exposed mafic scoria cones, fissure vents, and hyaloclastites (exposed in sea cliffs) that produced rapidly quenched, olivine-rich tephra; (2) existing volatile data for Ross Island MIs show that magma storage was relatively deep compared to many mafic volcanic systems; (3) some of the eruptive centers ejected mantle xenoliths, allowing for comparison of ascent rates for xenolith-bearing and xenolith-free eruptions, and comparison of ascent rates for those bearing xenoliths with times estimated from settling velocities; and (4) the cold, dry conditions in Antarctica result in excellent tephra preservation compared to tropical and even many temperate localities. The project provides new tools for assessing volcanic hazards, facilitates collaboration involving researchers from three different institutions (WHOI, U Wyoming, and U Oregon), supports the researchers\u0027 involvement in teaching, advising, and outreach, and provides an educational opportunity for a promising young postdoctoral researcher. Understanding the interrelationships among magma volatile contents, reservoir depths, and ascent rates is vital for assessing volcanic hazards associated with alkaline volcanism across the globe.", "east": 169.6, "geometry": "POINT(166.85 -77.775)", "instruments": null, "is_usap_dc": true, "keywords": "Tephra; Turtle Rock; USA/NSF; Amd/Us; LABORATORY; AMD; Ross Island; Turks Head; Hut Point Peninsula; LAVA SPEED/FLOW; USAP-DC; Mt. Morning; Mt. Terror; ROCKS/MINERALS/CRYSTALS; Mt. Bird; FIELD INVESTIGATION", "locations": "Ross Island; Mt. Morning; Mt. Bird; Mt. Terror; Hut Point Peninsula; Turtle Rock; Turks Head", "north": -77.1, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Gaetani, Glenn; Le Roux, Veronique; Sims, Kenneth; Wallace, Paul", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.45, "title": "Collaborative Research: Determining Magma Storage Depths and Ascent Rates for the Erebus Volcanic Province, Antarctica Using Diffusive Water Loss from Olivine-hosted Melt Inclusion", "uid": "p0010081", "west": 164.1}, {"awards": "1643864 Talghader, Joseph", "bounds_geometry": "POINT(-112.085 -79.467)", "dataset_titles": " Automated c-axis stage images of WDC-06A 420 vertical thin section from WAIS Divide, Antarctica", "datasets": [{"dataset_uid": "601254", "doi": "10.15784/601254", "keywords": "Antarctica; C-axis; Ice; Microscopy; Thin Sections", "people": "Talghader, Joseph; Mah, Merlin", "repository": "USAP-DC", "science_program": null, "title": " Automated c-axis stage images of WDC-06A 420 vertical thin section from WAIS Divide, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601254"}], "date_created": "Sat, 08 Feb 2020 00:00:00 GMT", "description": "Part I: Nontechnical One of the most interesting historical records that science can provide is contained in the ice of Antarctica. Layer by layer over hundreds of thousands of years, snow has precipitated on the ice sheet, become compacted, and turned into additional ice. Any dust or other impurities in the air or snow have been precipitated as well and thus each snowfall leaves a snapshot record of the atmosphere that existed at or near the time of deposition. A detailed chronology of volcanic eruptions can be obtained from the ice layers where ash and other volcanic products were deposited. Normally, the analysis of volcanic layers requires the physical extraction of a core from the ice sheet; however, chronologies from cores have discontinuities and are difficult, time-consuming, and expensive to obtain. Borehole logging is a measurement method where one lowers instrumentation into a drilled hole in the ice, whether or not core has been retrieved. To date, this technology has only been used to measure optical systems to identify volcanic ash and other impurity layers. In this program, a profiling technology will be developed that measures the conductivity of the ice. A radio-frequency emitter lowered into the borehole will create a return signal that changes depending on the local conductivity, which depends on the concentration of dissolved ions. For example, dissolved sulfates are a critical marker of volcanic activity that may not be coincident with deposited ash. Other dissolved ions, such as chloride, can be indicative of other processes. It is expected that this borehole profiling instrument will be able to help rapidly identify volcanic eruptions that had potentially global impact, distinguish between different dissolved ions via their frequency dependencies, and assist in establishing chronologies between different ice cores and boreholes. Part II: Technical Description Borehole logging of the polar ice sheets is one of the most important methods that earth scientists have to identify and date volcanic eruptions. However, current technology only indicates the presence and depth of ash from an eruption. In order to extract more detailed information, one must obtain an ice core, and laboriously measure each section in the laboratory using electrical conductivity or dielectric measurements to determine the presence or absence of dissolved sulfate and its location relative to the corresponding ash, if any. This program will investigate and demonstrate a borehole logging-compatible radio-frequency dielectric sensor to detect and measure spikes in dissolved major ions chemistry in ice, particularly in intervals corresponding to volcanically produced sulfates. The sulfate layers are one of the primary signatures of volcanic products. However, other ions, such as chlorides, calcium, and others are also commonly seen in ice, and the dielectric logging technology of this program would also measure these. It is expected that certain sets of ions will be distinguishable by their frequency dependencies. This technique could guide other investigators, who are using conventional core scanning and sampling methods, to regions of special interest in corresponding core. We plan to construct a ring-based electrode system and test this system on a variety of artificial ice boreholes and ice cores. This unit will not include a pressure vessel or other borehole logger packing. We will test different means of applying electrical signals including short pulses and periodic waves. We will further utilize differential measurements with low noise circuits and filters to achieve maximum sensitivity. We will correlate the signals extracted with known molarities of sulfates and other ions and measured ECM records. We will perform scaled-down experiments using real ice cores stored in Bay?s lab at UC Berkeley. This will permit testing of different designs in ice with natural impurities and polycrystalline structure. This small collection includes cores from a variety of locations in Antarctica and Greenland, and a variety of ages as old as a million years.", "east": -112.085, "geometry": "POINT(-112.085 -79.467)", "instruments": null, "is_usap_dc": true, "keywords": "WAIS Divide; USAP-DC; Amd/Us; GLACIERS/ICE SHEETS; USA/NSF; FIELD INVESTIGATION; Ice Core; AMD", "locations": "WAIS Divide", "north": -79.467, "nsf_funding_programs": "Antarctic Instrumentation and Facilities; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Talghader, Joseph", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Collaborative Research: Borehole Logging to Classify Volcanic Signatures in Antarctic Ice", "uid": "p0010080", "west": -112.085}, {"awards": "1341496 Girton, James", "bounds_geometry": "POLYGON((-142 -66,-135.3 -66,-128.6 -66,-121.9 -66,-115.2 -66,-108.5 -66,-101.8 -66,-95.1 -66,-88.4 -66,-81.7 -66,-75 -66,-75 -66.8,-75 -67.6,-75 -68.4,-75 -69.2,-75 -70,-75 -70.8,-75 -71.6,-75 -72.4,-75 -73.2,-75 -74,-81.7 -74,-88.4 -74,-95.1 -74,-101.8 -74,-108.5 -74,-115.2 -74,-121.9 -74,-128.6 -74,-135.3 -74,-142 -74,-142 -73.2,-142 -72.4,-142 -71.6,-142 -70.8,-142 -70,-142 -69.2,-142 -68.4,-142 -67.6,-142 -66.8,-142 -66))", "dataset_titles": "Bottom Photographs from the Antarctic Peninsula acquired during R/V Laurence M. Gould expedition LMG1703; Expedition Data; Expedition data of NBP1701", "datasets": [{"dataset_uid": "601302", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Benthic Images; Benthos; Biota; LMG1708; Oceans; Photo; Photo/video; Photo/Video; R/v Laurence M. Gould; Ship; Yoyo Camera", "people": "Girton, James", "repository": "USAP-DC", "science_program": null, "title": "Bottom Photographs from the Antarctic Peninsula acquired during R/V Laurence M. Gould expedition LMG1703", "url": "https://www.usap-dc.org/view/dataset/601302"}, {"dataset_uid": "001369", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1701"}, {"dataset_uid": "002661", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1701", "url": "https://www.rvdata.us/search/cruise/NBP1701"}], "date_created": "Tue, 10 Dec 2019 00:00:00 GMT", "description": "Current oceanographic interest in the interaction of relatively warm water of the Southern Ocean Circumpolar Deep Water ( CDW) as it moves southward to the frigid waters of the Antarctic continental shelves is based on the potential importance of heat transport from the global ocean to the base of continental ice shelves. This is needed to understand the longer term mass balance of the continent, the stability of the vast Antarctic ice sheets and the rate at which sea-level will rise in a warming world. Improved observational knowledge of the mechanisms of how warming CDW moves across the Antarctic Circumpolar Current (ACC) is needed. Understanding this dynamical transport, believed to take place by the eddy flux of time-varying mesoscale circulation features, will improve coupled ocean-atmospheric climate models. The development of the next generation of coupled ocean-ice- climate models help us understand future changes in atmospheric heat fluxes, glacial and sea-ice balance, and changes in the Antarctic ecosystems. A recurring obstacle to our understanding is the lack of data in this distant region. In this project, a number of subsurface profiling EM-APEX floats adapted to operate under sea ice will be launched on up to 4 cruises of opportunity to the Pacific sector during Austral summer. The floats will be launched south of the Polar Front and measure shear, turbulence, temperature, and salinity to 2000m depth for up to 2 year missions while following the CDW layer.", "east": -75.0, "geometry": "POINT(-108.5 -70)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERA", "is_usap_dc": true, "keywords": "OCEAN TEMPERATURE; R/V NBP; USAP-DC; ICE DEPTH/THICKNESS; HEAT FLUX; OCEAN CURRENTS; SALINITY/DENSITY; LMG1703; Bellingshausen Sea; Yoyo Camera; WATER MASSES; R/V LMG; NBP1701", "locations": "Bellingshausen Sea", "north": -66.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Girton, James; Rynearson, Tatiana", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -74.0, "title": "Collaborative Research: Pathways of Circumpolar Deep Water to West Antarctica from Profiling Float and Satellite Measurements", "uid": "p0010074", "west": -142.0}, {"awards": "1443296 Cottle, John", "bounds_geometry": "POLYGON((-180 -76.85314,-179.4383642 -76.85314,-178.8767284 -76.85314,-178.3150926 -76.85314,-177.7534568 -76.85314,-177.191821 -76.85314,-176.6301852 -76.85314,-176.0685494 -76.85314,-175.5069136 -76.85314,-174.9452778 -76.85314,-174.383642 -76.85314,-174.383642 -77.658865,-174.383642 -78.46459,-174.383642 -79.270315,-174.383642 -80.07604,-174.383642 -80.881765,-174.383642 -81.68749,-174.383642 -82.493215,-174.383642 -83.29894,-174.383642 -84.104665,-174.383642 -84.91039,-174.9452778 -84.91039,-175.5069136 -84.91039,-176.0685494 -84.91039,-176.6301852 -84.91039,-177.191821 -84.91039,-177.7534568 -84.91039,-178.3150926 -84.91039,-178.8767284 -84.91039,-179.4383642 -84.91039,180 -84.91039,177.4459565 -84.91039,174.891913 -84.91039,172.3378695 -84.91039,169.783826 -84.91039,167.2297825 -84.91039,164.675739 -84.91039,162.1216955 -84.91039,159.567652 -84.91039,157.0136085 -84.91039,154.459565 -84.91039,154.459565 -84.104665,154.459565 -83.29894,154.459565 -82.493215,154.459565 -81.68749,154.459565 -80.881765,154.459565 -80.07604,154.459565 -79.270315,154.459565 -78.46459,154.459565 -77.658865,154.459565 -76.85314,157.0136085 -76.85314,159.567652 -76.85314,162.1216955 -76.85314,164.675739 -76.85314,167.2297825 -76.85314,169.783826 -76.85314,172.3378695 -76.85314,174.891913 -76.85314,177.4459565 -76.85314,-180 -76.85314))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 02 Dec 2019 00:00:00 GMT", "description": "Subduction takes place at convergent plate boundaries and involves sinking of one tectonic plate underneath another. Although this process is a key aspect of plate tectonics that shapes the planet over geologic time, and is a primary cause of earthquakes, it is not known what causes subduction to cease, and what effect it has on the deepest portions of the crust and the upper part of the mantle. By studying the age and composition of igneous rocks emplaced at the very end of the subduction cycle, this project seeks to understand what causes subduction to cease, and how this changes the composition and structure of the crust and upper mantle. Because this process occurs deep within the earth, the project will focus on rocks in the root of an ancient subduction zone, now exposed in the Transantarctic Mountains of Antarctica. In addition, Antarctica remains relatively poorly understood, and this project will contribute directly to increasing our understanding of the geologic history of this region. The project will focus on training graduate and undergraduate students - incorporating hands-on experience with an array of state-of-the-art analytical instrumentation. Students will also gain a range of more general skills including Geographic Information Systems (GIS), written and oral communication, and data management - strengths that are highly relevant to careers both in the academic and Geosciences industry. Each summer, high school students will be incorporated into aspects of the laboratory-based research through the UCSB research mentorship program. The PI and graduate students will engage the general public through a purpose-built iPhone App and multimedia website. Activities will include live phone and video conversations from the field between elementary school students and members of the team in Antarctica. The mechanisms by which the deep crustal delaminates or \"founders\" and is returned to the mantle remains a fundamental problem in earth science. Specifically, little is known about the temporal and spatial scales over which this process occurs or the mechanisms that trigger such catastrophic events. Igneous rocks highly enriched in potassium, called lamprophyres, are often emplaced during, and immediately after, termination of subduction and therefore potentially provide direct insight into foundering. These enigmatic rocks are important because they represent near-primary mantle melt compositions and therefore their age, geochemistry and petrologic evolution reveal key information on both the composition of the upper mantle and its thermal state. Of equal importance, they reveal how these key parameters vary through both space and time. By evaluating lamprophyres along a subduction zone margin it is possible to extract: 1) local-scale information, such as the timing and duration of melting and the role of igneous crystallization processes in generation of isotopic heterogeneities; 2) along-strike variations in mantle source composition, temperature, and depth of melting 3) the plate-scale forces that control foundering and termination of subduction. This project will study a suite of lamprophyres along the axis of the Transantarctic Mountains, emplaced during the latest stages of the Neoproterozoic - Ordovician Ross orogeny, Antarctica (roughly 505 to 470 million years before present). High-precision geochronology (age determinations) will be combined with geochemical measurements on the rocks and minerals to understand the mechanisms and timing of deep crustal foundering/delamination.", "east": -174.383642, "geometry": "POINT(170.0379615 -80.881765)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "AGE DETERMINATIONS; ISOTOPES; PLATE TECTONICS; Antarctica; USAP-DC; NOT APPLICABLE", "locations": "Antarctica", "north": -76.85314, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Cottle, John", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repositories": null, "science_programs": null, "south": -84.91039, "title": "Petrologic Constraints on Subduction Termination From Lamprophyres, Ross Orogen, Antarctica", "uid": "p0010071", "west": 154.459565}, {"awards": "1643550 Sletten, Ronald", "bounds_geometry": "POLYGON((160.5 -77.3,160.67 -77.3,160.84 -77.3,161.01 -77.3,161.18 -77.3,161.35 -77.3,161.52 -77.3,161.69 -77.3,161.86 -77.3,162.03 -77.3,162.2 -77.3,162.2 -77.35,162.2 -77.4,162.2 -77.45,162.2 -77.5,162.2 -77.55,162.2 -77.6,162.2 -77.65,162.2 -77.7,162.2 -77.75,162.2 -77.8,162.03 -77.8,161.86 -77.8,161.69 -77.8,161.52 -77.8,161.35 -77.8,161.18 -77.8,161.01 -77.8,160.84 -77.8,160.67 -77.8,160.5 -77.8,160.5 -77.75,160.5 -77.7,160.5 -77.65,160.5 -77.6,160.5 -77.55,160.5 -77.5,160.5 -77.45,160.5 -77.4,160.5 -77.35,160.5 -77.3))", "dataset_titles": "Timelapse photography of Don Juan Pond and surrounding basin", "datasets": [{"dataset_uid": "601487", "doi": "10.15784/601487", "keywords": "Antarctica; Brine; CaCl2; Don Juan Pond; Dry Valleys; Salt", "people": "Toner, Jonathan; Sletten, Ronald S.; Mushkin, Amit", "repository": "USAP-DC", "science_program": null, "title": "Timelapse photography of Don Juan Pond and surrounding basin", "url": "https://www.usap-dc.org/view/dataset/601487"}], "date_created": "Thu, 21 Nov 2019 00:00:00 GMT", "description": "This study aims to better understand salt accumulation in cold deserts and develop a model of salt transport by groundwater. Cold deserts, like the Antarctic McMurdo Dry Valleys (MDV), are similar to hot deserts in that they accumulate high concentrations of salts because there is not enough water to flush the salts out of the soils into the ocean. The accumulation of salt allows for the creation of brine-rich groundwater that freezes at much lower temperatures. Field work will focus on several groundwater features in the MDV including Don Juan Pond, a shallow lake that accumulates extremely high levels of salts and does not freeze until the temperature reaches -51 degrees C (-60 degrees F). The setting offers the potential to better understand this unique water environment including life at its extremes. It also serves as an analog environment for Mars, a planet that is entirely underlain by permafrost, similar to the MDV. This project will support a doctoral student at the University of Washington Department of Earth and Space Sciences, who will be trained in chemical analysis, chemical and physical modeling, and remote field work in a polar desert environment. Past research suggests that the movement of soluble ions in sediment and soil is controlled by the water activity, permeability, and the thermal regime; however, processes controlling the ionic redistribution in Antarctic environments are poorly constrained. This project aims to better understand the formation, salt redistribution, and water activity of pervasive brine-rich groundwater that is enriched in calcium chloride. A primary goal is to develop a brine thermal;reactive;transport model for the MDV region using data collected from the field to constrain model inputs and ground-truth model outputs. The model will develop a Pitzer-type thermodynamic, reactive transport model and couple it to a ground temperature model. The model will test mechanisms of groundwater formation in the MDV and the properties (e.g. composition, temperature, and water activity) of widespread shallow brine-rich waters. Water is an essential ingredient for life and defining processes that control the availability of water is critical for understanding the habitability of extreme environments, including Mars.", "east": 162.2, "geometry": "POINT(161.35 -77.55)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERA", "is_usap_dc": true, "keywords": "Amd/Us; AMD; Antarctica; USA/NSF; USAP-DC; SOIL CHEMISTRY; FIELD INVESTIGATION", "locations": "Antarctica", "north": -77.3, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Sletten, Ronald S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.8, "title": "Formation and Characteristics of Brine-rich Water in the Dry Valleys, Antarctica", "uid": "p0010069", "west": 160.5}, {"awards": "1443105 Steig, Eric", "bounds_geometry": "POINT(0 -90)", "dataset_titles": "Continuous-flow measurements of the complete water isotope ratios (D/H, 17O/16O, 18O/16) from the South Pole ice core; South Pole high resolution ice core water stable isotope record for dD, d18O; South Pole Ice Core Holocene Major Ion Dataset; South Pole Ice Core Sea Salt and Major Ions; SP19 Gas Chronology; Temperature, accumulation rate, and layer thinning from the South Pole ice core (SPC14)", "datasets": [{"dataset_uid": "601850", "doi": "10.15784/601850", "keywords": "Antarctica; Cryosphere; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "people": "Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Holocene Major Ion Dataset", "url": "https://www.usap-dc.org/view/dataset/601850"}, {"dataset_uid": "601239", "doi": "10.15784/601239", "keywords": "Antarctica; Cavity Ring Down Spectrometers; Delta 18O; Delta Deuterium; Deuterium Isotopes; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core; Ice Core Chemistry; Ice Core Data; Oxygen Isotope; Snow/ice; Snow/Ice; Stable Isotopes", "people": "Jones, Tyler R.; Vaughn, Bruce; Kahle, Emma; Steig, Eric J.; Schauer, Andrew; Morris, Valerie; White, James", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole high resolution ice core water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601239"}, {"dataset_uid": "601851", "doi": "10.15784/601851", "keywords": "Antarctica; Cryosphere; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "people": "Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Sea Salt and Major Ions", "url": "https://www.usap-dc.org/view/dataset/601851"}, {"dataset_uid": "601380", "doi": "10.15784/601380", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Core Stratigraphy; Methane; South Pole; SPICEcore", "people": "Epifanio, Jenna", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SP19 Gas Chronology", "url": "https://www.usap-dc.org/view/dataset/601380"}, {"dataset_uid": "601396", "doi": "10.15784/601396", "keywords": "Accumulation; Antarctica; Diffusion Length; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Dynamic; Layer Thinning; Oxygen Isotope; South Pole; SPICEcore; Temperature", "people": "Jones, Tyler R.; Kahle, Emma; Steig, Eric J.; White, James; Epifanio, Jenna; Buizert, Christo; Waddington, Edwin D.; Conway, Howard; Stevens, Max; Schauer, Andrew; Vaughn, Bruce; Morris, Valerie; Koutnik, Michelle; Fudge, T. J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Temperature, accumulation rate, and layer thinning from the South Pole ice core (SPC14)", "url": "https://www.usap-dc.org/view/dataset/601396"}, {"dataset_uid": "601429", "doi": "10.15784/601429", "keywords": "Antarctica; Climate; Deuterium; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hydrogen; Ice; Ice Core; Ice Core Chemistry; Oxygen; Paleoclimate; Snow/ice; Snow/Ice; South Pole; Stable Isotopes", "people": "Vaughn, Bruce; Jones, Tyler R.; White, James; Morris, Valerie; Schauer, Andrew; Steig, Eric J.; Kahle, Emma", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Continuous-flow measurements of the complete water isotope ratios (D/H, 17O/16O, 18O/16) from the South Pole ice core", "url": "https://www.usap-dc.org/view/dataset/601429"}], "date_created": "Sun, 17 Nov 2019 00:00:00 GMT", "description": "This project will develop a record of the stable-isotope ratios of water from an ice core at the South Pole, Antarctica. Water-isotope ratio measurements provide a means to determine variability in temperature through time. South Pole is distinct from most other locations in Antarctica in showing no warming in recent decades, but little is known about temperature variability in this location prior to the installation of weather stations in 1957. The measurements made as part of this project will result in a much longer temperature record, extending at least 40,000 years, aiding our ability to understand what controls Antarctic climate, and improving projections of future Antarctic climate change. Data from this project will be critical to other investigators working on the South Pole ice core, and of general interest to other scientists and the public. Data will be provided rapidly to other investigators and made public as soon as possible. This project will obtain records of the stable-isotope ratios of water on the ice core currently being obtained at South Pole. The core will reach a depth of 1500 m and an age of 40,000 years. The project will use laser spectroscopy to obtain both an ultra-high-resolution record of oxygen 18/16 and deuterium-hydrogen ratios, and a lower-resolution record of oxygen 17/16 ratios. The high-resolution measurements will be used to aid in dating the core, and to provide estimates of isotope diffusion that constrain the process of firn densification. The novel 17/16 measurement provides additional constraints on the isotope fractionation due to the temperature-dependent supersaturation ratio, which affects the fractionation of water during the liquid-solid condensate transition. Together, these techniques will allow for improved accuracy in the use of the water isotope ratios as proxies for ice-sheet temperature, sea-surface temperature, and atmospheric circulation. The result will be a record of decadal through centennial and millennial scale climate change in a climatically distinct region in East Antarctica that has not been previously sampled by deep ice coring. The project will support a graduate student who will be co-advised by faculty at the University of Washington and the University of Colorado, and will be involved in all aspects of the work.", "east": 0.0, "geometry": "POINT(0 -90)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "SPICEcore; D18O; LABORATORY; OXYGEN ISOTOPE ANALYSIS; Oxygen Isotope; South Pole; USAP-DC; GLACIERS/ICE SHEETS; Antarctica; AMD; FIELD INVESTIGATION; Ice Core", "locations": "Antarctica; South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Steig, Eric J.; White, James", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: Record of the Triple-oxygen Isotope and Hydrogen Isotope Composition of Ice from an Ice Core at South Pole", "uid": "p0010065", "west": 0.0}, {"awards": "1738942 Wellner, Julia", "bounds_geometry": "POLYGON((-120 -71,-118 -71,-116 -71,-114 -71,-112 -71,-110 -71,-108 -71,-106 -71,-104 -71,-102 -71,-100 -71,-100 -71.5,-100 -72,-100 -72.5,-100 -73,-100 -73.5,-100 -74,-100 -74.5,-100 -75,-100 -75.5,-100 -76,-102 -76,-104 -76,-106 -76,-108 -76,-110 -76,-112 -76,-114 -76,-116 -76,-118 -76,-120 -76,-120 -75.5,-120 -75,-120 -74.5,-120 -74,-120 -73.5,-120 -73,-120 -72.5,-120 -72,-120 -71.5,-120 -71))", "dataset_titles": "A multibeam-bathymetric compilation for the southern Amundsen Sea shelf, 1999-2019; Expedition Data of NBP2002; Expedition Data of NBP2202; NBP1902 Expedition data; Physical and geochemical data from sediment cores collected offshore Thwaites Glacier", "datasets": [{"dataset_uid": "200161", "doi": "10.5285/F2DFEDA9-BF44-4EF5-89A3-EE5E434A385C", "keywords": null, "people": null, "repository": "UK PDC", "science_program": null, "title": "A multibeam-bathymetric compilation for the southern Amundsen Sea shelf, 1999-2019", "url": "https://doi.org/10.5285/F2DFEDA9-BF44-4EF5-89A3-EE5E434A385C"}, {"dataset_uid": "200311", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP2202", "url": "https://www.rvdata.us/search/cruise/NBP2202"}, {"dataset_uid": "200248", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP2002", "url": "https://www.rvdata.us/search/cruise/NBP2002"}, {"dataset_uid": "200083", "doi": "10.7284/908147", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1902 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1902"}, {"dataset_uid": "601514", "doi": "10.15784/601514", "keywords": "Antarctica; Chemistry:sediment; Chemistry:Sediment; Glaciomarine Sediment; Grain Size; Magnetic Susceptibility; Marine Geoscience; Marine Sediments; NBP1902; NBP2002; Physical Properties; R/v Nathaniel B. Palmer; Sediment Core Data; Thwaites Glacier; Trace Elements; XRF", "people": "Lepp, Allison", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Physical and geochemical data from sediment cores collected offshore Thwaites Glacier", "url": "https://www.usap-dc.org/view/dataset/601514"}], "date_created": "Fri, 01 Nov 2019 00:00:00 GMT", "description": "This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Satellite observations extending over the last 25 years show that Thwaites Glacier is rapidly thinning and accelerating. Over this same period, the Thwaites grounding line, the point at which the glacier transitions from sitting on the seabed to floating, has retreated. Oceanographic studies demonstrate that the main driver of these changes is incursion of warm water from the deep ocean that flows beneath the floating ice shelf and causes basal melting. The period of satellite observation is not long enough to determine how a large glacier, such as Thwaites, responds to long-term and near-term changes in the ocean or the atmosphere. As a result, records of glacier change from the pre-satellite era are required to build a holistic understanding of glacier behavior. Ocean-floor sediments deposited at the retreating grounding line and further offshore contain these longer-term records of changes in the glacier and the adjacent ocean. An additional large unknown is the topography of the seafloor and how it influences interactions of landward-flowing warm water with Thwaites Glacier and affects its stability. Consequently, this project focuses on the seafloor offshore from Thwaites Glacier and the records of past glacial and ocean change contained in the sediments deposited by the glacier and surrounding ocean. Uncertainty in model projections of the future of Thwaites Glacier will be significantly reduced by cross-disciplinary investigations seaward of the current grounding line, including extracting the record of decadal to millennial variations in warm water incursion, determining the pre-satellite era history of grounding-line migration, and constraining the bathymetric pathways that control flow of warm water to the grounding line. Sedimentary records and glacial landforms preserved on the seafloor will allow reconstruction of changes in drivers and the glacial response to them over a range of timescales, thus providing reference data that can be used to initiate and evaluate the reliability of models. Such data will further provide insights on the influence of poorly understood processes on marine ice sheet dynamics. This project will include an integrated suite of marine and sub-ice shelf research activities aimed at establishing boundary conditions seaward of the Thwaites Glacier grounding line, obtaining records of the external drivers of change, improving knowledge of processes leading to collapse of Thwaites Glacier, and determining the history of past change in grounding line migration and conditions at the glacier base. These objectives will be achieved through high-resolution geophysical surveys of the seafloor and analysis of sediments collected in cores from the inner shelf seaward of the Thwaites Glacier grounding line using ship-based equipment, and from beneath the ice shelf using a corer deployed through the ice shelf via hot water drill holes. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -100.0, "geometry": "POINT(-110 -73.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS", "is_usap_dc": true, "keywords": "BATHYMETRY; Antarctica; MARINE SEDIMENTS; AMD; MARINE GEOPHYSICS; Amd/Us; USAP-DC; Thwaites Glacier; LABORATORY; Southern Ocean; ICE SHEETS; USA/NSF; GLACIERS/ICE SHEETS; R/V NBP", "locations": "Antarctica; Southern Ocean; Thwaites Glacier", "north": -71.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Wellner, Julia; Larter, Robert; Minzoni, Rebecca; Hogan, Kelly; Anderson, John; Graham, Alastair; Hillenbrand, Claus-Dieter; Nitsche, Frank O.; Simkins, Lauren; Smith, James A.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "UK PDC", "repositories": "R2R; UK PDC; USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -76.0, "title": "NSF-NERC: THwaites Offshore Research (THOR)", "uid": "p0010062", "west": -120.0}, {"awards": "1443578 Schmidt, Steven", "bounds_geometry": "POLYGON((161.5 -77.5,161.7 -77.5,161.9 -77.5,162.1 -77.5,162.3 -77.5,162.5 -77.5,162.7 -77.5,162.9 -77.5,163.1 -77.5,163.3 -77.5,163.5 -77.5,163.5 -77.53,163.5 -77.56,163.5 -77.59,163.5 -77.62,163.5 -77.65,163.5 -77.68,163.5 -77.71,163.5 -77.74,163.5 -77.77,163.5 -77.8,163.3 -77.8,163.1 -77.8,162.9 -77.8,162.7 -77.8,162.5 -77.8,162.3 -77.8,162.1 -77.8,161.9 -77.8,161.7 -77.8,161.5 -77.8,161.5 -77.77,161.5 -77.74,161.5 -77.71,161.5 -77.68,161.5 -77.65,161.5 -77.62,161.5 -77.59,161.5 -77.56,161.5 -77.53,161.5 -77.5))", "dataset_titles": "16S and 18S amplicon sequencing of Antarctic cryoconite holes; Genomes of Antarctic ssDNA viruses (GenBank accession numbers MN311489-MN311492 and MN328267-MN328291); Metadata from samples (in the process of submitting to EDI; will update with DOI once completed); Microbial species-area relationships in Antarctic cryoconite holes; Soil microbial communities of a mountain landscape, McMurdo Dry Valleys, Antarctica", "datasets": [{"dataset_uid": "200279", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Metadata from samples (in the process of submitting to EDI; will update with DOI once completed)", "url": "https://github.com/pacificasommers/Cryoconite-metadata"}, {"dataset_uid": "200081", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "16S and 18S amplicon sequencing of Antarctic cryoconite holes", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA480849/"}, {"dataset_uid": "200280", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Soil microbial communities of a mountain landscape, McMurdo Dry Valleys, Antarctica", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA721735/"}, {"dataset_uid": "200281", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Microbial species-area relationships in Antarctic cryoconite holes", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA668398/"}, {"dataset_uid": "200084", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Genomes of Antarctic ssDNA viruses (GenBank accession numbers MN311489-MN311492 and MN328267-MN328291)", "url": ""}], "date_created": "Fri, 01 Nov 2019 00:00:00 GMT", "description": "Cryoconite holes are pockets of life completely encased in otherwise barren glacial ice. These pockets of life form when dust blown onto the ice melts a small, largely isolated hole that can function as its own tiny ecosystem. This dust can contain microorganisms such as bacteria, algae, or microscopic animals. The microorganisms within the hole interact and carry out functions typical of a larger ecosystem, such as a forest. Cryoconite holes are especially important in extreme cold environments such as the Antarctic Dry Valleys, where they function as repositories of life. Because cryoconite holes are mostly enclosed and persist for years, they can be tracked over time to test fundamental scientific questions about how communities of interacting organisms develop to become fully functioning ecosystems. This project will sample existing and experimentally created cryoconite holes to understand how these ecosystems develop and to what degree random processes (such as which organisms get there first) affect the final community composition and functioning. The results will not only improve our understanding of how microbial communities assemble and affect the functioning of microecosystems such as cryoconite holes, but also how the processes of community assembly affect functioning of larger ecosystems, such as forests. A better understanding of community establishment, development, and response to abiotic factors are essential to forecasting ecological responses to environmental change. It is essential to unravel the links between community assembly, biodiversity, and nutrient cycling across numerous ecosystems because these are critical factors determining ecological responses to environmental change. The unique, largely isolated nature of cryoconite holes provides an experimental system that will advance fundamental understanding of the processes (e.g., stochastic dynamics such as dispersal limitation, assembly order, and ecological drift) driving community assembly. This project will use a field sampling campaign and a number of manipulative experiments to test a hypothesis that unites theory in community and ecosystem ecology: the degree to which stochastic processes guide microbial community assembly and affects regional patterns in biodiversity and ecosystem processes. Cryoconite holes will be sampled to compare community composition, environmental factors, and ecosystem functioning between hydrologically connected and isolated holes. New cryoconite holes will also be constructed and monitored over the course of two growing seasons to specifically alter assembly order and community size, thereby pairing a unique manipulative experiment with field surveys to address questions with relevance to the Antarctic and beyond. Amplicon sequencing, metagenomics, microscopy, sensitive environmental chemistry methods, and photosynthesis and respiration measurements will be used to test a series of sub-hypotheses that relate stochasticity to patterns in regional biodiversity, heterogeneity in environmental factors, and ecosystem processes.", "east": 163.5, "geometry": "POINT(162.5 -77.65)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "GLACIERS; Antarctica; USAP-DC; FIELD INVESTIGATION", "locations": "Antarctica", "north": -77.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Schmidt, Steven; Cawley, Kaelin; Fountain, Andrew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "GitHub", "repositories": "GitHub; NCBI GenBank", "science_programs": null, "south": -77.8, "title": "Collaborative Research: Stochasticity and Cryoconite Community Assembly and Function", "uid": "p0010063", "west": 161.5}, {"awards": "1341728 Stone, John", "bounds_geometry": "POLYGON((-86.3 -81,-86.17 -81,-86.04 -81,-85.91 -81,-85.78 -81,-85.65 -81,-85.52 -81,-85.39 -81,-85.26 -81,-85.13 -81,-85 -81,-85 -81.03,-85 -81.06,-85 -81.09,-85 -81.12,-85 -81.15,-85 -81.18,-85 -81.21,-85 -81.24,-85 -81.27,-85 -81.3,-85.13 -81.3,-85.26 -81.3,-85.39 -81.3,-85.52 -81.3,-85.65 -81.3,-85.78 -81.3,-85.91 -81.3,-86.04 -81.3,-86.17 -81.3,-86.3 -81.3,-86.3 -81.27,-86.3 -81.24,-86.3 -81.21,-86.3 -81.18,-86.3 -81.15,-86.3 -81.12,-86.3 -81.09,-86.3 -81.06,-86.3 -81.03,-86.3 -81))", "dataset_titles": "Cosmogenic nuclide data, Harter Nunatak; Cosmogenic nuclide data, John Nunatak; Cosmogenic nuclide data, Mt Axtell; Cosmogenic nuclide data, Mt Goodwin; Cosmogenic nuclide data, Mt Tidd; Cosmogenic nuclide data, Mt Turcotte; Pirrit Hills subglacial bedrock core RB-2, cosmogenic Be-10, Al-26 data", "datasets": [{"dataset_uid": "200078", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic nuclide data, Mt Goodwin", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "200077", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic nuclide data, Mt Turcotte", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "601214", "doi": "10.15784/601214", "keywords": "Aluminum-26; Antarctica; Be-10; Bedrock Core; Beryllium-10; Chemistry:rock; Chemistry:Rock; Cosmogenic; Cosmogenic Dating; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope Data; Pirrit Hills; Rocks; Solid Earth; Subglacial Bedrock", "people": "Stone, John", "repository": "USAP-DC", "science_program": null, "title": "Pirrit Hills subglacial bedrock core RB-2, cosmogenic Be-10, Al-26 data", "url": "https://www.usap-dc.org/view/dataset/601214"}, {"dataset_uid": "200080", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic nuclide data, John Nunatak", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "200079", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic nuclide data, Harter Nunatak", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "200076", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic nuclide data, Mt Tidd", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "200075", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic nuclide data, Mt Axtell", "url": "https://version2.ice-d.org/antarctica/nsf/"}], "date_created": "Tue, 08 Oct 2019 00:00:00 GMT", "description": "Stone/1341728 This award supports a project to determine if the West Antarctic Ice Sheet (WAIS) has thinned and collapsed in the past and if so, when did this occur. This topic is of interest to geologists who have long been studying the history and behavior of ice sheets (including the WAIS) in order to determine what climatic conditions allow an ice sheet to survive and what conditions have caused them to collapse in the past. The bulk of this research has focused on the last ice age, when climate conditions were far colder than the present; this project will focus on the response of ice sheets to warmer climates in the past. A new and potentially transformative approach that uses the analysis of atoms transformed by cosmic-rays in bedrock beneath the WAIS will allow a definitive test for ice free conditions in the past. This is because the cosmic rays capable of producing the necessary reactions can penetrate only a few meters through glacier ice. Therefore, if they are detected in samples from hundreds of meters below the current ice sheet surface this would provide definitive proof of mostly ice-free conditions in the past. The concentrations of different cosmic ray products in cores from different depths will help answer the question of how frequently bedrock has been exposed, how much the ice sheet has thinned, and which time periods in the past produced climatic conditions capable of making the ice sheet unstable. Short bedrock cores beneath the ice sheet near the Pirrit Hills in West Antarctica will be collected using a new agile sub-ice geological drill (capable of drilling up to 200 meters beneath the ice surface) that is being developed by the Ice Drilling Program Office (IDPO) to support this and other projects. Favorable drilling sites have already been identified based on prior reconnaissance mapping, sample analysis and radar surveys of the ice-sheet bed. The cores collected in this study will be analyzed for cosmic-ray-produced isotopes of different elements with a range of half-lives from 5700 yr (C-14) to 1.4 Myr (Be-10), as well as stable Ne-21. The presence or absence of these isotopes will provide a definitive test of whether bedrock surfaces were ice-free in the past and due to their different half-lives, ratios of the isotopes will place constraints on the age, frequency and duration of past exposure episodes. Results from bedrock surfaces at different depths will indicate the degree of past ice-sheet thinning. The aim is to tie evidence of deglaciation in the past to specific periods of warmer climate and thus to gauge the ice sheet\u0027s response to known climate conditions. This project addresses the broad question of ice-sheet sensitivity to climate warming, which previously has been largely determined indirectly from sea-level records. In contrast, this project will provide direct measurements that provide evidence of ice-sheet thinning in West Antarctica. Results from this work will help to identify the climatic factors and thresholds capable of endangering the WAIS in future. The project will make a significant contribution to the ongoing study of climate change, ice-sheet melting and associated sea-level rise. This project has field work in Antarctica.", "east": -85.0, "geometry": "POINT(-85.65 -81.15)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "DEPTH AT SPECIFIC AGES; USAP-DC; Antarctica; NOT APPLICABLE", "locations": "Antarctica", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Stone, John", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "ICE-D", "repositories": "ICE-D; USAP-DC", "science_programs": null, "south": -81.3, "title": "EXPROBE-WAIS: Exposed Rock Beneath the West Antarctic Ice Sheet, A Test for Interglacial Ice Sheet Collapse", "uid": "p0010057", "west": -86.3}, {"awards": "1443248 Hall, Brenda; 1443346 Stone, John", "bounds_geometry": "POLYGON((-174 -84.2,-172.4 -84.2,-170.8 -84.2,-169.2 -84.2,-167.6 -84.2,-166 -84.2,-164.4 -84.2,-162.8 -84.2,-161.2 -84.2,-159.6 -84.2,-158 -84.2,-158 -84.36,-158 -84.52,-158 -84.68,-158 -84.84,-158 -85,-158 -85.16,-158 -85.32,-158 -85.48,-158 -85.64,-158 -85.8,-159.6 -85.8,-161.2 -85.8,-162.8 -85.8,-164.4 -85.8,-166 -85.8,-167.6 -85.8,-169.2 -85.8,-170.8 -85.8,-172.4 -85.8,-174 -85.8,-174 -85.64,-174 -85.48,-174 -85.32,-174 -85.16,-174 -85,-174 -84.84,-174 -84.68,-174 -84.52,-174 -84.36,-174 -84.2))", "dataset_titles": "Cosmogenic nuclide data from glacial deposits along the Liv Glacier coast; Ice-D Antarctic Cosmogenic Nuclide database - site DUNCAN; Ice-D Antarctic Cosmogenic Nuclide database - site MAASON; Liv and Amundsen Glacier Radiocarbon Data", "datasets": [{"dataset_uid": "601226", "doi": "10.15784/601226", "keywords": "Antarctica; Be-10; Beryllium-10; Cosmogenic; Cosmogenic Dating; Cosmogenic Radionuclides; Deglaciation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Liv Glacier; Rocks; Ross Ice Sheet; Surface Exposure Dates; Transantarctic Mountains", "people": "Stone, John", "repository": "USAP-DC", "science_program": null, "title": "Cosmogenic nuclide data from glacial deposits along the Liv Glacier coast", "url": "https://www.usap-dc.org/view/dataset/601226"}, {"dataset_uid": "200087", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Ice-D Antarctic Cosmogenic Nuclide database - site MAASON", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "200088", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Ice-D Antarctic Cosmogenic Nuclide database - site DUNCAN", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "601208", "doi": "10.15784/601208", "keywords": "Antarctica; Carbon; Glaciology; Holocene; Radiocarbon; Ross Embayment; Ross Sea; Transantarctic Mountains", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Liv and Amundsen Glacier Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601208"}], "date_created": "Thu, 05 Sep 2019 00:00:00 GMT", "description": "The response of the Antarctic Ice Sheet to future climatic changes is recognized as the greatest uncertainty in projections of future sea level. An understanding of past ice fluctuations affords insight into ice-sheet response to climate and sea-level change and thus is critical for improving sea-level predictions. This project will examine deglaciation of the southern Ross Sea over the past few thousand years to document oscillations in Antarctic ice volume during a period of relatively stable climate and sea level. We will help quantify changes in ice volume, improve understanding of the ice dynamics responsible, and examine the implications for future sea-level change. The project will train future scientists through participation of graduate students, as well as undergraduates who will develop research projects in our laboratories. Previous research indicates rapid Ross Sea deglaciation as far south as Beardmore Glacier early in the Holocene epoch (which began approximately 11,700 years before present), followed by more gradual recession. However, deglaciation in the later half of the Holocene remains poorly constrained, with no chronological control on grounding-line migration between Beardmore and Scott Glaciers. Thus, we do not know if mid-Holocene recession drove the grounding line rapidly back to its present position at Scott Glacier, or if the ice sheet withdrew gradually in the absence of significant climate forcing or eustatic sea level change. The latter possibility raises concerns for future stability of the Ross Sea grounding line. To address this question, we will map and date glacial deposits on coastal mountains that constrain the thinning history of Liv and Amundsen Glaciers. By extending our chronology down to the level of floating ice at the mouths of these glaciers, we will date their thinning history from glacial maximum to present, as well as migration of the Ross Sea grounding line southwards along the Transantarctic Mountains. High-resolution dating will come from Beryllium-10 surface-exposure ages of erratics collected along elevation transects, as well as Carbon-14 dates of algae within shorelines from former ice-dammed ponds. Sites have been chosen specifically to allow close comparison of these two dating methods, which will afford constraints on Antarctic Beryllium-10 production rates.", "east": -158.0, "geometry": "POINT(-166 -85)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; NOT APPLICABLE; Antarctica; ICE SHEETS; USAP-DC", "locations": "Antarctica", "north": -84.2, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Hall, Brenda; Stone, John", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "ICE-D; USAP-DC", "science_programs": null, "south": -85.8, "title": "Collaborative Research: High-resolution Reconstruction of Holocene Deglaciation in the Southern Ross Embayment", "uid": "p0010053", "west": -174.0}, {"awards": "1443663 Cole-Dai, Jihong; 1443397 Kreutz, Karl; 1443336 Osterberg, Erich", "bounds_geometry": "POINT(-180 -90)", "dataset_titles": "Preliminary SPC14 high-resolution Fe and Mn biologically relevant and dissolved trace metal concentrations spanning -42 \u2013 54,300 years BP.; South Pole Ice Core Holocene Major Ion Dataset; South Pole Ice Core Sea Salt and Major Ions; South Pole ice core (SPC14) discrete methane data; South Pole (SPC14) microparticle concentration, mass concentration, flux, particle-size-distribution mode, and aspect ratio measurements; SPICEcore 400-480 m Major Ions SDSU; The South Pole Ice Core (SPICEcore) chronology and supporting data", "datasets": [{"dataset_uid": "601381", "doi": "10.15784/601381", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Methane; South Pole; SPICEcore", "people": "Winski, Dominic A.; Epifanio, Jenna; Brook, Edward J.; Buizert, Christo; Kreutz, Karl; Aydin, Murat; Edwards, Jon S.; Sowers, Todd A.; Kahle, Emma; Steig, Eric J.; Osterberg, Erich; Fudge, T. J.; Hood, Ekaterina; Kalk, Michael; Ferris, David G.; Kennedy, Joshua A.; Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole ice core (SPC14) discrete methane data", "url": "https://www.usap-dc.org/view/dataset/601381"}, {"dataset_uid": "601675", "doi": "10.15784/601675", "keywords": "Antarctica; South Pole; SPICEcore", "people": "Kreutz, Karl", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Preliminary SPC14 high-resolution Fe and Mn biologically relevant and dissolved trace metal concentrations spanning -42 \u2013 54,300 years BP.", "url": "https://www.usap-dc.org/view/dataset/601675"}, {"dataset_uid": "601553", "doi": "10.15784/601553", "keywords": "Antarctica; Dust; Ice Core; South Pole", "people": "Kreutz, Karl", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole (SPC14) microparticle concentration, mass concentration, flux, particle-size-distribution mode, and aspect ratio measurements", "url": "https://www.usap-dc.org/view/dataset/601553"}, {"dataset_uid": "601430", "doi": "10.15784/601430", "keywords": "Antarctica; Ions; South Pole; SPICEcore", "people": "Cole-Dai, Jihong; Larrick, Carleigh", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SPICEcore 400-480 m Major Ions SDSU", "url": "https://www.usap-dc.org/view/dataset/601430"}, {"dataset_uid": "601206", "doi": "10.15784/601206", "keywords": "Antarctica; Calcium (ca); Chemistry:ice; Chemistry:Ice; Depth; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciochemistry; Glaciology; Ice; Ice Core; Ice Core Chemistry; Ice Core Data; Ice Core Records; Ice Core Stratigraphy; Nitrate; Nitrogen Isotopes; Paleoclimate; Snow/ice; Snow/Ice; South Pole; SPICEcore", "people": "Buizert, Christo; Severinghaus, Jeffrey P.; Osterberg, Erich; Waddington, Edwin D.; Alley, Richard; Casey, Kimberly A.; Nicewonger, Melinda R.; Aydin, Murat; Ferris, David G.; Kahle, Emma; Morris, Valerie; Steig, Eric J.; Sowers, Todd A.; Beaudette, Ross; Brook, Edward J.; Ortman, Nikolas; Epifanio, Jenna; Kreutz, Karl; Cox, Thomas S.; Thundercloud, Zayta; Cole-Dai, Jihong; Fegyveresi, John; McConnell, Joseph; Sigl, Michael; Souney, Joseph Jr.; Bay, Ryan; Dunbar, Nelia; Fudge, T. J.; Winski, Dominic A.; Iverson, Nels; Jones, Tyler R.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "The South Pole Ice Core (SPICEcore) chronology and supporting data", "url": "https://www.usap-dc.org/view/dataset/601206"}, {"dataset_uid": "601851", "doi": "10.15784/601851", "keywords": "Antarctica; Cryosphere; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "people": "Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Sea Salt and Major Ions", "url": "https://www.usap-dc.org/view/dataset/601851"}, {"dataset_uid": "601850", "doi": "10.15784/601850", "keywords": "Antarctica; Cryosphere; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "people": "Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Holocene Major Ion Dataset", "url": "https://www.usap-dc.org/view/dataset/601850"}], "date_created": "Thu, 29 Aug 2019 00:00:00 GMT", "description": "This collaborative project explores the signatures and causes of natural climate change in the region surrounding Antarctica over the last 40,000 years as the Earth transitioned from an ice age into the modern warm period. The researchers will investigate how the wind belts that surround Antarctica changed in their strength and position through time, and document explosive volcanic eruptions and CO2 cycling in the Southern Ocean as potential climate forcing mechanisms over this interval. Understanding how and why the climate varied naturally in the past is critical for improving understanding of modern climate change and projections of future climate under higher levels of atmospheric CO2. The investigators plan to conduct a suite of chemical measurements along the 1500m length of the South Pole Ice Core, including major ion and trace element concentrations, and microparticle (dust) concentrations and size distributions. These measurements will (1) extend the South Pole record of explosive volcanic eruptions to 40,000 years using sulfate and particle data; (2) establish the relative timing of climate changes in dust source regions of Patagonia, New Zealand, and Australia using dust flux data; (3) investigate changes in the strength and position of the westerly wind belt using dust size distribution data; and (4) quantify the flux of bioavailable trace metals deposited as dust to the Southern Ocean over time. These chemistry records will also be critical for creating the timescale that will be used by all researchers studying records from the South Pole core. The project will support four graduate students and several undergraduate students across three different institutions, and become a focus of the investigators\u0027 efforts to disseminate outcomes of climate change science to the broader community.", "east": -180.0, "geometry": "POINT(-180 -90)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; ICE CORE RECORDS; USAP-DC; Amd/Us; USA/NSF; LABORATORY; AMD", "locations": "Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Osterberg, Erich", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements", "uid": "p0010051", "west": -180.0}, {"awards": "1443585 Polito, Michael; 1443424 McMahon, Kelton; 1826712 McMahon, Kelton; 1443386 Emslie, Steven", "bounds_geometry": "POLYGON((-180 -60,-166 -60,-152 -60,-138 -60,-124 -60,-110 -60,-96 -60,-82 -60,-68 -60,-54 -60,-40 -60,-40 -61.8,-40 -63.6,-40 -65.4,-40 -67.2,-40 -69,-40 -70.8,-40 -72.6,-40 -74.4,-40 -76.2,-40 -78,-54 -78,-68 -78,-82 -78,-96 -78,-110 -78,-124 -78,-138 -78,-152 -78,-166 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -76.2,160 -74.4,160 -72.6,160 -70.8,160 -69,160 -67.2,160 -65.4,160 -63.6,160 -61.8,160 -60,162 -60,164 -60,166 -60,168 -60,170 -60,172 -60,174 -60,176 -60,178 -60,-180 -60))", "dataset_titles": "Amino acid nitrogen isotope values of modern and ancient Ad\u00e9lie penguin eggshells from the Ross Sea and Antarctic Peninsula regions; Amino acid nitrogen isotope values of penguins from the Antarctic Peninsula region 1930s to 2010s; Ancient Adelie penguin colony revealed by snowmelt at Cape Irizar, Ross Sea, Antarctica; Carbon and nitrogen stable isotope values of Antarctic Krill from the South Shetland Islands and the northern Antarctic Peninsula 2007 and 2009; Radiocarbon dates from pygoscelid penguin tissues excavated at Stranger Point, King George Island, Antarctic Peninsula; Radiocarbon dating and stable isotope values of penguin and seal tissues recovered from ornithogenic soils on Platter Island, Danger Islands Archipelago, Antarctic Peninsula in December 2015.; Radioisotope dates and carbon (\u03b413C) and nitrogen (\u03b415N) stable isotope values from modern and mummified Ad\u00e9lie Penguin chick carcasses and tissue from the Ross Sea, Antarctica; Radiometric dating, geochemical proxies, and predator biological remains obtained from aquatic sediment cores on South Georgia Island.; Receding ice drove parallel expansions in Southern Ocean penguin; SNP data from \"Receding ice drove parallel expansions in Southern Ocean penguins\".; Stable isotope analysis of multiple tissues from chick carcasses of three pygoscelid penguins in Antarctica; Stable isotopes of Adelie Penguin chick bone collagen; The rise and fall of an ancient Adelie penguin \u0027supercolony\u0027 at Cape Adare, Antarctica", "datasets": [{"dataset_uid": "601232", "doi": "10.15784/601232", "keywords": "Amino Acids; Antarctica; Antarctic Peninsula; Biota; Isotope Data; Nitrogen Isotopes; Oceans; Penguin; Southern Ocean; Stable Isotope Analysis", "people": "Polito, Michael; McMahon, Kelton", "repository": "USAP-DC", "science_program": null, "title": "Amino acid nitrogen isotope values of penguins from the Antarctic Peninsula region 1930s to 2010s", "url": "https://www.usap-dc.org/view/dataset/601232"}, {"dataset_uid": "601327", "doi": "10.15784/601327", "keywords": "Adelie Penguin; Antarctica; Biota; Cape Adare; East Antarctica; Population Movement; Pygoscelis Adeliae; Radiocarbon; Ross Sea; Sea Level Rise; Stable Isotopes", "people": "Patterson, William; McKenzie, Ashley; Emslie, Steven D.", "repository": "USAP-DC", "science_program": null, "title": "The rise and fall of an ancient Adelie penguin \u0027supercolony\u0027 at Cape Adare, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601327"}, {"dataset_uid": "601509", "doi": "10.15784/601509", "keywords": "Antarctica; Antarctic Fur Seal; Elemental Concentrations; King Penguin; Population Dynamics; South Atlantic Ocean; South Georgia Island; Stable Isotope Analysis; Sub-Antarctic", "people": "Polito, Michael; Kristan, Allyson; McMahon, Kelton; Maiti, Kanchan", "repository": "USAP-DC", "science_program": null, "title": "Radiometric dating, geochemical proxies, and predator biological remains obtained from aquatic sediment cores on South Georgia Island.", "url": "https://www.usap-dc.org/view/dataset/601509"}, {"dataset_uid": "601374", "doi": "10.15784/601374", "keywords": "Adelie Penguin; Antarctica; Cape Irizar; Drygalski Ice Tongue; Ross Sea; Stable Isotopes", "people": "Emslie, Steven D.", "repository": "USAP-DC", "science_program": null, "title": "Ancient Adelie penguin colony revealed by snowmelt at Cape Irizar, Ross Sea, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601374"}, {"dataset_uid": "601210", "doi": "10.15784/601210", "keywords": "Antarctica; Antarctic Krill; Antarctic Peninsula; Biota; Carbon Isotopes; Isotope Data; Krill; Nitrogen Isotopes; Oceans; Southern Ocean; Stable Isotope Analysis", "people": "Polito, Michael", "repository": "USAP-DC", "science_program": null, "title": "Carbon and nitrogen stable isotope values of Antarctic Krill from the South Shetland Islands and the northern Antarctic Peninsula 2007 and 2009", "url": "https://www.usap-dc.org/view/dataset/601210"}, {"dataset_uid": "601760", "doi": "10.15784/601760", "keywords": "Adelie Penguin; Amino Acids; Antarctica; Antarctic Peninsula; Ross Sea; Stable Isotope Analysis; Trophic Position", "people": "Emslie, Steven D.; Wonder, Michael; McCarthy, Matthew; Patterson, William; McMahon, Kelton; Michelson, Chantel; Polito, Michael", "repository": "USAP-DC", "science_program": null, "title": "Amino acid nitrogen isotope values of modern and ancient Ad\u00e9lie penguin eggshells from the Ross Sea and Antarctic Peninsula regions", "url": "https://www.usap-dc.org/view/dataset/601760"}, {"dataset_uid": "601212", "doi": "10.15784/601212", "keywords": "Abandoned Colonies; Antarctica; Antarctic Peninsula; Beach Deposit; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Holocene; Penguin; Radiocarbon; Radiocarbon Dates; Snow/ice; Snow/Ice; Stranger Point", "people": "Emslie, Steven D.", "repository": "USAP-DC", "science_program": null, "title": "Radiocarbon dates from pygoscelid penguin tissues excavated at Stranger Point, King George Island, Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601212"}, {"dataset_uid": "601382", "doi": "10.15784/601382", "keywords": "25 De Mayo/King George Island; Antarctica; Biota; Delta 13C; Delta 15N; Dietary Shifts; Opportunistic Sampling; Penguin; Pygoscelis Penguins; Stranger Point", "people": "Ciriani, Yanina; Emslie, Steven D.", "repository": "USAP-DC", "science_program": null, "title": "Stable isotope analysis of multiple tissues from chick carcasses of three pygoscelid penguins in Antarctica", "url": "https://www.usap-dc.org/view/dataset/601382"}, {"dataset_uid": "601263", "doi": "10.15784/601263", "keywords": "Abandoned Colonies; Antarctica; Holocene; Penguin; Ross Sea; Stable Isotope Analysis", "people": "Emslie, Steven D.; Patterson, William; Kristan, Allyson", "repository": "USAP-DC", "science_program": null, "title": "Radioisotope dates and carbon (\u03b413C) and nitrogen (\u03b415N) stable isotope values from modern and mummified Ad\u00e9lie Penguin chick carcasses and tissue from the Ross Sea, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601263"}, {"dataset_uid": "601364", "doi": "10.15784/601364", "keywords": "Antarctica; Antarctic Peninsula; Arctocephalus Gazella; Carbon; Holocene; Nitrogen; Paleoecology; Penguin; Pygoscelis Spp.; Stable Isotope Analysis; Weddell Sea", "people": "Clucas, Gemma; Kalvakaalva, Rohit; Polito, Michael; Herman, Rachael", "repository": "USAP-DC", "science_program": null, "title": "Radiocarbon dating and stable isotope values of penguin and seal tissues recovered from ornithogenic soils on Platter Island, Danger Islands Archipelago, Antarctic Peninsula in December 2015.", "url": "https://www.usap-dc.org/view/dataset/601364"}, {"dataset_uid": "200181", "doi": "10.6084/m9.figshare.c.4475300.v1", "keywords": null, "people": null, "repository": "Figshare", "science_program": null, "title": "SNP data from \"Receding ice drove parallel expansions in Southern Ocean penguins\".", "url": "https://doi.org/10.6084/m9.figshare.c.4475300.v1"}, {"dataset_uid": "200180", "doi": "", "keywords": null, "people": null, "repository": "NCBI BioProject", "science_program": null, "title": "Receding ice drove parallel expansions in Southern Ocean penguin", "url": "https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA589336"}, {"dataset_uid": "601913", "doi": "10.15784/601913", "keywords": "Adelie Penguin; Antarctica; Cryosphere; Foraging; Polynya; Pygoscelis Adeliae; Ross Sea; Stable Isotopes", "people": "Reaves, Megan; Emslie, Steven D.; Powers, Shannon", "repository": "USAP-DC", "science_program": null, "title": "Stable isotopes of Adelie Penguin chick bone collagen", "url": "https://www.usap-dc.org/view/dataset/601913"}], "date_created": "Thu, 08 Aug 2019 00:00:00 GMT", "description": "The Antarctic marine ecosystem is highly productive and supports a diverse range of ecologically and commercially important species. A key species in this ecosystem is Antarctic krill, which in addition to being commercially harvested, is the principle prey of a wide range of marine organisms including penguins, seals and whales. The aim of this study is to use penguins and other krill predators as sensitive indicators of past changes in the Antarctic marine food web resulting from climate variability and the historic harvesting of seals and whales by humans. Specifically this study will recover and analyze modern (\u003c20 year old), historic (20-200 year old) and ancient (200-10,000 year old) penguin and other krill predator tissues to track their past diets and population movements relative to shifts in climate and the availability of Antarctic krill. Understanding how krill predators were affected by these factors in the past will allow us to better understand how these predators, the krill they depend on, and the Antarctic marine ecosystem as a whole will respond to current challenges such as global climate change and an expanding commercial fishery for Antarctic krill. The project will further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. This project will support the cross-institutional training of undergraduate and graduate students in advanced analytical techniques in the fields of ecology and biogeochemistry. In addition, this project includes educational outreach aimed encouraging participation in science careers by engaging K-12 students in scientific issues related to Antarctica, penguins, marine ecology, biogeochemistry, and global climate change. This research will help place recent ecological changes in the Southern Ocean into a larger historical context by examining decadal and millennial-scale shifts in the diets and population movements of Antarctic krill predators (penguins, seals, and squid) in concert with climate variability and commercial harvesting. This will be achieved by coupling advanced stable and radio isotope techniques, particularly compound-specific stable isotope analysis, with unprecedented access to modern, historical, and well-preserved paleo-archives of Antarctic predator tissues dating throughout the Holocene. This approach will allow the project to empirically test if observed shifts in Antarctic predator bulk tissue stable isotope values over the past millennia were caused by climate-driven shifts at the base of the food web in addition to, or rather than, shifts in predator diets due to a competitive release following the historic harvesting of krill eating whale and seals. In addition, this project will track the large-scale abandonment and reoccupation of penguin colonies around Antarctica in response to changes in climate and sea ice conditions over the past several millennia. These integrated field studies and laboratory analyses will provide new insights into the underlying mechanisms that influenced past shifts in the diets and population movements of charismatic krill predators such as penguins. This will allow for improved projections of the ecosystem consequences of future climate change and anthropogenic harvesting scenarios in the Antarctica that are likely to affect the availability of Antarctic krill.", "east": -40.0, "geometry": "POINT(-120 -69)", "instruments": null, "is_usap_dc": true, "keywords": "ANIMAL ECOLOGY AND BEHAVIOR; South Shetland Islands; Penguin; Stable Isotopes; Polar; Ross Sea; USA/NSF; Weddell Sea; AMD; MARINE ECOSYSTEMS; USAP-DC; Antarctica; PENGUINS; Southern Hemisphere; FIELD INVESTIGATION; Amd/Us; Krill; MACROFOSSILS", "locations": "Southern Hemisphere; Ross Sea; South Shetland Islands; Weddell Sea; Polar; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Polito, Michael; Kelton, McMahon; Patterson, William; McCarthy, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "Figshare; NCBI BioProject; USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators", "uid": "p0010047", "west": 160.0}, {"awards": "1401489 Sigman, Daniel", "bounds_geometry": "POLYGON((-180 -45,-144 -45,-108 -45,-72 -45,-36 -45,0 -45,36 -45,72 -45,108 -45,144 -45,180 -45,180 -47.5,180 -50,180 -52.5,180 -55,180 -57.5,180 -60,180 -62.5,180 -65,180 -67.5,180 -70,144 -70,108 -70,72 -70,36 -70,0 -70,-36 -70,-72 -70,-108 -70,-144 -70,-180 -70,-180 -67.5,-180 -65,-180 -62.5,-180 -60,-180 -57.5,-180 -55,-180 -52.5,-180 -50,-180 -47.5,-180 -45))", "dataset_titles": "Deep-sea coral evidence for lower Southern Ocean surface nitrate concentrations during the last ice age; Diatom-bound N isotope records over the last two glacial cycles in sediment core PS75/072-4.; Diatom-bound nitrogen isotope and opal flux records over the Holocene period in Southern Ocean sediment cores MD12-3396, MD11-3353 and PS75/072-4.; GOSHIP section IO8S and P18S", "datasets": [{"dataset_uid": "200048", "doi": "doi.pangaea.de/10.1594/PANGAEA.891436.", "keywords": null, "people": null, "repository": "PANGAEA", "science_program": null, "title": "Diatom-bound nitrogen isotope and opal flux records over the Holocene period in Southern Ocean sediment cores MD12-3396, MD11-3353 and PS75/072-4.", "url": "https://doi.pangaea.de/10.1594/PANGAEA.891436"}, {"dataset_uid": "200050", "doi": "", "keywords": null, "people": null, "repository": "CLIVAR", "science_program": null, "title": "GOSHIP section IO8S and P18S", "url": "https://cchdo.ucsd.edu/"}, {"dataset_uid": "200049", "doi": "doi.org/10.1594/PANGAEA.848271", "keywords": null, "people": null, "repository": "PANGAEA", "science_program": null, "title": "Diatom-bound N isotope records over the last two glacial cycles in sediment core PS75/072-4.", "url": "https://doi.org/10.1594/PANGAEA.848271"}, {"dataset_uid": "200051", "doi": "", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Deep-sea coral evidence for lower Southern Ocean surface nitrate concentrations during the last ice age", "url": "https://www.pnas.org/content/suppl/2017/03/14/1615718114.DCSupplemental"}], "date_created": "Thu, 08 Aug 2019 00:00:00 GMT", "description": "ABSTRACT Intellectual Merit: The high concentration of the major nutrients nitrate and phosphate is a fundamental characteristic of the Antarctic Zone in the Southern Ocean and is central to its role in global ocean fertility and the global carbon cycle. The isotopic composition of diatom-bound organic nitrogen is one of the best hopes for reconstructing the nutrient status of polar surface waters over glacial cycles, which in turn may hold the explanation for the decline in atmospheric carbon dioxide during ice ages. The PIs propose to generate detailed diatom-bound nitrogen isotope (\u0026#948;15Ndb) records from high sedimentation rate cores from the Kerguelen Plateau. Because the cores were collected at relatively shallow seafloor depths, they have adequate planktonic and benthic foraminifera to develop accurate age models. The resulting data could be compared with climate records from Antarctic ice cores and other archives to investigate climate-related changes, including the major steps into and out of ice ages and the millennial-scale events that occur during ice ages and at their ends. The records generated in this project will provide a critical test of hypotheses for the cause of lower ice age CO2. Broader impacts: This study will contribute to the goal of understanding ice ages and past CO2 changes, which both have broad implications for future climate. Undergraduates will undertake summer internships, with the possibility of extending their work into junior year projects and senior theses. In addition, the PI will lead modules for two Princeton programs for middle school teachers and will host a teacher for a six-week summer research project.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "BIOGEOCHEMICAL CYCLES; South Pacific Ocean; USAP-DC; NOT APPLICABLE", "locations": "South Pacific Ocean", "north": -45.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Sigman, Daniel", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "PANGAEA", "repositories": "CLIVAR; PANGAEA; Publication", "science_programs": null, "south": -70.0, "title": "High-resolution, Assemblage-specific Records of Diatom-bound N Isotopes from the Indian Sector of the Antarctic Ocean", "uid": "p0010046", "west": -180.0}, {"awards": "1443550 Brook, Edward J.", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Polar Ice Cores 3,000 Year Nitrous Oxide d15N and d18O Data; SPICEcore Holocene CO2 and N2O data", "datasets": [{"dataset_uid": "601197", "doi": "10.15784/601197", "keywords": "Antarctica; Carbon Dioxide; Ice Core Gas Records; Nitrous Oxide; South Pole; SPICEcore", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SPICEcore Holocene CO2 and N2O data", "url": "https://www.usap-dc.org/view/dataset/601197"}, {"dataset_uid": "200055", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Polar Ice Cores 3,000 Year Nitrous Oxide d15N and d18O Data", "url": "https://www.ncdc.noaa.gov/paleo-search/study/25530"}], "date_created": "Tue, 06 Aug 2019 00:00:00 GMT", "description": "The temperature of the earth is controlled, in part, by heat trapping gases that include carbon dioxide, methane, and nitrous oxide. Despite their importance to climate, direct measurements of these gases in the atmosphere are limited to the last 50 years at best. Air trapped in ice cores extends those data back hundreds of millennia, and measurements of greenhouse gases in ice cores underpin much of our understanding of global chemical cycles relevant to modern climate change. Existing records vary in quality and detail. The proposed work fills gaps in our knowledge of nitrous oxide and carbon dioxide over the last 10,000 years. New measurements from an ice core from the South Pole will be used to determine what role changes in ocean and land based processes played in controlling these gases, which decreased during the first 2,000 years of this time period, then gradually increased toward the present. The work will address a major controversy over whether early human activities could have impacted the atmosphere, and provide data to improve mathematical models of the land-ocean-atmosphere system that predict how future climate change will impact the composition of the atmosphere and climate. For nitrous oxide the work will improve on existing concentration records and provide a novel, detailed Holocene stable isotope record. It will also develop measurement of the isotopomers of nitrous oxide and explore their utility for understanding aspects of the Holocene nitrous oxide budget. The primary goal is to determine if marine and/or terrestrial emissions of nitrous oxide change in response to changes in Holocene climate. A new Holocene isotopic record for carbon dioxide (stable carbon and oxygen isotopes), will improve the precision of existing records by a factor 5 and increase the temporal resolution. These data will be used to evaluate controversial hypotheses about why carbon dioxide concentrations changed in the Holocene and provide insight into millennial scale processes in the carbon cycle, which are not resolved by current isotopic data. A graduate student will receive advanced training during and the student and principle investigator will conduct outreach efforts targeted at local middle school students. The proposed work will also contribute to teaching efforts by the PI and to public lectures on climate and climate change. The results will be disseminated through publications, data archive, and the OSU Ice Core Lab web site. New analytical methods of wide utility will also be developed and documented.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Antarctica; ICE CORE RECORDS; CARBON DIOXIDE; NOT APPLICABLE; USAP-DC; TRACE GASES/TRACE SPECIES; NITROUS OXIDE", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Brook, Edward J.", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "NCEI; USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Controls on Variations in Atmospheric Carbon Dioxide and Nitrous Oxide During the Last 10,000 years", "uid": "p0010043", "west": -180.0}, {"awards": "1543229 Severinghaus, Jeffrey; 1543267 Brook, Edward J.", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Multi-site ice core Krypton stable isotope ratios; Noble Gas Data from recent ice in Antarctica for 86Kr problem", "datasets": [{"dataset_uid": "601394", "doi": "10.15784/601394", "keywords": "Antarctica; Bruce Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenland Ice Cap; Ice Core; Ice Core Chemistry; Ice Core Records; James Ross Island; Krypton; Law Dome; Low Dome Ice Core; Roosevelt Island; Siple Dome; Siple Dome Ice Core; South Pole; SPICEcore; WAIS Divide; WAIS Divide Ice Core", "people": "Severinghaus, Jeffrey P.; Baggenstos, Daniel; Mosley-Thompson, Ellen; Etheridge, David; Buizert, Christo; Bereiter, Bernhard; Bertler, Nancy; Pyne, Rebecca L.; Brook, Edward J.; Shackleton, Sarah; Mulvaney, Robert", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Multi-site ice core Krypton stable isotope ratios", "url": "https://www.usap-dc.org/view/dataset/601394"}, {"dataset_uid": "601394", "doi": "10.15784/601394", "keywords": "Antarctica; Bruce Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenland Ice Cap; Ice Core; Ice Core Chemistry; Ice Core Records; James Ross Island; Krypton; Law Dome; Low Dome Ice Core; Roosevelt Island; Siple Dome; Siple Dome Ice Core; South Pole; SPICEcore; WAIS Divide; WAIS Divide Ice Core", "people": "Etheridge, David; Mulvaney, Robert; Brook, Edward J.; Baggenstos, Daniel; Pyne, Rebecca L.; Buizert, Christo; Bereiter, Bernhard; Bertler, Nancy; Severinghaus, Jeffrey P.; Mosley-Thompson, Ellen; Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Multi-site ice core Krypton stable isotope ratios", "url": "https://www.usap-dc.org/view/dataset/601394"}, {"dataset_uid": "601195", "doi": "10.15784/601195", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Krypton; Noble Gas; Xenon", "people": "Shackleton, Sarah; Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Noble Gas Data from recent ice in Antarctica for 86Kr problem", "url": "https://www.usap-dc.org/view/dataset/601195"}, {"dataset_uid": "601394", "doi": "10.15784/601394", "keywords": "Antarctica; Bruce Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenland Ice Cap; Ice Core; Ice Core Chemistry; Ice Core Records; James Ross Island; Krypton; Law Dome; Low Dome Ice Core; Roosevelt Island; Siple Dome; Siple Dome Ice Core; South Pole; SPICEcore; WAIS Divide; WAIS Divide Ice Core", "people": "Bereiter, Bernhard; Mosley-Thompson, Ellen; Mulvaney, Robert; Pyne, Rebecca L.; Bertler, Nancy; Etheridge, David; Baggenstos, Daniel; Brook, Edward J.; Severinghaus, Jeffrey P.; Shackleton, Sarah; Buizert, Christo", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Multi-site ice core Krypton stable isotope ratios", "url": "https://www.usap-dc.org/view/dataset/601394"}], "date_created": "Wed, 10 Jul 2019 00:00:00 GMT", "description": "Brook 1543267 Approximately half of the human caused carbon dioxide emissions to the atmosphere are absorbed by the ocean, which reduces the amount of global warming associated with these emissions. Much of this carbon uptake occurs in the Southern Ocean around Antarctica, where water from the deep ocean comes to the surface. How much water \"up-wells,\" and therefore how much carbon is absorbed, is believed to depend on the strength and location of the major westerly winds in the southern hemisphere. These wind patterns have been shifting southward in recent decades, and future changes could impact the global carbon cycle and promote the circulation of relatively warm water from the deep ocean on to the continental shelf, which contributes to enhanced Antarctic ice melt and sea level rise. Understanding of the westerly winds and their role in controlling atmospheric carbon dioxide levels and the circulation of ocean water is therefore very important. The work supported by this award will study past movement of the SH westerlies in response to natural climate variations. Of particular interest is the last deglaciation (20,000 to 10,000 years ago), when the global climate made a transition from an ice age climate to the current warm period. During this period, atmospheric carbon dioxide rose from about 180 ppm to 270 parts per million, and one leading hypothesis is that the rise in carbon dioxide was driven by a southward movement of the southern hemisphere westerlies. The broader impacts of the work include a perspective on past movement of the southern hemisphere westerlies and their link to atmospheric carbon dioxide, which could guide projections of future oceanic carbon dioxide uptake, with strong societal benefits; international collaboration with German scientists; training of a postdoctoral investigator; and outreach to public schools. This project will investigate whether the abundance of a noble gas, krypton-86, trapped in Antarctic ice cores, records atmospheric pressure variability, and whether or not this pressure variability can be used to infer past movement of the Southern Hemisphere westerly winds. The rationale for the project is that models of air movement in the snow pack (firn) in Antarctica indicate that pressure variations drive air movement that disturbs the normal enrichment in krypton-86 caused by gravitational settling of gases. Calculations predict that the krypton-86 deviation from gravitational equilibrium reflects the magnitude of pressure variations. In turn, atmospheric data show that pressure variability over Antarctica is linked to the position of the southern hemisphere westerly winds. Preliminary data from the West Antarctic Ice Sheet (WAIS) Divide ice core show a large excursion in krypton-86 during the transition from the last ice age to the current warm period. The investigators will perform krypton-86 analysis on ice core and firn air samples to establish whether the Kr-86 deviation is linked to pressure variability, refine the record of krypton isotopes from the WAIS Divide ice core, investigate the role of pressure variability in firn air transport using firn air models, and investigate how barometric pressure variability in Antarctica is linked to the position/strength of the SH westerlies in past and present climates.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USA/NSF; FIRN; ICE CORE RECORDS; USAP-DC; Greenland; Xenon; Noble Gas; Ice Core; Amd/Us; Antarctica; AMD; LABORATORY; Krypton; ATMOSPHERIC PRESSURE", "locations": "Greenland; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.; Brook, Edward J.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative research: Kr-86 as a proxy for barometric pressure variability and movement of the SH westerlies during the last\r\ndeglaciation", "uid": "p0010037", "west": -180.0}, {"awards": "1341717 Ackley, Stephen; 1341513 Maksym, Edward; 1341606 Stammerjohn, Sharon; 1543483 Sedwick, Peter; 1341725 Guest, Peter", "bounds_geometry": "POLYGON((-180 -55,-177 -55,-174 -55,-171 -55,-168 -55,-165 -55,-162 -55,-159 -55,-156 -55,-153 -55,-150 -55,-150 -57.3,-150 -59.6,-150 -61.9,-150 -64.2,-150 -66.5,-150 -68.8,-150 -71.1,-150 -73.4,-150 -75.7,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -75.7,160 -73.4,160 -71.1,160 -68.8,160 -66.5,160 -64.2,160 -61.9,160 -59.6,160 -57.3,160 -55,162 -55,164 -55,166 -55,168 -55,170 -55,172 -55,174 -55,176 -55,178 -55,-180 -55))", "dataset_titles": "ASPeCt Visual Ice Observations on PIPERS Cruise NBP1704 April-June 2017; Expedition data of NBP1704; Impact of Convective Processes and Sea Ice Formation on the Distribution of Iron in the Ross Sea: Closing the Seasonal Cycle; NBP1704 CTD sensor data; NBP1704 Expedition Data; PIPERS Airborne LiDAR Data; PIPERS Meteorology Rawinsonde Data; PIPERS Meteorology Time Series; PIPERS Noble Gases; Sea Ice Layer Cakes, PIPERS 2017; SUMO unmanned aerial system (UAS) atmospheric data", "datasets": [{"dataset_uid": "601191", "doi": "10.15784/601191", "keywords": "Air Temperature; Antarctica; Atmosphere; Meteorology; NBP1704; PIPERS; R/v Nathaniel B. Palmer; Southern Ocean; Temperature Profiles; UAV; Unmanned Aircraft", "people": "Cassano, John", "repository": "USAP-DC", "science_program": null, "title": "SUMO unmanned aerial system (UAS) atmospheric data", "url": "https://www.usap-dc.org/view/dataset/601191"}, {"dataset_uid": "601188", "doi": "10.15784/601188", "keywords": "Aerogeophysics; Airborne Laser Altimetry; Antarctica; LIDAR; PIPERS; Ross Sea; Sea Ice", "people": "Dhakal, Tejendra; Bertinato, Christopher; Xie, Hongjie; Bell, Robin; Locke, Caitlin", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Airborne LiDAR Data", "url": "https://www.usap-dc.org/view/dataset/601188"}, {"dataset_uid": "601185", "doi": "10.15784/601185 ", "keywords": "Air Temperature; Antarctica; Atmosphere; Atmospheric Surface Winds; Meteorology; NBP1704; PIPERS; Pressure; Radiosonde; Rawinsonde; Relative Humidity; Ross Sea; R/v Nathaniel B. Palmer; Wind Direction; Wind Speed", "people": "Guest, Peter", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Meteorology Rawinsonde Data", "url": "https://www.usap-dc.org/view/dataset/601185"}, {"dataset_uid": "200150", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Impact of Convective Processes and Sea Ice Formation on the Distribution of Iron in the Ross Sea: Closing the Seasonal Cycle", "url": "https://www.bco-dmo.org/project/815403"}, {"dataset_uid": "601183", "doi": "10.15784/601183", "keywords": "Antarctica; Glaciology; Ice Concentration; Ice Thickness; Ice Type; NBP1704; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Sea Ice; Snow Depth; Snow/ice; Snow/Ice; Visual Observations", "people": "Ackley, Stephen", "repository": "USAP-DC", "science_program": null, "title": "ASPeCt Visual Ice Observations on PIPERS Cruise NBP1704 April-June 2017", "url": "https://www.usap-dc.org/view/dataset/601183"}, {"dataset_uid": "601207", "doi": "10.15784/601207", "keywords": "Antarctica; Digital Elevation Model; Glaciology; Ice; Ice Thickness; Ice Thickness Distribution; LIDAR; NBP1704; PIPERS; Ross Sea; R/v Nathaniel B. Palmer; Sea Ice; Snow; Snow Depth; Surface Elevation", "people": "Mei, M. Jeffrey; Maksym, Edward; Jeffrey Mei, M.", "repository": "USAP-DC", "science_program": null, "title": "Sea Ice Layer Cakes, PIPERS 2017", "url": "https://www.usap-dc.org/view/dataset/601207"}, {"dataset_uid": "002663", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1704", "url": "https://www.rvdata.us/search/cruise/NBP1704"}, {"dataset_uid": "601609", "doi": "10.15784/601609", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Mass Spectrometer; NBP1704; Noble Gas; Oceans; Ross Sea; R/v Nathaniel B. Palmer", "people": "Loose, Brice", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Noble Gases", "url": "https://www.usap-dc.org/view/dataset/601609"}, {"dataset_uid": "001363", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1704 Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1704"}, {"dataset_uid": "601422", "doi": "10.15784/601422", "keywords": "Antarctica; CTD; CTD Data; NBP1704; Ocean Profile Data; Ross Sea; R/v Nathaniel B. Palmer; Salinity; Temperature", "people": "Stammerjohn, Sharon", "repository": "USAP-DC", "science_program": null, "title": "NBP1704 CTD sensor data", "url": "https://www.usap-dc.org/view/dataset/601422"}, {"dataset_uid": "601184", "doi": "10.15784/601184 ", "keywords": "Air Temperature; Antarctica; Atmosphere; Meteorology; Near-Surface Air Temperatures; PIPERS; Radiation; Sea Ice Temperatures; Temperature; Weather Station Data; Wind Direction; Wind Speed", "people": "Guest, Peter", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Meteorology Time Series", "url": "https://www.usap-dc.org/view/dataset/601184"}], "date_created": "Mon, 10 Jun 2019 00:00:00 GMT", "description": "Proposal Title: Collaborative Research: Seasonal Sea Ice Production in the Ross Sea, Antarctica (working title changed from submitted title) Institutions: UT-San Antonio; Columbia University; Naval Postgraduate School; Woods Hole Oceanographic Institute; UC@Boulder The one place on Earth consistently showing increases in sea ice area, duration, and concentration is the Ross Sea in Antarctica. Satellite imagery shows about half of the Ross Sea increases are associated with changes in the austral fall, when the new sea ice is forming. The most pronounced changes are also located near polynyas, which are areas of open ocean surrounded by sea ice. To understand the processes driving the sea ice increase, and to determine if the increase in sea ice area is also accompanied by a change in ice thickness, this project will conduct an oceanographic cruise to the polynyas of the Ross Sea in April and May, 2017, which is the austral fall. The team will deploy state of the art research tools including unmanned airborne systems (UASs, commonly called drones), autonomous underwater vehicles (AUVs), and remotely operated underwater vehicles (ROVs). Using these tools and others, the team will study atmospheric, oceanic, and sea ice properties and processes concurrently. A change in sea ice production will necessarily change the ocean water below, which may have significant consequences for global ocean circulation patterns, a topic of international importance. All the involved institutions will be training students, and all share the goal of expanding climate literacy in the US, emphasizing the role high latitudes play in the Earth\u0027s dynamic climate. The main goal of the project is to improve estimates of sea ice production and water mass transformation in the Ross Sea. The team will fully capture the spatial and temporal changes in air-ice-ocean interactions when they are initiated in the austral fall, and then track the changes into the winter and spring using ice buoys, and airborne mapping with the newly commissioned IcePod instrument system, which is deployed on the US Antarctic Program\u0027s LC-130 fleet. The oceanographic cruise will include stations in and outside of both the Terra Nova Bay and Ross Ice Shelf polynyas. Measurements to be made include air-sea boundary layer fluxes of heat, freshwater, and trace gases, radiation, and meteorology in the air; ice formation processes, ice thickness, snow depth, mass balance, and ice drift within the sea ice zone; and temperature, salinity, and momentum in the ocean below. Following collection of the field data, the team will improve both model parameterizations of air-sea-ice interactions and remote sensing algorithms. Model parameterizations are needed to determine if sea-ice production has increased in crucial areas, and if so, why (e.g., stronger winds or fresher oceans). The remote sensing validation will facilitate change detection over wider areas and verify model predictions over time. Accordingly this project will contribute to the international Southern Ocean Observing System (SOOS) goal of measuring essential climate variables continuously to monitor the state of the ocean and ice cover into the future.", "east": -150.0, "geometry": "POINT(-175 -66.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LIDAR; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "OCEAN MIXED LAYER; TRACE ELEMENTS; CARBON DIOXIDE; ATMOSPHERIC RADIATION; ICE GROWTH/MELT; AMD; BOUNDARY LAYER TEMPERATURE; SULFUR COMPOUNDS; NBP1704; HEAT FLUX; ICE DEPTH/THICKNESS; R/V NBP; USA/NSF; BOUNDARY LAYER WINDS; SNOW DEPTH; VERTICAL PROFILES; METHANE; POLYNYAS; CONDUCTIVITY; SEA ICE; Ross Sea; WATER MASSES; TURBULENCE; USAP-DC; Amd/Us", "locations": "Ross Sea", "north": -55.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Ackley, Stephen; Bell, Robin; Weissling, Blake; Nuss, Wendell; Maksym, Edward; Stammerjohn, Sharon; Cassano, John; Guest, Peter; Sedwick, Peter; Xie, Hongjie", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "BCO-DMO; R2R; USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research: Seasonal Sea Ice Production in the Ross Sea, Antarctica", "uid": "p0010032", "west": 160.0}, {"awards": "1246357 Bart, Philip", "bounds_geometry": null, "dataset_titles": "NBP1502 Cruise Geophysics and underway data; NBP1502 YoYo camera benthic images from Ross Sea", "datasets": [{"dataset_uid": "000245", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1502 Cruise Geophysics and underway data", "url": "https://www.rvdata.us/search/cruise/NBP1502"}, {"dataset_uid": "601182", "doi": "10.15784/601182", "keywords": "Antarctica; Benthic; Benthic Images; Benthos; Bentic Fauna; Camera Tow; Marine Geoscience; Marine Sediments; NBP1502; Photo; Photo/video; Photo/Video; Ross Sea; R/v Nathaniel B. Palmer; Southern Ocean; Yoyo Camera", "people": "Bart, Philip", "repository": "USAP-DC", "science_program": null, "title": "NBP1502 YoYo camera benthic images from Ross Sea", "url": "https://www.usap-dc.org/view/dataset/601182"}], "date_created": "Mon, 03 Jun 2019 00:00:00 GMT", "description": "Intellectual Merit: Evidence from the eastern Ross Sea continental shelf indicates that the West Antarctic Ice Sheet advanced and retreated during the last glacial cycle, but it is unclear whether the ice sheet advanced to the shelf edge or just to the middle shelf. These two end-member scenarios offer different interpretations as to why, how, and when the West Antarctic Ice Sheet oscillated. The PI proposes to acquire seismic, multibeam, and core data from Whales Deep, to evaluate the timing and duration of two advances of grounded ice to the outer and middle shelf of the Whales Deep Basin, a West Antarctic Ice Sheet paleo ice stream trough in eastern Ross Sea. Grounding events are represented by seismically resolvable Grounding Zone Wedges. The PI will collect radiocarbon dates on in situ benthic foraminifera from the grounding zone diamict as well as ramped pyrolysis radiocarbon dates on acid insoluble organics from open-marine mud overlying the grounding zone diamict. Using these data the PI will calculate the duration of the two grounding events. Furthermore, the PI will test a numerical model prediction that West Antarctic Ice Sheet retreat must have involved melting at the marine terminus of the ice sheet. Pore-water from the grounding zone diamict will be extracted from piston cores to determine salinity and \u0026#948;18O values that should indicate if significant melting occurred at the grounding line. Broader impacts: The data collected will provide constraints on the timing and pattern of Last Glacial Maximum advance and retreat that can be incorporated into interpretations of ice-surface elevation changes. The proposed activities will provide valuable field and research training to undergraduate/graduate students and a Louisiana high-school science teacher. The research will be interactively shared with middle- and high-school science students and with visitors to the LSU Museum of Natural Science Weekend-Science Program.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e AIRGUN ARRAYS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e SEISMIC REFLECTION PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e LONG STREAMERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERA; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "STRATIGRAPHIC SEQUENCE; R/V NBP; Ross Sea; Antarctica; MICROFOSSILS; RADIOCARBON; PALEOCLIMATE RECONSTRUCTIONS; SEDIMENTS; Southern Ocean; OCEANS; GEOSCIENTIFIC INFORMATION", "locations": "Antarctica; Ross Sea; Southern Ocean", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bart, Philip; Steinberg, Deborah", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": null, "title": "Timing and Duration of the LGM and Post-LGM Grounding Events in Whales Deep Paleo Ice Stream, Eastern Ross Sea Middle Continental Shelf", "uid": "p0000877", "west": null}, {"awards": "1642570 Thurber, Andrew", "bounds_geometry": "POINT(166.666 -77.8)", "dataset_titles": "Microbial community composition of the Cinder Cones Cold Seep", "datasets": [{"dataset_uid": "200035", "doi": "DOI:10.1575/1912/bco-dmo.756997.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Microbial community composition of the Cinder Cones Cold Seep", "url": "https://www.bco-dmo.org/dataset/756997"}], "date_created": "Fri, 24 May 2019 00:00:00 GMT", "description": "Methane is a potent greenhouse gas that is naturally emitted into the oceans by geologic seeps and microbial production. Based on studies of persistent deep-sea seeps at mid- and northern latitudes, researchers have learned that bacteria and archaea can create a \"sediment filter\" that oxidizes methane prior to its release. Antarctica is thought to contain large reservoirs of organic carbon buried beneath its ice which could a quantity of methane equivalent to all of the permafrost in the Arctic and yet we know almost nothing about the methane oxidizing microbes in this region. How these microbial communities develop and potentially respond to fluctuations in methane levels is an under-explored avenue of research. A bacterial mat was recently discovered at 78 degrees south, suggesting the possible presence of a methane seep, and associated microbial communities. This project will explore this environment in detail to assess the levels and origin of methane, and the nature of the microbial ecosystem present. An expansive bacterial mat appeared and/or was discovered at 78 degrees south in 2011. This site, near McMurdo Station Antarctica, has been visited since the mid-1960s, but this mat was not observed until 2011. The finding of this site provides an unusual opportunity to study an Antarctic marine benthic habitat with active methane cycling and to examine the dynamics of recruitment and community succession of seep fauna including bacteria, archaea, protists and metazoans. This project will collect the necessary baseline data to facilitate further studies of Antarctic methane cycling. The concentration and source of methane will be determined at this site and at potentially analogous sites in McMurdo Sound. In addition to biogeochemical characterization of the sites, molecular analysis of the microbial community will quantify the time scales on which bacteria and archaea respond to methane input and provide information on rates of community development and succession in the Southern Ocean. Project activities will facilitate the training of at least one graduate student and results will be shared at both local and international levels. A female graduate student will be mentored as part of this project and data collected will form part of her dissertation. Lectures will be given in K-12 classrooms in Oregon to excite students about polar science. National and international audiences will be reached through blogs and presentations at a scientific conference. The PI\u0027s previous blogs have been used by K-12 classrooms as part of their lesson plans and followed in over 65 countries.", "east": 166.666, "geometry": "POINT(166.666 -77.8)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Sea Floor; USAP-DC; Ross Sea; BACTERIA/ARCHAEA; NOT APPLICABLE", "locations": "Ross Sea; Sea Floor", "north": -77.8, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Thurber, Andrew", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "BCO-DMO", "repositories": "BCO-DMO", "science_programs": null, "south": -77.8, "title": "EAGER: Elucidating the Antarctic Methane Cycle at the Cinder Cones Reducing Habitat.", "uid": "p0010030", "west": 166.666}, {"awards": "1822256 Smith, Craig; 1822289 Vernet, Maria", "bounds_geometry": "POLYGON((-59.5 -62,-59.05 -62,-58.6 -62,-58.15 -62,-57.7 -62,-57.25 -62,-56.8 -62,-56.35 -62,-55.9 -62,-55.45 -62,-55 -62,-55 -62.27,-55 -62.54,-55 -62.81,-55 -63.08,-55 -63.35,-55 -63.62,-55 -63.89,-55 -64.16,-55 -64.43,-55 -64.7,-55.45 -64.7,-55.9 -64.7,-56.35 -64.7,-56.8 -64.7,-57.25 -64.7,-57.7 -64.7,-58.15 -64.7,-58.6 -64.7,-59.05 -64.7,-59.5 -64.7,-59.5 -64.43,-59.5 -64.16,-59.5 -63.89,-59.5 -63.62,-59.5 -63.35,-59.5 -63.08,-59.5 -62.81,-59.5 -62.54,-59.5 -62.27,-59.5 -62))", "dataset_titles": "CTD stations and logs for Araon 2018 ANA08D expedition to Larson C; Yoyo camera survey transects, King George Island and Bransfield Strait", "datasets": [{"dataset_uid": "601199", "doi": "10.15784/601199", "keywords": "Antarctica; Araon; Araon Ana08d; Benthic Images; Benthos; Photo/video; Photo/Video; Southern Ocean; Station List; Yoyo Camera", "people": "Smith, Craig; Ziegler, Amanda", "repository": "USAP-DC", "science_program": null, "title": "Yoyo camera survey transects, King George Island and Bransfield Strait", "url": "https://www.usap-dc.org/view/dataset/601199"}, {"dataset_uid": "601178", "doi": "10.15784/601178", "keywords": "Antarctica; Biota; Chlorophyll; CTD; Glacier; Iceberg; Ice Shelf; Larsen C Ice Shelf; Oceans; Physical Oceanography; Phytoplankton; Sample Location; Sea Ice; Southern Ocean; Station List", "people": "Vernet, Maria; Pan, B. Jack", "repository": "USAP-DC", "science_program": null, "title": "CTD stations and logs for Araon 2018 ANA08D expedition to Larson C", "url": "https://www.usap-dc.org/view/dataset/601178"}], "date_created": "Wed, 15 May 2019 00:00:00 GMT", "description": "Marine ecosystems under large ice shelves are thought to contain sparse, low-diversity plankton and seafloor communities due the low supply of food from productive sunlight waters. Past studies have shown sub-ice shelf ecosystems to change in response to altered oceanographic processes resulting from ice-shelve retreat. However, information on community changes and ecosystem structure under ice shelves are limited because sub-ice-shelf ecosystems have either been sampled many years after ice-shelf breakout, or have been sampled through small boreholes, yielding extremely limited spatial information. The recent breakout of the A-68 iceberg from the Larsen C ice shelf in the western Weddell Sea provides an opportunity to use a ship-based study to evaluate benthic communities and water column characteristics in an area recently vacated by a large overlying ice shelf. The opportunity will allow spatial assessments at the time of transition from an under ice-shelf environment to one initially exposed to conditions more typical of a coastal Antarctic marine setting. This RAPID project will help determine the state of a coastal Antarctic ecosystem newly exposed from ice-shelf cover and will aid in understanding of rates of community change during transition. The project will conduct a 10-day field program, allowing contrasts to be made of phytoplankton and seafloor megafaunal communities in areas recently exposed by ice-shelf loss to areas exposed for many decades. The project will be undertaken in a collaborative manner with the South Korean Antarctic Agency, KOPRI, by participating in a cruise in March/May 2018. Combining new information in the area of Larsen C with existing observations after the Larsen A and B ice shelf breakups further to the north, the project is expected to generate a dataset that can elucidate fundamental processes of planktonic and benthic community development in transition from food-poor to food-rich ecosystems. The project will provide field experience to two graduate students, a post-doctoral associate and an undergraduate student. Material from the project will be incorporated into graduate courses and the project will communicate daily work and unfolding events through social media and blogs while they explore this area of the world that is largely underexplored. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -55.0, "geometry": "POINT(-57.25 -63.35)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Antarctica; R/V NBP; Sea Floor; ANIMALS/INVERTEBRATES; ICEBERGS; USAP-DC", "locations": "Antarctica; Sea Floor", "north": -62.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Vernet, Maria; Smith, Craig", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.7, "title": "RAPID: Collaborative Research: Marine Ecosystem Response to the Larsen C Ice-Shelf Breakout: \"Time zero\"", "uid": "p0010029", "west": -59.5}, {"awards": "1543031 Ivany, Linda", "bounds_geometry": null, "dataset_titles": "NetCDF outputs from middle Eocene climate simulation using the GENESIS global circulation model ; Organic carbon isotope data from serially sampled Eocene driftwood from the La Meseta Fm., Seymour ; Oxygen isotope data from serially sampled Eocene bivalves from the La Meseta Fm., Seymour Island, Antarctica ", "datasets": [{"dataset_uid": "601174", "doi": "10.15784/601174", "keywords": "Antarctica; Biota; Bivalves; Cucullaea; Eocene; Glaciers/ice Sheet; Glaciers/Ice Sheet; Isotope Data; La Meseta Formation; Mass Spectrometer; Mass Spectrometry; Oxygen Isotope; Paleotemperature; Retrotapes; Seasonality; Seymour Island", "people": "Judd, Emily", "repository": "USAP-DC", "science_program": null, "title": "Oxygen isotope data from serially sampled Eocene bivalves from the La Meseta Fm., Seymour Island, Antarctica ", "url": "https://www.usap-dc.org/view/dataset/601174"}, {"dataset_uid": "601175", "doi": "10.15784/601175 ", "keywords": "Antarctica; Atmosphere; Climate Model; Computer Model; Eocene; Genesis; Global Circulation Model; Modeling; Model Output; Seasonality; Temperature", "people": "Judd, Emily", "repository": "USAP-DC", "science_program": null, "title": "NetCDF outputs from middle Eocene climate simulation using the GENESIS global circulation model ", "url": "https://www.usap-dc.org/view/dataset/601175"}, {"dataset_uid": "601173", "doi": "10.15784/601173 ", "keywords": "Antarctica; Carbon Isotopes; Driftwood; Eocene; Geochemistry; Geochronology; Isotope Data; La Meseta Formation; Mass Spectrometer; Mass Spectrometry; Organic Carbon Isotopes; Seasonality; Seymour Island; Wood", "people": "Judd, Emily", "repository": "USAP-DC", "science_program": null, "title": "Organic carbon isotope data from serially sampled Eocene driftwood from the La Meseta Fm., Seymour ", "url": "https://www.usap-dc.org/view/dataset/601173"}], "date_created": "Tue, 23 Apr 2019 00:00:00 GMT", "description": "In order to understand what environmental conditions might look like for future generations, we need to turn to archives of past times when the world was indeed warmer, before anyone was around to commit them to collective memory. The geologic record of Earth\u0027s past offers a glimpse of what could be in store for the future. Research by Ivany and her team looks to Antarctica during a time of past global warmth to see how seasonality of temperature and rainfall in coastal settings are likely to change in the future. They will use the chemistry of fossils (a natural archive of these variables) to test a provocative hypothesis about near-monsoonal conditions in the high latitudes when the oceans are warm. If true, we can expect high-latitude shipping lanes to become more hazardous and fragile marine ecosystems adapted to constant cold temperatures to suffer. With growing information about how human activities are likely to affect the planet in the future, we will be able to make more informed decisions about policies today. This research involves an international team of scholars, including several women scientists, training of graduate students, and a public museum exhibit to educate children about how we study Earth\u0027s ancient climate and what we can learn from it. Antarctica is key to an understanding how Earth?s climate system works under conditions of elevated CO2. The poles are the most sensitive regions on the planet to climate change, and the equator-to-pole temperature gradient and the degree to which high-latitude warming is amplified are important components for climate models to capture. Accurate proxy data with good age control are therefore critical for testing numerical models and establishing global patterns. The La Meseta Formation on Seymour Island is the only documented marine section from the globally warm Eocene Epoch exposed in outcrop on the continent; hence its climate record is integral to studies of warming. Early data suggest the potential for strongly seasonal precipitation and runoff in coastal settings. This collaboration among paleontologists, geochemists, and climate modelers will test this using seasonally resolved del-18O data from fossil shallow marine bivalves to track the evolution of seasonality through the section, in combination with independent proxies for the composition of summer precipitation (leaf wax del-D) and local seawater (clumped isotopes). The impact of the anticipated salinity stratification on regional climate will be evaluated in the context of numerical climate model simulations. In addition to providing greater clarity on high-latitude conditions during this time of high CO2, the combination of proxy and model results will provide insights about how Eocene warmth may have been maintained and how subsequent cooling came about. As well, a new approach to the analysis of shell carbonates for 87Sr/86Sr will allow refinements in age control so as to allow correlation of this important section with other regions to clarify global climate gradients. The project outlined here will develop new and detailed paleoclimate records from existing samples using well-tuned as well as newer proxies applied here in novel ways. Seasonal extremes are climate parameters generally inaccessible to most studies but critical to an understanding of climate change; these are possible to resolve in this well-preserved, accretionary-macrofossil-bearing section. This is an integrated study that links marine and terrestrial climate records for a key region of the planet across the most significant climate transition in the Cenozoic.", "east": -56.0, "geometry": "POINT(-56.5 -64.25)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "PALEOCLIMATE RECONSTRUCTIONS; USAP-DC; ISOTOPES; NOT APPLICABLE; MACROFOSSILS; Antarctica", "locations": "Antarctica", "north": -64.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Ivany, Linda; Lu, Zunli; Junium, Christopher; Samson, Scott", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.5, "title": "Seasonality, Summer Cooling, and Calibrating the Approach of the Icehouse in Late Eocene Antarctica", "uid": "p0010025", "west": -57.0}, {"awards": "1341479 Marchetti, Adrian", "bounds_geometry": "POLYGON((-72.8 -48,-67.12 -48,-61.44 -48,-55.76 -48,-50.08 -48,-44.4 -48,-38.72 -48,-33.04 -48,-27.36 -48,-21.68 -48,-16 -48,-16 -50.02,-16 -52.04,-16 -54.06,-16 -56.08,-16 -58.1,-16 -60.12,-16 -62.14,-16 -64.16,-16 -66.18,-16 -68.2,-21.68 -68.2,-27.36 -68.2,-33.04 -68.2,-38.72 -68.2,-44.4 -68.2,-50.08 -68.2,-55.76 -68.2,-61.44 -68.2,-67.12 -68.2,-72.8 -68.2,-72.8 -66.18,-72.8 -64.16,-72.8 -62.14,-72.8 -60.12,-72.8 -58.1,-72.8 -56.08,-72.8 -54.06,-72.8 -52.04,-72.8 -50.02,-72.8 -48))", "dataset_titles": "16S and 18S Sequence data; Fragilariopsis kerguelensis iron and light transcriptomes; Physiology and transcriptomes of polar isolates; Polar isolate transcriptomes; Sequence data from Ocean Station Papa seawater ; Sequence data RNA-Seq of marine phytoplankton: FeB12", "datasets": [{"dataset_uid": "200016", "doi": "", "keywords": null, "people": null, "repository": "iMicrobe", "science_program": null, "title": "Fragilariopsis kerguelensis iron and light transcriptomes", "url": "https://www.imicrobe.us/#/projects/104"}, {"dataset_uid": "200019", "doi": "", "keywords": null, "people": null, "repository": "Cyverse Data Commons", "science_program": null, "title": "Polar isolate transcriptomes", "url": "http://datacommons.cyverse.org/search/?search_term=unc_phyto_isolates"}, {"dataset_uid": "200020", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Physiology and transcriptomes of polar isolates", "url": "https://www.bco-dmo.org/project/653229"}, {"dataset_uid": "200021", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "16S and 18S Sequence data", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA299401"}, {"dataset_uid": "200017", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Sequence data RNA-Seq of marine phytoplankton: FeB12", "url": "https://www.ncbi.nlm.nih.gov/sra/SRP074366"}, {"dataset_uid": "200018", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Sequence data from Ocean Station Papa seawater ", "url": "https://www.ncbi.nlm.nih.gov/sra/SRP006906"}], "date_created": "Mon, 11 Mar 2019 00:00:00 GMT", "description": "The Southern Ocean surrounding Antarctica is changing rapidly in response to Earth\u0027s warming climate. These changes will undoubtedly influence communities of primary producers (the organisms at the base of the food chain, particularly plant-like organisms using sunlight for energy) by altering conditions that influence their growth and composition. Because primary producers such as phytoplankton play an important role in global biogeochemical cycling, it is essential to understand how they will respond to changes in their environment. The growth of phytoplankton in certain regions of the Southern Ocean is constrained by steep gradients in chemical and physical properties that vary in both space and time. Light and iron have been identified as key variables influencing phytoplankton abundance and distribution within Antarctic waters. Microscopic algae known as diatoms are dominant members of the phytoplankton and sea ice communities, accounting for significant proportions of primary production. The overall objective of this project is to identify the molecular bases for the physiological responses of polar diatoms to varying light and iron conditions. The project should provide a means of evaluating the extent these factors regulate diatom growth and influence net community productivity in Antarctic waters. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. It will facilitate the teaching and learning of polar-related topics by translating the research objectives into readily accessible educational materials for middle-school students. This project will also provide funding to enable a graduate student and several undergraduate students to be trained in the techniques and perspectives of modern biology. Although numerous studies have investigated how polar diatoms are affected by varying light and iron, the cellular mechanisms leading to their distinct physiological responses remain unknown. Using comparative transcriptomics, the expression patterns of key genes and metabolic pathways in several ecologically important polar diatoms recently isolated from Antarctic waters and grown under varying iron and irradiance conditions will be examined. In addition, molecular indicators for iron and light limitation will be developed within these polar diatoms through the identification of iron- and light-responsive genes -- the expression patterns of which can be used to determine their physiological status. Upon verification in laboratory cultures, these indicators will be utilized by way of metatranscriptomic sequencing to examine iron and light limitation in natural diatom assemblages collected along environmental gradients in Western Antarctic Peninsula waters. In order to fully understand the role phytoplankton play in Southern Ocean biogeochemical cycles, dependable methods that provide a means of elucidating the physiological status of phytoplankton at any given time and location are essential.", "east": -16.0, "geometry": "POINT(-44.4 -58.1)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; AQUATIC SCIENCES; PHYTOPLANKTON; USAP-DC; Southern Ocean; Sea Surface; DIATOMS", "locations": "Sea Surface; Southern Ocean", "north": -48.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Marchetti, Adrian", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "iMicrobe", "repositories": "BCO-DMO; Cyverse Data Commons; iMicrobe; NCBI GenBank", "science_programs": null, "south": -68.2, "title": "Iron and Light Limitation in Ecologically Important Polar Diatoms: Comparative Transcriptomics and Development of Molecular Indicators", "uid": "p0010018", "west": -72.8}, {"awards": "1443733 Winsor, Peter; 1443680 Smith, Craig; 1443705 Vernet, Maria", "bounds_geometry": "POLYGON((-66 -64,-65.6 -64,-65.2 -64,-64.8 -64,-64.4 -64,-64 -64,-63.6 -64,-63.2 -64,-62.8 -64,-62.4 -64,-62 -64,-62 -64.1,-62 -64.2,-62 -64.3,-62 -64.4,-62 -64.5,-62 -64.6,-62 -64.7,-62 -64.8,-62 -64.9,-62 -65,-62.4 -65,-62.8 -65,-63.2 -65,-63.6 -65,-64 -65,-64.4 -65,-64.8 -65,-65.2 -65,-65.6 -65,-66 -65,-66 -64.9,-66 -64.8,-66 -64.7,-66 -64.6,-66 -64.5,-66 -64.4,-66 -64.3,-66 -64.2,-66 -64.1,-66 -64))", "dataset_titles": "Andvord Bay Glacier Timelapse; Andvord Bay sediment core data collected during the FjordEco project (LMG1510 and NBP1603); Expedition Data; Expedition data of LMG1702; FjordEco Phytoplankton Ecology Dataset in Andvord Bay ; Fjord-Eco Sediment OrgC OrgN Data - Craig Smith; LMG1510 Expedition data; NBP1603 Expedition data; Sediment macrofaunal abundance and family richness from inner Andvord Bay to the open continental shelf", "datasets": [{"dataset_uid": "601193", "doi": "10.15784/601193", "keywords": "Antarctica; Geochronology; Grain Size; LMG1510; NBP1603; Sediment; Sediment Core Data", "people": "Nittrouer, Charles; Eidam, Emily; Smith, Craig; Homolka, Khadijah", "repository": "USAP-DC", "science_program": null, "title": "Andvord Bay sediment core data collected during the FjordEco project (LMG1510 and NBP1603)", "url": "https://www.usap-dc.org/view/dataset/601193"}, {"dataset_uid": "601157", "doi": "10.15784/601157", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Snow/ice; Snow/Ice", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "FjordEco", "title": "Fjord-Eco Sediment OrgC OrgN Data - Craig Smith", "url": "https://www.usap-dc.org/view/dataset/601157"}, {"dataset_uid": "601111", "doi": "10.15784/601111", "keywords": "Antarctica; Antarctic Peninsula; Glaciers/ice Sheet; Glaciers/Ice Sheet; Iceberg; Photo; Photo/video; Photo/Video", "people": "Truffer, Martin; Winsor, Peter", "repository": "USAP-DC", "science_program": "FjordEco", "title": "Andvord Bay Glacier Timelapse", "url": "https://www.usap-dc.org/view/dataset/601111"}, {"dataset_uid": "200040", "doi": "10.7284/907085", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "LMG1510 Expedition data", "url": "https://www.rvdata.us/search/cruise/LMG1510"}, {"dataset_uid": "601236", "doi": "10.15784/601236", "keywords": "Abundance; Andvord Bay; Antarctica; Antarctic Peninsula; Biota; Fjord; LMG1510; Marine Sediments; Oceans; Polychaete; Polychaete Family Richness; R/v Laurence M. Gould; Sediment Core Data; Sediment Macrofauna", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "FjordEco", "title": "Sediment macrofaunal abundance and family richness from inner Andvord Bay to the open continental shelf", "url": "https://www.usap-dc.org/view/dataset/601236"}, {"dataset_uid": "200039", "doi": "10.7284/907205", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1603 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1603"}, {"dataset_uid": "002733", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1702", "url": "https://www.rvdata.us/search/cruise/LMG1702"}, {"dataset_uid": "601158", "doi": "10.15784/601158", "keywords": "Antarctica; Antarctic Peninsula; Biota; Ecology; Fjord; Phytoplankton", "people": "Manck, Lauren; Vernet, Maria; Pan, B. Jack; Forsch, Kiefer", "repository": "USAP-DC", "science_program": "FjordEco", "title": "FjordEco Phytoplankton Ecology Dataset in Andvord Bay ", "url": "https://www.usap-dc.org/view/dataset/601158"}, {"dataset_uid": "001366", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1702"}, {"dataset_uid": "000402", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1702"}], "date_created": "Wed, 13 Feb 2019 00:00:00 GMT", "description": "Marine communities along the western Antarctic Peninsula are highly productive ecosystems which support a diverse assemblage of charismatic animals such as penguins, seals, and whales as well as commercial fisheries such as that on Antarctic krill. Fjords (long, narrow, deep inlets of the sea between high cliffs) along the central coast of the Peninsula appear to be intense, potentially climate sensitive, hotspots of biological production and biodiversity, yet the structure and dynamics of these fjord ecosystems are very poorly understood. Because of this intense biological activity and the charismatic fauna it supports, these fjords are also major destinations for a large Antarctic tourism industry. This project is an integrated field and modeling program to evaluate physical oceanographic processes, glacial inputs, water column community dynamics, and seafloor bottom community structure and function in these important yet little understood fjord systems. These Antarctic fjords have characteristics that are substantially different from well-studied Arctic fjords, likely yielding much different responses to climate warming. This project will provide major new insights into the dynamics and climate sensitivity of Antarctic fjord ecosystems, highlighting contrasts with Arctic sub-polar fjords, and potentially transforming our understanding of the ecological role of fjords in the rapidly warming west Antarctic coastal marine landscape. The project will also further the NSF goal of training new generations of scientists, providing scientific training for undergraduate, graduate, and postdoctoral students. This includes the unique educational opportunity for undergraduates to participate in research cruises in Antarctica and the development of a novel summer graduate course on fjord ecosystems. Internet based outreach activities will be enhanced and extended by the participation of a professional photographer who will produce magazine articles, websites, radio broadcasts, and other forms of public outreach on the fascinating Antarctic ecosystem. This project will involve a 15-month field program to test mechanistic hypotheses concerning oceanographic and glaciological forcing, and phytoplankton and benthic community response in the Antarctic fjords. Those efforts will be followed by a coupled physical/biological modeling effort to evaluate the drivers of biogeochemical cycles in the fjords and to explore their potential sensitivity to enhanced meltwater and sediment inputs. Fieldwork over two oceanographic cruises will utilize moorings, weather stations, and glacial, sea-ice and seafloor time-lapse cameras to obtain an integrated view of fjord ecosystem processes. The field team will also make multiple shipboard measurements and will use towed and autonomous underwater vehicles to intensively evaluate fjord ecosystem structure and function during spring/summer and autumn seasons. These integrated field and modeling studies are expected to elucidate fundamental properties of water column and sea bottom ecosystem structure and function in the fjords, and to identify key physical-chemical-glaciological forcing in these rapidly warming ecosystems.", "east": -62.0, "geometry": "POINT(-64 -64.5)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "OCEAN CURRENTS; Bellingshausen Sea; LMG1702; COMMUNITY DYNAMICS; FJORDS; R/V LMG; MARINE ECOSYSTEMS; USAP-DC; ECOSYSTEM FUNCTIONS; ANIMALS/INVERTEBRATES; SEDIMENTATION; NOT APPLICABLE; BENTHIC", "locations": "Bellingshausen Sea", "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Winsor, Peter; Truffer, Martin; Smith, Craig; Powell, Brian; Merrifield, Mark; Vernet, Maria; Kohut, Josh", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": "FjordEco", "south": -65.0, "title": "Collaborative Research: Fjord Ecosystem Structure and Function on the West Antarctic Peninsula - Hotspots of Productivity and Biodiversity? (FjordEco)", "uid": "p0010010", "west": -66.0}, {"awards": "1443710 Severinghaus, Jeffrey; 1443472 Brook, Edward J.; 1443464 Sowers, Todd", "bounds_geometry": "POINT(0 -90)", "dataset_titles": "South Pole CH4 data for termination; South Pole Ice Core Isotopes of N2 and Ar; South Pole ice core (SPC14) discrete methane data; South Pole ice core total air content; South Pole (SPICECORE) 15N, 18O, O2/N2 and Ar/N2; SP19 Gas Chronology", "datasets": [{"dataset_uid": "601517", "doi": "10.15784/601517", "keywords": "Antarctica; Argon; Argon Isotopes; Firn; Firn Temperature Gradient; Firn Thickness; Gas Isotopes; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Nitrogen; Nitrogen Isotopes; South Pole; SPICEcore", "people": "Severinghaus, Jeffrey P.; Morgan, Jacob", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Isotopes of N2 and Ar", "url": "https://www.usap-dc.org/view/dataset/601517"}, {"dataset_uid": "601230", "doi": "10.15784/601230", "keywords": "Antarctica; Atmospheric CH4; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Data; Methane; Methane Concentration; Snow/ice; Snow/Ice; South Pole; SPICEcore", "people": "Sowers, Todd A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole CH4 data for termination", "url": "https://www.usap-dc.org/view/dataset/601230"}, {"dataset_uid": "601231", "doi": "10.15784/601231", "keywords": "Air Content; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Snow/ice; Snow/Ice; South Pole; SPICEcore", "people": "Sowers, Todd A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole ice core total air content", "url": "https://www.usap-dc.org/view/dataset/601231"}, {"dataset_uid": "601381", "doi": "10.15784/601381", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Methane; South Pole; SPICEcore", "people": "Winski, Dominic A.; Epifanio, Jenna; Brook, Edward J.; Buizert, Christo; Kreutz, Karl; Aydin, Murat; Edwards, Jon S.; Sowers, Todd A.; Kahle, Emma; Steig, Eric J.; Osterberg, Erich; Fudge, T. J.; Hood, Ekaterina; Kalk, Michael; Ferris, David G.; Kennedy, Joshua A.; Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole ice core (SPC14) discrete methane data", "url": "https://www.usap-dc.org/view/dataset/601381"}, {"dataset_uid": "601380", "doi": "10.15784/601380", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Core Stratigraphy; Methane; South Pole; SPICEcore", "people": "Epifanio, Jenna", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SP19 Gas Chronology", "url": "https://www.usap-dc.org/view/dataset/601380"}, {"dataset_uid": "601152", "doi": "10.15784/601152", "keywords": "Antarctica; Antarctic Ice Sheet; Chemistry:gas; Chemistry:Gas; Chemistry:ice; Chemistry:Ice; Delta 18O; Dole Effect; Firn Thickness; Gas Isotopes; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Gravitational Settling; Ice; Ice Core Chemistry; Ice Core Data; Ice Core Gas Records; Ice Core Records; Inert Gases; Nitrogen; Nitrogen Isotopes; Oxygen; Oxygen Isotope; Snow/ice; Snow/Ice; South Pole; SPICEcore", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole (SPICECORE) 15N, 18O, O2/N2 and Ar/N2", "url": "https://www.usap-dc.org/view/dataset/601152"}], "date_created": "Sat, 02 Feb 2019 00:00:00 GMT", "description": "Gases trapped in ice cores have revealed astonishing things about the greenhouse gas composition of the past atmosphere, including the fact that carbon dioxide concentrations never rose above 300 parts per million during the last 800,000 years. This places today\u0027s concentration of 400 parts per million in stark contrast. Furthermore, these gas records show that natural sources of greenhouse gas such as oceans and ecosystems act as amplifiers of climate change by increasing emissions of gases during warmer periods. Such amplification is expected to occur in the future, adding to the human-produced gas burden. The South Pole ice core will build upon these prior findings by expanding the suite of gases to include, for the first time, those potent trace gases that both trapped heat and depleted ozone during the past 40,000 years. The present project on inert gases and methane in the South Pole ice core will improve the dating of this crucial record, to unprecedented precision, so that the relative timing of events can be used to learn about the mechanism of trace gas production and destruction, and consequent climate change amplification. Ultimately, this information will inform predictions of future atmospheric chemical cleansing mechanisms and climate in the context of our rapidly changing atmosphere. This award also engages young people in the excitement of discovery and polar research, helping to entrain the next generations of scientists and educators. Education of graduate students, a young researcher (Buizert), and training of technicians, will add to the nation?s human resource base. This award funds the construction of the gas chronology for the South Pole 1500m ice core, using measured inert gases (d15N and d40Ar--Nitrogen and Argon isotope ratios, respectively) and methane in combination with a next-generation firn densification model that treats the stochastic nature of air trapping and the role of impurities on densification. The project addresses fundamental gaps in scientific understanding that limit the accuracy of gas chronologies, specifically a poor knowledge of the controls on ice-core d15N and the possible role of layering and impurities in firn densification. These gaps will be addressed by studying the gas enclosure process in modern firn at the deep core site. The work will comprise the first-ever firn air pumping experiment that has tightly co-located measurements of firn structural properties on the core taken from the same borehole. The project will test the hypothesis that the lock-in horizon as defined by firn air d15N, CO2, and methane is structurally controlled by impermeable layers, which are in turn created by high-impurity content horizons in which densification is enhanced. Thermal signals will be sought using the inert gas measurements, which improve the temperature record with benefits to the firn densification modeling. Neon, argon, and oxygen will be measured in firn air and a limited number of deep core samples to test whether glacial period layering was enhanced, which could explain low observed d15N in the last glacial period. Drawing on separate volcanic and methane synchronization to well-dated ice cores to create independent ice and gas tie points, independent empirical estimates of the gas age-ice age difference will be made to check the validity of the firn densification model-inert gas approach to calculating the gas age-ice age difference. These points will also be used to test whether the anomalously low d15N seen during the last glacial period in east Antarctic ice cores is due to deep air convection in the firn, or a missing impurity dependence in the firn densification models. The increased physical understanding gained from these studies, combined with new high-precision measurements, will lead to improved accuracy of the gas chronology of the South Pole ice core, which will enhance the overall science return from this gas-oriented core. This will lead to clarification of timing of atmospheric gas variations and temperature, and aid in efforts to understand the biogeochemical feedbacks among trace gases. These feedbacks bear on the future response of the Earth System to anthropogenic forcing. Ozone-depleting substances will be measured in the South Pole ice core record, and a precise gas chronology will add value. Lastly, by seeking a better understanding of the physics of gas entrapment, the project aims to have an impact on ice-core science in general.", "east": 0.0, "geometry": "POINT(0 -90)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "USAP-DC; AMD; LABORATORY; Antarctica; NITROGEN ISOTOPES; USA/NSF; METHANE; Amd/Us; FIELD INVESTIGATION", "locations": "Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.; Sowers, Todd A.; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core", "uid": "p0010005", "west": 0.0}, {"awards": "1341612 Bowser, Samuel", "bounds_geometry": null, "dataset_titles": "Aerial survey of Explorers Cove shoreline, late January 2005; Astrammina rara genome sequencing and assembly; Astrammina triangularis genome sequencing and assembly; Crithionina delacai mitochondrial genome sequence and assembly; Scanning electron micrographs: Influence of heavy metal (Pb, Cd) exposure on shell morphogenesis in Astrammina rara, a giant agglutinated Antarctic foraminiferan protist", "datasets": [{"dataset_uid": "601229", "doi": "10.15784/601229", "keywords": "Aerial Imagery; Antarctica; Camera; Delta; Freshwater; Helicopter; Moat; Shoreline Survey; Small Ponds; Snow Melt; Tide Pools", "people": "Bowser, Samuel; Alexander, Steve", "repository": "USAP-DC", "science_program": null, "title": "Aerial survey of Explorers Cove shoreline, late January 2005", "url": "https://www.usap-dc.org/view/dataset/601229"}, {"dataset_uid": "200089", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Astrammina triangularis genome sequencing and assembly", "url": "https://dataview.ncbi.nlm.nih.gov/object/PRJNA521279?reviewer=g418tpq02sif2g6do94dpmmjdv"}, {"dataset_uid": "601138", "doi": "10.15784/601138", "keywords": "Antarctica; Biota; Foraminifera; Heavy Metal Toxicity; Scanning Electron Microscop; Scanning Electron Microscope (SEM) Images; Scanning Electron Microscopy; Transantarctic Mountains", "people": "Bowser, Samuel; Andreas, Amanda", "repository": "USAP-DC", "science_program": null, "title": "Scanning electron micrographs: Influence of heavy metal (Pb, Cd) exposure on shell morphogenesis in Astrammina rara, a giant agglutinated Antarctic foraminiferan protist", "url": "https://www.usap-dc.org/view/dataset/601138"}, {"dataset_uid": "200090", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Astrammina rara genome sequencing and assembly", "url": "https://dataview.ncbi.nlm.nih.gov/object/PRJNA521081?reviewer=25e190ih1svottjkrrpfa7huoe"}, {"dataset_uid": "200091", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Crithionina delacai mitochondrial genome sequence and assembly", "url": "https://dataview.ncbi.nlm.nih.gov/object/PRJNA592714?reviewer=ivse8455h3gfaiilg4nqle0vm1"}], "date_created": "Thu, 29 Nov 2018 00:00:00 GMT", "description": "Agglutinated foraminifera (forams for short) are early-evolving, single-celled organisms. These \"living fossils\" construct protective shells using sediment grains held together by adhesive substances that they secrete. During shell construction, agglutinated forams display amazing properties of selection - for example, some species build their shells of clear quartz grains, while other species use only grains of a specific size. Understanding how these single cells assemble complex structures may contribute to nanotechnology by enabling people to use forams as \"cellular machines\" to aid in the construction of nano-devices. This project will analyze the genomes of at least six key foram species, and then \"mine\" these genomes for technologically useful products and processes. The project will focus initially on the adhesive materials forams secrete, which may have wide application in biomedicine and biotechnology. Furthermore, the work will further develop a molecular toolkit which could open up new avenues of research on the physiology, ecology, and population dynamics of this important group of Antarctic organisms. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. Educational experiences related to the \"thrill of scientific exploration and discovery\" for students and the general public will be provided through freely-available short films and a traveling art/science exhibition. The project will also provide hands-on research opportunities for undergraduate students. Explorers Cove, situated on the western shore of McMurdo Sound, harbors a unique population of foraminiferan taxa at depths accessible by scuba diving that otherwise are primarily found in the deep sea. The project will use next-generation DNA sequencing and microdissection methods to obtain and analyze nuclear and mitochondrial genomes from crown members of two species each from three distinct, early-evolving foraminiferal groups. It will also use next generation sequencing methods to characterize the in-situ prokaryotic assemblages (microbiomes) of one of these groups and compare them to reference sediment microbiomes. The phyogenomic studies of the targeted Antarctic genera will help fill significant gaps in our current understanding of early foram evolution. Furthermore, comparative genomic analyses of these six species are expected to yield a better understanding of the physiology of single-chambered agglutinated forams, especially the bioadhesive proteins and regulatory factors involved in shell composition and morphogenesis. Additionally, the molecular basis of cold adaptation in forams will be examined, particularly with respect to key proteins.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; NOT APPLICABLE", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Bowser, Samuel", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "NCBI GenBank; USAP-DC", "science_programs": null, "south": null, "title": "Assembling and Mining the Genomes of Giant Antarctic Foraminifera", "uid": "p0000004", "west": null}, {"awards": "1543313 VanTongeren, Jill", "bounds_geometry": null, "dataset_titles": "U-Pb ages and mineral compositions from Dufek Intrusion", "datasets": [{"dataset_uid": "601132", "doi": "10.15784/601132", "keywords": "Antarctica; Chemical Composition; Chemistry:rock; Chemistry:Rock; Crystallization; Dufek Complex; Geochemistry; Magma Chamber Procesess; Mass Spectrometry; Rocks; Snow/ice; Snow/Ice; Solid Earth; TIMS; Volcanic Deposits", "people": "VanTongeren, Jill", "repository": "USAP-DC", "science_program": null, "title": "U-Pb ages and mineral compositions from Dufek Intrusion", "url": "https://www.usap-dc.org/view/dataset/601132"}], "date_created": "Mon, 29 Oct 2018 00:00:00 GMT", "description": "The solidified remnants of large magma bodies within the continental crust hold the key to understanding the chemical and physical evolution of volcanic provinces through time. These deposits also commonly contain some of the world\u0027s most important ore deposits. Exposed deposits in South Africa, Greenland, USA, Canada, and Antarctica have led researchers to propose that the bigger the magma body, the faster it will crystallize. While this might seem counter-intuitive (typically it is thought that more magma = hotter = harder to cool), the comparison of these exposures show that bigger magma chambers maintain a molten top that is always in contact with the colder crust; whereas smaller magma chambers insulate themselves by crystallizing at the margins. The process is similar to the difference between a large cup of coffee with no lid, and a smaller cup of coffee held in a thermos. The large unprotected cup of coffee will cool down much faster than that held in the thermos. This research project of VanTongeren and Schoene will use previously collected rocks from the large (~8-9 km thick) Dufek Intrusion in Antarctica to precisely quantify how fast the magma chamber crystallized, and compare that rate to the much smaller magma chamber exposed in the Skaergaard Intrusion of E. Greenland. The work is an important step towards improving our understanding of time-scales associated with the thermal and chemical evolution of nearly all magma chambers on Earth, which will ultimately lead to better predictions of volcanic hazards globally. The work will also yield important insights into the timescales and conditions necessary for developing vast magmatic ore deposits, which is essential to the platinum and steel industries in the USA and abroad. Based on observations of solidification fronts in six of the world\u0027s most completely exposed layered mafic intrusions, it was recently proposed that bigger magma chambers must crystallize faster than small magma chambers. While this is initially counter-intuitive, the hypothesis falls out of simple heat balance equations and the observation that the thickness of cumulates at the roofs of such intrusions is negatively proportional to the size of the intrusion. In this study, VanTongeren and Schoene will directly test the hypothesis that bigger magma chambers crystallize faster by applying high precision U-Pb zircon geochronology on 5-10 samples throughout the large Dufek Intrusion of Antarctica. Due to uncertainties in even the highest-precision ID-TIMS analyses, the Dufek Intrusion of Antarctica is the only large layered mafic intrusion on Earth where this research can be accomplished. VanTongeren and Schoene will place the geochronological measurements of the Dufek Intrusion into a comprehensive petrologic framework by linking zircon crystallization to other liquidus phases using mineral geochemistry, zircon saturation models, and petrologic models for intrusion crystallization. The research has the potential to radically change the way that we understand the formation and differentiation of large magma bodies within the shallow crust. Layered intrusions are typically thought to cool and crystallize over very long timescales allowing for significant differentiation of the magmas and reorganization of the cumulate rocks. If the \u0027bigger magma chambers crystallize faster hypothesis\u0027 holds this could reduce the calculated solidification time scales of the early earth and lunar magma oceans and have important implications for magma chamber dynamics of active intraplate volcanism and long-lived continental arcs. Furthermore, while the Dufek Intrusion is one of only two large layered intrusions exposed on Earth, very little is known about its petrologic evolution. The detailed geochemical and petrologic work of VanTongeren and Schoene based on analyses of previously collected samples will provide important observations with which to compare the Dufek and other large magma chambers.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "VanTongeren, Jill", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Testing the Hypothesis that Bigger Magma Chambers Crystallize Faster", "uid": "p0000135", "west": null}, {"awards": "1443306 Mayewski, Paul; 1443263 Higgins, John", "bounds_geometry": null, "dataset_titles": "Allan Hills ice water stable isotope record for dD, d18O; Carbon dioxide concentration and its stable carbon isotope composition in Allan Hills ice cores; Elemental and isotopic composition of heavy noble gases in Allan Hills ice cores; Elemental and isotopic composition of nitrogen, oxygen, and argon in Allan Hills ice cores; Greenhouse gas composition in the Allan Hills S27 ice core; Methane concentration in Allan Hills ice cores; Stable isotope composition of the trapped air in the Allan Hills S27 ice core; Stable water isotope data for the AH-1502 ice core drilled at the Allan Hills Blue ice area; Stable water isotope data for the AH-1503 ice core drilled at the Allan Hills Blue ice area; Stable water isotope data for the surface samples collected at the Allan Hills Blue ice area", "datasets": [{"dataset_uid": "601203", "doi": "10.15784/601203", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Chemistry:ice; Chemistry:Ice; Gas Chromatography; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenhouse Gas; Ice; Ice Core Data; Ice Core Gas Records; Methane; Snow/ice; Snow/Ice", "people": "Higgins, John; Yan, Yuzhen; Bender, Michael; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Methane concentration in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601203"}, {"dataset_uid": "601425", "doi": "10.15784/601425", "keywords": "Allan Hills; Antarctica; Blue Ice; Carbon Dioxide; Ice Core; Methane", "people": "Yan, Yuzhen; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Greenhouse gas composition in the Allan Hills S27 ice core", "url": "https://www.usap-dc.org/view/dataset/601425"}, {"dataset_uid": "601201", "doi": "10.15784/601201", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Argon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Data; Ice Core Gas Records; Krypton; Mass Spectrometer; Noble Gas; Snow/ice; Snow/Ice; Xenon", "people": "Ng, Jessica; Severinghaus, Jeffrey P.; Yan, Yuzhen; Bender, Michael; Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Elemental and isotopic composition of heavy noble gases in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601201"}, {"dataset_uid": "601129", "doi": "10.15784/601129", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Blue Ice; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Isotope Data; Oxygen; Snow/ice; Snow/Ice; Stable Water Isotopes; Transantarctic Mountains", "people": "Kurbatov, Andrei V.; Yan, Yuzhen; Introne, Douglas; Mayewski, Paul A.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable water isotope data for the AH-1502 ice core drilled at the Allan Hills Blue ice area", "url": "https://www.usap-dc.org/view/dataset/601129"}, {"dataset_uid": "601863", "doi": null, "keywords": "Allan Hills; Antarctica; Cryosphere; Isotope Data", "people": "Mayewski, Paul A.; Introne, Douglas; Severinghaus, Jeffrey P.; Kurbatov, Andrei V.; Higgins, John; Brook, Edward", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills ice water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601863"}, {"dataset_uid": "601130", "doi": "10.15784/601130", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; Delta 18O; Delta Deuterium; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Gas Records; Ice Core Records; Oxygen; Snow/ice; Snow/Ice; Stable Water Isotopes; Transantarctic Mountains", "people": "Introne, Douglas; Mayewski, Paul A.; Kurbatov, Andrei V.; Yan, Yuzhen", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable water isotope data for the surface samples collected at the Allan Hills Blue ice area", "url": "https://www.usap-dc.org/view/dataset/601130"}, {"dataset_uid": "601863", "doi": null, "keywords": "Allan Hills; Antarctica; Cryosphere; Isotope Data", "people": "Higgins, John; Introne, Douglas; Brook, Edward; Mayewski, Paul A.; Severinghaus, Jeffrey P.; Kurbatov, Andrei V.", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Allan Hills ice water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601863"}, {"dataset_uid": "601128", "doi": "10.15784/601128", "keywords": "Allan Hills; Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope Record; Mass Spectrometry; Stable Water Isotopes", "people": "Introne, Douglas; Kurbatov, Andrei V.; Yan, Yuzhen; Mayewski, Paul A.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable water isotope data for the AH-1503 ice core drilled at the Allan Hills Blue ice area", "url": "https://www.usap-dc.org/view/dataset/601128"}, {"dataset_uid": "601483", "doi": "10.15784/601483", "keywords": "Allan Hills; Antarctica; Argon; Ice; Ice Core Data; Ice Core Gas Records; Isotope; Mass Spectrometry; Nitrogen; Oxygen", "people": "Yan, Yuzhen; Bender, Michael; Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Elemental and isotopic composition of nitrogen, oxygen, and argon in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601483"}, {"dataset_uid": "601202", "doi": "10.15784/601202", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Carbon Dioxide; Carbon Isotopes; Chemistry:ice; Chemistry:Ice; CO2; Gas Chromatography; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Gas Records; Ice Core Records; Mass Spectrometer; Mass Spectrometry; Methane; Snow/ice; Snow/Ice", "people": "Yan, Yuzhen; Bender, Michael; Brook, Edward J.; Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Carbon dioxide concentration and its stable carbon isotope composition in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601202"}, {"dataset_uid": "601512", "doi": "10.15784/601512", "keywords": "Allan Hills; Antarctica; Blue Ice; Ice Core; Ice Core Gas Records; Isotope; Nitrogen; Oxygen", "people": "Bender, Michael; Yan, Yuzhen; Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable isotope composition of the trapped air in the Allan Hills S27 ice core", "url": "https://www.usap-dc.org/view/dataset/601512"}], "date_created": "Thu, 18 Oct 2018 00:00:00 GMT", "description": "Bubbles of ancient air trapped in ice cores permit the direct reconstruction of atmospheric composition and allow us to link greenhouse gases and global climate over the last 800,000 years. Previous field expeditions to the Allan Hills blue ice area, Antarctica, have recovered ice cores that date to one million years, the oldest ice cores yet recovered from Antarctica. These records have revealed that interglacial CO2 concentrations decreased by 800,000 years ago and that, in the warmer world 1 million years ago, CO2 and Antarctic temperature were linked as during the last 800,000 years. This project will return to the Allan Hills blue ice area to recover additional ice cores that date to 1 million years or older. The climate records developed from the drilled ice cores will provide new insights into the chemical composition of the atmosphere and Antarctic climate during times of comparable or even greater warmth than the present day. Our results will help answer questions about issues associated with anthropogenic change. These include the relationship between temperature change and the mass balance of Antarctic ice; precipitation and aridity variations associated with radiatively forced climate change; and the climate significance of sea ice extent. The project will entrain two graduate students and a postdoctoral scholar, and will conduct outreach including workshops to engage teachers in carbon science and ice cores. Between about 2.8-0.9 million years ago, Earth\u0027s climate was characterized by 40,000-year cycles, driven or paced by changes in the tilt of Earth\u0027s spin axis. Much is known about the \"40,000-year\" world from studies of deep-sea sediments, but our understanding of climate change during this period is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of ancient ice from the Main Ice Field, Allan Hills, Antarctica. During previous field seasons we recovered ice extending, discontinuously, from 0.1-1.0 million years old. Ice was dated by measuring the 40Ar/38Ar (Argon) ratio of the trapped gases. Our discovery of million year-old ice demonstrates that there is gas-record-quality ice from the 40,000-year world in the Allan Hills Main Ice Field. We have identified two different sites, each overlying bedrock at ~ 200 m depth, that are attractive targets for coring ice dating to 1 million years and older. This project aims to core the ice at these two sites, re-occupy a previous site with million year-old ice and drill it down to the bedrock, and generate 10-20 short (~10-meter) cores in areas where our previous work and terrestrial meteorite ages suggest ancient surface ice. We plan to date the ice using the 40Ar/38Ar ages of trapped Argon. We also plan to characterize the continuity of our cores by measuring the deuterium and oxygen isotope ratios in the ice, methane, ratios of Oxygen and Argon to Nitrogen in trapped gas, the Nitrogen-15 isotope (d15N) of Nitrogen, and the Oxygen-18 isotope (d18O) of Oxygen. As the ice may be stratigraphically disturbed, these measurements will provide diagnostic properties for assessing the continuity of the ice-core records. Successful retrieval of ice older than one million years will provide the opportunity for follow-up work to measure the CO2 concentration and other properties within the ice to inform on the temperature history of the Allan Hills region, dust sources and source-area aridity, moisture sources, densification conditions, global average ocean temperature, and greenhouse gas concentrations. We will analyze the data in the context of leading hypotheses of the 40,000-year world and the Mid-Pleistocene Transition to the 100,000-year world. We expect to advance understanding of climate dynamics during these periods.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Amd/Us; AMD; Allan Hills; USA/NSF; FIELD INVESTIGATION; USAP-DC; Ice Core; LABORATORY", "locations": "Allan Hills", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Mayewski, Paul A.; Kurbatov, Andrei V.; Higgins, John; Bender, Michael", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": null, "title": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area", "uid": "p0000760", "west": null}, {"awards": "1443126 MacAyeal, Douglas", "bounds_geometry": "POLYGON((166.1631 -77.9007,166.19736 -77.9007,166.23162 -77.9007,166.26588 -77.9007,166.30014 -77.9007,166.3344 -77.9007,166.36866 -77.9007,166.40292 -77.9007,166.43718 -77.9007,166.47144 -77.9007,166.5057 -77.9007,166.5057 -77.90423,166.5057 -77.90776,166.5057 -77.91129,166.5057 -77.91482,166.5057 -77.91835,166.5057 -77.92188,166.5057 -77.92541,166.5057 -77.92894,166.5057 -77.93247,166.5057 -77.936,166.47144 -77.936,166.43718 -77.936,166.40292 -77.936,166.36866 -77.936,166.3344 -77.936,166.30014 -77.936,166.26588 -77.936,166.23162 -77.936,166.19736 -77.936,166.1631 -77.936,166.1631 -77.93247,166.1631 -77.92894,166.1631 -77.92541,166.1631 -77.92188,166.1631 -77.91835,166.1631 -77.91482,166.1631 -77.91129,166.1631 -77.90776,166.1631 -77.90423,166.1631 -77.9007))", "dataset_titles": "McMurdo Ice Shelf AWS data; McMurdo Ice Shelf GPS survey of vertical motion; Supraglacial Lake Depths on McMurdo Ice Shelf, Antarctica; Time-lapse video of McMurdo Ice Shelf surface melting and hydrology", "datasets": [{"dataset_uid": "601113", "doi": "10.15784/601113", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Photo/video; Photo/Video; Supraglacial Meltwater", "people": "Banwell, Alison; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Time-lapse video of McMurdo Ice Shelf surface melting and hydrology", "url": "https://www.usap-dc.org/view/dataset/601113"}, {"dataset_uid": "601107", "doi": "10.15784/601107", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ice Flow Velocity; Ice Shelf; Ice-Shelf Flexure; Snow/ice; Snow/Ice; Surface Melt", "people": "MacAyeal, Douglas; Banwell, Alison", "repository": "USAP-DC", "science_program": null, "title": "McMurdo Ice Shelf GPS survey of vertical motion", "url": "https://www.usap-dc.org/view/dataset/601107"}, {"dataset_uid": "601106", "doi": "10.15784/601106", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hydrology; Ice Shelf; Snow/ice; Snow/Ice; Surface Hydrology; Surface Mass Balance; Weather Station Data", "people": "Banwell, Alison; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "McMurdo Ice Shelf AWS data", "url": "https://www.usap-dc.org/view/dataset/601106"}, {"dataset_uid": "601116", "doi": "10.15784/601116", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Snow/ice; Snow/Ice; Subglacial And Supraglacial Water Depth; Supraglacial Lake; Supraglacial Meltwater; Water Depth", "people": "MacAyeal, Douglas; Banwell, Alison", "repository": "USAP-DC", "science_program": null, "title": "Supraglacial Lake Depths on McMurdo Ice Shelf, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601116"}], "date_created": "Tue, 24 Jul 2018 00:00:00 GMT", "description": "Meltwater lakes that sit on top of Antarctica\u0027s floating ice shelves have likely contributed to the dramatic changes seen in Antarctica\u0027s glacial ice cover over the past two decades. In 2002, the 1,600-square-kilometer Larsen B Ice Shelf located on the Eastern side of the Antarctic Peninsula, for example, broke into thousands of small icebergs, which subsequently floated away as a result of the formation of more than 2,000 meltwater lakes on its surface over the prior decade. Our research project addresses the reasons why surface lakes form on Antarctic ice shelves and how these surface lakes subsequently contribute to the forces that may contribute to ice-shelf breakup like that of the Larsen B. Our project focuses primarily on making precise global positioning system (GPS) measurements of ice-shelf bending in response to the filling and draining of a surface lake on the McMurdo Ice Shelf. The observed vertical displacements (on the order of tens of centimeters) in response to lake filling will be used to calibrate and test computer simulation models that predict the response of ice shelves to surface lakes more generally and in a variety of future climate conditions. Our project will make hourly measurements of both vertical ice-shelf movements (using GPS surveying instruments) and of temperature and sunlight conditions (that drive melting) around a surface lake located close to the McMurdo Station airfield. Following this initial data-gathering effort, computer simulations and other more theoretical analysis will be undertaken to determine the suitability of the chosen McMurdo Ice Shelf surface lake as a field-laboratory for continued study. Ultimately, the research will contribute to understanding of the glaciological processes that link climate change to rising sea level. A successful outcome of the research will allow glaciologists to better assess the processes that promote or erode the influence Antarctic ice shelves have in controlling the transfer of ice from the interior of Antarctica into the ocean. The project will undertake two outreach activities: (1) web-posting of a field-activity journal and (2) establishing an open-access glaciological teaching and outreach web-sharing site for the International Glaciological Society. The proposed project seeks to experimentally verify a theory of ice-shelf instability proposed to explain the explosive break-up of Larsen B Ice Shelf in 2002. This theory holds that the filling and draining of supraglacial lakes on floating ice shelves induces sufficient flexure stress within the ice to (a) induce upward/downward propagating fractures originating at the base/surface of the ice shelf that (b) dissect the ice shelf into fragments that tend to have widths less than about half the ice thickness. The significance of narrow widths is that they promote capsize of the ice-shelf fragments during the break-up process. This capsize releases large amounts of gravitational potential energy (comparable to thousands of kilotons of TNT for the Larsen B Ice Shelf) thereby promoting explosiveness of the Larsen B event. The observational motivation for experimentally verifying the surface-lake mechanism for ice-shelf breakup is based on the fact that \u003e2,000 surface lakes developed on the Larsen B Ice Shelf in the decade prior to its break up, and that these lakes were observed (via satellite imagery) to drain in a coordinated fashion during the day prior to the initiation of the break up. The field-observation component of the project will focus on a supraglacial lake on the McMurdo Ice Shelf where there is persistent summer season surface melting. The lake will be studied during a single provisional field season to determine whether grooming of surrounding surface streams and shorelines with heavy construction equipment will allow surface water to be manually encouraged to fill the lake. If successfully encouraged to develop, the McMurdo Ice Shelf surface lake will allow measurements of key ice-shelf flexure and stress variables needed to develop the theory of ice-shelf surface lakes without having to access the much more logistically demanding surface lakes of ice-shelves located elsewhere in Antarctica. Data to be gathered during the 6-week provisional field season include: energy- and water-balance parameters determining how the surface lake grows and fills, and various global positioning system measurements of the vertical bending of the ice sheet in response to the changing meltwater load contained within the surface lake. These data will be used to (1) constrain a computer model of viscoelastic flexure and possible fracture of the ice shelf in response to the increasing load of meltwater in the lake, and (2) determine whether continued study of the incipient surface-meltwater lake features on the McMurdo Ice Shelf provides a promising avenue for constraining the more-general behavior of surface meltwater lakes on other ice shelves located in warmer parts of Antarctica. Computer models constrained by the observational data obtained from the field project will inform energy- and water-balance models of ice shelves in general, and allow more accurate forecasts of changing ice-shelf conditions surrounding the inland ice of Antarctica. The project will create the first-ever ground-based observations useful for spawning the development of models capable of predicting viscoelastic and fracture behavior of ice shelves in response to supraglacial lake evolution, including slow changes due to energy balance effects, as well as fast changes due to filling and draining.", "east": 166.5057, "geometry": "POINT(166.3344 -77.91835)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS", "is_usap_dc": true, "keywords": "USAP-DC; AWOS", "locations": null, "north": -77.9007, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "MacAyeal, Douglas", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e AWOS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.936, "title": "Impact of Supraglacial Lakes on Ice-Shelf Stability", "uid": "p0000138", "west": 166.1631}, {"awards": "1443471 Koutnik, Michelle; 1443341 Hawley, Robert", "bounds_geometry": "POLYGON((110 -89,117 -89,124 -89,131 -89,138 -89,145 -89,152 -89,159 -89,166 -89,173 -89,180 -89,180 -89.1,180 -89.2,180 -89.3,180 -89.4,180 -89.5,180 -89.6,180 -89.7,180 -89.8,180 -89.9,180 -90,173 -90,166 -90,159 -90,152 -90,145 -90,138 -90,131 -90,124 -90,117 -90,110 -90,110 -89.9,110 -89.8,110 -89.7,110 -89.6,110 -89.5,110 -89.4,110 -89.3,110 -89.2,110 -89.1,110 -89))", "dataset_titles": "7MHz radar in the vicinity of South Pole; Firn density and compaction rates 50km upstream of South Pole; Firn temperatures 50km upstream of South Pole; Shallow radar near South Pole; South Pole area GPS velocities; SPICEcore Advection", "datasets": [{"dataset_uid": "601266", "doi": "10.15784/601266", "keywords": "Antarctica; Ice Core Data; South Pole; SPICEcore", "people": "Fudge, T. J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SPICEcore Advection", "url": "https://www.usap-dc.org/view/dataset/601266"}, {"dataset_uid": "601100", "doi": "10.15784/601100", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ice Velocity", "people": "Waddington, Edwin D.; Lilien, David; Fudge, T. J.; Koutnik, Michelle; Conway, Howard", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole area GPS velocities", "url": "https://www.usap-dc.org/view/dataset/601100"}, {"dataset_uid": "601369", "doi": "10.15784/601369", "keywords": "Antarctica; Ice Sheet", "people": "Lilien, David; Stevens, Max; Koutnik, Michelle; Conway, Howard; Waddington, Edwin D.; Fudge, T. J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "7MHz radar in the vicinity of South Pole", "url": "https://www.usap-dc.org/view/dataset/601369"}, {"dataset_uid": "601525", "doi": "10.15784/601525", "keywords": "Antarctica; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Snow/ice; Snow/Ice; South Pole; SPICEcore; Temperature", "people": "Waddington, Edwin D.; Stevens, Christopher Max; Lilien, David; Conway, Howard; Fudge, T. J.; Koutnik, Michelle", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Firn temperatures 50km upstream of South Pole", "url": "https://www.usap-dc.org/view/dataset/601525"}, {"dataset_uid": "601099", "doi": "10.15784/601099", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Radar; Snow Accumulation; Snow/ice; Snow/Ice", "people": "Conway, Howard; Koutnik, Michelle; Waddington, Edwin D.; Lilien, David; Fudge, T. J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Shallow radar near South Pole", "url": "https://www.usap-dc.org/view/dataset/601099"}, {"dataset_uid": "601680", "doi": "10.15784/601680", "keywords": "Antarctica; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Snow/ice; Snow/Ice; South Pole; Temperature", "people": "Stevens, Christopher Max; Conway, Howard; Waddington, Edwin D.; Fudge, T. J.; Lilien, David; Koutnik, Michelle", "repository": "USAP-DC", "science_program": null, "title": "Firn density and compaction rates 50km upstream of South Pole", "url": "https://www.usap-dc.org/view/dataset/601680"}], "date_created": "Thu, 14 Jun 2018 00:00:00 GMT", "description": "Ice-core records are critical to understanding past climate variations. An Antarctic ice core currently being drilled at the South Pole will allow detailed investigation of atmospheric gases and fill an important gap in understanding the pattern of climate variability across Antarctica. Critical to the interpretation of any ice core are: 1) accurate chronologies for both the ice and the trapped gas and 2) demonstration that records from the ice core reliably reflect climate. The proposed research will improve the ice and gas chronologies by making measurements of snow compaction in the upstream catchment in order to constrain age models of the ice. These measurements will be a key data set needed for better understanding and predicting time-varying conditions in the upper part of the ice sheet. The research team will measure the modern spatial gradients in accumulation rate, surface temperature, and water stable isotopes from shallow ice cores in the upstream catchment in order to determine the climate history from the ice-core record. The new ice-flow measurements will make it possible to define the path of ice from upstream to the South Pole ice-core drill site to assess spatial gradients in snowfall and to infer histories of snowfall from internal layers within the ice sheet. The project will be led by an early-career scientist, provide broad training to graduate students, and engage in public outreach on polar science. Ice-core records of stable isotopes, aerosol-born particles, and atmospheric gases are critical to understanding past climate variations. The proposed research will improve the ice and gas chronologies in the South Pole ice core by making in situ measurements of firn compaction in the upstream catchment to constrain models of the gas-age ice-age difference. The firn measurements will be a key data set needed to form a constitutive relationship for firn, and will drive better understanding and prediction of transient firn evolution. The research team will measure the modern gradients in accumulation rate, surface temperature, and water stable isotopes in the upstream catchment to separate spatial (advection) variations from temporal (climate) variations in the ice-core records. The ice-flow measurements will define the flowline upstream of the drill site, assess spatial gradients in accumulation, and infer histories of accumulation from radar-observed internal layers. Results will directly enhance interpretation of South Pole ice-core records, and also advance understanding of firn densification and drive next-generation firn models.", "east": 180.0, "geometry": "POINT(145 -89.5)", "instruments": null, "is_usap_dc": true, "keywords": "FIRN; Firn; USAP-DC; South Pole; Radar; FIELD SURVEYS; ICE CORE RECORDS", "locations": "South Pole", "north": -89.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Koutnik, Michelle; Conway, Howard; Waddington, Edwin D.; Fudge, T. J.; Hawley, Robert L.; Osterberg, Erich", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: Characterization of Upstream Ice and Firn Dynamics affecting the South Pole Ice Core", "uid": "p0000200", "west": 110.0}, {"awards": "2023425 Schofield, Oscar; 1440435 Ducklow, Hugh", "bounds_geometry": "POLYGON((-80 -63,-78.3 -63,-76.6 -63,-74.9 -63,-73.2 -63,-71.5 -63,-69.8 -63,-68.1 -63,-66.4 -63,-64.7 -63,-63 -63,-63 -63.8,-63 -64.6,-63 -65.4,-63 -66.2,-63 -67,-63 -67.8,-63 -68.6,-63 -69.4,-63 -70.2,-63 -71,-64.7 -71,-66.4 -71,-68.1 -71,-69.8 -71,-71.5 -71,-73.2 -71,-74.9 -71,-76.6 -71,-78.3 -71,-80 -71,-80 -70.2,-80 -69.4,-80 -68.6,-80 -67.8,-80 -67,-80 -66.2,-80 -65.4,-80 -64.6,-80 -63.8,-80 -63))", "dataset_titles": "Environmental Data Initiative Repository, Supporting LTER; Expedition Data; Expedition data of LMG1501; Expedition data of LMG1601; Expedition data of LMG1701; Expedition data of LMG1801; Expedition data of LMG1901; Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae); UAV images and video of whales in the Antarctic Penisula during LMG1802", "datasets": [{"dataset_uid": "001367", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1701"}, {"dataset_uid": "000246", "doi": "", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "Environmental Data Initiative Repository, Supporting LTER", "url": "https://portal.edirepository.org/nis/browseServlet?searchValue=PAL"}, {"dataset_uid": "200124", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1801", "url": "https://www.rvdata.us/search/cruise/LMG1801"}, {"dataset_uid": "200125", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1901", "url": "https://www.rvdata.us/search/cruise/LMG1901"}, {"dataset_uid": "200122", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1501", "url": "https://www.rvdata.us/search/cruise/LMG1501"}, {"dataset_uid": "200123", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1601", "url": "https://www.rvdata.us/search/cruise/LMG1601"}, {"dataset_uid": "601811", "doi": null, "keywords": "Antarctica; Bellingshausen Sea; Cryosphere; Southern Ocean", "people": "Hilton, Eric; Corso, Andrew; Desvignes, Thomas; McDowell, Jan; Cheng, Chi-Hing; Biesack, Ellen; Steinberg, Deborah", "repository": "USAP-DC", "science_program": "LTER", "title": "Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae)", "url": "https://www.usap-dc.org/view/dataset/601811"}, {"dataset_uid": "002729", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1701", "url": "https://www.rvdata.us/search/cruise/LMG1701"}, {"dataset_uid": "601318", "doi": "10.15784/601318", "keywords": "Aerial Imagery; Antarctica; Antarctic Peninsula; Biota; Camera; Humpback Whales; LMG1802; LTER; Minke Whales; Oceans; Palmer Station; Photo; Photo/video; Photo/Video; R/v Laurence M. Gould; Species Size; UAV; Video Data; Whales", "people": "Dale, Julian; Boyer, Keyvi; Friedlaender, Ari; Nowacek, Douglas; Bierlich, KC", "repository": "USAP-DC", "science_program": "LTER", "title": "UAV images and video of whales in the Antarctic Penisula during LMG1802", "url": "https://www.usap-dc.org/view/dataset/601318"}], "date_created": "Fri, 11 May 2018 00:00:00 GMT", "description": "The Palmer Antarctica LTER (Long Term Ecological Research) site has been in operation since 1990. The goal of all the LTER sites is to conduct policy-relevant research on ecological questions that require tens of years of data, and cover large geographical areas. For the Palmer Antarctica LTER, the questions are centered around how the marine ecosystem west of the Antarctica peninsula is responding to a climate that is changing as rapidly as any place on the Earth. For example, satellite observations over the past 35 years indicate the average duration of sea ice cover is now ~90 days (3 months!) shorter than it was. The extended period of open water has implications for many aspects of ecosystem research, with the concurrent decrease of Ad\u00e8lie penguins within this region regularly cited as an exemplar of climate change impacts in Antarctica. Cutting edge technologies such as autonomous underwater (and possibly airborne) vehicles, seafloor moorings, and numerical modeling, coupled with annual oceanographic cruises, and weekly environmental sampling, enables the Palmer Antarctica LTER to expand and bridge the time and space scales needed to assess climatic impacts. This award includes for the first time study of the roles of whales as major predators in the seasonal sea ice zone ecosystem. The team will also focus on submarine canyons, special regions of enhanced biological activity, along the Western Antarctic Peninsula (WAP). The current award\u0027s overarching research question is: How do seasonality, interannual variability, and long term trends in sea ice extent and duration influence the structure and dynamics of marine ecosystems and biogeochemical cycling? Specific foci within the broad question include: 1. Long-term change and ecosystem transitions. What is the sensitivity or resilience of the ecosystem to external perturbations as a function of the ecosystem state? 2. Lateral connectivity and vertical stratification. What are the effects of lateral transports of freshwater, heat and nutrients on local ocean stratification and productivity and how do they drive changes in the ecosystem? 3. Top-down controls and shifting baselines. How is the ecosystem responding to the cessation of whaling and subsequent long-term recovery of whale stocks? 4. Foodweb structure and biogeochemical processes. How do temporal and spatial variations in foodweb structure influence carbon and nutrient cycling, export, and storage? The broader impacts of the award leverage local educational partnerships including the Sandwich, MA STEM Academy, the New England Aquarium, and the NSF funded Polar Learning and Responding (PoLAR) Climate Change Education Partnership at Columbia\u0027s Earth Institute to build new synergies between Arctic and Antarctic, marine and terrestrial scientists and students, governments and NGOs. The Palmer Antarctic LTER will also conduct appropriate cross LTER site comparisons, and serve as a leader in information management to enable knowledge-building within and beyond the Antarctic, oceanographic, and LTER communities.", "east": -63.0, "geometry": "POINT(-71.5 -67)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "PELAGIC; USAP-DC; R/V LMG; NOT APPLICABLE; Palmer Station; LMG1701", "locations": "Palmer Station", "north": -63.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ducklow, Hugh; Martinson, Doug; Schofield, Oscar", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "EDI; R2R; USAP-DC", "science_programs": "LTER", "south": -71.0, "title": "LTER Palmer, Antarctica (PAL): Land-Shelf-Ocean Connectivity, Ecosystem Resilience and Transformation in a Sea-Ice Influenced Pelagic Ecosystem", "uid": "p0000133", "west": -80.0}, {"awards": "1341729 Kirschvink, Joseph", "bounds_geometry": "POLYGON((-58.9 -63.5,-58.63 -63.5,-58.36 -63.5,-58.09 -63.5,-57.82 -63.5,-57.55 -63.5,-57.28 -63.5,-57.01 -63.5,-56.74 -63.5,-56.47 -63.5,-56.2 -63.5,-56.2 -63.62,-56.2 -63.74,-56.2 -63.86,-56.2 -63.98,-56.2 -64.1,-56.2 -64.22,-56.2 -64.34,-56.2 -64.46,-56.2 -64.58,-56.2 -64.7,-56.47 -64.7,-56.74 -64.7,-57.01 -64.7,-57.28 -64.7,-57.55 -64.7,-57.82 -64.7,-58.09 -64.7,-58.36 -64.7,-58.63 -64.7,-58.9 -64.7,-58.9 -64.58,-58.9 -64.46,-58.9 -64.34,-58.9 -64.22,-58.9 -64.1,-58.9 -63.98,-58.9 -63.86,-58.9 -63.74,-58.9 -63.62,-58.9 -63.5))", "dataset_titles": "2016 Paleomagnetic samples from the James Ross Basin, Antarctica; Expedition data of NBP1601", "datasets": [{"dataset_uid": "002665", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1601", "url": "https://www.rvdata.us/search/cruise/NBP1601"}, {"dataset_uid": "601094", "doi": "10.15784/601094", "keywords": "Antarctica; Geochronology; Geology/Geophysics - Other; Glaciology; James Ross Basin; Marine Geoscience; Marine Sediments", "people": "Skinner, Steven; Kirschvink, Joseph", "repository": "USAP-DC", "science_program": null, "title": "2016 Paleomagnetic samples from the James Ross Basin, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601094"}], "date_created": "Fri, 27 Apr 2018 00:00:00 GMT", "description": "Non-Technical Summary: About 80 million years ago, the tip of the Antarctic Peninsula in the vicinity of what is now James Ross Island experienced an episode of rapid subsidence, creating a broad depositional basin that collected sediments eroding from the high mountains to the West. This depression accumulated a thick sequence of fossil-rich, organic-rich sediments of the sort that are known to preserve hydrocarbons, and for which Argentina, Chile, and the United Kingdom have overlapping territorial claims. The rocks preserve one of the highest resolution records of the biological and climatic events that led to the eventual death of the dinosaurs at the Cretaceous-Tertiary boundary (about 66 million years ago). A previous collaboration between scientists from the Instituto Ant\u00e1rtico Argentino (IAA) and NSF-supported teams from Caltech and the University of Washington were able to show that this mass extinction event started nearly 50,000 years before the sudden impact of an asteroid. The asteroid obviously hit the biosphere hard, but something else knocked it off balance well before the asteroid hit. A critical component of the previous work was the use of reversals in the polarity of the Earth?s magnetic field as a dating tool ? magnetostratigraphy. This allowed the teams to correlate the pattern of magnetic reversals from Antarctica with elsewhere on the planet. This includes data from a major volcanic eruption (a flood basalt province) that covered much of India 65 million years ago. The magnetic patterns indicate that the Antarctic extinction started with the first pulse of this massive eruption, which was also coincident with a rapid spike in polar temperature. The Argentinian and US collaborative teams will extend this magnetic polarity record back another ~ 20 million years in time, and expand it laterally to provide magnetic reversal time lines across the depositional basin. They hope to recover the end of the Cretaceous Long Normal interval, which is one of the most distinctive events in the history of Earth?s magnetic field. The new data should refine depositional models of the basin, allow better estimates of potential hydrocarbon reserves, and allow biotic events in the Southern hemisphere to be compared more precisely with those elsewhere on Earth. Other potential benefits of this work include exposing several US students and postdoctoral fellows to field based research in Antarctica, expanding the international aspects of this collaborative work via joint IAA/US field deployments, and follow-up laboratory investigations and personnel exchange of the Junior scientists. Technical Description of Project The proposed research will extend the stratigraphic record in the late Cretaceous and early Tertiary sediments (~ 83 to 65 Ma before present) of the James Ross Basin, Antarctica, using paleo-magnetic methods. Recent efforts provided new methods to analyze these rocks, yielding their primary magnetization, and producing both magnetic polarity patterns and paleomagnetic pole positions. This provided the first reliable age constraints for the younger sediments on Seymour Island, and quantified the sedimentation rate in this part of the basin. The new data will allow resolution of the stable, remnant magnetization of the sediments from the high deposition rate James Ross basin (Tobin et al., 2012), yielding precise chronology/stratigraphy. This approach will be extended to the re-maining portions of this sedimentary basin, and will allow quantitative estimates for tectonic and sedimentary processes between Cretaceous and Early Tertiary time. The proposed field work will refine the position of several geomagnetic reversals that occurred be-tween the end of the Cretaceous long normal period (Chron 34N, ~ 83 Ma), and the lower portion of Chron 31R (~ 71 Ma). Brandy Bay provides the best locality for calibrating the stratigraphic position of the top of the Cretaceous Long Normal Chron, C34N. Although the top of the Cretaceous long normal Chron is one of the most important correlation horizons in the entire geological timescale, it is not properly correlated to the southern hemisphere biostratigraphy. Locating this event, as well as the other reversals, will be a major addition to understanding of the geological history of the Antarctic Peninsula. These data will also help refine tectonic models for the evolution of the Southern continents, which will be of use across the board for workers in Cretaceous stratigraphy (including those involved in oil exploration). This research is a collaborative effort with Dr. Edward Olivero of the Centro Austral de Investigaciones Cientificas (CADIC/CONICET) and Prof. Augusto Rapalini of the University of Buenos Aires. The collaboration will include collection of samples on their future field excursions to important targets on and around James Ross Island, supported by the Argentinian Antarctic Program (IAA). Argentinian scientists and students will also be involved in the US Antarctic program deployments, proposed here for the R/V Laurence Gould, and will continue the pattern of joint international publication of the results.", "east": -56.2, "geometry": "POINT(-57.55 -64.1)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; R/V NBP; USAP-DC", "locations": null, "north": -63.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kirschvink, Joseph; Christensen, John", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -64.7, "title": "Paleomagnetism and Magnetostratigraphy of the James Ross Basin, Antarctica", "uid": "p0000276", "west": -58.9}, {"awards": "1142084 Nevitt, Gabrielle", "bounds_geometry": "POLYGON((40 -25,46 -25,52 -25,58 -25,64 -25,70 -25,76 -25,82 -25,88 -25,94 -25,100 -25,100 -28.5,100 -32,100 -35.5,100 -39,100 -42.5,100 -46,100 -49.5,100 -53,100 -56.5,100 -60,94 -60,88 -60,82 -60,76 -60,70 -60,64 -60,58 -60,52 -60,46 -60,40 -60,40 -56.5,40 -53,40 -49.5,40 -46,40 -42.5,40 -39,40 -35.5,40 -32,40 -28.5,40 -25))", "dataset_titles": "Satellite tracks of Black-browed Albatross in the Southern Indian Ocean", "datasets": [{"dataset_uid": "601093", "doi": "10.15784/601093", "keywords": "Albatross; Antarctica; Biota; Birds; Foraging; GPS Data; Southern Ocean; Stomach Temperature", "people": "Losekoot, Marcel; Nevitt, Gabrielle", "repository": "USAP-DC", "science_program": null, "title": "Satellite tracks of Black-browed Albatross in the Southern Indian Ocean", "url": "https://www.usap-dc.org/view/dataset/601093"}], "date_created": "Thu, 12 Apr 2018 00:00:00 GMT", "description": "With 70% of the Earth\u0027s surface being covered by oceans, a longstanding question of interest to the ecology of migratory seabirds is how they locate their prey across such vast distances. The project seeks to investigate the sensory strategies used in the foraging behavior of procellariiform seabirds, such as petrels, albatrosses and shearwaters. These birds routinely travel over thousands of kilometers of open ocean, apparently using their pronounced olfactory abilities (known to be up to a million times more sensitive than other birds) to identify productive marine areas or locate prey. High resolution tracking, such as provided by miniaturized GPS data loggers (+/- 5m; 10 second sampling), are needed to gain insight into some of the questions as to the sensory mechanisms birds use to locate their prey. Combining these tracking and positioning devices along with stomach temperature recorders capable of indicating prey ingestion, will provide a wealth of new behavioral information. Species specific foraging based on prey specific odors (e.g. krill vs fisheries vs. squid), and mixed strategies using olfaction and visual cues appear to be different for these different marine predators. Albatrosses are increasingly an endangered species globally, and additional information as to their foraging strategies might lead to better conservation measures such as the avoidance of by-catch by long-line fisheries. Intimate details of each species foraging activity patterns during the day and night and insight into the conservation of these top predators in pelagic Southern Ocean ecosystems are a few of the research directions these novel fine scale resolution approaches are yielding.", "east": 100.0, "geometry": "POINT(70 -42.5)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC", "locations": null, "north": -25.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Nevitt, Gabrielle", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -60.0, "title": "Applying High-resolution GPS Tracking to Characterize Sensory Foraging Strategies of the Black-browed Albatross, a Top Predator of the Southern Ocean Ecosystem", "uid": "p0000420", "west": 40.0}, {"awards": "1246292 Cary, Stephen", "bounds_geometry": "POLYGON((161.36062 -77.20215,161.610171 -77.20215,161.859722 -77.20215,162.109273 -77.20215,162.358824 -77.20215,162.608375 -77.20215,162.857926 -77.20215,163.107477 -77.20215,163.357028 -77.20215,163.606579 -77.20215,163.85613 -77.20215,163.85613 -77.291278,163.85613 -77.380406,163.85613 -77.469534,163.85613 -77.558662,163.85613 -77.64779,163.85613 -77.736918,163.85613 -77.826046,163.85613 -77.915174,163.85613 -78.004302,163.85613 -78.09343,163.606579 -78.09343,163.357028 -78.09343,163.107477 -78.09343,162.857926 -78.09343,162.608375 -78.09343,162.358824 -78.09343,162.109273 -78.09343,161.859722 -78.09343,161.610171 -78.09343,161.36062 -78.09343,161.36062 -78.004302,161.36062 -77.915174,161.36062 -77.826046,161.36062 -77.736918,161.36062 -77.64779,161.36062 -77.558662,161.36062 -77.469534,161.36062 -77.380406,161.36062 -77.291278,161.36062 -77.20215))", "dataset_titles": "Carbon-fixation rates and associated microbial communities; Carbon-fixation rates and associated microbial communities residing in arid and ephemerally wet Antarctic Dry Valley soils; Importance of Heterotrophic and Phototrophic N2 Fixation in the McMurdo Dry Valleys ; Microbial community composition of transiently wetted Antarctic Dry Valley soils.; Microbial population dynamics along a terrestrial Antarctic moisture gradient; Microbial population dynamics along a terrestrial wetted gradient", "datasets": [{"dataset_uid": "200015", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Microbial community composition of transiently wetted Antarctic Dry Valley soils.", "url": "https://www.ncbi.nlm.nih.gov/popset/?term=KP836071%20to%20KP836108"}, {"dataset_uid": "002738", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Carbon-fixation rates and associated microbial communities", "url": "https://www.ncbi.nlm.nih.gov/protein/?term=craig%20cary"}, {"dataset_uid": "200014", "doi": "", "keywords": null, "people": null, "repository": "EMBL", "science_program": null, "title": "Microbial population dynamics along a terrestrial wetted gradient", "url": "https://www.ebi.ac.uk/ena/data/view/PRJEB7939"}, {"dataset_uid": "002737", "doi": "", "keywords": null, "people": null, "repository": "KNB", "science_program": null, "title": "Carbon-fixation rates and associated microbial communities residing in arid and ephemerally wet Antarctic Dry Valley soils", "url": "https://knb.ecoinformatics.org/view/knb.756.1"}, {"dataset_uid": "002736", "doi": "", "keywords": null, "people": null, "repository": "EMBL", "science_program": null, "title": "Microbial population dynamics along a terrestrial Antarctic moisture gradient", "url": "https://www.ebi.ac.uk/ena/data/view/PRJEB27415"}, {"dataset_uid": "200013", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Importance of Heterotrophic and Phototrophic N2 Fixation in the McMurdo Dry Valleys ", "url": "https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA505820"}], "date_created": "Wed, 14 Mar 2018 00:00:00 GMT", "description": "The McMurdo Dry Valleys in Antarctica are recognized as being the driest, coldest and probably one of the harshest environments on Earth. In addition to the lack of water, the biota in the valleys face a very limited supply of nutrients such as nitrogen compounds - necessary for protein synthesis. The glacial streams of the Dry Valleys have extensive cyanobacterial (blue green algae) mats that are a major source of carbon and nitrogen compounds to biota in this region. While cyanobacteria in streams are important as a source of these compounds, other non-photosynthetic bacteria also contribute a significant fraction (~50%) of fixed nitrogen compounds to valley biota. This research effort will involve an examination of exactly which non-phototrophic bacteria are involved in nitrogen fixation and what environmental factors are responsible for controlling nitrogen fixation by these microbes. This work will resolve the environmental factors that control the activity, abundance and diversity of nitrogen-fixing microbes across four of the McMurdo Dry Valleys. This will allow for comparisons among sites of differing latitude, temperature, elevation and exposure to water. These results will be integrated into a landscape wetness model that will help determine the impact of both cyanobacterial and non-photosynthetic nitrogen fixing microorganisms in this very harsh environment. The Dry Valleys in many ways resemble the Martian environment, and understanding the primitive life and very simple nutrient cycling in the Dry Valleys has relevance for understanding how life might have once existed on other planets. Furthermore, the study of microbes from extreme environments has resulted in numerous biotechnological applications such as the polymerase chain reaction for amplifying DNA and mechanisms for freeze resistance in agricultural crops. Thus, this research should yield insights into how biota survive in extreme environments, and these insights could lead to other commercial applications.", "east": 163.85613, "geometry": "POINT(162.608375 -77.64779)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; Antarctica; USAP-DC; RIVERS/STREAM", "locations": "Antarctica", "north": -77.20215, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Cary, Stephen", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "NCBI GenBank", "repositories": "EMBL; KNB; NCBI GenBank", "science_programs": null, "south": -78.09343, "title": "Collaborative Research: Importance of Heterotrophic and Phototrophic N2 Fixation in the McMurdo Dry Valleys on Local, Regional and Landscape Scales", "uid": "p0000235", "west": 161.36062}, {"awards": "0944021 Brook, Edward J.; 0944307 Conway, Howard; 0943466 Hawley, Robert", "bounds_geometry": "POLYGON((-163 -79,-162.8 -79,-162.6 -79,-162.4 -79,-162.2 -79,-162 -79,-161.8 -79,-161.6 -79,-161.4 -79,-161.2 -79,-161 -79,-161 -79.05,-161 -79.1,-161 -79.15,-161 -79.2,-161 -79.25,-161 -79.3,-161 -79.35,-161 -79.4,-161 -79.45,-161 -79.5,-161.2 -79.5,-161.4 -79.5,-161.6 -79.5,-161.8 -79.5,-162 -79.5,-162.2 -79.5,-162.4 -79.5,-162.6 -79.5,-162.8 -79.5,-163 -79.5,-163 -79.45,-163 -79.4,-163 -79.35,-163 -79.3,-163 -79.25,-163 -79.2,-163 -79.15,-163 -79.1,-163 -79.05,-163 -79))", "dataset_titles": "Roosevelt Island Borehole Firn temperatures; Roosevelt Island Borehole Optical Televiewer logs; Roosevelt Island Ice Core Time Scale and Associated Data; Roosevelt Island: Radar and GPS", "datasets": [{"dataset_uid": "601085", "doi": "10.15784/601085", "keywords": "Antarctica; Borehole; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Records; Ice Fabric; Optical Images; Roosevelt Island; Snow/ice; Snow/Ice; Temperature", "people": "Hawley, Robert L.; Clemens-Sewall, David; Giese, Alexandra", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Borehole Firn temperatures", "url": "https://www.usap-dc.org/view/dataset/601085"}, {"dataset_uid": "601359", "doi": "10.15784/601359", "keywords": "Antarctica; CO2; Ice Core; Roosevelt Island", "people": "Lee, James; Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Ice Core Time Scale and Associated Data", "url": "https://www.usap-dc.org/view/dataset/601359"}, {"dataset_uid": "601070", "doi": "10.15784/601070", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; GPS Data; Ice Velocity; Navigation; Radar; Roosevelt Island; Ross Sea", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island: Radar and GPS", "url": "https://www.usap-dc.org/view/dataset/601070"}, {"dataset_uid": "601086", "doi": "10.15784/601086", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Roosevelt Island; Snow/ice; Snow/Ice", "people": "Clemens-Sewall, David; Hawley, Robert L.", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Borehole Optical Televiewer logs", "url": "https://www.usap-dc.org/view/dataset/601086"}], "date_created": "Fri, 16 Feb 2018 00:00:00 GMT", "description": "This award supports a project to use the Roosevelt Island ice core as a glaciological dipstick for the eastern Ross Sea. Recent attention has focused on the eastern Ross Embayment, where there are no geological constraints on ice thickness changes, due to the lack of protruding rock \"dipsticks\" where the ice sheet can leave datable records of high stands. Recent work has shown how dated ice cores can be used as dipsticks to derive ice-thickness histories. Partners from New Zealand and Denmark will extract an ice core from Roosevelt Island during the 2010-2011 and 2011-12 austral summers. Their science objective is to contribute to understanding of climate variability over the past 40kyr. The science goal of this project is not the climate record, but rather the history of deglaciation in the Ross Sea. The new history from the eastern Ross Sea will be combined with the glacial histories from the central Ross Sea (Siple Dome and Byrd) and existing and emerging histories from geologic and marine records along the western Ross Sea margin and will allow investigators to establish an updated, self-consistent model of the configuration and thickness of ice in the Ross Embayment during the LGM, and the timing of deglaciation. Results from this work will provide ground truth for new-generation ice-sheet models that incorporate ice streams and fast-flow dynamics. Realistic ice-sheet models are needed not only for predicting the response to future possible environments, but also for investigating past behaviors of ice sheets. This research contributes to the primary goals of the West Antarctic Ice Sheet Initiative as well as the IPY focus on ice-sheet history and dynamics. It also contributes to understanding spatial and temporal patterns of climate change and climate dynamics over the past 40kyr, one of the primary goals of the International Partnerships in Ice Core Sciences (IPICS). The project will help to develop the next generation of scientists and will contribute to the education and training of two Ph.D. students. All participants will benefit from the international collaboration, which will expose them to different field and laboratory techniques and benefit future collaborative work. All participants are involved in scientific outreach and undergraduate education, and are committed to fostering diversity. Outreach will be accomplished through regularly scheduled community and K-12 outreach events, talks and popular writing by the PIs, as well as through University press offices.", "east": -161.0, "geometry": "POINT(-162 -79.25)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "AMD; FIELD INVESTIGATION; Amd/Us; Deglaciation; USAP-DC; USA/NSF; NOT APPLICABLE; Ice Core; Not provided; Ross Sea Embayment", "locations": "Ross Sea Embayment", "north": -79.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Conway, Howard; Brook, Edward J.; Hawley, Robert L.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.5, "title": "Collaborative Research: Deglaciation of the Ross Sea Embayment - constraints from Roosevelt Island", "uid": "p0000272", "west": -163.0}, {"awards": "0732711 Smith, Craig; 0732625 Leventer, Amy; 0732655 Mosley-Thompson, Ellen; 0732602 Truffer, Martin; 0732651 Gordon, Arnold; 0732983 Vernet, Maria", "bounds_geometry": "POLYGON((-68 -57.8,-66.78 -57.8,-65.56 -57.8,-64.34 -57.8,-63.12 -57.8,-61.9 -57.8,-60.68 -57.8,-59.46 -57.8,-58.24 -57.8,-57.02 -57.8,-55.8 -57.8,-55.8 -58.8,-55.8 -59.8,-55.8 -60.8,-55.8 -61.8,-55.8 -62.8,-55.8 -63.8,-55.8 -64.8,-55.8 -65.8,-55.8 -66.8,-55.8 -67.8,-57.02 -67.8,-58.24 -67.8,-59.46 -67.8,-60.68 -67.8,-61.9 -67.8,-63.12 -67.8,-64.34 -67.8,-65.56 -67.8,-66.78 -67.8,-68 -67.8,-68 -66.8,-68 -65.8,-68 -64.8,-68 -63.8,-68 -62.8,-68 -61.8,-68 -60.8,-68 -59.8,-68 -58.8,-68 -57.8))", "dataset_titles": "Abrupt Environmental Change in the Larsen Ice Shelf System (LARISSA) - Marine Ecosystems; Biology Species Abundance from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expeditions NBP1001 and NBP1203; Bruce Plateau Accumulation O18 2009-1900; Easten Antarctic Peninsula Surface Sediment Diatom Data; LMG13-11 JKC-1 Paleoceanographic data; Macrofauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001; Megafauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001; NBP1001 cruise data; NBP1203 cruise data; Processed CTD Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001; Processed CTD Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203; Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001; Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203; Radioisotope data (C-14 and Pb-210) from bulk sediments, Larsen A Ice Shelf; Sediment samples (full data link not provided)", "datasets": [{"dataset_uid": "601306", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Biota; Box Corer; LARISSA; Larsen Ice Shelf; Macrofauna; NBP1001; Oceans; R/v Nathaniel B. Palmer; Seafloor Sampling; Species Abundance", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Macrofauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601306"}, {"dataset_uid": "601348", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; CTD; CTD Data; LARISSA; Larsen Ice Shelf; NBP1203; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Temperature", "people": "Huber, Bruce; Gordon, Arnold", "repository": "USAP-DC", "science_program": null, "title": "Processed CTD Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203", "url": "https://www.usap-dc.org/view/dataset/601348"}, {"dataset_uid": "000226", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "Biology Species Abundance from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expeditions NBP1001 and NBP1203", "url": "https://doi.org/10.1594/ieda/320821"}, {"dataset_uid": "600073", "doi": "10.15784/600073", "keywords": "Antarctica; Antarctic Peninsula; Araon1304; Biota; LARISSA; Larsen B Ice Shelf; NBP1001; NBP1203; Oceans; Physical Oceanography; Southern Ocean; Weddell Sea", "people": "Vernet, Maria", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Abrupt Environmental Change in the Larsen Ice Shelf System (LARISSA) - Marine Ecosystems", "url": "https://www.usap-dc.org/view/dataset/600073"}, {"dataset_uid": "600167", "doi": "10.15784/600167", "keywords": "Antarctica; Antarctic Peninsula; Bruce Plateau; Glaciology; Ice Core Records; Isotope; LARISSA; Paleoclimate; Sample/collection Description; Sample/Collection Description; Snow Accumulation", "people": "Thompson, Lonnie G.; Mosley-Thompson, Ellen", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Bruce Plateau Accumulation O18 2009-1900", "url": "https://www.usap-dc.org/view/dataset/600167"}, {"dataset_uid": "601346", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Current Measurements; LADCP; Larsen Ice Shelf; NBP1001; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer", "people": "Huber, Bruce; Gordon, Arnold", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601346"}, {"dataset_uid": "601336", "doi": "10.15784/601336", "keywords": "Antarctica; Carbon-14; Larsen Ice Shelf; Lead-210; Marine Sediments; Radioisotope Analysis", "people": "Taylor, Richard; DeMaster, David", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Radioisotope data (C-14 and Pb-210) from bulk sediments, Larsen A Ice Shelf", "url": "https://www.usap-dc.org/view/dataset/601336"}, {"dataset_uid": "601211", "doi": "10.15784/601211", "keywords": "Antarctica; Antarctic Peninsula; Benthos; Biota; Diatom; Geology/Geophysics - Other; LMG0502; Marine Geoscience; Marine Sediments; Microscope; NBP0003; NBP0107; NBP0603; NBP1203; R/v Nathaniel B. Palmer; Surface Sediment", "people": "Leventer, Amy", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Easten Antarctic Peninsula Surface Sediment Diatom Data", "url": "https://www.usap-dc.org/view/dataset/601211"}, {"dataset_uid": "000145", "doi": "", "keywords": null, "people": null, "repository": "AMGRF", "science_program": null, "title": "Sediment samples (full data link not provided)", "url": "http://arf.fsu.edu/"}, {"dataset_uid": "000142", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1001 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP1001"}, {"dataset_uid": "601485", "doi": "10.15784/601485", "keywords": "Antarctica; Antarctic Peninsula; Delta 13C; Delta 18O; Paleoceanography; Temperature", "people": "Shevenell, Amelia", "repository": "USAP-DC", "science_program": "LARISSA", "title": "LMG13-11 JKC-1 Paleoceanographic data", "url": "https://www.usap-dc.org/view/dataset/601485"}, {"dataset_uid": "000143", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1203 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP1203"}, {"dataset_uid": "601347", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Current Measurements; LADCP; LARISSA; Larsen Ice Shelf; NBP1203; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer", "people": "Gordon, Arnold; Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203", "url": "https://www.usap-dc.org/view/dataset/601347"}, {"dataset_uid": "601305", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Biota; Box Corer; LARISSA; Larsen Ice Shelf; Macrofauna; Megafauna; NBP1001; Oceans; R/v Nathaniel B. Palmer; Seafloor Sampling; Species Abundance", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Megafauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601305"}, {"dataset_uid": "601345", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; CTD; CTD Data; LARISSA; Larsen Ice Shelf; NBP1001; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Temperature", "people": "Huber, Bruce; Gordon, Arnold", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Processed CTD Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601345"}], "date_created": "Thu, 01 Feb 2018 00:00:00 GMT", "description": "Like no other region on Earth, the northern Antarctic Peninsula represents a spectacular natural laboratory of climate change and provides the opportunity to study the record of past climate and ecological shifts alongside the present-day changes in one of the most rapidly warming regions on Earth. This award supports the cryospheric and oceano-graphic components of an integrated multi-disciplinary program to address these rapid and fundamental changes now taking place in Antarctic Peninsula (AP). By making use of a marine research platform (the RV NB Palmer and on-board helicopters) and additional logistical support from the Argentine Antarctic program, the project will bring glaciologists, oceanographers, marine geologists and biologists together, working collaboratively to address fundamentally interdisciplinary questions regarding climate change. The project will include gathering a new, high-resolution paleoclimate record from the Bruce Plateau of Graham Land, and using it to compare Holocene- and possibly glacial-epoch climate to the modern period; investigating the stability of the remaining Larsen Ice Shelf and rapid post-breakup glacier response ? in particular, the roles of surface melt and ice-ocean interactions in the speed-up and retreat; observing the contribution of, and response of, oceanographic systems to ice shelf disintegration and ice-glacier interactions. Helicopter support on board will allow access to a wide range of glacial and geological areas of interest adjacent to the Larsen embayment. At these locations, long-term in situ glacial monitoring, isostatic uplift, and ice flow GPS sites will be established, and high-resolution ice core records will be obtained using previously tested lightweight drilling equipment. Long-term monitoring of deep water outflow will, for the first time, be integrated into changes in ice shelf extent and thickness, bottom water formation, and multi-level circulation by linking near-source observations to distal sites of concentrated outflow. The broader impacts of this international, multidisciplinary effort are that it will significantly advance our understanding of linkages amongst the earth\u0027s systems in the Polar Regions, and are proposed with international participation (UK, Spain, Belgium, Germany and Argentina) and interdisciplinary engagement in the true spirit of the International Polar Year (IPY). It will also provide a means of engaging and educating the public in virtually all aspects of polar science and the effects of ongoing climate change. The research team has a long record of involving undergraduates in research, educating high-performing graduate students, and providing innovative and engaging outreach products to the K-12 education and public media forums. Moreover, forging the new links both in science and international Antarctic programs will provide a continuing legacy, beyond IPY, of improved understanding and cooperation in Antarctica.", "east": -55.8, "geometry": "POINT(-61.9 -62.8)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e BOX CORE; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ICE AUGERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SNOW DENSITY CUTTER", "is_usap_dc": true, "keywords": "Paleoclimate; Megafauna; USAP-DC; AMD; Amd/Us; Antarctica; Climate Change; LABORATORY; Climate Variability; Multi-Disciplinary; Cryosphere; NBP1001; FIELD SURVEYS; Not provided; Antarctic Peninsula; R/V NBP; FIELD INVESTIGATION; USA/NSF; Ice Core; Holocene", "locations": "Antarctica; Antarctic Peninsula", "north": -57.8, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Truffer, Martin; Gordon, Arnold; Huber, Bruce; Mosley-Thompson, Ellen; Leventer, Amy; Vernet, Maria; Smith, Craig; Thompson, Lonnie G.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "AMGRF; MGDS; R2R; USAP-DC", "science_programs": "LARISSA", "south": -67.8, "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans", "uid": "p0000101", "west": -68.0}, {"awards": "1115245 McKnight, Diane", "bounds_geometry": "POLYGON((160.5 -77.35,160.83 -77.35,161.16 -77.35,161.49 -77.35,161.82 -77.35,162.15 -77.35,162.48 -77.35,162.81 -77.35,163.14 -77.35,163.47 -77.35,163.8 -77.35,163.8 -77.4,163.8 -77.45,163.8 -77.5,163.8 -77.55,163.8 -77.6,163.8 -77.65,163.8 -77.7,163.8 -77.75,163.8 -77.8,163.8 -77.85,163.47 -77.85,163.14 -77.85,162.81 -77.85,162.48 -77.85,162.15 -77.85,161.82 -77.85,161.49 -77.85,161.16 -77.85,160.83 -77.85,160.5 -77.85,160.5 -77.8,160.5 -77.75,160.5 -77.7,160.5 -77.65,160.5 -77.6,160.5 -77.55,160.5 -77.5,160.5 -77.45,160.5 -77.4,160.5 -77.35))", "dataset_titles": "McMurdo Dry Valleys LTER data at EDI Data Portal", "datasets": [{"dataset_uid": "000204", "doi": "", "keywords": null, "people": null, "repository": "LTER", "science_program": null, "title": "McMurdo Dry Valleys LTER data at EDI Data Portal", "url": "https://portal.edirepository.org/nis/browseServlet?searchValue=MCM "}], "date_created": "Mon, 08 Jan 2018 00:00:00 GMT", "description": "The McMurdo Dry Valleys (MDV) is a polar desert on the coast of East Antarctica, a region that has not yet experienced climate warming. The McMurdo Dry Valleys Long Term Ecological Research (MCMLTER) project has documented the ecological responses of the glacier, soil, stream and lake ecosystems in the MDV during a cooling trend (from 1986 to 2000) which was associated with the depletion of atmospheric ozone. In the past decade, warming events with strong katabatic winds occurred during two summers and the resulting high streamflows and sediment deposition changed the dry valley landscape, possibly presaging conditions that will occur when the ozone hole recovers. In anticipation of future warming in Antarctica, the overarching hypothesis of the proposed project is: Climate warming in the McMurdo Dry Valley ecosystem will amplify connectivity among landscape units leading to enhanced coupling of nutrient cycles across landscapes, and increased biodiversity and productivity within the ecosystem. Warming in the MDV is hypothesized to act as a slowly developing, long-term press of warmer summers, upon which transient pulse events of high summer flows and strong katabatic winds will be overprinted. Four specific hypotheses address the ways in which pulses of water and wind will influence contemporary and future ecosystem structure, function and connectivity. Because windborne transport of biota is a key aspect of enhanced connectivity from katabatic winds, new monitoring will include high-resolution measurements of aeolian particle flux. Importantly, integrative genomics will be employed to understand the responses of specific organisms to the increased connectivity. The project will also include a novel social science component that will use environmental history to examine interactions between human activity, scientific research, and environmental change in the MDV over the past 100 years. To disseminate this research broadly, MCM scientists will participate in a wide array of outreach efforts ranging from presentations in K-12 classrooms to bringing undergraduates and teachers to the MDV to gain research experience. Planned outreach programs will build upon activities conducted during the International Polar Year (2007-2008), which include development of an interactive DVD for high school students and teachers and publication of a children\u0027s book in the LTER Schoolyard Book Series. A teacher\u0027s edition of the book with a CD containing lesson plans will be distributed. The project will develop programs for groups traditionally underrepresented in science arenas by publishing some outreach materials in Spanish.", "east": 163.8, "geometry": "POINT(162.15 -77.6)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.35, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science", "paleo_time": null, "persons": "McKnight, Diane; Gooseff, Michael N.", "platforms": "Not provided", "repo": "LTER", "repositories": "LTER", "science_programs": "LTER", "south": -77.85, "title": "Increased Connectivity in a Polar Desert Resulting from Climate Warming: McMurdo Dry Valley LTER Program", "uid": "p0000301", "west": 160.5}, {"awards": "1443474 Jenkins, Bethany", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP1608", "datasets": [{"dataset_uid": "002664", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1608", "url": "https://www.rvdata.us/search/cruise/NBP1608"}], "date_created": "Fri, 29 Dec 2017 00:00:00 GMT", "description": "This project focuses on an important group of photosynthetic algae in the Southern Ocean (SO), diatoms, and the roles associated bacterial communities play in modulating their growth. Diatom growth fuels the SO food web and balances atmospheric carbon dioxide by sequestering the carbon used for growth to the deep ocean on long time scales as cells sink below the surface. The diatom growth is limited by the available iron in the seawater, most of which is not freely available to the diatoms but instead is tightly bound to other compounds. The nature of these compounds and how phytoplankton acquire iron from them is critical to understanding productivity in this region and globally. The investigators will conduct experiments to characterize the relationship between diatoms, their associated bacteria, and iron in open ocean and inshore waters. Experiments will involve supplying nutrients at varying nutrient ratios to natural phytoplankton assemblages to determine how diatoms and their associated bacteria respond to different conditions. This will provide valuable data that can be used by climate and food web modelers and it will help us better understand the relationship between iron, a key nutrient in the ocean, and the organisms at the base of the food web that use iron for photosynthetic growth and carbon uptake. The project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. The project supports early career senior investigators and the training of graduate and undergraduate students as well as outreach activities with middle school Girl Scouts in Rhode Island, inner city middle and high school age girls in Virginia, and middle school girls in Florida. The project combines trace metal biogeochemistry, phytoplankton cultivation, and molecular biology to address questions regarding the production of iron-binding compounds and the role of diatom-bacterial interactions in this iron-limited region. Iron is an essential micronutrient for marine phytoplankton. Phytoplankton growth in the SO is limited by a lack of sufficient iron, with important consequences for carbon cycling and climate in this high latitude regime. Some of the major outstanding questions in iron biogeochemistry relate to the organic compounds that bind \u003e99.9% of dissolved iron in surface oceans. The investigators\u0027 prior research in this region suggests that production of strong iron-binding compounds in the SO is linked to diatom blooms in waters with high nitrate to iron ratios. The sources of these compounds are unknown but the investigators hypothesize that they may be from bacteria, which are known to produce such compounds for their own use. The project will test three hypotheses concerning the production of these iron-binding compounds, limitations on the biological availability of iron even if present in high concentrations, and the roles of diatom-associated bacteria in these processes. Results from this project will provide fundamental information about the biogeochemical trigger, and biological sources and function, of natural strong iron-binding compound production in the SO, where iron plays a critical role in phytoplankton productivity, carbon cycling, and climate regulation.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V NBP; NBP1608", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Jenkins, Bethany", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Investigating Iron-inding Ligands in Southern Ocean Diatom Communities: The Role of Diatom-Bacteria Associations", "uid": "p0000852", "west": null}, {"awards": "1543380 Shadwick, Elizabeth", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG1704", "datasets": [{"dataset_uid": "002732", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1704", "url": "https://www.rvdata.us/search/cruise/LMG1704"}, {"dataset_uid": "001364", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1704"}], "date_created": "Fri, 29 Dec 2017 00:00:00 GMT", "description": "Interest in the reduced alkalinity of high latitude waters under conditions of enhanced CO2 uptake from the atmosphere have been the impetus of numerous recent studies of bio-stressors in the polar marine environment. The project seeks to improve our understanding of the variance of coastal Southern Ocean carbonate species (CO2 system), its diurnal and inter-annual variability, by acquiring autonomous, high frequency observations from an Antarctic coastal mooring(s). A moored observing system co-located within the existing Palmer LTER array will measure pH, CO2 partial pressure, temperature, salinity and dissolved oxygen with 3-hour frequency in this region of the West Antarctic Peninsula continental shelf. Such observations will help estimate the dominant physical and biological controls on the seasonal variations in the CO2 system in coastal Antarctic waters, including the sign, seasonality and the flux of the net annual air-sea exchange of carbon dioxide. The Palmer LTER site is experiencing rapid ecological change in the West Antarctic Peninsula, a region that is warming at rates faster than any other region of coastal Antarctica.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V LMG; LMG1704", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Shadwick, Elizabeth; Shadwick, Elizabeth", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Resolving CO2 System Seasonality in the West Antarctic Peninsula with Autonomous Observations", "uid": "p0000875", "west": null}, {"awards": "1425989 Sarmiento, Jorge", "bounds_geometry": "POLYGON((-180 -52.6153,-168.67689 -52.6153,-157.35378 -52.6153,-146.03067 -52.6153,-134.70756 -52.6153,-123.38445 -52.6153,-112.06134 -52.6153,-100.73823 -52.6153,-89.41512 -52.6153,-78.09201 -52.6153,-66.7689 -52.6153,-66.7689 -55.18958,-66.7689 -57.76386,-66.7689 -60.33814,-66.7689 -62.91242,-66.7689 -65.4867,-66.7689 -68.06098,-66.7689 -70.63526,-66.7689 -73.20954,-66.7689 -75.78382,-66.7689 -78.3581,-78.09201 -78.3581,-89.41512 -78.3581,-100.73823 -78.3581,-112.06134 -78.3581,-123.38445 -78.3581,-134.70756 -78.3581,-146.03067 -78.3581,-157.35378 -78.3581,-168.67689 -78.3581,180 -78.3581,178.62318 -78.3581,177.24636 -78.3581,175.86954 -78.3581,174.49272 -78.3581,173.1159 -78.3581,171.73908 -78.3581,170.36226 -78.3581,168.98544 -78.3581,167.60862 -78.3581,166.2318 -78.3581,166.2318 -75.78382,166.2318 -73.20954,166.2318 -70.63526,166.2318 -68.06098,166.2318 -65.4867,166.2318 -62.91242,166.2318 -60.33814,166.2318 -57.76386,166.2318 -55.18958,166.2318 -52.6153,167.60862 -52.6153,168.98544 -52.6153,170.36226 -52.6153,171.73908 -52.6153,173.1159 -52.6153,174.49272 -52.6153,175.86954 -52.6153,177.24636 -52.6153,178.62318 -52.6153,-180 -52.6153))", "dataset_titles": "Biogeochemical profiling float data from the Southern Ocean Carbon and Climate Observation and Modeling (SOCCOM) program.UCSD Research Data Collections DOI:10.6075/J09021PC; Expedition Data; Model output NOAA GFDL CM2_6 Cant Hant storage", "datasets": [{"dataset_uid": "601144", "doi": "10.15784/601144", "keywords": "Antarctica; Anthropogenic Heat; Atmosphere; Carbon Storage; Climate Change; Eddy; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Heat Budget; Modeling; Model Output; Oceans; Paleoclimate; Snow/ice; Snow/Ice; Southern Ocean", "people": "Chen, Haidi", "repository": "USAP-DC", "science_program": null, "title": "Model output NOAA GFDL CM2_6 Cant Hant storage", "url": "https://www.usap-dc.org/view/dataset/601144"}, {"dataset_uid": "000208", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Biogeochemical profiling float data from the Southern Ocean Carbon and Climate Observation and Modeling (SOCCOM) program.UCSD Research Data Collections DOI:10.6075/J09021PC", "url": "http://library.ucsd.edu/dc/object/bb66239018"}, {"dataset_uid": "001369", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1701"}], "date_created": "Fri, 29 Dec 2017 00:00:00 GMT", "description": "Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project seeks to drive a transformative shift in our understanding of the crucial role of the Southern Ocean in taking up anthropogenic carbon and heat, and resupplying nutrients from the abyss to the surface. An observational program will generate vast amounts of new biogeochemical data that will provide a greatly improved view of the dynamics and ecosystem responses of the Southern Ocean. A modeling component will apply these observations to enhancing understanding of the current ocean, reducing uncertainty in projections of future carbon and nutrient cycles and climate. Because it serves as the primary gateway through which the intermediate, deep, and bottom waters of the ocean interact with the surface layers and thus the atmosphere, the Southern Ocean has a profound influence on the oceanic uptake of anthropogenic carbon and heat as well as nutrient resupply from the abyss to the surface. Yet it is the least observed and understood region of the world ocean. The oceanographic community is on the cusp of two major advances that have the potential to transform understanding of the Southern Ocean. The first is the development of new biogeochemical sensors mounted on autonomous profiling floats that allow sampling of ocean biogeochemistry and acidification in 3-dimensional space with a temporal resolution of five to ten days. The SOCCOM float program proposed will increase the average number of biogeochemical profiles measured per month in the Southern Ocean by ~10-30x. The second is that the climate modeling community now has the computational resources and physical understanding to develop fully coupled climate models that can represent crucial mesoscale processes in the Southern Ocean, as well as corresponding models that assimilate observations to produce a state estimate. Together with the observations, this new generation of models provides the tools to vastly improve understanding of Southern Ocean processes and the ability to quantitatively assess uptake of anthropogenic carbon and heat, as well as nutrient resupply, both today and into the future. In order to take advantage of the above technological and modeling breakthroughs, SOCCOM will implement the following research programs: * Theme 1: Observations. Scripps Institution of Oceanography will lead a field program to expand the number of Southern Ocean autonomous profiling floats and equip them with sensors to measure pH, nitrate, and oxygen. The University of Washington and Monterey Bay Aquarium Research Institute will design, build, and oversee deployment of the floats. Scripps will also develop a mesoscale eddying Southern Ocean state estimate that assimilates physical and biogeochemical data into the MIT ocean general circulation model. * Theme 2: Modeling. University of Arizona and Princeton University, together with NOAA\u0027s Geophysical Fluid Dynamics Laboratory (GFDL), will use SOCCOM observations to develop data/model assessment metrics and next-generation model analysis and evaluation, with the goal of improving process level understanding and reducing the uncertainty in projections of our future climate. Led by Climate Central, an independent, non-profit journalism and research organization that promotes understanding of climate science, SOCCOM will collaborate with educators and media professionals to inform policymakers and the public about the challenges of climate change and its impacts on marine life in the context of the Southern Ocean. In addition, the integrated team of SOCCOM scientists and educators will: * communicate data and results of the SOCCOM efforts quickly to the public through established data networks, publications, broadcast media, and a public portal; * train a new generation of diverse ocean scientists, including undergraduate students, graduate students, and postdoctoral fellows versed in field techniques, data calibration, modeling, and communication of research to non-scientists; * transfer new sensor technology and related software to autonomous instrument providers and manufacturers to ensure that they become widely useable.", "east": -66.7689, "geometry": "POINT(-130.26855 -65.4867)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "USAP-DC; R/V NBP; NBP1701; CLIMATE MODELS", "locations": null, "north": -52.6153, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science", "paleo_time": null, "persons": "Sarmiento, Jorge; Rynearson, Tatiana", "platforms": "OTHER \u003e MODELS \u003e CLIMATE MODELS; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "PI website; R2R; USAP-DC", "science_programs": null, "south": -78.3581, "title": "Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM)", "uid": "p0000197", "west": 166.2318}, {"awards": "1143981 Domack, Eugene", "bounds_geometry": "POLYGON((-69.9517 -52.7581,-69.02971 -52.7581,-68.10772 -52.7581,-67.18573 -52.7581,-66.26374 -52.7581,-65.34175 -52.7581,-64.41976 -52.7581,-63.49777 -52.7581,-62.57578 -52.7581,-61.65379 -52.7581,-60.7318 -52.7581,-60.7318 -54.31551,-60.7318 -55.87292,-60.7318 -57.43033,-60.7318 -58.98774,-60.7318 -60.54515,-60.7318 -62.10256,-60.7318 -63.65997,-60.7318 -65.21738,-60.7318 -66.77479,-60.7318 -68.3322,-61.65379 -68.3322,-62.57578 -68.3322,-63.49777 -68.3322,-64.41976 -68.3322,-65.34175 -68.3322,-66.26374 -68.3322,-67.18573 -68.3322,-68.10772 -68.3322,-69.02971 -68.3322,-69.9517 -68.3322,-69.9517 -66.77479,-69.9517 -65.21738,-69.9517 -63.65997,-69.9517 -62.10256,-69.9517 -60.54515,-69.9517 -58.98774,-69.9517 -57.43033,-69.9517 -55.87292,-69.9517 -54.31551,-69.9517 -52.7581))", "dataset_titles": "Expedition Data; Processed Camera Images acquired during the Laurence M. Gould expedition LMG1311", "datasets": [{"dataset_uid": "000402", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1702"}, {"dataset_uid": "601311", "doi": "10.15784/601311", "keywords": "Antarctica; Antarctic Peninsula; Benthic Images; Camera; LARISSA; LMG1311; Marine Geoscience; Photo; Photo/video; Photo/Video; R/v Laurence M. Gould", "people": "Domack, Eugene Walter", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Processed Camera Images acquired during the Laurence M. Gould expedition LMG1311", "url": "https://www.usap-dc.org/view/dataset/601311"}, {"dataset_uid": "001366", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1702"}], "date_created": "Fri, 29 Dec 2017 00:00:00 GMT", "description": "This project aims to identify which portions of the glacial cover in the Antarctic Peninsula are losing mass to the ocean. This is an important issue to resolve because the Antarctic Peninsula is warming at a faster rate than any other region across the earth. Even though glaciers across the Antarctic Peninsula are small, compared to the continental ice sheet, defining how rapidly they respond to both ocean and atmospheric temperature rise is critical. It is critical because it informs us about the exact mechanisms which regulate ice flow and melting into the ocean. For instance, after the break- up of the Larsen Ice Shelf in 2002 many glaciers began to flow rapidly into the sea. Measuring how much ice was involved is difficult and depends upon accurate estimates of volume and area. One way to increase the accuracy of our estimates is to measure how fast the Earth\u0027s crust is rebounding or bouncing back, after the ice has been removed. This rebound effect can be measured with very precise techniques using instruments locked into ice free bedrock surrounding the area of interest. These instruments are monitored by a set of positioning satellites (the Global Positioning System or GPS) in a continuous fashion. Of course the movement of the Earth\u0027s bedrock relates not only to the immediate response but also the longer term rate that reflects the long vanished ice masses that once covered the entire Antarctic Peninsula?at the time of the last glaciation. These rebound measurements can, therefore, also tell us about the amount of ice which covered the Antarctic Peninsula thousands of years ago. Glacial isostatic rebound is one of the complicating factors in allowing us to understand how much the larger ice sheets are losing today, something that can be estimated by satellite techniques but only within large errors when the isostatic (rebound) correction is unknown. The research proposed consists of maintaining a set of six rebound stations until the year 2016, allowing for a longer time series and thus more accurate estimates of immediate elastic and longer term rebound effects. It also involves the establishment of two additional GPS stations that will focus on constraining the \"bull\u0027s eye\" of rebound suggested by measurements over the past two years. In addition, several more geologic data points will be collected that will help to reconstruct the position of the ice sheet margin during its recession from the full ice sheet of the last glacial maximum. These will be based upon the coring of marine sediment sequences now recognized to have been deposited along the margins of retreating ice sheets and outlets. Precise dating of the ice margin along with the new and improved rebound data will help to constrain past ice sheet configurations and refine geophysical models related to the nature of post glacial rebound. Data management will be under the auspices of the UNAVCO polar geophysical network or POLENET and will be publically available at the time of station installation. This project is a small scale extension of the ongoing LARsen Ice Shelf, Antarctica Project (LARISSA), an IPY (International Polar Year)-funded interdisciplinary study aimed at understanding earth system connections related to the Larsen Ice Shelf and the northern Antarctic Peninsula.", "east": -60.7318, "geometry": "POINT(-65.34175 -60.54515)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e SEISMIC REFLECTION PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "LMG1702; R/V LMG", "locations": null, "north": -52.7581, "nsf_funding_programs": "Antarctic Integrated System Science", "paleo_time": null, "persons": "Kohut, Josh; Domack, Eugene Walter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -68.3322, "title": "Continuation of the LARISSA Continuous GPS Network in View of Observed Dynamic Response to Antarctic Peninsula Ice Mass Balance and Required Geologic Constraints", "uid": "p0000233", "west": -69.9517}, {"awards": "1543245 Rynearson, Tatiana", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP1701; NCBI Popset of 43 Southern Ocean diatom isolates, including accessions ON678208.1 - ON678250.1; Specific growth rate measurements for 43 Southern Ocean diatoms", "datasets": [{"dataset_uid": "002661", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1701", "url": "https://www.rvdata.us/search/cruise/NBP1701"}, {"dataset_uid": "001369", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1701"}, {"dataset_uid": "200328", "doi": "", "keywords": null, "people": null, "repository": "NCBI", "science_program": null, "title": "NCBI Popset of 43 Southern Ocean diatom isolates, including accessions ON678208.1 - ON678250.1", "url": "https://www.ncbi.nlm.nih.gov/popset/?term=2248543458"}, {"dataset_uid": "601586", "doi": "10.15784/601586", "keywords": "Antarctica; Biota; NBP1701; Phytoplankton; R/v Nathaniel B. Palmer; Specific Growth Rate; Thermal Optimum Temperature", "people": "Bishop, Ian", "repository": "USAP-DC", "science_program": null, "title": "Specific growth rate measurements for 43 Southern Ocean diatoms", "url": "https://www.usap-dc.org/view/dataset/601586"}], "date_created": "Fri, 29 Dec 2017 00:00:00 GMT", "description": "The research will examine how diatoms (an important group of plankton in the Southern Ocean) adapt to environmental change. Diatoms will be sampled from different regions of the Southern Ocean, including the Drake Passage, the Pacific Sector of the Southern Ocean and the Ross Sea and examined to determine the range of genetic variation among diatoms in these regions. Experiments on a range of diatoms will be conducted in home laboratories and will be aimed at measuring shifts in physiological capacities over many generations in response to directional changes in the environment (temperature and pH). The information on the genetic diversity of field populations combined with information on potential rates of adaptability and genome changes will provide insight into ways in which polar marine diatoms populations may respond to environmental changes that may occur in surface oceans in the future or may have occurred during past climate conditions. Such information allows better modeling of biogeochemical cycles in the ocean as well as improves our abilities to interpret records of past ocean conditions. The project will support a doctoral student and a postdoctoral researcher as well as several undergraduate students. These scientists will learn the fundamentals of experimental evolution, a skill set that is being sought in the fields of biology and oceanography. The project also includes a collaboration with the Metcalf Institute for Marine and Environmental Reporting that will design and facilitate a session focused on current research related to evolution and climate change to be held at the annual conference of the National Association of Science Writers (NASW). Both physiological and genetic variation are key parameters for understanding evolutionary processes in phytoplankton but they are essentially unknown for Southern Ocean diatoms. The extent to which these two factors determine plasticity and adaptability in field populations and the interaction between them will influence how and whether cold-adapted diatoms can respond to changing environments. This project includes a combination of field work to identify genetic diversity within diatoms using molecular approaches and experiments in the lab to assess the range of physiological variation in contemporary populations of diatoms and evolution experiments in the lab to assess how the combination of genetic diversity and physiological variation influence the evolutionary potential of diatoms under a changing environment. This research will uncover general relationships between physiological variation, genetic diversity, and evolutionary potential that may apply across microbial taxa and geographical regions, substantially improving efforts to predict shifts in marine ecosystems. Results from this study can be integrated into developing models that incorporate evolution to predict ecosystem changes under future climate change scenarios.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "USAP-DC; NBP1701; R/V NBP; AMD; USA/NSF; Amd/Us; DIATOMS", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Rynearson, Tatiana; Bishop, Ian", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "NCBI; R2R; USAP-DC", "science_programs": null, "south": null, "title": "NSFGEO-NERC: Evolutionary Response of Southern Ocean Diatoms to Environmental Change", "uid": "p0000850", "west": null}, {"awards": "1245703 Manahan, Donal", "bounds_geometry": "POLYGON((-68.0574 -52.7267,-67.39775 -52.7267,-66.7381 -52.7267,-66.07845 -52.7267,-65.4188 -52.7267,-64.75915 -52.7267,-64.0995 -52.7267,-63.43985 -52.7267,-62.7802 -52.7267,-62.12055 -52.7267,-61.4609 -52.7267,-61.4609 -53.95849,-61.4609 -55.19028,-61.4609 -56.42207,-61.4609 -57.65386,-61.4609 -58.88565,-61.4609 -60.11744,-61.4609 -61.34923,-61.4609 -62.58102,-61.4609 -63.81281,-61.4609 -65.0446,-62.12055 -65.0446,-62.7802 -65.0446,-63.43985 -65.0446,-64.0995 -65.0446,-64.75915 -65.0446,-65.4188 -65.0446,-66.07845 -65.0446,-66.7381 -65.0446,-67.39775 -65.0446,-68.0574 -65.0446,-68.0574 -63.81281,-68.0574 -62.58102,-68.0574 -61.34923,-68.0574 -60.11744,-68.0574 -58.88565,-68.0574 -57.65386,-68.0574 -56.42207,-68.0574 -55.19028,-68.0574 -53.95849,-68.0574 -52.7267))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001372", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1606"}], "date_created": "Fri, 29 Dec 2017 00:00:00 GMT", "description": "This project will support two training courses that will introduce early-career scientists from a wide range of disciplinary backgrounds to key issues in polar science, and especially to provide the opportunity to gain hands-on experience in Antarctic field activities. Antarctica is an ideal location to study a wide variety of questions in biology. However, few students and early-career scientists have the opportunity to work on-site in Antarctica unless they are directly associated with a senior scientist who has a funded Antarctic project. The project will further the NSF goal of training new generations of scientists by providing hands-on training in Antarctica during one course at Palmer Station in 2016 and another at McMurdo Station in 2018. This represents a continuation of nine previous courses at McMurdo Station which have a proven record of introducing participants to Antarctic science under realistic field conditions, providing opportunities to understand and appreciate the complexities and logistical challenges of undertaking science in Antarctica, enhancing the professional careers of the participants, and increasing international collaborations for early-career scientists. The proposed training courses will be open to Ph.D. students and post-doctoral scientists who have interests in the study of Antarctic marine organisms to help prepare them for success in developing their own independent research programs in polar regions. Long-standing and recent questions in evolution and ecology of Antarctic organisms will be examined with 1) field collections, 2) physiological experiments on whole organisms, 3) studies of isolated cells and tissues, 4) experiments on macromolecular processes (e.g., enzymes), and 5) molecular biological analyses.", "east": -61.4609, "geometry": "POINT(-64.75915 -58.88565)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V LMG; LMG1606", "locations": null, "north": -52.7267, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Manahan, Donal", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.0446, "title": "Collaborative Research: Biological Adaptations to Environmental Change in Antarctica - An Advanced Training Program for Early Career Scientists", "uid": "p0000392", "west": -68.0574}, {"awards": "1543256 Shuster, David", "bounds_geometry": null, "dataset_titles": "Detrital low-temperature thermochronometry from Bourgeois Fjord, AP; Expedition Data; Expedition data of LMG1702", "datasets": [{"dataset_uid": "002733", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1702", "url": "https://www.rvdata.us/search/cruise/LMG1702"}, {"dataset_uid": "000402", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1702"}, {"dataset_uid": "601259", "doi": "10.15784/601259", "keywords": "Antarctica; Antarctic Peninsula", "people": "Clinger, Anna", "repository": "USAP-DC", "science_program": null, "title": "Detrital low-temperature thermochronometry from Bourgeois Fjord, AP", "url": "https://www.usap-dc.org/view/dataset/601259"}], "date_created": "Fri, 29 Dec 2017 00:00:00 GMT", "description": "The extreme mountain topographies of alpine landscapes at mid latitudes (e.g., European Alps, Patagonia, Alaska) are thought to have formed by the erosive action of glaciers, yet our understanding of exactly when and how those topographies developed is limited. If glacial ice was responsible for forming them, then those landscapes must have developed primarily over the last 2-3 million years when ice was present at those latitudes; this timing has only recently been confirmed by observations. In contrast, the Antarctic Peninsula, which contains similarly spectacular topographic relief, is known to have hosted alpine glaciers as early as 37 million years ago, and is currently covered by ice. Thus, if caused by glacial erosion, the high relief of the peninsula should have formed much earlier than what has been observed at mid latitude sites, yet we know nearly nothing about the timing of its development. The primary benefit of this research will be to study the timing of topography development along the Antarctic Peninsula by applying state of the art chemical analyses to sediments collected offshore. This research is important because studying a high latitude site will enable comparison with sites at mid latitudes and test current hypotheses on the development of glacial landscapes in general. This project aims to apply low-temperature thermochronometry based on the (U-Th)/He system in apatite to investigate the exhumation history, the development of the present topography, and the pattern of glacial erosion in the central Antarctic Peninsula. A number of recent studies have used this approach to study the dramatic, high-relief landscapes formed by Pleistocene alpine glacial erosion in temperate latitudes: New Zealand, the Alps, British Columbia, Alaska, and Patagonia. These studies have not only revealed when these landscapes formed, but have also provided new insights into the physical mechanisms of glacial erosion. The Antarctic Peninsula is broadly akin to temperate alpine landscapes in that the dominant landforms are massive glacial troughs. However, what we know about Antarctic glacial history suggests that the timing and history of glacial erosion was most likely very different from the temperate alpine setting: The Antarctic Peninsula has been glaciated since the Eocene, and Pleistocene climate cooling is hypothesized to have suppressed, rather than enhanced, glacial erosion. Our goal is to evaluate these hypotheses by developing a direct thermochronometric record of when and how the present glacial valley relief formed. We propose to learn about the timing and process of glacial valley formation through apatite (U-Th)/He and 4He/3He measurements on glacial sediment collected near the grounding lines of major glaciers draining the Peninsula. In effect, since we cannot sample bedrock directly that is currently covered by ice, we will rely on these glaciers to do it for us.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V LMG; LMG1702; Antarctic Peninsula; ICE SHEETS", "locations": "Antarctic Peninsula", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kohut, Josh; Shuster, David; Balco, Gregory; Jenkins, Bethany", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": null, "title": "Antarctic Peninsula Exhumation and Landscape Development Investigated by Low-Temperature Detrital Thermochronometry", "uid": "p0000876", "west": null}, {"awards": "1246342 Fountain, Andrew; 1245749 Levy, Joseph; 1246203 Gooseff, Michael", "bounds_geometry": "POLYGON((160.105465 -77.2119,160.7907435 -77.2119,161.476022 -77.2119,162.1613005 -77.2119,162.846579 -77.2119,163.5318575 -77.2119,164.217136 -77.2119,164.9024145 -77.2119,165.587693 -77.2119,166.2729715 -77.2119,166.95825 -77.2119,166.95825 -77.3189628,166.95825 -77.4260256,166.95825 -77.5330884,166.95825 -77.6401512,166.95825 -77.747214,166.95825 -77.8542768,166.95825 -77.9613396,166.95825 -78.0684024,166.95825 -78.1754652,166.95825 -78.282528,166.2729715 -78.282528,165.587693 -78.282528,164.9024145 -78.282528,164.217136 -78.282528,163.5318575 -78.282528,162.846579 -78.282528,162.1613005 -78.282528,161.476022 -78.282528,160.7907435 -78.282528,160.105465 -78.282528,160.105465 -78.1754652,160.105465 -78.0684024,160.105465 -77.9613396,160.105465 -77.8542768,160.105465 -77.747214,160.105465 -77.6401512,160.105465 -77.5330884,160.105465 -77.4260256,160.105465 -77.3189628,160.105465 -77.2119))", "dataset_titles": "2014-2015 lidar survey of the McMurdo Dry Valleys, Antarctica; Active Layer Temperatures from Crescent Stream banks, Taylor Valley Antarctica", "datasets": [{"dataset_uid": "000209", "doi": "", "keywords": null, "people": null, "repository": "OpenTopo", "science_program": null, "title": "2014-2015 lidar survey of the McMurdo Dry Valleys, Antarctica", "url": "http://opentopo.sdsc.edu/datasetMetadata?otCollectionID=OT.112016.3294.1"}, {"dataset_uid": "601075", "doi": "10.15784/601075", "keywords": "Antarctica; Dry Valleys; Glaciology; Paleoclimate; Permafrost; Soil Temperature; Taylor Valley", "people": "Gooseff, Michael N.", "repository": "USAP-DC", "science_program": null, "title": "Active Layer Temperatures from Crescent Stream banks, Taylor Valley Antarctica", "url": "https://www.usap-dc.org/view/dataset/601075"}], "date_created": "Wed, 20 Dec 2017 00:00:00 GMT", "description": "Collaborative Research: THE MCMURDO DRY VALLEYS: A Landscape on the Threshold of Change is supported by the Antarctic Integrated System Science (AISS) program in the Antarctic Sciences Section of the Division of Polar Programs within the Geosciences Directorate of the National Sciences Foundation (NSF). The funds will support the collection of state-of-the-art high resolution LIDAR (combining the terms light and radar) imagery of the Dry Valleys of Antarctica in the 2014/2015 Antarctic field season, with LIDAR data collection and processing being provided by the NSF-supported NCALM (National Center for Airborne Laser Mapping) facility. LIDAR images collected in 2014/2015 will be compared to images from 2001 in order to detect decadal change. Additional fieldwork will look at the distribution of buried massive ice, and the impacts that major changes like slumping are having on the biota. All field data will be used to improve models on energy balance, and hydrology. Intellectual Merit: There have been dramatic changes over the past decade in the McMurdo Dry Valleys: glaciers are deflating by tens of meters, rivers are incising by more than three meters, and thermokarst slumps are appearing near several streams and lakes. These observations have all been made by researchers in the field, but none of the changes have been mapped on a valley-wide scale. This award will provide a new baseline map for the entire Dry Valley system, with high-resolution imagery provided for the valley floors, and lower resolution imagery available for the higher elevation areas that are undergoing less change. The project will test the idea that sediment-covered ice is associated with the most dramatic changes, due to differential impacts of the increased solar radiation on sediment-covered compared to clean ice, and despite the current trend of slightly cooling air temperatures within the Dry Valleys. Information collected on the topography, coupled with the GPR determined buried ice distributions, will also be incorporated into improved energy and hydrological models. In addition to providing the new high-resolution digital elevation model (DEM), the project will ultimately result in identification of areas that are susceptible to sediment-enhanced melt-driven change, providing a powerful prediction tool for the impacts of climate change. Broader Impacts: The new DEM will be immediately useful to a wide range of disciplines, and will provide a comprehensive new baseline against which future changes will be compared. The project will provide a tool for the whole community to use, and the investigators will work with the community to make them aware of the new assets via public presentations, and perhaps via a workshop. The map will have international interest, and will also serve as a tool for environmental managers to draw on as they consider conservation plans. Several undergraduate and graduate students will participate in the project, and one of the co-PIs is a new investigator. The imagery collected is expected to be of interest to the general public in addition to scientific researchers, and venues for outreach such as museum exhibits and the internet will be explored. The proposed work is synergistic with 1) the co-located McMurdo LTER program, and 2) the NCALM facility that is also funded by the Geosciences Directorate.", "east": 166.95825, "geometry": "POINT(163.5318575 -77.747214)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e AIRBORNE LASER SCANNER", "is_usap_dc": true, "keywords": "USAP-DC; Antarctica; Not provided; LANDFORMS; NOT APPLICABLE", "locations": "Antarctica", "north": -77.2119, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Levy, Joseph; Gooseff, Michael N.; Fountain, Andrew", "platforms": "Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "OpenTopo", "repositories": "OpenTopo; USAP-DC", "science_programs": null, "south": -78.282528, "title": "Collaborative Research: THE MCMURDO DRY VALLEYS: A landscape on the Threshold of Change", "uid": "p0000076", "west": 160.105465}, {"awards": "1565576 Pettit, Erin", "bounds_geometry": "POLYGON((-62.2 -65.5,-62.12 -65.5,-62.04 -65.5,-61.96 -65.5,-61.88 -65.5,-61.8 -65.5,-61.72 -65.5,-61.64 -65.5,-61.56 -65.5,-61.48 -65.5,-61.4 -65.5,-61.4 -65.53,-61.4 -65.56,-61.4 -65.59,-61.4 -65.62,-61.4 -65.65,-61.4 -65.68,-61.4 -65.71,-61.4 -65.74,-61.4 -65.77,-61.4 -65.8,-61.48 -65.8,-61.56 -65.8,-61.64 -65.8,-61.72 -65.8,-61.8 -65.8,-61.88 -65.8,-61.96 -65.8,-62.04 -65.8,-62.12 -65.8,-62.2 -65.8,-62.2 -65.77,-62.2 -65.74,-62.2 -65.71,-62.2 -65.68,-62.2 -65.65,-62.2 -65.62,-62.2 -65.59,-62.2 -65.56,-62.2 -65.53,-62.2 -65.5))", "dataset_titles": "Scar Inlet Terrestrial Radar Interferometry; Weather data from LARISSA / SCAR Inlet Rapid AMIGOS and cGPS stations", "datasets": [{"dataset_uid": "601084", "doi": "10.15784/601084", "keywords": "Antarctica; Antarctic Peninsula; Atmosphere; Automated Weather Station; Flask Glacier; Foehn Winds; Glaciers/ice Sheet; Glaciers/Ice Sheet; LARISSA; Larsen B Ice Shelf; Meteorology; Scar Inlet; Weatherstation; Wind Speed", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Weather data from LARISSA / SCAR Inlet Rapid AMIGOS and cGPS stations", "url": "https://www.usap-dc.org/view/dataset/601084"}, {"dataset_uid": "601078", "doi": "10.15784/601078", "keywords": "Antarctica; Antarctic Peninsula; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Navigation; Radar; Radar Interferometer", "people": "Truffer, Martin", "repository": "USAP-DC", "science_program": null, "title": "Scar Inlet Terrestrial Radar Interferometry", "url": "https://www.usap-dc.org/view/dataset/601078"}], "date_created": "Wed, 20 Dec 2017 00:00:00 GMT", "description": "Pettit/1565576 This award supports a Rapid Response Research (RAPID) project to observe the current weakened state of the Scar Inlet Ice Shelf, and potentially capture data during its anticipated disintegration. The Scar Inlet Ice Shelf (SIIS) is the southern remnant of the former Larsen B Ice Shelf, which disintegrated in March of 2002. Since then, the SIIS has weakened significantly but has not yet broken up. Cooler conditions than those seen prior to 2006 have reduced the chance of a disintegration in recent years, although a single warm season is likely to be enough to trigger such an event. The predicted \"Super El Nino\" for this austral summer may have significant effects on Antarctica\u0027s weather, potentially leading to a break-up or disintegration this year. Given the very weak state of the SIIS, it is urgent that we act now to better understand the processes involved in shelf disintegration or break-up of ice shelves. The goal of this work is to collect several key data sets, publish initial observations and preliminary conclusions, and then make the complete data record available to all scientists. Extreme changes in the stress conditions on the SIIS resulted from both the loss of the Larsen B ice plate and the continued inflow of ice from three large glaciers (Flask, Leppard, and Starbuck). The SIIS now has a number of large rifts and it is expected to break up or disintegrate in the very near future. Past research has made use of satellite data and weather instruments, establishing many of the current ideas regarding ice shelf break-ups and ice shelf weakening. Additional ground-based data to be collected under this study will test a number of hypotheses regarding pre-disintegration characteristics, triggering mechanisms, fracturing processes, runaway feedback effects, and stabilizing mechanisms. The project will collect extensive multi-instrument field observations of the SIIS and possibly capture a major disintegration event. In collaboration with the British Antarctic Survey, a team of 4 people will be deployed via Twin Otter for up to 4 weeks to a site with a broad view of the shelf and will install several temporary observing instruments there. The study derives its intellectual merit from the role of the Antarctic Peninsula as a microcosm of how other parts of Antarctica might evolve and de-glaciate in the next few centuries. The broader impacts include an opportunity to educate the public about the anticipated collapse of this remnant ice shelf and its relationship to future changes in Antarctica. The potential for wide media coverage (through a connection with the National Geographic) will underscore the critical changes scientists are observing in the crysophere driven by climate change. This proposal requires field work in Antarctica.", "east": -61.4, "geometry": "POINT(-61.8 -65.65)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -65.5, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Glaciology", "paleo_time": null, "persons": "Pettit, Erin", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LARISSA", "south": -65.8, "title": "RAPID: Observing the Disintegration of the Scar Inlet Ice Shelf", "uid": "p0000274", "west": -62.2}, {"awards": "1543452 Blankenship, Donald", "bounds_geometry": "POLYGON((90 -64,97 -64,104 -64,111 -64,118 -64,125 -64,132 -64,139 -64,146 -64,153 -64,160 -64,160 -64.6,160 -65.2,160 -65.8,160 -66.4,160 -67,160 -67.6,160 -68.2,160 -68.8,160 -69.4,160 -70,153 -70,146 -70,139 -70,132 -70,125 -70,118 -70,111 -70,104 -70,97 -70,90 -70,90 -69.4,90 -68.8,90 -68.2,90 -67.6,90 -67,90 -66.4,90 -65.8,90 -65.2,90 -64.6,90 -64))", "dataset_titles": "EAGLE/ICECAP II GEOPHYSICAL OBSERVATIONS (SURFACE AND BED ELEVATION, ICE THICKNESS, GRAVITY DISTURBANCE AND MAGNETIC ANOMALIES); EAGLE/ICECAP II INSTRUMENT MEASUREMENTS (LASER, MAGNETICS and POSITIONING); EAGLE/ICECAP II RADARGRAMS; EAGLE/ICECAP II Raw data (gps, raw serial packet data, raw radar records, gravimeter data and camera images); ICECAP Basal Interface Specularity Content Profiles: IPY and OIB", "datasets": [{"dataset_uid": "200043", "doi": "http://dx.doi.org/doi:10.26179/5bcff4afc287d", "keywords": null, "people": null, "repository": "AADC", "science_program": null, "title": "EAGLE/ICECAP II RADARGRAMS", "url": "https://data.aad.gov.au/metadata/records/AAS_4346_EAGLE_ICECAP_LEVEL2_RADAR_DATA"}, {"dataset_uid": "601371", "doi": "10.15784/601371", "keywords": "Antarctica; East Antarctica; ICECAP; Ice Penetrating Radar; Radar Echo Sounder; Radar Echo Sounding; Subglacial Hydrology", "people": "Schroeder, Dustin; Young, Duncan A.; Roberts, Jason; Blankenship, Donald D.; Siegert, Martin; van Ommen, Tas; Greenbaum, Jamin", "repository": "USAP-DC", "science_program": null, "title": "ICECAP Basal Interface Specularity Content Profiles: IPY and OIB", "url": "https://www.usap-dc.org/view/dataset/601371"}, {"dataset_uid": "200044", "doi": "https://dx.doi.org/10.26179/5bbedd001756b", "keywords": null, "people": null, "repository": "AADC", "science_program": null, "title": "EAGLE/ICECAP II Raw data (gps, raw serial packet data, raw radar records, gravimeter data and camera images)", "url": "https://data.aad.gov.au/metadata/records/AAS_4346_EAGLE_ICECAP_LEVEL0_RAW_DATA"}, {"dataset_uid": "200041", "doi": "https://doi.org/10.26179/5bcfffdabcf92", "keywords": null, "people": null, "repository": "AADC", "science_program": null, "title": "EAGLE/ICECAP II GEOPHYSICAL OBSERVATIONS (SURFACE AND BED ELEVATION, ICE THICKNESS, GRAVITY DISTURBANCE AND MAGNETIC ANOMALIES)", "url": "https://data.aad.gov.au/metadata/records/AAS_4346_EAGLE_ICECAP_LEVEL2_AEROGEOPHYSICS"}, {"dataset_uid": "200042", "doi": "http://dx.doi.org/doi:10.26179/5bcfef4e3a297", "keywords": null, "people": null, "repository": "AADC", "science_program": null, "title": "EAGLE/ICECAP II INSTRUMENT MEASUREMENTS (LASER, MAGNETICS and POSITIONING)", "url": "https://data.aad.gov.au/metadata/records/AAS_4346_EAGLE_ICECAP_Level1B_AEROGEOPHYSICS"}], "date_created": "Tue, 05 Dec 2017 00:00:00 GMT", "description": "Previous studies of the Indo-Pacific region of Antarctica show that the margin of the ice sheet in this region has advanced and retreated into deep interior basins many times in the past. The apparent instability of this region makes it an important target for study in terms of understanding the future of the East Antarctic ice sheet and sea level rise. This project will study a number of processes that control the ice-shelf stability of this region, with the aim of improving projections of the rate and magnitude of future sea-level rise. This project will engage a range of students and train this next generation of scientists in the complex, interdisciplinary issue of ice-ocean interaction. The project will integrate geophysical data collected from aircraft over three critical sections of the East Antarctic grounding line (Totten Glacier, Denman Glacier, and Cook Ice Shelf) with an advanced ocean model. Using Australian and French assets, the team will collect new data around Denman Glacier and Cook Ice Shelf whereas analysis of Totten Glacier will be based on existing data. The project will assess three hypotheses to isolate the processes that drive the differences in observed grounding line thinning among these three glaciers: 1. bathymetry and large-scale ocean forcing control cavity circulation; 2. ice-shelf draft and basal morphology control cavity circulation; 3. subglacial freshwater input across the grounding line controls cavity circulation. The key outcomes of this new project will be to: 1. evaluate of ice-ocean coupling in areas of significant potential sea-level contribution; 2. relate volume changes of grounded and floating ice to regional oceanic heat transport and sub-ice shelf ocean dynamics in areas of significant potential sea-level and meridional overturning circulation impacts; and 3. improve boundary conditions to evaluate mass, heat, and freshwater budgets of East Antarctica\u0027s continental margins.", "east": 160.0, "geometry": "POINT(125 -67)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e MAGNETOMETERS \u003e GEOMET 823A; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS", "is_usap_dc": true, "keywords": "BT-67; Antarctica; GLACIER TOPOGRAPHY/ICE SHEET TOPOGRAPHY; USAP-DC; SEAFLOOR TOPOGRAPHY; GRAVITY ANOMALIES; MAGNETIC ANOMALIES; Polar; Sea Floor", "locations": "Antarctica; Sea Floor; Polar", "north": -64.0, "nsf_funding_programs": "Antarctic Integrated System Science", "paleo_time": null, "persons": "Young, Duncan A.; Grima, Cyril; Blankenship, Donald D.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e BT-67", "repo": "AADC", "repositories": "AADC; USAP-DC", "science_programs": null, "south": -70.0, "title": "East Antarctic Grounding Line Experiment (EAGLE)", "uid": "p0000254", "west": 90.0}, {"awards": "1245737 Cassano, John; 1245663 Lazzara, Matthew", "bounds_geometry": "POLYGON((161.714 -77.522,162.6077 -77.522,163.5014 -77.522,164.3951 -77.522,165.2888 -77.522,166.1825 -77.522,167.0762 -77.522,167.9699 -77.522,168.8636 -77.522,169.7573 -77.522,170.651 -77.522,170.651 -77.6702,170.651 -77.8184,170.651 -77.9666,170.651 -78.1148,170.651 -78.263,170.651 -78.4112,170.651 -78.5594,170.651 -78.7076,170.651 -78.8558,170.651 -79.004,169.7573 -79.004,168.8636 -79.004,167.9699 -79.004,167.0762 -79.004,166.1825 -79.004,165.2888 -79.004,164.3951 -79.004,163.5014 -79.004,162.6077 -79.004,161.714 -79.004,161.714 -78.8558,161.714 -78.7076,161.714 -78.5594,161.714 -78.4112,161.714 -78.263,161.714 -78.1148,161.714 -77.9666,161.714 -77.8184,161.714 -77.6702,161.714 -77.522))", "dataset_titles": "SUMO unmanned aerial system (UAS) atmospheric data", "datasets": [{"dataset_uid": "601054", "doi": "10.15784/601054", "keywords": "Antarctica; Atmosphere; Meteorology; Navigation; UAS", "people": "Cassano, John", "repository": "USAP-DC", "science_program": null, "title": "SUMO unmanned aerial system (UAS) atmospheric data", "url": "https://www.usap-dc.org/view/dataset/601054"}], "date_created": "Wed, 22 Nov 2017 00:00:00 GMT", "description": "The Antarctic Automatic Weather Station (AAWS) network, first commenced in 1978, is the most extensive ground meteorological network in the Antarctic, approaching its 30th year at several of its installations. Its prime focus as a long term observational record is to measure the near surface weather and climatology of the Antarctic atmosphere. AWS sites measure air-temperature, pressure, wind speed and direction at a nominal surface height of 3m. Other parameters such as relative humidity and snow accumulation may also be measured. Observational data from the AWS are collected via the DCS Argos system aboard either NOAA or MetOp polar orbiting satellites and thus made available in near real time to operational and synoptic weather forecasters. The surface observations from the AAWS network are important records for recent climate change and meteorological processes. The surface observations from the AAWS network are also used operationally, and in the planning of field work. The surface observations from the AAWS network have been used to check on satellite and remote sensing observations.", "east": 170.651, "geometry": "POINT(166.1825 -78.263)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e GAUGES \u003e ADG; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e BAROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HUMIDITY SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e SNOWPACK TEMPERATURE PROBE; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e RADIO \u003e ARGOS", "is_usap_dc": true, "keywords": "Automated Weather Station; Antarctica; AWS; FIXED OBSERVATION STATIONS", "locations": "Antarctica", "north": -77.522, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew; Cassano, John; Costanza, Carol", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.004, "title": "Collaborative Research: Antarctic Automatic Weather Station Program 2013-2017", "uid": "p0000363", "west": 161.714}, {"awards": "1043471 Kaplan, Michael", "bounds_geometry": "POLYGON((-112.5 -79.468,-112.4586 -79.468,-112.4172 -79.468,-112.3758 -79.468,-112.3344 -79.468,-112.293 -79.468,-112.2516 -79.468,-112.2102 -79.468,-112.1688 -79.468,-112.1274 -79.468,-112.086 -79.468,-112.086 -79.4712,-112.086 -79.4744,-112.086 -79.4776,-112.086 -79.4808,-112.086 -79.484,-112.086 -79.4872,-112.086 -79.4904,-112.086 -79.4936,-112.086 -79.4968,-112.086 -79.5,-112.1274 -79.5,-112.1688 -79.5,-112.2102 -79.5,-112.2516 -79.5,-112.293 -79.5,-112.3344 -79.5,-112.3758 -79.5,-112.4172 -79.5,-112.4586 -79.5,-112.5 -79.5,-112.5 -79.4968,-112.5 -79.4936,-112.5 -79.4904,-112.5 -79.4872,-112.5 -79.484,-112.5 -79.4808,-112.5 -79.4776,-112.5 -79.4744,-112.5 -79.4712,-112.5 -79.468))", "dataset_titles": "List of samples of WAIS Divide and Byrd (deep) ice that were analyzed for radiogenic isotopes at LDEO", "datasets": [{"dataset_uid": "601065", "doi": "10.15784/601065", "keywords": "Antarctica; Dust; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Sample/collection Description; Sample/Collection Description; WAIS Divide; WAIS Divide Ice Core", "people": "Kaplan, Michael", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "List of samples of WAIS Divide and Byrd (deep) ice that were analyzed for radiogenic isotopes at LDEO", "url": "https://www.usap-dc.org/view/dataset/601065"}], "date_created": "Sun, 29 Oct 2017 00:00:00 GMT", "description": "1043471/Kaplan This award supports a project to obtain the first set of isotopic-based provenance data from the WAIS divide ice core. A lack of data from the WAIS prevents even a basic knowledge of whether different sources of dust blew around the Pacific and Atlantic sectors of the southern latitudes. Precise isotopic measurements on dust in the new WAIS ice divide core are specifically warranted because the data will be synergistically integrated with other high frequency proxies, such as dust concentration and flux, and carbon dioxide, for example. Higher resolution proxies will bridge gaps between our observations on the same well-dated, well-preserved core. The intellectual merit of the project is that the proposed analyses will contribute to the WAIS Divide Project science themes. Whether an active driver or passive recorder, dust is one of the most important but least understood components of regional and global climate. Collaborative and expert discussion with dust-climate modelers will lead to an important progression in understanding of dust and past atmospheric circulation patterns and climate around the southern latitudes, and help to exclude unlikely air trajectories to the ice sheets. The project will provide data to help evaluate models that simulate the dust patterns and cycle and the relative importance of changes in the sources, air trajectories and transport processes, and deposition to the ice sheet under different climate states. The results will be of broad interest to a range of disciplines beyond those directly associated with the WAIS ice core project, including the paleoceanography and dust- paleoclimatology communities. The broader impacts of the project include infrastructure and professional development, as the proposed research will initiate collaborations between LDEO and other WAIS scientists and modelers with expertise in climate and dust. Most of the researchers are still in the early phase of their careers and hence the project will facilitate long-term relationships. This includes a graduate student from UMaine, an undergraduate student from Columbia University who will be involved in lab work, in addition to a LDEO Postdoctoral scientist, and possibly an additional student involved in the international project PIRE-ICETRICS. The proposed research will broaden the scientific outlooks of three PIs, who come to Antarctic ice core science from a variety of other terrestrial and marine geology perspectives. Outreach activities include interaction with the science writers of the Columbia\u0027s Earth Institute for news releases and associated blog websites, public speaking, and involvement in an arts/science initiative between New York City\u0027s arts and science communities to bridge the gap between scientific knowledge and public perception.", "east": -112.086, "geometry": "POINT(-112.293 -79.484)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -79.468, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Kaplan, Michael; Winckler, Gisela; Goldstein, Steven L.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.5, "title": "A Study of Atmospheric Dust in the WAIS Divide Ice Core Based on Sr-Nd-Pb-He Isotopes", "uid": "p0000081", "west": -112.5}, {"awards": "1246378 Shevenell, Amelia", "bounds_geometry": "POLYGON((70 -68,70.5 -68,71 -68,71.5 -68,72 -68,72.5 -68,73 -68,73.5 -68,74 -68,74.5 -68,75 -68,75 -68.2,75 -68.4,75 -68.6,75 -68.8,75 -69,75 -69.2,75 -69.4,75 -69.6,75 -69.8,75 -70,74.5 -70,74 -70,73.5 -70,73 -70,72.5 -70,72 -70,71.5 -70,71 -70,70.5 -70,70 -70,70 -69.8,70 -69.6,70 -69.4,70 -69.2,70 -69,70 -68.8,70 -68.6,70 -68.4,70 -68.2,70 -68))", "dataset_titles": "Anvers Trough Foraminifer Stable Isotope data; Geochemical and sedimentologic data from NBP01-01 JPC-34", "datasets": [{"dataset_uid": "601064", "doi": "10.15784/601064", "keywords": "Antarctica; Antarctic Peninsula; Anvers Trough; Chemistry:sediment; Chemistry:Sediment; Foraminifera; Geochemistry; Isotope; LMG1211; LMG1311; Marine Sediments; Oceans; Paleoclimate; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Shevenell, Amelia", "repository": "USAP-DC", "science_program": null, "title": "Anvers Trough Foraminifer Stable Isotope data", "url": "https://www.usap-dc.org/view/dataset/601064"}, {"dataset_uid": "601180", "doi": "10.15784/601180", "keywords": "Antarctica; Be-10; Glaciers/ice Sheet; Glaciers/Ice Sheet; Grain Size; Late Quaternary; Magnetic Susceptibility; Mass Spectrometry; NBP0101; Paleoenvironment; Prydz Bay; Radiocarbon; R/v Nathaniel B. Palmer; Sediment; Sediment Core; Sediment Core Data", "people": "Shevenell, Amelia", "repository": "USAP-DC", "science_program": null, "title": "Geochemical and sedimentologic data from NBP01-01 JPC-34", "url": "https://www.usap-dc.org/view/dataset/601180"}], "date_created": "Fri, 27 Oct 2017 00:00:00 GMT", "description": "Intellectual Merit: Southern Ocean processes play an important role in Late Quaternary glacial-interglacial climate change. However, the direct influence of newly upwelled warm nutrient-rich Circumpolar Deep Water on the Antarctic cryosphere remains speculative. The PI proposes to test the hypothesis that Circumpolar Deep Water-derived ocean heat negatively impacts the mass-balance of Antarctica?s ice sheets during deglaciations using precisely dated late Quaternary paleoceanographic studies of Antarctic margin sediments and a suite of geochemical proxies measured on three existing glacial marine sediment cores from the Prydz Channel, Antarctica. Specifically, the PI will use these data to reconstruct the Late Quaternary history of the Lambert Glacier/Amery Ice Shelf system; evaluate the timing, speed, and style of retreat of the Lambert Glacier/Amery Ice Shelf system during the last deglaciation, and to assess the impact of Circumpolar Deep Water intrusions on the Lambert Glacier/Amery Ice Shelf system in the Late Quaternary. Diatom bound radiocarbon and optically stimulated luminescence techniques will be used to obtain precise stratigraphic age control for the Prydz Channel siliceous muddy ooze intervals. In addition, the PI will measure sedimentary 10Be concentrations to determine the origin of the siliceous muddy ooze units and to track past changes in the position of the ice shelf front. Broader impacts: This proposal will support an early career female scientist and will provide professional development and research experiences for women/minority graduate and undergraduate students. The PI will take advantage of USF?s Oceanography Camp for Girls.", "east": 75.0, "geometry": "POINT(72.5 -69)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS", "is_usap_dc": true, "keywords": "Amd/Us; R/V NBP; USAP-DC", "locations": null, "north": -68.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Shevenell, Amelia", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "Late Quaternary Evolution of the Lambert Glacier/Amery Ice Shelf System, Prydz Bay, Antarctica", "uid": "p0000381", "west": 70.0}, {"awards": "1246378 Shevenell, Amelia", "bounds_geometry": "POLYGON((-65.32 -64.15,-65.309 -64.15,-65.298 -64.15,-65.287 -64.15,-65.276 -64.15,-65.265 -64.15,-65.254 -64.15,-65.243 -64.15,-65.232 -64.15,-65.221 -64.15,-65.21 -64.15,-65.21 -64.186,-65.21 -64.222,-65.21 -64.258,-65.21 -64.294,-65.21 -64.33,-65.21 -64.366,-65.21 -64.402,-65.21 -64.438,-65.21 -64.474,-65.21 -64.51,-65.221 -64.51,-65.232 -64.51,-65.243 -64.51,-65.254 -64.51,-65.265 -64.51,-65.276 -64.51,-65.287 -64.51,-65.298 -64.51,-65.309 -64.51,-65.32 -64.51,-65.32 -64.474,-65.32 -64.438,-65.32 -64.402,-65.32 -64.366,-65.32 -64.33,-65.32 -64.294,-65.32 -64.258,-65.32 -64.222,-65.32 -64.186,-65.32 -64.15))", "dataset_titles": "Anvers Trough Foraminifer Stable Isotope data; Geochemical and sedimentologic data from NBP01-01 JPC-34", "datasets": [{"dataset_uid": "601064", "doi": "10.15784/601064", "keywords": "Antarctica; Antarctic Peninsula; Anvers Trough; Chemistry:sediment; Chemistry:Sediment; Foraminifera; Geochemistry; Isotope; LMG1211; LMG1311; Marine Sediments; Oceans; Paleoclimate; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Shevenell, Amelia", "repository": "USAP-DC", "science_program": null, "title": "Anvers Trough Foraminifer Stable Isotope data", "url": "https://www.usap-dc.org/view/dataset/601064"}, {"dataset_uid": "601180", "doi": "10.15784/601180", "keywords": "Antarctica; Be-10; Glaciers/ice Sheet; Glaciers/Ice Sheet; Grain Size; Late Quaternary; Magnetic Susceptibility; Mass Spectrometry; NBP0101; Paleoenvironment; Prydz Bay; Radiocarbon; R/v Nathaniel B. Palmer; Sediment; Sediment Core; Sediment Core Data", "people": "Shevenell, Amelia", "repository": "USAP-DC", "science_program": null, "title": "Geochemical and sedimentologic data from NBP01-01 JPC-34", "url": "https://www.usap-dc.org/view/dataset/601180"}], "date_created": "Fri, 27 Oct 2017 00:00:00 GMT", "description": "Intellectual Merit: Southern Ocean processes play an important role in Late Quaternary glacial-interglacial climate change. However, the direct influence of newly upwelled warm nutrient-rich Circumpolar Deep Water on the Antarctic cryosphere remains speculative. The PI proposes to test the hypothesis that Circumpolar Deep Water-derived ocean heat negatively impacts the mass-balance of Antarctica?s ice sheets during deglaciations using precisely dated late Quaternary paleoceanographic studies of Antarctic margin sediments and a suite of geochemical proxies measured on three existing glacial marine sediment cores from the Prydz Channel, Antarctica. Specifically, the PI will use these data to reconstruct the Late Quaternary history of the Lambert Glacier/Amery Ice Shelf system; evaluate the timing, speed, and style of retreat of the Lambert Glacier/Amery Ice Shelf system during the last deglaciation, and to assess the impact of Circumpolar Deep Water intrusions on the Lambert Glacier/Amery Ice Shelf system in the Late Quaternary. Diatom bound radiocarbon and optically stimulated luminescence techniques will be used to obtain precise stratigraphic age control for the Prydz Channel siliceous muddy ooze intervals. In addition, the PI will measure sedimentary 10Be concentrations to determine the origin of the siliceous muddy ooze units and to track past changes in the position of the ice shelf front. Broader impacts: This proposal will support an early career female scientist and will provide professional development and research experiences for women/minority graduate and undergraduate students. The PI will take advantage of USF?s Oceanography Camp for Girls.", "east": -65.21, "geometry": "POINT(-65.265 -64.33)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS", "is_usap_dc": true, "keywords": "Amd/Us; R/V NBP; USAP-DC", "locations": null, "north": -64.15, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Shevenell, Amelia", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.51, "title": "Late Quaternary Evolution of the Lambert Glacier/Amery Ice Shelf System, Prydz Bay, Antarctica", "uid": "p0000381", "west": -65.32}, {"awards": "1341364 Todd, Claire; 1460449 Goehring, Brent; 1341420 Balco, Gregory", "bounds_geometry": "POLYGON((164.08 -74.6,164.0842 -74.6,164.0884 -74.6,164.0926 -74.6,164.0968 -74.6,164.101 -74.6,164.1052 -74.6,164.1094 -74.6,164.1136 -74.6,164.1178 -74.6,164.122 -74.6,164.122 -74.6023,164.122 -74.6046,164.122 -74.6069,164.122 -74.6092,164.122 -74.6115,164.122 -74.6138,164.122 -74.6161,164.122 -74.6184,164.122 -74.6207,164.122 -74.623,164.1178 -74.623,164.1136 -74.623,164.1094 -74.623,164.1052 -74.623,164.101 -74.623,164.0968 -74.623,164.0926 -74.623,164.0884 -74.623,164.0842 -74.623,164.08 -74.623,164.08 -74.6207,164.08 -74.6184,164.08 -74.6161,164.08 -74.6138,164.08 -74.6115,164.08 -74.6092,164.08 -74.6069,164.08 -74.6046,164.08 -74.6023,164.08 -74.6))", "dataset_titles": "Interface to observational data associated with exposure-age measurements and resulting calculated ages. Dynamic content, updated.", "datasets": [{"dataset_uid": "200196", "doi": null, "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Interface to observational data associated with exposure-age measurements and resulting calculated ages. Dynamic content, updated.", "url": "https://version2.ice-d.org/antarctica/nsf/"}], "date_created": "Wed, 18 Oct 2017 00:00:00 GMT", "description": "The investigators will map glacial deposits and date variations in glacier variability at several ice-free regions in northern Victoria Land, Antarctica. These data will constrain the nature and timing of past ice thickness changes for major glaciers that drain into the northwestern Ross Sea. This is important because during the Last Glacial Maximum (15,000 - 18,000 years ago) these glaciers were most likely flowing together with grounded ice from both the East and West Antarctic Ice Sheets that expanded across the Ross Sea continental shelf to near the present shelf edge. Thus, the thickness of these glaciers was most likely controlled in part by the extent and thickness of the Ross Sea ice sheet and ice shelf. The data the PIs propose to collect can provide constraints on the position of the grounding line in the western Ross Sea during the Last Glacial Maximum, the time that position was reached, and ice thickness changes that occurred after that time. The primary intellectual merit of this project will be to improve understanding of a period of Antarctic ice sheet history that is relatively unconstrained at present and also potentially important in understanding past ice sheet-sea level interactions. This proposal will support an early career researcher\u0027s ongoing program of undergraduate education and research that is building a socio-economically diverse student body with students from backgrounds underrepresented in the geosciences. This proposal will also bring an early career researcher into Antarctic research.", "east": 164.122, "geometry": "POINT(164.101 -74.6115)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; Cosmogenic Dating; Exposure Age; LABORATORY; NOT APPLICABLE; Amd/Us; Ross Sea", "locations": "Ross Sea", "north": -74.6, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Goehring, Brent; Balco, Gregory; Todd, Claire", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "ICE-D", "repositories": "ICE-D", "science_programs": null, "south": -74.623, "title": "Collaborative Research: Terrestrial Exposure-Age Constraints on the last Glacial Maximum Extent of the Antarctic Ice Sheet in the Western Ross Sea", "uid": "p0000306", "west": 164.08}, {"awards": "1103428 Thurber, Andrew", "bounds_geometry": "POLYGON((165 -77,165.5 -77,166 -77,166.5 -77,167 -77,167.5 -77,168 -77,168.5 -77,169 -77,169.5 -77,170 -77,170 -77.1,170 -77.2,170 -77.3,170 -77.4,170 -77.5,170 -77.6,170 -77.7,170 -77.8,170 -77.9,170 -78,169.5 -78,169 -78,168.5 -78,168 -78,167.5 -78,167 -78,166.5 -78,166 -78,165.5 -78,165 -78,165 -77.9,165 -77.8,165 -77.7,165 -77.6,165 -77.5,165 -77.4,165 -77.3,165 -77.2,165 -77.1,165 -77))", "dataset_titles": "McMurdo Spiophanes beds 16s V4 region community composition from sediment cores at McMurdo Station, Antarctia on Sept 9th, 2012 (McMurdo Benthos project); Stable isotopic composition of McMurdo Benthos", "datasets": [{"dataset_uid": "000201", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Stable isotopic composition of McMurdo Benthos", "url": "https://www.bco-dmo.org/dataset/716462"}, {"dataset_uid": "000202", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "McMurdo Spiophanes beds 16s V4 region community composition from sediment cores at McMurdo Station, Antarctia on Sept 9th, 2012 (McMurdo Benthos project)", "url": "https://www.bco-dmo.org/dataset/716443"}], "date_created": "Tue, 10 Oct 2017 00:00:00 GMT", "description": "The biota of the world\u0027s seafloor is fueled by bursts of seasonal primary production. For food-limited sediment communities to persist, a balance must exist between metazoan consumption of and competition with bacteria, a balance which likely changes through the seasons. Polar marine ecosystems are ideal places to study such complex interactions due to stark seasonal shifts between heterotrophic and autotrophic communities, and temperatures that may limit microbial processing of organic matter. The research will test the following hypotheses: 1) heterotrophic bacteria compete with macrofauna for food; 2) as phytoplankton populations decline macrofauna increasingly consume microbial biomass to sustain their populations; and 3) in the absence of seasonal photosynthetic inputs, macrofaunal biodiversity will decrease unless supplied with microbially derived nutrition. Observational and empirical studies will test these hypotheses at McMurdo Station, Antarctica, where a high-abundance macro-infaunal community is adapted to this boom-and-bust cycle of productivity. The investigator will mentor undergraduates from a predominantly minority-serving institution, in the fields of invertebrate taxonomy and biogeochemistry. The general public and young scientists will be engaged through lectures at local K-12 venues and launch of an interactive website. The results will better inform scientists and managers about the effects of climate change on polar ecosystems and the mechanisms of changing productivity patterns on global biodiversity.", "east": 170.0, "geometry": "POINT(167.5 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.0, "nsf_funding_programs": null, "paleo_time": null, "persons": "Thurber, Andrew", "platforms": "Not provided", "repo": "BCO-DMO", "repositories": "BCO-DMO", "science_programs": null, "south": -78.0, "title": "PostDoctoral Research Fellowship", "uid": "p0000416", "west": 165.0}, {"awards": "1341390 Frank, Tracy", "bounds_geometry": null, "dataset_titles": "Stable carbon and oxygen isotope data from drill cores from McMurdo Sound, Antarctica", "datasets": [{"dataset_uid": "000195", "doi": "", "keywords": null, "people": null, "repository": "EarthChem", "science_program": null, "title": "Stable carbon and oxygen isotope data from drill cores from McMurdo Sound, Antarctica", "url": "http://dx.doi.org/10.1594/IEDA/100718"}], "date_created": "Fri, 06 Oct 2017 00:00:00 GMT", "description": "Intellectual Merit: This project will use sediment cores from the Victoria Land Basin (VLB), Antarctica, to study secondary (diagenetic) carbonate minerals, as indicators of the basin?s fluid-flow history, within the well-constrained tectonic, depositional, and climatic context provided by sediment cores. This study will provide insights into subsurface processes in Victoria Land Basin, Antarctica and their relationships with the region?s climatic, cryospheric, and tectonic history. The work will utilize cores previously recovered by US-sponsored stratigraphic drilling projects (CIROS, CRP, and ANDRILL projects). This work is motivated by the unexpected discovery of dense brine in the subsurface of Southern McMurdo Sound during drilling by the ANDRILL Southern McMurdo Sound project. The presence of the brine is intriguing because it contradicts previous models for the origin of subsurface fluids that called upon large contributions from glacial melt water. Project objectives involve documenting the distribution of the brine (and potentially other fluids) via characterization of diagenetic precipitates. The approach will involve integration of petrographic and geochemical data (including conventional carbon, oxygen, and ?clumped? isotopes) to fully characterize diagenetic phases and allow development of a robust paragenetic history. This work will provide novel insights into the Cenozoic evolution of the VLB and, more broadly, the role of glacial processes in generating subsurface fluids. Broader impacts: Results from this project will help understand the origins of brines, groundwater and hydrocarbon reservoirs in analogous modern and ancient deposits elsewhere, which is of broad interest. This project will support the training of one graduate and one undergraduate student at the University of Nebraska-Lincoln (UNL) providing learning opportunities in sedimentary geology and diagenesis, fields with wide applicability. This proposal emphasizes rapid dissemination of results to the scientific community via conference presentations and contributions to peer-reviewed publications. The results will be integrated into education activities designed to develop skills in petrography and diagenesis, which are highly sought after in the energy sector. The project will generate a well-constrained dataset that allows direct linkage of diagenetic phases to environmental and tectonic change across a large sedimentary basin which will provide the basis for a comprehensive case study in an upper-level course (Sedimentary Petrography and Diagenesis) at UNL. In addition, online exercises will be developed and submitted to an open-access site (SEPM Stratigraphy Web) dedicated to sedimentary geology.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Frank, Tracy; Fielding, Christopher", "platforms": "Not provided", "repo": "EarthChem", "repositories": "EarthChem", "science_programs": null, "south": null, "title": "Insights into the Burial, Tectonic, and Hydrologic History of the Cenozoic Succession in McMurdo Sound, Antarctica through Analysis of Diagenetic Phases", "uid": "p0000256", "west": null}, {"awards": "1542778 Alley, Richard", "bounds_geometry": null, "dataset_titles": "c-Axis Fabric of the South Pole Ice Core, SPC14; South Pole Ice Core (SPC14) Bubble Number-Density Data; South Pole Ice Core (SPIcecore) Visual Observations", "datasets": [{"dataset_uid": "601088", "doi": "10.15784/601088", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Physical Properties; Snow/ice; Snow/Ice; South Pole; Visual Observations", "people": "Fegyveresi, John; Alley, Richard", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core (SPIcecore) Visual Observations", "url": "https://www.usap-dc.org/view/dataset/601088"}, {"dataset_uid": "601057", "doi": "10.15784/601057", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; South Pole; SPICEcore", "people": "Voigt, Donald E.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "c-Axis Fabric of the South Pole Ice Core, SPC14", "url": "https://www.usap-dc.org/view/dataset/601057"}, {"dataset_uid": "601880", "doi": "10.15784/601880", "keywords": "Antarctic; Antarctica; Bubble Number Density; Cryosphere; Glaciers; Glaciology; Ice; Ice Core Data; Ice Core Records; NSF-ICF Microtome and Photography Stage; Paleoclimate; Physical Properties; Snow; South Pole", "people": "Fegyveresi, John", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core (SPC14) Bubble Number-Density Data", "url": "https://www.usap-dc.org/view/dataset/601880"}], "date_created": "Fri, 29 Sep 2017 00:00:00 GMT", "description": "Alley/1542778 This award supports a three-year effort to study physical properties of the South Pole ice core to help provide a high-time-resolution history of trace gases and other paleoclimatic indicators from an especially cold site with high preservation potential for important signals. The physical-properties studies include visual inspection to identify any flow disturbances and for identifying annual layers and other features, and combined bubble, grain and ice crystal orientation studies to better understand the processes occurring in the ice that affect the climate record and the ice-sheet behavior. Success of these efforts will provide necessary support for dating and quality control to others studying the ice core, as well as determining the climate history of the site, flow state, and key physical processes in ice. The intellectual merits of the project include better understanding of physical processes, paleoclimatic reconstruction, dating of the ice, and quality assurance. Visual inspection of the core will help identify evidence of flow disturbances that would disrupt the integrity of the climate record and will reveal volcanic horizons and other features of interest. Annual layer counting will be conducted to help estimate accumulation rate over time as recorded in the ice core. Measurements of C-axis fabric, grain size and shapes, and bubble characteristics will provide information about processes occurring in the ice sheet as well as the history of ice flow, current flow state and how the ice is flowing and how easily it will flow in the future. Analysis of this data in conjunction with microCT data will help to reveal grain-scale processes. The broader impacts of the project include support for an early-career, post-doctoral researcher, and improved paleoclimatic data of societal relevance. The results will be incorporated into the active program of education and outreach which have educated many students, members of the public and policy makers through the sharing of information and educational materials about all aspects of ice core science and paleoclimate.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Alley, Richard; Fegyveresi, John; Voigt, Donald E.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": null, "title": "Climate History and Flow Processes from Physical Analyses of the SPICECORE South Pole Ice Core", "uid": "p0000141", "west": null}, {"awards": "1142002 Kaplan, Michael", "bounds_geometry": "POLYGON((-58 -63.7,-57.95 -63.7,-57.9 -63.7,-57.85 -63.7,-57.8 -63.7,-57.75 -63.7,-57.7 -63.7,-57.65 -63.7,-57.6 -63.7,-57.55 -63.7,-57.5 -63.7,-57.5 -63.73,-57.5 -63.76,-57.5 -63.79,-57.5 -63.82,-57.5 -63.85,-57.5 -63.88,-57.5 -63.91,-57.5 -63.94,-57.5 -63.97,-57.5 -64,-57.55 -64,-57.6 -64,-57.65 -64,-57.7 -64,-57.75 -64,-57.8 -64,-57.85 -64,-57.9 -64,-57.95 -64,-58 -64,-58 -63.97,-58 -63.94,-58 -63.91,-58 -63.88,-58 -63.85,-58 -63.82,-58 -63.79,-58 -63.76,-58 -63.73,-58 -63.7))", "dataset_titles": "10Be and 14C data from northern Antarctic Peninsula", "datasets": [{"dataset_uid": "601051", "doi": "10.15784/601051", "keywords": "Antarctica; Antarctic Peninsula; Glaciers/ice Sheet; Glaciers/Ice Sheet; GPS; James Ross Island; Sample/collection Description; Sample/Collection Description; Solid Earth", "people": "Kaplan, Michael", "repository": "USAP-DC", "science_program": null, "title": "10Be and 14C data from northern Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601051"}], "date_created": "Tue, 19 Sep 2017 00:00:00 GMT", "description": "Intellectual Merit: The PIs propose to investigate last glacial maximum through Holocene glacial change on the northeastern Antarctic Peninsula, an area distinguished by dramatic ice shelf collapses and retreat of upstream glaciers. However, there is a lack of long-term context to know the relative significance of recent events over longer time scales. The PIs will obtain data on former ice margin positions, ice thicknesses, glacier retreat and thinning rates, and Holocene glacier change in the James Ross Island Archipelago and areas near the former Larsen-A ice shelf. These data include maximum- and minimum-limiting 14C and cosmogenic-nuclide exposure dates integrated with geomorphology and stratigraphy. Understanding the extent, nature, and history of glacial events is important for placing current changes in glacial extent into a long-term context. This research will also contribute to understanding the sensitivity of ice shelves and glaciers in this region to climate change. Records of changes in land-terminating glaciers will also address outstanding questions related to climate change since the LGM and through the Holocene. The PIs will collect samples during cooperative field projects with scientists of the Instituto Anta\u0026#769;rtico Argentino and the Korea Polar Research Institute planned as part of existing, larger, research projects. Broader impacts: The proposed work includes collaborations with Argentina and Korea. The PIs are currently involved in or are initiating education and outreach activities that will be incorporated into this project. These include interactions with the American Museum of Natural History, the United States Military Academy at West Point, and undergraduate involvement in their laboratories. This project provides a significant opportunity to engage the public as it focuses on an area where environmental changes are the object of attention in the popular media.", "east": -57.5, "geometry": "POINT(-57.75 -63.85)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctic Peninsula; GLACIATION; Not provided", "locations": "Antarctic Peninsula", "north": -63.7, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Kaplan, Michael", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.0, "title": "Terrestrial Geological Context for Glacier Change in the Northeast Antarctica Peninsula", "uid": "p0000337", "west": -58.0}, {"awards": "1246387 Guo, Weifu", "bounds_geometry": "POLYGON((-79.9183333 35.441666667,-55.16316667 35.441666667,-30.40800004 35.441666667,-5.65283341 35.441666667,19.10233322 35.441666667,43.85749985 35.441666667,68.61266648 35.441666667,93.36783311 35.441666667,118.12299974 35.441666667,142.87816637 35.441666667,167.633333 35.441666667,167.633333 25.9255333333,167.633333 16.4093999996,167.633333 6.8932666659,167.633333 -2.6228666678,167.633333 -12.1390000015,167.633333 -21.6551333352,167.633333 -31.1712666689,167.633333 -40.6874000026,167.633333 -50.2035333363,167.633333 -59.71966667,142.87816637 -59.71966667,118.12299974 -59.71966667,93.36783311 -59.71966667,68.61266648 -59.71966667,43.85749985 -59.71966667,19.10233322 -59.71966667,-5.65283341 -59.71966667,-30.40800004 -59.71966667,-55.16316667 -59.71966667,-79.9183333 -59.71966667,-79.9183333 -50.2035333363,-79.9183333 -40.6874000026,-79.9183333 -31.1712666689,-79.9183333 -21.6551333352,-79.9183333 -12.1390000015,-79.9183333 -2.6228666678,-79.9183333 6.8932666659,-79.9183333 16.4093999996,-79.9183333 25.9255333333,-79.9183333 35.441666667))", "dataset_titles": "Clumped isotope composition of modern cold water corals", "datasets": [{"dataset_uid": "000205", "doi": "", "keywords": null, "people": null, "repository": "EarthChem", "science_program": null, "title": "Clumped isotope composition of modern cold water corals", "url": "http://www.earthchem.org/"}], "date_created": "Fri, 07 Jul 2017 00:00:00 GMT", "description": "This proposed research aims to produce high resolution, precise and accurate records of deep water temperatures in the Drake Passage over the past ~40,000 years, by applying the newly developed carbonate clumped isotope thermometer to a unique collection of modern and fossil deep-sea corals, and thus advance the understanding of the role of the Southern Ocean in modulating global climate. In addition, this study will provide further evaluation on the potential of this new thermometer to derive accurate estimates of past ocean temperatures from deep-sea coral skeletons. Funding will support an early-career junior scientist and a graduate student. Despite its crucial role in modulating global climate, rates and amplitudes of environmental changes in the Southern Ocean are often difficult to constrain. In particular, the knowledge about the deep water temperatures in the Southern Ocean during the last glacial cycle is extremely limited. This results both from the lack of well-dated climate archives for the deep Southern Ocean and from the fact that most existing temperature proxies (e.g. del18O and Mg/Ca of foraminifera and corals) suffer from the biological \u0027vital effects\u0027. The latter is especially problematic; it causes substantial challenges in interpreting these geochemical proxies and can lead to biases equivalent to tens of degrees in temperature estimates. Recent development of carbonate clumped isotope thermometer, holds new promises for reconstructing deep water temperatures in the Southern Ocean, since calibration studies of this thermometer in deep-sea corals suggest it is largely free of vital effects. This proposed research seeks to refine the calibration of carbonate clumped isotope thermometer in deep-sea corals at low temperatures, improve the experimental methods to obtain high precision in temperature estimates, and then apply this thermometer to a unique collection of modern and fossil deep-sea corals collected from the Drake Passage during two recent Office of Polar Programs (OPP)-funded cruises, that have already been dated by radiocarbon and U-series methods. By combining the reconstructed temperatures with the radiocarbon and U-Th ages for these deep-sea corals, this study will explore the relationships between these temperature changes and global climate changes.", "east": 167.633333, "geometry": "POINT(43.85749985 -12.1390000015)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": 35.441666667, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Guo, Weifu", "platforms": "Not provided", "repo": "EarthChem", "repositories": "EarthChem", "science_programs": null, "south": -59.71966667, "title": "Reconstruction of Deep-Water Temperatures in the Drake Passage Over the Last Glacial Cycle: Application of Carbonate Clumped Isotope Thermometer to Absolutely-Dated Deep-Sea Corals", "uid": "p0000389", "west": -79.9183333}, {"awards": "1141993 Rich, Jeremy", "bounds_geometry": "POLYGON((-60 -70,-59.3 -70,-58.6 -70,-57.9 -70,-57.2 -70,-56.5 -70,-55.8 -70,-55.1 -70,-54.4 -70,-53.7 -70,-53 -70,-53 -70.9,-53 -71.8,-53 -72.7,-53 -73.6,-53 -74.5,-53 -75.4,-53 -76.3,-53 -77.2,-53 -78.1,-53 -79,-53.7 -79,-54.4 -79,-55.1 -79,-55.8 -79,-56.5 -79,-57.2 -79,-57.9 -79,-58.6 -79,-59.3 -79,-60 -79,-60 -78.1,-60 -77.2,-60 -76.3,-60 -75.4,-60 -74.5,-60 -73.6,-60 -72.7,-60 -71.8,-60 -70.9,-60 -70))", "dataset_titles": "Seasonal Succession of Bacterial Communities in Coastal Waters of the Western Antarctic Peninsula", "datasets": [{"dataset_uid": "601032", "doi": "10.15784/601032", "keywords": "Antarctica; Antarctic Peninsula; Bacteria; Biota; Genetic; Geochemistry; Palmer Station; Sample/collection Description; Sample/Collection Description; Sea Water; Southern Ocean", "people": "Rich, Jeremy", "repository": "USAP-DC", "science_program": null, "title": "Seasonal Succession of Bacterial Communities in Coastal Waters of the Western Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601032"}], "date_created": "Thu, 15 Jun 2017 00:00:00 GMT", "description": "The Western Antarctic Peninsula (WAP) has experienced unprecedented warming and shifts in sea ice cover over the past fifty years. How these changes impact marine microbial communities, and subsequently how these shifts in the biota may affect the carbon cycle in surface waters is unknown. This work will examine how these ecosystem-level changes affect microbial community structure and function. This research will use modern metagenomic and transcriptomic approaches to test the hypothesis that the introduction of organic matter from spring phytoplankton blooms drives turnover in microbial communities. This research will characterize patterns in bacterial and archaeal succession during the transition from the austral winter at two long-term monitoring sites: Palmer Station in the north and Rothera Station in the south. This project will also include microcosm incubations to directly assess the effects of additions of organic carbon and melted sea ice on microbial community structure and function. The results of this work will provide a broader understanding of the roles of both rare and abundant microorganisms in carbon cycling within the WAP region, and how these communities may shift in structure and function in response to climate change. Results will be widely disseminated through publications as well as through presentations at national and international meetings. The research will provide training opportunities for both graduate and undergraduate students and will enhance international collaborations with the British Antarctic Survey.", "east": -53.0, "geometry": "POINT(-56.5 -74.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -70.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Rich, Jeremy", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "Collaborative Research: Microbial Community Assembly in Coastal Waters of the Western Antarctic Peninsula", "uid": "p0000409", "west": -60.0}, {"awards": "1246463 Burns, Jennifer", "bounds_geometry": "POINT(149 -80)", "dataset_titles": "1970s - 1980s Kooyman-Billups TDR Dive Records from Weddell Seals in McMurdo Sound; Cortisol levels in Weddell seal fur; Seasonal Dive Data ; Specimen logs and observations from Weddell Seal colonies in Erebus Bay, 2013-2017; Weddell Seal Heat Flux Dataset; Weddell seal iron dynamics and oxygen stores across lactation; Weddell seal metabolic hormone data; Weddell Seal Molt Phenology Dataset; Weddell Seal Molt Survey Data; Weddell seal summer diving behavior", "datasets": [{"dataset_uid": "601560", "doi": "10.15784/601560", "keywords": "Antarctica; Biota; Diving Behavior; McMurdo Sound; Weddell Seal", "people": "Tsai, EmmaLi", "repository": "USAP-DC", "science_program": null, "title": "1970s - 1980s Kooyman-Billups TDR Dive Records from Weddell Seals in McMurdo Sound", "url": "https://www.usap-dc.org/view/dataset/601560"}, {"dataset_uid": "601587", "doi": "10.15784/601587", "keywords": "Aerobic; Antarctica; Dive Capacity; Iron; McMurdo Sound; Weddell Seal", "people": "Shero, Michelle", "repository": "USAP-DC", "science_program": null, "title": "Weddell seal iron dynamics and oxygen stores across lactation", "url": "https://www.usap-dc.org/view/dataset/601587"}, {"dataset_uid": "601840", "doi": "10.15784/601840", "keywords": "Antarctica; Cryosphere; Hormones; McMurdo Sound; Ross Sea; Weddell Seal", "people": "Kirkham, Amy", "repository": "USAP-DC", "science_program": null, "title": "Weddell seal metabolic hormone data", "url": "https://www.usap-dc.org/view/dataset/601840"}, {"dataset_uid": "601338", "doi": "10.15784/601338", "keywords": "Animal Behavior Observation; Antarctica; Biota; McMurdo Sound; Ross Sea; Seal Dive Data; Weddell Seal", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Seasonal Dive Data ", "url": "https://www.usap-dc.org/view/dataset/601338"}, {"dataset_uid": "601027", "doi": "10.15784/601027", "keywords": "Antarctica; Biota; McMurdo Sound; Oceans; Ross Sea; Sample/collection Description; Sample/Collection Description; Seals", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Specimen logs and observations from Weddell Seal colonies in Erebus Bay, 2013-2017", "url": "https://www.usap-dc.org/view/dataset/601027"}, {"dataset_uid": "601271", "doi": "10.15784/601271", "keywords": "Antarctica; Heat Flux; Infrared Thermography; Physiological Conditions; Surface Temperatures; Thermoregulation; Weddell Seal", "people": "Walcott, Skyla", "repository": "USAP-DC", "science_program": null, "title": "Weddell Seal Heat Flux Dataset", "url": "https://www.usap-dc.org/view/dataset/601271"}, {"dataset_uid": "601131", "doi": "10.15784/601131", "keywords": "Antarctica; B-292-M; Biota; Ross Sea; Seals; Southern Ocean; Weddell Seal", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Weddell Seal Molt Phenology Dataset", "url": "https://www.usap-dc.org/view/dataset/601131"}, {"dataset_uid": "601137", "doi": "10.15784/601137", "keywords": "Antarctica; Biota; Ross Sea; Seals; Southern Ocean; Weddell Seal", "people": "Beltran, Roxanne; Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Weddell seal summer diving behavior", "url": "https://www.usap-dc.org/view/dataset/601137"}, {"dataset_uid": "601134", "doi": "10.15784/601134", "keywords": "Antarctica; Biota; Cortisol; Fur; Ross Sea; Seals; Southern Ocean; Visual Observations; Weddell Seal", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Cortisol levels in Weddell seal fur", "url": "https://www.usap-dc.org/view/dataset/601134"}, {"dataset_uid": "601133", "doi": "10.15784/601133", "keywords": "Antarctica; Biota; Ross Sea; Seals; Visual Observations; Weddell Seal", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Weddell Seal Molt Survey Data", "url": "https://www.usap-dc.org/view/dataset/601133"}], "date_created": "Wed, 24 May 2017 00:00:00 GMT", "description": "Marine mammals that inhabit high latitude environments have evolved unique mechanisms to execute a suite of energetically-costly life history events (CLHEs) within a relatively short timeframe when conditions are most favorable. Understanding the intrinsic and extrinsic factors that regulate CLHEs is particularly important in species such as Weddell seals, as both reproduction and molt are associated with large reductions in foraging effort, and the timing and outcome of each appears linked with the other. The long-term mark recapture program on Erebus Bay\u0027s Weddell seals provides a unique opportunity to examine CLHEs in a known-history population. The proposed work will monitor physiological condition, pregnancy status, and behavior at various times throughout the year to determine if molt timing is influenced by prior reproductive outcome, and if it, in turn, influences future reproductive success. These data will then be used to address the demographic consequences of trade-offs between CLHEs in Weddell seals. The impact of environmental conditions and CLHE timing on population health will also be modeled so that results can be extended to other climates and species. An improved understanding of the interactions between CLHEs and the environment is important in predicting the response of organisms from higher trophic levels to climate change. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of graduate students and a post-doctoral researcher and will further foster an extensive public outreach collaboration.", "east": 165.0, "geometry": "POINT(165 -77)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; USAP-DC; Seal Dive Data; Weddell Seal", "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Burns, Jennifer", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals", "uid": "p0000229", "west": 165.0}, {"awards": "1246223 Hastings, Meredith", "bounds_geometry": "POINT(-112.1115 -79.481)", "dataset_titles": "WAIS Divide WDC06A Nitrate Isotope Record", "datasets": [{"dataset_uid": "601022", "doi": "10.15784/601022", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Nitrate; WAIS Divide; WAIS Divide Ice Core", "people": "Hastings, Meredith; Buffen, Aron", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide WDC06A Nitrate Isotope Record", "url": "https://www.usap-dc.org/view/dataset/601022"}], "date_created": "Tue, 02 May 2017 00:00:00 GMT", "description": "Hastings/1246223 This award supports a project with the aim of distinguishing the sources of nitrate deposition to the West Antarctic Ice Sheet (WAIS) using isotopic ratios snow in archive snow and ice samples. The isotopic composition of nitrate has been shown to contain information about the source of the nitrate (i.e. nitrogen oxides = NOx = NO+NO2) and the oxidation processes that convert NOx to nitrate in the atmosphere prior to deposition. A difficulty in interpreting records in the context of NOx sources is that nitrate can be post-depositionally processed in surface snow, such that the archived record does not reflect the composition of the atmosphere. This intellectual merit of this work specifically aims to investigate variability in the isotopic composition of nitrate in snow and ice from the WAIS in the context of accumulation rate, NOx source emissions, and atmospheric chemistry. These records will be interpreted in the context of our understanding of biospheric (biomass burning, microbial processes in soils), atmospheric (lightning, transport, chemistry), and climate (temperature, accumulation rate) changes over time. A graduate student will be supported as part of this project, and both graduate student and PI will be involved in communicating the utility and results of polar research to elementary school students in the Providence, RI area. The broader impacts of the project also include making efforts to attract more young, female scientists to polar research by establishing a connection between the Earth Science Women\u0027s Network (ESWN), an organization PI Hastings helped to establish, and the Association of Polar Early Career Scientists (APECS). Finally, results of all measurements will be presented at relevant conferences, made available publicly and published in peer-reviewed journals.", "east": -112.1115, "geometry": "POINT(-112.1115 -79.481)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -79.481, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Hastings, Meredith", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Investigating Source, Chemistry and Climate changes using the Isotopic Composition of Nitrate in Antarctic Snow and Ice", "uid": "p0000399", "west": -112.1115}, {"awards": "0538427 McConnell, Joseph", "bounds_geometry": "POINT(-112.1115 -79.481)", "dataset_titles": "Gas measurement from Higgins et al., 2015 - PNAS; WAIS Divide Ice-Core Aerosol Records from 1.5 to 577 m; WAIS Divide Ice-Core Aerosol Records from Intermediate Core WDC05A; WAIS Divide Ice-Core Aerosol Records from Intermediate Core WDC05Q; WAIS Divide Ice-Core Chronology from Intermediate Core WDC05A; WAIS Divide Ice-Core Chronology from Intermediate Core WDC05Q", "datasets": [{"dataset_uid": "601010", "doi": "10.15784/601010", "keywords": "Aerosol; Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Aerosol Records from Intermediate Core WDC05A", "url": "https://www.usap-dc.org/view/dataset/601010"}, {"dataset_uid": "601011", "doi": "10.15784/601011", "keywords": "Aerosol; Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Aerosol Records from Intermediate Core WDC05Q", "url": "https://www.usap-dc.org/view/dataset/601011"}, {"dataset_uid": "601012", "doi": "10.15784/601012", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; Snow Accumulation; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Chronology from Intermediate Core WDC05A", "url": "https://www.usap-dc.org/view/dataset/601012"}, {"dataset_uid": "601009", "doi": "10.15784/601009", "keywords": "Aerosol; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Aerosol Records from 1.5 to 577 m", "url": "https://www.usap-dc.org/view/dataset/601009"}, {"dataset_uid": "601013", "doi": "10.15784/601013", "keywords": "Antarctica; Depth-Age-Model; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Chronology from Intermediate Core WDC05Q", "url": "https://www.usap-dc.org/view/dataset/601013"}, {"dataset_uid": "601014", "doi": "10.15784/601014", "keywords": "Allan Hills; Antarctica; Argon; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope", "people": "Higgins, John", "repository": "USAP-DC", "science_program": null, "title": "Gas measurement from Higgins et al., 2015 - PNAS", "url": "https://www.usap-dc.org/view/dataset/601014"}], "date_created": "Tue, 25 Apr 2017 00:00:00 GMT", "description": "0538427\u003cbr/\u003eMcConnell \u003cbr/\u003eThis award supports a project to use unique, high-depth-resolution records of a range of elements, chemical species, and ice properties measured in two WAIS Divide shallow ice cores and one shallow British ice core from West Antarctic to address critical paleoclimate, environmental, and ice-sheet mass-balance questions. Recent development of the CFA-TE method for ice-core analysis presents the opportunity to develop high-resolution, broad-spectrum glaciochemical records at WAIS Divide at relatively modest cost. Together with CFA-TE measurements from Greenland and other Antarctic sites spanning recent decades to centuries, these rich data will open new avenues for using glaciochemical data to investigate environmental and global changes issues ranging from anthropogenic and volcanic-trace-element fallout to changes in hemispheric-scale circulation, biogeochemistry, rapid-climate-change events, long-term climate change, and ice-sheet mass balance. As part of the proposed research, collaborations with U.S., Argentine, and British researchers will be initiated and expanded to directly address three major IPY themes (i.e., present environmental status, past and present environmental and human change, and polar-global interactions). Included in the contributions from these international collaborators will be ice-core samples, ice-core and meteorological model data, and extensive expertise in Antarctic glaciology, climatology, meteorology, and biogeochemistry. The broader impacts of the work include the training of students. The project will partially support one Ph.D. student and hourly undergraduate involvement. Every effort will be made to attract students from underrepresented groups to these positions. To address the challenge of introducing results of scientific research to the public policy debate, we will continue efforts to publish findings in high visibility journals, provide research results to policy makers, and work with the NSF media office to reach the public through mass-media programs. K-12 teacher and classroom involvement will be realized through outreach to local schools and NSF\u0027s Teachers Experiencing the Antarctic and Arctic (or similar) program in collaboration with WAIS Divide and other polar researchers.", "east": -112.1115, "geometry": "POINT(-112.1115 -79.481)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -79.481, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bender, Michael; McConnell, Joseph", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Trace and Ultra-Trace Chemistry Measurements of the WAIS Divide Ice Core", "uid": "p0000148", "west": -112.1115}, {"awards": "0944191 Taylor, Kendrick; 0944197 Waddington, Edwin", "bounds_geometry": "POLYGON((-180 -79,-173.3 -79,-166.6 -79,-159.9 -79,-153.2 -79,-146.5 -79,-139.8 -79,-133.1 -79,-126.4 -79,-119.7 -79,-113 -79,-113 -79.1,-113 -79.2,-113 -79.3,-113 -79.4,-113 -79.5,-113 -79.6,-113 -79.7,-113 -79.8,-113 -79.9,-113 -80,-119.7 -80,-126.4 -80,-133.1 -80,-139.8 -80,-146.5 -80,-153.2 -80,-159.9 -80,-166.6 -80,-173.3 -80,180 -80,150.9 -80,121.8 -80,92.7 -80,63.6 -80,34.5 -80,5.4 -80,-23.7 -80,-52.8 -80,-81.9 -80,-111 -80,-111 -79.9,-111 -79.8,-111 -79.7,-111 -79.6,-111 -79.5,-111 -79.4,-111 -79.3,-111 -79.2,-111 -79.1,-111 -79,-81.9 -79,-52.8 -79,-23.7 -79,5.4 -79,34.5 -79,63.6 -79,92.7 -79,121.8 -79,150.9 -79,-180 -79))", "dataset_titles": "Accumulation Rates from the WAIS Divide Ice Core; WAIS Divide Ice Core Electrical Conductance Measurements, Antarctica; WAIS Divide Multi Track Electrical Measurements; WD2014: Timescale for WAIS Divide Core 2006 A (WDC-06A)", "datasets": [{"dataset_uid": "601004", "doi": "10.15784/601004", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Snow Accumulation; WAIS Divide Ice Core", "people": "Waddington, Edwin D.; Buizert, Christo; Conway, Howard; Fudge, T. J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Accumulation Rates from the WAIS Divide Ice Core", "url": "https://www.usap-dc.org/view/dataset/601004"}, {"dataset_uid": "601172", "doi": "10.15784/601172", "keywords": "Antarctic; Antarctica; Electrical Conductivity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Records; Physical Properties; Snow/ice; Snow/Ice; WAIS Divide; WAIS Divide Ice Core; Wais Project; West Antarctic Ice Sheet", "people": "Taylor, Kendrick C.; Fudge, T. J.", "repository": "USAP-DC", "science_program": null, "title": "WAIS Divide Multi Track Electrical Measurements", "url": "https://www.usap-dc.org/view/dataset/601172"}, {"dataset_uid": "609591", "doi": "10.7265/N5B56GPJ", "keywords": "Antarctica; Electrical Conductivity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Physical Properties; WAIS Divide; WAIS Divide Ice Core", "people": "Fudge, T. J.; Taylor, Kendrick C.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core Electrical Conductance Measurements, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609591"}, {"dataset_uid": "601015", "doi": "10.15784/601015", "keywords": "Antarctica; Depth-Age-Model; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Fudge, T. J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WD2014: Timescale for WAIS Divide Core 2006 A (WDC-06A)", "url": "https://www.usap-dc.org/view/dataset/601015"}], "date_created": "Tue, 25 Apr 2017 00:00:00 GMT", "description": "This award supports a project to help to establish the depth-age chronology and the histories of accumulation and ice dynamics for the WAIS Divide ice core. The depth-age relationship and the histories of accumulation and ice dynamics are coupled. An accurate age scale is needed to infer histories of accumulation rate and ice-thickness change using ice-flow models. In turn, the accumulation-rate history is needed to calculate the age difference of ice to determine the age of the trapped gases. The accumulation history is also needed to calculate atmospheric concentrations of impurities trapped in the ice and is an important characteristic of climate. The history of ice-thickness change is also fundamental to understanding the stability of the WAIS. The primary goals of the WAIS Divide ice core project are to investigate climate forcing by greenhouse gases, the initiation of climate changes, and the stability of the West Antarctic Ice Sheet (WAIS). An accurate age scale is fundamental for achieving these goals. The first objective of this project is to establish an annually resolved depth-age relationship for the past 40,000 years. This will be done by measuring variations in electrical conductivity along the ice core, which are caused by seasonal variations in chemistry. We expect to be able to resolve annual layers back to 40,000 years before present (3,000 m depth) using this method. The second objective is to search for stratigraphic disturbances in the core that would compromise the paleoclimate record. Irregular layering will be identified by measuring the electrical conductivity of the ice in a vertical plan through the core. The third objective is to derive a preliminary chronology for the entire core. For the deeper ice we will use an ice-flow model to interpolate between known age markers, such as dated volcanic horizons and tie points from the methane gas chronology. The fourth objective is to derive a refined chronology simultaneously with histories of accumulation and ice-sheet thickness. An ice-flow model and all available data will be used to formulate an inverse problem, in which we infer the most appropriate histories of accumulation and ice-thickness, together with estimates of uncertainties. The flow model associated with those preferred histories then produces the best estimate of the chronology. The research contributes directly to the primary goals of the West Antarctic Ice Sheet Initiative. The project will help develop the next generation of scientists through the education and training of one Ph.D. student and several undergraduate students. This project will result in instrumentation for measuring the electrical conductivity of ice cores being available at the National Ice Core Lab for other researchers to use on other projects. All collaborators are committed to fostering diversity and currently participate in scientific outreach and most participate in undergraduate education. Outreach will be accomplished through regularly scheduled community and K-12 outreach events at UW, talks and popular writing by the PIs, as well as through our respective press offices.", "east": -111.0, "geometry": "POINT(-112 -79.5)", "instruments": null, "is_usap_dc": true, "keywords": "Ice Core Depth; National Ice Core Lab; Electrical Conductivity; FIELD INVESTIGATION; Not provided", "locations": null, "north": -79.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Conway, Howard; Fudge, T. J.; Taylor, Kendrick C.; Waddington, Edwin D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -80.0, "title": "Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core", "uid": "p0000026", "west": -113.0}, {"awards": "1141978 Foreman, Christine", "bounds_geometry": "POLYGON((160 -76,160.1 -76,160.2 -76,160.3 -76,160.4 -76,160.5 -76,160.6 -76,160.7 -76,160.8 -76,160.9 -76,161 -76,161 -76.1,161 -76.2,161 -76.3,161 -76.4,161 -76.5,161 -76.6,161 -76.7,161 -76.8,161 -76.9,161 -77,160.9 -77,160.8 -77,160.7 -77,160.6 -77,160.5 -77,160.4 -77,160.3 -77,160.2 -77,160.1 -77,160 -77,160 -76.9,160 -76.8,160 -76.7,160 -76.6,160 -76.5,160 -76.4,160 -76.3,160 -76.2,160 -76.1,160 -76))", "dataset_titles": "FT-ICR MS Metadata; Respiration Metadata; UPLC-Q-TOF data of Cotton Glacier exometabolites", "datasets": [{"dataset_uid": "601089", "doi": "10.15784/601089", "keywords": "Antarctica; Biota; Exometabolites; Mass Spectrometry; Microbes; Microbiology", "people": "Foreman, Christine; Tigges, Michelle; Bothner, Brian", "repository": "USAP-DC", "science_program": null, "title": "UPLC-Q-TOF data of Cotton Glacier exometabolites", "url": "https://www.usap-dc.org/view/dataset/601089"}, {"dataset_uid": "601077", "doi": "10.15784/601077", "keywords": "Antarctica; Biota; Chemistry:fluid; Chemistry:Fluid; Fluorescence Spectroscopy; Mass Spectrometry", "people": "Foreman, Christine; D\u0027Andrilli, Juliana", "repository": "USAP-DC", "science_program": null, "title": "FT-ICR MS Metadata", "url": "https://www.usap-dc.org/view/dataset/601077"}, {"dataset_uid": "601076", "doi": "10.15784/601076", "keywords": "Antarctica; Biota; Chemistry:fluid; Chemistry:Fluid; Fluorescence Spectroscopy; Mass Spectrometry", "people": "Foreman, Christine; Smith, Heidi", "repository": "USAP-DC", "science_program": null, "title": "Respiration Metadata", "url": "https://www.usap-dc.org/view/dataset/601076"}], "date_created": "Tue, 25 Apr 2017 00:00:00 GMT", "description": "Uncovering the dynamics of dissolved organic matter (DOM) is central to an understanding of the global carbon cycle, as organic material from lakes, streams, oceans and soils passes through this pool. DOM acts as a key energy source for microbes in many ecosystems and therefore can affect regional nutrient cycling patterns. For example, preliminary results suggest that organisms isolated from a supraglacial stream on Cotton Glacier, Antarctica, may be important in DOM cycling in this relatively simple, low temperature system. However, little is known about the functional attributes of the microbes that interact with DOM in the environment. This project will use state-of-the-art genomics, proteomics and metabolomics approaches to understand the mechanisms by which two microbial isolates, CG3 and CG9_1, affect DOM cycling. Liquid chromatography-mass spectrometry will also be used to better characterize the microbially-derived DOM from this ecosystem. This project will support the research and training of one undergraduate and two graduate students. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. Understanding the relationship between cold-adapted microbial metabolisms and DOM pools is important as more than 90% of the Earth?s oceans are below 5 degrees Celsius.", "east": 161.0, "geometry": "POINT(160.5 -76.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -76.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Foreman, Christine; Bothner, Brian", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Multidimensional \"omics\" characterization of microbial metabolism and dissolved organic matter in Antarctica", "uid": "p0000408", "west": 160.0}, {"awards": "1347911 Loeb, Valerie", "bounds_geometry": "POLYGON((-66 -54,-65.2 -54,-64.4 -54,-63.6 -54,-62.8 -54,-62 -54,-61.2 -54,-60.4 -54,-59.6 -54,-58.8 -54,-58 -54,-58 -54.8,-58 -55.6,-58 -56.4,-58 -57.2,-58 -58,-58 -58.8,-58 -59.6,-58 -60.4,-58 -61.2,-58 -62,-58.8 -62,-59.6 -62,-60.4 -62,-61.2 -62,-62 -62,-62.8 -62,-63.6 -62,-64.4 -62,-65.2 -62,-66 -62,-66 -61.2,-66 -60.4,-66 -59.6,-66 -58.8,-66 -58,-66 -57.2,-66 -56.4,-66 -55.6,-66 -54.8,-66 -54))", "dataset_titles": "Zooplankton samples, analyses, and underwater video.", "datasets": [{"dataset_uid": "000198", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Zooplankton samples, analyses, and underwater video.", "url": "http://www.bco-dmo.org/project/683961"}], "date_created": "Tue, 25 Apr 2017 00:00:00 GMT", "description": "A 50+ year warming trend in the Southern Ocean has been most dramatic in Drake Passage and likely impacts ecosystem structure here. Acoustic Doppler Current Profiler (ADCP) records from multiple ?L.M. Gould? supply transits of Drake Passage from 1999 to present demonstrate spatial and temporal variability in acoustics backscattering. Acoustics backscattering strength in the upper water column corresponds to zooplankton and nekton biomass that supports predator populations. However, for much of Drake Passage the identity of taxa contributing to this acoustically detected biomass is not known. This project would introduce a biological component to ?L.M. Gould? transits of Drake Passage with the goal of determining the identity of taxa responsible for the backscattering records obtained by ADCP and relating these to higher trophic levels (seabird/marine mammal). Net sampling during spring, summer and fall transits will permit assessment of diel and seasonal changes in the abundance and taxonomic composition of zooplankton and top predators represented between Patagonia and the Antarctic Peninsula. Net samples and depth-referenced video records taken in conjunction with ADCP profiles will permit the identification of the dominant acoustic backscatters in the 3 biogeographic regions represented here, the Subantarctic, Polar Frontal, and Antarctic Zones. The validity of dominant backscattering taxa in the Antarctic Zone will be tested by comparing the ADCP records with abundant zooplankton data collected off the Antarctic Peninsula during January-March 1999-2009 as well with long-term top predator surveys. The broader impacts also include a cruise blog, the production of an article for an online outreach publication based at Moss Landing Marine Labs and a YouTube video featuring shipboard research in the Southern Ocean.", "east": -58.0, "geometry": "POINT(-62 -58)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -54.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Loeb, Valerie; Santora, Jarrod", "platforms": "Not provided", "repo": "BCO-DMO", "repositories": "BCO-DMO", "science_programs": null, "south": -62.0, "title": "Pilot Study: Addition of Biological Sampling to Drake Passage Transits of the \"L.M. Gould\"", "uid": "p0000314", "west": -66.0}, {"awards": "0538520 Thiemens, Mark; 0538049 Steig, Eric", "bounds_geometry": "POINT(-112.085 -79.5)", "dataset_titles": "Multiple Isotope Analysis of Sulfate in the West Antarctic Ice Sheet Divide Ice Core; WAIS Divide sulfate and nitrate isotopes; WAIS ice core isotope data #387, 385 (full data link not provided)", "datasets": [{"dataset_uid": "002512", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "WAIS ice core isotope data #387, 385 (full data link not provided)", "url": "http://www.waisdivide.unh.edu/"}, {"dataset_uid": "609479", "doi": "10.7265/N5BG2KXH", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Thiemens, Mark H.", "repository": "USAP-DC", "science_program": null, "title": "Multiple Isotope Analysis of Sulfate in the West Antarctic Ice Sheet Divide Ice Core", "url": "https://www.usap-dc.org/view/dataset/609479"}, {"dataset_uid": "601007", "doi": "10.15784/601007", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Nitrate; Oxygen Isotope; Sulfate; WAIS Divide; WAIS Divide Ice Core", "people": "Alexander, Becky; Steig, Eric J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide sulfate and nitrate isotopes", "url": "https://www.usap-dc.org/view/dataset/601007"}], "date_created": "Tue, 25 Apr 2017 00:00:00 GMT", "description": "0538520\u003cbr/\u003eThiemens\u003cbr/\u003eThis award supports a project to develop the first complete record of multiple isotope ratios of nitrate and sulfate covering the last ~100,000 years, from the deep ice core planned for the central ice divide of the West Antarctic Ice Sheet (WAIS). The WAIS Divide ice core will be the highest resolution long ice core obtained from Antarctica and we can expect important complementary information to be available, including accurate knowledge of past accumulation rates, temperatures, and compounds such as H2O2, CO and CH4. These compounds play significant roles in global atmospheric chemistry and climate. Especially great potential lies in the use of multiple isotope signatures. The unique mass independent fractionation (MIF) 17O signature of ozone is observed in both nitrate and sulfate, due to the interaction of their precursors with ozone. The development of methods to measure the multiple-isotope composition of small samples of sulfate and nitrate makes continuous high resolution measurements on ice cores feasible for the first time. Recent work has shown that such measurements can be used to determine the hydroxyl radial (OH) and ozone (O3) concentrations in the paleoatmosphere as well as to apportion sulfate and nitrate sources. There is also considerable potential in using these isotope measurements to quantify post depositional changes. In the first two years, continuous measurements from the upper ~100-m of ice at WAIS divide will be obtained, to provide a detailed look at seasonal through centennial scale variability. In the third year, measurements will be made throughout the available depth of the deep core (expected to reach ~500 m at this time). The broader impacts of the project include applications to diverse fields including atmospheric chemistry, glaciology, meteorology, and paleoclimatology. Because nitrate and sulfate are important atmospheric pollutants, the results will also have direct and relevance to global environmental policy. This project will coincide with the International Polar Year (2007-2008), and contributes to goals of the IPY, which include the fostering of interdisciplinary research toward enhanced understanding of atmospheric chemistry and climate in the polar regions.", "east": -112.085, "geometry": "POINT(-112.085 -79.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Isotope Ratios; Temperature; Sulfate; West Antarctic; Paleoatmosphere; LABORATORY; Ice Core; Ice Core Data; Mass Independent Fractionation; FIELD SURVEYS; Not provided; Accumulation Rate; Oxygen Isotope; FIELD INVESTIGATION; Ice Core Chemistry; Isotope", "locations": "West Antarctic", "north": -79.5, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Alexander, Becky; Steig, Eric J.; Thiemens, Mark H.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "Project website", "repositories": "Project website; USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.5, "title": "Collaborative Research: Multiple-isotope Analysis of Nitrate and Sulfate in the West Antarctic Ice Sheet Divide Ice Core", "uid": "p0000020", "west": -112.085}, {"awards": "1043576 Crockett, Elizabeth; 1043781 O\u0027Brien, Kristin", "bounds_geometry": "POLYGON((-64.45 -63.467,-64.2633 -63.467,-64.0766 -63.467,-63.8899 -63.467,-63.7032 -63.467,-63.5165 -63.467,-63.3298 -63.467,-63.1431 -63.467,-62.9564 -63.467,-62.7697 -63.467,-62.583 -63.467,-62.583 -63.5653,-62.583 -63.6636,-62.583 -63.7619,-62.583 -63.8602,-62.583 -63.9585,-62.583 -64.0568,-62.583 -64.1551,-62.583 -64.2534,-62.583 -64.3517,-62.583 -64.45,-62.7697 -64.45,-62.9564 -64.45,-63.1431 -64.45,-63.3298 -64.45,-63.5165 -64.45,-63.7032 -64.45,-63.8899 -64.45,-64.0766 -64.45,-64.2633 -64.45,-64.45 -64.45,-64.45 -64.3517,-64.45 -64.2534,-64.45 -64.1551,-64.45 -64.0568,-64.45 -63.9585,-64.45 -63.8602,-64.45 -63.7619,-64.45 -63.6636,-64.45 -63.5653,-64.45 -63.467))", "dataset_titles": "Electronic fishing logs; Expedition data of LMG1104; Redox Balance in Antarctic Notothenioid Fishes", "datasets": [{"dataset_uid": "002687", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1104", "url": "https://www.rvdata.us/search/cruise/LMG1104"}, {"dataset_uid": "600390", "doi": "10.15784/600390", "keywords": "Antarctica; Biota; Southern Ocean", "people": "Crockett, Elizabeth", "repository": "USAP-DC", "science_program": null, "title": "Electronic fishing logs", "url": "https://www.usap-dc.org/view/dataset/600390"}, {"dataset_uid": "600382", "doi": "10.15784/600382", "keywords": "Antarctica; Antarctic Peninsula; Biota; Fish; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "O\u0027Brien, Kristin", "repository": "USAP-DC", "science_program": null, "title": "Redox Balance in Antarctic Notothenioid Fishes", "url": "https://www.usap-dc.org/view/dataset/600382"}], "date_created": "Tue, 06 Dec 2016 00:00:00 GMT", "description": "Antarctic channichthyid icefishes are stunning examples of the unique physiological traits that can arise during evolution in a constantly cold environment. Icefishes are the only vertebrates that as adults, lack the circulating oxygen-binding protein hemoglobin (Hb); several species within this family also lack the intracellular oxygen-binding protein myoglobin (Mb) in their heart ventricle. The loss of Hb and Mb has resulted in striking modifications in the cardiovascular system to ensure adequate tissue oxygenation, some of which are energetically costly. Recent indicate there may be at least one benefit to not expressing these heme-centered proteins - oxidized proteins and lipids are higher in red-blooded notothenioids compared to icefishes. The research will address the hypothesis that the loss of Hb and Mb reduces oxidative stress in icefishes compared to red-blooded notothenioid fishes, resulting in a lower rate of protein turnover and energetic cost savings. Specifically, the project will (1) Characterize levels of oxidative stress in red- and white-blooded notothenioid fishes, (2) Determine if red- and white-blooded notothenioids differ in their regulation of iron, (3) Determine if lower levels of oxidized proteins in icefishes result in lower rates of protein turnover and energetic cost savings, and (4) Determine if oxygen-binding proteins promote oxidative stress in-vivo and in-vitro. The results will contribute to the understanding of iron-catalyzed oxidative stress, which is associated with the progression of Alzheimer\u0027s, Parkinson\u0027s and cardiovascular diseases. Moreover, the research will increase understanding of factors related to iron metabolism and oxidative stress in notothenioid fishes that may have played key roles in the success of channichthyid icefishes. The broader impacts include development of a website will enable teachers and students to learn more about the fascinating biology of Antarctic icefishes, as well as the impacts of global climate change and commercial fishing activities on Antarctic fishes. Additionally, Alaska Native high school and undergraduate students will be involved in research at the University of Alaska, Fairbanks.", "east": -62.583, "geometry": "POINT(-63.5165 -63.9585)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "Not provided; R/V LMG", "locations": null, "north": -63.467, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Crockett, Elizabeth; O\u0027Brien, Kristin", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -64.45, "title": "Collaborative research: Redox Balance in Antarctic Notothenioid fishes: Do Icefishes have an Advantage?", "uid": "p0000320", "west": -64.45}, {"awards": "0944794 Winberry, J. Paul; 0944671 Wiens, Douglas", "bounds_geometry": "POLYGON((-163 -83.7,-161.9 -83.7,-160.8 -83.7,-159.7 -83.7,-158.6 -83.7,-157.5 -83.7,-156.4 -83.7,-155.3 -83.7,-154.2 -83.7,-153.1 -83.7,-152 -83.7,-152 -83.8,-152 -83.9,-152 -84,-152 -84.1,-152 -84.2,-152 -84.3,-152 -84.4,-152 -84.5,-152 -84.6,-152 -84.7,-153.1 -84.7,-154.2 -84.7,-155.3 -84.7,-156.4 -84.7,-157.5 -84.7,-158.6 -84.7,-159.7 -84.7,-160.8 -84.7,-161.9 -84.7,-163 -84.7,-163 -84.6,-163 -84.5,-163 -84.4,-163 -84.3,-163 -84.2,-163 -84.1,-163 -84,-163 -83.9,-163 -83.8,-163 -83.7))", "dataset_titles": "Geophysical Study of Ice Stream Stick Slip; Whillans Ice Stream Stick-slip", "datasets": [{"dataset_uid": "000169", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Geophysical Study of Ice Stream Stick Slip", "url": "http://ds.iris.edu/mda/2C/?timewindow=2010-2011"}, {"dataset_uid": "609632", "doi": "10.7265/N5PC309V", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Whillans Ice Stream", "people": "Wiens, Douglas; Winberry, Paul; Anandakrishnan, Sridhar; Alley, Richard", "repository": "USAP-DC", "science_program": null, "title": "Whillans Ice Stream Stick-slip", "url": "https://www.usap-dc.org/view/dataset/609632"}], "date_created": "Wed, 16 Nov 2016 00:00:00 GMT", "description": "This award supports a three-year study of the ongoing deceleration and stick-slip motion of Whillans Ice Stream (WIS), West Antarctica. Understanding the dynamic behavior of ice streams is essential for predicting the future of the West Antarctic Ice Sheet (WAIS). Despite being one of the best-studied ice streams in Antarctica, the surprising flow characteristics of WIS continue to demand interdisciplinary research. Recent estimates indicate that the WIS may stagnate within 50 years, resulting in a significant change to the mass balance of the Siple Coast sector of West Antarctica. The reasons for the ongoing stagnation are not well known, and are possibly linked (causally or coincidentally) to the stick-slip behavior. Our recent work on WIS stick-slip motion suggest that all slip events nucleate from a common location on the ice stream, suggesting that a relatively small (approximately 10 km in diameter) region of the exerts fundamental control over the flow of this large ice stream (100s of km long and 100 kilometers wide). We hypothesize that this is a region of increased bed strength and our measurements will address that hypothesis. We will deploy a series of GPS receivers and seismometers on the ice stream to accurately locate the nucleation region so that a comprehensive ground based geophysical survey can be conducted to determine the physical properties of bed at the nucleation point. The ground geophysical program will consist of reflection seismic and ice-penetrating radar studies that will better constrain the properties of both the hypothesized higher-friction nucleation zone and the surrounding regions. Slip events also generate seismic energy that can be recorded 100s of km away from the ice stream, thus, the GPS and seismometer deployment will also aid us in relating seismic waveforms directly with the rapid motion that occurs during slip events. The increased ability to relate rupture processes with seismic emissions will allow us to use archived seismic records to explore changes in the behavior of WIS during the later half of the 20th century. Broader impacts of this study include improved knowledge ice sheet dynamics, which remain a poorly constrained component of the climate system, thus, limiting our ability to predict the Earth\u0027s response to climate change. The scientific work includes the education of two graduate students and continued training of one post-doctoral scholar, thus helping to train the next generation of polar scientists. We will expose the broader public to polar science through interactions with the media and by take advantaging of programs to include K-12 educators in our field work.", "east": -152.0, "geometry": "POINT(-157.5 -84.2)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": true, "keywords": "West Antarctic Ice Sheet; Geodesy; GROUND-BASED OBSERVATIONS; Not provided; Seismic; Geodetic Gps Data", "locations": "West Antarctic Ice Sheet", "north": -83.7, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Winberry, Paul; Anandakrishnan, Sridhar; Alley, Richard; Wiens, Douglas", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided", "repo": "IRIS", "repositories": "IRIS; USAP-DC", "science_programs": null, "south": -84.7, "title": "Collaborative Research: Geophysical Study of Ice Stream Stick-slip Dynamics", "uid": "p0000053", "west": -163.0}, {"awards": "1043554 Willenbring, Jane", "bounds_geometry": "POINT(161.5 -77.5)", "dataset_titles": "Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins", "datasets": [{"dataset_uid": "600379", "doi": "10.15784/600379", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Cosmogenic Radionuclides; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Isotope; Sample/collection Description; Sample/Collection Description; Transantarctic Mountains", "people": "Willenbring, Jane", "repository": "USAP-DC", "science_program": null, "title": "Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins", "url": "https://www.usap-dc.org/view/dataset/600379"}], "date_created": "Wed, 09 Nov 2016 00:00:00 GMT", "description": "Intellectual Merit: The PIs propose to address the question of whether ice surface melting zones developed at high elevations during warm climatic phases in the Transantarctic Mountains. Evidence from sediment cores drilled by the ANDRILL program indicates that open water in the Ross Sea could have been a source of warmth during Pliocene and Pleistocene. The question is whether marine warmth penetrated inland to the ice sheet margins. The glacial record may be ill suited to answer this question, as cold-based glaciers may respond too slowly to register brief warmth. Questions also surround possible orbital controls on regional climate and ice sheet margins. Northern Hemisphere insolation at obliquity and precession timescales is thought to control Antarctic climate through oceanic or atmospheric connections, but new thinking suggests that the duration of Southern Hemisphere summer may be more important. The PIs propose to use high elevation alluvial deposits in the Transantarctic Mountains as a proxy for inland warmth. These relatively young fans, channels, and debris flow levees stand out as visible evidence for the presence of melt water in an otherwise ancient, frozen landscape. Based on initial analyses of an alluvial fan in the Olympus Range, these deposits are sensitive recorders of rare melt events that occur at orbital timescales. For their study they will 1) map alluvial deposits using aerial photography, satellite imagery and GPS assisted field surveys to establish water sources and to quantify parameters effecting melt water production, 2) date stratigraphic sequences within these deposits using OSL, cosmogenic nuclide, and interbedded volcanic ash chronologies, 3) use paired nuclide analyses to estimate exposure and burial times, and rates of deposition and erosion, and 4) use micro and regional scale climate modeling to estimate paleoenvironmental conditions associated with melt events. Broader impacts: This study will produce a record of inland melting from sites adjacent to ice sheet margins to help determine controls on regional climate along margins of the East Antarctic Ice Sheet to aid ice sheet and sea level modeling studies. The proposal will support several graduate and undergraduates. A PhD student will be supported on existing funding. The PIs will work with multiple K 12 schools to conduct interviews and webcasts from Antarctica and they will make follow up visits to classrooms after the field season is complete.", "east": 161.5, "geometry": "POINT(161.5 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Willenbring, Jane", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.5, "title": "Collaborative Research: Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins", "uid": "p0000429", "west": 161.5}, {"awards": "1043018 Pollard, David; 1043517 Clark, Peter; 1043485 Curtice, Josh", "bounds_geometry": "POLYGON((163.5 -77.57,163.685 -77.57,163.87 -77.57,164.055 -77.57,164.24 -77.57,164.425 -77.57,164.61 -77.57,164.795 -77.57,164.98 -77.57,165.165 -77.57,165.35 -77.57,165.35 -77.645,165.35 -77.72,165.35 -77.795,165.35 -77.87,165.35 -77.945,165.35 -78.02,165.35 -78.095,165.35 -78.17,165.35 -78.245,165.35 -78.32,165.165 -78.32,164.98 -78.32,164.795 -78.32,164.61 -78.32,164.425 -78.32,164.24 -78.32,164.055 -78.32,163.87 -78.32,163.685 -78.32,163.5 -78.32,163.5 -78.245,163.5 -78.17,163.5 -78.095,163.5 -78.02,163.5 -77.945,163.5 -77.87,163.5 -77.795,163.5 -77.72,163.5 -77.645,163.5 -77.57))", "dataset_titles": "A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea; Ice Sheet Model Output, West Antarctic Ice Sheet Deglaciation", "datasets": [{"dataset_uid": "609639", "doi": "10.7265/N5NC5Z53", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model", "people": "Pollard, David", "repository": "USAP-DC", "science_program": null, "title": "Ice Sheet Model Output, West Antarctic Ice Sheet Deglaciation", "url": "https://www.usap-dc.org/view/dataset/609639"}, {"dataset_uid": "600123", "doi": "10.15784/600123", "keywords": "Antarctica; Cosmogenic Dating; Ross Sea; Sample/collection Description; Sample/Collection Description; Southern Ocean; WAIS", "people": "Kurz, Mark D.; Curtice, Josh", "repository": "USAP-DC", "science_program": null, "title": "A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea", "url": "https://www.usap-dc.org/view/dataset/600123"}], "date_created": "Sat, 15 Oct 2016 00:00:00 GMT", "description": "1043517/Clark This award supports a project to develop a better understanding of the response of the WAIS to climate change. The timing of the last deglaciation of the western Ross Sea will be improved using in situ terrestrial cosmogenic nuclides (3He, 10Be, 14C, 26Al, 36Cl) to date glacial erratics at key areas and elevations along the western Ross Sea coast. A state-of-the art ice sheet-shelf model will be used to identify mechanisms of deglaciation of the Ross Sea sector of WAIS. The model results and forcing will be compared with observations including the new cosmogenic data proposed here, with the aim of better determining and understanding the history and causes of WAIS deglaciation in the Ross Sea. There is considerable uncertainty, however, in the history of grounding line retreat from its last glacial maximum position, and virtually nothing is known about the timing of ice- surface lowering prior to ~10,000 years ago. Given these uncertainties, we are currently unable to assess one of the most important questions regarding the last deglaciation of the global ice sheets, namely as to whether the Ross Sea sector of WAIS contributed significantly to meltwater pulse 1A (MWP-1A), an extraordinarily rapid (~500-year duration) episode of ~20 m sea-level rise that occurred ~14,500 years ago. The intellectual merit of this project is that recent observations of startling changes at the margins of the Greenland and Antarctic ice sheets indicate that dynamic responses to warming may play a much greater role in the future mass balance of ice sheets than considered in current numerical projections of sea level rise. The broader impacts of this work are that it has direct societal relevance to developing an improved understanding of the response of the West Antarctic ice sheet to current and possible future environmental changes including the sea-level response to glacier and ice sheet melting due to global warming. The PI will communicate results from this project to a variety of audiences through the publication of peer-reviewed papers and by giving talks to public audiences. Finally the project will support a graduate student and undergraduate students in all phases of field-work, laboratory work and data interpretation.", "east": 165.35, "geometry": "POINT(164.425 -77.945)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e DATA ANALYSIS \u003e ENVIRONMENTAL MODELING \u003e COMPUTER", "is_usap_dc": true, "keywords": "Ocean Depth; Not provided; Bed Elevation; Model Output; Sea Level Rise; Surface Accumulation Rate; Surface Melt Rate; Ocean Melt Rate; Total Ice Volume; Modeling; Calving Rate; Total Ice Area; LABORATORY", "locations": null, "north": -77.57, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Pollard, David; Curtice, Josh; Clark, Peter; Kurz, Mark D.", "platforms": "Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.32, "title": "Collaborative Research: A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea", "uid": "p0000194", "west": 163.5}, {"awards": "1246320 Kruckenberg, Seth", "bounds_geometry": "POINT(-144.75 -76.53)", "dataset_titles": null, "datasets": null, "date_created": "Mon, 19 Sep 2016 00:00:00 GMT", "description": "Intellectual Merit: The PI proposes an investigation of mantle xenoliths entrained within a suite of ~1.4 Ma mafic volcanic centers in the Fosdick Mountains, Antarctica. These recently entrained mantle xenoliths offer a unique opportunity to characterize the West Antarctic lithospheric mantle that has been subject to active modification from Cretaceous to Present by plate-boundary processes, such as orthogonal to oblique plate convergence, intracontinental rifting, continental breakup, and Neogene volcanism. These volcanic centers derive from heterogeneous mantle sources and host a compositionally diverse suite of mantle xenoliths that have varied mineral assemblages and microstructures. The proposed research has two complementary goals: to assess structural and compositional heterogeneity within the upper mantle and the variability of intrinsic and extrinsic variables at a variety of lithospheric levels; and to use textural and compositional characterization of the xenolith suite to elucidate possible causes of heterogeneous seismic anisotropy within the Marie Byrd Land mantle lithosphere and inform competing hypotheses explaining the active volcanism, thermal anomaly, and slow seismic velocities beneath West Antarctica. Furthermore, characterization of samples of the mantle beneath West Antarctica provides a type of \u0027ground truth\u0027 in support of contemporary ANET/POLENET seismology research that seeks to determine mantle composition, temperature, and sources of seismic anisotropy. Broader impacts: The PI is in his first-year as a tenure track faculty member at Boston College. A postdoctoral researcher will be trained in EBSD techniques, interdisciplinary polar research, and the mentoring of undergraduate investigators. Two Boston College undergraduates will participate in the research and a priority will be placed on selecting underrepresented minorities and first-generation college students. An existing sample suite assembled over more than 20 years of NSF sponsored field work, will be used. The PI will create a digital database for microstructural, textural, and xenolith data for rapid dissemination to the international Antarctic community.", "east": -144.75, "geometry": "POINT(-144.75 -76.53)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -76.53, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kruckenberg, Seth", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -76.53, "title": "Integrated Evaluation of Mantle Xenoliths from the Fosdick Mountains, Antarctica", "uid": "p0000400", "west": -144.75}, {"awards": "1141877 Aronson, Richard", "bounds_geometry": "POLYGON((-111.18 -49.98,-105.429 -49.98,-99.678 -49.98,-93.927 -49.98,-88.176 -49.98,-82.425 -49.98,-76.674 -49.98,-70.923 -49.98,-65.172 -49.98,-59.421 -49.98,-53.67 -49.98,-53.67 -52.826,-53.67 -55.672,-53.67 -58.518,-53.67 -61.364,-53.67 -64.21,-53.67 -67.056,-53.67 -69.902,-53.67 -72.748,-53.67 -75.594,-53.67 -78.44,-59.421 -78.44,-65.172 -78.44,-70.923 -78.44,-76.674 -78.44,-82.425 -78.44,-88.176 -78.44,-93.927 -78.44,-99.678 -78.44,-105.429 -78.44,-111.18 -78.44,-111.18 -75.594,-111.18 -72.748,-111.18 -69.902,-111.18 -67.056,-111.18 -64.21,-111.18 -61.364,-111.18 -58.518,-111.18 -55.672,-111.18 -52.826,-111.18 -49.98))", "dataset_titles": "Climate Change and Predatory Invasion of the Antarctic Benthos; Expedition Data; Material properties of the exoskeleton of Paralomis birsteini", "datasets": [{"dataset_uid": "601109", "doi": "10.15784/601109", "keywords": "Antarctica; Biota; Callinectes; Exoskeleton; Fish; Glaciers/ice Sheet; Glaciers/Ice Sheet; Paralomis", "people": "Steffel, Brittan", "repository": "USAP-DC", "science_program": null, "title": "Material properties of the exoskeleton of Paralomis birsteini", "url": "https://www.usap-dc.org/view/dataset/601109"}, {"dataset_uid": "600385", "doi": "10.15784/600385", "keywords": "Antarctica; Antarctic Peninsula; Anvers Island; Benthos; Biota; Camera Tow; LMG1502; Marguerite Bay; NBP1002; NBP1310; Oceans; Photo/video; Photo/Video; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Aronson, Richard", "repository": "USAP-DC", "science_program": null, "title": "Climate Change and Predatory Invasion of the Antarctic Benthos", "url": "https://www.usap-dc.org/view/dataset/600385"}, {"dataset_uid": "001417", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1310"}, {"dataset_uid": "600171", "doi": "10.15784/600171", "keywords": "Antarctica; Antarctic Peninsula; Anvers Island; Benthos; Biota; Camera Tow; LMG1502; Marguerite Bay; NBP1002; NBP1310; Oceans; Photo/video; Photo/Video; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Aronson, Richard", "repository": "USAP-DC", "science_program": null, "title": "Climate Change and Predatory Invasion of the Antarctic Benthos", "url": "https://www.usap-dc.org/view/dataset/600171"}], "date_created": "Wed, 14 Sep 2016 00:00:00 GMT", "description": "Elevated temperatures and ocean acidification are both threatening the Southern Ocean. The effects of these environmental changes are poorly understood, but preliminary data suggest that they are driving a biological invasion. Specifically, large populations of skeleton-crushing king crabs, Paralomis birsteini, have been detected off Marguerite Bay on the West Antarctic Peninsula. These crabs appear to be invading the continental shelf region where benthic communities have evolved in the absence of such top-predators. Thus, this invasion could result in a wholesale restructuring of the Antarctic benthic ecosystem. The proposed work seeks to document this invasion and better understand the effects of the introduction of P. birsteini on the ecology of this region. A towed underwater vehicle will be used to photographically image communities, and communities with and without P. birsteini will be compared quantitatively. Additionally, crabs will trapped and various aspects of their morphology and physiology will be assessed. This research is unique in that it will document a biological invasion in real-time and it will therefore enhance our general understandings of the drivers of invasion and resilience in biological communities. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of undergraduate and graduate students and will foster an international collaboration with British scientists. Researchers on this project will participate in outreach thorough the development of K-12 curricular materials.", "east": -53.67, "geometry": "POINT(-82.425 -64.21)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "R/V NBP; Not provided", "locations": null, "north": -49.98, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Aronson, Richard", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -78.44, "title": "Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos", "uid": "p0000303", "west": -111.18}, {"awards": "0944282 Hasiotis, Stephen", "bounds_geometry": "POINT(175 -86)", "dataset_titles": "Paleoenvironmental and Paleoclimatic Analysis of the Beacon Supergroup, Beardmore Glacier Area, Central Transantarctic Mountains, Antarctica", "datasets": [{"dataset_uid": "600156", "doi": "10.15784/600156", "keywords": "Antarctica; Beardmore Glacier; Biota; Fossil; Paleoclimate; Sample/collection Description; Sample/Collection Description; Solid Earth; Transantarctic Mountains", "people": "Hasiotis, Stephen", "repository": "USAP-DC", "science_program": null, "title": "Paleoenvironmental and Paleoclimatic Analysis of the Beacon Supergroup, Beardmore Glacier Area, Central Transantarctic Mountains, Antarctica", "url": "https://www.usap-dc.org/view/dataset/600156"}], "date_created": "Fri, 03 Jun 2016 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThis proposal will study the diversity, abundance, and tiering patterns of ichnofossils in continental and marine deposits of the Beacon Supergroup in the Beardmore Glacier Area (BGA). The PIs will focus on continental strata that contain a variety of ichnofossils and paleosols. Ichnofossils will be evaluated for their architectural and surficial morphologies, and will be compared to modern and ancient traces to interpret the tracemaker behavior and paleoenvironmental setting. Distribution of ichnofossils within these units may indicate the effect of lateral variability of pedogenesis, the magnitude and frequency of depositional events, and the amount of moisture within the sediment, as well as the effects of climate change. The paleoclimatic significance of ichnofossils will be determined by comparing the burrow size, occurrence, tiering, and pedogenic significance of ichnofossils in measured sections of stratigraphic units deposited during global warming and cooling episodes. Comparisons will be made between BGA formations to stratigraphically equivalent rocks deposited at low paleolatitudes with previously determined paleoclimatic settings. The objectives of this project are to address two major questions: what differences existed in ichnodiversity, abundance, and tiering in marine and continental deposits between high- and low-paleolatitudes, and was there a dearth of habitat usage in continental deposits during the late Paleozoic and Mesozoic, particularly in fluvial and lacustrine environments compared to the habitat usage in the marine realm at that time? \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis study will enhance the ability to interpret paleoenvironments to the subenvironmental scale, understand the evolution of soil biota and ecosystems at high paleolatitudes, determine the role of organisms in soil formation at high paleolatitudes, explore the effects of climate change on the body size and diversity of organisms in the soil communities, and develop new tools to interpret paleoclimate in high latitudes. There is a strong education component associated with this proposal.", "east": 175.0, "geometry": "POINT(175 -86)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -86.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Hasiotis, Stephen", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -86.0, "title": "Paleoenvironmental and Paleoclimatic Analysis of the Beacon Supergroup, Beardmore Glacier Area, Central Transantarctic Mountains, Antarctica", "uid": "p0000423", "west": 175.0}, {"awards": "1043750 Chen, Jianli", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Long-Term and Interannual Variability of Antarctic Ice Sheet Mass Balance From Satellite Gravimetry and Other Geodetic Measurements", "datasets": [{"dataset_uid": "600159", "doi": "10.15784/600159", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; GRACE; Potential Field; Satellite Data", "people": "Chen, Jianli", "repository": "USAP-DC", "science_program": null, "title": "Long-Term and Interannual Variability of Antarctic Ice Sheet Mass Balance From Satellite Gravimetry and Other Geodetic Measurements", "url": "https://www.usap-dc.org/view/dataset/600159"}], "date_created": "Fri, 13 May 2016 00:00:00 GMT", "description": "1043750/Chen This award supports a project to improve the estimate of long-term and inter-annual variability of Antarctic ice sheet mass balance at continental, regional, and catchment scales, using satellite gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) and other geodetic measurements. The work will improve the quantification of long-term mass change rates over Antarctica using GRACE gravity data with a longer record and newer generation(s) of products and will develop advanced numerical forward modeling techniques that can accurately correct leakage effects associated with GRACE data processing, and significantly improve spatial resolution of GRACE mass rate estimates over Antarctica. The work will also contribute to a better understanding of crustal uplift rates due to postglacial rebound (PGR) and present day ice load change over Antarctica via PGR models, GPS measurements, and combined analysis of GRACE and ICESat elevation changes. Inter-annual variations of ice mass over Antarctica will be investigated at continental and catchment scales and connections to regional climate change will be studied. The major deliverables from this study will be improved assessments of ice mass balance for the entire Antarctic ice sheet and potential contribution to global mean sea level rise. The work will also provide estimates of regional ice mass change rates over Antarctica, with a focus along the coast in the Amundsen Sea Embayment, the Peninsula in West Antarctica, and in Wilkes Land and Victoria Land in East Antarctica. Estimates of inter-annual ice mass change over Antarctica at various spatial scales, and assessments of uncertainty of GRACE ice rate estimates and PGR models errors over Antarctica will also be made. The intellectual merits of the proposed investigation include 1) providing improved assessments of Antarctic ice mass balance at different temporal and spatial scales with unprecedented accuracy, an important contribution to broad areas of polar science research; 2) combining high accuracy GPS vertical uplift measurements and PGR models to better quantify long-term crust uplift effects that are not distinguishable from ice mass changes by GRACE; and 3) unifying the work of several investigations at the forefront of quantifying ice sheet and glacier mass balance and crustal uplift based on a variety of modern space geodetic observations. The broader impacts include the fact that the project will actively involve student participation and training, through the support of two graduate students. In addition the project will contribute to general education and public outreach (E/PO) activities and the results from this investigation will help inspire future geoscientists and promote public awareness of significant manifestations of climate change.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e LASER RANGING \u003e GRACE LRR", "is_usap_dc": true, "keywords": "SATELLITES; GRACE; Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Chen, Jianli; Wilson, Clark; Blankenship, Donald D.; Tapley, Byron", "platforms": "Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e NASA EARTH SYSTEM SCIENCE PATHFINDER \u003e GRACE; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Long-Term and Interannual Variability of Antarctic Ice Sheet Mass Balance From Satellite Gravimetry and Other Geodetic Measurements", "uid": "p0000415", "west": -180.0}, {"awards": "1142052 MacPhee, Ross", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP1602", "datasets": [{"dataset_uid": "002666", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1602", "url": "https://www.rvdata.us/search/cruise/NBP1602"}], "date_created": "Tue, 26 Apr 2016 00:00:00 GMT", "description": "Intellectual Merit: The role that Antarctica has played in vertebrate evolution and paleobiogeography during the Late Cretaceous and early Paleogene is largely unknown. Evidence indicates that Antarctica was home to a diverse flora during the Late Cretaceous and Paleogene, yet the vertebrates that must have existed on the continent remain virtually unknown. To fill this gap, the PIs have formed the Antarctic Vertebrate Paleontology Initiative (AVPI), whose goal is to search for and collect Late Cretaceous-Paleogene vertebrate fossils in Antarctica at localities that have never been properly surveyed, as well as in areas of proven potential. Two field seasons are proposed for the James Ross Island Group on the northeastern margin of the Antarctic Peninsula. Expected finds include chondrichthyan and osteichthyan fishes, marine reptiles, ornithischian and non-avian theropod dinosaurs, ornithurine birds, and therian and non-therian mammals. Hypotheses to be tested include: 1) multiple extant bird and/or therian mammal lineages originated during the Cretaceous and survived the K-Pg boundary extinction event; 2) the ?Scotia Portal? permitted the dispersal of continental vertebrates between Antarctica and South America prior to the latest Cretaceous and through to the late Paleocene or early Eocene; 3) Late Cretaceous non-avian dinosaurs from Antarctica are closely related to coeval taxa from other Gondwanan landmasses; 4) terminal Cretaceous marine reptile faunas from southern Gondwana differed from contemporaneous but more northerly assemblages; and 5) the collapse of Antarctic ichthyofaunal diversity during the K-Pg transition was triggered by a catastrophic extinction. Broader impacts: The PIs will communicate discoveries to audiences through a variety of channels, such as the Dinosaurs in Their Time exhibition at Carnegie Museum of Natural History and the outreach programs of the Environmental Science Institute of the University of Texas at Austin. In addition, Carnegie Museum will launch a student-oriented programming initiative using AVPI research as a primary focus. This array of activities will help some 2,000 Pittsburgh-area undergraduates to explore the relevance of deep-time discoveries to critical modern issues. The AVPI will provide research opportunities for eight undergraduate and three graduate students, several of whom will receive field training in Antarctica. Fossils will be accessioned into the Carnegie Museum collection, and made accessible virtually through the NSF-funded Digital Morphology library at University of Texas.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Lamanna, Matthew", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Late Cretaceous-Paleogene Vertebrates from Antarctica: Implications for Paleobiogeography, Paleoenvironment, and Extinction in Polar Gondwana", "uid": "p0000854", "west": null}, {"awards": "1142018 Arrigo, Kevin", "bounds_geometry": "POLYGON((-75.8 -61.08,-74.457 -61.08,-73.114 -61.08,-71.771 -61.08,-70.428 -61.08,-69.085 -61.08,-67.742 -61.08,-66.399 -61.08,-65.056 -61.08,-63.713 -61.08,-62.37 -61.08,-62.37 -61.684,-62.37 -62.288,-62.37 -62.892,-62.37 -63.496,-62.37 -64.1,-62.37 -64.704,-62.37 -65.308,-62.37 -65.912,-62.37 -66.516,-62.37 -67.12,-63.713 -67.12,-65.056 -67.12,-66.399 -67.12,-67.742 -67.12,-69.085 -67.12,-70.428 -67.12,-71.771 -67.12,-73.114 -67.12,-74.457 -67.12,-75.8 -67.12,-75.8 -66.516,-75.8 -65.912,-75.8 -65.308,-75.8 -64.704,-75.8 -64.1,-75.8 -63.496,-75.8 -62.892,-75.8 -62.288,-75.8 -61.684,-75.8 -61.08))", "dataset_titles": "Adaptive Responses of Phaeocystis Populations in Antarctic Ecosystems; Expedition Data", "datasets": [{"dataset_uid": "001417", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1310"}, {"dataset_uid": "600161", "doi": "10.15784/600161", "keywords": "Antarctica; Antarctic Peninsula; Biota; Chlorophyll; CTD Data; NBP1310; NBP1409; Oceans; Physical Oceanography; Phytoplankton; Sea Surface; Southern Ocean", "people": "Arrigo, Kevin", "repository": "USAP-DC", "science_program": null, "title": "Adaptive Responses of Phaeocystis Populations in Antarctic Ecosystems", "url": "https://www.usap-dc.org/view/dataset/600161"}], "date_created": "Mon, 11 Jan 2016 00:00:00 GMT", "description": "Global climate change is having significant effects on areas of the Southern Ocean, and a better understanding of this ecosystem will permit predictions about the large-scale implications of these shifts. The haptophyte Phaeocystis antarctica is an important component of the phytoplankton communities in this region, but little is known about the factors controlling its distribution. Preliminary data suggest that P. antarctica posses unique adaptations that allow it to thrive in regions with dynamic light regimes. This research will extend these results to identify the physiological and genetic mechanisms that affect the growth and distribution of P. antarctica. This work will use field and laboratory-based studies and a suite of modern molecular techniques to better understand the biogeography and physiology of this key organism. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of two graduate students and will foster an established international collaboration with Dutch scientists. Researchers on this project will participate in outreach programs targeting K12 teachers as well as high school students.", "east": -62.37, "geometry": "POINT(-69.085 -64.1)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "R/V NBP; Not provided", "locations": null, "north": -61.08, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Arrigo, Kevin", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -67.12, "title": "Collaborative Research: Adaptive Responses of Phaeocystis Populations in Antarctic Ecosystems", "uid": "p0000446", "west": -75.8}, {"awards": "0948247 Pettit, Erin", "bounds_geometry": "POINT(-123.35 -75.1)", "dataset_titles": null, "datasets": null, "date_created": "Wed, 06 Jan 2016 00:00:00 GMT", "description": "Pettit/0948247\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to study of the relationship between fabric and climate for the ice near the EPICA Dome C ice core site, East Antarctica. The work builds on an ongoing study at Siple Dome, West Antarctica and takes advantage of collaborations with European scientists and access to the Dome C borehole to make measurements of sonic velocity. The intellectual merit of the project is that a better understanding of how fabric preserves past climate information can improve models of the ice flow near ice core sites and the interpreta-tion of ice core data (particularly paleo-accumulation), and it may allow us to extract climate information directly from fabric data. In addition, because ice deformation is sensitive to the orientation of crystals, ice flow patterns are sensitive to the fabric. Thus, variations in the fabric between glacial and interglacial ice can affect how ice deforms and how fabric in the ice sheet develops. The Dome C site is particularly important for answering these questions, because the ice core shows evidence of eight glacial cycles, not just one as found at Siple Dome or the Greenland sites. The research will improve the understanding of the proxy relationship between sonic-velocity data and fabric; will help to model the pattern of ice flow caused by the fabric variation between glacial and interglacial time periods using these data, existing ice core chemistry and existing and new thin section data, improved surface strain data, and borehole deformation data; and will help to better understand the positive feedback mechanism that enhances fabric (and corresponding rheological) variability through a focused study of several climate transitions and the associated fabric changes. Borehole compressional-wave sonic-velocity will be measured which will complement the sonic-velocity data that already exist for boreholes in Greenland and West Antarctica. These will be the first sonic-velocity measurements in East Antarctica and the first measurements that extend for more than a single glacial/interglacial transition. The project will ultimately contribute to better interpretation of ice core records for both paleoclimate studies and for ice flow history, both of which connect to the broader questions of the role of ice in the climate system. This project will also strengthen the international collaborations within the paleoclimate and ice sheet modeling communities. This project will partially support a graduate student at the University of Alaska Fairbanks who is currently working on modeling ice including anisotropy and it will support the growth of a young scientist through a Post-Doc position. This Post Doc will gain important experience collaborating with the EPICA scientists in studying the climate-fabric relationship. Erin Pettit is active in field-science education for high school students, under-graduates, teachers, and adults. This project will help support the continued development and enhancement of Girls on Ice a program that encourages young women to explore science and the natural world.", "east": -123.35, "geometry": "POINT(-123.35 -75.1)", "instruments": null, "is_usap_dc": false, "keywords": "LABORATORY; Crystals; Deformation; FIELD INVESTIGATION; Model; Sonic Logger; Ice Flow; Rheology; FIELD SURVEYS; Borehole; Climate; Ice Fabric; Antarctica; Interglacial", "locations": "Antarctica", "north": -75.1, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Pettit, Erin; Hansen, Sharon", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -75.1, "title": "The Relationship between Climate and Ice Rheology at Dome C, East Antarctica", "uid": "p0000708", "west": -123.35}, {"awards": "1142074 Ballard, Grant; 1142174 Smith, Walker", "bounds_geometry": "POLYGON((165.9 -76.9,166.25 -76.9,166.6 -76.9,166.95 -76.9,167.3 -76.9,167.65 -76.9,168 -76.9,168.35 -76.9,168.7 -76.9,169.05 -76.9,169.4 -76.9,169.4 -76.97,169.4 -77.04,169.4 -77.11,169.4 -77.18,169.4 -77.25,169.4 -77.32,169.4 -77.39,169.4 -77.46,169.4 -77.53,169.4 -77.6,169.05 -77.6,168.7 -77.6,168.35 -77.6,168 -77.6,167.65 -77.6,167.3 -77.6,166.95 -77.6,166.6 -77.6,166.25 -77.6,165.9 -77.6,165.9 -77.53,165.9 -77.46,165.9 -77.39,165.9 -77.32,165.9 -77.25,165.9 -77.18,165.9 -77.11,165.9 -77.04,165.9 -76.97,165.9 -76.9))", "dataset_titles": "Access to data; Experimental analyses of phytoplankton temperature response; Glider data from the southern Ross Sea collected from the iRobot Seaglider during the RVIB Nathaniel B. Palmer (AUV-SG-503-2012, NBP1210) cruises in 2012 (Penguin Glider project); Penguin Science file sharing site", "datasets": [{"dataset_uid": "001426", "doi": "", "keywords": null, "people": null, "repository": "CADC", "science_program": null, "title": "Access to data", "url": "http://data.prbo.org/apps/penguinscience/AllData/NSF-ANT-1142074/"}, {"dataset_uid": "002740", "doi": null, "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Penguin Science file sharing site", "url": "https://data.pointblue.org/apps/penguin_science/"}, {"dataset_uid": "601135", "doi": "10.15784/601135", "keywords": "Antarctica; Biota; Chlorophyll; Foraminifera; Growth; Phytoplankton; Plankton; Temperature", "people": "Smith, Walker", "repository": "USAP-DC", "science_program": null, "title": "Experimental analyses of phytoplankton temperature response", "url": "https://www.usap-dc.org/view/dataset/601135"}, {"dataset_uid": "002575", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Glider data from the southern Ross Sea collected from the iRobot Seaglider during the RVIB Nathaniel B. Palmer (AUV-SG-503-2012, NBP1210) cruises in 2012 (Penguin Glider project)", "url": "https://www.bco-dmo.org/dataset/568868/data"}], "date_created": "Mon, 14 Dec 2015 00:00:00 GMT", "description": "Abstract The Ross Sea is believed to contributes a huge portion (~1/3) of the primary productivity of the Southern Ocean and is home to a similar large portion of the top predators (e.g. 38% of Adelie, 28% of Emperor penguins) of the Antarctic sea ice ecosystem. The trophic pathways in this system are complex in both space and time. One scenario for the Ross Sea ecosystem is that diatoms are grazed by krill, which are in turn the preferred food of fish, penguins and other predators. Phaeocystis colonies, on the other hand lead to grazing by pteropods and other organisms that are a non-favoured food source for top predators. Remotely sensed chlorophyll, indicating all phytoplankton, is then suggested to be a relatively poor predictor of penguin foraging efforts. This is also consistent with notion that algal species composition is very important to penguin grazing pressure, mediated by krill, and perhaps resulting in selective depletion. This collaborative research sets out to use an autonomous glider, equipped with a range of sensors, and informed by satellite chlorophyll imagery to be combined with 3-dimenisonal active penguin tracking to their preferred foraging sites. The effect of localized grazing pressure of krill on the appearance and disappearance of algal blooms will also be followed. Overall the objective of the research is to reconcile and explain several years of the study of the foraging habits and strategies of (top predator) penguins at the Cape Crozier site (Ross Island), with the dynamics of krill and their supporting algal food webs. The use of a glider to answer a primarily ecological questions is subject to moderate to high risk, and is potentially transformative.", "east": 169.4, "geometry": "POINT(167.65 -77.25)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided; USAP-DC", "locations": null, "north": -76.9, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Walker; Ballard, Grant", "platforms": "Not provided", "repo": "CADC", "repositories": "BCO-DMO; CADC; Project website; USAP-DC", "science_programs": null, "south": -77.6, "title": "Collaborative Research: Penguin Foraging Reveals Phytoplankton Spatial Structure in the Ross Sea", "uid": "p0000322", "west": 165.9}, {"awards": "0944411 Ainley, David; 0944141 Ballard, Grant; 0944358 Dugger, Katie", "bounds_geometry": "POLYGON((165.9 -76.9,166.25 -76.9,166.6 -76.9,166.95 -76.9,167.3 -76.9,167.65 -76.9,168 -76.9,168.35 -76.9,168.7 -76.9,169.05 -76.9,169.4 -76.9,169.4 -76.97,169.4 -77.04,169.4 -77.11,169.4 -77.18,169.4 -77.25,169.4 -77.32,169.4 -77.39,169.4 -77.46,169.4 -77.53,169.4 -77.6,169.05 -77.6,168.7 -77.6,168.35 -77.6,168 -77.6,167.65 -77.6,167.3 -77.6,166.95 -77.6,166.6 -77.6,166.25 -77.6,165.9 -77.6,165.9 -77.53,165.9 -77.46,165.9 -77.39,165.9 -77.32,165.9 -77.25,165.9 -77.18,165.9 -77.11,165.9 -77.04,165.9 -76.97,165.9 -76.9))", "dataset_titles": "Adelie penguin banding data 1994-2009; Adelie penguin chick counts 1997-2009; Adelie penguin chick measurements 1996 - 2009; Adelie penguin diet data 1996 - 2009; Adelie penguin dive data 1999-2009; Adelie penguin Geolocation Sensor data 2003-2007; Adelie penguin resighting data 1997-2009; Adelie penguin resighting data 1997-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science; Adelie penguin satellite position data 2000-2009; Adelie penguin weighbridge data 1994-2009; Daily weather observations 1996-2009; Leopard Seal counts 1997-2009; PRBO/California Avian Data Center (CADC)", "datasets": [{"dataset_uid": "600008", "doi": "", "keywords": null, "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin diet data 1996 - 2009", "url": "https://www.usap-dc.org/view/dataset/600008"}, {"dataset_uid": "600006", "doi": "", "keywords": null, "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin chick measurements 1996 - 2009", "url": "https://www.usap-dc.org/view/dataset/600006"}, {"dataset_uid": "600005", "doi": "", "keywords": null, "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin banding data 1994-2009", "url": "https://www.usap-dc.org/view/dataset/600005"}, {"dataset_uid": "000154", "doi": "", "keywords": null, "people": null, "repository": "CADC", "science_program": null, "title": "PRBO/California Avian Data Center (CADC)", "url": "http://data.prbo.org/apps/penguinscience/"}, {"dataset_uid": "601444", "doi": "10.15784/601444", "keywords": "Adelie Penguin; Antarctica; Biota; Demography; Mark-Recapture; Monitoring; Penguin; Ross Island", "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin resighting data 1997-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "url": "https://www.usap-dc.org/view/dataset/601444"}, {"dataset_uid": "600015", "doi": "", "keywords": null, "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Daily weather observations 1996-2009", "url": "https://www.usap-dc.org/view/dataset/600015"}, {"dataset_uid": "600014", "doi": "", "keywords": null, "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin weighbridge data 1994-2009", "url": "https://www.usap-dc.org/view/dataset/600014"}, {"dataset_uid": "600013", "doi": "", "keywords": null, "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin dive data 1999-2009", "url": "https://www.usap-dc.org/view/dataset/600013"}, {"dataset_uid": "600012", "doi": "", "keywords": null, "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin satellite position data 2000-2009", "url": "https://www.usap-dc.org/view/dataset/600012"}, {"dataset_uid": "600011", "doi": "", "keywords": null, "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin resighting data 1997-2009", "url": "https://www.usap-dc.org/view/dataset/600011"}, {"dataset_uid": "600010", "doi": "", "keywords": "Biota; Oceans", "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Leopard Seal counts 1997-2009", "url": "https://www.usap-dc.org/view/dataset/600010"}, {"dataset_uid": "600009", "doi": "", "keywords": null, "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin Geolocation Sensor data 2003-2007", "url": "https://www.usap-dc.org/view/dataset/600009"}, {"dataset_uid": "600007", "doi": "", "keywords": "Biota", "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin chick counts 1997-2009", "url": "https://www.usap-dc.org/view/dataset/600007"}], "date_created": "Sun, 13 Dec 2015 00:00:00 GMT", "description": "While changes in populations typically are tracked to gauge the impact of climate or habitat change, the process involves the response of individuals as each copes with an altered environment. In a study of Adelie penguins that spans 13 breeding seasons, results indicate that only 20% of individuals within a colony successfully raise offspring, and that they do so because of their exemplary foraging proficiency. Moreover, foraging appears to require more effort at the largest colony, where intraspecific competition is higher than at small colonies, and also requires more proficiency during periods of environmental stress. When conditions are particularly daunting, emigration dramatically increases, countering the long-standing assumption that Ad\u00e9lie penguins are highly philopatric. The research project will 1) determine the effect of age, experience and physiology on individual foraging efficiency; 2) determine the effect of age, experience, and individual quality on breeding success and survival in varying environmental and competitive conditions at the colony level; and 3) develop a comprehensive model for the Ross-Beaufort Island metapopulation dynamics. Broader impacts include training of interns, continuation of public outreach through the highly successful project website penguinscience.com, development of classroom materials and other standards-based instructional resources.", "east": 169.4, "geometry": "POINT(167.65 -77.25)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -76.9, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ainley, David; Dugger, Katie; Ballard, Grant", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "CADC; USAP-DC", "science_programs": null, "south": -77.6, "title": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels", "uid": "p0000318", "west": 165.9}, {"awards": "1043454 Kooyman, Gerald", "bounds_geometry": "POLYGON((-172.642 -72.55,-170.9074 -72.55,-169.1728 -72.55,-167.4382 -72.55,-165.7036 -72.55,-163.969 -72.55,-162.2344 -72.55,-160.4998 -72.55,-158.7652 -72.55,-157.0306 -72.55,-155.296 -72.55,-155.296 -73.0743,-155.296 -73.5986,-155.296 -74.1229,-155.296 -74.6472,-155.296 -75.1715,-155.296 -75.6958,-155.296 -76.2201,-155.296 -76.7444,-155.296 -77.2687,-155.296 -77.793,-157.0306 -77.793,-158.7652 -77.793,-160.4998 -77.793,-162.2344 -77.793,-163.969 -77.793,-165.7036 -77.793,-167.4382 -77.793,-169.1728 -77.793,-170.9074 -77.793,-172.642 -77.793,-172.642 -77.2687,-172.642 -76.7444,-172.642 -76.2201,-172.642 -75.6958,-172.642 -75.1715,-172.642 -74.6472,-172.642 -74.1229,-172.642 -73.5986,-172.642 -73.0743,-172.642 -72.55))", "dataset_titles": "NBP1302 data; Pre and Post Molt Biology of Emperor Penguins - Oden Trans - Ross / Amundsen Sea Cruise", "datasets": [{"dataset_uid": "600149", "doi": "10.15784/600149", "keywords": "Amundsen Sea; Biota; Oceans; Penguin; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Kooyman, Gerald", "repository": "USAP-DC", "science_program": null, "title": "Pre and Post Molt Biology of Emperor Penguins - Oden Trans - Ross / Amundsen Sea Cruise", "url": "https://www.usap-dc.org/view/dataset/600149"}, {"dataset_uid": "000179", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1302 data", "url": "https://www.rvdata.us/search/cruise/NBP1302"}], "date_created": "Sat, 12 Dec 2015 00:00:00 GMT", "description": "The emperor penguin dives deeper and longer, fasts longer, and endures the harshest weather conditions of all diving birds. It spends about four and half months per annum deep in Antarctic pack ice away from shore and stations, and thus is largely unavailable for study. This time includes preparation for the molt, and travel to the colony to breed, a time period in which great swings in body weight occur. This study will fill an important gap in what we know about the biology of the annual cycle of the emperor by examining the molt-post molt period. The P.I. proposes to traverse the Amundsen and Bellingshausen seas on the Oden, to locate and tag emperor penguins during the molt season. The objectives are to (1) Place satellite tags on 20 adult post molt birds to determine their route, rate of travel, and diving behavior as they return back to their breeding colonies, (2) Obtain an index of body condition, (3) Collect guano to determine the type of food consumed by emperor penguins in the region, (4) Conduct shipboard surveys to sight and plot the location and abundance of adult and juvenile birds on the ship\u0027s track. The PI hypothesizes that bird dives will be shallow during the initial post-molt phase, and that food will consist primarily of krill; that there will be differential dispersal of birds from the Ross Sea vs. Marie Byrd Land, with Ross Sea birds traveling farther; and that the greatest adult mortality occurs during the molt and early post molt period. Broader impacts include training of a post doc, a graduate student, and an aquarium volunteer. The P.I. also will present findings through a website, through public lectures, and in collaboration with the Birch aquarium.", "east": -155.296, "geometry": "POINT(-163.969 -75.1715)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "R/V NBP; Not provided", "locations": null, "north": -72.55, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Kooyman, Gerald", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -77.793, "title": "Pre and post molt biology of emperor penguins - Oden trans - Ross / Amundsen Sea cruise", "uid": "p0000325", "west": -172.642}, {"awards": "1043761 Young, Duncan", "bounds_geometry": "POLYGON((-145 -74,-141.6 -74,-138.2 -74,-134.8 -74,-131.4 -74,-128 -74,-124.6 -74,-121.2 -74,-117.8 -74,-114.4 -74,-111 -74,-111 -74.6,-111 -75.2,-111 -75.8,-111 -76.4,-111 -77,-111 -77.6,-111 -78.2,-111 -78.8,-111 -79.4,-111 -80,-114.4 -80,-117.8 -80,-121.2 -80,-124.6 -80,-128 -80,-131.4 -80,-134.8 -80,-138.2 -80,-141.6 -80,-145 -80,-145 -79.4,-145 -78.8,-145 -78.2,-145 -77.6,-145 -77,-145 -76.4,-145 -75.8,-145 -75.2,-145 -74.6,-145 -74))", "dataset_titles": "AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment; Geophysical Investigations of Marie Byrd Land Lithospheric Evolution (GIMBLE) Airborne VHF Radar Transects: 2012/2013 and 2014/2015; Gravity disturbance data over central Marie Byrd Land, West Antarctica (GIMBLE.GGCMG2); Ice thickness and related data over central Marie Byrd Land, West Antarctica (GIMBLE.GR2HI2); Magnetic anomaly data over central Marie Byrd Land, West Antarctica (GIMBLE.GMGEO2)", "datasets": [{"dataset_uid": "200407", "doi": "10.18738/T8/BMXUHX", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "Geophysical Investigations of Marie Byrd Land Lithospheric Evolution (GIMBLE) Airborne VHF Radar Transects: 2012/2013 and 2014/2015", "url": "https://doi.org/10.18738/T8/BMXUHX"}, {"dataset_uid": "601673", "doi": "10.15784/601673", "keywords": "Antarchitecture; Antarctica; Ice Penetrating Radar; Isochron; Layers; Radar; Radioglaciology; Thwaites Glacier", "people": "Blankenship, Donald D.; Muldoon, Gail R.; Young, Duncan A.; Jackson, Charles", "repository": "USAP-DC", "science_program": null, "title": "AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment", "url": "https://www.usap-dc.org/view/dataset/601673"}, {"dataset_uid": "601003", "doi": "10.15784/601003", "keywords": "Antarctica; Gimble; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravity; Marie Byrd Land; Navigation; Potential Field; Solid Earth", "people": "Holt, John W.; Blankenship, Donald D.; Young, Duncan A.", "repository": "USAP-DC", "science_program": null, "title": "Gravity disturbance data over central Marie Byrd Land, West Antarctica (GIMBLE.GGCMG2)", "url": "https://www.usap-dc.org/view/dataset/601003"}, {"dataset_uid": "601002", "doi": "10.15784/601002", "keywords": "Antarctica; Gimble; Glaciers/ice Sheet; Glaciers/Ice Sheet; Magnetic; Marie Byrd Land; Navigation; Potential Field; Solid Earth", "people": "Holt, John W.; Young, Duncan A.; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": null, "title": "Magnetic anomaly data over central Marie Byrd Land, West Antarctica (GIMBLE.GMGEO2)", "url": "https://www.usap-dc.org/view/dataset/601002"}, {"dataset_uid": "601001", "doi": "10.15784/601001", "keywords": "Airborne Radar; Antarctica; Gimble; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness; Marie Byrd Land; Navigation; Radar", "people": "Young, Duncan A.; Blankenship, Donald D.; Holt, John W.", "repository": "USAP-DC", "science_program": null, "title": "Ice thickness and related data over central Marie Byrd Land, West Antarctica (GIMBLE.GR2HI2)", "url": "https://www.usap-dc.org/view/dataset/601001"}], "date_created": "Tue, 01 Dec 2015 00:00:00 GMT", "description": "Intellectual Merit: The PIs propose to use airborne geophysics to provide detailed geophysical mapping over the Marie Byrd Land dome of West Antarctica. They will use a Basler equipped with advanced ice penetrating radar, a magnetometer, an airborne gravimeter and laser altimeter. They will test models of Marie Byrd Land lithospheric evolution in three ways: 1) constrain bedrock topography and crustal structure of central Marie Byrd Land for the first time; 2) map subglacial geomorphology of Marie Byrd Land to constrain landscape evolution; and 3) map the distribution of subglacial volcanic centers and identify active sources. Marie Byrd Land is one of the few parts of West Antarctica whose bedrock lies above sea level; as such, it has a key role to play in the formation and decay of the West Antarctic Ice Sheet (WAIS), and thus on eustatic sea level change during the Neogene. Several lines of evidence suggest that the topography of Marie Byrd Land has changed over the course of the Cenozoic, with significant implications for the origin and evolution of the ice sheet. Broader impacts: This work will have important implications for both the cryospheric and geodynamic communities. These data will also leverage results from the POLENET project. The PIs will train both graduate and undergraduate students in the interpretation of large geophysical datasets providing them with the opportunity to co-author peer-reviewed papers and present their work to the broader science community. This research will also support a young female researcher. The PIs will conduct informal education using their Polar Studies website and contribute formally to K-12 curriculum development. The research will incorporate microblogging and data access to allow the project?s first-order hypothesis to be confirmed or denied in public.", "east": -111.0, "geometry": "POINT(-128 -77)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e HICARS1; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e LIDAR ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e NUCLEAR PRECESSION MAGNETOMETER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e CMG-GT-1A", "is_usap_dc": false, "keywords": "BT-67; Marie Byrd Land; ICE SHEETS", "locations": "Marie Byrd Land", "north": -74.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Young, Duncan A.; Holt, John W.; Blankenship, Donald D.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e BT-67", "repo": "Texas Data Repository", "repositories": "Texas Data Repository; USAP-DC", "science_programs": null, "south": -80.0, "title": "Geophysical Investigations of Marie Byrd Land Lithospheric Evolution (GIMBLE)", "uid": "p0000435", "west": -145.0}, {"awards": "1142156 Marschall, Horst", "bounds_geometry": "POLYGON((-6.44 -71.93,-5.378 -71.93,-4.316 -71.93,-3.254 -71.93,-2.192 -71.93,-1.13 -71.93,-0.068 -71.93,0.994 -71.93,2.056 -71.93,3.118 -71.93,4.18 -71.93,4.18 -71.998,4.18 -72.066,4.18 -72.134,4.18 -72.202,4.18 -72.27,4.18 -72.338,4.18 -72.406,4.18 -72.474,4.18 -72.542,4.18 -72.61,3.118 -72.61,2.056 -72.61,0.994 -72.61,-0.068 -72.61,-1.13 -72.61,-2.192 -72.61,-3.254 -72.61,-4.316 -72.61,-5.378 -72.61,-6.44 -72.61,-6.44 -72.542,-6.44 -72.474,-6.44 -72.406,-6.44 -72.338,-6.44 -72.27,-6.44 -72.202,-6.44 -72.134,-6.44 -72.066,-6.44 -71.998,-6.44 -71.93))", "dataset_titles": "Zircon Hf Isotopes and the Continental Evolution of Dronning Maud Land, East Antarctica", "datasets": [{"dataset_uid": "600135", "doi": "10.15784/600135", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Dronning Maud Land; Geochemistry; Geochronology; Solid Earth", "people": "Marschall, Horst", "repository": "USAP-DC", "science_program": null, "title": "Zircon Hf Isotopes and the Continental Evolution of Dronning Maud Land, East Antarctica", "url": "https://www.usap-dc.org/view/dataset/600135"}], "date_created": "Fri, 23 Oct 2015 00:00:00 GMT", "description": "Geochemical studies of single mineral grains in rocks can be probed to reconstruct the history of our planet. The mineral zircon (ZrSiO4) is of unique importance in that respect because of its reliability as a geologic clock due to its strong persistence against weathering, transport and changes in temperature and pressure. Uranium-Lead (U-Pb) dating of zircon grains is, perhaps, the most frequently employed method of extracting time information on geologic processes that shaped the continental crust, and has been used to constrain the evolution of continents and mountain belts through time. In addition, the isotopic composition of the element Hafnium (Hf) in zircon is used to date when the continental crust was generated by extraction of magma from the underlying mantle. Melting of rocks in the mantle and deep in the continental crust are key processes in the evolution of the continents, and they are recorded in the Hf isotopic signatures of zircon. Although the analytical procedures for U-Pb dating and Hf isotope analyses of zircon are robust now, our understanding of zircon growth and its exchange of elements and isotopes with its surrounding rock or magma are still underdeveloped. The focus of the proposed study, therefore, is to unravel the evolution of zircon Hf isotopes in rocks that were formed deep in the Earth?s crust, and more specifically, to apply these isotopic methods to rocks collected in Dronning Maud Land (DML), East Antarctica. Dronning Maud Land (DML) occupied a central location during the formation of supercontinents ? large landmasses made up of all the continents that exist today - more than 500 million years ago. It is currently thought that supercontinents were formed and dismembered five or six times throughout Earth?s history. The area of DML is key for understanding the formation history of the last two supercontinents. The boundaries of continents that were merged to form those supercontinents are most likely hidden in DML. In this study, the isotopic composition of zircon grains recovered from DML rocks will be employed to identify these boundaries across an extensive section through the area. The rock samples were collected by the investigator during a two-month expedition to Antarctica in the austral summer of 2007?2008. The results of dating and isotope analyses of zircon of the different DML crustal domains will deliver significant insight into the regional geology of East Antarctica and its previous northern extension into Africa. This has significance for the reconstruction of the supercontinents and defining the continental boundaries in DML.", "east": 4.18, "geometry": "POINT(-1.13 -72.27)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -71.93, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Marschall, Horst", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -72.61, "title": "Zircon Hf Isotopes and the Continental Evolution of Dronning Maud Land, East Antacrtica", "uid": "p0000448", "west": -6.44}, {"awards": "0632282 Jacobs, Stanley", "bounds_geometry": "POLYGON((-129.6 -54.2,-124.44 -54.2,-119.28 -54.2,-114.12 -54.2,-108.96 -54.2,-103.8 -54.2,-98.64 -54.2,-93.48 -54.2,-88.32 -54.2,-83.16 -54.2,-78 -54.2,-78 -56.29,-78 -58.38,-78 -60.47,-78 -62.56,-78 -64.65,-78 -66.74,-78 -68.83,-78 -70.92,-78 -73.01,-78 -75.1,-83.16 -75.1,-88.32 -75.1,-93.48 -75.1,-98.64 -75.1,-103.8 -75.1,-108.96 -75.1,-114.12 -75.1,-119.28 -75.1,-124.44 -75.1,-129.6 -75.1,-129.6 -73.01,-129.6 -70.92,-129.6 -68.83,-129.6 -66.74,-129.6 -64.65,-129.6 -62.56,-129.6 -60.47,-129.6 -58.38,-129.6 -56.29,-129.6 -54.2))", "dataset_titles": "Amundsen Sea Continental Shelf Mooring Data (2006-2007); Calibrated Hydrographic Data acquired with a LADCP from the Amundsen Sea acquired during the Nathaniel B. Palmer expedition NBP0901; NBP07-09 cruise data; NBP07-09 processed CTD data; NBP09-01 cruise data; NBP09-01 processed CTD data; Processed Temperature, Salinity, and Current Measurement Data from the Amundsen Sea acquired during the Nathaniel B. Palmer expedition NBP0901", "datasets": [{"dataset_uid": "000127", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP07-09 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP0709"}, {"dataset_uid": "601809", "doi": "10.15784/601809", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Mooring; Ocean Currents; Pressure; Salinity; Temperature", "people": "Jacobs, Stanley; Giulivi, Claudia F.", "repository": "USAP-DC", "science_program": null, "title": "Amundsen Sea Continental Shelf Mooring Data (2006-2007)", "url": "https://www.usap-dc.org/view/dataset/601809"}, {"dataset_uid": "000128", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "NBP07-09 processed CTD data", "url": "http://accession.nodc.noaa.gov/0120761"}, {"dataset_uid": "000129", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP09-01 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP0901"}, {"dataset_uid": "000130", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "NBP09-01 processed CTD data", "url": "http://accession.nodc.noaa.gov/0071179"}, {"dataset_uid": "601350", "doi": null, "keywords": "Amundsen Sea; Antarctic; Antarctica; CTD; CTD Data; Current Measurements; NBP0901; Oceans; Physical Oceanography; Pine Island Bay; Pine Island Glacier; R/v Nathaniel B. Palmer; Salinity; Southern Ocean; Temperature", "people": "Jacobs, Stanley; Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Processed Temperature, Salinity, and Current Measurement Data from the Amundsen Sea acquired during the Nathaniel B. Palmer expedition NBP0901", "url": "https://www.usap-dc.org/view/dataset/601350"}, {"dataset_uid": "601349", "doi": null, "keywords": "Amundsen Sea; Antarctica; Current Measurements; LADCP; NBP0901; Oceans; Physical Oceanography; Pine Island Bay; R/v Nathaniel B. Palmer; Southern Ocean", "people": "Thurnherr, Andreas", "repository": "USAP-DC", "science_program": null, "title": "Calibrated Hydrographic Data acquired with a LADCP from the Amundsen Sea acquired during the Nathaniel B. Palmer expedition NBP0901", "url": "https://www.usap-dc.org/view/dataset/601349"}], "date_created": "Fri, 25 Sep 2015 00:00:00 GMT", "description": "The Office of Polar Programs, Antarctic Science Division, Ocean \u0026 Climate Systems Program has made this award to support a multidisciplinary effort to study the upwelling of relatively warm deep water onto the Amundsen Sea continental shelf and how it relates to atmospheric forcing and bottom bathymetry and how the warm waters interact with both glacial and sea ice. This study constitutes a contribution of a coordinated research effort in the region known as the Amundsen Sea Embayment Project or ASEP. Previous work by the PI and others has shown that the West Antarctic Ice Sheet has been found to be melting faster, perhaps by orders of magnitude, than ice sheets elsewhere around Antarctica, excluding those on the Peninsula. Submarine channels that incise the continental shelf are thought to provide fairly direct access of relatively warm circum polar deep water to the cavity under the floating extension of the ice shelf. Interactions with sea ice en route can modify the upwelled waters. The proposed investigations build on previous efforts by the PI and colleagues to use hydrographic measurements to put quantitative bounds on the rate of glacial ice melt by relatively warm seawater. \u003cbr/\u003eThe region can be quite difficult to access due to sea ice conditions and previous hydrographic measurements have been restricted to the austral summer time frame. In this project it was proposed to obtain the first austral spring hydrographic data via CTD casts and XBT drops (September-October 2007) as part of a separately funded cruise (PI Steve Ackley) the primary focus of which is sea-ice conditions to be studied while the RV Nathanial B Palmer (RV NBP) drifts in the ice pack. This includes opportunistic sampling for pCO2 and TCO2. A dedicated cruise in austral summer 2009 will follow this opportunity. The principal objectives of the dedicated field program are to deploy a set of moorings with which to characterize temporal variability in warm water intrusions onto the shelf and to conduct repeat hydrographic surveying and swath mapping in targeted areas, ice conditions permitting. Automatic weather stations are to be deployed in concert with the program, sea-ice observations will be undertaken from the vessel and the marine cavity beneath the Pine Island may be explored pending availability of the British autonomous underwater vehicle Autosub 3. These combined ocean-sea ice-atmosphere observations are aimed at a range of model validations. A well-defined plan for making data available as well as archiving in a timely fashion should facilitate a variety of modeling efforts and so extend the value of the spatially limited observations. \u003cbr/\u003eBroader impacts: This project is relevant to an International Polar Year research emphasis on ice sheet dynamics focusing in particular on the seaward ocean-ice sheet interactions. Such interactions must be clarified for understanding the potential for sea level rise by melt of the West Antarctic ice Sheet. The project entails substantive international partnerships (British Antarctic Survey and Alfred Wegner Institute) and complements other Amundsen Sea Embayment Project proposals covering other elements of ice sheet dynamics. The proposal includes partial support for 2 graduate students and 2 post docs. Participants from the Antarctic Artists and Writers program are to take part in the cruise and so aid in outreach. In addition, the project is to be represented in the Lamont-Doherty annual open house.", "east": -78.0, "geometry": "POINT(-103.8 -64.65)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": true, "keywords": "Not provided; R/V NBP", "locations": null, "north": -54.2, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jacobs, Stanley; Hellmer, Hartmut; Jenkins, Adrian", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "NCEI; R2R; USAP-DC", "science_programs": null, "south": -75.1, "title": "Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise - IPY/ASEP", "uid": "p0000332", "west": -129.6}, {"awards": "0739575 Emslie, Steven", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Egg membrane and chick feather THg concentration and stable isotope composition; Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in Antarctica", "datasets": [{"dataset_uid": "601459", "doi": "10.15784/601459", "keywords": "Adelie Penguin; Antarctica; Antarctic Peninsula; Mercury; Penguin", "people": "McKenzie, Ashley", "repository": "USAP-DC", "science_program": null, "title": "Egg membrane and chick feather THg concentration and stable isotope composition", "url": "https://www.usap-dc.org/view/dataset/601459"}, {"dataset_uid": "600145", "doi": "10.15784/600145", "keywords": "Antarctica; Antarctic Peninsula; Biota; Geochronology; Global; Penguin; Ross Sea; Sample/collection Description; Sample/Collection Description; Scotia Sea; Southern Ocean", "people": "Patterson, William; Emslie, Steven D.; Polito, Michael", "repository": "USAP-DC", "science_program": null, "title": "Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in Antarctica", "url": "https://www.usap-dc.org/view/dataset/600145"}], "date_created": "Fri, 25 Sep 2015 00:00:00 GMT", "description": "The research combines interdisciplinary study in geology, paleontology, and biology, using stable isotope and radiocarbon analyses, to examine how climate change and resource utilization have influenced population distribution, movement, and diet in penguins during the mid-to-late Holocene. Previous investigations have demonstrated that abandoned colonies contain well-preserved remains that can be used to examine differential responses of penguins to climate change in various sectors of Antarctica. As such, the research team will investigate abandoned and active pygoscelid penguin (Adelie, Chinstrap, and Gentoo) colonies in the Antarctic Peninsula and Ross Sea regions, and possibly Prydz Bay, in collaboration with Chinese scientists during four field seasons. Stable isotope analyses will be conducted on recovered penguin tissues and prey remains in guano to address hypotheses on penguin occupation history, population movement, and diet in relation to climate change since the late Pleistocene. The study will include one Ph.D., two Masters and 16 undergraduate students in advanced research over the project period. Students will be exposed to a variety of fields, the scientific method, and international scientific research. They will complete field and lab research for individual projects or Honor\u0027s theses for academic credit. The project also will include web-based outreach, lectures to middle school students, and the development of interactive exercises that highlight hypothesis-driven research and the ecology of Antarctica. Two undergraduate students in French and Spanish languages at UNCW will be hired to assist in translating the Web page postings for broader access to this information.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; AMD; USAP-DC; FIELD INVESTIGATION; Amd/Us", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Polito, Michael; Patterson, William", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in Antarctica", "uid": "p0000317", "west": -180.0}, {"awards": "1142117 Hansell, Dennis; 1142044 Dunbar, Robert; 1142097 Bochdansky, Alexander; 1142065 DiTullio, Giacomo", "bounds_geometry": "POLYGON((165 -52,166 -52,167 -52,168 -52,169 -52,170 -52,171 -52,172 -52,173 -52,174 -52,175 -52,175 -54.65,175 -57.3,175 -59.95,175 -62.6,175 -65.25,175 -67.9,175 -70.55,175 -73.2,175 -75.85,175 -78.5,174 -78.5,173 -78.5,172 -78.5,171 -78.5,170 -78.5,169 -78.5,168 -78.5,167 -78.5,166 -78.5,165 -78.5,165 -75.85,165 -73.2,165 -70.55,165 -67.9,165 -65.25,165 -62.6,165 -59.95,165 -57.3,165 -54.650000000000006,165 -52))", "dataset_titles": "Carbon chemistry from CTD; Deployment: NBP1302; NBP1302 data; Video Particle Profiler (VPP) and Digital Inline Holographic Microscopy (DIHM) data from cruise NBP1302", "datasets": [{"dataset_uid": "000221", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Deployment: NBP1302", "url": "http://www.bco-dmo.org/deployment/547873"}, {"dataset_uid": "600388", "doi": "10.15784/600388", "keywords": "Antarctica; Biota; Holographic Microscopy; Oceans; Photo/video; Photo/Video; Phytoplankton; Ross Sea; Sample/collection Description; Sample/Collection Description; Southern Ocean; Video Particle Profiler", "people": "Bochdansky, Alexander", "repository": "USAP-DC", "science_program": null, "title": "Video Particle Profiler (VPP) and Digital Inline Holographic Microscopy (DIHM) data from cruise NBP1302", "url": "https://www.usap-dc.org/view/dataset/600388"}, {"dataset_uid": "000220", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Carbon chemistry from CTD", "url": "http://www.bco-dmo.org/dataset/658394"}, {"dataset_uid": "000179", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1302 data", "url": "https://www.rvdata.us/search/cruise/NBP1302"}], "date_created": "Wed, 26 Aug 2015 00:00:00 GMT", "description": "Intellectual Merit: Sinking particles are a major element of the biological pump and they are commonly assigned to two fates: mineralization in the water column and accumulation at the seafloor. However, there is another fate of export hidden within the vertical decline of carbon, the transformation of sinking organic matter to fine suspended and/or dissolved organic fractions. This process has been suggested but has rarely been observed or quantified. As a result, it is presumed that the solubilized fraction is largely mineralized over short time scales. However, global ocean surveys of dissolved organic carbon are demonstrating a significant water column accumulation of organic matter under high productivity environments. This proposal will investigate the transformation of organic particles from sinking to solubilized phases of the export flux in the Ross Sea. The Ross Sea experiences high export particle production, low dissolved organic carbon export with overturning circulation, and the area has a predictable succession of production and export events. In addition, the basin is shallow (\u003c 000 m) so the products the PIs will target are relatively concentrated. To address the proposed hypothesis, the PIs will use both well-established and novel biochemical and optical measures of export production and its fate. The outcomes of this work will help researchers close the carbon budget in the Ross Sea. Broader impacts: This research will support graduate and undergraduate students and will provide undergraduates and pre-college students with field-based research experience. Scientifically, this research will increase understanding of carbon sinks in the Ross Sea and will help develop new tools for identifying, quantifying, and tracking that carbon. The PIs will interface with K-12 students through daily reports from the field and through educational modules developed by several of the PIs in collaboration with science education specialists and college students. A K-12 educator will be included on the research cruises. Outreach will be through COSEE Florida and the Maritime Center in Norfolk, VA.", "east": 175.0, "geometry": "POINT(170 -65.25)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e DIHM; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "Not provided; NBP1302; Phaeocystis; R/V NBP", "locations": null, "north": -52.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Bochdansky, Alexander; Dunbar, Robert; DiTullio, Giacomo; Ditullio, Giacomo; Harry, Dennis L.; HANSELL, DENNIS", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "BCO-DMO", "repositories": "BCO-DMO; R2R; USAP-DC", "science_programs": null, "south": -78.5, "title": "Collaborative research: TRacing the fate of Algal Carbon Export in the Ross Sea (TRACERS)", "uid": "p0000307", "west": 165.0}, {"awards": "1245659 Petrenko, Vasilii; 1246148 Severinghaus, Jeffrey; 1245821 Brook, Edward J.", "bounds_geometry": "POINT(162.167 -77.733)", "dataset_titles": "Gas and Dust Measurements for Taylor Glacier and Taylor Dome Ice Cores; Last Interglacial Mean Ocean Temperature; Mean Ocean Temperature in Marine Isotope Stage 4; Measurements of 14CH4 and 14CO in ice from Taylor Glacier: Last Deglaciation; N2O Concentration and Isotope Data for 74-59 ka from Taylor Glacier, Antarctica; Taylor Glacier CO2 Isotope Data 74-59 kyr; Taylor Glacier Noble Gases - Younger Dryas; The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "datasets": [{"dataset_uid": "601176", "doi": "10.15784/601176", "keywords": "Antarctica; CO2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Methane; Noble Gas; Noble Gas Isotopes; Snow/ice; Snow/Ice; Taylor Glacier; Younger Dryas", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Taylor Glacier Noble Gases - Younger Dryas", "url": "https://www.usap-dc.org/view/dataset/601176"}, {"dataset_uid": "601198", "doi": "10.15784/601198", "keywords": "Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; CO2; Dust; Gas; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Mass Spectrometer; Methane; Nitrogen Isotopes; Oxygen Isotope; Paleoclimate; Snow/ice; Snow/Ice; Taylor Dome; Taylor Dome Ice Core", "people": "Dyonisius, Michael; Menking, James; Brook, Edward J.; Marcott, Shaun; Barker, Stephen; Shackleton, Sarah; Petrenko, Vasilii; McConnell, Joseph; Rhodes, Rachel; Bauska, Thomas; Severinghaus, Jeffrey P.; Baggenstos, Daniel", "repository": "USAP-DC", "science_program": null, "title": "Gas and Dust Measurements for Taylor Glacier and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/601198"}, {"dataset_uid": "600163", "doi": "10.15784/600163", "keywords": "Antarctica; Atmosphere; Geochemistry; Ice Core Records; Isotope; Paleoclimate; Taylor Glacier; Transantarctic Mountains", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "url": "https://www.usap-dc.org/view/dataset/600163"}, {"dataset_uid": "601398", "doi": "10.15784/601398", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Gas Records; Ice Core Records; Marine Isotope Stage 4; MIS 4; Nitrous Oxide; Pleistocene; Taylor Dome Ice Core; Taylor Glacier", "people": "Severinghaus, Jeffrey P.; Menking, James; Brook, Edward J.; Schilt, Adrian; Shackleton, Sarah; Dyonisius, Michael; Petrenko, Vasilii", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "N2O Concentration and Isotope Data for 74-59 ka from Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601398"}, {"dataset_uid": "601218", "doi": "10.15784/601218", "keywords": "Antarctica; Carbon-14; Carbon Dioxide; Chemistry:ice; Chemistry:Ice; CO2; Dome C Ice Core; Epica; Epica Dome C; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Chemistry; Ice Core Data; Ice Core Gas Records; Ice Core Records; Isotope Data; Last Interglacial; Mass Spectrometer; Mass Spectrometry; Methane; Oxygen; Oxygen Isotope; Paleotemperature; Pleistocene; Snow/ice; Snow/Ice; Taylor Dome Ice Core; Taylor Glacier", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Last Interglacial Mean Ocean Temperature", "url": "https://www.usap-dc.org/view/dataset/601218"}, {"dataset_uid": "601218", "doi": "10.15784/601218", "keywords": "Antarctica; Carbon-14; Carbon Dioxide; Chemistry:ice; Chemistry:Ice; CO2; Dome C Ice Core; Epica; Epica Dome C; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Chemistry; Ice Core Data; Ice Core Gas Records; Ice Core Records; Isotope Data; Last Interglacial; Mass Spectrometer; Mass Spectrometry; Methane; Oxygen; Oxygen Isotope; Paleotemperature; Pleistocene; Snow/ice; Snow/Ice; Taylor Dome Ice Core; Taylor Glacier", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Last Interglacial Mean Ocean Temperature", "url": "https://www.usap-dc.org/view/dataset/601218"}, {"dataset_uid": "601600", "doi": "10.15784/601600", "keywords": "Antarctica; Taylor Glacier", "people": "Bauska, Thomas; Buffen, Aron; Brook, Edward J.; Shackleton, Sarah; Menking, James; Menking, Andy; Petrenko, Vasilii; Dyonisius, Michael; Severinghaus, Jeffrey P.; Barker, Stephen", "repository": "USAP-DC", "science_program": null, "title": "Taylor Glacier CO2 Isotope Data 74-59 kyr", "url": "https://www.usap-dc.org/view/dataset/601600"}, {"dataset_uid": "601260", "doi": "10.15784/601260", "keywords": "Antarctica; Carbon-14; Cosmogenic; Ice Core; Methane", "people": "Dyonisius, Michael; Petrenko, Vasilii", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Measurements of 14CH4 and 14CO in ice from Taylor Glacier: Last Deglaciation", "url": "https://www.usap-dc.org/view/dataset/601260"}, {"dataset_uid": "601415", "doi": "10.15784/601415", "keywords": "Antarctica; Glaciology; Ice Core Data; Ice Core Records; Paleoclimate; Paleotemperature; Taylor Glacier", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Mean Ocean Temperature in Marine Isotope Stage 4", "url": "https://www.usap-dc.org/view/dataset/601415"}], "date_created": "Mon, 13 Jul 2015 00:00:00 GMT", "description": "1245659/Petrenko This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, \u0026#948;18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, \u0026#948;13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of \u0026#948;13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica.", "east": 162.167, "geometry": "POINT(162.167 -77.733)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Not provided; USAP-DC; FIELD INVESTIGATION; Stratigraphy; FIELD SURVEYS; Antarctica; Paleoenvironment; Methane; Ice Core; Carbon Dioxide; FIXED OBSERVATION STATIONS; Stable Isotopes; Ablation Zone; Taylor Glacier; Nitrous Oxide; USA/NSF; LABORATORY; AMD; Cosmogenic; Amd/Us", "locations": "Taylor Glacier; Antarctica", "north": -77.733, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Petrenko, Vasilii; Brook, Edward J.; Severinghaus, Jeffrey P.; PETRENKO, VASILLI", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": -77.733, "title": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "uid": "p0000283", "west": 162.167}, {"awards": "0944254 Smith, Walker; 0944165 McGillicuddy, Dennis", "bounds_geometry": "POLYGON((168 -65,168.2 -65,168.4 -65,168.6 -65,168.8 -65,169 -65,169.2 -65,169.4 -65,169.6 -65,169.8 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,169.8 -65,169.6 -65,169.4 -65,169.2 -65,169 -65,168.8 -65,168.6 -65,168.4 -65,168.2 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65))", "dataset_titles": "Data from expdition NBP1201; Expedition Data; Project data: Processes Regulating Iron Supply at the Mesoscale - Ross Sea", "datasets": [{"dataset_uid": "001442", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1201"}, {"dataset_uid": "000155", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Project data: Processes Regulating Iron Supply at the Mesoscale - Ross Sea", "url": "http://www.bco-dmo.org/project/2155"}, {"dataset_uid": "000156", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Data from expdition NBP1201", "url": "http://www.bco-dmo.org/deployment/506350"}], "date_created": "Wed, 08 Jul 2015 00:00:00 GMT", "description": "The Ross Sea continental shelf is one of the most productive areas in the Southern Ocean, and may comprise a significant, but unaccounted for, oceanic CO2 sink, largely driven by phytoplankton production. The processes that control the magnitude of primary production in this region are not well understood, but data suggest that iron limitation is a factor. Field observations and model simulations indicate four potential sources of dissolved iron to surface waters of the Ross Sea: (1) circumpolar deep water intruding from the shelf edge; (2) sediments on shallow banks and nearshore areas; (3) melting sea ice around the perimeter of the polynya; and (4) glacial meltwater from the Ross Ice Shelf. The principal investigators hypothesize that hydrodynamic transport via mesoscale currents, fronts, and eddies facilitate the supply of dissolved iron from these four sources to the surface waters of the Ross Sea polynya. These hypotheses will be tested through a combination of in situ observations and numerical modeling, complemented by satellite remote sensing. In situ observations will be obtained during a month-long cruise in the austral summer. The field data will be incorporated into model simulations, which allow quantification of the relative contributions of the various hypothesized iron supply mechanisms, and assessment of their impact on primary production. The research will provide new insights and a mechanistic understanding of the complex oceanographic phenomena that regulate iron supply, primary production, and biogeochemical cycling. The research will thus form the basis for predictions about how this system may change in a warming climate. The broader impacts include training of graduate and undergraduate students, international collaboration, and partnership with several ongoing outreach programs that address scientific research in the Southern Ocean. The research also will contribute to the goals of the international research programs ICED (Integrated Climate and Ecosystem Dynamics) and GEOTRACES (Biogeochemical cycling and trace elements in the marine environment).", "east": 170.0, "geometry": "POINT(169 -65)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "R/V NBP; Not provided", "locations": null, "north": -65.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Walker; McGillicuddy, Dennis", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "BCO-DMO; R2R", "science_programs": null, "south": -65.0, "title": "Collaborative Research: Impact of Mesoscale Processes on Iron Supply and Phytoplankton Dynamics in the Ross Sea", "uid": "p0000330", "west": 168.0}, {"awards": "1141890 Huber, Bruce", "bounds_geometry": "POLYGON((-62.176502 -57.913998,-61.4764715 -57.913998,-60.776441 -57.913998,-60.0764105 -57.913998,-59.37638 -57.913998,-58.6763495 -57.913998,-57.976319 -57.913998,-57.2762885 -57.913998,-56.576258 -57.913998,-55.8762275 -57.913998,-55.176197 -57.913998,-55.176197 -58.6469082,-55.176197 -59.3798184,-55.176197 -60.1127286,-55.176197 -60.8456388,-55.176197 -61.578549,-55.176197 -62.3114592,-55.176197 -63.0443694,-55.176197 -63.7772796,-55.176197 -64.5101898,-55.176197 -65.2431,-55.8762275 -65.2431,-56.576258 -65.2431,-57.2762885 -65.2431,-57.976319 -65.2431,-58.6763495 -65.2431,-59.37638 -65.2431,-60.0764105 -65.2431,-60.776441 -65.2431,-61.4764715 -65.2431,-62.176502 -65.2431,-62.176502 -64.5101898,-62.176502 -63.7772796,-62.176502 -63.0443694,-62.176502 -62.3114592,-62.176502 -61.578549,-62.176502 -60.8456388,-62.176502 -60.1127286,-62.176502 -59.3798184,-62.176502 -58.6469082,-62.176502 -57.913998))", "dataset_titles": "Expedition Data of NBP1203; Processed CTD Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203; Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203", "datasets": [{"dataset_uid": "001438", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP1203", "url": "https://www.rvdata.us/search/cruise/NBP1203"}, {"dataset_uid": "601348", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; CTD; CTD Data; LARISSA; Larsen Ice Shelf; NBP1203; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Temperature", "people": "Huber, Bruce; Gordon, Arnold", "repository": "USAP-DC", "science_program": null, "title": "Processed CTD Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203", "url": "https://www.usap-dc.org/view/dataset/601348"}, {"dataset_uid": "601347", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Current Measurements; LADCP; LARISSA; Larsen Ice Shelf; NBP1203; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer", "people": "Gordon, Arnold; Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203", "url": "https://www.usap-dc.org/view/dataset/601347"}], "date_created": "Wed, 17 Jun 2015 00:00:00 GMT", "description": "Time series data, from ocean moorings, on key aspects of evolving ocean properties are of considerable importance in assessing the condition of the ocean system. They are needed, for example, their understand how the oceans are warming, and how they continue to uptake greenhouse gases such as CO2. The Cape Adare Long Term Mooring (CALM) program goal was to observe the bottom water export from the Ross Sea to the deep ocean. To accomplish this two instrumented moorings were set on the continental slope off Cape Adare (western Ross Sea, Antarctica), positioned to capture the export of Antarctic Bottom Water (AABW), some of the coldest and densest water found in the global ocean. Data records for the moorings spans over some four years in this very remote part of the ocean. The CALM analysis will address some specific objectives: ? Characterize the temperature, salinity and current variability associated with the Ross Sea AABW export. ? Examine the linkages between observed variability to regional tides, atmosphere and sea ice forcing. ? Relate the Ross Sea AABW export fluctuations to the larger scale climate system dynamics, such as ENSO and SAM, and to AABW formation along other margins of Antarctica, e.g. the Weddell Sea", "east": -55.176197, "geometry": "POINT(-58.6763495 -61.578549)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -57.913998, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Huber, Bruce; Vernet, Maria", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -65.2431, "title": "Cape Adare Long Term Moorings (CALM): Analysis Phase", "uid": "p0000495", "west": -62.176502}, {"awards": "1044982 Bucklin, Ann", "bounds_geometry": "POLYGON((-69.3804 -52.760597,-67.79698 -52.760597,-66.21356 -52.760597,-64.63014 -52.760597,-63.04672 -52.760597,-61.4633 -52.760597,-59.87988 -52.760597,-58.29646 -52.760597,-56.71304 -52.760597,-55.12962 -52.760597,-53.5462 -52.760597,-53.5462 -53.9928073,-53.5462 -55.2250176,-53.5462 -56.4572279,-53.5462 -57.6894382,-53.5462 -58.9216485,-53.5462 -60.1538588,-53.5462 -61.3860691,-53.5462 -62.6182794,-53.5462 -63.8504897,-53.5462 -65.0827,-55.12962 -65.0827,-56.71304 -65.0827,-58.29646 -65.0827,-59.87988 -65.0827,-61.4633 -65.0827,-63.04672 -65.0827,-64.63014 -65.0827,-66.21356 -65.0827,-67.79698 -65.0827,-69.3804 -65.0827,-69.3804 -63.8504897,-69.3804 -62.6182794,-69.3804 -61.3860691,-69.3804 -60.1538588,-69.3804 -58.9216485,-69.3804 -57.6894382,-69.3804 -56.4572279,-69.3804 -55.2250176,-69.3804 -53.9928073,-69.3804 -52.760597))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001445", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1110"}], "date_created": "Wed, 17 Jun 2015 00:00:00 GMT", "description": "The proposed research targets the molecular genetics of salps, an increasingly important member of the zooplankton in Antarctic waters who\u0027s dominance appears to be related to climate warming and sea ice loss. Specifically the research will examine genome-wide patterns of gene expression, target gene expression levels, and patterns of population genetic diversity and structure underlying the complex life history and population dynamics of S. thompsoni. The P.I.s hypothesize that (1) deep analysis of the Salpa thompsoni transcriptome will reveal significant associations among selected set of differentially expressed genes and critical life history stages and events (e.g., ontogenetic maturation, sexual reproduction, senescence) of the salp; and 2) the species will show variable levels of clonal diversity and significant genetic differentiation among populations in different regions of the Southern Ocean. Broader impacts include training of two graduate students; inclusion of undergraduates in research, and in a formal training workshop; development of a summer workshop for high school teachers in collaboration with Connecticut Sea Grant; and public outreach via postings on the Census of Marine Zooplankton homepage.", "east": -53.5462, "geometry": "POINT(-61.4633 -58.9216485)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "PLANKTON; Antarctic Peninsula; R/V LMG", "locations": "Antarctic Peninsula", "north": -52.760597, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Bucklin, Ann", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.0827, "title": "Population ecology of Salpa thompsoni based on molecular indicators", "uid": "p0000508", "west": -69.3804}, {"awards": "1303896 Kirschvink, Joseph", "bounds_geometry": "POLYGON((-57 -63,-56.9 -63,-56.8 -63,-56.7 -63,-56.6 -63,-56.5 -63,-56.4 -63,-56.3 -63,-56.2 -63,-56.1 -63,-56 -63,-56 -63.2,-56 -63.4,-56 -63.6,-56 -63.8,-56 -64,-56 -64.2,-56 -64.4,-56 -64.6,-56 -64.8,-56 -65,-56.1 -65,-56.2 -65,-56.3 -65,-56.4 -65,-56.5 -65,-56.6 -65,-56.7 -65,-56.8 -65,-56.9 -65,-57 -65,-57 -64.8,-57 -64.6,-57 -64.4,-57 -64.2,-57 -64,-57 -63.8,-57 -63.6,-57 -63.4,-57 -63.2,-57 -63))", "dataset_titles": "Magnetostratigraphy of Cretaceous Sediments in the James Ross Island Basin, Antarctica", "datasets": [{"dataset_uid": "600136", "doi": "10.15784/600136", "keywords": "Antarctica; GPS; James Ross Basin; Sample/collection Description; Sample/Collection Description; Solid Earth", "people": "Kirschvink, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Magnetostratigraphy of Cretaceous Sediments in the James Ross Island Basin, Antarctica", "url": "https://www.usap-dc.org/view/dataset/600136"}], "date_created": "Sat, 23 May 2015 00:00:00 GMT", "description": "Intellectual Merit: The PI will collect samples to extend the magneto-stratigraphic record of late Cretaceous sediments of the James Ross Basin, Antarctica. RAPID support will allow him to take advantage of an invitation from the Instituto Antartico Argentino (IAA) to participate on an excursion to James Ross Island in the Antarctic Peninsula. The PI hopes to collect samples that will refine the position of several geomagnetic reversals between the end of the Cretaceous long normal Chron and the lower portion of Chron 31R. The Brandy Bay locality targeted by this expedition is the best place in the basin for calibrating the biostratigraphic position of the top of the Cretaceous Long Normal Chron, which is one of the most reliable correlation horizons in the entire Geological Time Scale. Broader impacts: The top of the Cretaceous long normal Chron is not properly correlated to southern hemisphere biostratigraphy. Locating this event will be a major addition to understanding geological time. This expedition will provide opportunities for an undergraduate student. This project is based on a productive collaboration with an Argentine scientist.", "east": -56.0, "geometry": "POINT(-56.5 -64)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -63.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kirschvink, Joseph", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Magnetostratigraphy of Cretaceous Sediments in the James Ross Island Basin, Antarctica", "uid": "p0000419", "west": -57.0}, {"awards": "0229314 Stone, John", "bounds_geometry": null, "dataset_titles": "Reedy Glacier Exposure Ages, Antarctica", "datasets": [{"dataset_uid": "609601", "doi": "10.7265/N5MG7MF1", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Cosmogenic; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Reedy Glacier; Sample/collection Description; Sample/Collection Description", "people": "Stone, John", "repository": "USAP-DC", "science_program": null, "title": "Reedy Glacier Exposure Ages, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609601"}], "date_created": "Mon, 30 Mar 2015 00:00:00 GMT", "description": "The stability of the marine West Antarctic Ice Sheet (WAIS) remains an important, unresolved problem for predicting future sea level change. Recent studies indicate that the mass balance of the ice sheet today may be negative or positive. The apparent differences may stem in part from short-term fluctuations in flow. By comparison, geologic observations provide evidence of behavior over much longer time scales. Recent work involving glacial-geologic mapping, dating and ice-penetrating radar surveys suggests that deglaciation of both the Ross Sea Embayment and coastal Marie Byrd Land continued into the late Holocene, and leaves open the possibility of ongoing deglaciation and grounding-line retreat. However, previous work in the Ross Sea Embayment was based on data from just three locations that are all far to the north of the present grounding line. Additional data from farther south in the Ross Sea Embayment are needed to investigate whether recession has ended, or if the rate and pattern of deglaciation inferred from our previous study still apply to the present grounding line. This award provides support to reconstruct the evolution of Reedy Glacier, in the southern Transantarctic Mountains, since the Last Glacial Maximum (LGM). Because Reedy Glacier emerges from the mountains above the grounding line, its surface slope and elevation should record changes in thickness of grounded ice in the Ross Sea up to the present day. The deglaciation chronology of Reedy Glacier therefore can indicate whether Holocene retreat of the WAIS ended thousands of years ago, or is still continuing at present. This integrated glaciologic, glacial-geologic, and cosmogenic-isotope exposure- dating project will reconstruct past levels of Reedy Glacier. Over two field seasons, moraines will be mapped, dated and correlated at sites along the length of the glacier. Radar and GPS measurements will be made to supplement existing ice thickness and velocity data, which are needed as input for a model of glacier dynamics. The model will be used to relate geologic measurements to the grounding-line position downstream. Ultimately, the mapping, dating and ice-modeling components of the study will be integrated into a reconstruction that defines changes in ice thickness in the southern Ross Sea since the LGM, and relates these changes to the history of grounding-line retreat. This work directly addresses key goals of the West Antarctic Ice Sheet Initiative, which are to understand the dynamics, recent history and possible future behavior of the West Antarctic Ice Sheet.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "Surface Exposure Dates; FIELD SURVEYS; Aluminum-26; Erosion; Rock Samples; Beryllium-10; Exposure Age", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Stone, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Late Quaternary History of Reedy Glacier", "uid": "p0000029", "west": null}, {"awards": "0944556 Barrett, John", "bounds_geometry": "POLYGON((160.6015 -76.9089,161.7382 -76.9089,162.8749 -76.9089,164.0116 -76.9089,165.1483 -76.9089,166.285 -76.9089,167.4217 -76.9089,168.5584 -76.9089,169.6951 -76.9089,170.8318 -76.9089,171.9685 -76.9089,171.9685 -77.73527,171.9685 -78.56164,171.9685 -79.38801,171.9685 -80.21438,171.9685 -81.04075,171.9685 -81.86712,171.9685 -82.69349,171.9685 -83.51986,171.9685 -84.34623,171.9685 -85.1726,170.8318 -85.1726,169.6951 -85.1726,168.5584 -85.1726,167.4217 -85.1726,166.285 -85.1726,165.1483 -85.1726,164.0116 -85.1726,162.8749 -85.1726,161.7382 -85.1726,160.6015 -85.1726,160.6015 -84.34623,160.6015 -83.51986,160.6015 -82.69349,160.6015 -81.86712,160.6015 -81.04075,160.6015 -80.21438,160.6015 -79.38801,160.6015 -78.56164,160.6015 -77.73527,160.6015 -76.9089))", "dataset_titles": "Ecosphere (Supplement), Ecological Society of America.", "datasets": [{"dataset_uid": "002538", "doi": "", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Ecosphere (Supplement), Ecological Society of America.", "url": "http://www.esapubs.org/archive/ecos/C004/014/suppl-1.php"}], "date_created": "Fri, 13 Feb 2015 00:00:00 GMT", "description": "Advances in molecular techniques have expanded our understanding of soil microbial communities, and raised important questions about regional and global patterns in microbial diversity. The proposed research will investigate the composition and activity of microbial communities across a range of geochemical and hydrologic soil conditions, and over local to regional scales in the Transantarctic Mountains, in order to assess controls over microbial biogeography. The research targets two areas in the Transantarctic mountains, the McMurdo Dry Valleys, and the Beardmore Glacier region further south, the latter representing an underexplored and inarguably more extreme soil environment. The research project will adopt an integrated approach, using molecular techniques and in situ assessment of biological activity in a quantitative biogeographical framework, with the goal of distinguishing fine versus broad scale controls over microbial community structure. The research is essential to determining the basic trophic status of extreme microbial food webs, and their sensitivity to climate change. The investigators will engage secondary and post-secondary educators through first person outreach as well as web-based communications and exercises. Two postdoctoral scientists will be trained in an interdisciplinary and international setting.", "east": 171.9685, "geometry": "POINT(166.285 -81.04075)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -76.9089, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Barrett, John", "platforms": "Not provided", "repo": "Publication", "repositories": "Publication", "science_programs": null, "south": -85.1726, "title": "Collaborative Research: Controls over the Spatial Distribution and Activity of Microbial Communities in Antarctic Soils", "uid": "p0000350", "west": 160.6015}, {"awards": "0944645 Goodge, John", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 11 Feb 2015 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eBecause of extensive ice cover and sparse remote-sensing data, the geology of the Precambrian East Antarctic Shield (EAS) remains largely unexplored with information limited to coastal outcrops from the African, Indian and Australian sectors. The East Antarctic lithosphere is globally important: as one of the largest coherent Precambrian shields, including rocks as old as ~3.8 Ga, it played an important role in global crustal growth; it is a key piece in assembly of the Rodinia and Gondwana supercontinents; it is the substrate to Earth?s major ice cap, including numerous sub-glacial lakes, and influences its thermal state and mechanical stability; and its geotectonic association with formerly adjacent continental blocks in South Africa, India and Australia suggest that it might harbor important mineral resources. This project will increase understanding of the age and composition of the western EAS lithosphere underlying and adjacent to the Transantarctic Mountains (TAM) using U-Pb ages, and Hf- and O-isotope analysis of zircon in early Paleozoic granitoids and Pleistocene glacial tills. TAM granites of the early Paleozoic Ross Orogen represent an areally extensive continental-margin arc suite that can provide direct information about the EAS crust from which it melted and/or through which it passed. Large rock clasts of igneous and metamorphic lithologies entrained in glacial tills at the head of major outlet glaciers traversing the TAM provide eroded samples of the proximal EAS basement. Zircons in these materials will provide data about age and inheritance (U-Pb), crustal vs. mantle origin (O isotopes), and crustal sources and evolution (Hf isotopes). Integrated along a significant part of the TAM, these data will help define broader crustal provinces that can be correlated with geophysical data and used to test models of crustal assembly. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis project will provide a research opportunity for undergraduate and graduate students. Undergraduates will be involved as Research Assistants in sample preparation, imaging, and analytical procedures, and conducting their own independent research. The two main elements of this project will form the basis of MS thesis projects for two graduate students at UMD. Through this project they will gain a good understanding of petrology, isotope geochemistry, and analytical methods. The broader scientific impacts of this work are that it will help develop a better understanding of the origin and evolution of East Antarctic lithosphere underlying and adjacent to the TAM, which will be of value to the broader earth science and glaciological community. Furthermore, knowledge of East Antarctic geology is of continuing interest to the general public because of strong curiosity about past supercontinents, what?s under the ice, and the impact of global warming on ice-sheet stability.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Transantarctic Mountains; Not provided", "locations": "Transantarctic Mountains", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Goodge, John", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Age and Composition of the East Antarctic Shield by Isotopic Analysis of Granite and Glacial Till", "uid": "p0000258", "west": null}, {"awards": "0944727 Arrigo, Kevin", "bounds_geometry": "POLYGON((-118.3 -71.6,-117.57 -71.6,-116.84 -71.6,-116.11 -71.6,-115.38 -71.6,-114.65 -71.6,-113.92 -71.6,-113.19 -71.6,-112.46 -71.6,-111.73 -71.6,-111 -71.6,-111 -71.86,-111 -72.12,-111 -72.38,-111 -72.64,-111 -72.9,-111 -73.16,-111 -73.42,-111 -73.68,-111 -73.94,-111 -74.2,-111.73 -74.2,-112.46 -74.2,-113.19 -74.2,-113.92 -74.2,-114.65 -74.2,-115.38 -74.2,-116.11 -74.2,-116.84 -74.2,-117.57 -74.2,-118.3 -74.2,-118.3 -73.94,-118.3 -73.68,-118.3 -73.42,-118.3 -73.16,-118.3 -72.9,-118.3 -72.64,-118.3 -72.38,-118.3 -72.12,-118.3 -71.86,-118.3 -71.6))", "dataset_titles": "Dataset: Chlorophyll a", "datasets": [{"dataset_uid": "000172", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Dataset: Chlorophyll a", "url": "http://www.bco-dmo.org/dataset/546372"}], "date_created": "Fri, 30 Jan 2015 00:00:00 GMT", "description": "ASPIRE is an NSF-funded project that will examine the ecology of the Amundsen Sea during the Austral summer of 2010. ASPIRE includes an international team of trace metal and carbon chemists, phytoplankton physiologists, microbial and zooplankton ecologists, and physical oceanographers, that will investigate why and how the Amundsen Sea Polynya is so much more productive than other polynyas and whether interannual variability can provide insight to climate-sensitive mechanisms driving carbon fluxes. This project will compliment the existing ASPIRE effort by using 1) experimental manipulations to understand photoacclimation of the dominant phytoplankton taxa under conditions of varying light and trace metal abundance, 2) nutrient addition bioassays to determine the importance of trace metal versus nitrogen limitation of phytoplankton growth, and 3) a numerical ecosystem model to understand the importance of differences in mixing regime, flow field, and Fe sources in controlling phytoplankton bloom dynamics and community composition in this unusually productive polynya system. The research strategy will integrate satellite remote sensing, field-based experimental manipulations, and numerical modeling. Outreach and education include participation in Stanford\u0027s Summer Program for Professional Development for Science Teachers, Stanford\u0027s School of Earth Sciences high school internship program, and development of curriculum for local science training centers, including the Chabot Space and Science Center. Undergraduate participation and training will include support for both graduate students and undergraduate assistants.", "east": -111.0, "geometry": "POINT(-114.65 -72.9)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -71.6, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Arrigo, Kevin", "platforms": "Not provided", "repo": "BCO-DMO", "repositories": "BCO-DMO", "science_programs": null, "south": -74.2, "title": "ASPIRE: Amundsen Sea Polynya International Research Expedition", "uid": "p0000348", "west": -118.3}, {"awards": "0944087 Hamilton, Gordon", "bounds_geometry": "POLYGON((145 -80,147 -80,149 -80,151 -80,153 -80,155 -80,157 -80,159 -80,161 -80,163 -80,165 -80,165 -80.035,165 -80.07,165 -80.105,165 -80.14,165 -80.175,165 -80.21,165 -80.245,165 -80.28,165 -80.315,165 -80.35,163 -80.35,161 -80.35,159 -80.35,157 -80.35,155 -80.35,153 -80.35,151 -80.35,149 -80.35,147 -80.35,145 -80.35,145 -80.315,145 -80.28,145 -80.245,145 -80.21,145 -80.175,145 -80.14,145 -80.105,145 -80.07,145 -80.035,145 -80))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 23 Jan 2015 00:00:00 GMT", "description": "This award supports a project to understand the flow dynamics of large, fast-moving outlet glaciers that drain the East Antarctic Ice Sheet. The project includes an integrated field, remote sensing and modeling study of Byrd Glacier which is a major pathway for the discharge of mass from the East Antarctic Ice Sheet (EAIS) to the ocean. Recent work has shown that the glacier can undergo short-lived but significant changes in flow speed in response to perturbations in its boundary conditions. Because outlet glacier speeds exert a major control on ice sheet mass balance and modulate the ice sheet contribution to sea level rise, it is essential that their sensitivity to a range of dynamic processes is properly understood and incorporated into prognostic ice sheet models. The intellectual merit of the project is that the results from this study will provide critically important information regarding the flow dynamics of large EAIS outlet glaciers. The proposed study is designed to address variations in glacier behavior on timescales of minutes to years. A dense network of global positioning satellite (GPS) instruments on the grounded trunk and floating portions of the glacier will provide continuous, high-resolution time series of horizontal and vertical motions over a 26-month period. These results will be placed in the context of a longer record of remote sensing observations covering a larger spatial extent, and the combined datasets will be used to constrain a numerical model of the glacier\u0027s flow dynamics. The broader impacts of the work are that this project will generate results which are likely to be a significant component of next-generation ice sheet models seeking to predict the evolution of the Antarctic Ice Sheet and future rates of sea level rise. The most recent report from the Intergovernmental Panel on Climate Change (IPCC) highlights the imperfect understanding of outlet glacier dynamics as a major obstacle to the production of an accurate sea level rise projections. This project will provide significant research opportunities for several early-career scientists, including the lead PI for this proposal (she is both a new investigator and a junior faculty member at a large research university) and two PhD-level graduate students. The students will be trained in glaciology, geodesy and numerical modeling, contributing to society\u0027s need for experts in those fields. In addition, this project will strengthen international collaboration between polar scientists and geodesists in the US and Spain. The research team will work closely with science educators in the Center for Remote Sensing of Ice Sheets (CReSIS) outreach program to disseminate project results to non-specialist audiences.", "east": 165.0, "geometry": "POINT(155 -80.175)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "Sea Level Rise; FIELD INVESTIGATION; Glacier; LABORATORY; Outlet Glaciers; Boundary Conditions; Model; Numerical Model; FIELD SURVEYS; Antarctica; COMPUTERS; Not provided; Flow Dynamics", "locations": "Antarctica", "north": -80.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Stearns, Leigh; Hamilton, Gordon S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -80.35, "title": "Collaborative Research: Byrd Glacier Flow Dynamics", "uid": "p0000319", "west": 145.0}, {"awards": "0632136 Nyblade, Andrew; 0632322 Wilson, Terry", "bounds_geometry": "POLYGON((-20 -70,-1 -70,18 -70,37 -70,56 -70,75 -70,94 -70,113 -70,132 -70,151 -70,170 -70,170 -72,170 -74,170 -76,170 -78,170 -80,170 -82,170 -84,170 -86,170 -88,170 -90,151 -90,132 -90,113 -90,94 -90,75 -90,56 -90,37 -90,18 -90,-1 -90,-20 -90,-20 -88,-20 -86,-20 -84,-20 -82,-20 -80,-20 -78,-20 -76,-20 -74,-20 -72,-20 -70))", "dataset_titles": "Incorporated Research Institutions for Seismology (IRIS); University NAVSTAR Consortium (UNAVCO)", "datasets": [{"dataset_uid": "000132", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Incorporated Research Institutions for Seismology (IRIS)", "url": "http://www.iris.edu/mda/YT?timewindow=2007-2018"}, {"dataset_uid": "000131", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "University NAVSTAR Consortium (UNAVCO)", "url": "http://www.unavco.org/data/gps-gnss/data-access-methods/dai2/app/dai2.html#groupingMod=contains;grouping=POLENET%20-%20ANET;scope=Station;sampleRate=normal"}], "date_created": "Thu, 22 Jan 2015 00:00:00 GMT", "description": "This project constructs POLENET a network of GPS and seismic stations in West Antarctica to understand how the mass of the West Antarctic ice sheet (WAIS) changes with time. The information is ultimately used to predict sea level rise accompanying global warming and interpret climate change records. The GPS (global positioning system) stations measure vertical and horizontal movements of bedrock, while the seismic stations characterize physical properties of the ice/rock interface, lithosphere, and mantle. Combined with satellite data, this project offers a more complete picture of the ice sheet\u0027s current state, its likely change in the near future, and its overall size during the last glacial maximum. This data will also be used to infer sub-ice sheet geology and the terrestrial heat flux, critical inputs to models of glacier movement. As well, this project improves tomographic models of the earth\u0027s deep interior and core through its location in the Earth\u0027s poorly instrumented southern hemisphere. \u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eBroader impacts of this project are varied. The work is relevant to society for improving our understanding of the impacts of global warming on sea level rise. It also supports education at the postdoctoral, graduate, and undergraduate levels, and outreach to groups underrepresented in the sciences. As an International Polar Year contribution, this project establishes a legacy of infrastructure for polar measurements. It also involves an international collaboration of twenty four countries. For more information see IPY Project #185 at IPY.org. NSF is supporting a complementary Arctic POLENET array being constructed in Greenland under NSF Award #0632320.", "east": 170.0, "geometry": "POINT(75 -80)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "Antarctica; Bedrock; Ice/Rock Interface; Climate Change; Seismic; West Antarctic Ice Sheet; FIELD SURVEYS; LABORATORY; Not provided; FIELD INVESTIGATION; Mass Balance; COMPUTERS; Sub-Ice Sheet Geology; Sea Level; Terrestrial Heat Flux", "locations": "Antarctica; West Antarctic Ice Sheet", "north": -70.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Wilson, Terry; Bevis, Michael; Anandakrishnan, Sridhar; Wiens, Douglas; Aster, Richard; Smalley, Robert; Nyblade, Andrew; Winberry, Paul; Hothem, Larry; Dalziel, Ian W.; Huerta, Audrey D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "IRIS", "repositories": "IRIS; UNAVCO", "science_programs": null, "south": -90.0, "title": "Collaborative Research: IPY: POLENET-Antarctica: Investigating Links Between Geodynamics and Ice Sheets", "uid": "p0000315", "west": -20.0}, {"awards": "1441432 Scambos, Ted", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 30 Dec 2014 00:00:00 GMT", "description": "The investigators propose to build and test a multi-sensor, automated measurement station for monitoring Arctic and Antarctic ice-ocean environments. The system, based on a previously successful design, will incorporate weather and climate sensors, camera, snow and firn sensors, instruments to measure ice motion, ice and ocean thermal profilers, hydrophone, and salinity sensors. This new system will have two-way communications for real-time data delivery and is designed for rapid deployment by a small field group. AMIGOS-II will be capable of providing real time information on geophysical processes such as weather, snowmelt, ice motion and strain, fractures and melt ponds, firn thermal profiling, and ocean conditions from multiple levels every few hours for 2-4 years. Project personnel will conduct a field test of the new system at a location with a deep ice-covered lake. Development of AMIGOS-II is motivated by recent calls by the U.S. Antarctic Program Blue-Ribbon Panel to increase Antarctic logistical effectiveness, which cites a need for greater efficiency in logistical operations. Installation of autonomous stations with reduced logistical requirements advances this goal.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e CURRENT METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e TEMPERATURE PROFILERS", "is_usap_dc": false, "keywords": "Ice Ocean Interface; FIELD SURVEYS; Climate; Firn Temperature Measurements; Snowmelt; Strain; Ice Movement; Melt Ponds; LABORATORY; Not provided; Multi-Sensor; FIELD INVESTIGATION", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Scambos, Ted", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "A Low-power, Quick-install Polar Observation System (\u0027AMIGOS-II\u0027) for Monitoring Climate-ice-ocean Interactions", "uid": "p0000443", "west": null}, {"awards": "1241460 Barbeau, David; 1241574 Hemming, Sidney", "bounds_geometry": "POLYGON((-67 -63.2,-65.97 -63.2,-64.94 -63.2,-63.91 -63.2,-62.88 -63.2,-61.85 -63.2,-60.82 -63.2,-59.79 -63.2,-58.76 -63.2,-57.73 -63.2,-56.7 -63.2,-56.7 -63.54,-56.7 -63.88,-56.7 -64.22,-56.7 -64.56,-56.7 -64.9,-56.7 -65.24,-56.7 -65.58,-56.7 -65.92,-56.7 -66.26,-56.7 -66.6,-57.73 -66.6,-58.76 -66.6,-59.79 -66.6,-60.82 -66.6,-61.85 -66.6,-62.88 -66.6,-63.91 -66.6,-64.94 -66.6,-65.97 -66.6,-67 -66.6,-67 -66.26,-67 -65.92,-67 -65.58,-67 -65.24,-67 -64.9,-67 -64.56,-67 -64.22,-67 -63.88,-67 -63.54,-67 -63.2))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 03 Dec 2014 00:00:00 GMT", "description": "Intellectual Merit: Recent geochemical, sequence stratigraphic, and integrated investigations of marine strata from several continental margins and ocean basins suggest that ephemeral ice sheets may have existed on Antarctica during parts of the Cretaceous and early Paleogene. However, atmospheric carbon dioxide estimates for this time are as much as four times modern levels. With such greenhouse conditions, the presence of Antarctic ice sheets would imply that our current understanding of Earth?s climate system, and specifically the interpreted thresholds of Antarctic glaciation and deglaciation should be reconsidered. The proposed research will compare the quantity and provenance of Cretaceous sediments in the Larsen basin of the eastern Antarctic Peninsula with the exhumation chronology and composition of potential sediment source terranes on the peninsula and in adjacent regions. New outcrop stratigraphic analyses with improvements in the age models from radioisotopic approaches will be integrated to determine the amount of detrital sediment fluxed to the Larsen basin between key chronostratigraphic surfaces. Microtextural analysis of quartz sand and silt grains will help determine whether the Larsen basin detrital sediment originated from glacial weathering. These preliminary results will test the viability of the proposed approach to assess the controversial Cretaceous Antarctic glaciation hypothesis. Broader impacts: The proposed work will partially support a PhD, a MSc, and three undergraduate students at the University of South Carolina. The PIs will publicize this work through volunteer speaking engagements and the development of videos and podcasts. They also commit to prompt publication of the results and timely submission of data to archives. The development/improvement of the Larsen basin age model will benefit ongoing research in paleobiology, paleoclimate and biogeography. Development of the glauconite K-Ar and Rb-Sr chronometers could be an important outcome beyond the direct scope of the proposed research.", "east": -56.7, "geometry": "POINT(-61.85 -64.9)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e LA-ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MC-ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e IRMS", "is_usap_dc": true, "keywords": "Not provided; Noble-Gas Mass Spectrometer; Antarctic Peninsula", "locations": "Antarctic Peninsula", "north": -63.2, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": "PROTEROZOIC; PHANEROZOIC \u003e PALEOZOIC; PHANEROZOIC \u003e MESOZOIC; PHANEROZOIC \u003e CENOZOIC; PHANEROZOIC \u003e MESOZOIC \u003e CRETACEOUS; PHANEROZOIC \u003e CENOZOIC \u003e PALEOGENE", "persons": "Barbeau, David; Hemming, Sidney R.; Barbeau, David Jr", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -66.6, "title": "Collaborative Research: EAGER: Evaluating the Larsen basin\u0027s suitability for testing the Cretaceous Glaciation Hypothesis", "uid": "p0000369", "west": -67.0}, {"awards": "0838970 Foreman, Christine", "bounds_geometry": "POINT(161.667 -77.117)", "dataset_titles": "The Biogeochemical Evolution of Dissolved Organic Matter in a Fluvial System on the Cotton Glacier, Antarctica", "datasets": [{"dataset_uid": "600104", "doi": "10.15784/600104", "keywords": "Antarctica; Biota; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Microbiology", "people": "Foreman, Christine", "repository": "USAP-DC", "science_program": null, "title": "The Biogeochemical Evolution of Dissolved Organic Matter in a Fluvial System on the Cotton Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/600104"}], "date_created": "Fri, 10 Oct 2014 00:00:00 GMT", "description": "Dissolved organic matter (DOM) comprises a significant pool of Earth\u0027s organic carbon that dwarfs the amount present in living aquatic organisms. The properties and reactivity of DOM are not well defined, and the evolution of autochthonous DOM from its precursor materials in freshwater has not been observed. Recent sampling of a supraglacial stream formed on the Cotton Glacier in the Transantarctic Mountains revealed DOM that more closely resembles an assemblage of recognizable precursor organic compounds, based upon its UV-VIS and fluorescence spectra. It is suggested that the DOM from this water evolved over time to resemble materials present in marine and many inland surface waters. The transient nature of the system i.e., it reforms seasonally, also prevents any accumulation of the refractory DOM present in most surface waters. Thus, the Cotton Glacier provides us with a unique environment to study the formation of DOM from precursor materials. An interdisciplinary team will study the biogeochemistry of this progenitor DOM and how microbes modify it. By focusing on the chemical composition of the DOM as it shifts from precursor material to the more humified fractions, the investigators will relate this transition to bioavailability, enzymatic activity, community composition and microbial growth efficiency. This project will support education at all levels, K-12, high school, undergraduate, graduate and post-doc and will increase participation by under-represented groups in science. Towards these goals, the investigators have established relationships with girls\u0027 schools and Native American programs. Additional outreach will be carried out in coordination with PolarTREC, PolarPalooza, and if possible, an Antarctic Artist and Writer.", "east": 161.667, "geometry": "POINT(161.667 -77.117)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.117, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Foreman, Christine", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.117, "title": "Collaborative Research: The Biogeochemical Evolution of Dissolved Organic Matter in a Fluvial System on the Cotton Glacier, Antarctica", "uid": "p0000458", "west": 161.667}, {"awards": "0943934 Taylor, Edith; 0943935 Isbell, John", "bounds_geometry": null, "dataset_titles": "Portal to search geologic sample collections, Polar Rock Repository, Byrd Polar Research Center, The Ohio State University; Portal to search paleobotanical collections, Biodiversity Institute, University of Kansas", "datasets": [{"dataset_uid": "001402", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Portal to search paleobotanical collections, Biodiversity Institute, University of Kansas", "url": "http://biodiversity.ku.edu/paleobotany/collections/collections-search"}, {"dataset_uid": "002567", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Portal to search paleobotanical collections, Biodiversity Institute, University of Kansas", "url": "http://biodiversity.ku.edu/paleobotany/collections/collections-search"}, {"dataset_uid": "001377", "doi": "", "keywords": null, "people": null, "repository": "PRR", "science_program": null, "title": "Portal to search geologic sample collections, Polar Rock Repository, Byrd Polar Research Center, The Ohio State University", "url": "http://research.bpcrc.osu.edu/rr/"}], "date_created": "Tue, 23 Sep 2014 00:00:00 GMT", "description": "Intellectual Merit:\u003cbr/\u003eThe focus of this proposal is to collect fossil plants and palynomorphs from Permian-Triassic (P-T) rocks of the central Transantarctic Mountains (CTM), together with detailed data on sedimentologic and paleoecologic depositional environments. Fossil plants are important climate proxies that offer a unique window into the past, and the CTM fossils are an important source of data on the ways that plants responded to a strongly seasonal, polar light regime during a time of global change. The proposed project uses paleobotanical expertise, integrated with detailed sedimentology and stratigraphy, to reconstruct Permian-Triassic plant communities and their paleoenvironments. This interdisciplinary approach could uncover details of Antarctica?s complex late Paleozoic and Mesozoic environmental and climatic history which included: 1) deglaciation, 2) development and evolution of a post-glacial landscape and biota, 3) environmental and biotic change associated with the end-Permian mass extinction, 4) environmental recovery in the earliest Triassic, 5) strong, possible runaway Triassic greenhouse, and 6) widespread orogenesis and development of a foreland basin system. The PIs will collect compression floras both quantitatively and qualitatively to obtain biodiversity and abundance data. Since silicified wood is also present, the PIs will analyze tree rings and growth in a warm, high-latitude environment for which there is no modern analogue. Fossil plants from the CTM can provide biological and environmental information to: 1) interpret paleoclimate when Gondwana moved from icehouse to greenhouse conditions; 2) trace floral evolution across the P-T boundary; 3) reconstruct Antarctic plant life; 4) further understanding of plant adaptations to high latitudes. The Intellectual Merit of the research includes: 1) tracing floral evolution after the retreat of glaciers; 2) examining floral composition and diversity across the PTB; and 3) obtaining data on the recovery of these ecosystems in the Early Triassic, as well as changes in floral cover and diversity in the Early-Middle Triassic. Antarctica is the only place on Earth that includes extensive outcrops of terrestrial rocks, combined with widespread and well-preserved plant fossils, which spans this crucial time period.\u003cbr/\u003e\u003cbr/\u003eBroader impacts:\u003cbr/\u003eThe broader impacts include public outreach; teaching, and mentoring of women and underrepresented students; mentoring graduate student, postdoctoral, and new faculty women; development of an inquiry-based workshop on Antarctic paleoclimate with the Division of Education, KU Natural History Museum; continuing support of workshops for middle school girls in science via the Expanding Your Horizons Program, Emporia State University, and the TRIO program, KU; exploring Antarctic geosciences through video/computer links from McMurdo Station and satellite phone conferences from the field with K-12 science classes in Wisconsin and Kansas, and through participation in the NSF Research Experiences for Teachers program at the University of Wisconsin.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "FIELD SURVEYS; LABORATORY; Transanatarctic Basin; Paleobotany; Fossil Plants; FIELD INVESTIGATION; Sedimentology; Late Paleozoic Ice Age; Not provided; Central Transantarctic Mountains; Beardmore Glacier", "locations": "Transanatarctic Basin; Central Transantarctic Mountains; Beardmore Glacier", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Instrumentation and Support; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e PALEOZOIC \u003e PERMIAN; PHANEROZOIC \u003e MESOZOIC \u003e TRIASSIC; PHANEROZOIC \u003e PALEOZOIC \u003e PERMIAN; PHANEROZOIC \u003e MESOZOIC \u003e TRIASSIC", "persons": "Isbell, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "PI website", "repositories": "PI website; PRR", "science_programs": null, "south": null, "title": "Collaborative Research: Antarctic Ecosystems across the Permian-Triassic Boundary: Integrating Paleobotany, Sedimentology, and Paleoecology", "uid": "p0000372", "west": null}, {"awards": "1354231 Kowalewski, Douglas", "bounds_geometry": "POLYGON((-180 -70,-174 -70,-168 -70,-162 -70,-156 -70,-150 -70,-144 -70,-138 -70,-132 -70,-126 -70,-120 -70,-120 -71.5,-120 -73,-120 -74.5,-120 -76,-120 -77.5,-120 -79,-120 -80.5,-120 -82,-120 -83.5,-120 -85,-126 -85,-132 -85,-138 -85,-144 -85,-150 -85,-156 -85,-162 -85,-168 -85,-174 -85,180 -85,178 -85,176 -85,174 -85,172 -85,170 -85,168 -85,166 -85,164 -85,162 -85,160 -85,160 -83.5,160 -82,160 -80.5,160 -79,160 -77.5,160 -76,160 -74.5,160 -73,160 -71.5,160 -70,162 -70,164 -70,166 -70,168 -70,170 -70,172 -70,174 -70,176 -70,178 -70,-180 -70))", "dataset_titles": "Validating contrasting terrestrial climate-sensitive Pliocene deposits through high resolution modeling of paleo-environments in the Transantarctic Mountains", "datasets": [{"dataset_uid": "600140", "doi": "10.15784/600140", "keywords": "Antarctica; Atmosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Model Data; Paleoclimate; Transantarctic Mountains", "people": "Kowalewski, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Validating contrasting terrestrial climate-sensitive Pliocene deposits through high resolution modeling of paleo-environments in the Transantarctic Mountains", "url": "https://www.usap-dc.org/view/dataset/600140"}], "date_created": "Thu, 28 Aug 2014 00:00:00 GMT", "description": "Intellectual Merit: Neogene sediment records recovered by ANDRILL suggest multiple events of open water conditions and elevated sea surface temperatures at times when terrestrial data from the McMurdo Dry Valleys indicate hyper arid, cold, desert conditions. Interpretation of the ANDRILL data suggests the West Antarctic Ice Sheet is highly sensitive to changes in Pliocene sea surface temperatures and this conclusion has been supported by recent Global Circulation Model results for the early to mid Pliocene. The PIs propose to model paleo-ice configurations and warm orbits associated with a WAIS collapse to assess potential climate change in East Antarctica. During such episodes of polar warmth they propose to answer: What is the limit of ablation along the East Antarctic Ice Sheet?; Are relict landforms in the Dry Valleys susceptible to modification from increase in maximum summertime temperatures?; and Is there sufficient increase in minimum wintertime temperatures to sustain a tundra environment in the Dry Valleys? Integration of depositional records and model outputs have the potential to test the performance of numerical models currently under development as part of ANDRILL; reconcile inconsistencies between marine and terrestrial paleoclimate records in high Southern Latitudes; and improve understanding of Antarctic climate and ice volume sensitivity to forcing for both the East Antarctic and West Antarctic Ice Sheets. Broader impacts: Results from this study have the potential to be used widely by the research community. Outreach to local elementary schools from other funded efforts will continue and be extended to homeschooled students. A Post Doc will be supported as part of this award.", "east": -120.0, "geometry": "POINT(-160 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -70.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kowalewski, Douglas", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.0, "title": "Validating contrasting terrestrial climate-sensitive Pliocene deposits through high resolution modeling of paleo-environments in the Transantarctic Mountains", "uid": "p0000463", "west": 160.0}, {"awards": "0944078 Albert, Mary", "bounds_geometry": "POINT(112.05 79.28)", "dataset_titles": "Firn Permeability and Density at WAIS Divide", "datasets": [{"dataset_uid": "609602", "doi": "10.7265/N57942NT", "keywords": "Antarctica; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; WAIS Divide; WAIS Divide Ice Core", "people": "Albert, Mary R.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Firn Permeability and Density at WAIS Divide", "url": "https://www.usap-dc.org/view/dataset/609602"}], "date_created": "Fri, 15 Aug 2014 00:00:00 GMT", "description": "This award supports a project to investigate the transformations from snow to firn to ice and the underlying physics controlling firn\u0027s ability to store atmospheric samples from the past. Senior researchers, a graduate student, and several undergraduates will make high-resolution measurements of both the diffusivity and permeability profiles of firn cores from several sites in Antarctica and correlate the results with their microstructures quantified using advanced materials characterization techniques (scanning electron microscopy and x-ray computed tomography). The use of cores from different sites will enable us to examine the influence of different local climate conditions on the firn structure. We will use the results to help interpret existing measurements of firn air chemical composition at several sites where firn air measurements exist. There are three closely-linked goals of this project: to quantify the dependence of interstitial transport properties on firn microstructure from the surface down to the pore close-off depth, to determine at what depths bubbles form and entrap air, and investigate the extent to which these features exhibit site-to-site differences, and to use the measurements of firn air composition and firn structure to better quantify the differences between atmospheric composition (present and past), and the air trapped in both the firn and in air bubbles within ice by comparing the results of the proposed work with firn air measurements that have been made at the WAIS Divide and Megadunes sites. The broader impacts of this project are that the study will this study will enable us to elucidate the fundamental controls on the metamorphism of firn microstructure and its impact on processes of gas entrapment that are important to understanding ice core evidence of past atmospheric composition and climate change. The project will form the basis for the graduate research of a PhD student at Dartmouth, with numerous opportunities for undergraduate involvement in cold room measurements and outreach. The investigators have a track record of successfully mentoring women students, and will build on this experience. In conjunction with local earth science teachers, and graduate and undergraduate students will design a teacher-training module on the role of the Polar Regions in climate change. Once developed and tested, this module will be made available to the broader polar research community for their use with teachers in their communities.", "east": -112.05, "geometry": "POINT(-112.05 -79.28)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e MICROTOMOGRAPHY; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES", "is_usap_dc": true, "keywords": "Firn Air; FIELD SURVEYS; Physics; GROUND-BASED OBSERVATIONS; Antarctica; Megadunes; Tomography; Wais Divide-project; Firn Core; FIELD INVESTIGATION; Not provided; Firn Permeability; LABORATORY; Visual Observations; Ice; Firn; WAIS Divide; Microstructure; Density", "locations": "Antarctica; WAIS Divide", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Baker, Ian; Albert, Mary R.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.28, "title": "Firn Metamorphism: Microstructure and Physical Properties", "uid": "p0000049", "west": -112.05}, {"awards": "0636493 Chereskin, Teresa; 0635437 Donohue, Kathleen", "bounds_geometry": "POLYGON((-65.09 -54.96,-64.618 -54.96,-64.146 -54.96,-63.674 -54.96,-63.202 -54.96,-62.73 -54.96,-62.258 -54.96,-61.786 -54.96,-61.314 -54.96,-60.842 -54.96,-60.37 -54.96,-60.37 -55.661,-60.37 -56.362,-60.37 -57.063,-60.37 -57.764,-60.37 -58.465,-60.37 -59.166,-60.37 -59.867,-60.37 -60.568,-60.37 -61.269,-60.37 -61.97,-60.842 -61.97,-61.314 -61.97,-61.786 -61.97,-62.258 -61.97,-62.73 -61.97,-63.202 -61.97,-63.674 -61.97,-64.146 -61.97,-64.618 -61.97,-65.09 -61.97,-65.09 -61.269,-65.09 -60.568,-65.09 -59.867,-65.09 -59.166,-65.09 -58.465,-65.09 -57.764,-65.09 -57.063,-65.09 -56.362,-65.09 -55.661,-65.09 -54.96))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001522", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1107"}, {"dataset_uid": "001476", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0908"}, {"dataset_uid": "001521", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0710"}, {"dataset_uid": "001490", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0812"}, {"dataset_uid": "001463", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1004"}], "date_created": "Tue, 12 Aug 2014 00:00:00 GMT", "description": "The proposed work is a multi-year study of the transport of water through Drake Passage by the Antarctic Circumpolar Current (ACC). Drake Passage acts as a chokepoint that is not only well suited geographically for measuring the time-varying transport, but observations and computer models suggest that dynamical balances which control the transport are particularly effective here. An array of Current Meters and Pressure-recording Inverted Echo Sounders (CPIES) will be set out for a period of 4 years to quantify the transport and dynamics of the Antarctic Circumpolar Current. Data will be collected annually by acoustic telemetry, leaving the instruments undisturbed until recovered at the end of the project. \u003cbr/\u003e\u003cbr/\u003eThe Southern Ocean is believed to be especially sensitive to climate change, responding to winds that have increased over the past thirty years, and warming significantly more than the global ocean over the past fifty years. The proposed observations will resolve the seasonal and interannual variability of the total ACC transport, as well as its vertical and lateral structure. Although not submitted specifically to the International Polar Year (IPY) Program Solicitation, the proposed project contributes to the IPY goal of understanding environmental change in polar regions and represents a pulse of activity in the IPY time frame that will extend the legacy of the IPY. The data and findings will be reported to publicly accessible archives and submitted for publication in the scientific literature. It is a scientific collaboration between the University of California, San Diego, and the University of Rhode Island.", "east": -60.37, "geometry": "POINT(-62.73 -58.465)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e WATER BOTTLES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -54.96, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Chereskin, Teresa; Donohue, Kathleen; Watts, D.; Tracey, Karen; Kennelly, Maureen", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -61.97, "title": "Collaborative Research: Dynamics and Transport of the Antarctic Circumpolar Current in Drake Passage", "uid": "p0000543", "west": -65.09}, {"awards": "0538672 Palo, Scott", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 31 Jul 2014 00:00:00 GMT", "description": "The mesosphere and lower thermosphere (MLT), at an altitude between 80 and 120 km above the Earth\u0027s surface, is a highly dynamic region that couples the lower terrestrial atmosphere (troposphere and stratosphere) with the upper atmosphere near-Earth space environment (thermosphere and ionosphere). Of particular importance in this region are both the upward propagating thermally forced atmospheric tides and global scale planetary waves. Both of these phenomena transport heat and momentum from the lower atmosphere into the upper atmosphere. Studies in recent years have indicated that the Arctic and Antarctic MLT possess a rich spectrum waves and may be more sensitive to global change than the lower atmosphere. The primary goal of this research is to observe, quantify, model, and further understand the spatial-temporal structure and variability of the MLT circulation above Antarctica and its commonalities with the Arctic. A secondary goal is to quantify and understand the deposition of mass into the upper atmosphere through the ablation of meteors and the resulting effect on local and regional aeronomic processes. This includes the effect of meteor flux, temperature and dynamics on the seasonal distribution of sodium over the South Pole. Meteor radar was installed at the South Pole Amundsen-Scott station and has been running continuously since January 2002. A new sodium nightglow imager will be installed at the South Pole to infer the sodium abundance in the MLT. Observations from this instrument will be combined with the South Pole Fabry-Perot interferometer temperature measurements and the meteor radar wind and meteor flux measurements to improve our understanding of the sodium chemistry and dynamics. These observations will be interpreted using sophisticated numerical models and interpreted in conjunction with Arctic measurements along with current linear and nonlinear atmospheric models to advance the current understanding of processes important to the MLT region. This research also contributes to the training and education of the graduate and undergraduate students, a postdoc and early career tenure track faculty.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": null, "paleo_time": null, "persons": "Palo, Scott; Avery, James; Avery, Susan", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Studies of the Antarctic Mesosphere and Lower Thermosphere", "uid": "p0000491", "west": -180.0}, {"awards": "1043265 Deming, Jody", "bounds_geometry": "POLYGON((162.1397 -77.14085,162.828507 -77.14085,163.517314 -77.14085,164.206121 -77.14085,164.894928 -77.14085,165.583735 -77.14085,166.272542 -77.14085,166.961349 -77.14085,167.650156 -77.14085,168.338963 -77.14085,169.02777 -77.14085,169.02777 -77.200745,169.02777 -77.26064,169.02777 -77.320535,169.02777 -77.38043,169.02777 -77.440325,169.02777 -77.50022,169.02777 -77.560115,169.02777 -77.62001,169.02777 -77.679905,169.02777 -77.7398,168.338963 -77.7398,167.650156 -77.7398,166.961349 -77.7398,166.272542 -77.7398,165.583735 -77.7398,164.894928 -77.7398,164.206121 -77.7398,163.517314 -77.7398,162.828507 -77.7398,162.1397 -77.7398,162.1397 -77.679905,162.1397 -77.62001,162.1397 -77.560115,162.1397 -77.50022,162.1397 -77.440325,162.1397 -77.38043,162.1397 -77.320535,162.1397 -77.26064,162.1397 -77.200745,162.1397 -77.14085))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 31 Jul 2014 00:00:00 GMT", "description": "The relatively pristine Antarctic continent with its extensive maritime zone represents a unique location on the planet to investigate the long distance aerial transport and deposition of marine microorganisms. The vast extent of new sea ice that forms each winter around the continent results in large numbers of frost flowers, delicate ice-crystal structures of high salt content that form on the surface of the ice and are readily dispersed by wind. The proposed research builds on earlier work in the Arctic and tests the new hypothesis that wind-borne frost flowers provide an effective mechanism for the transport of marine bacteria over long distances, one that can be uniquely sourced and tracked by the frost flower salt signature in the Antarctic realm. A highly resolved genomic snapshot of the microbial community will be acquired at each stage in the transport path, which will track decreasing fractions of the marine microbial community as it freezes into sea ice, incorporates into frost flowers, converts to aerosols, and ultimately deposits within continental snowpack. En route from sea ice to snowpack, marine bacteria will be exposed to an array of environmental stresses, including high salinity, low temperatures, UV light and potential desiccation. A parallel proteomic analysis will enable an evaluation of the microbial response to these extreme conditions and potential survival mechanisms that allow persistence or eventual colonization of deposition sites across Antarctica. Current understanding of microbes in the Antarctic atmosphere is based on a limited number of microscopic and culture-based assays and a single report of low-resolution 16S RNA gene sequence analysis. The research will broadly impact understanding of atmospheric microbiology, from source to deposition, and various issues of microbial survival, colonization, endemism, and diversity under extreme conditions. In addition to venues that reach the scientific community, the research team will develop a permanent multi-media and artifact-based exhibit on Antarctic Microbial Transport that will be showcased at Seattle\u0027s Pacific Science Center (PSC), which educates nearly a million visitors annually.", "east": 169.02777, "geometry": "POINT(165.583735 -77.440325)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.14085, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Deming, Jody", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -77.7398, "title": "High Resolution Genomic and Proteomic Analyses of a Microbial Transport Mechanism from Antarctic Marine Waters to Permanent Snowpack", "uid": "p0000356", "west": 162.1397}, {"awards": "0944475 Kaplan, Michael", "bounds_geometry": "POLYGON((-149.7 -84.1,-118.61 -84.1,-87.52 -84.1,-56.43 -84.1,-25.34 -84.1,5.75 -84.1,36.84 -84.1,67.93 -84.1,99.02 -84.1,130.11 -84.1,161.2 -84.1,161.2 -84.43,161.2 -84.76,161.2 -85.09,161.2 -85.42,161.2 -85.75,161.2 -86.08,161.2 -86.41,161.2 -86.74,161.2 -87.07,161.2 -87.4,130.11 -87.4,99.02 -87.4,67.93 -87.4,36.84 -87.4,5.75 -87.4,-25.34 -87.4,-56.43 -87.4,-87.52 -87.4,-118.61 -87.4,-149.7 -87.4,-149.7 -87.07,-149.7 -86.74,-149.7 -86.41,-149.7 -86.08,-149.7 -85.75,-149.7 -85.42,-149.7 -85.09,-149.7 -84.76,-149.7 -84.43,-149.7 -84.1))", "dataset_titles": "Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines", "datasets": [{"dataset_uid": "600115", "doi": "10.15784/600115", "keywords": "Antarctica; Cosmogenic Dating; Sample/collection Description; Sample/Collection Description; Solid Earth; Transantarctic Mountains", "people": "Kaplan, Michael", "repository": "USAP-DC", "science_program": null, "title": "Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines", "url": "https://www.usap-dc.org/view/dataset/600115"}], "date_created": "Thu, 17 Jul 2014 00:00:00 GMT", "description": "The proposed work will investigate changes in the compositional variation of glacial tills over time across two concentric sequences of Pleistocene moraines located adjacent to the heads of East Antarctic outlet glaciers in the Transantarctic Mountains (TAM). The chronologic framework for this work will be generated from cosmogenic exposure ages of boulders on prominent morainal ridges. The PIs hypothesize that variations in till composition may indicate a change in ice flow direction or a change in the composition of the original source area, while ages of the moraines provide a long-term terrestrial perspective on ice sheet dynamics. Both results are vital for modeling experiments that aim to reconstruct the East Antarctic Ice Sheet and assess its role in the global climate system and its potential impact on global sea level rise. The variation of till compositions through time also allows for a more accurate interpretation of sediment cores from the Ross Sea and the Southern Ocean. Additionally, till exposures at the head of some East Antarctic outlet glaciers have been shown to contain subglacial material derived from East Antarctic bedrock, providing a window through the ice to view East Antarctica?s inaccessible bedrock. Till samples will be collected from two well-preserved sequences of moraine crests at Mt. Howe (head of Scott Glacier) and Mt. Achernar (between Beardmore and Nimrod Glaciers). Each size fraction in glacial till provides potentially valuable information, and the PIs will measure the petrography of the clast and sand fractions, quantitative X-ray diffraction on the crushed \u003c2mm fraction, elemental abundance of the silt/clay fraction, and U/Pb of detrital zircons in the sand fraction. Data collection will rely on established methods previously used in this region and the PIs will also explore new methods to assess their efficacy. On the same moraines crests sampled for provenance studies, the PIs will sample for cosmogenic surface exposure analyses to provide a chronologic framework at the sites for provenance changes through time. \u003cbr/\u003e\u003cbr/\u003eBroader Impact \u003cbr/\u003eThe proposed research involves graduate and undergraduate training in a diverse array of laboratory methods. Students and PIs will be make presentations to community and campus groups, as well as conduct interviews with local news outlets. The proposed work also establishes a new, potentially long-term, collaboration between scientists at IUPUI and LDEO and brings a new PI (Kaplan) into the field of Antarctic Earth Sciences.", "east": 161.2, "geometry": "POINT(5.75 -85.75)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION", "locations": null, "north": -84.1, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kaplan, Michael", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.4, "title": "Collaborative Research: Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines", "uid": "p0000459", "west": -149.7}, {"awards": "1321588 Mukasa, Samuel", "bounds_geometry": "POLYGON((129.26361 -71.3575,132.914609 -71.3575,136.565608 -71.3575,140.216607 -71.3575,143.867606 -71.3575,147.518605 -71.3575,151.169604 -71.3575,154.820603 -71.3575,158.471602 -71.3575,162.122601 -71.3575,165.7736 -71.3575,165.7736 -72.145583,165.7736 -72.933666,165.7736 -73.721749,165.7736 -74.509832,165.7736 -75.297915,165.7736 -76.085998,165.7736 -76.874081,165.7736 -77.662164,165.7736 -78.450247,165.7736 -79.23833,162.122601 -79.23833,158.471602 -79.23833,154.820603 -79.23833,151.169604 -79.23833,147.518605 -79.23833,143.867606 -79.23833,140.216607 -79.23833,136.565608 -79.23833,132.914609 -79.23833,129.26361 -79.23833,129.26361 -78.450247,129.26361 -77.662164,129.26361 -76.874081,129.26361 -76.085998,129.26361 -75.297915,129.26361 -74.509832,129.26361 -73.721749,129.26361 -72.933666,129.26361 -72.145583,129.26361 -71.3575))", "dataset_titles": "Geochemistry and Geochronology of Intraplate Lavas Recovered from the Arctic Ocean", "datasets": [{"dataset_uid": "000222", "doi": "", "keywords": null, "people": null, "repository": "EarthChem", "science_program": null, "title": "Geochemistry and Geochronology of Intraplate Lavas Recovered from the Arctic Ocean", "url": "http://dx.doi.org/10.1594/IEDA/100555"}], "date_created": "Fri, 27 Jun 2014 00:00:00 GMT", "description": "This project is a geochemical study of volcanic rocks from the West Antarctic Rift system. Its goal is to understand the link between mantle composition and the diverse, regional geodynamic processes, which include uplift, rifting, and volcanism. This project uses argon dating to time the processes, and isotope geochemistry and melt inclusion studies to determine whether the area is underlain by hot or wet mantle. The main broader impacts are support for a woman graduate student, undergraduate research, and research infrastructure.", "east": 165.7736, "geometry": "POINT(147.518605 -75.297915)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -71.3575, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Mukasa, Samuel", "platforms": "Not provided", "repo": "EarthChem", "repositories": "EarthChem", "science_programs": null, "south": -79.23833, "title": "Submarine and On-Land Volcanism in the West Antarctic Rift System: A Petrologic and Geochemical Study to Assess Melting Processes and Eruption History", "uid": "p0000494", "west": 129.26361}, {"awards": "0839122 Saltzman, Eric; 0839093 McConnell, Joseph; 0839075 Priscu, John", "bounds_geometry": "POINT(112.05 -79.28)", "dataset_titles": "Fluorescence spectroscopy data from the West Antarctic Ice Sheet (WAIS) Divide ice core, WDC06A; Holocene Black Carbon in Antarctica; Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core; Prokaryotic cell concentration record from the WAIS Divide ice core", "datasets": [{"dataset_uid": "601006", "doi": "10.15784/601006", "keywords": "Antarctica; Fluorescence Spectroscopy; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; WAIS Divide; WAIS Divide Ice Core", "people": "Priscu, John; D\u0027Andrilli, Juliana", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Fluorescence spectroscopy data from the West Antarctic Ice Sheet (WAIS) Divide ice core, WDC06A", "url": "https://www.usap-dc.org/view/dataset/601006"}, {"dataset_uid": "601072", "doi": "10.15784/601072", "keywords": "Antarctica; Biota; Cell Counts; Glaciology; Microbiology; WAIS Divide; WAIS Divide Ice Core", "people": "Santibanez, Pamela; Priscu, John", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Prokaryotic cell concentration record from the WAIS Divide ice core", "url": "https://www.usap-dc.org/view/dataset/601072"}, {"dataset_uid": "601034", "doi": "10.15784/601034", "keywords": "Antarctica; Atmosphere; Black Carbon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Arienzo, Monica; McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Holocene Black Carbon in Antarctica", "url": "https://www.usap-dc.org/view/dataset/601034"}, {"dataset_uid": "601361", "doi": "10.15784/601361", "keywords": "Antarctica; Carbonyl Sulfide; Trace Gases", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/601361"}], "date_created": "Fri, 30 May 2014 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to use the WAIS Divide deep core to investigate the Last Deglaciation at sub-annual resolution through an integrated set of chemical and biological analyses. The intellectual merit of the project is that these analyses, combined with others, will take advantage of the high snow accumulation WAIS Divide site yielding the highest time resolution glacio-biogeochemical and gas record of any deep Antarctic ice core. With other high resolution Greenland cores (GISP2 and GRIP) and lower resolution Antarctic cores, the combined record will yield new insights into worldwide climate dynamics and abrupt change. The proposed chemical, biological, and elemental tracer measurements will also be used to address all of the WAIS Divide science themes. The broader impacts of the project include education and outreach activities such as numerous presentations to local K-12 students; opportunities for student and teacher involvement in the laboratory work; a teacher training program in Earth sciences in the heavily minority Santa Ana, Compton, and Costa Mesa, California school districts; and development of high school curricula. Extensive graduate and undergraduate student involvement also is planned and will include one post doctoral associate, one graduate student, and undergraduate hourly involvement at DRI; a graduate student and undergraduates at University of California, Irvine (UCI); and a post doctoral fellow at MSU. Student recruitment will be made from underrepresented groups building on a long track record of involvement and will include the NSF funded California Alliance for Minority Participation (CAMP) and the Montana American Indian Research Opportunities (AIRO).\u003cbr/\u003e\u003cbr/\u003eThis award does not involve field work in Antarctica.", "east": 112.05, "geometry": "POINT(112.05 -79.28)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e CARBON ANALYZERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e WAS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e ICE CORE MELTER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PHOTOMETERS \u003e SPECTROPHOTOMETERS", "is_usap_dc": true, "keywords": "FIELD SURVEYS; Bacteria Ice Core; LABORATORY; Ice Core; FIELD INVESTIGATION; West Antarctica; Not provided; Dissolved Organic Carbon", "locations": "West Antarctica", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY", "persons": "Foreman, Christine; Skidmore, Mark; Saltzman, Eric; McConnell, Joseph; Priscu, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.28, "title": "Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core", "uid": "p0000273", "west": 112.05}, {"awards": "0838996 Hollibaugh, James", "bounds_geometry": "POLYGON((-79 -63,-77.5 -63,-76 -63,-74.5 -63,-73 -63,-71.5 -63,-70 -63,-68.5 -63,-67 -63,-65.5 -63,-64 -63,-64 -63.8,-64 -64.6,-64 -65.4,-64 -66.2,-64 -67,-64 -67.8,-64 -68.6,-64 -69.4,-64 -70.2,-64 -71,-65.5 -71,-67 -71,-68.5 -71,-70 -71,-71.5 -71,-73 -71,-74.5 -71,-76 -71,-77.5 -71,-79 -71,-79 -70.2,-79 -69.4,-79 -68.6,-79 -67.8,-79 -67,-79 -66.2,-79 -65.4,-79 -64.6,-79 -63.8,-79 -63))", "dataset_titles": "Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula; Expedition data of LMG1006", "datasets": [{"dataset_uid": "002722", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1006", "url": "https://www.rvdata.us/search/cruise/LMG1006"}, {"dataset_uid": "600105", "doi": "10.15784/600105", "keywords": "Biota; Chemistry:fluid; Chemistry:Fluid; LMG1006; LMG1101; LTER Palmer Station; Oceans; Southern Ocean", "people": "Hollibaugh, James T.", "repository": "USAP-DC", "science_program": null, "title": "Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/600105"}], "date_created": "Thu, 13 Mar 2014 00:00:00 GMT", "description": "Ammonia oxidation is the first step in the conversion of regenerated nitrogen to dinitrogen gas, a 3-step pathway mediated by 3 distinct guilds of bacteria and archaea. Ammonia oxidation and the overall process of nitrification-denitrification have received relatively little attention in polar oceans where the effects of climate change on biogeochemical rates are likely to be pronounced. Previous work on Ammonia Oxidizing Archaea (AOA) in the Palmer LTER study area West of the Antarctic Peninsula (WAP), has suggested strong vertical segregation of crenarchaeote metabolism, with the \"winter water\" (WW, ~50-100 m depth range) dominated by non-AOA crenarchaeotes, while Crenarchaeota populations in the \"circumpolar deep water\" (CDW), which lies immediately below the winter water (150-3500 m), are dominated by AOA. Analysis of a limited number of samples from the Arctic Ocean did not reveal a comparable vertical segregation of AOA, and suggested that AOA and Crenarchaeota abundance is much lower there than in the Antarctic. These findings led to 3 hypotheses that will be tested in this project: 1) the apparent low abundance of Crenarchaeota and AOA in Arctic Ocean samples may be due to spatial or temporal variability in populations; 2) the WW population of Crenarchaeota in the WAP is dominated by a heterotroph; 3) the WW population of Crenarchaeota in the WAP \"grows in\" during spring and summer after this water mass forms. \u003cbr/\u003e\u003cbr/\u003eThe study will contribute substantially to understanding an important aspect of the nitrogen cycle in the Palmer LTER (Long Term Ecological Research) study area by providing insights into the ecology and physiology of AOA. The natural segregation of crenarchaeote phenotypes in waters of the WAP, coupled with metagenomic studies in progress in the same area by others (A. Murray, H. Ducklow), offers the possibility of major breakthroughs in understanding of the metabolic capabilities of these organisms. This knowledge is needed to model how water column nitrification will respond to changes in polar ecosystems accompanying global climate change. The Principal Investigator will participate fully in the education and outreach efforts of the Palmer LTER, including making highlights of our findings available for posting to their project web site and participating in outreach (for example, Schoolyard LTER). The research also will involve undergraduates (including the field work if possible) and will support high school interns in the P.I.\u0027s laboratory over the summer.", "east": -64.0, "geometry": "POINT(-71.5 -67)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "R/V LMG", "locations": null, "north": -63.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Hollibaugh, James T.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": "LTER", "south": -71.0, "title": "Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula", "uid": "p0000359", "west": -79.0}, {"awards": "1232962 Ledwell, James", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP1310A", "datasets": [{"dataset_uid": "002658", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1310A", "url": "https://www.rvdata.us/search/cruise/NBP1310A"}], "date_created": "Fri, 07 Feb 2014 00:00:00 GMT", "description": "Intellectual Merit: The Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) is a study of ocean mixing in the Antarctic Circumpolar Current (ACC) which runs west to east all around the continent of Antarctica, south of the other continents. This current system is somewhat of a barrier to transport of heat, carbon dioxide and other important ocean constituents between the far south and the rest of the ocean, and mixing processes play an important role in those transports. DIMES is a multi-investigator cooperative project, led by physical oceanographers in the U.S. and in the U.K. A passive tracer and an array of sub-surface floats were deployed early in 2009 more than 2000 km west of Drake Passage on a surface of constant density about 1500 m deep between the Sub Antarctic Front and the Polar Front of the ACC. In early 2010 a U.S. led research cruise sampled the tracer, turbulence levels, and the velocity and density profiles that govern the generation of that turbulence, and additional U.K. led research cruises in 2011 and 2012 continue this sampling as the tracer has made its way through Drake Passage, into the Scotia Sea, and over the North Scotia Ridge, a track of more than 3000 km. The initial results show that diapycnal, i.e., vertical, mixing west of Drake Passage where the bottom is relatively smooth is no larger than in most other regions of the open ocean. In contrast, there are strong velocity shears and intense turbulence levels over the rough topography in Drake Passage and diapycnal diffusivity of the tracer more than 10 times larger in Drake Passage and to the east than west of Drake Passage. The DIMES field program continues with the U.S. team collecting new velocity and turbulence data in the Scotia Sea. It is anticipated that the tracer will continue passing through the Scotia Sea until at least early 2014. The U.K. partners have scheduled sampling of the tracer on cruises at the North Scotia Ridge and in the eastern and central Scotia Sea in early 2013 and early 2014. The current project will continue the time series of the tracer at Drake Passage on two more U.S. led cruises, in late 2012 and late 2013. Trajectories through the Scotia Sea estimated from the tracer observations, from neutrally buoyant floats, and from numerical models will be used to accurately estimate mixing rates of the tracer and to locate where the mixing is concentrated. During the 2013 cruise the velocity and turbulence fields along high-resolution transects along the ACC and across the ridges of Drake Passage will be measured to see how far downstream of the ridges the mixing is enhanced, and to test the hypothesis that mixing is enhanced by breaking lee waves generated by flow over the rough topography. Broader Impacts: DIMES (see web site at http://dimes.ucsd.edu) involves many graduate students and post-doctoral researchers. Two graduate students, who would become expert in ocean turbulence and the processes generating it, will continue be trained on this project. The work in DIMES is ultimately motivated by the need to understand the overturning circulation of the global ocean. This circulation governs the transport and storage of heat and carbon dioxide within the huge oceanic reservoir, and thus plays a major role in regulating the earth?s climate. Understanding the circulation and how it changes in reaction to external forces is necessary to the understanding of past climate change and of how climate might change in the future, and is therefore of great importance to human well-being. The data collected and analyzed by the DIMES project will be assembled and made publicly available at the end of the project. The DIMES project is a process experiment sponsored by the U.S. CLIVAR (Climate variability and predictability) program.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": null, "paleo_time": null, "persons": "Ledwell, James", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Studies of Turbulence and Mixing in the Antarctic Circumpolar Current, a Continuation of DIMES", "uid": "p0000846", "west": null}, {"awards": "1043745 Halanych, Kenneth", "bounds_geometry": null, "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001427", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1210"}, {"dataset_uid": "000439", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1312"}], "date_created": "Fri, 07 Feb 2014 00:00:00 GMT", "description": "The research will explore the genetics, diversity, and biogeography of Antarctic marine benthic invertebrates, seeking to overturn the widely accepted suggestion that benthic fauna do not constitute a large, panmictic population. The investigators will sample adults and larvae from undersampled regions of West Antarctica that, combined with existing samples, will provide significant coverage of the western hemisphere of the Southern Ocean. The objectives are: 1) To assess the degree of genetic connectivity (or isolation) of benthic invertebrate species in the Western Antarctic using high-resolution genetic markers. 2) To begin exploring planktonic larvae spatial and bathymetric distributions for benthic shelf invertebrates in the Bellinghausen, Amundsen and Ross Seas. 3) To continue to develop a Marine Antarctic Genetic Inventory (MAGI) that relates larval and adult forms via DNA barcoding. Broader impacts include traditional forms of training (postdocs, graduate studentships, undergraduate research experiences) and lectures to K-12 groups.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e PROFILERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES", "is_usap_dc": false, "keywords": "R/V LMG; R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Halanych, Kenneth", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Genetic connectivity and biogeographic patterns of Antarctic benthic invertebrates", "uid": "p0000263", "west": null}, {"awards": "1142107 Durbin, Edward", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP1304", "datasets": [{"dataset_uid": "002660", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1304", "url": "https://www.rvdata.us/search/cruise/NBP1304"}], "date_created": "Fri, 07 Feb 2014 00:00:00 GMT", "description": "Krill, Euphausia superba, is a keystone species in the Antarctic ecosystem and provides the trophic link between microscopic plankton and charismatic megafauna such as penguins and whales. Recent evidence suggests krill may not be exclusively planktonivorous, which introduces the potential of new pathways of carbon flux through krill based ecosystems. A change in our view of krill from one of being herbivores to omnivores opens up several questions. Climate induced change in the extent, thickness and duration of overlying sea ice coverage is expected to change the prey fields available to krill, and to have subsequent effects on the suite of predators supported by krill. The nature of this benthic prey?krill link, which may be crucial in those parts of the seasonal cycle other than the well studied spring bloom, is yet to be determined. DNA techniques will be used to identify and quantify the prey organisms. This project will measure the in situ feeding ecology and behavior of krill and, ultimately, the success of this key species. An overall goal is to investigate seasonal changes in Euphausia superba in-situ feeding and swimming behavior in the Wilhelmina Bay region of the Western Antarctic Peninsula (WAP) area, known to be a region of changing climate. Understanding the biological impacts of climate change is important to societal and economic goals. The project scientists will additionally team with a marine and environmental reporting group to design presentations for an annual journalist meeting.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Durbin, Edward", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Seasonal Trophic Roles of Euphausia Superba (STRES)", "uid": "p0000848", "west": null}, {"awards": "0739515 Fagan, William", "bounds_geometry": "POLYGON((-68.383 -60.65,-66.10137 -60.65,-63.81974 -60.65,-61.53811 -60.65,-59.25648 -60.65,-56.97485 -60.65,-54.69322 -60.65,-52.41159 -60.65,-50.12996 -60.65,-47.84833 -60.65,-45.5667 -60.65,-45.5667 -61.4145,-45.5667 -62.179,-45.5667 -62.9435,-45.5667 -63.708,-45.5667 -64.4725,-45.5667 -65.237,-45.5667 -66.0015,-45.5667 -66.766,-45.5667 -67.5305,-45.5667 -68.295,-47.84833 -68.295,-50.12996 -68.295,-52.41159 -68.295,-54.69322 -68.295,-56.97485 -68.295,-59.25648 -68.295,-61.53811 -68.295,-63.81974 -68.295,-66.10137 -68.295,-68.383 -68.295,-68.383 -67.5305,-68.383 -66.766,-68.383 -66.0015,-68.383 -65.237,-68.383 -64.4725,-68.383 -63.708,-68.383 -62.9435,-68.383 -62.179,-68.383 -61.4145,-68.383 -60.65))", "dataset_titles": "Data Paper, ESA Ecology", "datasets": [{"dataset_uid": "000141", "doi": "", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Data Paper, ESA Ecology", "url": "http://dx.doi.org/10.1890/13-1108.1"}], "date_created": "Fri, 17 Jan 2014 00:00:00 GMT", "description": "This five-year project seeks to characterize decadal scale changes in penguin and seabird populations on the Antarctic Peninsula, and to identify the factors driving these long-term changes. Two interconnected research activities are proposed: 1. Continued, long-term monitoring and censusing of penguin and seabird populations at \u003e117 sites throughout the Antarctic Peninsula via opportunistic ship-based data collection. 2. Synthesis and quantitative analyses of datasets detailing long-term changes in five penguin and seabird species from diverse sites throughout the Antarctic Peninsula. When complete, the penguin/seabird database will incorporate data from the Antarctic Site Inventory (ASI), the CCAMLR database, the US AMLR database, the LTER database from Palmer Station, data from British and Argentine researchers, historic census data compiled by the Scientific Committee on Antarctic Research (SCAR), and, when possible, additional privately held datasets. Additional data for temperature change, sea ice coverage, the seasonal timing and intensity of human visitation, and other factors have been gathered and will be analyzed together with population trajectories within a spatially explicit framework. The research will include hierarchical statistical analyses to characterize the long-term population dynamics of several key polar species across multiple spatial scales (sites, regions, and the Peninsula). Analyses also will focus on specific subsets of the overall database to contrast visitor impacts on paired colonies, sites, and regions that share similar environmental conditions but differ in the intensity of tourism. \u003cbr/\u003e\u003cbr/\u003eThe Broader Impacts include (1) research training and first-time Antarctic experiences for a postdoctoral researcher and several graduate students, all of whom will then be better positioned to bring their expertise in spatial and/or quantitative/theoretical ecology to bear on questions in polar research; (2) assembly and analysis of a large, multi-season database of penguin and seabird time series from the Antarctic Peninsula that will be publicly available, (3) assistance in distinguishing the impacts of tourism versus climate change on seabird populations. Under the Environmental Protocol to the Antarctic Treaty, Treaty Parties are charged with regular and effective monitoring to assess the impacts of human activities. This project will uniquely assist Parties in fulfilling this mandate.", "east": -45.5667, "geometry": "POINT(-56.97485 -64.4725)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.65, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Fagan, William; Lynch, Heather", "platforms": "Not provided", "repo": "Publication", "repositories": "Publication", "science_programs": null, "south": -68.295, "title": "Collaborative Research: Multispecies, Multiscale Investigations of Longterm Changes in Penguin and Seabird Populations on the Antarctic Peninsula", "uid": "p0000465", "west": -68.383}, {"awards": "1019838 Wendt, Dean", "bounds_geometry": null, "dataset_titles": "Real-Time Characterization of Adelie Penguin Foraging Environment Using an Autonomous Underwater Vehicle", "datasets": [{"dataset_uid": "600120", "doi": "10.15784/600120", "keywords": "Biota; Oceans; Southern Ocean", "people": "Wendt, Dean; Moline, Mark", "repository": "USAP-DC", "science_program": null, "title": "Real-Time Characterization of Adelie Penguin Foraging Environment Using an Autonomous Underwater Vehicle", "url": "https://www.usap-dc.org/view/dataset/600120"}], "date_created": "Mon, 30 Dec 2013 00:00:00 GMT", "description": "Abstract This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The Antarctic Peninsula is among the most rapidly warming regions on earth. Increased heat from the Antarctic Circumpolar Current has elevated the temperature of the 300 m of shelf water below the permanent pycnocline by 0.7 degrees C. This trend has displaced the once dominant cold, dry continental Antarctic climate, and is causing multi-level responses in the marine ecosystem. One striking example of the ecosystem response to warming has been the local declines in ice-dependent Ad\u00e9lie penguins. The changes in these apex predators are thought to be driven by alterations in phytoplankton and zooplankton community composition, and the foraging limitations and diet differences between these species. One of the most elusive questions facing researchers interested in the foraging ecology of the Ad\u00e9lie penguin, namely, what are the biophysical properties that characterize the three dimensional foraging space of this top predator? The research will combine the real-time site and diving information from the Ad\u00e9lie penguin satellite tags with the full characterization of the oceanography and the penguins prey field using an autonomous underwater vehicle (AUV). While some of these changes have been documented over large spatial scales of the WAP, it is now thought that the causal mechanisms that favor of one life history strategy over another may actually operate over much smaller scales than previously thought, specifically on the scale of local breeding sites and over-wintering areas. Characterization of prey fields on these local scales has yet to be done and one that the AUV is ideally suited. The results will have a direct tie to the climate induced changes that are occurring in the West Antarctic Peninsula. This study will also highlight a new approach to linking an autonomous platform to bird behavior that could be expanded to include the other two species of penguins and examine the seasonal differences in their foraging behavior and prey selection. From a vehicle perspective, this effort will inform the AUV user community of new sensor suites and/or data processing approaches that are required to better evaluate foraging habitat. The project also will help transition AUV platforms into routine investigative tools for this region, which is chronically under sampled and will remain difficult to access", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; Amd/Us; USAP-DC; AMD; FIELD INVESTIGATION", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Wendt, Dean; Moline, Mark", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Real-Time Characterization of Adelie Penguin Foraging Environment Using an Autonomous Underwater Vehicle", "uid": "p0000662", "west": null}, {"awards": "0944532 Isbell, John; 0944662 Elliot, David", "bounds_geometry": "POLYGON((158.9 -83,159.583 -83,160.266 -83,160.949 -83,161.632 -83,162.315 -83,162.998 -83,163.681 -83,164.364 -83,165.047 -83,165.73 -83,165.73 -83.21,165.73 -83.42,165.73 -83.63,165.73 -83.84,165.73 -84.05,165.73 -84.26,165.73 -84.47,165.73 -84.68,165.73 -84.89,165.73 -85.1,165.047 -85.1,164.364 -85.1,163.681 -85.1,162.998 -85.1,162.315 -85.1,161.632 -85.1,160.949 -85.1,160.266 -85.1,159.583 -85.1,158.9 -85.1,158.9 -84.89,158.9 -84.68,158.9 -84.47,158.9 -84.26,158.9 -84.05,158.9 -83.84,158.9 -83.63,158.9 -83.42,158.9 -83.21,158.9 -83))", "dataset_titles": "Rock Samples (full data link not provided)", "datasets": [{"dataset_uid": "000171", "doi": "", "keywords": null, "people": null, "repository": "PRR", "science_program": null, "title": "Rock Samples (full data link not provided)", "url": "http://bprc.osu.edu/rr/"}], "date_created": "Thu, 05 Dec 2013 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThe goal of this project is to address relationships between foreland basins and their tectonic settings by combining detrital zircon isotope characteristics and sedimentological data. To accomplish this goal the PIs will develop a detailed geochronology and analyze Hf- and O-isotopes of detrital zircons in sandstones of the Devonian Taylor Group and the Permian-Triassic Victoria Group. These data will allow them to better determine provenance and basin fill, and to understand the nature of the now ice covered source regions in East and West Antarctica. The PIs will document possible unexposed/unknown crustal terrains in West Antarctica, investigate sub-glacial terrains of East Antarctica that were exposed to erosion during Devonian to Triassic time, and determine the evolving provenance and tectonic history of the Devonian to Triassic Gondwana basins in the central Transantarctic Mountains. Detrital zircon data will be interpreted in the context of fluvial dispersal/drainage patterns, sandstone petrology, and sequence stratigraphy. This interpretation will identify source terrains and evolving sediment provenances. Paleocurrent analysis and sequence stratigraphy will determine the timing and nature of changing tectonic conditions associated with development of the depositional basins and document the tectonic history of the Antarctic sector of Gondwana. Results from this study will answer questions about the Panthalassan margin of Gondwana, the Antarctic craton, and the Beacon depositional basin and their respective roles in global tectonics and the geologic and biotic history of Antarctica. The Beacon basin and adjacent uplands played an important role in the development and demise of Gondwanan glaciation through modification of polar climates, development of peat-forming mires, colonization of the landscape by plants, and were a migration route for Mesozoic vertebrates into Antarctica. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis proposal includes support for two graduate students who will participate in the fieldwork, and also support for other students to participate in laboratory studies. Results of the research will be incorporated in classroom teaching at the undergraduate and graduate levels and will help train the next generation of field geologists. Interactions with K-12 science classes will be achieved by video/computer conferencing and satellite phone connections from Antarctica. Another outreach effort is the developing cooperation between the Byrd Polar Research Center and the Center of Science and Industry in Columbus.", "east": 165.73, "geometry": "POINT(162.315 -84.05)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e XRF", "is_usap_dc": true, "keywords": "Not provided; LABORATORY", "locations": null, "north": -83.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Elliot, David; Isbell, John", "platforms": "Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "PRR", "repositories": "PRR", "science_programs": null, "south": -85.1, "title": "Collaborative Research:Application of Detrital Zircon Isotope Characteristics and Sandstone Analysis of Beacon Strata to the Tectonic Evolution of the Antarctic Sector of Gondwana", "uid": "p0000312", "west": 158.9}, {"awards": "0944042 Warren, Joseph", "bounds_geometry": "POLYGON((-70 -59,-68 -59,-66 -59,-64 -59,-62 -59,-60 -59,-58 -59,-56 -59,-54 -59,-52 -59,-50 -59,-50 -59.7,-50 -60.4,-50 -61.1,-50 -61.8,-50 -62.5,-50 -63.2,-50 -63.9,-50 -64.6,-50 -65.3,-50 -66,-52 -66,-54 -66,-56 -66,-58 -66,-60 -66,-62 -66,-64 -66,-66 -66,-68 -66,-70 -66,-70 -65.3,-70 -64.6,-70 -63.9,-70 -63.2,-70 -62.5,-70 -61.8,-70 -61.1,-70 -60.4,-70 -59.7,-70 -59))", "dataset_titles": "Data from expdition LMG1010; Expedition Data; Expedition data of LMG1010; Expedition data of LMG1110", "datasets": [{"dataset_uid": "002671", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1110", "url": "https://www.rvdata.us/search/cruise/LMG1110"}, {"dataset_uid": "002723", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1010", "url": "https://www.rvdata.us/search/cruise/LMG1010"}, {"dataset_uid": "000153", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Data from expdition LMG1010", "url": "https://www.rvdata.us/search/cruise/LMG1010"}, {"dataset_uid": "001445", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1110"}], "date_created": "Tue, 03 Dec 2013 00:00:00 GMT", "description": "The importance of gelatinous zooplankton in marine systems worldwide is increasing. In Southern Ocean, increasing salp densities could have a detrimental effect on higher predators, including penguins, fur seals, and baleen whales. The proposed research is a methods-develoment project that will improve the capability to indirectly assess abundances and distributions of salps in the Southern Ocean through acoustic surveys. Hydrographic, net tow, and acoustic backscatter data will be collected in the waters surrounding the South Shetland Islands and the Antarctic peninsula, where both krill and salps are found and compete for food. Shipboard experimental manipulations and measurements will lead to improved techniques for assessment of salp biomass acoustically. Experiments will focus on material properties (density and sound speed), size and shape of salps, as well as how these physical properties will vary with the salp\u0027s environment, feeding rate, and reproductive status. In the field, volume backscattering data from an acoustic echosounder will be collected at the same locations as the net tows to enable comparison of net and acoustic estimates of salp abundance. A physics-based scattering model for salps will be developed and validated, to determine if multiple acoustic frequencies can be used to discriminate between scattering associated with krill swarms and that from salp blooms. During the same period as the Antarctic field work, a parallel outreach and education study will be undertaken in Long Island, New York examining local gelatinous zooplankton. This study will enable project participants to learn and practice research procedures and methods before traveling to Antarctica; provide a comparison time-series that will be used for educational purposes; and include many more students and teachers in the research project than would be able to participate in the Antarctic field component.", "east": -50.0, "geometry": "POINT(-60 -62.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "R/V LMG; Not provided", "locations": null, "north": -59.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Warren, Joseph", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -66.0, "title": "Acoustic Assessment of Southern Ocean Salps and Their Ecosystem Impact", "uid": "p0000481", "west": -70.0}, {"awards": "0838850 Gooseff, Michael", "bounds_geometry": "POLYGON((162.32 -77.62,162.418 -77.62,162.516 -77.62,162.614 -77.62,162.712 -77.62,162.81 -77.62,162.90800000000002 -77.62,163.006 -77.62,163.104 -77.62,163.202 -77.62,163.3 -77.62,163.3 -77.631,163.3 -77.64200000000001,163.3 -77.653,163.3 -77.664,163.3 -77.67500000000001,163.3 -77.686,163.3 -77.697,163.3 -77.708,163.3 -77.71900000000001,163.3 -77.73,163.202 -77.73,163.104 -77.73,163.006 -77.73,162.90800000000002 -77.73,162.81 -77.73,162.712 -77.73,162.614 -77.73,162.516 -77.73,162.418 -77.73,162.32 -77.73,162.32 -77.71900000000001,162.32 -77.708,162.32 -77.697,162.32 -77.686,162.32 -77.67500000000001,162.32 -77.664,162.32 -77.653,162.32 -77.64200000000001,162.32 -77.631,162.32 -77.62))", "dataset_titles": "The Role of Snow Patches on the Spatial Distribution of Soil Microbial Communities and Biogeochemical Cycling in the Antarctic Dry Valleys", "datasets": [{"dataset_uid": "600100", "doi": "10.15784/600100", "keywords": "Antarctica; Critical Zone; Mps-1 Water Potential Sensor; Physical Properties; Soil Moisture; Soil Temperature", "people": "Gooseff, Michael N.", "repository": "USAP-DC", "science_program": null, "title": "The Role of Snow Patches on the Spatial Distribution of Soil Microbial Communities and Biogeochemical Cycling in the Antarctic Dry Valleys", "url": "https://www.usap-dc.org/view/dataset/600100"}], "date_created": "Tue, 26 Nov 2013 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eTwo models have been proposed to describe controls over microbial biogeography. One model proposes that microbes are ubiquitously distributed across the global environment, and that environmental conditions select for taxa physiologically adapted to local physical conditions. An alternative model predicts that dispersal is the important limitation to the distribution of microorganisms and that spatial heterogeneity of microbial communities is a result of both dispersal and local environmental limitations. According to both models, spatial heterogeneity of microbial communities may be especially pronounced in extreme ecosystems where the environmental selection for organisms with suitable physiology is most strongly manifest. We propose that Antarctic terrestrial environments are ideal places to examine microbial biogeography for 3 reasons: 1) the pristine nature and remoteness of Antarctica minimizes the prevalence of exotic species dispersed through human vectors; 2) the extreme conditions of Antarctic environments provide a strong environmental filter which limits the establishment of non-indigenous taxa; and 3) extreme heterogeneity in the terrestrial environment provides natural gradients of soil conditions (temperature, water and nutrient availability). In the proposed research we will investigate the influence of snow on the composition and spatial distribution of soil microbial communities and linked biogeochemical cycling in the McMurdo Dry Valleys. We will conduct fieldwork at the landscape scale (repeated remote sensing to characterize snow distribution), at the valley and patch scales (quantify snow patch ablation, microbial communities and biogeochemical cycling in subnivian soils). We hypothesize that snow patches play an important role in structuring the spatial distribution of soil microbial communities and their associated ecosystem functioning because of the physical and hydrological influences that snow patches have on the soil environment. The research will contribute to greater public awareness of the importance of polar research to fundamental questions of biology, ecology and hydrology through direct linkages with International Antarctic Institute public outreach activities, including dissemination of web-based learning units on environmental science and microbiology, targeted as resources for secondary and post-secondary educators. Three graduate students, one postdoctoral scholar and multiple undergraduates will participate in the research activities.", "east": 163.3, "geometry": "POINT(162.81 -77.675)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.62, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Gooseff, Michael N.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.73, "title": "Collaborative Research: The Role of Snow Patches on the Spatial Distribution of Soil Microbial Communities and Biogeochemical Cycling in the Antarctic Dry Valleys", "uid": "p0000489", "west": 162.32}, {"awards": "1142083 Kyle, Philip", "bounds_geometry": "POINT(167.15334 -77.529724)", "dataset_titles": "Database of Erebus cave field seasons; Icequakes at Erebus volcano, Antarctica; Mount Erebus Observatory GPS data; Mount Erebus Seismic Data; Mount Erebus Thermodynamic model code; Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO); Seismic data used for high-resolution active-source seismic tomography", "datasets": [{"dataset_uid": "200032", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Mount Erebus Seismic Data", "url": "http://ds.iris.edu/mda/ER/"}, {"dataset_uid": "200030", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Database of Erebus cave field seasons", "url": "https://github.com/foobarbecue/troggle"}, {"dataset_uid": "200034", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Seismic data used for high-resolution active-source seismic tomography", "url": "http://ds.iris.edu/mda/ZW/?timewindow=2007-2009http://ds.iris.edu/mda/Y4?timewindow=2008-2009http://ds.iris.edu/ds/nodes/dmc/forms/assembled-data/?dataset_report_number=09-015"}, {"dataset_uid": "200031", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Mount Erebus Thermodynamic model code", "url": "https://github.com/kaylai/Iacovino2015_thermodynamic_model"}, {"dataset_uid": "600381", "doi": "10.15784/600381", "keywords": "Antarctica; Cable Observatory; Geology/Geophysics - Other; Infrared Imagery; Intracontinental Magmatism; IntraContinental Magmatism; MEVO; Mount Erebus; Photo/video; Photo/Video; Ross Island; Solid Earth; Thermal Camera; Volcano", "people": "Oppenheimer, Clive; Kyle, Philip", "repository": "USAP-DC", "science_program": "MEVO", "title": "Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO)", "url": "https://www.usap-dc.org/view/dataset/600381"}, {"dataset_uid": "200027", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Mount Erebus Observatory GPS data", "url": "https://www.unavco.org/data/gps-gnss/data-access-methods/dai1/monument.php?mid=22083\u0026parent_link=Permanent\u0026pview=original"}, {"dataset_uid": "200033", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Icequakes at Erebus volcano, Antarctica", "url": "http://ds.iris.edu/mda/ZW/?timewindow=2007-2009http://ds.iris.edu/mda/Y4?timewindow=2008-2009http://ds.iris.edu/mda/ZO?timewindow=2011-2012"}], "date_created": "Tue, 03 Sep 2013 00:00:00 GMT", "description": "Intellectual Merit: Mt. Erebus is one of only a handful of volcanoes worldwide that have lava lakes with readily observable and nearly continuous Strombolian explosive activity. Erebus is also unique in having a permanent convecting lava lake of anorthoclase phonolite magma. Over the years significant infrastructure has been established at the summit of Mt. Erebus as part of the Mount Erebus Volcano Observatory (MEVO), which serves as a natural laboratory to study a wide range of volcanic processes, especially magma degassing associated with an open convecting magma conduit. The PI proposes to continue operating MEVO for a further five years. The fundamental fundamental research objectives are: to understand diffuse flank degassing by using distributed temperature sensing and gas measurements in ice caves, to understand conduit processes, and to examine the environmental impact of volcanic emissions from Erebus on atmospheric and cryospheric environments. To examine conduit processes the PI will make simultaneous observations with video records, thermal imaging, measurements of gas emission rates and gas compositions, seismic, and infrasound data. Broader impacts: An important aspect of Erebus research is the education and training of students. Both graduate and undergraduate students will have the opportunity to work on MEVO data and deploy to the field site. In addition, this proposal will support a middle or high school science teacher for two field seasons. The PI will also continue working with various media organizations and filmmakers.", "east": 167.15334, "geometry": "POINT(167.15334 -77.529724)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e TIRS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e SPECTROMETERS \u003e FTIR SPECTROMETER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e SPECTROMETERS \u003e DOAS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e LASER RANGING \u003e MOBLAS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e PETROGRAPHIC MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e HRDI; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e TIRS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e INFRASONIC MICROPHONES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e AMS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e XRF; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-ES; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e LASER RANGING \u003e MOBLAS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e IRGA; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE CHAMBERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e SPECTROMETERS \u003e FTIR SPECTROMETER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e MICROTOMOGRAPHY; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e SIMS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Earthquakes; Vesuvius; Cosmogenic Radionuclides; Infrasonic Signals; Icequakes; Magma Shells; Phase Equilibria; Passcal; Correlation; Backscattering; Eruptive History; Degassing; Volatiles; Magma Convection; Thermodynamics; Tremors; Optech; Uv Doas; Energy Partitioning; Erebus; Cronus; Holocene; Lava Lake; Phonolite; Vagrant; Thermal Infrared Camera; Flir; USA/NSF; Mount Erebus; Active Source Seismic; GROUND-BASED OBSERVATIONS; Interferometry; Volatile Solubility; Redox State; Viscosity; Hydrogen Emission; Seismicity; Eruptions; Explosion Energy; FIELD SURVEYS; Radar Spectra; OBSERVATION BASED; Seismic Events; Strombolian Eruptions; Anorthoclase; Ice Caves; Iris; VOLCANO OBSERVATORY; Melt Inclusions; Ftir; Alkaline Volcanism; Tomography; TLS; Volcanic Gases; ANALYTICAL LAB", "locations": "Vesuvius; Cronus; Vagrant; Mount Erebus; Passcal", "north": -77.529724, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Kyle, Philip; Oppenheimer, Clive; Chaput, Julien; Jones, Laura; Fischer, Tobias", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e VOLCANO OBSERVATORY; OTHER \u003e MODELS \u003e OBSERVATION BASED; OTHER \u003e PHYSICAL MODELS \u003e ANALYTICAL LAB", "repo": "IRIS", "repositories": "GitHub; IRIS; UNAVCO; USAP-DC", "science_programs": "MEVO", "south": -77.529724, "title": "Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO)", "uid": "p0000383", "west": 167.15334}, {"awards": "0739779 Warren, Stephen; 1142963 Warren, Stephen", "bounds_geometry": "POLYGON((157 -76,158.1 -76,159.2 -76,160.3 -76,161.4 -76,162.5 -76,163.6 -76,164.7 -76,165.8 -76,166.9 -76,168 -76,168 -76.2,168 -76.4,168 -76.6,168 -76.8,168 -77,168 -77.2,168 -77.4,168 -77.6,168 -77.8,168 -78,166.9 -78,165.8 -78,164.7 -78,163.6 -78,162.5 -78,161.4 -78,160.3 -78,159.2 -78,158.1 -78,157 -78,157 -77.8,157 -77.6,157 -77.4,157 -77.2,157 -77,157 -76.8,157 -76.6,157 -76.4,157 -76.2,157 -76))", "dataset_titles": "Ice on the Oceans of Snowball Earth Project Data", "datasets": [{"dataset_uid": "000183", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Ice on the Oceans of Snowball Earth Project Data", "url": "https://digital.lib.washington.edu/researchworks/handle/1773/37320"}], "date_created": "Wed, 10 Jul 2013 00:00:00 GMT", "description": "The climatic changes of late Precambrian time, 600-800 million years ago, included episodes of extreme glaciation, during which ice may have covered nearly the entire ocean for several million years, according to the Snowball Earth hypothesis. These episodes would hold an important place in Earth?s evolutionary history; they could have encouraged biodiversity by trapping life forms in small isolated ice-free areas, or they could have caused massive extinctions that cleared the path for new life forms to fill empty niches. What caused the Earth to become iced over, and what later caused the ice to melt? Scientific investigation of these questions will result in greater understanding of the climatic changes that the Earth can experience, and will enable better predictions of future climate. This project involves Antarctic field observations as well as laboratory studies and computer modeling. The aim of this project is not to prove or disprove the Snowball Earth hypothesis but rather to quantify processes that are important for simulating snowball events in climate models. The principal goal is to identify the types of ice that would have been present on the frozen ocean, and to determine how much sunlight they would reflect back to space. Reflection of sunlight by bright surfaces of snow and ice is what would maintain the cold climate at low latitudes. The melting of the ocean required buildup of greenhouse gases, but it was probably aided by deposition of desert dust and volcanic ash darkening the snow and ice. With so much ice on the Earth?s surface, even small differences in the amount of light that the ice absorbed or reflected could cause significant changes in climate. The properties of the ice would also determine where, and in what circumstances, photosynthetic life could have survived. Some kinds of ice that are rare on the modern Earth may have been pivotal in allowing the tropical ocean to freeze. The ocean surfaces would have included some ice types that now exist only in Antarctica: bare cold sea ice with precipitated salts, and \"blue ice\" areas of the Transantarctic Mountains that were exposed by sublimation and have not experienced melting. Field expeditions were mounted to examine these ice types, and the data analysis is underway. A third ice type, sea ice with a salt crust, is being studied in a freezer laboratory. Modeling will show how sunlight would interact with ice containing light-absorbing dust and volcanic ash. Aside from its reflection of sunlight, ice on the Snowball ocean would have been thick enough to flow under its own weight, invading all parts of the ocean. Yet evidence for the survival of photosynthetic life indicates that some regions of liquid water were maintained at the ocean surface. One possible refuge for photosynthetic organisms is a bay at the far end of a nearly enclosed tropical sea, formed by continental rifting and surrounded by desert, such as the modern Red Sea. A model of glacier flow is being developed to determine the dimensions of the channel, connecting the sea to the ocean, necessary to prevent invasion by the flowing ice yet maintain a water supply to replenish evaporation.", "east": 168.0, "geometry": "POINT(162.5 -77)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -76.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Warren, Stephen; Light, Bonnie; Campbell, Adam; Carns, Regina; Dadic, Ruzica; Mullen, Peter; Brandt, Richard; Waddington, Edwin D.", "platforms": "Not provided", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": -78.0, "title": "Ocean Surfaces on Snowball Earth", "uid": "p0000402", "west": 157.0}, {"awards": "0823101 Ducklow, Hugh", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG1301", "datasets": [{"dataset_uid": "002731", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1301", "url": "https://www.rvdata.us/search/cruise/LMG1301"}, {"dataset_uid": "001425", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1301"}], "date_created": "Mon, 24 Jun 2013 00:00:00 GMT", "description": "Since 1990, Palmer LTER (PAL) research has been guided by the hypothesis that variability in the polar marine ecosystem is mechanistically coupled to changes in the annual advance, retreat and spatial extent of sea ice. Since that time, the hypothesis has been modified to incorporate climate migration, i.e. the displacement of a cold, dry polar climate by a warm, moist climate regime in the northern component of the PAL region, producing fundamental changes in food web structure and elemental cycling. The observed northern changes are affecting all trophic levels and elemental cycling, and the primary mechanism of change involves match-mismatch dynamics. The proposed research builds on previous findings, with a new emphasis on process studies and modeling to elucidate the mechanistic links between teleconnections, climate change, physical oceanographic forcing and ecosystem dynamics. The proposed research will examine the hypothesis that regional warming and sea ice decline associated with historical and on-going climate migration in the northern part of the study area have altered key phenological relationships, leading to changes in species distributions, increasing trophic mismatches and changes in habitat, food availability, ecosystem dynamics and biogeochemical cycling. Through targeted process studies linked to numerical model simulations, the research also will test the hypothesis that deep cross-shelf canyons characterizing the core study region are focal areas for ecosystem processes that result in predictable, elevated food resources for top-predators. The effort includes the addition of 3 new PIs: a zooplankton ecologist with expertise in biogeochemical fluxes, a phytoplankton ecologist focusing on bio-optics and autonomous observations using gliders, and a numerical simulation modeler specializing in coupled global models of ocean circulation, plankton ecology and biogeochemical cycles. The program will add trace metal sampling and analysis, moored physical oceanographic sensors, a moored sediment trap in the south, drifting sediment traps and stable carbon (del 13C) and nitrogen (del 15N) isotope analyses. Missions lasting up to 45 days using gliders deployed before, during and after summer cruises will, along with moorings and satellite remote sensing of sea ice, ocean color, sea surface temperatures and wind fields, greatly extend the observational program in space and time. \u003cbr/\u003e\u003cbr/\u003eSince its inception, PAL has been a leader in Information Management to enable knowledge-building within and beyond the Antarctic, oceanographic and LTER communities. PAL has designed and deployed a new information infrastructure with a relational database architecture to facilitate data distribution and sharing. The Education and Outreach program capitalizes on the public\u0027s fascination with Antarctica to promote scientific literacy from kindergarten students to adult citizens concerned with climate change and environmental sustainability. Through communicating results to the public and working with scientific assessment bodies (e.g., IPCC) and Antarctic Treaty parties to protect Earth\u0027s last frontier, PAL researchers contribute to the national scientific agenda and the greater public benefit.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e PROFILERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ducklow, Hugh", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": "LTER", "south": null, "title": "Palmer, Antarctica Long Term Ecological Research Project", "uid": "p0000874", "west": null}, {"awards": "1043749 Rouse, Gregory", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP1105", "datasets": [{"dataset_uid": "002659", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1105", "url": "https://www.rvdata.us/search/cruise/NBP1105"}], "date_created": "Mon, 24 Jun 2013 00:00:00 GMT", "description": "The west Antarctic Peninsula is warming rapidly, and continuing changes in the thermal regime will likely result in severe consequences for marine fauna, including potential extinction of strongly adapted stenotherms, and invasions from neighboring faunas. Initial impacts of climate change may result in changes in connectivity among populations of the same species. These changes may will be undetectable by direct observation, but may be assessed via genetic connectivity, i.e. differences in allele or haplotype frequencies among populations can be used to infer levels of gene flow. The proposed research will explore the role that the Scotia Arc plays in connecting populations from South America to Antarctica, a corridor identified as a likely entry route for invaders into Antarctica. It also will examine the way in which cryptic species may confound our knowledge of broad-scale distributions, and in doing so, make contributions towards understanding biodiversity and testing the paradigm of circumpolarity in Antarctica. The principal investigator will to collect multi-locus genetic data across \u0027species\u0027 from a broad suite of benthic marine invertebrate phyla, from multiple locations, in order to address hypotheses regarding speciation and connectivity, to estimate demographic population changes, and to identify the underlying processes that drive observed phylogeographic patterns. Comparative phylogeography is a particularly valuable approach because it enables the identification of long-term barriers and refugia common to groups of species and is consequently highly relevant to conservation planning. Moreover, this work will form a valuable baseline for detecting future changes in connectivity. The results of the research will be disseminated through peer-reviewed publications and presentations at conferences. In addition, the project will support the interdisciplinary training of a female graduate student, two undergraduate students, and host additional summer students through the STARS program at SIO, which helps minority students prepare for graduate school. This project will integrate research and education through conducting an interdisciplinary workshop that brings together Earth Science and Biology high school teachers. This workshop aims to assist teachers derive their own curricula uniting plate tectonics, ocean history and evolution, supporting a new high school earth sciences program. Information generated by this project will also directly feed into international efforts to design a series of Marine Protected Areas (MPAs) in Antarctica.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Rouse, Gregory", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Using molecular data to test connectivity and the circumpolar paradigm for Antarctic marine invertebrates", "uid": "p0000847", "west": null}, {"awards": "0636883 Bell, Robin", "bounds_geometry": "POLYGON((20 -75,23 -75,26 -75,29 -75,32 -75,35 -75,38 -75,41 -75,44 -75,47 -75,50 -75,50 -76.5,50 -78,50 -79.5,50 -81,50 -82.5,50 -84,50 -85.5,50 -87,50 -88.5,50 -90,47 -90,44 -90,41 -90,38 -90,35 -90,32 -90,29 -90,26 -90,23 -90,20 -90,20 -88.5,20 -87,20 -85.5,20 -84,20 -82.5,20 -81,20 -79.5,20 -78,20 -76.5,20 -75))", "dataset_titles": "Data portal at Lamont for airborne data", "datasets": [{"dataset_uid": "000111", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Data portal at Lamont for airborne data", "url": "http://wonder.ldeo.columbia.edu/wordpress/"}], "date_created": "Tue, 02 Apr 2013 00:00:00 GMT", "description": "Bell/0636883\u003cbr/\u003e\u003cbr/\u003eThis award support a project to study the role that subglacial water plays in the overall stability of major ice sheets. An estimated 22,000 km3 of water is currently stored within Antarctica\u0027s subglacial lakes. Movement of this water occurs through a complex and largely inferred drainage system in both East and West Antarctica. Geomorphic evidence for the catastrophic drainage of subglacial lakes documents repeated events. These major flood events appear to have drained the largest subglacial lakes situated in the relatively stable interior of the East Antarctic ice sheet. Emerging evidence suggests there is a close connection between significant subglacial lakes and the onset of the Recovery Ice Stream one of the largest in East Antarctica. Our preliminary analysis of the Recovery Lakes region, East Antarctica suggests a direct linkage between lakes and streaming ice flow, specifically the 800 km long Recovery Ice Stream and its tributaries. Located just upslope of the Recovery Ice Stream, the Recovery Lakes Region is composed of 3 well-defined lakes and a fourth, ambiguous, \u0027lake-like\u0027 feature. While other large lakes have a localized impact on ice surface slope, the Recovery Lakes Region lakes are coincident with an abrupt regional change in the ice sheet surface slope. Satellite imagery demonstrates that the downslope margin of this lake area contains distinct flow strips and crevasses: both indicative of increasing ice velocities. The discovery of a series of large lakes coincident with the onset of rapid ice flow in East Antarctica clearly links subglacial lakes and ice sheet dynamics for the first time. The evidence linking the onset of streaming in the Recovery Drainage Ice Stream to the series of large subglacial lakes raises the fundamental question: How can subglacial lakes trigger the onset of ice streaming? We advance two possible mechanisms: (i) Subglacial lakes can produce accelerated ice flow through the drainage of lake water beneath the ice sheet downslope of the lakes. (ii) Subglacial lakes can produce accelerated ice flow accelerated ice flow by modifying the basal thermal gradient via basal accretion over the lakes so when the ice sheet regrounds basal melting dominates. To evaluate the contribution of lake water and the changing basal thermal gradient, we propose an integrated program incorporating satellite imagery analysis, a series of reconnaissance aerogeophysical profiles over the Recovery Lake Region and the installation of continuous GPS sites over the Recovery Lakes. This analysis and new data will enable us (1) to produce a velocity field over the Recovery Lakes Region, (2) to map the ice thickness changes over the lakes due to acceleration triggered thinning, basal melting and freezing, (3) determine the depth and possible the tectonic origin of the Recovery Lakes and (4) determine the stability of these lakes over time. These basic data sets will enable us to advance our understanding of how subglacial lakes trigger the onset of streaming. The intellectual merit of this project is that it will be the first systematic analysis of ice streams triggering the onset of ice streams. This work has profound implications for the modeling of ice sheet behavior in the future, the geologic record of abrupt climate changes and the longevity of subglacial lakes. The broader impacts of the project are programs that will reach students of all ages through undergraduates involved in the research, formal presentations in teacher education programs and ongoing public outreach efforts at major science museums. Subglacial Antarctic lake environments are emerging as a premier, major frontier for exploration during the IPY 2007-2009.", "east": 50.0, "geometry": "POINT(35 -82.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e AEM; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e IMAGING RADAR SYSTEMS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e LIDAR ALTIMETERS", "is_usap_dc": false, "keywords": "DHC-6; Basal Melting; Ice Stream; Ice Thickness; Velocity; Ice Stream Stability; Basal Freezing; Antarctica; Drainage; Aerogeophysical; Subglacial Lake; Flood Event", "locations": "Antarctica", "north": -75.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bell, Robin; Studinger, Michael S.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": -90.0, "title": "Subglacial Lakes and the Onset of Ice Streaming: Recovery Lakes", "uid": "p0000702", "west": 20.0}, {"awards": "1039365 Rimmer, Susan", "bounds_geometry": null, "dataset_titles": "The Permian-Triassic Transition in Antarctica: Evaluating the Rates and Variability of Carbon Isotope Fluctuations in Terrestrial Organic Matter", "datasets": [{"dataset_uid": "600121", "doi": "10.15784/600121", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Solid Earth; Transantarctic Mountains", "people": "Rimmer, Susan", "repository": "USAP-DC", "science_program": null, "title": "The Permian-Triassic Transition in Antarctica: Evaluating the Rates and Variability of Carbon Isotope Fluctuations in Terrestrial Organic Matter", "url": "https://www.usap-dc.org/view/dataset/600121"}], "date_created": "Wed, 30 Jan 2013 00:00:00 GMT", "description": "This project studies the Permian-Triassic extinction event as recorded in sedimentary rocks from the Transantarctic Mountains of Antarctica. Two hundred and fifty million years ago most life on Earth was wiped out in a geologic instant. The cause is a subject of great debate. Researchers have identified a unique stratigraphic section near Shackleton glacier laid down during the extinction event. Organic matter from these deposits will be analyzed by density gradient centrifugation (DGC), which will offer detailed information on the carbon isotope composition. The age of these layers will be precisely dated by U/Pb-zircon-dating of intercalated volcanics. Combined, these results will offer detailed constraints on the timing and duration of carbon isotope excursions during the extinction, and offer insight into the coupling of marine and terrestrial carbon cycles. The broader impacts of this project include graduate and undergraduate student research, K12 outreach and teacher involvement, and societal relevance of the results, since the P/T extinction may have been caused by phenomena such as methane release, which could accompany global warming.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Rimmer, Susan", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: The Permian -Triassic Transition in Antarctica: Evaluating the Rates and Variability of Carbon Isotope Fluctuatios in Terrestrial Organic Matter", "uid": "p0000507", "west": null}, {"awards": "0732946 Steffen, Konrad", "bounds_geometry": null, "dataset_titles": "Larsen C automatic weather station data 2008\u20132011; Mean surface mass balance over Larsen C ice shelf, Antarctica (1979-2014), assimilated to in situ GPR and snow height data", "datasets": [{"dataset_uid": "601445", "doi": "10.15784/601445", "keywords": "Antarctica; Atmosphere; AWS; Foehn Winds; Ice Shelf; Larsen C Ice Shelf; Larsen Ice Shelf; Meteorology; Weather Station Data", "people": "Bayou, Nicolas; McGrath, Daniel; Steffen, Konrad", "repository": "USAP-DC", "science_program": null, "title": "Larsen C automatic weather station data 2008\u20132011", "url": "https://www.usap-dc.org/view/dataset/601445"}, {"dataset_uid": "601056", "doi": "10.15784/601056", "keywords": "Antarctica; Antarctic Peninsula; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Larsen C Ice Shelf; Radar", "people": "Kuipers Munneke, Peter; Steffen, Konrad; McGrath, Daniel", "repository": "USAP-DC", "science_program": null, "title": "Mean surface mass balance over Larsen C ice shelf, Antarctica (1979-2014), assimilated to in situ GPR and snow height data", "url": "https://www.usap-dc.org/view/dataset/601056"}], "date_created": "Wed, 03 Oct 2012 00:00:00 GMT", "description": "This award supports a field experiment, with partners from Chile and the Netherlands, to determine the state of health and stability of Larsen C ice shelf in response to climate change. Significant glaciological and ecological changes are taking place in the Antarctic Peninsula in response to climate warming that is proceeding at 6 times the global average rate. Following the collapse of Larsen A ice shelf in 1995 and Larsen B in 2002, the outlet glaciers that nourished them with land ice accelerated massively, losing a disproportionate amount of ice to the ocean. Further south, the much larger Larsen C ice shelf is thinning and measurements collected over more than a decade suggest that it is doomed to break up. The intellectual merit of the project will be to contribute to the scientific knowledge of one of the Antarctic sectors where the most significant changes are taking place at present. The project is central to a cluster of International Polar Year activities in the Antarctic Peninsula. It will yield a legacy of international collaboration, instrument networking, education of young scientists, reference data and scientific analysis in a remote but globally relevant glaciological setting. The broader impacts of the project will be to address the contribution to sea level rise from Antarctica and to bring live monitoring of climate and ice dynamics in Antarctica to scientists, students, the non-specialized public, the press and the media via live web broadcasting of progress, data collection, visualization and analysis. Existing data will be combined with new measurements to assess what physical processes are controlling the weakening of the ice shelf, whether a break up is likely, and provide baseline data to quantify the consequences of a breakup. Field activities will include measurements using the Global Positioning System (GPS), installation of automatic weather stations (AWS), ground penetrating radar (GPR) measurements, collection of shallow firn cores and temperature measurements. These data will be used to characterize the dynamic response of the ice shelf to a variety of phenomena (oceanic tides, iceberg calving, ice-front retreat and rifting, time series of weather conditions, structural characteristics of the ice shelf and bottom melting regime, and the ability of firn to collect melt water and subsequently form water ponds that over-deepen and weaken the ice shelf). This effort will complement an analysis of remote sensing data, ice-shelf numerical models and control methods funded independently to provide a more comprehensive analysis of the ice shelf evolution in a changing climate.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e TEMPERATURE PROFILERS", "is_usap_dc": false, "keywords": "Climate Warming; Firn; COMPUTERS; Ice Dynamic; USAP-DC; Glaciological; Thinning; Sea Level Rise; FIELD SURVEYS; FIELD INVESTIGATION; USA/NSF; AMD; Ice Edge Retreat; LABORATORY; Climate Change; Antarctic Peninsula; Amd/Us; Melting", "locations": "Antarctic Peninsula", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Steffen, Konrad", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "IPY: Stability of Larsen C Ice Shelf in a Warming Climate", "uid": "p0000087", "west": null}, {"awards": "0632198 Anandakrishnan, Sridhar", "bounds_geometry": "POINT(110 -74)", "dataset_titles": "Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "datasets": [{"dataset_uid": "609619", "doi": "10.7265/N58913TN", "keywords": "Amundsen Sea; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model; Thwaites Glacier", "people": "Blankenship, Donald D.; Dupont, Todd K.; Holt, John W.; Parizek, Byron R.", "repository": "USAP-DC", "science_program": null, "title": "Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "url": "https://www.usap-dc.org/view/dataset/609619"}], "date_created": "Wed, 29 Aug 2012 00:00:00 GMT", "description": "This award supports a project to study ice sheet history and dynamics on the Thwaites Glacier and Pine Island Glacier in the Amundsen Sea sector of the West Antarctic Ice Sheet. The international collaboration that has been established with the British Antarctic Survey will enable a fuller suite of geophysical experiments with more-efficient use of people and logistics than we could achieve individually. This project is one of a number of projects to characterize the Amundsen Sea Embayment, which has been identified in numerous planning documents as perhaps the most important target for ice-dynamical research. Taken together, this \"pulse of activity\" will result in a better understanding of this important part of the global system. Field work will measure the subglacial environment of Thwaites and Pine Island Glaciers using three powerful, but relatively simple tools: reflection seismic imaging, GPS motion monitoring of the tidal forcing, and passive seismic monitoring of the seismicity associated with motion. The results of the field work will feed into ice-sheet modeling efforts that are tuned to the case of an ocean-terminating glacier and will assess the influence of these glaciers on current sea level and project into the future. The broader impacts of the project involve the inclusion of a film- and audio-professional to document the work for informal outreach (public radio and TV; museums). In addition, we will train graduate students in polar geophysical and glaciological research and in numerical modeling techniques. The ultimate goal of this project, of assessing the role of Thwaites Glacier in global sea level change, has broad societal impact in coastal regions and small islands.", "east": -110.0, "geometry": "POINT(-110 -74)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e SEISMIC REFLECTION PROFILERS", "is_usap_dc": false, "keywords": "Pine Island Glacier; Bed Reflectivity; Tidal Forcing; FIELD INVESTIGATION; Not provided; Position; Thwaites; Thickness; Amundsen Sea; LABORATORY; FIELD SURVEYS; Subglacial; Ice Dynamic; Ice Sheet Modeling", "locations": "Thwaites; Pine Island Glacier; Amundsen Sea", "north": -74.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Anandakrishnan, Sridhar", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -74.0, "title": "IPY: Flow Dynamics of the Amundsen Sea Glaciers: Thwaites and Pine Island.", "uid": "p0000699", "west": -110.0}, {"awards": "0537752 Creyts, Timothy; 0538674 Winebrenner, Dale", "bounds_geometry": null, "dataset_titles": "Millennially Averaged Accumulation Rates for Lake Vostok; Modeled Radar Attenuation Rate Profile at the Vostok 5G Ice Core Site, Antarctica", "datasets": [{"dataset_uid": "609501", "doi": "10.7265/N59K485D", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Lake Vostok; Radar Attenuation Rate; Vostok Ice Core", "people": "Matsuoka, Kenichi; Studinger, Michael S.; Macgregor, Joseph A.", "repository": "USAP-DC", "science_program": null, "title": "Modeled Radar Attenuation Rate Profile at the Vostok 5G Ice Core Site, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609501"}, {"dataset_uid": "609500", "doi": "10.7265/N5F769HV", "keywords": "Accumulation Rate; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Lake Vostok", "people": "Studinger, Michael S.; Winebrenner, Dale; Waddington, Edwin D.; Macgregor, Joseph A.; Matsuoka, Kenichi", "repository": "USAP-DC", "science_program": null, "title": "Millennially Averaged Accumulation Rates for Lake Vostok", "url": "https://www.usap-dc.org/view/dataset/609500"}], "date_created": "Thu, 09 Aug 2012 00:00:00 GMT", "description": "0538674\u003cbr/\u003eMatsuoka\u003cbr/\u003eThis award supports a project to evaluate radio-echo intensities in the available SOAR ice-penetrating radar data along grids covering Lake Vostok, and along four regional tracks from Ridge B toward the lake. The project has two objectives; first, it will examine the upper surface of the lake and reflectors hypothesized to be a boundary between the meteoric and accreted ice. They will provide crucial knowledge on the dynamic evolution of the lake. Second, this project will examine a poorly understood echo-free zone within the deep ice in central East Antarctica. This zone may consist of distorted stagnant ice, while its upper boundary may be a shear zone. The SOAR radar data provide a unique resource to examine spatiotemporal water circulation patterns that should be understood in order to select the best direct-sampling strategy to the lake. The Vostok ice core provides a unique opportunity to do this work. First, the path effects, i.e. propagation loss and birefringence, will be derived at the ice-core site using ice temperature, chemistry, and fabric data. Second, lateral variations of the propagation loss will be estimated by tracking chemistry associated with radar-detected isochronous layers, and by inferring temperatures from an ice-flow model that can replicate those layers. Ice-fabric patterns will be inferred from anisotropy in the reflectivity at about 100 radar-track cross-over sites. In terms of broader impacts, a graduate student will be trained to interpret the radar data in the light of radar theory and glaciological context of Lake Vostok and summer workshops for K-12 teachers will be provided in Seattle and New York. This project will contribute to ongoing efforts to study Lake Vostok and will complement the site selection for a North Vostok ice core, which has been proposed by Russia and France as an IPY program.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LASERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e RADAR ALTIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS", "is_usap_dc": true, "keywords": "Airborne Radar Sounding; DHC-6; Salinity; Lake Vostok; Antarctic Ice Sheet; Modeling; FIELD SURVEYS; Model Output; Accumulation Rate; MODELS; Numerical Model; Ice Sheet; Not provided; Hydrostatic; Aerogeophysical; Subglacial; Attenuation Rate; Radar; FIELD INVESTIGATION; Model; Circulation; LABORATORY", "locations": "Lake Vostok; Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Matsuoka, Kenichi; Winebrenner, Dale; Creyts, Timothy; Macgregor, Joseph A.; Studinger, Michael S.; Waddington, Edwin D.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e MODELS \u003e MODELS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Deciphering the Deep Ice and the Ice-water Interface over Lake Vostok Using Existing Radar Data", "uid": "p0000090", "west": null}, {"awards": "1241487 Adams, Byron", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 06 Jul 2012 00:00:00 GMT", "description": "This award will support the participation of US scientists in an international planning workshop devoted to discussions of how to best facilitate and coordinate international efforts for terrestrial system studies at the McMurdo Dry Valleys of Antarctica. To date, various aspects of the different Dry Valley landscape features (lakes, soils, glaciers, streams) and their biota have been studied most intensively by US and New Zealand scientists, but these efforts could significantly improve their explanatory power if they were coordinated so as to reduce redundancy, decrease environmental degradation and, most importantly, produce comparable datasets. Additionally, many of the present environmental management programs are based on the past baseline composition and location of biotic communities. As these communities become rearranged across the valleys in the future there is interest in assessing whether today\u0027s management plans are adequate. To efficiently move these research programs forward for the McMurdo Dry Valleys requires a coordinated, interdisciplinary, long-term data monitoring and observation network. The ultimate objectives of the workshop are to: i) identify the optimal, complementary suites of measurements required to assess and address key processes associated with environmental change in Dry Valley ecosystems; ii) develop standards and protocols for gathering the most critical biotic and abiotic measurements associated with the key processes driving environmental change; iii) generate a draft data coordination and development plan that will maximize the utility of these data; iv) assess the effectiveness of current McMurdo Dry Valley ASMA (Antarctic Special Management Area) environmental protection guidelines.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Integrated System Science", "paleo_time": null, "persons": "Adams, Byron", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "A Planning Workshop for a McMurdo Dry Valleys Terrestrial Observation Network", "uid": "p0000126", "west": null}, {"awards": "0739743 Bay, Ryan", "bounds_geometry": "POINT(123.35 -75.1)", "dataset_titles": "Dome C optical logging data", "datasets": [{"dataset_uid": "000234", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Dome C optical logging data", "url": "http://icecube.berkeley.edu/~bay/edc99/"}], "date_created": "Wed, 27 Jun 2012 00:00:00 GMT", "description": "Bay 0739743\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to make high-resolution logs of dust and ash in the Dome C borehole using an optical dust logger. Logging at 20-50 cm/sec, in a matter of hours, mm-scale depth resolution of dust concentration and volcanic ash layers over the entire 3270 m borehole back to ~800 ka can be provided. The logger probes an area of order m2 of the horizon compared to the ~0.02 m2 core, greatly suppressing depositional noise and making the technique immune to core damage or loss. The method achieves unprecedented resolution of climate variations for matching or comparing ice core records, can detect particulate layers from explosive fallout which are invisible or missing in the core, and often reveals subtle trend changes which can elude standard core analyses. With the highly resolved dust record, it is expected to find new synchronous age markers between East Antarctica, West Antarctica and Greenland. The data could be instrumental in unifying global climate records, or resolving mysteries such as the transition from 41-kyr glacial cycles to apparent 100-kyr cycles. The project will extend previous finding, which make the most convincing case to date for a causal relationship between explosive volcanic events and abrupt climate change on millennial timescales. A search will also be made for evidence that some of the worldwide explosive fallout events that have been identified may have resulted from impacts by comets or asteroids. The investigators will evaluate the reliability of terrestrial impact crater records and the possibility that Earth impacts are considerably more frequent than is generally appreciated. Better understanding of the factors which force abrupt climate changes, the recurrence rate and triggering mechanisms of large volcanic eruptions, and the frequency of Gt to Tt-energy bolide impacts are of vital interest for civilization. The work plan for 2008-11 comprises modifying and testing of existing hardware in year one; logging field work, most likely in year two; data analysis and publication of results in year three. Because the EPICA collaborators will provide a suitable logging winch onsite, the logistical needs of this project are modest and can be accommodated by Twin Otter from McMurdo. The proposal is in the spirit of the International Polar Year (IPY) by forging an international collaboration with potential societal benefit. The project will provide interdisciplinary training to students and postdoctoral fellows from the U.S. and other countries.", "east": 123.35, "geometry": "POINT(123.35 -75.1)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS", "is_usap_dc": false, "keywords": "Ash Layer; LABORATORY; Not provided; FIELD INVESTIGATION; Climate; Antarctica; Ice Core; Bolides; Borehole; Climate Change; Paleoclimate; FIELD SURVEYS; Volcanic", "locations": "Antarctica", "north": -75.1, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bay, Ryan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": -75.1, "title": "Dust Logging at Dome C for Abrupt Climate Changes, Large Volcanic Eruptions and Bolide Impacts", "uid": "p0000717", "west": 123.35}, {"awards": "0636740 Kreutz, Karl; 0636767 Dunbar, Nelia", "bounds_geometry": "POINT(112.11666 -79.46666)", "dataset_titles": "Microparticle, Conductivity, and Density Measurements from the WAIS Divide Deep Ice Core, Antarctica; Snowpit Chemistry - Methods Comparison, WAIS Divide, Antarctica; Snowpit evidence of the 2011 Puyehue-Cordon Caulle (Chile) eruption in West Antarctica; WAIS Divide Microparticle Concentration and Size Distribution, 0-2400 ka; WAIS Divide Snowpit Chemical and Isotope Measurements, Antarctica; WAIS Divide WDC06A Discrete ICP-MS Chemistry", "datasets": [{"dataset_uid": "609499", "doi": "10.7265/N5K07264", "keywords": "Antarctica; Density; Electrical Conductivity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Microparticle Concentration; Physical Properties; WAIS Divide; WAIS Divide Ice Core", "people": "Koffman, Bess; Breton, Daniel; Hamilton, Gordon S.; Kreutz, Karl", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Microparticle, Conductivity, and Density Measurements from the WAIS Divide Deep Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609499"}, {"dataset_uid": "601036", "doi": "10.15784/601036", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Intracontinental Magmatism; IntraContinental Magmatism; Snow Pit; Tephra; WAIS Divide; WAIS Divide Ice Core", "people": "Koffman, Bess; Kreutz, Karl", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Snowpit evidence of the 2011 Puyehue-Cordon Caulle (Chile) eruption in West Antarctica", "url": "https://www.usap-dc.org/view/dataset/601036"}, {"dataset_uid": "609506", "doi": "10.7265/N5SJ1HHN", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Isotope; Microparticle Concentration; Snow/ice; Snow/Ice; WAIS Divide; WAIS Divide Ice Core", "people": "Koffman, Bess; Kreutz, Karl", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Snowpit Chemical and Isotope Measurements, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609506"}, {"dataset_uid": "601023", "doi": "10.15784/601023", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; ICP-MS; Isotope; WAIS Divide; WAIS Divide Ice Core", "people": "Kreutz, Karl", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide WDC06A Discrete ICP-MS Chemistry", "url": "https://www.usap-dc.org/view/dataset/601023"}, {"dataset_uid": "609620", "doi": "10.7265/N5Q81B1X", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Trace Elements; WAIS Divide; WAIS Divide Ice Core", "people": "Kreutz, Karl; Koffman, Bess", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Snowpit Chemistry - Methods Comparison, WAIS Divide, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609620"}, {"dataset_uid": "609616", "doi": "10.7265/N5KK98QZ", "keywords": "Antarctica; Dust; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Particle Size; WAIS Divide; WAIS Divide Ice Core", "people": "Koffman, Bess; Kreutz, Karl", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Microparticle Concentration and Size Distribution, 0-2400 ka", "url": "https://www.usap-dc.org/view/dataset/609616"}], "date_created": "Tue, 19 Jun 2012 00:00:00 GMT", "description": "This award supports a project to perform continuous microparticle concentration and size distribution measurements (using coulter counter and state-of-the-art laser detector methods), analysis of biologically relevant trace elements associated with microparticles (Fe, Zn, Co, Cd, Cu), and tephra measurements on the WAIS Divide ice core. This initial three-year project includes analysis of ice core spanning the instrumental (~1850-present) to mid- Holocene (~5000 years BP) period, with sample resolution ranging from subannual to decadal. The intellectual merit of the project is that it will help in establishing the relationships among climate, atmospheric aerosols from terrestrial and volcanic sources, ocean biogeochemistry, and greenhouse gases on several timescales which remain a fundamental problem in paleoclimatology. The atmospheric mineral dust plays an important but uncertain role in direct radiative forcing, and the microparticle datasets produced in this project will allow us to examine changes in South Pacific aerosol loading, atmospheric dynamics, and dust source area climate. The phasing of changes in aerosol properties within Antarctica, throughout the Southern Hemisphere, and globally is unclear, largely due to the limited number of annually dated records extending into the glacial period and the lack of a\u003cbr/\u003etephra framework to correlate records. The broader impacts of the proposed research are an interdisciplinary approach to climate science problems, and will contribute to several WAIS Divide science themes as well as the broader paleoclimate and oceanographic communities. Because the research topics have a large and direct societal relevance, the project will form a centerpiece of various outreach efforts at UMaine and NMT including institution websites, public speaking, local K-12 school interaction, media interviews and news releases, and popular literature. At least one PhD student and one MS student will be directly supported by this project, including fieldwork, core processing, laboratory analysis, and data interpretation/publication. We expect that one graduate student per year will apply for a core handler/assistant driller position through the WAIS Divide Science Coordination Office, and that undergraduate student involvement will result in several Capstone experience projects (a UMaine graduation requirement). Data and ideas generated from the project will be integrated into undergraduate and graduate course curricula at both institutions.", "east": 112.11666, "geometry": "POINT(112.11666 -79.46666)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PARTICLE DETECTORS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e LOPC-PMS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e ICE CORE MELTER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PARTICLE DETECTORS", "is_usap_dc": true, "keywords": "Ice Core Dust; Tephra; Radiative Forcing; Greenhouse Gas; West Antarctica; Atmospheric Aerosols; Oxygen Isotope; Not provided; WAIS Divide; Snow Pit; Ice Core Chemistry; Microparticle; Wais Divide-project; Microparticles Size; Paleoclimate; LABORATORY; Ice Core Data; Atmospheric Dynamics; Antarctica; FIELD SURVEYS; Ice Core; Trace Elements; FIELD INVESTIGATION; Holocene; Isotope; Snow Chemistry", "locations": "Antarctica; WAIS Divide; West Antarctica", "north": -79.46666, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Koffman, Bess; Kreutz, Karl; Breton, Daniel; Dunbar, Nelia; Hamilton, Gordon S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.46666, "title": "Collaborative Research: Microparticle/tephra analysis of the WAIS Divide ice core", "uid": "p0000040", "west": 112.11666}, {"awards": "0739766 Brook, Edward J.", "bounds_geometry": "POINT(-112.08 -79.47)", "dataset_titles": "WAIS Divide Ice Core CO2", "datasets": [{"dataset_uid": "609651", "doi": "10.7265/N5DV1GTZ", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Marcott, Shaun; Brook, Edward J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core CO2", "url": "https://www.usap-dc.org/view/dataset/609651"}], "date_created": "Wed, 30 May 2012 00:00:00 GMT", "description": "Brook 0739766\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to create a 25,000-year high-resolution record of atmospheric CO2 from the WAIS Divide ice core. The site has high ice accumulation rate, relatively cold temperatures, and annual layering that should be preserved back to 40,000 years, all prerequisite for preserving a high quality, well-dated CO2 record. The new record will be used to examine relationships between Antarctic climate, Northern Hemisphere climate, and atmospheric CO2 on glacial-interglacial to centennial time scales, at unprecedented temporal resolution. The intellectual merit of the proposed work is simply that CO2 is the most important greenhouse gas that humans directly impact, and understanding the sources, sinks, and controls of atmospheric CO2 is a major goal for the global scientific community. Accurate chronology and detailed records are primary requirements for developing and testing models that explain and predict CO2 variability. The proposed work has several broader impacts. It contributes to the training of a post-doctoral researcher, who will transfer to a research faculty position during the award period and who will participate in graduate teaching and guest lecture in undergraduate courses. An undergraduate researcher will gain valuable lab training and conduct independent research. Bringing the results of\u003cbr/\u003ethe proposed work to the classroom will enrich courses taught by the PI. Outreach efforts will expose pre-college students to ice core research. The proposed work will enhance the laboratory facilities for ice core research at OSU, insuring that the capability for CO2 measurements exists for future projects. All data will be archived at the National Snow and Ice Data Center and other similar archives, per OPP policy. Highly significant results will be disseminated to the news media through OSU?s very effective News and Communications group. Carbon dioxide is the most important greenhouse gas that humans are directly changing. Understanding how CO2 and climate are linked on all time scales is necessary for predicting the future behavior of the carbon cycle and climate system, primarily to insure that the appropriate processes are represented in carbon cycle/climate models. Part of the proposed work emphasizes the relationship of CO2 and abrupt climate change. Understanding how future abrupt change might impact the carbon cycle is an important issue for society.", "east": -112.08, "geometry": "POINT(-112.08 -79.47)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Carbon Dioxide; FIELD INVESTIGATION; CO2; Wais Divide-project; Ice Core; Antarctica; Climate; Gas Chromatography; Antarctic Ice Core; LABORATORY", "locations": "Antarctica", "north": -79.47, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Marcott, Shaun; Ahn, Jinho; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.47, "title": "Atmospheric Carbon Dioxide and Climate Change: The WAIS Divide Ice Core Record", "uid": "p0000044", "west": -112.08}, {"awards": "0758274 Parizek, Byron; 0636724 Blankenship, Donald", "bounds_geometry": "POLYGON((-110.058 -74.0548,-109.57993 -74.0548,-109.10186 -74.0548,-108.62379 -74.0548,-108.14572 -74.0548,-107.66765 -74.0548,-107.18958 -74.0548,-106.71151 -74.0548,-106.23344 -74.0548,-105.75537 -74.0548,-105.2773 -74.0548,-105.2773 -74.31383,-105.2773 -74.57286,-105.2773 -74.83189,-105.2773 -75.09092,-105.2773 -75.34995,-105.2773 -75.60898,-105.2773 -75.86801,-105.2773 -76.12704,-105.2773 -76.38607,-105.2773 -76.6451,-105.75537 -76.6451,-106.23344 -76.6451,-106.71151 -76.6451,-107.18958 -76.6451,-107.66765 -76.6451,-108.14572 -76.6451,-108.62379 -76.6451,-109.10186 -76.6451,-109.57993 -76.6451,-110.058 -76.6451,-110.058 -76.38607,-110.058 -76.12704,-110.058 -75.86801,-110.058 -75.60898,-110.058 -75.34995,-110.058 -75.09092,-110.058 -74.83189,-110.058 -74.57286,-110.058 -74.31383,-110.058 -74.0548))", "dataset_titles": "Access to data; AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment; AGASEA Ice Thickness Profile Data from the Amundsen Sea Embayment, Antarctica; Airborne Laser Altimetry of the Thwaites Glacier Catchment, West Antarctica; ICECAP Basal Interface Specularity Content Profiles: IPY and OIB; Subglacial water flow paths under Thwaites Glacier, West Antarctica; Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "datasets": [{"dataset_uid": "609518", "doi": "10.7265/N5RJ4GC8", "keywords": "AGASEA; Airborne Radar; Antarctica; Elevation; Flow Paths; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Thwaites Glacier", "people": "Carter, Sasha P.; Blankenship, Donald D.; Young, Duncan A.", "repository": "USAP-DC", "science_program": null, "title": "Subglacial water flow paths under Thwaites Glacier, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609518"}, {"dataset_uid": "601673", "doi": "10.15784/601673", "keywords": "Antarchitecture; Antarctica; Ice Penetrating Radar; Isochron; Layers; Radar; Radioglaciology; Thwaites Glacier", "people": "Blankenship, Donald D.; Muldoon, Gail R.; Young, Duncan A.; Jackson, Charles", "repository": "USAP-DC", "science_program": null, "title": "AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment", "url": "https://www.usap-dc.org/view/dataset/601673"}, {"dataset_uid": "002536", "doi": "", "keywords": null, "people": null, "repository": "NASA", "science_program": null, "title": "Access to data", "url": "http://www.giss.nasa.gov/tools/panoply/"}, {"dataset_uid": "601371", "doi": "10.15784/601371", "keywords": "Antarctica; East Antarctica; ICECAP; Ice Penetrating Radar; Radar Echo Sounder; Radar Echo Sounding; Subglacial Hydrology", "people": "Schroeder, Dustin; Young, Duncan A.; Roberts, Jason; Blankenship, Donald D.; Siegert, Martin; van Ommen, Tas; Greenbaum, Jamin", "repository": "USAP-DC", "science_program": null, "title": "ICECAP Basal Interface Specularity Content Profiles: IPY and OIB", "url": "https://www.usap-dc.org/view/dataset/601371"}, {"dataset_uid": "609517", "doi": "10.7265/N5W95730", "keywords": "AGASEA; Airborne Radar; Amundsen Sea; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness", "people": "Blankenship, Donald D.; Young, Duncan A.; Kempf, Scott D.; Holt, John W.", "repository": "USAP-DC", "science_program": null, "title": "AGASEA Ice Thickness Profile Data from the Amundsen Sea Embayment, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609517"}, {"dataset_uid": "000248", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Access to data", "url": "http://nsidc.org/data/netcdf/tools.html"}, {"dataset_uid": "609334", "doi": "10.7265/N5HD7SK8", "keywords": "AGASEA; Airborne Altimetry; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Thwaites Glacier", "people": "Holt, John W.; Blankenship, Donald D.; Kempf, Scott D.; Morse, David L.; Young, Duncan A.", "repository": "USAP-DC", "science_program": null, "title": "Airborne Laser Altimetry of the Thwaites Glacier Catchment, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609334"}, {"dataset_uid": "609619", "doi": "10.7265/N58913TN", "keywords": "Amundsen Sea; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model; Thwaites Glacier", "people": "Blankenship, Donald D.; Dupont, Todd K.; Holt, John W.; Parizek, Byron R.", "repository": "USAP-DC", "science_program": null, "title": "Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "url": "https://www.usap-dc.org/view/dataset/609619"}], "date_created": "Tue, 15 May 2012 00:00:00 GMT", "description": "This award supports a three-year study to isolate essential physical processes affecting Thwaites Glacier (TG) in the Amundsen Sea Embayment (ASE) of West Antarctica using a suite of existing numerical models in conjunction with existing and International Polar Year (IPY)-proposed data sets. Four different models will be utilized to explore the effects of embayment geometry, ice-shelf buttressing, basal-stress distribution, surface mass balance, surface climate, and inland dynamic perturbations on the present and future dynamics of TG. This particular collection of models is ideally suited for the broad nature of this investigation, as they incorporate efficient and complementary simplifications of the stress field (shallow-ice and shelf-stream), system geometry (1-d and 2-d plan-view and flowline; depth-integrated and depth-dependent), and mass-momentum energy coupling (mechanical and thermo-mechanical). The models will be constrained and validated by data sets (including regional maps of ice thickness, surface elevation, basal topography, ice surface velocity, and potential fields) and geophysical data analyses (including increasing the spatial resolution of surface elevations, improving regional estimates of geothermal flux, and characterizing the sub-glacial interface of grounded ice as well as the grounding-zone transition between grounded and floating ice). The intellectual merit of the research focuses on several of the NSF Glaciology program\u0027s emphases, including: ice dynamics, numerical modeling, and remote sensing of ice sheets. In addition, the research directly addresses the following specific NSF objectives: \"investigation of the physics of fast glacier flow with emphasis on processes at glacier beds\"; \"investigation of ice-shelf stability\"; and \"identification and quantification of the feedback between ice dynamics and climate change\". The broader impacts of this research effort will help answer societally relevant questions of future ice sheet stability and sea-level change. The research also will aid in the early career development of two young investigators and will contribute to the education of both graduate and undergraduate students directly involved in the research, and results will be incorporated into courses and informal presentations.", "east": -105.2773, "geometry": "POINT(-107.66765 -75.34995)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e RADIO \u003e INS", "is_usap_dc": true, "keywords": "Ice Sheet Thickness; Ice Sheet Elevation; Glacier Dynamics; Ice Stream; Numerical Model; West Antarctic; Surface Elevation; Basal Rheology; Ice Surface Velocity; Embayment Geometry; Amundsen Sea; Hydrology; FIELD SURVEYS; Antarctic Ice Sheet; Glacier; Subglacial; DHC-6; West Antarctic Ice Sheet; Model Output; Surface Climate; Glaciers; Basal Topography; Grounding Zone; Model Input Data; Airborne Laser Altimeters; FIELD INVESTIGATION; Thwaites Glacier; Airborne Laser Altimetry; Diagnostic; Ice-Shelf Buttressing; Ice Sheet; Prognostic; Glacier Surface; Airborne Radar Sounding; Digital Elevation Model; Ice Dynamic; Antarctica; Altimetry; Antarctica (agasea); Bed Elevation; Basal Stress; LABORATORY", "locations": "Antarctica; Thwaites Glacier; West Antarctic Ice Sheet; Antarctic Ice Sheet; West Antarctic; Amundsen Sea", "north": -74.0548, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Carter, Sasha P.; Dupont, Todd K.; Holt, John W.; Morse, David L.; Parizek, Byron R.; Young, Duncan A.; Kempf, Scott D.; Blankenship, Donald D.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "NASA; NSIDC; USAP-DC", "science_programs": null, "south": -76.6451, "title": "Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "uid": "p0000174", "west": -110.058}, {"awards": "0125172 Gordon, Arnold", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0302; Expedition data of NBP0304C; Expedition data of NBP0304D; Expedition data of NBP0402; Expedition data of NBP0408; Expedition data of NBP0501", "datasets": [{"dataset_uid": "002624", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0304C", "url": "https://www.rvdata.us/search/cruise/NBP0304C"}, {"dataset_uid": "002627", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "002620", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0408", "url": "https://www.rvdata.us/search/cruise/NBP0408"}, {"dataset_uid": "002588", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0302", "url": "https://www.rvdata.us/search/cruise/NBP0302"}, {"dataset_uid": "002638", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0402", "url": "https://www.rvdata.us/search/cruise/NBP0402"}, {"dataset_uid": "002629", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "001691", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304C"}, {"dataset_uid": "001692", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304D"}, {"dataset_uid": "002625", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0304D", "url": "https://www.rvdata.us/search/cruise/NBP0304D"}], "date_created": "Tue, 17 Jan 2012 00:00:00 GMT", "description": "This study will investigate how the Antarctic Slope Front and continental slope morphology determine the exchanges of mass, heat, and fresh water between the shelf and the deep ocean, in particular those leading to outflows of dense water into intermediate and deep layers of the adjacent basins and into the world ocean circulation \u003cbr/\u003eWhile the importance to the global ocean circulation and climate of cold water masses originating in the Antarctic is unquestioned, the processes by which these water masses enter the deep ocean circulation are not. The primary goal of this work therefore is to identify the principal physical processes that govern the transfer of shelf-modified dense water into intermediate and deep layers of the adjacent deep ocean. At the same time, it seeks to understand the compensatory poleward flow of waters from the oceanic regime. The upper continental slope has been identified as the critical gateway for the exchange of shelf and deep ocean waters. Here the topography, velocity and density fields associated with the nearly ubiquitous front must strongly influence the advective and turbulent transfer of water properties between the shelf and oceanic regimes. The study has four specific objectives: [1] Determine the mean frontal structure and the principal scales of variability, and estimate the role of the front on cross-slope exchanges and mixing of adjacent water masses; [2] Determine the influence of slope topography and bathymetry on frontal location and outflow of dense Shelf Water; [3] Establish the role of frontal instabilities, benthic boundary layer transports, tides and other oscillatory processes on cross-slope advection and fluxes; and [4] Assess the effect of diapycnal mixing, lateral mixing identified through intrusions, and nonlinearities in the equation of state on the rate of descent and the fate of outflowing, near-freezing Shelf Water.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e WATER BOTTLES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Gordon, Arnold; Cande, Steven; Visbeck, Martin; Jacobs, Stanley", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Anslope, Cross-slope Exchanges at the Antarctic Slope Front", "uid": "p0000807", "west": null}, {"awards": "0839039 Kustka, Adam", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP1101; Processed CurrentMeter Data from the Adare Basin near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1101 ", "datasets": [{"dataset_uid": "002653", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1101", "url": "https://www.rvdata.us/search/cruise/NBP1101"}, {"dataset_uid": "601343", "doi": null, "keywords": "Antarctica; Mooring; NBP1101; Ross Sea; Salinity; Southern Ocean; Temperature", "people": "Gordon, Arnold; Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Processed CurrentMeter Data from the Adare Basin near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1101 ", "url": "https://www.usap-dc.org/view/dataset/601343"}], "date_created": "Tue, 17 Jan 2012 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eAn interdisciplinary team of researchers will focus on describing the high productivity patchiness observed in phytoplankton blooms in the mid to late summer in the Ross Sea, Antarctica. Key hypotheses to be tested and extended are that intrusions of nutrient and micro nutrient (e.g. Fe) rich water masses of the Antarctic modified circumpolar deep water (CDW) up onto continental shelves act to control the biogeochemical response of a large area of the productive Ross Sea coastal region. It is believed that this enhanced productivity may be a significant contributing factor to the global carbon cycle. \u003cbr/\u003e\u003cbr/\u003eA novel sampling strategy to be used to test the above hypotheses will employ a remotely controlled deep (1000m) glider (AUV) to locate and map CDW in near real time measuring C (conductivity), T (temperature), D (pressure) and apparent optical properties, and which will serve to direct further ship-based sampling. \u003cbr/\u003e\u003cbr/\u003eThe adaptive coordination of a polar research vessel with an AUV additionally provides an opportunity to engage in formal and informal education and public outreach on issues in polar research.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Kohut, Josh", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": null, "title": "Collaborate Research:Modified Circumpolar Deep Water Intrusions as an Iron Source to the Summer Ross Sea Ecosystem", "uid": "p0000843", "west": null}, {"awards": "0230499 Kieber, David", "bounds_geometry": "POLYGON((-179.99998 -43.58056,-143.999984 -43.58056,-107.999988 -43.58056,-71.999992 -43.58056,-35.999996 -43.58056,0 -43.58056,35.999996 -43.58056,71.999992 -43.58056,107.999988 -43.58056,143.999984 -43.58056,179.99998 -43.58056,179.99998 -46.971468,179.99998 -50.362376,179.99998 -53.753284,179.99998 -57.144192,179.99998 -60.5351,179.99998 -63.926008,179.99998 -67.316916,179.99998 -70.707824,179.99998 -74.098732,179.99998 -77.48964,143.999984 -77.48964,107.999988 -77.48964,71.999992 -77.48964,35.999996 -77.48964,0 -77.48964,-35.999996 -77.48964,-71.999992 -77.48964,-107.999988 -77.48964,-143.999984 -77.48964,-179.99998 -77.48964,-179.99998 -74.098732,-179.99998 -70.707824,-179.99998 -67.316916,-179.99998 -63.926008,-179.99998 -60.5351,-179.99998 -57.144192,-179.99998 -53.753284,-179.99998 -50.362376,-179.99998 -46.971468,-179.99998 -43.58056))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001616", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0409"}], "date_created": "Tue, 17 Jan 2012 00:00:00 GMT", "description": "Areas of the Southern Ocean have spectacular blooms of phytoplankton during the austral spring and early summer. One of the dominant phytoplankton species, the haptophyte Phaeocystis antarctica, is a prolific producer of the organic sulfur compound dimethylsulfoniopropionate (DMSP) and Phaeocystis blooms are associated with some of the world\u0027s highest concentrations of DMSP and its volatile degradation product, dimethylsulfide (DMS). Sulfur, in the form of DMS, is transferred from the oceans to the atmosphere and can affect the chemistry of precipitation and influence cloud properties and possibly climate. DMSP and DMS are also quantitatively significant components of the carbon, sulfur and energy flows in many marine food webs, although very little information is available on these processes in high latitude systems. \u003cbr/\u003e\u003cbr/\u003eThis project will study how solar radiation and iron cycling affect DMSP and DMS production by phytoplankton, and the subsequent utilization of these labile forms of organic matter by the microbial food web. Four interrelated hypotheses will be tested in field-based experiments and in situ observations: 1) solar radiation, including enhanced UV-B due to seasonal ozone depletion, plays an important role in determining the net ecosystem production of DMS in the Ross Sea; 2) development of shallow mixed layers promotes the accumulation of DMS in surface waters, because of enhanced exposure of plankton communities to high doses of solar radiation; 3) DMSP production and turnover represent a significant part of the carbon and sulfur flux through polar food webs; 4) bloom development and resulting nutrient depletion (e.g., iron) will result in high production rates of DMSP and high DMS concentrations and atmospheric fluxes. Results from this study will greatly improve understanding of the underlying mechanisms controlling DMSP and DMS concentrations in polar waters, thereby improving our ability to predict DMS fluxes to the atmosphere from this important climatic region. \u003cbr/\u003e\u003cbr/\u003eBoth Drs. Kieber and Kiene actively engage high school, undergraduate and graduate students in their research and are involved in formal programs that target underrepresented groups (NSF-REU and the American Chemical Society-SEED). This project will continue this type of educational outreach. The PIs also teach undergraduate and graduate courses and incorporation of research experiences into their classes will enrich student learning experiences.", "east": 179.99998, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -43.58056, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Kiene, Ronald", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.48964, "title": "Collaborative Research: Impact of Solar Radiation and Nutrients on Biogeochemical Cycling of DMSP and DMS in the Ross Sea, Antarctica", "uid": "p0000582", "west": -179.99998}, {"awards": "0230497 Kiene, Ronald", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0409", "datasets": [{"dataset_uid": "001616", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0409"}, {"dataset_uid": "002640", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0409", "url": "https://www.rvdata.us/search/cruise/NBP0409"}], "date_created": "Tue, 17 Jan 2012 00:00:00 GMT", "description": "Areas of the Southern Ocean have spectacular blooms of phytoplankton during the austral spring and early summer. One of the dominant phytoplankton species, the haptophyte Phaeocystis antarctica, is a prolific producer of the organic sulfur compound dimethylsulfoniopropionate (DMSP) and Phaeocystis blooms are associated with some of the world\u0027s highest concentrations of DMSP and its volatile degradation product, dimethylsulfide (DMS). Sulfur, in the form of DMS, is transferred from the oceans to the atmosphere and can affect the chemistry of precipitation and influence cloud properties and possibly climate. DMSP and DMS are also quantitatively significant components of the carbon, sulfur and energy flows in many marine food webs, although very little information is available on these processes in high latitude systems. \u003cbr/\u003e\u003cbr/\u003eThis project will study how solar radiation and iron cycling affect DMSP and DMS production by phytoplankton, and the subsequent utilization of these labile forms of organic matter by the microbial food web. Four interrelated hypotheses will be tested in field-based experiments and in situ observations: 1) solar radiation, including enhanced UV-B due to seasonal ozone depletion, plays an important role in determining the net ecosystem production of DMS in the Ross Sea; 2) development of shallow mixed layers promotes the accumulation of DMS in surface waters, because of enhanced exposure of plankton communities to high doses of solar radiation; 3) DMSP production and turnover represent a significant part of the carbon and sulfur flux through polar food webs; 4) bloom development and resulting nutrient depletion (e.g., iron) will result in high production rates of DMSP and high DMS concentrations and atmospheric fluxes. Results from this study will greatly improve understanding of the underlying mechanisms controlling DMSP and DMS concentrations in polar waters, thereby improving our ability to predict DMS fluxes to the atmosphere from this important climatic region. \u003cbr/\u003e\u003cbr/\u003eBoth Drs. Kieber and Kiene actively engage high school, undergraduate and graduate students in their research and are involved in formal programs that target underrepresented groups (NSF-REU and the American Chemical Society-SEED). This project will continue this type of educational outreach. The PIs also teach undergraduate and graduate courses and incorporation of research experiences into their classes will enrich student learning experiences.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Kiene, Ronald", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Impact of Solar Radiation and Nutrients on Biogeochemical Cycling of DMSP and DMS in the Ross Sea, Antarctica", "uid": "p0000832", "west": null}, {"awards": "1043564 Karentz, Deneb", "bounds_geometry": null, "dataset_titles": "Expedition data of LMG1106A", "datasets": [{"dataset_uid": "002686", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1106A", "url": "https://www.rvdata.us/search/cruise/LMG1106A"}], "date_created": "Tue, 17 Jan 2012 00:00:00 GMT", "description": "The proposed research will investigate the genomic basis of the physiological and ecological transition of Antarctic marine phytoplankton from a cold dark winter to a warmer, brighter spring. During a field season at Palmer Station, functional genomics (using next generation sequencing technology to identify expressed genes) and in situ fluorometry (FRRF) will be integrated with classical ecological methods to investigate photosynthetic adaptation during phytoplankton species succession from late winter into spring. Using large data sets, this project will test whether amino acid usages differ based on expression. The specific objectives are (1) To characterize phytoplankton succession from the winter to spring transition, and (2) To correlate community gene expression profiles to adaptational differences among taxa. Broader impacts include training of a post doctoral researcher and two undergraduate science majors, with efforts to attract students from underrepresented groups. The P.I.s also will prepare presentations for the public, regarding research experiences, research results, and the importance of climate change.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Karentz, Deneb", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Functional Genomics and Physiological Ecology of Seasonal Succession in Antarctic Phytoplankton: Adaptations to Light and Temperature", "uid": "p0000861", "west": null}, {"awards": "9527571 Whillans, Ian", "bounds_geometry": "POLYGON((158.25 -76.66667,158.325 -76.66667,158.4 -76.66667,158.475 -76.66667,158.55 -76.66667,158.625 -76.66667,158.7 -76.66667,158.775 -76.66667,158.85 -76.66667,158.925 -76.66667,159 -76.66667,159 -76.683336,159 -76.700002,159 -76.716668,159 -76.733334,159 -76.75,159 -76.766666,159 -76.783332,159 -76.799998,159 -76.816664,159 -76.83333,158.925 -76.83333,158.85 -76.83333,158.775 -76.83333,158.7 -76.83333,158.625 -76.83333,158.55 -76.83333,158.475 -76.83333,158.4 -76.83333,158.325 -76.83333,158.25 -76.83333,158.25 -76.816664,158.25 -76.799998,158.25 -76.783332,158.25 -76.766666,158.25 -76.75,158.25 -76.733334,158.25 -76.716668,158.25 -76.700002,158.25 -76.683336,158.25 -76.66667))", "dataset_titles": "GPS Ice Flow Measurements, Allan Hills, Antarctica", "datasets": [{"dataset_uid": "609507", "doi": "10.7265/N5NS0RSX", "keywords": "Allan Hills; Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ice Flow Velocity", "people": "Kurbatov, Andrei V.; Spikes, Vandy Blue; Hamilton, Gordon S.; Spaulding, Nicole", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "GPS Ice Flow Measurements, Allan Hills, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609507"}], "date_created": "Tue, 20 Dec 2011 00:00:00 GMT", "description": "Whillans, Wilson, Goad OPP 9527571 Abstract This award supports a project to initiate Global Positioning System (GPS) measurements for rock motions in South Victoria Land and vicinity. The results will be used to test some of the leading models for ice-sheet change and tectonism, in particular, whether the continent is rebounding due to reduced ice load from East or West Antarctica and whether there is tectonic motion due to Terror Rift or uplift of the Transantarctic Mountains. A modest program to measure ice motion will be conducted as well. The motive is to test models for ice flow in the Allan Hills meteorite concentration region and to determine whether small glaciers in the Dry Valleys are thickening or thinning. Monuments will be set into rock and ice and GPS receivers used to determine their locations. Repeats in later years will determine motion. Field activities will involve close cooperation with the USGS.", "east": 159.0, "geometry": "POINT(158.625 -76.75)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "FIELD SURVEYS; LABORATORY; Not provided; Ice Movement; GPS Data; Vertical Motions; GPS; FIELD INVESTIGATION", "locations": null, "north": -76.66667, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Whillans, Ian; Spaulding, Nicole; Hamilton, Gordon S.; Spikes, Vandy Blue; Kurbatov, Andrei V.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.83333, "title": "GPS Measurements of Rock and Ice Motions in South Victoria Land", "uid": "p0000523", "west": 158.25}, {"awards": "0636898 Winckler, Gisela", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 30 Nov 2011 00:00:00 GMT", "description": "Winckler/0636898\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to study dust sources in Antarctic ice cores. Atmospheric aerosols play an important role both in global biogeochemical cycles as well as in the climate system of the Earth. Records extracted from Antarctic ice cores inform us that dust deposition from the atmosphere to the ice sheet was 15-20 times greater during glacial periods than during interglacials, which raises the possibility that dust may be a key player in climate change on glacial-interglacial timescales. By characterizing potential source areas from South America, South Africa, and Australia as well as fresh glacial flour from Patagonia, the project will determine if the interglacial dust was mobilized from a distinct geographical region (e.g., Australia) or from a more heavily weathered source region in South America. The intellectual merit of the project is that it will contribute to reconstructing climate-related changes in the rate of dust deposition, and in the provenance of the dust, it will provide critical constraints on hydrology and vegetation in the source regions, as well as on the nature of the atmospheric circulation transporting dust to the archive location. In a recent pilot study it was found that there is a dramatic glacial to Holocene change in the 4He/Ca ratio in the dust extracted from ice from Dronning Maud Land, Antarctica, indicating a shift in the source of dust transported to Antarctica. The broader impacts of the project are that Helium isotopes and calcium measurements provide a wealth of information that can then be turned into critical input for dust-climate models. Improved models, which are able to accurately reconstruct paleo dust distribution, will help us to predict changes in dust in response to future climate variability. This information will contribute to an improvement of our integrated understanding of the Earth\u0027s climate system and, in turn, will better inform policy makers of those processes and conditions most susceptible to perturbation by climate change, thereby leading to more meaningful climate-change policy. The project will support a graduate student in the dual masters Earth and Environmental Science Journalism program. The lead-PI manages the rock noble gas laboratory at Lamont. Her leadership role in this facility impacts the training of undergraduate and graduate students as well as visiting scientists.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": false, "keywords": "Deposition; LABORATORY; Dust; Climate; Not provided; Climate Change; Helium Isotopes; FIELD INVESTIGATION; Biogeochemical Cycles", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Winckler, Gisela", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "Tracing Glacial-interglacial Changes in the Dust Source to Antarctica using Helium Isotopes", "uid": "p0000265", "west": null}, {"awards": "0440847 Raymond, Charles", "bounds_geometry": null, "dataset_titles": "GPS-Measured Ice Velocities and Strain Data from the Ross and Amundsen Sea Ice Flow Divide, West Antarctica; Polarimetric Radar Data from the Ross and Amundsen Sea Ice Flow Divide, West Antarctica", "datasets": [{"dataset_uid": "609503", "doi": "10.7265/N5222RQ8", "keywords": "Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ice Flow Velocity; Ross-Amundsen Divide; Strain", "people": "Power, Donovan; Rasmussen, Al; Matsuoka, Kenichi", "repository": "USAP-DC", "science_program": null, "title": "GPS-Measured Ice Velocities and Strain Data from the Ross and Amundsen Sea Ice Flow Divide, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609503"}, {"dataset_uid": "609496", "doi": "10.7265/N5TH8JNG", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Radar; Ross-Amundsen Divide", "people": "Matsuoka, Kenichi; Power, Donovan; Raymond, Charles; Fujita, Shuji", "repository": "USAP-DC", "science_program": null, "title": "Polarimetric Radar Data from the Ross and Amundsen Sea Ice Flow Divide, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609496"}], "date_created": "Mon, 29 Aug 2011 00:00:00 GMT", "description": "This award supports a project to investigate fabrics with ground-based radar measurements near the Ross/Amundsen Sea ice-flow divide where a deep ice core will be drilled. The alignment of crystals in ice (crystal-orientation fabric) has an important effect on ice deformation. As ice deforms, anisotropic fabrics are produced, which, in turn, influence further deformation. Measurement of ice fabric variations can help reveal the deformation history of the ice and indicate how the ice will deform in the future. Ice cores provide opportunities to determine a vertical fabric profile, but horizontal variations of fabrics remain unknown. Remote sensing with ice-penetrating radar is the only way to do that over large areas. Preliminary results show that well-established polarimetric methods can detect the degree of horizontal anisotropy of fabrics and their orientation, even when they are nearly vertical-symmetric fabrics. In conjunction with ice deformation history, our first mapping of ice fabrics will contribute to modeling ice flow near the future ice core site. The project will train a graduate student and provide research experiences for two under graduate students both in field and laboratory. The project will contribute to ongoing West Antarctic ice sheet program efforts to better understand the impact of the ice sheet on global sea level rise. This project also supports an international collaboration between US and Japanese scientists.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "GPS; FIELD SURVEYS; Antarctic; Radar; Antarctica; FIELD INVESTIGATION; Ice Sheet; Not provided; Ross-Amundsen Divide; West Antarctica; West Antarctic Ice Sheet", "locations": "Antarctica; Ross-Amundsen Divide; West Antarctica; Antarctic; West Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Matsuoka, Kenichi; Power, Donovan; Fujita, Shuji; Raymond, Charles; Rasmussen, Al", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Detection of Crystal Orientation Fabrics near the Ross/Amundsen Sea Ice-flow Divide and at the Siple Dome Ice Core Site using Polarimetric Radar Methods", "uid": "p0000024", "west": null}, {"awards": "0944474 Robinson, Laura", "bounds_geometry": "POLYGON((-70.5 -54.5,-66.95 -54.5,-63.4 -54.5,-59.85 -54.5,-56.3 -54.5,-52.75 -54.5,-49.2 -54.5,-45.65 -54.5,-42.1 -54.5,-38.55 -54.5,-35 -54.5,-35 -55.2,-35 -55.9,-35 -56.6,-35 -57.3,-35 -58,-35 -58.7,-35 -59.4,-35 -60.1,-35 -60.8,-35 -61.5,-38.55 -61.5,-42.1 -61.5,-45.65 -61.5,-49.2 -61.5,-52.75 -61.5,-56.3 -61.5,-59.85 -61.5,-63.4 -61.5,-66.95 -61.5,-70.5 -61.5,-70.5 -60.8,-70.5 -60.1,-70.5 -59.4,-70.5 -58.7,-70.5 -58,-70.5 -57.3,-70.5 -56.6,-70.5 -55.9,-70.5 -55.2,-70.5 -54.5))", "dataset_titles": "Expedition Data; Historic Perspectives on Climate and Biogeography from Deep-Sea Corals in the Drake Passage", "datasets": [{"dataset_uid": "600114", "doi": "10.15784/600114", "keywords": "Biota; Corals; Cruise Report; Drake Passage; NBP1103; Oceans; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Robinson, Laura", "repository": "USAP-DC", "science_program": null, "title": "Historic Perspectives on Climate and Biogeography from Deep-Sea Corals in the Drake Passage", "url": "https://www.usap-dc.org/view/dataset/600114"}, {"dataset_uid": "001451", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1103"}], "date_created": "Wed, 24 Aug 2011 00:00:00 GMT", "description": "Polar oceans are the main sites of deep-water formation and are critical to the exchange of heat and carbon between the deep ocean and the atmosphere. This award ?Historic perspectives on climate and biogeography from deep-sea corals in the Drake Passage? will address the following specific research questions: What was the radiocarbon content of the Southern Ocean during the last glacial maximum and during past rapid climate change events? and What are the major controls on the past and present distribution of cold-water corals within the Drake Passage and adjacent continental shelves? Testing these overall questions will allow the researchers to better understand how processes in the Southern Ocean are linked to climate change over millennia. This award is being funded by the Antarctic Earth Sciences Program of NSF?s Office of Polar Programs, Antarctic Division. \u003cbr/\u003e\u003cbr/\u003eINTELLECTUAL MERIT: The skeletons of deep-sea corals are abundant in the Southern Ocean, and can be dated using U-series techniques making them a useful archive of oceanographic history. By pairing U-series and radiocarbon analyses the awardees can reconstruct the radiocarbon content of seawater in the past, allowing them to address the research questions raised above. Collection of living deep-sea corals along with environmental data will allow them to address the broader biogeography questions posed above as well. The awardees are uniquely qualified to answer these questions in their respective labs via cutting edge technologies, and they have shown promising results from a preliminary pilot cruise to the area in 2008.\u003cbr/\u003e\u003cbr/\u003eBROADER IMPACTS: Societal Relevance: The proposed paleoclimate research will make significant advances toward constraining the Southern Ocean?s influence on global climate, specifically it should help set the bounds for the upper limits on how fast the ocean circulation might change in this region of the world, which is of high societal relevance in this era of changing climate. Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating undergraduate through post-doctoral students into research programs; ii) promotion of K-12 teaching and learning programs by providing information via a cruise website and in-school talks, iii) making the data collected available to the wider research community via data archives such as Seamounts Online and the Seamount Biogeographic Network and iv) reaching a larger public audience through such venues as interviews in the popular media.", "east": -35.0, "geometry": "POINT(-52.75 -58)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "R/V NBP", "locations": null, "north": -54.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Robinson, Laura", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -61.5, "title": "Collaborative Research: Historic Perspectives on Climate and Biogeography from Deep-sea Corals in the Drake Passage", "uid": "p0000514", "west": -70.5}, {"awards": "0739491 Sowers, Todd; 0739598 Aydin, Murat", "bounds_geometry": null, "dataset_titles": "Alkanes in Firn Air Samples, Antarctica and Greenland; Methane Isotopes in South Pole Firn Air, 2008", "datasets": [{"dataset_uid": "609504", "doi": "10.7265/N5X9287C", "keywords": "Antarctica; Arctic; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Greenland; Snow/ice; Snow/Ice; South Pole; WAIS Divide", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": null, "title": "Alkanes in Firn Air Samples, Antarctica and Greenland", "url": "https://www.usap-dc.org/view/dataset/609504"}, {"dataset_uid": "609502", "doi": "10.7265/N55T3HFP", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Isotope; Paleoclimate; Snow/ice; Snow/Ice; South Pole", "people": "Sowers, Todd A.", "repository": "USAP-DC", "science_program": null, "title": "Methane Isotopes in South Pole Firn Air, 2008", "url": "https://www.usap-dc.org/view/dataset/609502"}], "date_created": "Thu, 18 Aug 2011 00:00:00 GMT", "description": "This award supports a project to make measurements of methane and other trace gases in firn air collected at South Pole, Antarctica. The analyses will include: methane isotopes (delta-13CH4 and delta-DCH4), light non-methane hydrocarbons (ethane, propane, and n-butane), sulfur gases (COS, CS2), and methyl halides (CH3Cl and CH3Br). The atmospheric burdens of these trace gases reflect changes in atmospheric OH, biomass burning, biogenic activity in terrestrial, oceanic, and wetland ecosystems, and industrial/agricultural activity. The goal of this project is to develop atmospheric histories for these trace gases over the last century through examination of depth profiles of these gases in South Pole firn air. The project will involve two phases: 1) a field campaign at South Pole, Antarctica to drill two firn holes and fill a total of ~200 flasks from depths reaching 120 m, 2) analysis of firn air at University of California, Irvine, Penn State University, and several other collaborating laboratories. Atmospheric histories will be inferred from the measurements using a one dimensional advective/diffusive model of firn air transport. This study will provide new information about the recent changes in atmospheric levels of these gases, providing about a 90 year long time series record that connects the earlier surface and firn air measurements to present day. The project will also explore the possibility of in- situ production of light non-methane hydrocarbons in firn air that is relevant to the interpretation of ice core records. The broader impacts of this research are that it has the potential for significant societal impact by improving our understanding of climate change and man\u0027s input to the atmosphere. The results of this work will be disseminated through the peer review process, and will contribute to environmental assessments, such as the Inter-governmental Panel on Climate Change (IPCC) Climate Assessment and the Word Meteorological Organization (WMO) Stratospheric Ozone Assessment. This research will provide educational opportunities for graduate and undergraduate students, and will contribute to a teacher training program for K-12 teachers in minority school districts.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GC-MS", "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; Isotope; Firn Air Chemistry; Firn Air Isotope Measurements; Not provided; LABORATORY; South Pole; Firn; Delta 13C; Carbon-13; Mass Spectrometer; Deuterium; Mass Spectrometry; Firn Air Samples; Carbon; Gas Chromatography; Polar Firn Air; GROUND-BASED OBSERVATIONS; Methane; Antarctica; Firn Air Isotopes; Delta Deuterium; FIELD SURVEYS; Firn Air; Chromatography; Methane Isotopes; Carbon Isotopes; Stable Isotopes", "locations": "Antarctica; South Pole", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Aydin, Murat; Saltzman, Eric; Sowers, Todd A.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Methane Isotopes, Hydrocarbons, and other Trace Gases in South Pole Firn Air", "uid": "p0000162", "west": null}, {"awards": "0636818 Stone, John", "bounds_geometry": "POLYGON((-157 -85,-156 -85,-155 -85,-154 -85,-153 -85,-152 -85,-151 -85,-150 -85,-149 -85,-148 -85,-147 -85,-147 -85.3,-147 -85.6,-147 -85.9,-147 -86.2,-147 -86.5,-147 -86.8,-147 -87.1,-147 -87.4,-147 -87.7,-147 -88,-148 -88,-149 -88,-150 -88,-151 -88,-152 -88,-153 -88,-154 -88,-155 -88,-156 -88,-157 -88,-157 -87.7,-157 -87.4,-157 -87.1,-157 -86.8,-157 -86.5,-157 -86.2,-157 -85.9,-157 -85.6,-157 -85.3,-157 -85))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 05 Aug 2011 00:00:00 GMT", "description": "Hall/0636687\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to investigate late Pleistocene and Holocene changes in Scott Glacier, a key outlet glacier that flows directly into the Ross Sea just west of the present-day West Antarctic Ice Sheet (WAIS) grounding line. The overarching goals are to understand changes in WAIS configuration in the Ross Sea sector at and since the last glacial maximum (LGM) and to determine whether Holocene retreat observed in the Ross Embayment has ended or if it is still ongoing. To address these goals, moraine and drift sequences associated with Scott Glacier will be mapped and dated and ice thickness, surface velocity and surface mass balance will be measured to constrain an ice-flow model of the glacier. This model will be used to help interpret the dated geologic sequences. The intellectual merit of the project relates to gaining a better understanding of the West Antarctic Ice Sheet and how changing activity of fast-flowing outlet glaciers and ice streams exerts strong control on the mass balance of the ice sheet. Previous work suggests that grounding-line retreat in the Ross Sea continued into the late Holocene and left open the possibility of ongoing deglaciation as part of a long-term trend. Results from Reedy Glacier, an outlet glacier just behind the grounding line, suggest that retreat may have slowed substantially over the past 2000 years and perhaps even stopped. By coupling the work on Scott Glacier with recent data from Reedy Glacier, the grounding-line position will be bracketed and it should be possible to establish whether the retreat has truly ended or if it is ongoing. The broader impacts of the work relate to the societal relevance of an improved understanding of the West Antarctic ice sheet to establish how it will respond to current and possible future environmental changes. The work addresses this key goal of the West Antarctic Ice Sheet Initiative, as well as the International Polar Year focus on ice sheet history and dynamics. The work will develop future scientists through the education and training of one undergraduate and two Ph.D. students, interaction with K-12 students through classroom visits, web-based \u0027expedition\u0027 journals, letters from the field, and discussions with teachers. Results from this project will be posted with previous exposure dating results from Antarctica, on the University of Washington Cosmogenic Nuclide Lab website, which also provides information about chemical procedures and calculation methods to other scientists working with cosmogenic nuclides.", "east": -147.0, "geometry": "POINT(-152 -86.5)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": -85.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Stone, John; Conway, Howard", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -88.0, "title": "Collaborative Research:Grounding-line Retreat in the Southern Ross Sea - Constraints from Scott Glacier", "uid": "p0000149", "west": -157.0}, {"awards": "0538120 Catania, Ginny; 0538015 Hulbe, Christina", "bounds_geometry": "POLYGON((154.71 -82.78,154.79000000000002 -82.78,154.87 -82.78,154.95 -82.78,155.03 -82.78,155.11 -82.78,155.19 -82.78,155.26999999999998 -82.78,155.35 -82.78,155.43 -82.78,155.51 -82.78,155.51 -82.788,155.51 -82.796,155.51 -82.804,155.51 -82.812,155.51 -82.82,155.51 -82.828,155.51 -82.836,155.51 -82.844,155.51 -82.852,155.51 -82.86,155.43 -82.86,155.35 -82.86,155.26999999999998 -82.86,155.19 -82.86,155.11 -82.86,155.03 -82.86,154.95 -82.86,154.87 -82.86,154.79000000000002 -82.86,154.71 -82.86,154.71 -82.852,154.71 -82.844,154.71 -82.836,154.71 -82.828,154.71 -82.82,154.71 -82.812,154.71 -82.804,154.71 -82.796,154.71 -82.788,154.71 -82.78))", "dataset_titles": "Grounding Line Strain Grid Surveys, Kamb Ice Stream, Antarctica; Ice-Penetrating Radar Data Across Siple Coast Grounding Lines", "datasets": [{"dataset_uid": "609494", "doi": "10.7265/N5Z899C6", "keywords": "Antarctica; Geodesy; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Grounding Line; Kamb Ice Stream; Strain", "people": "Hulbe, Christina", "repository": "USAP-DC", "science_program": null, "title": "Grounding Line Strain Grid Surveys, Kamb Ice Stream, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609494"}, {"dataset_uid": "609474", "doi": "10.7265/N5M043BH", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; GPR; Grounding Line; Radar; Siple Coast", "people": "Hulbe, Christina; Catania, Ginny", "repository": "USAP-DC", "science_program": null, "title": "Ice-Penetrating Radar Data Across Siple Coast Grounding Lines", "url": "https://www.usap-dc.org/view/dataset/609474"}], "date_created": "Sat, 02 Jul 2011 00:00:00 GMT", "description": "0538120\u003cbr/\u003eCatania\u003cbr/\u003eThis award supports a project to identify and map ice surface and internal features that chronicle the sequence of events leading to the shut-down of Kamb ice stream. In particular, the project will study past grounding line migration and the relationship between that process and ice stream shutdown. The intellectual merits of the project include the fact that an understanding of such processes has important implications for our ability to accurately predict mass balance changes in this region. Currently, one of the five major West Antarctic ice streams, Kamb, is quiescent, and another, Whillans, is slowing in its downstream reaches. The Kamb shutdown appears to have begun at its downstream end but beyond that simple observation, it is not possible, yet, to draw meaningful comparisons between the two adjacent streams. We do not know if current events on Whillans Ice Stream are similar to what transpired during the Kamb shut-down. The work proposed here intends to bridge that gap. It is expected that this effort will yield useful insights into the influence of grounding line dynamics on ice stream flow. The work will involve a combination of field investigations using radio-echo sounding and GPS combined with computational efforts involving the interpretation of ice-surface features such as relict flow traces and crevasses. The broader impacts of the project will be in addressing a global environmental problem with critical societal implications, training the next generation of scientists and engineers to serve the nation, and encouraging women to pursue scientific or engineering careers. Participants from both institutions are involved in a range of public outreach activities.", "east": 155.51, "geometry": "POINT(155.11 -82.82)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR", "is_usap_dc": true, "keywords": "Not provided; Ice Sheet Elevation; West Antarctic Ice Stream; MODELS; Ice Sheet Thickness; West Antarctic Ice Sheet; Kamb Ice Stream; Antarctic Ice Sheet; Ice Sheet; Ice Stream Motion; Antarctica; Siple Dome; Grounding Line; FIELD INVESTIGATION; GPS; FIELD SURVEYS; West Antarctica; Ice Stream; Radar", "locations": "Antarctica; Kamb Ice Stream; West Antarctic Ice Stream; Antarctic Ice Sheet; West Antarctica; West Antarctic Ice Sheet; Siple Dome", "north": -82.78, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Hulbe, Christina; Catania, Ginny", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e MODELS \u003e MODELS; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.86, "title": "Collaborative Research: Grounding Line Forensics: The History of Grounding Line Retreat in the Kamb Ice Stream Outlet Region", "uid": "p0000019", "west": 154.71}, {"awards": "0902957 Robinson, Laura", "bounds_geometry": "POLYGON((-70.5 -54.5,-66.95 -54.5,-63.4 -54.5,-59.85 -54.5,-56.3 -54.5,-52.75 -54.5,-49.2 -54.5,-45.65 -54.5,-42.1 -54.5,-38.55 -54.5,-35 -54.5,-35 -55.2,-35 -55.9,-35 -56.6,-35 -57.3,-35 -58,-35 -58.7,-35 -59.4,-35 -60.1,-35 -60.8,-35 -61.5,-38.55 -61.5,-42.1 -61.5,-45.65 -61.5,-49.2 -61.5,-52.75 -61.5,-56.3 -61.5,-59.85 -61.5,-63.4 -61.5,-66.95 -61.5,-70.5 -61.5,-70.5 -60.8,-70.5 -60.1,-70.5 -59.4,-70.5 -58.7,-70.5 -58,-70.5 -57.3,-70.5 -56.6,-70.5 -55.9,-70.5 -55.2,-70.5 -54.5))", "dataset_titles": "LGM and Deglacial Radiocarbon from U-series Dated Drake Passage Deep-sea Corals", "datasets": [{"dataset_uid": "600111", "doi": "10.15784/600111", "keywords": "Biota; Corals; Drake Passage; Geochronology; NBP0805; Oceans; Paleoclimate; Radiocarbon; Southern Ocean", "people": "Robinson, Laura", "repository": "USAP-DC", "science_program": null, "title": "LGM and Deglacial Radiocarbon from U-series Dated Drake Passage Deep-sea Corals", "url": "https://www.usap-dc.org/view/dataset/600111"}], "date_created": "Tue, 28 Jun 2011 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The proposal seeks funds to continue a follow-up analytical work of deep-sea corals collected in the Drake Passage during a research cruise. The project\u0027s goal is paleo-climate research looking to constrain the depth structure and time evolution of the radiocarbon content of the Southern Ocean during the glacial and deglaciation. Radiocarbon is a versatile tracer of past climate; its radioactive decay provides an internal clock with which to assess the rates of processes, and it can be used to trace the movement of carbon through the Earth\u0027s system. It enters the ocean through air-sea gas exchange, so processes that limits this will, therefore, reduce the radiocarbon content of both surface and deep waters. The Southern Ocean is a critical location for exchange of heat and carbon between the deep-ocean and atmospheric reservoirs, and the deep waters formed there fill large volumes of the global deep and intermediate oceans. As strong currents tend to scour away sediments, carbonate preservation is limited, and radiocarbon reservoir ages are poorly constrained, many traditional paleoceanographic techniques become impractical. It is proposed to alleviate these difficulties analyzing the chemical composition of deep-sea coral skeletons. Their aragonitic skeletons can be precisely dated using U-series decay, and when coupled with radiocarbon analyses will allow to calculate the C14/C12 ratio of the past water column.", "east": -35.0, "geometry": "POINT(-52.75 -58)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -54.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Robinson, Laura", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -61.5, "title": "LGM and Deglacial Radiocarbon from U-series Dated Drake Passage Deep-sea Corals", "uid": "p0000519", "west": -70.5}, {"awards": "0739780 Taylor, Kendrick", "bounds_geometry": "POINT(-112.117 -79.666)", "dataset_titles": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning", "datasets": [{"dataset_uid": "600142", "doi": "10.15784/600142", "keywords": "Antarctica; Atmosphere; Black Carbon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Taylor, Kendrick C.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning", "url": "https://www.usap-dc.org/view/dataset/600142"}], "date_created": "Thu, 28 Apr 2011 00:00:00 GMT", "description": "Edwards/0739780\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to develop a 2,000-year high-temporal resolution record of biomass burning from the analysis of black carbon in the WAIS Divide bedrock ice core. Pilot data for the WAIS WD05A core demonstrates that we now have the ability to reconstruct this record with minimal impact on the amount of ice available for other projects. The intellectual merit of this project is that black carbon (BC) aerosols result solely from combustion and play a critical but poorly quantified role in global climate forcing and the carbon cycle. When incorporated into snow and ice, BC increases absorption of solar radiation making seasonal snow packs, mountain glaciers, polar ice sheets, and sea ice much more vulnerable to climate warming. BC emissions in the Southern Hemisphere are dominated by biomass burning in the tropical regions of Southern Africa, South America and South Asia. Biomass burning, which results from both climate and human activities, alters the atmospheric composition of greenhouse gases, aerosols and perturbs key biogeochemical cycles. A long-term record of biomass burning is needed to aid in the interpretation of ice core gas composition and will provide important information regarding human impacts on the environment and climate before instrumental records. The broader impacts of the project are that it represents a paradigm shift in our ability to reconstruct the history of fire from ice core records and to understand its impact on atmospheric chemistry and climate over millennial time scales. This type of data is especially needed to drive global circulation model simulations of black carbon aerosols, which have been found to be an important component of global warming and which may be perturbing the hydrologic cycle. The project will also employ undergraduate students and is committed to attracting underrepresented groups to the physical sciences. The project?s outreach component will be conducted as part of the WAIS project outreach program and will reach a wide audience.", "east": -112.117, "geometry": "POINT(-112.117 -79.666)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Ice Core Chemistry; Not provided; Gas Record; Ice Core; Gas Measurement; Ice Core Gas Composition; Antarctica; LABORATORY; Bedrock Ice Core; Ice Core Gas Records; Wais Project; Greenhouse Gas; Atmospheric Chemistry; FIELD INVESTIGATION; Black Carbon; Biomass Burning; WAIS Divide; FIELD SURVEYS; West Antarctica; Methane", "locations": "Antarctica; West Antarctica; WAIS Divide", "north": -79.666, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Brook, Edward J.; McConnell, Joseph; Mitchell, Logan E; Sowers, Todd A.; Taylor, Kendrick C.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.666, "title": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning", "uid": "p0000022", "west": -112.117}, {"awards": "0836144 Yager, Patricia; 0836061 Dennett, Mark; 0836112 Smith, Walker", "bounds_geometry": "POLYGON((100 -69,107 -69,114 -69,121 -69,128 -69,135 -69,142 -69,149 -69,156 -69,163 -69,170 -69,170 -70,170 -71,170 -72,170 -73,170 -74,170 -75,170 -76,170 -77,170 -78,170 -79,163 -79,156 -79,149 -79,142 -79,135 -79,128 -79,121 -79,114 -79,107 -79,100 -79,100 -78,100 -77,100 -76,100 -75,100 -74,100 -73,100 -72,100 -71,100 -70,100 -69))", "dataset_titles": "Amundsen Sea Polynya International Research Expedition (ASPIRE) data; Controls on Climate-Active Gases by Amundsen Sea Ice Biota", "datasets": [{"dataset_uid": "600092", "doi": "10.15784/600092", "keywords": "Amundsen Sea; Antarctica; Chemistry:fluid; Chemistry:Fluid; CTD Data; Oceans; Oden; Oden2008; Sea Ice; Sea Surface; Southern Ocean", "people": "Smith, Walker", "repository": "USAP-DC", "science_program": null, "title": "Controls on Climate-Active Gases by Amundsen Sea Ice Biota", "url": "https://www.usap-dc.org/view/dataset/600092"}, {"dataset_uid": "000146", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Amundsen Sea Polynya International Research Expedition (ASPIRE) data", "url": "https://www.bco-dmo.org/project/2132"}, {"dataset_uid": "600091", "doi": "10.15784/600091", "keywords": "Amundsen Sea; Antarctica; Biota; Oceans; Oden; Oden2008; Plankton; Sea Ice; Southern Ocean", "people": "Dennett, Mark", "repository": "USAP-DC", "science_program": null, "title": "Controls on Climate-Active Gases by Amundsen Sea Ice Biota", "url": "https://www.usap-dc.org/view/dataset/600091"}], "date_created": "Sun, 24 Apr 2011 00:00:00 GMT", "description": "Convincing evidence now confirms that polar regions are changing rapidly in response to human activities. Changes in sea ice extent and thickness will have profound implications for productivity, food webs and carbon fluxes at high latitudes, since sea ice biota are a significant source of biogenic matter for the ecosystem. While sea ice is often thought to be a barrier to gas exchange between the ocean and the atmosphere, it more likely functions as a source or sink for climate-active gases such as carbon dioxide and ozone-depleting organohalogens, due in part to activities of microbes embedded in the sea ice matrix. This project brings together experienced US and Swedish investigators to examine the controls by sea-ice biota on the production and degradation of key climate-active gases in the Pacific sector of the Southern Ocean. We hypothesize that 1) the physical properties of the sea-ice environment will determine the community structure and activities of the sea ice biota; 2) the productivity, biomass, physiological state and species composition of ice algae will determine the production of specific classes of organic carbon, including organohalogens; 3) heterotrophic co-metabolism within the ice will break down these compounds to some extent, depending on the microbial community structure and productivity, and 4) the sea ice to atmosphere fluxes of CO2 and organohalogens will be inversely related. This project will build close scientific collaborations between US and Swedish researchers and also train young scientists, including members of underrepresented groups. Dissemination of results will include the scientific literature, and public outreach venues including interactions with a PolarTrec teacher.", "east": 170.0, "geometry": "POINT(135 -74)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -69.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Walker; Yager, Patricia; Dennett, Mark", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "BCO-DMO; USAP-DC", "science_programs": null, "south": -79.0, "title": "Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota", "uid": "p0000137", "west": 100.0}, {"awards": "0732467 Domack, Eugene", "bounds_geometry": null, "dataset_titles": "Cosmogenic-Nuclide Data at ICe-D; Expedition data of LMG0903; Expedition data of NBP1001; NBP1001 cruise data; Processed CTD Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001; Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001", "datasets": [{"dataset_uid": "002651", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1001", "url": "https://www.rvdata.us/search/cruise/NBP1001"}, {"dataset_uid": "601346", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Current Measurements; LADCP; Larsen Ice Shelf; NBP1001; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer", "people": "Huber, Bruce; Gordon, Arnold", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601346"}, {"dataset_uid": "002715", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0903", "url": "https://www.rvdata.us/search/cruise/LMG0903"}, {"dataset_uid": "601345", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; CTD; CTD Data; LARISSA; Larsen Ice Shelf; NBP1001; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Temperature", "people": "Huber, Bruce; Gordon, Arnold", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Processed CTD Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601345"}, {"dataset_uid": "000142", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1001 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP1001"}, {"dataset_uid": "200297", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic-Nuclide Data at ICe-D", "url": "https://version2.ice-d.org/antarctica/nsf/"}], "date_created": "Thu, 03 Mar 2011 00:00:00 GMT", "description": "This award supports a research cruise to perform geologic studies in the area under and surrounding the former Larsen B ice shelf, on the Antarctic Peninsula. The ice shelf\u0027s disintegration in 2002 coupled with the unique marine geology of the area make it possible to understand the conditions leading to ice shelf collapse. Bellwethers of climate change that reflect both oceanographic and atmospheric conditions, ice shelves also hold back glacial flow in key areas of the polar regions. Their collapse results in glacial surging and could cause rapid rise in global sea levels. This project characterizes the Larsen ice shelf\u0027s history and conditions leading to its collapse by determining: 1) the size of the Larsen B during warmer climates and higher sea levels back to the Eemian interglacial, 125,000 years ago; 2) the configuration of the Antarctic Peninsula ice sheet during the LGM and its subsequent retreat; 3) the causes of the Larsen B\u0027s stability through the Holocene, during which other shelves have come and gone; 4) the controls on the dynamics of ice shelf margins, especially the roles of surface melting and oceanic processes, and 5) the changes in sediment flux, both biogenic and lithogenic, after large ice shelf breakup. \u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eThe broader impacts include graduate and undergraduate education through research projects and workshops; outreach to the general public through a television documentary and websites, and international collaboration with scientists from Belgium, Spain, Argentina, Canada, Germany and the UK. The work also has important societal relevance. Improving our understanding of how ice shelves behave in a warming world will improve models of sea level rise.\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eThe project is supported under NSF\u0027s International Polar Year (IPY) research emphasis area on \"Understanding Environmental Change in Polar Regions\".", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG; Larsen Ice Shelf; R/V NBP; Antarctic Peninsula; ICE SHEETS", "locations": "Antarctic Peninsula; Larsen Ice Shelf", "north": null, "nsf_funding_programs": "Antarctic Integrated System Science", "paleo_time": null, "persons": "Domack, Eugene Walter; Blanchette, Robert", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "ICE-D; R2R; USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine and Quaternary Geosciences", "uid": "p0000841", "west": null}, {"awards": "0839069 Yager, Patricia", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP1005", "datasets": [{"dataset_uid": "002654", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1005", "url": "https://www.rvdata.us/search/cruise/NBP1005"}], "date_created": "Thu, 03 Mar 2011 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThe Amundsen Sea Polynya is areally the most productive Antarctic polynya, exhibits higher chlorophyll levels during peak bloom and greater interannual variability than the better-studied Ross Sea Polynya ecosystem. Polynyas may be the key to understanding the future of polar regions as their extent is expected to increase with anthropogenic warming. The project will examine 1) sources of iron to the Amundsen Sea Polynya as a function of climate forcing, 2) phytoplankton community structure in relation to iron supply and mixed-layer depths, 3) the efficiency of the biological pump of carbon to depth and 4) the net flux of carbon as a function of climate and micronutrient forcing. The research also will compare results for the Amundsen Sea to existing data synthesis and modeling efforts for the Palmer LTER and Ross Sea. The project will 1) build close scientific collaborations between US and Swedish researchers; 2) investigate climate change implications with broad societal relevance; 3) train new researchers; 4) encourage participation in research science by underrepresented groups, and 5) involve broad dissemination of results via scientific literature and public outreach, including close interactions with NSF-supported PolarTrec and COSEE K-12 teachers.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Yager, Patricia", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative research aboard Icebreaker Oden: ASPIRE (Amundsen Sea Polynya International Research Expedition)", "uid": "p0000844", "west": null}, {"awards": "9726186 Pilskaln, Cynthia", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0101", "datasets": [{"dataset_uid": "002641", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0101", "url": "https://www.rvdata.us/search/cruise/NBP0101"}, {"dataset_uid": "002580", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0101", "url": "https://www.rvdata.us/search/cruise/NBP0101"}], "date_created": "Thu, 03 Mar 2011 00:00:00 GMT", "description": "*** 9726186 Pilskaln This proposed work is a study of the biological production and export flux of biogenic matter in response to ventilation of intermediate and deep water masses within the Polar Front zone. It is a collaborative work between the University of Maine and the Chinese Antarctic Research Expedition (CHINARE). The shipboard work is proposed for the Chinese antarctic resupply vessel off Prydz Bay in the Indian Ocean sector. In the austral Spring, this region experiences phytoplankton blooms that are thought to be the result of nutrient transport by the ventilation of intermediate and deep water masses. On an annual basis, it is believed that such blooms are the primary source of particulate organic carbon and biogenic silica flux to the ocean bottom. At this time however no data exists on the amount of particulate organic matter that sinks through the water column, leaving the quantitative relationships between production and export largely undefined in this region. The initial phase of the work consists of setting out a time-series sediment trap mooring at approximately 64 deg S latitude and 73 deg E longitude to take advantage of the historical data set that CHINARE has obtained in this area over the past decade. The biweekly to monthly trap samples will be analyzed for their organic constituents, and in conjunction with primary productivity observations will provide the basic data from which export values can be derived. This work will be carried out in collaboration with the State Oceanic Administration of the People\u0027s Republic of China, and the Chinese Antarctic Research Expedition. In addition to providing time on the antarctic resupply vessel, the SOA will sponsor the shipboard primary productivity experiments and the supporting hydrographic measurements. The collaborating American scientists will provide guidance in making these observations to standards developed for the Joint Global Ocean Flux Study, and provide the hardware for the moored sediment trap. There will be a mutual sharing between the U.S. and Chinese investigators of all samples and data sets, and the data analysis will be carried out jointly. ***", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Leventer, Amy", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "POC Production and Export in the Indian Ocean Sector of the Southern Ocean: A US-China Collaborative Research Program", "uid": "p0000800", "west": null}, {"awards": "9909734 Anderson, John", "bounds_geometry": "POLYGON((-73.80311 -52.35021,-71.817373 -52.35021,-69.831636 -52.35021,-67.845899 -52.35021,-65.860162 -52.35021,-63.874425 -52.35021,-61.888688 -52.35021,-59.902951 -52.35021,-57.917214 -52.35021,-55.931477 -52.35021,-53.94574 -52.35021,-53.94574 -53.954842,-53.94574 -55.559474,-53.94574 -57.164106,-53.94574 -58.768738,-53.94574 -60.37337,-53.94574 -61.978002,-53.94574 -63.582634,-53.94574 -65.187266,-53.94574 -66.791898,-53.94574 -68.39653,-55.931477 -68.39653,-57.917214 -68.39653,-59.902951 -68.39653,-61.888688 -68.39653,-63.874425 -68.39653,-65.860162 -68.39653,-67.845899 -68.39653,-69.831636 -68.39653,-71.817373 -68.39653,-73.80311 -68.39653,-73.80311 -66.791898,-73.80311 -65.187266,-73.80311 -63.582634,-73.80311 -61.978002,-73.80311 -60.37337,-73.80311 -58.768738,-73.80311 -57.164106,-73.80311 -55.559474,-73.80311 -53.954842,-73.80311 -52.35021))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001803", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0201"}], "date_created": "Thu, 03 Mar 2011 00:00:00 GMT", "description": "9909734 Anderson This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research on the glaciomarine geology of the continental shelves of West Antarctica and the Antarctic Peninsula. It is hypothesized that the different glacial systems of the Antarctic Peninsula region have been more responsive to climate change and sea-level rise than either the West Antarctic or East Antarctic ice sheets. This is due mainly to the smaller size of these ice masses and the higher latitude location of the peninsula. Indeed, ice shelves of the Antarctic Peninsula are currently retreating at rates of up to a kilometer per year. But are these changes due to recent atmospheric warming in the region or are they simply the final phase of retreat since the last glacial maximum? This project hypothesizes that the deglacial history of the Antarctic Peninsula region has been quite complex, with different glacial systems retreating at different rates and at different times. This complex recessional history reflects the different sizes as well as different climatic and physiographic settings of glacial systems in the region. An understanding of the Late Pleistocene to Holocene glacial history of the Antarctic Peninsula glacial systems is needed to address how these systems responded to sea-level and climate change during that time interval. This investigation acquire new marine geological and geophysical data from the continental shelf to determine if and when different glacial systems were grounded on the shelf, to establish the extent of grounded ice, and to examine the history of glacial retreat. The project will build on an extensive seismic data set and hundreds of sediment cores collected along the Peninsula during earlier (1980\u0027s) cruises. Key to this investigation is the acquisition of swath bathymetry, side-scan sonar and very high-resolution sub-bottom (chirp) profiles from key drainage outlets. These new data will provide the necessary geomorphologic and stratigraphic framework for reconstructing the Antarctic Peninsula glacial record. Anticipated results will help constrain models for future glacier and ice sheet activity.", "east": -53.94574, "geometry": "POINT(-63.874425 -60.37337)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.35021, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, John; Anderson, Jason", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -68.39653, "title": "LGM Late Pleistocene to Holocene Glacial History of West Antarctica", "uid": "p0000600", "west": -73.80311}, {"awards": "0196521 Pilskaln, Cynthia", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0101", "datasets": [{"dataset_uid": "002641", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0101", "url": "https://www.rvdata.us/search/cruise/NBP0101"}], "date_created": "Thu, 03 Mar 2011 00:00:00 GMT", "description": "Not Available", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Leventer, Amy", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "POC Production and Export in the Indian Ocean Sector of the Southern Ocean: A US-China Collaborative Research Program", "uid": "p0000833", "west": null}, {"awards": "0741348 Torres, Joseph", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP1002", "datasets": [{"dataset_uid": "002652", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1002", "url": "https://www.rvdata.us/search/cruise/NBP1002"}], "date_created": "Thu, 03 Mar 2011 00:00:00 GMT", "description": "Intellectual Merit: Pleuragramma antarcticum, the Antarctic silverfish, play a key role in the trophic pyramid of the Antarctic coastal ecosystem, acting as food for larger fishes, flying and non-flying seabirds, pinnipeds, and whales. In turn, they are predators on coastal euphausiids, including both Euphausia superba and crystallorophias. Historically, Pleuragramma have been an important food source for Ad\u00e9lie Penguins of the Western Antarctic Peninsula (WAP), but during the last decade Pleuragramma have disappeared from the Ad\u00e9lie diet. We suggest that Pleuragramma?s absence from the diets of top predators is linked to the declining sea ice canopy, which serves as a nursery for eggs and larvae during the austral spring. The research will investigate four hydrographic regimes over the WAP continental shelf with the following features: (1) persistent gyral flows that act to retain locally spawned larvae, (2) spring sea ice that has declined in recent years (3) the prevalence of adult silverfish, and (4) the presence of breeding Ad\u00e9lie penguins whose diets vary in the proportions of silverfish consumed. The research will evaluate the importance of local reproduction versus larval advection, and the extent to which populations in the subregions of study are genetically distinct, via analysis of population structure, otolith microchemistry and molecular genetics of fish. The Pleuragramma data will be compared with penguin diet samples taken synoptically. \u003cbr/\u003e\u003cbr/\u003eBroader Impacts: The proposed research brings together an international group of scientists with highly complimentary suites of skills to address the fate of Pleuragramma on the WAP shelf. Graduate students will use the data acquired as part of their Ph.D research, and will receive cross-training in ornithological field techniques, molecular genetic methods and otolith isotope chemistry. The PIs will work actively with the St. Petersburg Times to produce a blog in real time with pictures and text, which will be used to interact with local schools while we are at sea and after our return. The investigators also will collaborate with the COSEE center at USF and at local schools and museums to disseminate results to the K-12 community throughout the region.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Torres, Joseph", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative research: Possible climate-induced change in the distribution of Pleuragramma antarcticum on the Western Antarctic Peninsula shelf", "uid": "p0000842", "west": null}, {"awards": "9909367 Leventer, Amy", "bounds_geometry": "POLYGON((26.27227 -42.81742,38.414467 -42.81742,50.556664 -42.81742,62.698861 -42.81742,74.841058 -42.81742,86.983255 -42.81742,99.125452 -42.81742,111.267649 -42.81742,123.409846 -42.81742,135.552043 -42.81742,147.69424 -42.81742,147.69424 -45.454494,147.69424 -48.091568,147.69424 -50.728642,147.69424 -53.365716,147.69424 -56.00279,147.69424 -58.639864,147.69424 -61.276938,147.69424 -63.914012,147.69424 -66.551086,147.69424 -69.18816,135.552043 -69.18816,123.409846 -69.18816,111.267649 -69.18816,99.125452 -69.18816,86.983255 -69.18816,74.841058 -69.18816,62.698861 -69.18816,50.556664 -69.18816,38.414467 -69.18816,26.27227 -69.18816,26.27227 -66.551086,26.27227 -63.914012,26.27227 -61.276938,26.27227 -58.639864,26.27227 -56.00279,26.27227 -53.365716,26.27227 -50.728642,26.27227 -48.091568,26.27227 -45.454494,26.27227 -42.81742))", "dataset_titles": "Diatom assemblages from Edward VIII Gulf, Kemp Coast, East Antarctica; NB0101 Expedition Data; Quantitative Diatom Assemblage Data from Iceberg Alley, Mac. Robertson Shelf, East Antarctica acquired during expedition NBP0101", "datasets": [{"dataset_uid": "601177", "doi": "10.15784/601177", "keywords": "Antarctica; Biota; Diatom; East Antarctica; Microscopy; NBP0101; Oceans; Paleoceanography; Paleoclimate; R/v Nathaniel B. Palmer; Sediment Corer", "people": "Leventer, Amy", "repository": "USAP-DC", "science_program": null, "title": "Diatom assemblages from Edward VIII Gulf, Kemp Coast, East Antarctica", "url": "https://www.usap-dc.org/view/dataset/601177"}, {"dataset_uid": "001879", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NB0101 Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0101"}, {"dataset_uid": "601307", "doi": null, "keywords": "Antarctica; Biota; Diatom; East Antarctica; Mac. Robertson Shelf; Marine Geoscience; Microscope; NBP0101; Paleoclimate; Piston Corer; R/v Nathaniel B. Palmer; Sediment Core; Species Abundance", "people": "Leventer, Amy", "repository": "USAP-DC", "science_program": null, "title": "Quantitative Diatom Assemblage Data from Iceberg Alley, Mac. Robertson Shelf, East Antarctica acquired during expedition NBP0101", "url": "https://www.usap-dc.org/view/dataset/601307"}], "date_created": "Thu, 03 Mar 2011 00:00:00 GMT", "description": "9909367 Leventer This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a multi-institutional, international (US - Australia) marine geologic and geophysical investigation of Prydz Bay and the MacRobertson Shelf, to be completed during an approximately 60-day cruise aboard the RVIB N.B. Palmer. The primary objective is to develop a record of climate and oceanographic change during the Quaternary, using sediment cores collected via kasten and jumbo piston coring. Core sites will be selected based on seismic profiling (Seabeam 2112 and Bathy2000). Recognition of the central role of the Antarctic Ice Sheet to global oceanic and atmospheric systems is based primarily on data collected along the West Antarctic margin, while similar extensive and high resolution data sets from the much more extensive East Antarctic margin are sparse. Goals of this project include (1) development of a century- to millennial-scale record of Holocene paleoenvironments, and (2) testing of hypotheses concerning the sedimentary record of previous glacial and interglacial events on the shelf, and evaluation of the timing and extent of maximum glaciation along this 500 km stretch of the East Antarctic margin. High-resolution seismic mapping and coring of sediments deposited in inner shelf depressions will be used to reconstruct Holocene paleoenvironments. In similar depositional settings in the Antarctic Peninsula and Ross Sea, sedimentary records demonstrate millennial- and century- scale variability in primary production and sea-ice extent during the Holocene, which have been linked to chronological periodicities in radiocarbon distribution, suggesting the possible role of solar variability in driving some changes in Holocene climate. Similar high-resolution Holocene records from the East Antarctic margin will be used to develop a circum-Antarctic suite of data regarding the response of southern glacial and oceanographic systems to late Quaternary climate change. In addition, these data will help us to evaluate the response of the East Antarctic margin to global warming. Initial surveys of the Prydz Channel - Amery Depression region reveal sequences deposited during previous Pleistocene interglacials. The upper Holocene and lower (undated) siliceous units can be traced over 15,000 km2 of the Prydz Channel, but more sub-bottom seismic reflection profiling in conjunction with dense coring over this region is needed to define the spatial distribution and extent of the units. Chronological work will determine the timing and duration of previous periods of glacial marine sedimentation on the East Antarctic margin during the late Pleistocene. Analyses will focus on detailed sedimentologic, geochemical, micropaleontological, and paleomagnetic techniques. This multi-parameter approach is the most effective way to extract a valuable paleoenvironmental signal in these glacial marine sediments. These results are expected to lead to a significant advance in understanding of the behavior of the Antarctic ice-sheet and ocean system in the recent geologic past. The combination of investigators, all with many years of experience working in high latitude marine settings, will provide an effective team to complete the project. University and College faculty (Principal Investigators on this project) will supervise a combination of undergraduate and post-graduate students involved in all stages of the project so that educational objectives will be met in tandem with the research goals of the project.", "east": 147.69424, "geometry": "POINT(86.983255 -56.00279)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS", "is_usap_dc": false, "keywords": "R/V NBP; USAP-DC", "locations": null, "north": -42.81742, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Leventer, Amy", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -69.18816, "title": "Quaternary Glacial History and Paleoenvironments of the East Antarctic Margin", "uid": "p0000609", "west": 26.27227}, {"awards": "0537532 Liston, Glen; 0538422 Hamilton, Gordon; 0538103 Scambos, Ted; 0538416 McConnell, Joseph; 0963924 Steig, Eric; 0538495 Albert, Mary", "bounds_geometry": "POLYGON((-180 -72.01667,-161.74667 -72.01667,-143.49334 -72.01667,-125.24001 -72.01667,-106.98668 -72.01667,-88.73335 -72.01667,-70.48002 -72.01667,-52.22669 -72.01667,-33.97336 -72.01667,-15.72003 -72.01667,2.5333 -72.01667,2.5333 -73.815003,2.5333 -75.613336,2.5333 -77.411669,2.5333 -79.210002,2.5333 -81.008335,2.5333 -82.806668,2.5333 -84.605001,2.5333 -86.403334,2.5333 -88.201667,2.5333 -90,-15.72003 -90,-33.97336 -90,-52.22669 -90,-70.48002 -90,-88.73335 -90,-106.98668 -90,-125.24001 -90,-143.49334 -90,-161.74667 -90,180 -90,162.25333 -90,144.50666 -90,126.75999 -90,109.01332 -90,91.26665 -90,73.51998 -90,55.77331 -90,38.02664 -90,20.27997 -90,2.5333 -90,2.5333 -88.201667,2.5333 -86.403334,2.5333 -84.605001,2.5333 -82.806668,2.5333 -81.008335,2.5333 -79.210002,2.5333 -77.411669,2.5333 -75.613336,2.5333 -73.815003,2.5333 -72.01667,20.27997 -72.01667,38.02664 -72.01667,55.77331 -72.01667,73.51998 -72.01667,91.26665 -72.01667,109.01332 -72.01667,126.75999 -72.01667,144.50666 -72.01667,162.25333 -72.01667,-180 -72.01667))", "dataset_titles": "Ice Core Chemistry from the Norwegian-U.S. Scientific Traverse of East Antarctica, IPY 2007-2009; Norwegian-U.S. Scientific Traverse of East Antarctica; This data set contains data from the publication Steig et al., Nature Geoscience, vol. 6, pages 372\u00e2\u20ac\u201c375 (doi:10.1038/ngeo1778), which includes isotope data from the Norway-US traverse in East Antarctica.", "datasets": [{"dataset_uid": "001305", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "This data set contains data from the publication Steig et al., Nature Geoscience, vol. 6, pages 372\u00e2\u20ac\u201c375 (doi:10.1038/ngeo1778), which includes isotope data from the Norway-US traverse in East Antarctica.", "url": "http://nsidc.org/data/nsidc-0536.html"}, {"dataset_uid": "609520", "doi": "10.7265/N5H41PC9", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; East Antarctica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Chemistry from the Norwegian-U.S. Scientific Traverse of East Antarctica, IPY 2007-2009", "url": "https://www.usap-dc.org/view/dataset/609520"}, {"dataset_uid": "000112", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Norwegian-U.S. Scientific Traverse of East Antarctica", "url": "http://traverse.npolar.no/"}], "date_created": "Wed, 23 Feb 2011 00:00:00 GMT", "description": "This award supports a project of scientific investigations along two overland traverses in East Antarctica: one going from the Norwegian Troll Station (72deg. S, 2deg. E) to the United States South Pole Station (90deg. S, 0deg. E) in 2007-2008; and a return traverse starting at South Pole Station and ending at Troll Station by a different route in 2008-2009. The project will investigate climate change in East Antarctica, with the goals of understanding climate variability in Dronning Maud Land of East Antarctica on time scales of years to centuries and determining the surface and net mass balance of the ice sheet in this sector to understand its impact on sea level. The project will also investigate the impact of atmospheric and oceanic variability and human activities on the chemical composition of firn and ice in the region, and will revisit areas and sites first explored by traverses in the 1960\u0027s, for detection of possible changes and to establish benchmark datasets for future research efforts. In terms of broader impacts, the results of this study will add to understanding of climate variability in East Antarctica and its contribution to global sea level change. The project includes international exchange of graduate students between the institutions involved and international education of undergraduate students through classes taught by the PI\u0027s at UNIS in Svalbard. It involves extensive outreach to the general public both in Scandinavia and North America through the press, television, science museums, children\u0027s literature, and web sites. Active knowledge sharing and collaboration between pioneers in Antarctic glaciology from Norway and the US, with the international group of scientists and students involved in this project, provide a unique opportunity to explore the changes that half a century have made in climate proxies from East Antarctica, scientific tools, and the culture and people of science. The project is relevant to the International Polar Year (IPY) since it is a genuine collaboration between nations: the scientists involved have complementary expertise, and the logistics involved relies on assets unique to each nation. It is truly an endeavor that neither nation could accomplish alone. This project is a part of the Trans- Antarctic Scientific Traverse Expeditions Ice Divide of East Antarctica (TASTE-IDEA) which is also part of IPY.", "east": 2.5333, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PHOTOMETERS \u003e SPECTROPHOTOMETERS", "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; East Antarctic Plateau; FIXED OBSERVATION STATIONS; Glaciology; LABORATORY; FIELD SURVEYS; Permeability; Ice Core; Climate Variability; Firn; Accumulation Rate; Mass Balance; Snow; Gravity; Ice Sheet; GROUND-BASED OBSERVATIONS; Traverse; Not provided; Antarctic; Ice Core Chemistry; Antarctica; Density", "locations": "Antarctica; Antarctic; East Antarctic Plateau", "north": -72.01667, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Courville, Zoe; Bell, Eric; Liston, Glen; Scambos, Ted; Hamilton, Gordon S.; McConnell, Joseph; Albert, Mary R.; Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "NSIDC", "repositories": "NSIDC; Project website; USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Norwegian-United States IPY Scientific Traverse: Climate Variability and Glaciology in East Antarctica", "uid": "p0000095", "west": 2.5333}, {"awards": "0636731 Bender, Michael; 0636705 Marchant, David", "bounds_geometry": "POLYGON((160.48705 -77.84513,160.501913 -77.84513,160.516776 -77.84513,160.531639 -77.84513,160.546502 -77.84513,160.561365 -77.84513,160.576228 -77.84513,160.591091 -77.84513,160.605954 -77.84513,160.620817 -77.84513,160.63568 -77.84513,160.63568 -77.8515624,160.63568 -77.8579948,160.63568 -77.8644272,160.63568 -77.8708596,160.63568 -77.877292,160.63568 -77.8837244,160.63568 -77.8901568,160.63568 -77.8965892,160.63568 -77.9030216,160.63568 -77.909454,160.620817 -77.909454,160.605954 -77.909454,160.591091 -77.909454,160.576228 -77.909454,160.561365 -77.909454,160.546502 -77.909454,160.531639 -77.909454,160.516776 -77.909454,160.501913 -77.909454,160.48705 -77.909454,160.48705 -77.9030216,160.48705 -77.8965892,160.48705 -77.8901568,160.48705 -77.8837244,160.48705 -77.877292,160.48705 -77.8708596,160.48705 -77.8644272,160.48705 -77.8579948,160.48705 -77.8515624,160.48705 -77.84513))", "dataset_titles": "Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica; Measurements of Trapped Air from Mullins Valley, Dry Valleys, Antarctica", "datasets": [{"dataset_uid": "600069", "doi": "10.15784/600069", "keywords": "Antarctica; Dry Valleys; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope Record; Lake Vostok; Paleoclimate", "people": "Bender, Michael", "repository": "USAP-DC", "science_program": null, "title": "Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica", "url": "https://www.usap-dc.org/view/dataset/600069"}, {"dataset_uid": "609597", "doi": "10.7265/N50R9MBM", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Dry Valleys; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; Radar Interferometer", "people": "Yau, Audrey M.; Bender, Michael", "repository": "USAP-DC", "science_program": null, "title": "Measurements of Trapped Air from Mullins Valley, Dry Valleys, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609597"}], "date_created": "Thu, 03 Feb 2011 00:00:00 GMT", "description": "This project studies ancient ice buried in the Dry Valleys of Antarctica. The ice, which may approach ten million years in age, will be dated using argon and uranium radioisotope techniques. High-risk work, if successful it will offer the first and perhaps only samples of the Earth\u0027s atmosphere from millions of years in the past. These samples could offer critically important tests of paleoclimate records and proxies, as well as a glimpse into the characteristics of a past world much like the predicted future, warmer Earth. The broader impacts are graduate student education, and potentially contributing to society\u0027s understanding of global climate change and sea level rise.", "east": 160.63568, "geometry": "POINT(160.561365 -77.877292)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Elemental Ratios; Oxygen Isotope; Not provided; Nitrogen Isotopes; LABORATORY; Argon Isotopes; FIELD INVESTIGATION", "locations": null, "north": -77.84513, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Bender, Michael; Yau, Audrey M.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.909454, "title": "Collaborative Research: Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica", "uid": "p0000039", "west": 160.48705}, {"awards": "0538580 Hemming, Sidney", "bounds_geometry": "POLYGON((60 -60,72 -60,84 -60,96 -60,108 -60,120 -60,132 -60,144 -60,156 -60,168 -60,180 -60,180 -61,180 -62,180 -63,180 -64,180 -65,180 -66,180 -67,180 -68,180 -69,180 -70,168 -70,156 -70,144 -70,132 -70,120 -70,108 -70,96 -70,84 -70,72 -70,60 -70,60 -69,60 -68,60 -67,60 -66,60 -65,60 -64,60 -63,60 -62,60 -61,60 -60))", "dataset_titles": "Antarctica\u0027s Geological History Reflected in Sedimentary Radiogenic Isotopes", "datasets": [{"dataset_uid": "600056", "doi": "10.15784/600056", "keywords": "Antarctica; Chemistry:sediment; Chemistry:Sediment; Geochemistry; Geochronology; Isotope Data; Marine Sediments; Oceans; Prydz Bay; Solid Earth; Southern Ocean; Weddell Sea; Wilkes Land", "people": "van de Flierdt, Tina; Goldstein, Steven L.; Hemming, Sidney R.", "repository": "USAP-DC", "science_program": null, "title": "Antarctica\u0027s Geological History Reflected in Sedimentary Radiogenic Isotopes", "url": "https://www.usap-dc.org/view/dataset/600056"}], "date_created": "Sat, 20 Nov 2010 00:00:00 GMT", "description": "This project studies sediment from the ocean floor to understand Antarctica\u0027s geologic history. Glacially eroded from the Antarctic continent, these sediments may offer insight into the 99% Antarctica covered by ice. The work\u0027s central focus is determining crust formation ages and thermal histories for three key areas of East Antarctica--Prydz Bay, eastern Weddell Sea, and Wilkes Land--through a combination of petrography, bulk sediment geochemistry and radiogenic isotopes, as well as isotope chronology of individual mineral grains. One specific objective is characterizing the composition of the Gamburtsev Mountains through studies of Eocene fluvial sediments from Prydz Bay. In addition to furthering our understanding of the hidden terrains of Antarctica, these terrigenous sediments will also serve as a natural laboratory to evaluate the effects of continental weathering on the Hf/Nd isotope systematics of seawater. An important broader impact of the project is providing exciting research projects for graduate and postdoctoral students using state of the art techniques in geochemistry.", "east": 180.0, "geometry": "POINT(120 -65)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Van De Flierdt, Christina-Maria; Goldstein, Steven L.; Hemming, Sidney R.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "Antarctica\u0027s Geological History Reflected in Sedimentary Radiogenic Isotopes", "uid": "p0000524", "west": 60.0}, {"awards": "0337567 Jacobel, Robert", "bounds_geometry": "POLYGON((130 -78,133 -78,136 -78,139 -78,142 -78,145 -78,148 -78,151 -78,154 -78,157 -78,160 -78,160 -79.2,160 -80.4,160 -81.6,160 -82.8,160 -84,160 -85.2,160 -86.4,160 -87.6,160 -88.8,160 -90,157 -90,154 -90,151 -90,148 -90,145 -90,142 -90,139 -90,136 -90,133 -90,130 -90,130 -88.8,130 -87.6,130 -86.4,130 -85.2,130 -84,130 -82.8,130 -81.6,130 -80.4,130 -79.2,130 -78))", "dataset_titles": "Glaciological Investigations of the Bulge and Trunk of Kamb Ice Stream, West Antarctica; Radar Studies of Internal Stratigraphy and Bed Topography along the US ITASE-II Traverse", "datasets": [{"dataset_uid": "609380", "doi": "10.7265/N5ZC80SH", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Kamb Ice Stream", "people": "Jacobel, Robert", "repository": "USAP-DC", "science_program": null, "title": "Glaciological Investigations of the Bulge and Trunk of Kamb Ice Stream, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609380"}, {"dataset_uid": "609475", "doi": "10.7265/N5G73BMS", "keywords": "Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness; ITASE; South Pole; Taylor Dome", "people": "Jacobel, Robert", "repository": "USAP-DC", "science_program": "ITASE", "title": "Radar Studies of Internal Stratigraphy and Bed Topography along the US ITASE-II Traverse", "url": "https://www.usap-dc.org/view/dataset/609475"}], "date_created": "Wed, 20 Oct 2010 00:00:00 GMT", "description": "This award supports a project to test whether Kamb Ice Stream (formerly Ice Stream C (ISC)), an ice stream\u003cbr/\u003ethat is thought to have stopped ~150 years ago, may be already in the process of restarting. If yes, it will help establish what is the rate of ice stream reactivation and what mechanisms are controlling this rate. If there is no evidence for ongoing ice stream reactivation, the physical controls that are preventing it will be examined and alternative scenarios for near-future evolution of this ice stream will be explored. One such scenario is an increase in ice diversion toward the neighboring Whillans Ice Stream. Such diversion may help prevent a complete stoppage of Whillans Ice Stream,which has been slowing down for at least the last 24 years. This project will consist of two components: (1) field observations of bed properties,geometry of internal radar reflectors, as well as surface strain rates and velocity/topography changes using Ice-Penetrating Radar and differential Global Positioning System, (2) numerical modeling study of near future(~100-1000 years) evolution of Kamb Ice Stream. The field component will be focused on the bulge-to-trunk transition, which is located at the present time just downstream of the so-called camp UpC. Reactivation of Kamb Ice Stream should be reflected in a downstream migration of the bulge-trunk transition at possibly high rates (bulge migration rates of ~km/yr occur on surging mountain glaciers). The modeling\u003cbr/\u003ecomponent will be used to generate predictions regarding the near-future behavior of Kamb Ice Stream. This project will provide training opportunities for at least two undergraduate students (per year) at St. Olaf College and for one\u003cbr/\u003eundergraduate student (per year) at UCSC. This collaboration will bring together scientists from three different types of US institutions: (1) a liberal arts college (St.Olaf College), (2) a public research university (UCSC) and (3) a NASA research laboratory (JPL). The project will also help build a new glaciological research program at UCSC. Project results will be incorporated into undergraduate and graduate courses at UCSC and will be made available\u003cbr/\u003eto the general public and educators through downloadable graphics and animations posted on the research website of the UCSC PI. Field data resulting from the project will be posted in the Antarctic Glaciological Data Center for use by other investigators.", "east": 160.0, "geometry": "POINT(145 -84)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR", "is_usap_dc": true, "keywords": "Ice; Antarctic Glaciations; Radar; Antarctic Ice Sheet; Radar Echo Sounder; Ice Sheet Thickness; Ice Stream; Ice Sheet Elevation; Not provided; Radar Echo Sounding; Ice Stratigraphy; Antarctica; West Antarctic Ice Sheet; Continental Ice Sheet; Ice Cap; Antarctic; US ITASE; FIELD SURVEYS; Ice Thickness; FIELD INVESTIGATION", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; West Antarctic Ice Sheet", "north": -78.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Jacobel, Robert", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": -90.0, "title": "Collaborative Research: Is Ice Stream C Restarting? Glaciological Investigations of the \u0027Bulge\u0027 and the Trunk of Ice Stream C, West Antartica", "uid": "p0000192", "west": 130.0}, {"awards": "0635470 Detrich, H. William", "bounds_geometry": "POLYGON((-67.41667 -61.2,-66.27667 -61.2,-65.13667 -61.2,-63.99667 -61.2,-62.85667 -61.2,-61.71667 -61.2,-60.57667 -61.2,-59.43667 -61.2,-58.29667 -61.2,-57.15667 -61.2,-56.01667 -61.2,-56.01667 -61.71,-56.01667 -62.22,-56.01667 -62.73,-56.01667 -63.24,-56.01667 -63.75,-56.01667 -64.26,-56.01667 -64.77,-56.01667 -65.28,-56.01667 -65.79,-56.01667 -66.3,-57.15667 -66.3,-58.29667 -66.3,-59.43667 -66.3,-60.57667 -66.3,-61.71667 -66.3,-62.85667 -66.3,-63.99667 -66.3,-65.13667 -66.3,-66.27667 -66.3,-67.41667 -66.3,-67.41667 -65.79,-67.41667 -65.28,-67.41667 -64.77,-67.41667 -64.26,-67.41667 -63.75,-67.41667 -63.24,-67.41667 -62.73,-67.41667 -62.22,-67.41667 -61.71,-67.41667 -61.2))", "dataset_titles": "Expedition Data; Expedition data of LMG1003; Expedition data of LMG1004; Sequence data", "datasets": [{"dataset_uid": "000133", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Sequence data", "url": "http://www.ncbi.nlm.nih.gov/genbank/"}, {"dataset_uid": "001509", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0806"}, {"dataset_uid": "001508", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0807"}, {"dataset_uid": "002684", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1003", "url": "https://www.rvdata.us/search/cruise/LMG1003"}, {"dataset_uid": "002685", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1004", "url": "https://www.rvdata.us/search/cruise/LMG1004"}], "date_created": "Mon, 06 Sep 2010 00:00:00 GMT", "description": "Abstract\u003cbr/\u003e\u003cbr/\u003eSince the advent of Antarctic continental glaciation, the opening of the Drake Passage between South America and the Antarctic Peninsula, and the onset of cooling of the Southern Ocean ~38-25 million years ago, evolution of the Antarctic marine biota has been driven by the development of extreme cold temperatures. Because they live at very low and stable temperatures, Antarctic fishes of the suborder Nototheniodei are particularly attractive as models for understanding the mechanisms of biomolecular cold adaptation, or the compensatory restructuring of biochemical and physiological systems to preserve biological function in cold thermal regimes. Two interrelated and potentially co-evolved systems, the tubulins that form microtubules and the chaperonin-containing TCP1 (t-complex protein-1) complex (CCT) that assists the folding of tubulins, provide an unparalleled opportunity to elucidate these mechanisms. This research will yield new and important knowledge regarding: 1) cold adaptation of microtubule assembly and of chaperonin function; and 2) the co-evolutionary origin of tubulin-binding specificity by CCT. The first objective of this proposal is to determine the contributions of five novel amino acid substitutions found in Antarctic fish beta-tubulins to microtubule assembly at cold temperature. The second objective is to establish a chaperonin folding system in vitro using CCT purified from testis tissue of Antarctic fishes and to evaluate its thermal properties and mechanism. The third objective is to evaluate, through phylogenetically controlled contrasts, the hypothesis that CCT and its tubulin substrates from Antarctic fishes have co-evolved to function at cold temperatures. The broader impacts of this proposal include introduction of graduate and REU undergraduate students of Northeastern University to state-of-the-art biochemical, cellular, and molecular-biological research relevant to ecological and environmental issues of the Antarctic marine ecosystem. Because much of the research on the biogenesis and function of cold-adapted proteins will be performed in the field at Palmer Station, these students will gain invaluable experience in the practical considerations of expeditionary biological science. The research also will increase knowledge about molecular cold adaptation in one of the Earth\u0027s extreme environments, and hence is relevant to the formulation of refined hypotheses regarding potential extraterrestrial life on Mars or Europa. The cold-functioning chaperonin protein folding system will be of great value to the biopharmaceutical and biotechnological industries for use in folding insoluble proteins.", "east": -56.01667, "geometry": "POINT(-61.71667 -63.75)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": true, "keywords": "R/V LMG", "locations": null, "north": -61.2, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Detrich, H. William", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "NCBI GenBank", "repositories": "NCBI GenBank; R2R", "science_programs": null, "south": -66.3, "title": "Protein Folding and Function at Cold Temperature: Co-Evolution of the Chaperonin CCT and Tubulins from Antarctic Fishes", "uid": "p0000470", "west": -67.41667}, {"awards": "0838842 Passchier, Sandra", "bounds_geometry": "POLYGON((-180 -68,-177 -68,-174 -68,-171 -68,-168 -68,-165 -68,-162 -68,-159 -68,-156 -68,-153 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -77,160 -76,160 -75,160 -74,160 -73,160 -72,160 -71,160 -70,160 -69,160 -68,162 -68,164 -68,166 -68,168 -68,170 -68,172 -68,174 -68,176 -68,178 -68,-180 -68))", "dataset_titles": "Particle-size measurements for diamictites AND-2A sediment core, McMurdo Sound", "datasets": [{"dataset_uid": "601452", "doi": "10.15784/601452", "keywords": "Antarctica; McMurdo Sound; Miocene; Particle Size; Pleistocene; Pliocene", "people": "Hansen, Melissa A.; Passchier, Sandra", "repository": "USAP-DC", "science_program": "ANDRILL", "title": "Particle-size measurements for diamictites AND-2A sediment core, McMurdo Sound", "url": "https://www.usap-dc.org/view/dataset/601452"}], "date_created": "Fri, 27 Aug 2010 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The project aims on studying sediment cores collected from Prydz Bay and the Ross Sea to unravel the Neogene paleoclimatic history of the East Antarctic ice sheet. In the light of current measurements and predictions of a substantial rise in global temperature, investigations into the sensitivity of the East Antarctic ice sheet to climate change and its role in the climate system are essential. Geological records of former periods of climate change provide an opportunity to ground truth model predictions. The scientific objective of this project is to identify a previously proposed middle Miocene transition from a more dynamic wet-based East Antarctic ice sheet to the present semi-permanent ice sheet that is partially frozen to its bed. The timing and significance of this transition is controversial due to a lack of quantitative studies on well-dated ice-proximal sedimentary sequences. This project partially fills that gap using the composition and physical properties of diamictites and sandstones to establish shifts in ice-sheet drainage pathways, paleoenvironments and basal ice conditions. The results from the two key areas around the Antarctic continental margin will provide insight into the behavior of the East Antarctic ice sheet across the middle Miocene transition and through known times of warming in the late Miocene and Pliocene.", "east": -150.0, "geometry": "POINT(-175 -73)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -68.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Passchier, Sandra", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Determining Middle Miocene through Pliocene Changes in Paleo Ice-flow and Basal Ice Conditions in East Antarctica through Sedimentological Analyses of Core Samples", "uid": "p0000147", "west": 160.0}, {"awards": "0835480 Paulsen, Timothy", "bounds_geometry": "POLYGON((160 -84,161.5 -84,163 -84,164.5 -84,166 -84,167.5 -84,169 -84,170.5 -84,172 -84,173.5 -84,175 -84,175 -84.15,175 -84.3,175 -84.45,175 -84.6,175 -84.75,175 -84.9,175 -85.05,175 -85.2,175 -85.35,175 -85.5,173.5 -85.5,172 -85.5,170.5 -85.5,169 -85.5,167.5 -85.5,166 -85.5,164.5 -85.5,163 -85.5,161.5 -85.5,160 -85.5,160 -85.35,160 -85.2,160 -85.05,160 -84.9,160 -84.75,160 -84.6,160 -84.45,160 -84.3,160 -84.15,160 -84))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 18 Aug 2010 00:00:00 GMT", "description": "This Small Grant for Exploratory Research investigates the origin of the Queen Maud Mountains, Antarctica, to understand the geodynamic processes that shaped Gondwana. Ages of various rock units will be determined using LA-MC-ICPMS analyses of zircons and 40Ar-39Ar analyses of hornblende. The project?s goal is to time deformation , sedimentary unit deposition, magmatism, and regional cooling. Results will be correlated with related rock units in Australia. By constraining the length and time scales of processes, the outcomes will offer insight into the geodynamic processes that caused deformation, such as slab roll-back or extension. In addition, dating these sedimentary units may offer insight into the Cambrian explosion of life, since the sediment flux caused by erosion of these mountains is conjectured to have seeded the ocean with the nutrients required for organisms to develop hard body parts. The broader impacts include support for undergraduate research.", "east": 175.0, "geometry": "POINT(167.5 -84.75)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": -84.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Paulsen, Timothy", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -85.5, "title": "SGER:Exploratory Research on the Timing of Early Paleozoic Orogenesis along Gonwana\u0027s Paleo-Pacific Margin, Queen Maud Mountains, Antarctica", "uid": "p0000336", "west": 160.0}, {"awards": "0636506 Mayewski, Paul", "bounds_geometry": "POLYGON((-137.7 -75.7,-137.4 -75.7,-137.1 -75.7,-136.8 -75.7,-136.5 -75.7,-136.2 -75.7,-135.9 -75.7,-135.6 -75.7,-135.3 -75.7,-135 -75.7,-134.7 -75.7,-134.7 -75.773,-134.7 -75.846,-134.7 -75.919,-134.7 -75.992,-134.7 -76.065,-134.7 -76.138,-134.7 -76.211,-134.7 -76.284,-134.7 -76.357,-134.7 -76.43,-135 -76.43,-135.3 -76.43,-135.6 -76.43,-135.9 -76.43,-136.2 -76.43,-136.5 -76.43,-136.8 -76.43,-137.1 -76.43,-137.4 -76.43,-137.7 -76.43,-137.7 -76.357,-137.7 -76.284,-137.7 -76.211,-137.7 -76.138,-137.7 -76.065,-137.7 -75.992,-137.7 -75.919,-137.7 -75.846,-137.7 -75.773,-137.7 -75.7))", "dataset_titles": "Ion Concentrations from SPRESSO Ice Core, Antarctica; Mt. Moulton Ice Trench Mass Spectrometry Data, Antarctica", "datasets": [{"dataset_uid": "609472", "doi": "10.7265/N5VH5KSV", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Mt Moulton; Paleoclimate", "people": "Mayewski, Paul A.; Korotkikh, Elena", "repository": "USAP-DC", "science_program": null, "title": "Mt. Moulton Ice Trench Mass Spectrometry Data, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609472"}, {"dataset_uid": "609471", "doi": "10.7265/N508638J", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; ITASE; Paleoclimate; South Pole; SPRESSO Ice Core", "people": "Korotkikh, Elena; Mayewski, Paul A.", "repository": "USAP-DC", "science_program": null, "title": "Ion Concentrations from SPRESSO Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609471"}], "date_created": "Thu, 29 Jul 2010 00:00:00 GMT", "description": "This award supports a project to examine an existing ice core of opportunity from South Pole (SPRESO core) to develop a 2000+ year long climate record. SPRESO ice core will be an annually dated, sub-annually-resolved reconstruction of past climate (atmospheric circulation, temperature, precipitation rate, and atmospheric chemistry) utilizing continuous, co-registered measurements (n=45) of: major ions, trace elements, and stable isotope series, plus selected sections for microparticle size and composition. The intellectual merit of this project relates to the fact that few 2000+ year records of this quality exist in Antarctica despite increasing scientific interest in this critical time period as the framework within which to understand modern climate. The scientific impact of this ice core investigation are that it will provide an in-depth understanding of climate variability; a baseline for assessing modern climate variability in the context of human activity; and a contribution to the prediction of future climate variability. The broader impact of this work is that the proposed research addresses important questions concerning the role of Antarctica in past, present, and future global change. Results will be translated into publicly accessible information through public lectures, media appearances, and an extensive outreach activity housed in our Institute. Our ice core activities provide a major basis for curriculum in K-12 and University plus a basis for several field and laboratory based graduate theses and undergraduate student projects. The project will support one PhD student for 3 years and undergraduate salaries. The Climate Change Institute has a long history of gender and ethnically diverse student and staff involvement in research.", "east": -134.7, "geometry": "POINT(-136.2 -76.065)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Ice Core Interpretation; Ions; US ITASE; Explorations; LABORATORY; Ice Core Data; Ice Core; Ice Analysis; Ice; Not provided; Antarctic Ice Sheet; Laboratory Investigation; Field Investigations; Ice Core Chemistry; Horizontal Ice Core; Ice Chemistry; Ice Sheet", "locations": "Antarctic Ice Sheet", "north": -75.7, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Korotkikh, Elena; Kreutz, Karl; Kurbatov, Andrei V.; Mayewski, Paul A.", "platforms": "Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.43, "title": "Collaborative Proposal: 2000+ Year Detailed, Calibrated Climate Reconstruction from a South Pole Ice Core Set in an Antarctic - Global Scale Context", "uid": "p0000209", "west": -137.7}, {"awards": "0632389 Murray, Alison; 0632278 Ducklow, Hugh", "bounds_geometry": "POLYGON((-77 -62,-75.5 -62,-74 -62,-72.5 -62,-71 -62,-69.5 -62,-68 -62,-66.5 -62,-65 -62,-63.5 -62,-62 -62,-62 -62.7,-62 -63.4,-62 -64.1,-62 -64.8,-62 -65.5,-62 -66.2,-62 -66.9,-62 -67.6,-62 -68.3,-62 -69,-63.5 -69,-65 -69,-66.5 -69,-68 -69,-69.5 -69,-71 -69,-72.5 -69,-74 -69,-75.5 -69,-77 -69,-77 -68.3,-77 -67.6,-77 -66.9,-77 -66.2,-77 -65.5,-77 -64.8,-77 -64.1,-77 -63.4,-77 -62.7,-77 -62))", "dataset_titles": "IPY: Bacterioplankton Genomic Adaptations to Antarctic Winter", "datasets": [{"dataset_uid": "600061", "doi": "10.15784/600061", "keywords": "Antarctica; Antarctic Peninsula; Biota; Chemistry:fluid; Chemistry:Fluid; Oceans; Southern Ocean", "people": "Grzymski, Joseph; Murray, Alison", "repository": "USAP-DC", "science_program": null, "title": "IPY: Bacterioplankton Genomic Adaptations to Antarctic Winter", "url": "https://www.usap-dc.org/view/dataset/600061"}], "date_created": "Thu, 08 Jul 2010 00:00:00 GMT", "description": "The Western Antarctic Peninsula is experiencing one of the most rapid rates of climate warming on Earth, with an increase of 5degrees C in the mean winter temperature in 50 years. Impacts on upper trophic levels are evident, though there have been few, if any studies that have considered the impacts on bacterioplankton in the Southern Ocean. This proposal will characterize the winter bacterioplankton genome, transcriptome, and proteome and discover those features (community composition, genes up-regulated, and proteins expressed) that are essential to winter bacterioplankton survival and livelihood. We have assembled a polar ocean ecology and genomics network including strategic partnerships with Palmer LTER, the British Antarctic Survey\u0027s ocean metagenome program, US and Canadian scientists studying the Arctic Ocean genome, an Australian colleague who specialized in archaeal proteomics, and French colleagues studying Sub-Antarctic and Coastal Adelie Land marine bacterioplankton. The primary objectives of this program are: 1 Describe the differences in diversity and genomic content between austral winter and summer bacterioplankton communities. 2. Investigate the winter-time bacterioplankton growth and cellular signals (mRNA and proteins expressed) in order to understand the specific adaptations key to survival. \u003cbr/\u003e\u003cbr/\u003eOur results will extend from the Antarctic to the Arctic - as the cold, dark, carbon-limited deep seas linking these two systems have many common features. Education and outreach activities target (i) undergraduate and graduate students, hopefully including minority students recruited through the Diversity in Research in Environmental and Marine Sciences (DREAMS) Program at VIMS; (ii) a broad audience with our education and outreach partnerships with The Cousteau Society and with the Census for Antarctic Marine Life program. Data and links to external databases will be listed on the http://genex2.dri.edu website. Sequence data will be publicly accessible in GenBank and IMG-M databases.", "east": -62.0, "geometry": "POINT(-69.5 -65.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -62.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Murray, Alison; Grzymski, Joseph; Ducklow, Hugh", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -69.0, "title": "IPY: Bacterioplankton Genomic Adaptations to Antarctic Winter", "uid": "p0000091", "west": -77.0}, {"awards": "0632325 Seals, Cheryl; 0632168 Hulbe, Christina; 0632346 Tulaczyk, Slawek; 0632161 Johnson, Jesse", "bounds_geometry": "POLYGON((-180 -50.05,-144 -50.05,-108 -50.05,-72 -50.05,-36 -50.05,0 -50.05,36 -50.05,72 -50.05,108 -50.05,144 -50.05,180 -50.05,180 -54.045,180 -58.04,180 -62.035,180 -66.03,180 -70.025,180 -74.02,180 -78.015,180 -82.01,180 -86.005,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -86.005,-180 -82.01,-180 -78.015,-180 -74.02,-180 -70.025,-180 -66.03,-180 -62.035,-180 -58.04,-180 -54.045,-180 -50.05))", "dataset_titles": "Singular Value Decomposition Analysis of Ice Sheet Model Output Fields; Wiki containing the data and provenance.", "datasets": [{"dataset_uid": "609396", "doi": "10.7265/N5K64G1S", "keywords": "Antarctica; Community Ice Sheet Model; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology", "people": "Hulbe, Christina; Daescu, Dacian N.", "repository": "USAP-DC", "science_program": null, "title": "Singular Value Decomposition Analysis of Ice Sheet Model Output Fields", "url": "https://www.usap-dc.org/view/dataset/609396"}, {"dataset_uid": "001499", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Wiki containing the data and provenance.", "url": "http://websrv.cs.umt.edu/isis/index.php/Present_Day_Antarctica"}], "date_created": "Fri, 02 Jul 2010 00:00:00 GMT", "description": "Johnson/0632161\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to create a \"Community Ice Sheet Model (CISM)\". The intellectual merit of the proposed activity is that the development of such a model will aid in advancing the science of ice sheet modeling. The model will be developed with the goal of assuring that CISM is accurate, robust, well documented, intuitive, and computationally efficient. The development process will stress principles of software design. Two complementary efforts will occur. One will involve novel predictive modeling experiments on the Amundsen Sea Embayment region of Antarctica with the goal of understanding how interactions between basal processes and ice sheet dynamics can result in abrupt reconfigurations of ice-sheets, and how those reconfigurations impact other Earth systems. New modeling physics are to include the higher order stress terms that allow proper resolution of ice stream and shelf features, and the associated numerical methods that allow higher and lower order physics to be coexist in a single model. The broader impacts of the proposed activity involve education and public outreach. The model will be elevated to a high standard in terms of user interface and design, which will allow for the production of inquiry based, polar and climate science curriculum for K-12 education. The development of a CISM itself would represent a sea change in the way that glaciological research is conducted, eliminating numerous barriers to progress in polar research such as duplicated efforts, lack of transparency in publication, lack of a cryospheric model for others to link to and reference, and a common starting point from which to begin investigation. As the appropriate interfaces are developed, a curriculum to utilize CISM in education will be developed. Students participating in this grant will be required to be involved in public outreach through various mechanisms including local and state science fairs. The model will also serve as a basis for educating \"a new generation\" of climate scientists. This project is relevant to the International Polar Year (IPY) as the research team is multi-institutional and multi-disciplinary, will bring new groups and new specialties into the realm of polar research and is part of a larger group of proposals whose research focuses on research in the Amundsen Sea Embayment Plan region of Antarctica. The project is international in scope and the nature of software development is quite international, with firm commitments from the United Kingdom and Belgium to collaborate. In addition there will be an international external advisory board that will be used to guide development, and serve as a link to other IPY activities.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "MODELS; International Polar Year; Derived Basal Temperature Evolution; Ice Sheet; Community Ice Sheet Model; Ice Sheet Model; LABORATORY; Amundsen Sea; Eismint; Modeling; Basal Temperature; Numerical Model; Antarctic Ice Sheet; Environmental Modeling; IPY; Antarctica; Model; Not provided; Ice Dynamic", "locations": "Antarctic Ice Sheet; Antarctica; Amundsen Sea", "north": -50.05, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Hulbe, Christina; Seals, Cheryl; Johnson, Jesse; Daescu, Dacian N.", "platforms": "Not provided; OTHER \u003e MODELS \u003e MODELS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "PI website; USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: IPY, The Next Generation: A Community Ice Sheet Model for Scientists and Educators With Demonstration Experiments in Amundsen Sea Embayment Region", "uid": "p0000756", "west": -180.0}, {"awards": "0538494 Meese, Debra", "bounds_geometry": null, "dataset_titles": "Microstructural Location and Composition of Impurities in Polar Ice Cores", "datasets": [{"dataset_uid": "609436", "doi": "10.7265/N5DF6P5P", "keywords": "Antarctica; Arctic; Byrd Glacier; Byrd Ice Core; Chemistry:ice; Chemistry:Ice; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Lake Vostok; Paleoclimate; Vostok Ice Core", "people": "Obbard, Rachel; Baker, Ian", "repository": "USAP-DC", "science_program": null, "title": "Microstructural Location and Composition of Impurities in Polar Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609436"}], "date_created": "Thu, 03 Jun 2010 00:00:00 GMT", "description": "0538494\u003cbr/\u003eMeese\u003cbr/\u003eThis award supports a project for physical properties research on snow pits and firn/ice cores with specific objectives that include stratigraphic analysis including determination of accumulation rates, annual layers, depth hoar, ice and wind crusts and rates of grain growth with depth. Studies of firn densification rates and how these parameters relate to the meteorology and climatology over the last 200 years of snow accumulation in Antarctica will also be investigated. The project will also determine the seasonality of accumulation by co-registration of stratigraphy and chemistry and determination of chemical species at the grain boundaries, how these may change with depth/densification (and therefore temperature), precipitation, and may affect grain growth. Fabric analyses will be made, including variation with depth, location on undulations and if any variation exists with climate/chemistry. The large spatial coverage of the US ITASE program offers the opportunity to determine how these parameters are affected by a large range of temperature, precipitation and topographic effects. The intellectual merit of the project includes the fact that ITASE is the terrestrial equivalent of a polar research vessel that provides a unique, logistically efficient, multi-dimensional (x, y, z and time) view of the atmosphere, ice sheet and their histories. Physical properties measurements/ analyses are an integral part of understanding the dynamic processes to which the accumulated snow is subjected. Recent advancements in the field along with multiple core sites provide an excellent opportunity to gain a much broader understanding of the spatial, temporal and physical variables that impact firnification and the possible resultant impact on climatic interpretation. In terms of broader impacts, the data collected by US ITASE and its international ITASE partners is available to a broad scientific community. US ITASE has an extensive program of public outreach and provides significant opportunities for many students to experience multidisciplinary Antarctic research. A graduate student, a post-doctoral fellow and at least one undergraduate would be funded by this work. Dr. Meese is also a member of the New England Science Collaborative, an organization that educates the public on climate change based on recent scientific advancements.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES", "is_usap_dc": false, "keywords": "LABORATORY; Grain Growth; FIELD SURVEYS; Accumulation Rate; Firn Core; FIELD INVESTIGATION; Chemistry; Snow Pit; Depth Hoar; Firn Density; Ice Core; Not provided; Stratigraphic Analysis; Firn; US ITASE; Annual Layers", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Meese, Deb; MEESE, DEBRA", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "The Physical Properties of the US ITASE Firn and Ice Cores from South Pole to Taylor Dome", "uid": "p0000289", "west": null}, {"awards": "0537143 Blanchette, Robert", "bounds_geometry": "POLYGON((-69 -60,-68.3 -60,-67.6 -60,-66.9 -60,-66.2 -60,-65.5 -60,-64.8 -60,-64.1 -60,-63.4 -60,-62.7 -60,-62 -60,-62 -61,-62 -62,-62 -63,-62 -64,-62 -65,-62 -66,-62 -67,-62 -68,-62 -69,-62 -70,-62.7 -70,-63.4 -70,-64.1 -70,-64.8 -70,-65.5 -70,-66.2 -70,-66.9 -70,-67.6 -70,-68.3 -70,-69 -70,-69 -69,-69 -68,-69 -67,-69 -66,-69 -65,-69 -64,-69 -63,-69 -62,-69 -61,-69 -60))", "dataset_titles": "(Arenz et al. 2006) DQ317323, DQ317324, DQ317325, DQ317326, DQ317327, DQ317328, DQ317329, DQ317330, DQ317331, DQ317332, DQ317333, DQ317334, DQ317335, DQ317336, DQ317337, DQ317338, DQ317339, DQ317340, DQ317341, DQ317342, DQ317343, DQ317344, DQ317345, DQ317346, DQ317347, DQ317348, DQ317349, DQ317350, DQ317351, DQ317352, DQ317353, DQ317354, DQ317355, DQ317356, DQ317357, DQ317358, DQ317359, DQ317360, DQ317361, DQ317362, DQ317363, DQ317364, DQ317365, DQ317366, DQ317367, DQ317368, DQ317369, DQ317370, DQ317371, DQ317372, DQ317373, DQ317374, DQ317375, DQ317376, DQ317377, DQ317378, DQ317379, DQ317380, DQ317381, DQ317382, DQ317383, DQ317384, DQ317385, DQ317386, DQ317387, DQ317388, DQ317389 (Arenz and Blanchette 2009) FJ235934, FJ235935, FJ235936, FJ235937, FJ235938, FJ235939, FJ235940, FJ235941, FJ235942, FJ235943, FJ235944, FJ235945, FJ235946, FJ235947, FJ235948, FJ235949, FJ235950, FJ235951, FJ235952, FJ235953, FJ235954, FJ235955, FJ235956, FJ235957, FJ235958, FJ235959, FJ235960, FJ235961, FJ235962, FJ235963, FJ235964, FJ235965, FJ235966, FJ235967, FJ235968, FJ235969, FJ235970, FJ235971, FJ235972, FJ235973, FJ235974, FJ235975, FJ235976, FJ235977, FJ235978, FJ235979, FJ235980, FJ235981, FJ235982, FJ235983, FJ235984, FJ235985, FJ235986, FJ235987, FJ235988, FJ235989, FJ235990, FJ235991, FJ235992, FJ235993, FJ235994, FJ235995, FJ235996, FJ235997, FJ235998, FJ235999, FJ236000, FJ236001, FJ236002, FJ236003, FJ236004, FJ236005, FJ236006, FJ236007, FJ236008, FJ236009, FJ236010, FJ236011, FJ236012, FJ236013, FJ236014 (Blanchette et al. 2010) GU212367, GU212368, GU212369, GU212370, GU212371, GU212372, GU212373, GU212374, GU212375, GU212376, GU212377, GU212378, GU212379, GU212380, GU212381, GU212382, GU212383, GU212384, GU212385, GU212386, GU212387, GU212388, GU212389, GU212390, GU212391, GU212392, GU212393, GU212394, GU212395, GU212396, GU212397, GU212398, GU212399, GU212400, GU212401, GU212402, GU212403, GU212404, GU212405, GU212406, GU212407, GU212408, GU212409, GU212410, GU212411, GU212412, GU212413, GU212414, GU212415, GU212416, GU212417, GU212418, GU212419, GU212420, GU212421, GU212422, GU212423, GU212424, GU212425, GU212426, GU212427, GU212428, GU212429, GU212430, GU212431, GU212432, GU212433, GU212434", "datasets": [{"dataset_uid": "000121", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "(Arenz et al. 2006) DQ317323, DQ317324, DQ317325, DQ317326, DQ317327, DQ317328, DQ317329, DQ317330, DQ317331, DQ317332, DQ317333, DQ317334, DQ317335, DQ317336, DQ317337, DQ317338, DQ317339, DQ317340, DQ317341, DQ317342, DQ317343, DQ317344, DQ317345, DQ317346, DQ317347, DQ317348, DQ317349, DQ317350, DQ317351, DQ317352, DQ317353, DQ317354, DQ317355, DQ317356, DQ317357, DQ317358, DQ317359, DQ317360, DQ317361, DQ317362, DQ317363, DQ317364, DQ317365, DQ317366, DQ317367, DQ317368, DQ317369, DQ317370, DQ317371, DQ317372, DQ317373, DQ317374, DQ317375, DQ317376, DQ317377, DQ317378, DQ317379, DQ317380, DQ317381, DQ317382, DQ317383, DQ317384, DQ317385, DQ317386, DQ317387, DQ317388, DQ317389 (Arenz and Blanchette 2009) FJ235934, FJ235935, FJ235936, FJ235937, FJ235938, FJ235939, FJ235940, FJ235941, FJ235942, FJ235943, FJ235944, FJ235945, FJ235946, FJ235947, FJ235948, FJ235949, FJ235950, FJ235951, FJ235952, FJ235953, FJ235954, FJ235955, FJ235956, FJ235957, FJ235958, FJ235959, FJ235960, FJ235961, FJ235962, FJ235963, FJ235964, FJ235965, FJ235966, FJ235967, FJ235968, FJ235969, FJ235970, FJ235971, FJ235972, FJ235973, FJ235974, FJ235975, FJ235976, FJ235977, FJ235978, FJ235979, FJ235980, FJ235981, FJ235982, FJ235983, FJ235984, FJ235985, FJ235986, FJ235987, FJ235988, FJ235989, FJ235990, FJ235991, FJ235992, FJ235993, FJ235994, FJ235995, FJ235996, FJ235997, FJ235998, FJ235999, FJ236000, FJ236001, FJ236002, FJ236003, FJ236004, FJ236005, FJ236006, FJ236007, FJ236008, FJ236009, FJ236010, FJ236011, FJ236012, FJ236013, FJ236014 (Blanchette et al. 2010) GU212367, GU212368, GU212369, GU212370, GU212371, GU212372, GU212373, GU212374, GU212375, GU212376, GU212377, GU212378, GU212379, GU212380, GU212381, GU212382, GU212383, GU212384, GU212385, GU212386, GU212387, GU212388, GU212389, GU212390, GU212391, GU212392, GU212393, GU212394, GU212395, GU212396, GU212397, GU212398, GU212399, GU212400, GU212401, GU212402, GU212403, GU212404, GU212405, GU212406, GU212407, GU212408, GU212409, GU212410, GU212411, GU212412, GU212413, GU212414, GU212415, GU212416, GU212417, GU212418, GU212419, GU212420, GU212421, GU212422, GU212423, GU212424, GU212425, GU212426, GU212427, GU212428, GU212429, GU212430, GU212431, GU212432, GU212433, GU212434", "url": "http://www.ncbi.nlm.nih.gov/genbank/"}], "date_created": "Mon, 24 May 2010 00:00:00 GMT", "description": "Fungi in Antarctic ecosystems are major contributors to biodiversity and have great influence on many processes such as biodegradation and nutrient cycling. It is essential for biological surveys as well as genomic and proteomic studies to be completed so a better understanding of these organisms is obtained. Previous research has identified unique fungi associated with historic wooden structures brought to Antarctica by Robert F. Scott and Ernest Shackleton during the Heroic Era of exploration. Many of the fungi found are previously undescribed species that belong to the little known genus Cadophora. The research team will obtain important new information on the fungi present in the Ross Sea and Peninsula Regions of Antarctica, particularly their role in decomposition and nutrient recycling and their mechanisms and strategies for survival in the polar environment. New tools and methods include denaturing gradient gel electrophoresis (DGGE), real-time PCR, and proteomic profiling. These analyses will reveal key details of the physiological adaptations these fungi have evolved to carry out processes such as biodegradation and nutrient cycling under conditions that would inhibit other fungi. This work, coupled with the training and learning opportunities it provides, will be of value to many fields of study including microbial ecology, polar biology, wood microbiology, environmental science, soil science, geobiochemistry, and mycology as well as fungal phylogenetics, proteomics and genomics. Results obtained will have immediate applied use to help preserve and protect Antarctica\u0027s historic monuments. The investigations proposed are a continuation of research to identify the microbes attacking these historic structures and artifacts and to elucidate their biology and ecology in the polar environment. New research will also be done at the historic Cape Adare huts, the first wooden structures to be built in Antarctica and also at East Base, an American historic site on Stonington Island from the Admiral Byrd and Ronne Expeditions of 1939-1948. The research team will conduct vital studies needed to successfully conserve the wooden structures and artifacts at these sites and protect them for future generations", "east": -62.0, "geometry": "POINT(-65.5 -65)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Blanchette, Robert", "platforms": "Not provided", "repo": "NCBI GenBank", "repositories": "NCBI GenBank", "science_programs": null, "south": -70.0, "title": "Studies of Antarctic Fungi: Adaptive Stratigies for Survival and Protecting Antarctica\u0027s Historic Structures", "uid": "p0000187", "west": -69.0}, {"awards": "0003060 Domack, Eugene", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0107", "datasets": [{"dataset_uid": "002656", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0107", "url": "https://www.rvdata.us/search/cruise/NBP0107"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports project to test and develop approaches for using thermoluminescence techniques to determine the age of Antarctic marine sediments. \u003cbr/\u003e\u003cbr/\u003eQuaternary (last 2 million yrs) marine sediments surrounding Antarctica record the waxing and waning of ice shelves and ice sheets, and also other paleoclimatic information, yet accurate chronologies of these sediments are difficult to obtain. Such chronologies provide the essential foundation for study of geological processes in the past. Within the range of radiocarbon (14C) dating (less than 30-40 thousand yrs, note - \"ka\" below means 1000 yrs) 14C dates can be inaccurate because of a variable 14C reservoir effect, and beyond 30-40 ka few methods are applicable. Photon-stimulated-luminescence sediment dating (photonic dating) of eolian and waterlain deposits in temperate latitudes spans the range from decades to hundreds of ka, but marine sediments in and around Antarctica pose special difficulty because of the potentially restricted exposure to daylight (the clock-zeroing process) of most detrital grains before deposition. This proposal will test the clock-zeroing assumption in representative Antarctic glaciomarine depositional settings, and thereby determine the potential reliability of photonic dating of Antarctic marine sediments.\u003cbr/\u003e\u003cbr/\u003eLimited luminescence dating and signal-zeroing tests using glaciomarine and marine deposits have been conducted in the northern temperate and polar latitudes, but the effects on luminescence of the different glaciomarine depositional processes have never been studied in detail. Furthermore, the depositional settings around Antarctica are almost entirely polar, with consequent specific processes operating there. For example, transport of terrigenous suspensions by neutrally buoyant \"cold-tongue\" (mid-water) plumes may be common around Antarctica, yet the effect of such transport on luminescence zeroing is unknown. Typical marine cores near Antarctica may contain an unknown fraction of detrital grains from cold-tongue and near-bottom suspensions. Thus the extent to which the polar glaciomarine depositional processes around Antarctica may limit the potential accuracy of photonic dating of marine cores is unknown (age overestimates would result if grains are not exposed to daylight before deposition).\u003cbr/\u003e\u003cbr/\u003eThis project will collect detrital grains from a variety of \"zero-age\" (modern) marine depositional settings within the Antarctic Peninsula, where representative Antarctic depositional processes have been documented and where logistics permit access. Suspensions will be collected from four fjords representing a transect from polar through subpolar conditions. Suspensions will be collected from two stations and from up to 3 depths (surface and 2 deep plumes) at each station. Sediment traps will be deployed at two of these fjord settings. As well, core-top sediments will be collected from several sites. All samples will be shielded from light and transported to Reno, Nevada, for luminescence analyses.\u003cbr/\u003e\u003cbr/\u003eSystematic study of the effectiveness of luminescence-clock-zeroing in Antarctic glaciomarine settings will determine if photonic dating can be reliable for future applications to Antarctic marine sediments. Refined sedimentological criteria for the selection of future samples for photonic dating are expected from this project. A photonic-dating capability would provide a numeric geochronometer extending well beyond the age range of 14C dating. Such a capability would permit answering a number of broader questions about the timing and extent of past glaciations near and on the Antarctic shelves.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "Palmer Deep; Hugo Island; R/V NBP", "locations": "Hugo Island", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Domack, Eugene Walter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Development of a Luminescence Dating Capability for Antarctic Glaciomarine Sediments: Tests of Signal Zeroing at the Antarctic Peninsula", "uid": "p0000845", "west": null}, {"awards": "9011927 Ross, Robin; 9632763 Smith, Raymond", "bounds_geometry": "POLYGON((-79.68459 -52.36474,-77.851019 -52.36474,-76.017448 -52.36474,-74.183877 -52.36474,-72.350306 -52.36474,-70.516735 -52.36474,-68.683164 -52.36474,-66.849593 -52.36474,-65.016022 -52.36474,-63.182451 -52.36474,-61.34888 -52.36474,-61.34888 -54.071087,-61.34888 -55.777434,-61.34888 -57.483781,-61.34888 -59.190128,-61.34888 -60.896475,-61.34888 -62.602822,-61.34888 -64.309169,-61.34888 -66.015516,-61.34888 -67.721863,-61.34888 -69.42821,-63.182451 -69.42821,-65.016022 -69.42821,-66.849593 -69.42821,-68.683164 -69.42821,-70.516735 -69.42821,-72.350306 -69.42821,-74.183877 -69.42821,-76.017448 -69.42821,-77.851019 -69.42821,-79.68459 -69.42821,-79.68459 -67.721863,-79.68459 -66.015516,-79.68459 -64.309169,-79.68459 -62.602822,-79.68459 -60.896475,-79.68459 -59.190128,-79.68459 -57.483781,-79.68459 -55.777434,-79.68459 -54.071087,-79.68459 -52.36474))", "dataset_titles": "Expedition Data; Expedition data of NBP0105", "datasets": [{"dataset_uid": "001488", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0901"}, {"dataset_uid": "001578", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0601"}, {"dataset_uid": "001613", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0501"}, {"dataset_uid": "001649", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0301"}, {"dataset_uid": "001665", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0401"}, {"dataset_uid": "001817", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0201"}, {"dataset_uid": "002605", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0105", "url": "https://www.rvdata.us/search/cruise/NBP0105"}, {"dataset_uid": "002045", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9906"}, {"dataset_uid": "001998", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0001"}, {"dataset_uid": "002292", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9302"}, {"dataset_uid": "001884", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0101"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The annual advance and retreat of pack ice may be the major physical determinant of spatial and temporal changes in the structure and function of antarctic marine communities. Interannual cycles and/or trends in the annual extent of pack ice may also have significant effects on all levels of the food web, from total annual primary production to breeding success in seabirds. Historical records indicate a six to eight year cycle in the maximum extent of pack ice in the winter. During this decade, winters were colder in 1980 and 1981, and again in 1986 and 1987. Winter-over survival in Adelie penguins varied on the same cycle, higher in winters with heavy pack ice. This Long Term Ecological Research (LTER) project will define ecological processes linking the extent of annual pack ice with the biological dynamics of different trophic levels within antarctic marine communities. The general focus is on interannual variability in representative populations from the antarctic marine food web and on mechanistic linkages that control the observed variability in order to develop broader generalizations applicable to other large marine environments. To achieve these objectives, data from several spatial and temporal scales, including remote sensing, a field approach that includes an annual monitoring program, a series of process-oriented research cruises, and a modeling effort to provide linkages on multiple spatial and temporal scales between biological and environmental components of the ecosystem will be employed.", "east": -61.34888, "geometry": "POINT(-70.516735 -60.896475)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V LMG; R/V NBP", "locations": null, "north": -52.36474, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Raymond; Ross, Robin Macurda; Fraser, William; Martinson, Douglas; Ducklow, Hugh", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": "LTER", "south": -69.42821, "title": "Long-Term Ecological Research on the Antarctic Marine Ecosystem: An Ice-Dominated Environment", "uid": "p0000236", "west": -79.68459}, {"awards": "0529815 Smith, Kenneth", "bounds_geometry": "POLYGON((-68.12004 -52.65918,-65.348168 -52.65918,-62.576296 -52.65918,-59.804424 -52.65918,-57.032552 -52.65918,-54.26068 -52.65918,-51.488808 -52.65918,-48.716936 -52.65918,-45.945064 -52.65918,-43.173192 -52.65918,-40.40132 -52.65918,-40.40132 -53.972709,-40.40132 -55.286238,-40.40132 -56.599767,-40.40132 -57.913296,-40.40132 -59.226825,-40.40132 -60.540354,-40.40132 -61.853883,-40.40132 -63.167412,-40.40132 -64.480941,-40.40132 -65.79447,-43.173192 -65.79447,-45.945064 -65.79447,-48.716936 -65.79447,-51.488808 -65.79447,-54.26068 -65.79447,-57.032552 -65.79447,-59.804424 -65.79447,-62.576296 -65.79447,-65.348168 -65.79447,-68.12004 -65.79447,-68.12004 -64.480941,-68.12004 -63.167412,-68.12004 -61.853883,-68.12004 -60.540354,-68.12004 -59.226825,-68.12004 -57.913296,-68.12004 -56.599767,-68.12004 -55.286238,-68.12004 -53.972709,-68.12004 -52.65918))", "dataset_titles": "Expedition Data; Expedition data of LMG0514A", "datasets": [{"dataset_uid": "001484", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0902"}, {"dataset_uid": "002668", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0514A", "url": "https://www.rvdata.us/search/cruise/LMG0514A"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project seeks to examine the importance of icebergs to the pelagic ecosystem of the North-West Weddell Sea. Atmospheric warming has been associated with retreating glaciers and the increasing prevalence of icebergs in the Southern Ocean over the last decade. The highest concentration of icebergs occurs in the NW Weddell Sea, where they drift in a clockwise pattern to the northeast, following the contours of the Antarctic Peninsula through an area dubbed \"Iceberg Alley\". Little is known about the impact of free-drifting icebergs on the pelagic ecosystem of the Weddell Sea or on the Southern Ocean as a whole. It is hypothesized that as drifting islands, icebergs of small to intermediate size (\u003c 10 km in largest dimension) impart unique physical, chemical and biological characteristics to the surrounding water. Three general questions will be asked to address this hypothesis: 1) What are the dynamics (approximate size, abundance and spatial distribution) of free-drifting icebergs on temporal scales of days to months, based on correlation of field measurements with imagery derived from satellite sensors? 2) What is the relationship between the size of free-drifting icebergs and the structure of the associated pelagic communities? 3) What is the estimated combined impact of free-drifting icebergs in the NW Weddell Sea on the biological characteristics of the pelagic zone? This interdisciplinary study will use standard oceanographic sampling coupled with unique methodology for staging shipboard data from all types of sensors and survey methods to determine the sphere of influence for a diverse set of biological factors as a function of iceberg size. The exploratory research proposed here will provide critical data on the effects of atmospheric warming in the Antarctic Peninsula region. The recent prevalence of free drifting icebergs in the Southern Ocean should have a pronounced enrichment effect on the surrounding pelagic ecosystem, altering community dynamics. Enhanced primary production associated with these icebergs could influence the global carbon cycle since the Southern Ocean is considered a major sink for excess CO2 from the atmosphere. \u003cbr/\u003eThe proposed research will include an innovative education component through the Ocean Exploration Center (OEC), whose focus is to provide a comprehensive view of the oceans, intelligible to non-scientists and researchers alike, with direct access to state-of-the-art databases and selected websites. The OEC will allow users to access content which has been classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. The results from this iceberg project will be incorporated into the Antarctic Research division of the OEC, providing databases documenting the impact of free-drifting icebergs on the surrounding pelagic ecosystem. These data then will be extrapolated to evaluate the impact of icebergs on the ecosystem of the Weddell Sea. Graduate students, undergraduates, teachers and volunteers are an important part of the proposed field and laboratory work.", "east": -40.40132, "geometry": "POINT(-54.26068 -59.226825)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG; R/V NBP", "locations": null, "north": -52.65918, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Ken", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.79447, "title": "Free Drifting Icebergs: Influence of Floating Islands on Pelagic Ecosystems in the Weddell Sea.", "uid": "p0000551", "west": -68.12004}, {"awards": "9816049 DeMaster, David", "bounds_geometry": "POLYGON((-70.90654 -52.35368,-70.220384 -52.35368,-69.534228 -52.35368,-68.848072 -52.35368,-68.161916 -52.35368,-67.47576 -52.35368,-66.789604 -52.35368,-66.103448 -52.35368,-65.417292 -52.35368,-64.731136 -52.35368,-64.04498 -52.35368,-64.04498 -53.639401,-64.04498 -54.925122,-64.04498 -56.210843,-64.04498 -57.496564,-64.04498 -58.782285,-64.04498 -60.068006,-64.04498 -61.353727,-64.04498 -62.639448,-64.04498 -63.925169,-64.04498 -65.21089,-64.731136 -65.21089,-65.417292 -65.21089,-66.103448 -65.21089,-66.789604 -65.21089,-67.47576 -65.21089,-68.161916 -65.21089,-68.848072 -65.21089,-69.534228 -65.21089,-70.220384 -65.21089,-70.90654 -65.21089,-70.90654 -63.925169,-70.90654 -62.639448,-70.90654 -61.353727,-70.90654 -60.068006,-70.90654 -58.782285,-70.90654 -57.496564,-70.90654 -56.210843,-70.90654 -54.925122,-70.90654 -53.639401,-70.90654 -52.35368))", "dataset_titles": "Expedition Data; Expedition data of LMG0003", "datasets": [{"dataset_uid": "002690", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0003", "url": "https://www.rvdata.us/search/cruise/LMG0003"}, {"dataset_uid": "001983", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0004"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "OPP98-15823 P.I. Craig Smith\u003cbr/\u003eOPP98-16049 P.I. David DeMaster\u003cbr/\u003e\u003cbr/\u003ePrimary production in Antarctic coastal waters is highly seasonal, yielding an intense pulse of biogenic particles to the continental shelf floor. This seasonal pulse may have major ramifications for carbon cycling, benthic ecology and material burial on the west Antarctic Peninsula (WAP) shelf. Thus, we propose a multii-disciplinary program to evaluate the seafloor accumulation, fate and benthic community impacts of bloom material along a transect of three stations crossing the Antarctic shelf in the Palmer LTER study area. Using a seasonal series of five cruises to our transect, we will test the following hypostheses: (1) A substantial proportion of spring/summer export production is deposited ont eh WAP shelf as phytodetritus or fecal pellets. (2) The deposited bloom production is a source of labile particulate organic carbon for benthos for an extended period of time (months). (3) Large amounts of labile bloom POC are rapidly subducted into the sediment column by the deposit-feeding and caching activities of benthos. (4) Macrobenthic detritivores sustain a rapid increase in biomass and abundance following the spring/summer particulate organic carbon pulse. To test these hypotheses, we will evaluate seabed deposition and lability of particulate organic carbon, patterns of particulate organic carbon mixing into sediments, seasonal variations in macrofaunal and megafaunal abundance, biomass and reproductive condition, and rates of particulate organic carbon and silica mineralization and accumulation in the seabed. Fluxes of biogenic materials and radionuclides into midwater particle traps will be contrasted with seabed deposition and burial rates to establish water-column and seabed preservation efficiencies for these materials. The project will substantially improve our understanding of the spring/summer production pulse on the WAP shelf and its impacts on seafloor communities and carbon cycling in Antarctic coastal systems.", "east": -64.04498, "geometry": "POINT(-67.47576 -58.782285)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP; R/V LMG", "locations": null, "north": -52.35368, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "DeMaster, David; Smith, Craig", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.21089, "title": "Collaborative Research: Bentho-Pelagic Coupling on the West Antarctic Peninsula Shelf: The Impact and Fate of Bloom Material at the Seafloor", "uid": "p0000618", "west": -70.90654}, {"awards": "0636639 MacPhee, Ross", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG0717; Expedition data of LMG0902", "datasets": [{"dataset_uid": "001520", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0717"}, {"dataset_uid": "002669", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0902", "url": "https://www.rvdata.us/search/cruise/LMG0902"}, {"dataset_uid": "002677", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0717", "url": "https://www.rvdata.us/search/cruise/LMG0717"}, {"dataset_uid": "002727", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0902", "url": "https://www.rvdata.us/search/cruise/LMG0902"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This exploratory project searches for fossils on Livingston Island in the South Shetland Islands off of the Antarctic peninsula. Strata there date from 125 to 99 million years in age, a critical time in the development of various flora and fauna. With so many unknowns in the biotic history of the Antarctic, any finds of vertebrate fossils on this little explored island will be of great significance. One key question is marsupial evolution. It is assumed that marsupials of South America and Australia transited through Antarctica, but a supporting fossil record has yet to be discovered. Related investigations on Mesozoic climate will be performed through stable isotope analysis of clay and rock samples. The broader impacts of the project include graduate student education and public outreach through a museum exhibit.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "MacPhee, Ross; DeMaster, David", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Vertebrate Paleontology of Livingston Island, South Shetlands, Antarctica", "uid": "p0000858", "west": null}, {"awards": "0087401 Smith, Walker", "bounds_geometry": null, "dataset_titles": "Current Meter Data from the Ross Sea acquired with a Mooring deployed in December 2005 and recovered during the Nathaniel B. Palmer expedition NBP0601A (2006); Expedition data of NBP0301B; Expedition data of NBP0305A; Expedition data of NBP0501; Expedition data of NBP0601A; Fluorometer Data acquired on Moorings deployed the Ross Sea and recovered during the Nathaniel B. Palmer expedition NBP0601A (2006); Processed Fluid Chemistry Data from the Ross Sea acquired during the Nathaniel B. Palmer expedition NBP0601A", "datasets": [{"dataset_uid": "002623", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0601A", "url": "https://www.rvdata.us/search/cruise/NBP0601A"}, {"dataset_uid": "601333", "doi": null, "keywords": "Antarctica; Flourometer; Mooring; NBP0601A; Ross Sea; Southern Ocean", "people": "Smith, Walker; Asper, Vernon", "repository": "USAP-DC", "science_program": null, "title": "Fluorometer Data acquired on Moorings deployed the Ross Sea and recovered during the Nathaniel B. Palmer expedition NBP0601A (2006)", "url": "https://www.usap-dc.org/view/dataset/601333"}, {"dataset_uid": "601339", "doi": null, "keywords": "Antarctica; Current Meter; Mooring; NBP0601A; Oceans; Physical Oceanography; Ross Sea; Southern Ocean", "people": "Smith, Walker; Asper, Vernon", "repository": "USAP-DC", "science_program": null, "title": "Current Meter Data from the Ross Sea acquired with a Mooring deployed in December 2005 and recovered during the Nathaniel B. Palmer expedition NBP0601A (2006)", "url": "https://www.usap-dc.org/view/dataset/601339"}, {"dataset_uid": "002627", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "601341", "doi": null, "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Fluid Chemistry Data; Mooring; NBP0601A; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Seawater Measurements; Southern Ocean", "people": "Smith, Walker; Asper, Vernon", "repository": "USAP-DC", "science_program": null, "title": "Processed Fluid Chemistry Data from the Ross Sea acquired during the Nathaniel B. Palmer expedition NBP0601A", "url": "https://www.usap-dc.org/view/dataset/601341"}, {"dataset_uid": "002622", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "002583", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0301B", "url": "https://www.rvdata.us/search/cruise/NBP0301B"}, {"dataset_uid": "002621", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0305A", "url": "https://www.rvdata.us/search/cruise/NBP0305A"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "During the past few decades of oceanographic research, it has been recognized that significant variations in biogeochemical processes occur among years. Interannual variations in the Southern Ocean are known to occur in ice extent and concentration, in the composition of herbivore communities, and in bird and marine mammal distributions and reproductive success. However, little is known about the interannual variations in production of phytoplankton or the role that these variations play in the food web. This project will collect time series data on the seasonal production of phytoplankton in the southern Ross Sea, Antarctica. Furthermore, it will assess the interannual variations of the production of the two major functional groups of the system, diatoms and Phaeocystis Antarctica, a colonial haptophyte. The Ross Sea provides a unique setting for this type of investigation for a number of reasons. For example, a de facto time-series has already been initiated in the Ross Sea through the concentration of a number of programs in the past ten years. It also is well known that the species diversity is reduced relative to other systems and its seasonal production is as great as anywhere in the Antarctic. Most importantly, seasonal production of both the total phytoplankton community (as well as its two functional groups) can be estimated from late summer nutrient profiles. The project will involve short cruises on the US Coast Guard ice breakers in the southern Ross Sea that will allow the collection of water column nutrient and particulate after data at specific locations in the late summer of each of five years. Additionally, two moorings with in situ nitrate analyzers moored at fifteen will be deployed, thus collecting for the first time in the in the Antarctic a time-series of euphotic zone nutrient concentrations over the entire growing season. All nutrient data will be used to calculate seasonal production for each year in the southern Ross Sea and compared to previously collected information, thereby providing an assessment of interannual variations in net community production. Particulate matter data will allow us to estimate the amount of export from the surface layer by late summer, and therefore calculate the interannual variability of this ecosystem process. Interannual variations of seasonal production (and of the major taxa of producers) are a potentially significant feature in the growth and survival of higher trophic levels within the food web of the Ross Sea. They are also important in order to understand the natural variability in biogeochemical processes of the region. Because polar regions such as the Ross Sea are predicted to be impacted by future climate change, biological changes are also anticipated. Placing these changes in the context of natural variability is an essential element of understanding and predicting such alterations. This research thus seeks to quantify the natural variability of an Antarctic coastal system, and ultimately understand its causes and impacts on food webs and biogeochemical cycles of the Ross Sea.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "Ross Sea; AMD; USAP-DC; Amd/Us; USA/NSF; R/V NBP", "locations": "Ross Sea", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Walker; Gordon, Arnold", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": null, "title": "Interannual Variability in the Antarctic-Ross Sea (IVARS): Nutrients and Seasonal Production", "uid": "p0000803", "west": null}, {"awards": "0094078 Bart, Philip", "bounds_geometry": "POLYGON((-179.99992 -72.00044,-143.999984 -72.00044,-108.000048 -72.00044,-72.000112 -72.00044,-36.000176 -72.00044,-0.000239999999991 -72.00044,35.999696 -72.00044,71.999632 -72.00044,107.999568 -72.00044,143.999504 -72.00044,179.99944 -72.00044,179.99944 -72.574101,179.99944 -73.147762,179.99944 -73.721423,179.99944 -74.295084,179.99944 -74.868745,179.99944 -75.442406,179.99944 -76.016067,179.99944 -76.589728,179.99944 -77.163389,179.99944 -77.73705,143.999504 -77.73705,107.999568 -77.73705,71.999632 -77.73705,35.999696 -77.73705,-0.000240000000019 -77.73705,-36.000176 -77.73705,-72.000112 -77.73705,-108.000048 -77.73705,-143.999984 -77.73705,-179.99992 -77.73705,-179.99992 -77.163389,-179.99992 -76.589728,-179.99992 -76.016067,-179.99992 -75.442406,-179.99992 -74.868745,-179.99992 -74.295084,-179.99992 -73.721423,-179.99992 -73.147762,-179.99992 -72.574101,-179.99992 -72.00044))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001648", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0301A"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "PROPOSAL NO.: 0094078\u003cbr/\u003ePRINCIPAL INVESTIGATOR: Bart, Philip\u003cbr/\u003eINSTITUTION NAME: Louisiana State University \u0026 Agricultural and Mechanical College\u003cbr/\u003eTITLE: CAREER: Relative frequency and phase of extreme expansions of the Antarctic Ice Sheets during the late Neogene\u003cbr/\u003eNSF RECEIVED DATE: 07/27/2000\u003cbr/\u003e\u003cbr/\u003ePROJECT SUMMARY\u003cbr/\u003e\u003cbr/\u003eExpansions and contractions of the Antarctic Ice Sheets (AISs) have undoubtedly had a profound influence on Earth\u0027s climate and global sea-level. However, rather than being a single entity, the Antarctic cryosphere consists of three primary elements: 1) the East Antarctic Ice Sheet (EAIS); 2) the West Antarctic Ice Sheet (WAIS); and 3) the Antarctic Peninsula Ice Cap (APIC). The distinguishing characteristics include significant differences in: 1) ice volume; 2) substratum elevation; 3) ice-surface elevation; and 4) location with respect to latitude. Various lines of evidence indicate that the AISs have undergone significant fluctuations in the past and that fluctuations will continue to occur in the future. The exact nature of the fluctuations has been the subject of many lively debates. According to one line of reasoning, the land-based EAIS has been relatively stable, experiencing only minor fluctuations since forming in the middle Miocene, whereas the marine-based WAIS has been dynamic, waxing and waning frequently since the late Miocene. According to an alternate hypothesis, the ice sheets advanced and retreated synchronously. These two views are incompatible. \u003cbr/\u003e\u003cbr/\u003eThe first objective of this proposal is to compare the long-term past behavior of the WAIS to that of the EAIS and APIC. The fluctuations of the AISs involve many aspects (the frequency of changes, the overall magnitude of ice-volume change, etc.), and the activities proposed here specifically concern the frequency and phase of extreme advances of the ice sheet to the continental shelf. The project will build upon previous seismic-stratigraphic investigations of the continental shelves. These studies have clarified many issues concerning the minimum frequency of extreme expansions for the individual ice sheets, but some important questions remain. During the course of the project, the following questions will be evaluated.\u003cbr/\u003e\u003cbr/\u003eQuestion 1) Were extreme advances of the EAIS and WAIS across the shelf of a similar frequency and coeval? This evaluation is possible because the western Ross Sea continental shelf (Northern Basin) receives drainage from the EAIS, and the eastern Ross Sea (Eastern Basin) receives drainage from the WAIS. Quantitative analyses of the extreme advances from these two areas have been conducted by Alonso et al. (1992) and Bart et al. (2000), respectively. However, the existing single-channel seismic grids are incomplete and can not be used to determine the stratigraphic correlations from Northern Basin to Eastern Basin. It is proposed that high-resolution seismic data (~2000 kms) be acquired to address this issue.\u003cbr/\u003e\u003cbr/\u003eQuestion 2) Were extreme advances of the APIC across the shelf as frequent as inferred by Bart and Anderson (1995)? Bart and Anderson (1995) inferred that the APIC advanced across the continental shelf at least 30 times since the middle Miocene. This is significant because it suggests that the advances of the small APIC were an order of magnitude more frequent than the advances of the EAIS and WAIS. Others contest the Bart and Anderson (1995) glacial-unconformity interpretation of seismic reflections, and argue that the advances of the APIC were far fewer (i.e., Larter et al., 1997). The recent drilling on the Antarctic Peninsula outer continental shelf has sampled some but not all of the glacial units, but the sediment recovery was poor, and thus, the glacial history interpretation is still ambiguous. The existing high-resolution seismic grids from the Antarctic Peninsula contain only one regional strike line on the outer continental shelf. This is inadequate to address the controversy of the glacial-unconformity interpretation and the regional correlation of the recent ODP results. It is proposed that high-resolution seismic data (~1000 kms) be acquired in a forthcoming (January 2002) cruise to the Antarctic Peninsula to address these issues.\u003cbr/\u003e\u003cbr/\u003eThe second objective of this project is 1) to expand the PI\u0027s effort to integrate his ongoing and the proposed experiments into a graduate-level course at LSU, and 2) to develop a pilot outreach program with a Baton Rouge public high school. The Louisiana Department of Education has adopted scientific standards that apply to all sciences. These standards reflect what 9th through 12th grade-level students should be able to do and know. The PI will target one of these standards, the Science As Inquiry Standard 1 Benchmark. The PI will endeavor to share with the students the excitement of conducting scientific research as a way to encourage the students to pursue earth science as a field of study at the university level.", "east": 179.99944, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -72.00044, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bart, Philip", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.73705, "title": "PECASE: Relative frequency and phase of extreme expansions of the Antarctic Ice Sheets during the late Neogene", "uid": "p0000593", "west": -179.99992}, {"awards": "0089451 Detrich, H. William", "bounds_geometry": "POLYGON((-70.907 -52.353,-69.8619 -52.353,-68.8168 -52.353,-67.7717 -52.353,-66.7266 -52.353,-65.6815 -52.353,-64.6364 -52.353,-63.5913 -52.353,-62.5462 -52.353,-61.5011 -52.353,-60.456 -52.353,-60.456 -53.64334,-60.456 -54.93368,-60.456 -56.22402,-60.456 -57.51436,-60.456 -58.8047,-60.456 -60.09504,-60.456 -61.38538,-60.456 -62.67572,-60.456 -63.96606,-60.456 -65.2564,-61.5011 -65.2564,-62.5462 -65.2564,-63.5913 -65.2564,-64.6364 -65.2564,-65.6815 -65.2564,-66.7266 -65.2564,-67.7717 -65.2564,-68.8168 -65.2564,-69.8619 -65.2564,-70.907 -65.2564,-70.907 -63.96606,-70.907 -62.67572,-70.907 -61.38538,-70.907 -60.09504,-70.907 -58.8047,-70.907 -57.51436,-70.907 -56.22402,-70.907 -54.93368,-70.907 -53.64334,-70.907 -52.353))", "dataset_titles": "Expedition Data; Expedition data of LMG0304A", "datasets": [{"dataset_uid": "001869", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0105"}, {"dataset_uid": "002707", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0304A", "url": "https://www.rvdata.us/search/cruise/LMG0304A"}, {"dataset_uid": "001704", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0304"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Abstract\u003cbr/\u003eOPP-0089451\u003cbr/\u003eP.I. William Detrich\u003cbr/\u003e\u003cbr/\u003e As the Southern Ocean cooled during the past 25 million years, the fishes of Antarctic coastal waters evolved biochemical and physiological adaptations that maintain essential cellular processes such as cytoskeletal function and gene transcription. Their microtubules, for example, assemble and function at body temperatures (-1.8 to +1 oC) well below those of homeotherms and temperate poikilotherms. The long range goals of the proposed research are to determine, at the molecular level, the adaptations that enhance the assembly of microtubules, the function of kinesin motors, and the expression of globin and tubulin genes. The specific objectives are three: 1) to determine the primary sequence changes and posttranslational modifications that contribute to the efficient polymerization of Antarctic fish tubulins at low temperatures; 2) to evaluate the biochemical adaptations required for efficient function of the brain kinesin motor of Antarctic fishes at low temperatures; and 3) to characterize the structure, organization, and promoter-driven expression of globin and tubulin genes from an Antarctic rockcod (Notothenia coriiceps) and a temperate congener (N. angustata). Brain tubulins from Antarctic fishes differ from those of temperate and warm-blooded vertebrates both in unusual primary sequence substitutions (located primarily in lateral loops and the cores of tubulin monomers) and in posttranslational C-terminal glutamylation. Potential primary sequence adaptations of the Antarctic fish tubulins will be tested directly by production of wild-type and site directed tubulin mutants for functional analysis in vitro. The capacity of mutated and wild-type fish tubulins to form \"cold-stable\" microtubules will be determined by measurement of their critical concentrations for assembly and by analysis of their dynamics by video-enhanced microscopy. Three unusual substitutions in the kinesin motor domain of Chionodraco rastrospinosus may enhance mechanochemical activity at low temperature by modifying the binding of ATP and/or the velocity of the motor. To test the functional significance of these changes, the fish residues will be converted individually, and in concert, to those found in mammalian brain kinesin. Reciprocal substitutions will be introduced into the framework of the mammalian kinesin motor domain. After production in Escherichia coli and purification, the functional performance of the mutant motor domains will be evaluated by measurement of the temperature dependence of their ATPase and motility activities. Molecular adaptation of gene expression in N. coriiceps will be analyzed using an a-globin/b-globin gene pair and an a-tubulin gene cluster. Structural features of N. coriiceps globin and tubulin gene regulatory sequences (promoters and enhancers) that support efficient expression will be assessed by transient transfection assay of promoter/luciferase reporter plasmid constructs in inducible erythrocytic and neuronal model cell systems followed by assay of luciferase reporter activity. Together, these studies should reveal the molecular adaptations of Antarctic fishes that maintain efficient cytoskeletal assembly, mechanochemical motor function, and gene expression at low temperatures. In the broadest sense, this research program should advance the molecular understanding of the poikilothermic mode of life.", "east": -60.456, "geometry": "POINT(-65.6815 -58.8047)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": -52.353, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Sidell, Bruce; Detrich, H. William", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.2564, "title": "Structure, Function, and Expression of Tubulins, Globins, and Microtubule-Dependent Motors from Cold-Adapted Antarctic Fishes", "uid": "p0000591", "west": -70.907}, {"awards": "9910007 Hildebrand, John", "bounds_geometry": "POLYGON((-74.185 -52.3516,-72.6371 -52.3516,-71.0892 -52.3516,-69.5413 -52.3516,-67.9934 -52.3516,-66.4455 -52.3516,-64.8976 -52.3516,-63.3497 -52.3516,-61.8018 -52.3516,-60.2539 -52.3516,-58.706 -52.3516,-58.706 -53.94991,-58.706 -55.54822,-58.706 -57.14653,-58.706 -58.74484,-58.706 -60.34315,-58.706 -61.94146,-58.706 -63.53977,-58.706 -65.13808,-58.706 -66.73639,-58.706 -68.3347,-60.2539 -68.3347,-61.8018 -68.3347,-63.3497 -68.3347,-64.8976 -68.3347,-66.4455 -68.3347,-67.9934 -68.3347,-69.5413 -68.3347,-71.0892 -68.3347,-72.6371 -68.3347,-74.185 -68.3347,-74.185 -66.73639,-74.185 -65.13808,-74.185 -63.53977,-74.185 -61.94146,-74.185 -60.34315,-74.185 -58.74484,-74.185 -57.14653,-74.185 -55.54822,-74.185 -53.94991,-74.185 -52.3516))", "dataset_titles": "Expedition Data; Expedition data of LMG0302; Expedition data of NBP0103; Expedition data of NBP0104; Expedition data of NBP0202", "datasets": [{"dataset_uid": "002595", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0103", "url": "https://www.rvdata.us/search/cruise/NBP0103"}, {"dataset_uid": "001661", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0403"}, {"dataset_uid": "002705", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0302", "url": "https://www.rvdata.us/search/cruise/LMG0302"}, {"dataset_uid": "001878", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0103"}, {"dataset_uid": "001814", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0201A"}, {"dataset_uid": "002586", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0202", "url": "https://www.rvdata.us/search/cruise/NBP0202"}, {"dataset_uid": "002657", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}, {"dataset_uid": "001795", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0203"}, {"dataset_uid": "001607", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0504"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on determining minimum population estimates, distribution and seasonality for mysticete whales, especially blue whales. This will be accomplished using passive acoustic recorders deployed on the seafloor for a period of one to two years. The deployment of a large aperture autonomous hydrophone array in the Antarctic will incorporate the use of passive acoustics as a tool for mysticete whale detection and census. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts.", "east": -58.706, "geometry": "POINT(-66.4455 -60.34315)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V NBP; R/V LMG", "locations": null, "north": -52.3516, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Hildebrand, John; Costa, Daniel; Beardsley, Robert", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -68.3347, "title": "GLOBEC: Mysticete Whale Acoustic Census", "uid": "p0000581", "west": -74.185}, {"awards": "0125624 Wilson, Terry; 0126279 Lawver, Lawrence", "bounds_geometry": "POLYGON((163.69456 -75.04911,164.525266 -75.04911,165.355972 -75.04911,166.186678 -75.04911,167.017384 -75.04911,167.84809 -75.04911,168.678796 -75.04911,169.509502 -75.04911,170.340208 -75.04911,171.170914 -75.04911,172.00162 -75.04911,172.00162 -75.3293,172.00162 -75.60949,172.00162 -75.88968,172.00162 -76.16987,172.00162 -76.45006,172.00162 -76.73025,172.00162 -77.01044,172.00162 -77.29063,172.00162 -77.57082,172.00162 -77.85101,171.170914 -77.85101,170.340208 -77.85101,169.509502 -77.85101,168.678796 -77.85101,167.84809 -77.85101,167.017384 -77.85101,166.186678 -77.85101,165.355972 -77.85101,164.525266 -77.85101,163.69456 -77.85101,163.69456 -77.57082,163.69456 -77.29063,163.69456 -77.01044,163.69456 -76.73025,163.69456 -76.45006,163.69456 -76.16987,163.69456 -75.88968,163.69456 -75.60949,163.69456 -75.3293,163.69456 -75.04911))", "dataset_titles": "Expedition Data; NBP0401 data", "datasets": [{"dataset_uid": "000106", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP0401 data", "url": "https://www.rvdata.us/search/cruise/NBP0401"}, {"dataset_uid": "001664", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0401"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a study to investigate the tectonic development of the southwestern Ross Sea region. Displacements between East and West Antarctica have long been proposed based on global plate circuits, apparent hot spot motions, interpretations of seafloor magnetic anomalies, paleomagnetism, and on geologic grounds. Such motions require plate boundaries crossing Antarctica, yet these boundaries have never been explicitly defined. This project will attempt to delineate the late Cenozoic - active boundary between East and West Antarctica along the Terror Rift in the western Ross Sea, where young structures have been identified, continuity between active extension and intracontinental structures can be established, and where accessibility via ship will allow new key data sets to be acquired. We will use multi-source marine and airborne geophysical data to map the fault patterns and volcanic structure along the eastern margin of the Terror Rift. The orientations of volcanic fissures and seamount alignments on the seafloor will be mapped using multibeam bathymetry. The volcanic alignments will show the regional extension or shear directions across the Terror Rift and the orientations of associated crustal stresses. Swath bathymetry and single channel seismic data will be used to document neotectonic fault patterns and the eastern limit of recent faulting. Delineation of neotectonic fault patterns will demonstrate whether the eastern margin of the Terror Rift forms a continuous boundary and whether the rift itself can be linked with postulated strike-slip faults in the northwestern Ross Sea. Seafloor findings from this project will be combined with fault kinematic and stress field determinations from the surrounding volcanic islands and the Transantarctic Mountains. The integrated results will test the propositions that the eastern boundary of the Terror Rift forms the limit of the major, late Cenozoic -active structures through the Ross Sea and that Terror Rift kinematics involve dextral transtension linked to the right-lateral strike-slip faulting to the north. These results will help constrain the kinematic and dynamic links between the West Antarctic rift system and Southern Ocean structures and any related motions between East and West Antarctica. In the first year, a collaborative structural analysis of existing multichannel and single channel seismic profiles and aeromagnetic data over the Terror Rift will be conducted. The location of volcanic vents or fissures and any fault scarps on the sea floor will be identified and a preliminary interpretation of the age and kinematics of deformation in the Terror Rift will be produced. Late in the second year, a one-month cruise on RVIB N.B. Palmer will carry out multibeam bathymetric and sidescan sonar mapping of selected portions of the seafloor of Terror Rift. Gravity, magnetics, seismic reflection and Bathy2000 3.5 kHz sub-bottom profile data will also be collected across the rift. In the third year, we will use these multisource data to map the orientations and forms of volcanic bodies and the extent and geometry of neotectonic faulting associated with the Terror Rift. The project will: 1) complete a map of neotectonic faults and volcanic structures in the Terror Rift; 2) interpret the structural pattern to derive the motions and stresses associated with development of the rift; 3) compare Terror Rift structures with faults and lineaments mapped in the Transantarctic Mountains to improve age constraints on the structures; and 4) integrate the late Cenozoic structural interpretations from the western Ross Sea with Southern Ocean plate boundary kinematics.", "east": 172.00162, "geometry": "POINT(167.84809 -76.45006)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": true, "keywords": "R/V NBP", "locations": null, "north": -75.04911, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Wilson, Terry", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.85101, "title": "Collaborative Research: Neotectonic Structure of Terror Rift, Western Ross Sea", "uid": "p0000111", "west": 163.69456}, {"awards": "9814579 Stock, Joann; 9815283 Cande, Steven", "bounds_geometry": "POLYGON((-57.56218 -33.87102,-49.979095 -33.87102,-42.39601 -33.87102,-34.812925 -33.87102,-27.22984 -33.87102,-19.646755 -33.87102,-12.06367 -33.87102,-4.480585 -33.87102,3.1025 -33.87102,10.685585 -33.87102,18.26867 -33.87102,18.26867 -35.4505,18.26867 -37.02998,18.26867 -38.60946,18.26867 -40.18894,18.26867 -41.76842,18.26867 -43.3479,18.26867 -44.92738,18.26867 -46.50686,18.26867 -48.08634,18.26867 -49.66582,10.685585 -49.66582,3.1025 -49.66582,-4.480585 -49.66582,-12.06367 -49.66582,-19.646755 -49.66582,-27.22984 -49.66582,-34.812925 -49.66582,-42.39601 -49.66582,-49.979095 -49.66582,-57.56218 -49.66582,-57.56218 -48.08634,-57.56218 -46.50686,-57.56218 -44.92738,-57.56218 -43.3479,-57.56218 -41.76842,-57.56218 -40.18894,-57.56218 -38.60946,-57.56218 -37.02998,-57.56218 -35.4505,-57.56218 -33.87102))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001873", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0102"}, {"dataset_uid": "001699", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304"}, {"dataset_uid": "001746", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0207"}, {"dataset_uid": "002042", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9908"}, {"dataset_uid": "001963", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0007B"}, {"dataset_uid": "001742", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0209"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided jointly by the Antarctic Geology and Geophysics Program of the Office of Polar Programs and the Marine Geology and Geophysics Program of the Division of Ocean Sciences, supports research to develop improved plate rotation models for the Southwest Pacific region (between the Pacific, Antarctic, and Australian plates, and the continental fragments of New Zealand, West Antarctica, Iselin Bank, East Antarctica, and Australia). The improved rotation parameters will be used to address tectonic problems related to motion between East and West Antarctica, and in particular, the questions of relative drift between major hotspot groups and the controversy regarding a possible missing plate boundary in this region. Previous work has documented NNW-striking mid-Tertiary seafloor spreading magnetic anomalies between East and West Antarctica, representing about 150 km of opening of the Adare Trough, north of the Ross Sea. This is not enough motion to resolve the apparent discrepancy between the plate motions and motions inferred from assuming hotspot fixity. Because this motion between East and West Antarctica corresponds to a very small rotation, it points to the need for determination of finite rotations describing motions of the various plates here with a high degree of accuracy, particularly for older times. This is now possible with the datasets that will be used in this project. The work will be accomplished by integrating existing data with analysis and interpretation of other data sets recently made available by Japanese and Italian scientists from their cruises in the region. It will be further augmented by acquisition of new marine geophysical data on selected transits of the R/VIB Nathaniel B. Palmer. Specific objectives of the project include the following: 1) improve the rotation model for mid-Tertiary extension between East and West Antarctica by including the plate boundary between the Pacific and Australia plates directly when calculating Australia-West Antarctica motion, 2) improve the reconstructions for the Late Cretaceous and Early Tertiary times by including new constraints on several boundaries not previously used in the reconstructions, 3) address the implications of new rotation models for the question of the fixity of global hotspots, 4) re-examine the geophysical data from the Western Ross Sea embayment in light of a model for substantial mid-Cenozoic extension.", "east": 18.26867, "geometry": "POINT(-19.646755 -41.76842)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -33.87102, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Cande, Steven; Stock, Joann", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -49.66582, "title": "Collaborative Research: Late Cretaceous and Cenozoic Reconstructions of the Southwest Pacific", "uid": "p0000590", "west": -57.56218}, {"awards": "0324539 Yen, Jeannette", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG0308", "datasets": [{"dataset_uid": "002709", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0308", "url": "https://www.rvdata.us/search/cruise/LMG0308"}, {"dataset_uid": "001686", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0308"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project explores the feasibility of applying fluid physical analyses to evaluate the importance of viscous forces over compensatory temperature adaptations in a polar copepod. The water of the Southern Ocean is 20 Celsius colder and nearly twice as viscous as subtropical seas, and the increased viscosity has significant implications for swimming zooplankton. In each of these warm and cold aquatic environments have evolved abundant carnivorous copepods in the family Euchaetidae. In this exploratory study, two species from the extremes of the natural temperature range (0 and 23C) will be compared to test two alternate hypotheses concerning how Antarctic plankton adapt to the low temperature-high viscosity realm of the Antarctic and to evaluate the importance of viscous forces in the evolution of plankton. How do stronger viscous forces and lower temperature affect the behavior of the Antarctic species? If the Antarctic congener is dynamically similar to its tropical relative, it will operate at the same Reynolds number (Re) as its tropical congener. Alternatively, if the adaptations of the Antarctic congener are proportional to size, they should occupy a higher Re regime, which suggests that the allometry of various processes is not constrained by having to occupy a transitional fluid regime. The experiments are designed with clearly defined outcomes regarding a number of copepod characteristics, such as swimming speed, propulsive force, and size of the sensory field. These characteristics determine not only how copepods relate to the physical world, but also structure their biological interactions. The results of this study will provide insights on major evolutionary forces affecting plankton and provide a means to evaluate the importance of the fluid physical conditions relative to compensatory measures for temperature. Fluid physical, biomechanical, and neurophysiological techniques have not been previously applied to these polar plankton. However, these approaches, if productive and feasible, will provide ways to explore the sensory ecology of polar plankton and the role of small-scale biological-physical-chemical interactions in a polar environment. Experimental evidence validating the importance of viscous effects will also justify further research using latitudinal comparisons of other congeners along a temperature gradient in the world ocean.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Yen, Jeannette", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Dynamic Similarity or Size Proportionality? Adaptations of a Polar Copepod.", "uid": "p0000867", "west": null}, {"awards": "0444134 Mitchell, B. Gregory", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0606", "datasets": [{"dataset_uid": "002646", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0606", "url": "https://www.rvdata.us/search/cruise/NBP0606"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The Shackleton Fracture Zone (SFZ) in Drake Passage of the Southern Ocean defines a boundary between low and high phytoplankton waters. Low chlorophyll water flowing through the southern Drake Passage emerges as high chlorophyll water to the east, and recent evidence indicates that the Southern Antarctic Circumpolar Current Front (SACCF) is steered south of the SFZ onto the Antarctic Peninsula shelf where mixing between the water types occurs. The mixed water is then advected off-shelf with elevated iron and phytoplankton biomass. The SFZ is therefore an ideal natural laboratory to improve the understanding of plankton community responses to natural iron fertilization, and how these processes influence export of organic carbon to the ocean interior. The bathymetry of the region is hypothesized to influence mesoscale circulation and transport of iron, leading to the observed patterns in phytoplankton biomass. The position of the Antarctic Circumpolar Current (ACC) is further hypothesized to influence the magnitude of the flow of ACC water onto the peninsula shelf, mediating the amount of iron transported into the Scotia Sea. To address these hypotheses, a research cruise will be conducted near the SFZ and to the east in the southern Scotia Sea. A mesoscale station grid for vertical profiles, water sampling, and bottle incubation enrichment experiments will complement rapid surface surveys of chemical, plankton, and hydrographic properties. Distributions of manganese, aluminum and radium isotopes will be determined to trace iron sources and estimate mixing rates. Phytoplankton and bacterial physiological states (including responses to iron enrichment) and the structure of the plankton communities will be studied. The primary goal is to better understand how plankton productivity, community structure and export production in the Southern Ocean are affected by the coupling between bathymetry, mesoscale circulation, and distributions of limiting nutrients. The proposed work represents an interdisciplinary approach to address the fundamental physical, chemical and biological processes that contribute to the abrupt transition in chl-a which occurs near the SFZ. Given recent indications that the Southern Ocean is warming, it is important to advance the understanding of conditions that regulate the present ecosystem structure in order to predict the effects of climate variability. This project will promote training and learning across a broad spectrum of groups. Funds are included to support postdocs, graduate students, and undergraduates. In addition, this project will contribute to the development of content for the Polar Science Station website, which has been a resource since 2001 for instructors and students in adult education, home schooling, tribal schools, corrections education, family literacy programs, and the general public.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Mitchell, B.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Plankton Community Structure and Iron Distribution in the Southern Drake Passage and Scotia Sea", "uid": "p0000837", "west": null}, {"awards": "9615053 Domack, Eugene", "bounds_geometry": null, "dataset_titles": "Expedition data of LMG9802", "datasets": [{"dataset_uid": "002718", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG9802", "url": "https://www.rvdata.us/search/cruise/LMG9802"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Domack: OPP 9615053 Manley: OPP 9615670 Banerjee: OPP 9615695 Dunbar: OPP 9615668 Ishman: OPP 9615669 Leventer: OPP 9714371 Abstract This award supports a multi-disciplinary, multi-institutional effort to elucidate the detailed climate history of the Antarctic Peninsula during the Holocene epoch (the last 10,000 years). The Holocene is an important, but often overlooked, portion of the Antarctic paleoclimatic record because natural variability in Holocene climate on time scales of decades to millennia can be evaluated as a model for our present \"interglacial\" world. This project builds on over ten years of prior investigation into the depositional processes, productivity patterns and climate regime of the Antarctic Peninsula. This previous work identified key locations that contain ultra-high resolution records of past climatic variation. These data indicate that solar cycles operating on multi-century and millennial time scales are important regulators of meltwater production and paleoproductivity. These marine records can be correlated with ice core records in Greenland and Antarctica. This project will focus on sediment dispersal patterns across the Palmer Deep region. The objective is to understand the present links between the modern climatic and oceanographic systems and sediment distribution. In particular, additional information is needed regarding the influence of sea ice on the distribution of both biogenic and terrigenous sediment distribution. Sediment samples will be collected with a variety of grab sampling and coring devices. Analytical work will include carbon-14 dating of surface sediments using accellerator mass spectrometry and standard sedimentologic, micropaleontologic and magnetic granulometric analyses. This multiparameter approach is the most effective way to extract the paleoclimatic signals contained in the marine sediment cores. Two additional objectives are the deployment of sediment traps in front of the Muller Ice Shelf in Lallemand Fjord and seismic reflection work in conjunction with site augmentation funded through the Joint Oceanographic Institute. The goal of sediment trap work is to address whether sand transport and deposition adjacent to the ice shelf calving line results from meltwater or aeolian processes. In addition, the relationship between sea ice conditions and primary productivity will be investigated. The collection of a short series of seismic lines across the Palmer Deep basins will fully resolve the question of depth to acoustic basement. The combination of investigators on this project, all with many years of experience working in high latitude settings, provides an effective team to complete the project in a timely fashion. A combination of undergraduate, graduate and post-graduate students will be involved in all stages of the project so that educational objectives will be met in-tandem with research goals of the project.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Domack, Eugene Walter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Holocene Paleoenvironmental Change Along the Antarctic Peninsula: A Test of the Solar/Bi-Polar Signal", "uid": "p0000869", "west": null}, {"awards": "9814383 Domack, Eugene", "bounds_geometry": "POLYGON((-70.90625 -52.35392,-69.456459 -52.35392,-68.006668 -52.35392,-66.556877 -52.35392,-65.107086 -52.35392,-63.657295 -52.35392,-62.207504 -52.35392,-60.757713 -52.35392,-59.307922 -52.35392,-57.858131 -52.35392,-56.40834 -52.35392,-56.40834 -53.615031,-56.40834 -54.876142,-56.40834 -56.137253,-56.40834 -57.398364,-56.40834 -58.659475,-56.40834 -59.920586,-56.40834 -61.181697,-56.40834 -62.442808,-56.40834 -63.703919,-56.40834 -64.96503,-57.858131 -64.96503,-59.307922 -64.96503,-60.757713 -64.96503,-62.207504 -64.96503,-63.657295 -64.96503,-65.107086 -64.96503,-66.556877 -64.96503,-68.006668 -64.96503,-69.456459 -64.96503,-70.90625 -64.96503,-70.90625 -63.703919,-70.90625 -62.442808,-70.90625 -61.181697,-70.90625 -59.920586,-70.90625 -58.659475,-70.90625 -57.398364,-70.90625 -56.137253,-70.90625 -54.876142,-70.90625 -53.615031,-70.90625 -52.35392))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001985", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0003"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research to study the region recently occupied by the Larsen Ice Shelf in the Antarctic Peninsula. Over the last 10 years, scientists have observed a dramatic decay and disintegration of floating ice shelves along the northern end of the Antarctic Peninsula. Meteorological records and satellite observations indicate that this catastrophic decay is related to regional warming of nearly 3 degrees C in the last 50 years. While such retreat of floating ice shelves is unprecedented in historic records, current understanding of the natural variability of ice shelf systems over the last few thousand years is not understood well. This award supports a program of marine geologic research directed at filling this knowledge gap by developing an understanding of the dynamics of the northern Larsen Ice Shelf during the Holocene epoch (the last 10,000 years). The Larsen Ice Shelf is located in the NW Weddell Sea along the eastern side of the Antarctic Peninsula and is currently undergoing a rapid, catastrophic retreat as documented by satellite imagery over the past five years. While the region of the northern Antarctic Peninsula has experienced a pronounced warming trend over the last 40 years, the links between this warming and global change (i.e. greenhouse warming) are not obvious. Yet the ice shelf is clearly receding at a rate unprecedented in historic time, leaving vast areas of the seafloor uncovered and in an open marine setting. This project will collect a series of short sediment cores within the Larsen Inlet and in areas that were at one time covered by the Larsen Ice Shelf. By applying established sediment and fossil criteria to the cores we hope to demonstrate whether the Larsen Ice Shelf has experienced similar periods of retreat and subsequent advance within the last 10,000 years. Past work in various regions of the Antarctic has focused on depositional models for ice shelves that allow one to discern the timing of ice shelf retreat/advance in areas of the Ross Sea, Antarctic Peninsula, and Prydz Bay. This research will lead to a much improved understanding of the dynamics of ice shelf systems and their role in past and future climate oscillations.", "east": -56.40834, "geometry": "POINT(-63.657295 -58.659475)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.35392, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Domack, Eugene Walter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -64.96503, "title": "Paleohistory of the Larsen Ice Shelf: Evidence from the Marine Record", "uid": "p0000619", "west": -70.90625}, {"awards": "0344275 Trivelpiece, Wayne", "bounds_geometry": null, "dataset_titles": "Expedition data of LMG0412", "datasets": [{"dataset_uid": "002683", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0412", "url": "https://www.rvdata.us/search/cruise/LMG0412"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Seabird research conducted at Admiralty Bay, King George Island in the Antarctic Peninsula region has documented annual variability in the life history parameters of the population biology of three related penguin species: the Adelie, the gentoo and the chinstrap (Pygoscelis adeliae, P. papua and P. antarctica, respectively). This long-term study has collected twenty-five years of data on the three related species, including survival and recruitment, population size and breeding success, and diets and foraging ecology. The current project will extend the research linking penguin demography and foraging ecology to variability in the Antarctic marine ecosystem. A major focus of this work will be on the Adelie and gentoo penguin population biology data and the distribution and trophic interactions among the three Pygoscelis species during the breeding season and the non-breeding, winter period. Recent results have provided the first detailed data on the wintering distributions of Adelie and chinstrap penguins in the Antarctic Peninsula region, through the use of satellite tags and time-depth recorders to examine the post-fledging foraging. Specific topics of research include an examination of the size and sex composition of krill captured by penguins feeding chicks and krill collected concurrently by net hauls in the adjacent marine environment and the length-frequency distribution of krill collected from penguin diet samples. The over winter survival of penguin breeding adults and the recruitment of young (two to four year old) pre-breeding penguins to their natal colony will be compared to the extent of sea ice in the winter prior to the breeding season. These variables are expected to be positively correlated for the Adelie but negatively correlated to the chinstrap penguin. Detailed studies of the adult gentoo penguins, which do not disperse widely from the natal colony, will be conducted using satellite tags. The data collected in this study will improve an understanding of the structure and function of the Antarctic through research on the impact of environmental variation on the structure of upper trophic level predators such as the Pygoscelis penguins.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": null, "paleo_time": null, "persons": "Trivelpiece, Wayne", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Foraging Behavior and Demography of Pygoscelis Penguins", "uid": "p0000860", "west": null}, {"awards": "0132032 Detrich, H. William", "bounds_geometry": "POLYGON((-68.84315 -42.87167,-61.576321 -42.87167,-54.309492 -42.87167,-47.042663 -42.87167,-39.775834 -42.87167,-32.509005 -42.87167,-25.242176 -42.87167,-17.975347 -42.87167,-10.708518 -42.87167,-3.441689 -42.87167,3.82514 -42.87167,3.82514 -44.482708,3.82514 -46.093746,3.82514 -47.704784,3.82514 -49.315822,3.82514 -50.92686,3.82514 -52.537898,3.82514 -54.148936,3.82514 -55.759974,3.82514 -57.371012,3.82514 -58.98205,-3.441689 -58.98205,-10.708518 -58.98205,-17.975347 -58.98205,-25.242176 -58.98205,-32.509005 -58.98205,-39.775834 -58.98205,-47.042663 -58.98205,-54.309492 -58.98205,-61.576321 -58.98205,-68.84315 -58.98205,-68.84315 -57.371012,-68.84315 -55.759974,-68.84315 -54.148936,-68.84315 -52.537898,-68.84315 -50.92686,-68.84315 -49.315822,-68.84315 -47.704784,-68.84315 -46.093746,-68.84315 -44.482708,-68.84315 -42.87167))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001655", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0404"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Notothenioid fish are a major group of fish in the Southern Ocean. The ancestral notothenioid fish stock of Antarctica probably arose as a sluggish, bottom-dwelling perciform species that evolved some 40-60 million years ago in the then temperate shelf waters of the Antarctic continent. The grounding of the ice sheet on the continental shelf and changing trophic conditions may have eliminated the taxonomically diverse late Eocene fauna and initiated the original diversification of notothenioids. On the High Antarctic shelf, notothenioids today dominate the ichthyofauna in terms of species diversity, abundance and biomass, the latter two at levels of 90-95%. Since the International Geophysical Year of 1957-58, fish biologists from the Antarctic Treaty nations have made impressive progress in understanding the notothenioid ichthyofauna of the cold Antarctic marine ecosystem. However, integration of this work into the broader marine context has been limited, largely due to lack of access to, and analysis of, specimens of Sub-Antarctic notothenioid fishes. Sub-Antarctic fishes of the notothenioid suborder are critical for a complete understanding of the evolution, population dynamics, eco-physiology, and eco-biochemistry of their Antarctic relatives. This project will support an international, collaborative research cruise to collect and study fish indigenous to sub-antarctic habitats. The topics included in the research plans of the international team of researchers includes Systematics and Evolutionary Studies; Life History Strategies and Population Dynamics; Physiological, Biochemical, and Molecular Biological Investigations of Major Organ and Tissue Systems; Genomic Resources for the Sub-Antarctic Notothenioids; and Ecological Studies of Transitional Benthic Invertebrates. In a world that is experiencing changes in global climate, the loss of biological diversity, and the depletion of marine fisheries, the Antarctic, Sub-Antarctic, and their biota offer compelling natural laboratories for understanding the evolutionary impacts of these processes. The proposed work will contribute to development of a baseline understanding of these sensitive ecosystems, one against which future changes in species distribution and survival may be evaluated judiciously.", "east": 3.82514, "geometry": "POINT(-32.509005 -50.92686)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -42.87167, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Detrich, H. William", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -58.98205, "title": "International Collaborative Expedition to Collect and Study Fish Indigenous to Sub-Antarctic Habitats", "uid": "p0000584", "west": -68.84315}, {"awards": "0338090 Madin, Laurence; 0338290 Kremer, Patricia", "bounds_geometry": "POLYGON((-69.9083 -52.7624,-68.96368 -52.7624,-68.01906 -52.7624,-67.07444 -52.7624,-66.12982 -52.7624,-65.1852 -52.7624,-64.24058 -52.7624,-63.29596 -52.7624,-62.35134 -52.7624,-61.40672 -52.7624,-60.4621 -52.7624,-60.4621 -54.01423,-60.4621 -55.26606,-60.4621 -56.51789,-60.4621 -57.76972,-60.4621 -59.02155,-60.4621 -60.27338,-60.4621 -61.52521,-60.4621 -62.77704,-60.4621 -64.02887,-60.4621 -65.2807,-61.40672 -65.2807,-62.35134 -65.2807,-63.29596 -65.2807,-64.24058 -65.2807,-65.1852 -65.2807,-66.12982 -65.2807,-67.07444 -65.2807,-68.01906 -65.2807,-68.96368 -65.2807,-69.9083 -65.2807,-69.9083 -64.02887,-69.9083 -62.77704,-69.9083 -61.52521,-69.9083 -60.27338,-69.9083 -59.02155,-69.9083 -57.76972,-69.9083 -56.51789,-69.9083 -55.26606,-69.9083 -54.01423,-69.9083 -52.7624))", "dataset_titles": "Data at U.S. JGOFS Data System; Expedition Data", "datasets": [{"dataset_uid": "000118", "doi": "", "keywords": null, "people": null, "repository": "JGOF", "science_program": null, "title": "Data at U.S. JGOFS Data System", "url": "http://usjgofs.whoi.edu/jg/dir/jgofs/"}, {"dataset_uid": "001573", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0602"}, {"dataset_uid": "001565", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0414"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Salps are planktonic grazers that have a life history, feeding biology and population dynamic strikingly different from krill, copepods or other crustacean zooplankton. Salps can occur in very dense population blooms that cover large areas and have been shown to have major impacts due to the their grazing and the production of fast-sinking fecal pellets. Although commonly acknowledged as a major component of the Southern Ocean zooplankton community, often comparable in biomass and distribution to krill, salps have received relatively little attention. Although extensive sampling has documented the seasonal abundance of salps in the Southern Ocean, there is a paucity of data on important rates that determine population growth and the role of this species in grazing and vertical flux of particulates. This proposed study will include: measurements of respiration and excretion rates for solitary and aggregate salps of all sizes; measurements of ingestion rates, including experiments to determine the size or concentration of particulates that can reduce ingestion; and determination of growth rates of solitaries and aggregates. In addition to the various rate measurements, this study will include quantitative surveys of salp horizontal and vertical distribution to determine their biomass and spatial distribution, and to allow a regional assessment of their effects. Measurements of the physical characteristics of the water column and the quantity and quality of particulate food available for the salps at each location will also be made. Satellite imagery and information on sea-ice cover will be used to test hypotheses about conditions that result in high densities of salps. Results will be used to construct a model of salp population dynamics, and both experimental and modeling results will be interpreted within the context of the physical and nutritional conditions to which the salps are exposed. This integrated approach will provide a good basis for understanding the growth dynamics of salp blooms in the Southern Ocean. Two graduate students will be trained on this project, and cruise and research experience will be provided for two undergraduate students. A portion of a website allowing students to be a virtual participant in the research will be created to strengthen students\u0027 quantitative skills. Both PI\u0027s will participate in teacher-researcher workshops, and collaboration with a regional aquarium will be developed in support of public education.", "east": -60.4621, "geometry": "POINT(-65.1852 -59.02155)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": true, "keywords": "Not provided; R/V LMG", "locations": null, "north": -52.7624, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Kremer, Patricia; Madin, Larry; Halanych, Kenneth", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "JGOF", "repositories": "JGOF; R2R", "science_programs": null, "south": -65.2807, "title": "Collaborative Research: Salpa Thompsoni in the Southern Ocean: Bioenergetics, Population Dynamics and Biogeochemical Impact", "uid": "p0000227", "west": -69.9083}, {"awards": "0003619 Dalziel, Ian", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG9810", "datasets": [{"dataset_uid": "002678", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG9810", "url": "https://www.rvdata.us/search/cruise/LMG9810"}, {"dataset_uid": "002092", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG9810"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research program to initiate a Global Positioning System (GPS) network to measure crustal motions in the bedrock surrounding and underlying the West Antarctic Ice Sheet (WAIS). Evaluation of the role of both tectonic and ice-induced crustal motions of the WAIS bedrock is a critical goal for understanding past, present, and future dynamics of WAIS and its potential role in future global change scenarios, as well as improving our understanding of the role of Antarctica in global plate motions. The extent of active tectonism in West Antarctica is largely speculative, as few data exist that constrain its geographic distribution, directions, or rates of deformation. Active tectonism and the influence of bedrock on the WAIS have been highlighted recently by geophysical data indicating active subglacial volcanism and control of ice streaming by the presence of sedimentary basins. The influence of bedrock crustal motion on the WAIS and its future dynamics is a fundamental issue. Existing GPS projects are located only on the fringe of the ice sheet and do not address the regional picture. It is important that baseline GPS measurements on the bedrock around and within the WAIS be started so that a basis is established for detecting change.\u003cbr/\u003e\u003cbr/\u003eTo measure crustal motions, this project will build a West Antarctica GPS Network (WAGN) of at least 15 GPS sites across the interior of West Antarctica (approximately the size of the contiguous United States from the Rocky Mountains to the Pacific coast) over a two-year period beginning in the Antarctic field season 2001-2002. The planned network is designed using the Multi-modal Occupation Strategy (MOST), in which a small number of independent GPS \"roving\" receivers make differential measurements against a network of continuous GPS stations for comparatively short periods at each site. This experimental strategy, successfully implemented by a number of projects in California, S America, the SW Pacific and Central Asia, minimizes logistical requirements, an essential element of application of GPS geodesy in the scattered and remote outcrops of the WAIS bedrock.\u003cbr/\u003e\u003cbr/\u003eThe WAGN program will be integrated with the GPS network that has been established linking the Antarctic Peninsula with South America through the Scotia arc (Scotia Arc GPS Project (SCARP)). It will also interface with stations currently measuring motion across the Ross Embayment, and with the continent-wide GIANT program of the Working Group on Geodesy and Geographic Information Systems of the Scientific Committee on Antarctic Research (SCAR). The GPS network will be based on permanent monuments set in solid rock outcrops that will have near-zero set-up error for roving GPS occupations, and that can be directly converted to a continuous GPS site when future technology makes autonomous operation and satellite data linkage throughout West Antarctica both reliable and economical. The planned network both depends on and complements the existing and planned continuous networks. It is presently not practical, for reasons of cost and logistics, to accomplish the measurements proposed herein with either a network of continuous stations or traditional campaigns.\u003cbr/\u003e\u003cbr/\u003eThe proposed WAGN will complement existing GPS projects by filling a major gap in coverage among several discrete crustal blocks that make up West Antarctica, a critical area of potential bedrock movements. If crustal motions are relatively slow, meaningful results will only begin to emerge within the five-year maximum period of time for an individual funded project. Hence this proposal is only to initiate the network and test precision and velocities at the most critical sites. Once built, however, the network will yield increasingly meaningful results with the passage of time. Indeed, the slower the rates turn out to be, the more important an early start to measuring. It is anticipated that the results of this project will initiate an iterative process that will gradually resolve into an understanding of the contributions from plate rotations and viscoelastic and elastic motions resulting from deglaciation and ice mass changes. Velocities obtained from initial reoccupation of the most critical sites will dictate the timing of a follow-up proposal for reoccupation of the entire network when detectable motions have occurred.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Dalziel, Ian W.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: A GPS Network to Determine Crustal Motions in the Bedrock of the West Antarctic Ice Sheet: Phase I - Installation", "uid": "p0000859", "west": null}, {"awards": "9814349 Hall, Brenda", "bounds_geometry": "POLYGON((-70.4838 -52.3532,-68.92937 -52.3532,-67.37494 -52.3532,-65.82051 -52.3532,-64.26608 -52.3532,-62.71165 -52.3532,-61.15722 -52.3532,-59.60279 -52.3532,-58.04836 -52.3532,-56.49393 -52.3532,-54.9395 -52.3532,-54.9395 -53.61625,-54.9395 -54.8793,-54.9395 -56.14235,-54.9395 -57.4054,-54.9395 -58.66845,-54.9395 -59.9315,-54.9395 -61.19455,-54.9395 -62.4576,-54.9395 -63.72065,-54.9395 -64.9837,-56.49393 -64.9837,-58.04836 -64.9837,-59.60279 -64.9837,-61.15722 -64.9837,-62.71165 -64.9837,-64.26608 -64.9837,-65.82051 -64.9837,-67.37494 -64.9837,-68.92937 -64.9837,-70.4838 -64.9837,-70.4838 -63.72065,-70.4838 -62.4576,-70.4838 -61.19455,-70.4838 -59.9315,-70.4838 -58.66845,-70.4838 -57.4054,-70.4838 -56.14235,-70.4838 -54.8793,-70.4838 -53.61625,-70.4838 -52.3532))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001743", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0209"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award supports a two year program to produce a new reconstruction of ice extent, elevation and thickness at the Last Glacial Maximum (LGM) for the South Shetland Islands in the Antarctic Peninsula. One field season on Livingston Island will involve mapping the areal extent and geomorphology of glacial drift and determining the elevation and distribution of trimlines. In addition, ice flow direction will be determined by mapping and measuring the elevation of erosional features and the position of erratic boulders. One of the main goals of this work will be to demonstrate whether or not organic material suitable for radiocarbon dating exists in the South Shetland Islands. If so, the age of the deposits will be determined by measuring the carbon-14 age of plant, algal, and fungal remains preserved at the base of the deposits, as well as incorporated marine shells, seal skin and other organic material that may be found in raised beach deposits. Another goal will be to concentrate on the development of relative sea-level curves from 2-3 key areas to show whether or not construction of such curves for the South Shetland Islands is possible. The new reconstruction of ice extent, elevation and thickness at the Last Glacial Maximum for the South Shetland Islands which will be produced by this work will be useful in studies of ocean circulation and ice dynamics in the vicinity of the Drake Passage. It will also contribute to the production of a deglacial chronology which will afford important clues about the mechanisms controlling ice retreat in this region of the southern hemisphere.", "east": -54.9395, "geometry": "POINT(-62.71165 -58.66845)", "instruments": null, "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": -52.3532, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Hall, Brenda; Taylor, Frederick", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -64.9837, "title": "AMS Radiocarbon Chronology of Glacier Fluctuations in the South Shetland Islands During the Last Glacial/Interglacial Hemicycle:Implications for Global Climate Change", "uid": "p0000596", "west": -70.4838}, {"awards": "0230069 Naveen, Ron", "bounds_geometry": "POLYGON((-68.0489 -52.7302,-66.96539 -52.7302,-65.88188 -52.7302,-64.79837 -52.7302,-63.71486 -52.7302,-62.63135 -52.7302,-61.54784 -52.7302,-60.46433 -52.7302,-59.38082 -52.7302,-58.29731 -52.7302,-57.2138 -52.7302,-57.2138 -53.97453,-57.2138 -55.21886,-57.2138 -56.46319,-57.2138 -57.70752,-57.2138 -58.95185,-57.2138 -60.19618,-57.2138 -61.44051,-57.2138 -62.68484,-57.2138 -63.92917,-57.2138 -65.1735,-58.29731 -65.1735,-59.38082 -65.1735,-60.46433 -65.1735,-61.54784 -65.1735,-62.63135 -65.1735,-63.71486 -65.1735,-64.79837 -65.1735,-65.88188 -65.1735,-66.96539 -65.1735,-68.0489 -65.1735,-68.0489 -63.92917,-68.0489 -62.68484,-68.0489 -61.44051,-68.0489 -60.19618,-68.0489 -58.95185,-68.0489 -57.70752,-68.0489 -56.46319,-68.0489 -55.21886,-68.0489 -53.97453,-68.0489 -52.7302))", "dataset_titles": "Expedition Data; Expedition data of LMG0413A; Expedition data of LMG0514; Expedition data of LMG0611; Long-term Data Collection at Select Antarctic Peninsula Visitor Sites", "datasets": [{"dataset_uid": "001585", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0514"}, {"dataset_uid": "001547", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0611B"}, {"dataset_uid": "001626", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0413A"}, {"dataset_uid": "002679", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0413A", "url": "https://www.rvdata.us/search/cruise/LMG0413A"}, {"dataset_uid": "002680", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0514", "url": "https://www.rvdata.us/search/cruise/LMG0514"}, {"dataset_uid": "002681", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0611", "url": "https://www.rvdata.us/search/cruise/LMG0611"}, {"dataset_uid": "001686", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0308"}, {"dataset_uid": "600032", "doi": "10.15784/600032", "keywords": "Antarctica; Biota; Penguin; Petermann Island", "people": "Naveen, Ronald", "repository": "USAP-DC", "science_program": null, "title": "Long-term Data Collection at Select Antarctic Peninsula Visitor Sites", "url": "https://www.usap-dc.org/view/dataset/600032"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The Antarctic Site Inventory Project has collected biological data and site-descriptive information in the Antarctic Peninsula region since 1994. This research effort has provided data on those sites which are visited by tourists on shipboard expeditions in the region. The aim is to obtain data on the population status of several key species of Antarctic seabirds, which might be affected by the cumulative impact resulting from visits to the sites. This project will continue the effort by focusing on two heavily-visited Antarctic Peninsula sites: Paulet Island, in the northwestern Weddell Sea and Petermann Island, in the Lemaire Channel near Anvers Island. These sites were selected because both rank among the ten most visited sites in Antarctica each year in terms of numbers of visitors and zodiac landings; both are diverse in species composition, and both are sensitive to potential environmental disruptions from visitors. These data collected focus on two important biological parameters for penguins and blue-eyed shags: (1) breeding population size (number of occupied nests) and (2) breeding success (number of chicks per occupied nests). A long-term data program will be supported, with studies at the two sites over a five-year period. The main focus will be at Petermann Island, selected for intensive study due to its visitor status and location in the region near Palmer Station. This will allow for comparative data with the Palmer Long Term Ecological Research program. Demographic data will be collected in accordance with Standard Methods established by the Convention for the Conservation of Antarctic Marine Living Resources Ecosystem Monitoring Program and thus will be comparable with similar data sets being collected by other international Antarctic Treaty nation research programs. While separating human-induced change from change resulting from a combination of environmental factors will be difficult, this work will provide a first step to identify potential impacts. These long-term data sets will contribute to a better understanding of biological processes in the entire region and will contribute valuable information to be used by the Antarctic Treaty Parties as they address issues in environmental stewardship in Antarctica.", "east": -57.2138, "geometry": "POINT(-62.63135 -58.95185)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": true, "keywords": "R/V LMG; FIELD SURVEYS", "locations": null, "north": -52.7302, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Yen, Jeannette; Naveen, Ronald; Leger, Dave", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -65.1735, "title": "Long-term Data Collection at Select Antarctic Peninsula Visitor Sites", "uid": "p0000122", "west": -68.0489}, {"awards": "9814692 Kellogg, Thomas", "bounds_geometry": "POLYGON((-179.99342 -58.74225,-143.994734 -58.74225,-107.996048 -58.74225,-71.997362 -58.74225,-35.998676 -58.74225,0.000010000000003 -58.74225,35.998696 -58.74225,71.997382 -58.74225,107.996068 -58.74225,143.994754 -58.74225,179.99344 -58.74225,179.99344 -60.716231,179.99344 -62.690212,179.99344 -64.664193,179.99344 -66.638174,179.99344 -68.612155,179.99344 -70.586136,179.99344 -72.560117,179.99344 -74.534098,179.99344 -76.508079,179.99344 -78.48206,143.994754 -78.48206,107.996068 -78.48206,71.997382 -78.48206,35.998696 -78.48206,0.000010000000003 -78.48206,-35.998676 -78.48206,-71.997362 -78.48206,-107.996048 -78.48206,-143.994734 -78.48206,-179.99342 -78.48206,-179.99342 -76.508079,-179.99342 -74.534098,-179.99342 -72.560117,-179.99342 -70.586136,-179.99342 -68.612155,-179.99342 -66.638174,-179.99342 -64.664193,-179.99342 -62.690212,-179.99342 -60.716231,-179.99342 -58.74225))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001992", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0001"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a marine geological investigation of the Amundsen Sea region toward a better understanding of the deglaciation history of the West Antarctic Ice Sheet (WAIS). The WAIS may be inherently unstable because it is the last marine-based ice sheet in the world. Unlike other embayments in West Antarctica, major ice streams draining into the Amundsen Sea from the interior of the WAIS lack buttressing ice shelves. Mass balance data for the distal portions of these ice streams (Pine Island and Thwaites glaciers) appear to be in balance or may be becoming negative. Because both ice streams have beds that slope downward toward the center of the ice sheet, grounding-line recession resulting from either continued thinning or sea-level rise could trigger irreversible grounding-line retreat, leading to ice-sheet disintegration and consequent global sea-level rise. The limited marine geological and geophysical data available from the Amundsen Sea suggest that grounded ice or an ice shelf occupied the inner Amundsen Sea embayment until perhaps as recently as 1000 to 2000 years ago, and this ice may have retreated rapidly in historic time. This project, a study of the marine geology and geophysics of the Amundsen Sea continental shelf from 100 degrees W to 130 degrees W, is designed to address the Amundsen Sea part of WAIS Science Plan Priority Goal H2: \"What is the deglaciation history in the eastern Ross, the Bellingshausen and Amundsen Seas?\" This project will examine bathymetric data of the Amundsen Sea continental shelf to determine the positions of former ice-steam channels, and to aid in choosing sites for sediment coring. Single-channel seismic reflection studies will be conducted in order to determine sediment-thickness patterns, to aid in choice of coring sites, and to locate and identify morphologic features indicative of former grounded ice (e.g., moraines, scours, flutes, striations, till wedges and deltas, etc.). Coring will be concentrated along former ice flow-lines. Core samples will be analyzed in the laboratory for sedimentology, to determine whether of not basal tills are present (indicating former grounded ice and its former extent), and for calcareous and siliceous microfossils. The chronology of grounding-line and ice-shelf retreat from a presumed Last Glacial Maximum position near the shelf break will be established using accelerator mass spectrometry (AMS) carbon-14 dates of acid-insoluble particulate organic carbon. This project will share ship time in the Amundsen Sea with a physical oceanographic project. Marine geologic data and samples collected will be integrated with findings of other investigators toward developing a comprehensive interpretation of the history of the WAIS.", "east": 179.99344, "geometry": "POINT(0.000010000000003 -68.612155)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -58.74225, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kellogg, Thomas; Jacobs, Stanley", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -78.48206, "title": "Glacial History of the Amundsen Sea Shelf", "uid": "p0000620", "west": -179.99342}, {"awards": "0337159 McPhee, Miles", "bounds_geometry": "POLYGON((-64.71659 -53.00174,-57.631677 -53.00174,-50.546764 -53.00174,-43.461851 -53.00174,-36.376938 -53.00174,-29.292025 -53.00174,-22.207112 -53.00174,-15.122199 -53.00174,-8.037286 -53.00174,-0.952373 -53.00174,6.13254 -53.00174,6.13254 -54.292069,6.13254 -55.582398,6.13254 -56.872727,6.13254 -58.163056,6.13254 -59.453385,6.13254 -60.743714,6.13254 -62.034043,6.13254 -63.324372,6.13254 -64.614701,6.13254 -65.90503,-0.952373 -65.90503,-8.037286 -65.90503,-15.122199 -65.90503,-22.207112 -65.90503,-29.292025 -65.90503,-36.376938 -65.90503,-43.461851 -65.90503,-50.546764 -65.90503,-57.631677 -65.90503,-64.71659 -65.90503,-64.71659 -64.614701,-64.71659 -63.324372,-64.71659 -62.034043,-64.71659 -60.743714,-64.71659 -59.453385,-64.71659 -58.163056,-64.71659 -56.872727,-64.71659 -55.582398,-64.71659 -54.292069,-64.71659 -53.00174))", "dataset_titles": "Expedition Data; Processed ADCP Sonar and CTD Data from the Maud Rise acquired during the Nathaniel B. Palmer expedition NBP0506", "datasets": [{"dataset_uid": "601342", "doi": null, "keywords": "ADCP Acoustic Doppler Current Profiler; Antarctica; CTD; Maud Rise; NBP0506; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Southern Ocean; Temperature; Turbulance; Weddell Sea", "people": "McPhee, Miles G.", "repository": "USAP-DC", "science_program": null, "title": "Processed ADCP Sonar and CTD Data from the Maud Rise acquired during the Nathaniel B. Palmer expedition NBP0506", "url": "https://www.usap-dc.org/view/dataset/601342"}, {"dataset_uid": "001590", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0506"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project is an investigation into one mechanism by which deep ocean convection can evolve from stable initial conditions, to the extent that it becomes well enough established to bring warm water to the surface and melt an existing ice cover in late, or possibly even mid-winter. The specific study will investigate how the non-linear dependence of seawater density on temperature and salinity (the equation of state) can enhance vertical convection under typical antarctic conditions. When layers of seawater with similar densities but strong contrasts in temperature and salinity interact, there are a number of possible non-linear instabilities that can convert existing potential energy to turbulent energy. In the Weddell Sea, a cold surface mixed layer is often separated from the underlying warm, more saline water by a thin, weak pycnocline, making the water column particularly susceptible to an instability associated with thermobaricity (the pressure dependence of the thermal expansion coefficient). The project is a collaboration between New York University, Earth and Space Research, the University of Washington, the Naval Postgraduate School, and McPhee Research Company.\u003cbr/\u003eThe work has strong practical applications in contributing to the explanation for the existence of the Weddell Polynya, a 300,000 square kilometer area of open water within the seasonal sea ice of the Weddell Sea, from approximately 1975 to 1979. It has not recurred since, although indications of much smaller and less persistent areas of open water do occur in the vicinity of the Maud Rise seamount. \u003cbr/\u003e The experimental component will be carried out on board the RVIB Nathaniel B. Palmer between July and September, 2005.", "east": 6.13254, "geometry": "POINT(-29.292025 -59.453385)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -53.00174, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "McPhee, Miles G.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -65.90503, "title": "Collaborative Research: The Maud Rise Nonlinear Equation of State Study (MaudNESS)", "uid": "p0000579", "west": -64.71659}, {"awards": "0636787 Robinson, Laura", "bounds_geometry": "POLYGON((-69.13317 -52.716503,-65.8622114 -52.716503,-62.5912528 -52.716503,-59.3202942 -52.716503,-56.0493356 -52.716503,-52.778377 -52.716503,-49.5074184 -52.716503,-46.2364598 -52.716503,-42.9655012 -52.716503,-39.6945426 -52.716503,-36.423584 -52.716503,-36.423584 -53.5798407,-36.423584 -54.4431784,-36.423584 -55.3065161,-36.423584 -56.1698538,-36.423584 -57.0331915,-36.423584 -57.8965292,-36.423584 -58.7598669,-36.423584 -59.6232046,-36.423584 -60.4865423,-36.423584 -61.34988,-39.6945426 -61.34988,-42.9655012 -61.34988,-46.2364598 -61.34988,-49.5074184 -61.34988,-52.778377 -61.34988,-56.0493356 -61.34988,-59.3202942 -61.34988,-62.5912528 -61.34988,-65.8622114 -61.34988,-69.13317 -61.34988,-69.13317 -60.4865423,-69.13317 -59.6232046,-69.13317 -58.7598669,-69.13317 -57.8965292,-69.13317 -57.0331915,-69.13317 -56.1698538,-69.13317 -55.3065161,-69.13317 -54.4431784,-69.13317 -53.5798407,-69.13317 -52.716503))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001510", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0805"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project uses radiocarbon in deep-sea corals to understand the Southern Ocean\u0027s role in modulating global climate. A key site of deep-water formation, the Southern Ocean is critical to exchange of heat and carbon between the deep-ocean and atmosphere. Changes in it may be linked to low atmospheric CO2 during the last glacial maximum through increased biologic carbon draw down or decreased air-sea CO2 exchange. Testing these hypotheses is challenging because of the scarcity of suitable records of the Southern Ocean\u0027s biogeochemistry and circulation. The aragonitic skeletons of deep-sea corals may offer insight because they are well suited for radiocarbon analyses-reflective of the 14C content of the past water column--while also allowing for timing of events through U-series age measurements. Overall, these measurements will put new constraints on the extent of air-sea gas exchange, polar water-column stratification, and the flux of Southern-sourced deep water to the rest of the world\u0027s oceans. As a part of this work, new sections of the Drake Passage sea floor will be mapped and imaged, along with the present and past distributions of deep-sea corals and their habitats. \u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eA significant broader impact of this work is characterizing the functioning of what may be a key control of atmospheric CO2 content, which could prove important for fully understanding the impacts of continued CO2 emissions and developing mitigation strategies. As well, the work will characterize deep marine ecologies that are poorly understood, but increasingly exploited as fisheries resources.", "east": -36.423584, "geometry": "POINT(-52.778377 -57.0331915)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.716503, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Dalziel, Ian W.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -61.34988, "title": "Glacial Radiocarbon Constraints from Drake Passage Deep-Sea Corals", "uid": "p0000528", "west": -69.13317}, {"awards": "0125985 Trivelpiece, Wayne", "bounds_geometry": "POLYGON((-70.907646 -52.351532,-69.6445116 -52.351532,-68.3813772 -52.351532,-67.1182428 -52.351532,-65.8551084 -52.351532,-64.591974 -52.351532,-63.3288396 -52.351532,-62.0657052 -52.351532,-60.8025708 -52.351532,-59.5394364 -52.351532,-58.276302 -52.351532,-58.276302 -53.6039408,-58.276302 -54.8563496,-58.276302 -56.1087584,-58.276302 -57.3611672,-58.276302 -58.613576,-58.276302 -59.8659848,-58.276302 -61.1183936,-58.276302 -62.3708024,-58.276302 -63.6232112,-58.276302 -64.87562,-59.5394364 -64.87562,-60.8025708 -64.87562,-62.0657052 -64.87562,-63.3288396 -64.87562,-64.591974 -64.87562,-65.8551084 -64.87562,-67.1182428 -64.87562,-68.3813772 -64.87562,-69.6445116 -64.87562,-70.907646 -64.87562,-70.907646 -63.6232112,-70.907646 -62.3708024,-70.907646 -61.1183936,-70.907646 -59.8659848,-70.907646 -58.613576,-70.907646 -57.3611672,-70.907646 -56.1087584,-70.907646 -54.8563496,-70.907646 -53.6039408,-70.907646 -52.351532))", "dataset_titles": "Expedition Data; Expedition data of LMG0208", "datasets": [{"dataset_uid": "001747", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0208"}, {"dataset_uid": "002724", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0208", "url": "https://www.rvdata.us/search/cruise/LMG0208"}, {"dataset_uid": "001752", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0207"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Seabird research conducted at Admiralty Bay, King George Island in the Antarctic Peninsula region has documented annual variability in the life history parameters of the population biology of three related penguin species: the Adelie, the gentoo and the chinstrap (Pygoscelis adeliae, P. papua and P. antarctica, respectively). This long-term study has collected twenty-five years of data on the three related species, including survival and recruitment, population size and breeding success, and diets and foraging ecology. The current project will extend the research linking penguin demography and foraging ecology to variability in the Antarctic marine ecosystem. A major focus of this work will be on the Adelie and gentoo penguin population biology data and the distribution and trophic interactions among the three Pygoscelis species during the breeding season and the non-breeding, winter period. Recent results have provided the first detailed data on the wintering distributions of Adelie and chinstrap penguins in the Antarctic Peninsula region, through the use of satellite tags and time-depth recorders to examine the post-fledging foraging. Specific topics of research include an examination of the size and sex composition of krill captured by penguins feeding chicks and krill collected concurrently by net hauls in the adjacent marine environment and the length-frequency distribution of krill collected from penguin diet samples. The over winter survival of penguin breeding adults and the recruitment of young (two to four year old) pre-breeding penguins to their natal colony will be compared to the extent of sea ice in the winter prior to the breeding season. These variables are expected to be positively correlated for the Adelie but negatively correlated to the chinstrap penguin. Detailed studies of the adult gentoo penguins, which do not disperse widely from the natal colony, will be conducted using satellite tags. The data collected in this study will improve an understanding of the structure and function of the Antarctic through research on the impact of environmental variation on the structure of upper trophic level predators such as the Pygoscelis penguins.", "east": -58.276302, "geometry": "POINT(-64.591974 -58.613576)", "instruments": null, "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": -52.351532, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Trivelpiece, Wayne; Stearns, Charles R.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -64.87562, "title": "Foraging Behavior and Demography of Pygoscelis Penguins", "uid": "p0000597", "west": -70.907646}, {"awards": "0440687 Costa, Daniel", "bounds_geometry": "POLYGON((-68.2775 -52.7602,-67.59761 -52.7602,-66.91772 -52.7602,-66.23783 -52.7602,-65.55794 -52.7602,-64.87805 -52.7602,-64.19816 -52.7602,-63.51827 -52.7602,-62.83838 -52.7602,-62.15849 -52.7602,-61.4786 -52.7602,-61.4786 -54.24701,-61.4786 -55.73382,-61.4786 -57.22063,-61.4786 -58.70744,-61.4786 -60.19425,-61.4786 -61.68106,-61.4786 -63.16787,-61.4786 -64.65468,-61.4786 -66.14149,-61.4786 -67.6283,-62.15849 -67.6283,-62.83838 -67.6283,-63.51827 -67.6283,-64.19816 -67.6283,-64.87805 -67.6283,-65.55794 -67.6283,-66.23783 -67.6283,-66.91772 -67.6283,-67.59761 -67.6283,-68.2775 -67.6283,-68.2775 -66.14149,-68.2775 -64.65468,-68.2775 -63.16787,-68.2775 -61.68106,-68.2775 -60.19425,-68.2775 -58.70744,-68.2775 -57.22063,-68.2775 -55.73382,-68.2775 -54.24701,-68.2775 -52.7602))", "dataset_titles": "Expedition Data; Expedition data of LMG0706; Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection", "datasets": [{"dataset_uid": "002713", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0706", "url": "https://www.rvdata.us/search/cruise/LMG0706"}, {"dataset_uid": "001534", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0705"}, {"dataset_uid": "600044", "doi": "10.15784/600044", "keywords": "Bellingshausen Sea; Biota; Oceans; Seals; Southern Ocean", "people": "Costa, Daniel; Crocker, Daniel; Klinck, John M.; Goebel, Michael; Hofmann, Eileen", "repository": "USAP-DC", "science_program": null, "title": "Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection", "url": "https://www.usap-dc.org/view/dataset/600044"}, {"dataset_uid": "002714", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0706", "url": "https://www.rvdata.us/search/cruise/LMG0706"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "As long-lived animals, marine mammals must be capable of accommodating broad variations in food resources over large spatial and temporal scales. While this is true of all marine mammals, variation in the physical and biological environmental is particularly profound in the Southern Ocean. A basic understanding of the foraging behavior and habitat utilization of pelagic predators requires knowledge of this spatial and temporal variation, coupled with information of how they respond to these changes. Current understanding of these associations is primarily limited to population level studies where animal abundance has been correlated with oceanography. Although these studies are informative, they cannot provide insights into the strategies employed by individual animals nor can they provide insights into the spatial or temporal course of these interactions. \u003cbr/\u003e\u003cbr/\u003eRecent technological advances in instrumentation make it possible to extend an understanding beyond the simple linkage of prey and predator distributions with environmental features. The key to understanding the processes that lead to high predator abundance is the identification of the specific foraging behaviors associated with different features of the water column. This study will accomplish these objectives by combining accurate positional data, measures of diving and foraging behavior, animal-derived water-column temperature and salinity data, and available oceanographic data. This project will examine the foraging behavior and habitat utilization of two species of contrasting foraging ecology, the southern elephant seal, Mirounga leonina, and the crabeater seal, Lobodon carcinophagus in the Western Antarctic Peninsula, a region of strong environmental gradients. Although these two species are phylogenetically related, they utilize substantially different but adjacent habitat types. Southern elephant seals are predominantly pelagic, moving throughout the southern ocean, venturing occasionally into the seasonal pack ice whereas crabeater seals range throughout the seasonal pack ice, venturing occasionally into open water. The relationship of specific foraging behaviors and animal movement patterns to oceanographic and bathymetric features develop and test models of the importance of these features in defining habitat use will be determined along with a comparison of how individuals of each species respond to annual variability in the marine environment. The physical oceanography of the Southern Ocean is inherently complex as are the biological processes that are intrinsically linked to oceanographic processes. Significant resources are currently being directed toward developing mathematical models of physical oceanographic processes with the goals of better understanding the role that the Southern Ocean plays in global climate processes, predicting the responses of ocean and global scale processes to climate change, and understanding the linkages between physical and biological oceanographic processes. These efforts have been limited by the scarcity of oceanographic data in the region, especially at high latitudes in the winter months. This study will provide new and significant oceanographic data on temperature and salinity profiles in to further the understanding of the dynamics of the upper water column of west Antarctic Peninsula continental shelf waters. Outreach activities include website development and an association with a marine education program at the Monterrey Bay Aquarium Research Institute.", "east": -61.4786, "geometry": "POINT(-64.87805 -60.19425)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": true, "keywords": "Not provided; R/V LMG", "locations": null, "north": -52.7602, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Costa, Daniel; Hofmann, Eileen; Goebel, Michael; Crocker, Daniel; Sidell, Bruce; Klinck, John M.", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -67.6283, "title": "Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection", "uid": "p0000082", "west": -68.2775}, {"awards": "0338317 Stock, Joann; 0338346 Cande, Steven", "bounds_geometry": "POLYGON((-179.9987 71.33822,-143.998893 71.33822,-107.999086 71.33822,-71.999279 71.33822,-35.999472 71.33822,0.000334999999978 71.33822,36.000142 71.33822,71.999949 71.33822,107.999756 71.33822,143.999563 71.33822,179.99937 71.33822,179.99937 59.8431,179.99937 48.34798,179.99937 36.85286,179.99937 25.35774,179.99937 13.86262,179.99937 2.3675,179.99937 -9.12762,179.99937 -20.62274,179.99937 -32.11786,179.99937 -43.61298,143.999563 -43.61298,107.999756 -43.61298,71.999949 -43.61298,36.000142 -43.61298,0.000335000000007 -43.61298,-35.999472 -43.61298,-71.999279 -43.61298,-107.999086 -43.61298,-143.998893 -43.61298,-179.9987 -43.61298,-179.9987 -32.11786,-179.9987 -20.62274,-179.9987 -9.12762,-179.9987 2.3675,-179.9987 13.86262,-179.9987 25.35774,-179.9987 36.85286,-179.9987 48.34798,-179.9987 59.8431,-179.9987 71.33822))", "dataset_titles": "Expedition Data; Expedition data of NBP0501", "datasets": [{"dataset_uid": "001652", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0406"}, {"dataset_uid": "001692", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304D"}, {"dataset_uid": "001557", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0607C"}, {"dataset_uid": "001577", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0602"}, {"dataset_uid": "001660", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0403"}, {"dataset_uid": "001690", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304B"}, {"dataset_uid": "001609", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0501B"}, {"dataset_uid": "001512", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0804"}, {"dataset_uid": "001561", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0607A"}, {"dataset_uid": "001691", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304C"}, {"dataset_uid": "002627", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "001587", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0507"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project will utilize the R/VIB Nathaniel B. Palmer\u0027s transit cruises to collect marine geophysical data on targets-of-opportunity in the southern oceans. Because the Palmer generally traverses regions only sparsely surveyed with geophysical instruments, this project represents a cost-effective way to collect important new data. The work\u0027s focus is expanding our knowledge of plate motion histories for the Antarctic and surrounding plates. The ultimate goals are improving global plate reconstructions and gaining new insight into general plate kinematics and dynamics and lithospheric rheology. Only slight deviations from the straight routes are required, and we expect to operate on one cruise per year over the three years of the project. The first cruise from New Zealand to Chile will survey a flow line of Pacific-Antarctic plate motion along the Menard fracture zone, which crosses the East Pacific Rise at ~50 S latitude. Swath bathymetry, gravity, magnetics, and a small amount of seismic reflection profiling will be collected to determine the exact trace of the fracture zone and its relationship to the associated gravity anomaly seen in shipboard and satellite radar altimetry data. These observations are critical for precise plate reconstructions, and will provide GPS-navigated locations of a major fracture zone near the northern end of the Pacific-Antarctic boundary. These data will be used in combination with similar data from the Pitman fracture zone at the southwestern end of the plate boundary and magnetic anomalies from previous cruises near the Menard fracture zone to improve high-precision plate reconstructions and evaluate the limits of internal deformation of the Pacific and Antarctic plates. The science plan for cruises in following years will be designed once transit schedules are set. In terms of broader impacts, we plan to teach an on-board marine geophysics class to graduate and undergraduate students on two cruises. The class consists of daily classroom lectures about the instruments and data; several hours per day of watch standing and data processing; and work by each student on an independent research project. We expect to accommodate 15 students per class, including participants from primarily undergraduate institutions with high minority enrollments.", "east": 179.99937, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e WATER BOTTLES", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": 71.33822, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Croon, Marcel; Stock, Joann; Miller, Alisa; Cande, Steven; Gordon, Arnold", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -43.61298, "title": "Collaborative Research: Collection of Marine Geophysical Data on Transits of the Nathaniel B. Palmer", "uid": "p0000121", "west": -179.9987}, {"awards": "9119683 Anderson, John", "bounds_geometry": "POLYGON((-179.999 -72.1543,-143.9991 -72.1543,-107.9992 -72.1543,-71.9993 -72.1543,-35.9994 -72.1543,0.000500000000017 -72.1543,36.0004 -72.1543,72.0003 -72.1543,108.0002 -72.1543,144.0001 -72.1543,180 -72.1543,180 -72.72384,180 -73.29338,180 -73.86292,180 -74.43246,180 -75.002,180 -75.57154,180 -76.14108,180 -76.71062,180 -77.28016,180 -77.8497,144.0001 -77.8497,108.0002 -77.8497,72.0003 -77.8497,36.0004 -77.8497,0.000499999999988 -77.8497,-35.9994 -77.8497,-71.9993 -77.8497,-107.9992 -77.8497,-143.9991 -77.8497,-179.999 -77.8497,-179.999 -77.28016,-179.999 -76.71062,-179.999 -76.14108,-179.999 -75.57154,-179.999 -75.002,-179.999 -74.43246,-179.999 -73.86292,-179.999 -73.29338,-179.999 -72.72384,-179.999 -72.1543))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002258", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9401"}, {"dataset_uid": "002241", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9501"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Marine geological and geophysical studies of the Ross Sea and Weddell Sea continental shelves provide evidence that the ice sheet grounded near the shelf edge in these areas during the late Wisconsinan, and that the retreat of the ice sheet to its present position was rapid and probably episodic. This Award supports a project which will establish the most recent (late Wisconsin- Holocene) history of ice sheet advance and retreat in Ross Sea. The objectives include: 1) reconstruction the late Wisconsin paleodrainage regime, including ice stream divides; 2) reconstruction of former grounding zone positions; 3) constraint of the timing of ice sheet retreat from the shelf; and 4) acquisition of geophysical, sedimentological, and paleontological data which may provide indicators the environmental factors that may have influenced to ice sheet retreat. This is a joint effort between Rice University, the University of Colorado, and Hamilton College. The project involves experts in a wide variety of fields, and will interface with glaciologists, physical oceanographers and climatologists who will address the problem of ice sheet stability and the record of climatic and glaciological change.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -72.1543, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, John", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.8497, "title": "Geologic Record of Late Wisconsinan/Holocene Ice Sheet Advance and Retreat from Ross Sea", "uid": "p0000641", "west": -179.999}, {"awards": "9815823 Smith, Craig", "bounds_geometry": "POLYGON((-70.90683 -52.35533,-69.8661302 -52.35533,-68.8254304 -52.35533,-67.7847306 -52.35533,-66.7440308 -52.35533,-65.703331 -52.35533,-64.6626312 -52.35533,-63.6219314 -52.35533,-62.5812316 -52.35533,-61.5405318 -52.35533,-60.499832 -52.35533,-60.499832 -53.818664,-60.499832 -55.281998,-60.499832 -56.745332,-60.499832 -58.208666,-60.499832 -59.672,-60.499832 -61.135334,-60.499832 -62.598668,-60.499832 -64.062002,-60.499832 -65.525336,-60.499832 -66.98867,-61.5405318 -66.98867,-62.5812316 -66.98867,-63.6219314 -66.98867,-64.6626312 -66.98867,-65.703331 -66.98867,-66.7440308 -66.98867,-67.7847306 -66.98867,-68.8254304 -66.98867,-69.8661302 -66.98867,-70.90683 -66.98867,-70.90683 -65.525336,-70.90683 -64.062002,-70.90683 -62.598668,-70.90683 -61.135334,-70.90683 -59.672,-70.90683 -58.208666,-70.90683 -56.745332,-70.90683 -55.281998,-70.90683 -53.818664,-70.90683 -52.35533))", "dataset_titles": "Expedition Data; Expedition data of LMG0009", "datasets": [{"dataset_uid": "001811", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0009"}, {"dataset_uid": "002689", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0009", "url": "https://www.rvdata.us/search/cruise/LMG0009"}, {"dataset_uid": "001983", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0004"}, {"dataset_uid": "001880", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0102"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "OPP98-15823 P.I. Craig Smith OPP98-16049 P.I. David DeMaster Primary production in Antarctic coastal waters is highly seasonal, yielding an intense pulse of biogenic particles to the continental shelf floor. This seasonal pulse may have major ramifications for carbon cycling, benthic ecology and material burial on the west Antarctic Peninsula (WAP) shelf. Thus, we propose a multii-disciplinary program to evaluate the seafloor accumulation, fate and benthic community impacts of bloom material along a transect of three stations crossing the Antarctic shelf in the Palmer LTER study area. Using a seasonal series of five cruises to our transect, we will test the following hypostheses: (1) A substantial proportion of spring/summer export production is deposited ont eh WAP shelf as phytodetritus or fecal pellets. (2) The deposited bloom production is a source of labile particulate organic carbon for benthos for an extended period of time (months). (3) Large amounts of labile bloom POC are rapidly subducted into the sediment column by the deposit-feeding and caching activities of benthos. (4) Macrobenthic detritivores sustain a rapid increase in biomass and abundance following the spring/summer particulate organic carbon pulse. To test these hypotheses, we will evaluate seabed deposition and lability of particulate organic carbon, patterns of particulate organic carbon mixing into sediments, seasonal variations in macrofaunal and megafaunal abundance, biomass and reproductive condition, and rates of particulate organic carbon and silica mineralization and accumulation in the seabed. Fluxes of biogenic materials and radionuclides into midwater particle traps will be contrasted with seabed deposition and burial rates to establish water-column and seabed preservation efficiencies for these materials. The project will substantially improve our understanding of the spring/summer production pulse on the WAP shelf and its impacts on seafloor communities and carbon cycling in Antarctic coastal systems.", "east": -60.499832, "geometry": "POINT(-65.703331 -59.672)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP; R/V LMG", "locations": null, "north": -52.35533, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Craig", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": "LTER", "south": -66.98867, "title": "Bentho-Pelagic Coupling on the West Antarctic Peninsula Shelf: The Impact and Fate of Bloom Material at the Seafloor", "uid": "p0000610", "west": -70.90683}, {"awards": "0338371 Hallet, Bernard; 0338137 Anderson, John", "bounds_geometry": "POLYGON((-74.59492 -45.98986,-74.072309 -45.98986,-73.549698 -45.98986,-73.027087 -45.98986,-72.504476 -45.98986,-71.981865 -45.98986,-71.459254 -45.98986,-70.936643 -45.98986,-70.414032 -45.98986,-69.891421 -45.98986,-69.36881 -45.98986,-69.36881 -46.835236,-69.36881 -47.680612,-69.36881 -48.525988,-69.36881 -49.371364,-69.36881 -50.21674,-69.36881 -51.062116,-69.36881 -51.907492,-69.36881 -52.752868,-69.36881 -53.598244,-69.36881 -54.44362,-69.891421 -54.44362,-70.414032 -54.44362,-70.936643 -54.44362,-71.459254 -54.44362,-71.981865 -54.44362,-72.504476 -54.44362,-73.027087 -54.44362,-73.549698 -54.44362,-74.072309 -54.44362,-74.59492 -54.44362,-74.59492 -53.598244,-74.59492 -52.752868,-74.59492 -51.907492,-74.59492 -51.062116,-74.59492 -50.21674,-74.59492 -49.371364,-74.59492 -48.525988,-74.59492 -47.680612,-74.59492 -46.835236,-74.59492 -45.98986))", "dataset_titles": "Expedition data of NBP0505; Expedition data of NBP0703; NBP0505 CTD data; NBP0505 sediment core locations", "datasets": [{"dataset_uid": "601363", "doi": "10.15784/601363", "keywords": "Chile; CTD; CTD Data; Depth; Fjord; NBP0505; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Temperature", "people": "Wellner, Julia; Anderson, John", "repository": "USAP-DC", "science_program": null, "title": "NBP0505 CTD data", "url": "https://www.usap-dc.org/view/dataset/601363"}, {"dataset_uid": "002642", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0703", "url": "https://www.rvdata.us/search/cruise/NBP0703"}, {"dataset_uid": "002609", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0505", "url": "https://www.rvdata.us/search/cruise/NBP0505"}, {"dataset_uid": "601362", "doi": "10.15784/601362", "keywords": "Chile; Fjord; Marine Geoscience; NBP0505; R/v Nathaniel B. Palmer; Sample/collection Description; Sample/Collection Description; Sediment Core; Sediment Corer; Station List", "people": "Anderson, John; Wellner, Julia", "repository": "USAP-DC", "science_program": null, "title": "NBP0505 sediment core locations", "url": "https://www.usap-dc.org/view/dataset/601362"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project examines the role of glacier dynamics in glacial sediment yields. The results will shed light on how glacial erosion influences both orogenic processes and produces sediments that accumulate in basins, rich archives of climate variability. Our hypothesis is that erosion rates are a function of sliding speed, and should diminish sharply as the glacier\u0027s basal temperatures drop below the melting point. To test this hypothesis, we will determine sediment accumulation rates from seismic studies of fjord sediments for six tidewater glaciers that range from fast-moving temperate glaciers in Patagonia to slow-moving polar glaciers on the Antarctic Peninsula. Two key themes are addressed for each glacier system: 1) sediment yields and erosion rates by determining accumulation rates within the fjords using seismic profiles and core data, and 2) dynamic properties and basin characteristics of each glacier in order to seek an empirical relationship between glacial erosion rates and ice dynamics. The work is based in Patagonia and the Antarctic Peninsula, ideal natural laboratories for these purposes because the large latitudinal range provides a large range of precipitation and thermal regimes over relatively homogeneous lithologies and tectonic settings. Prior studies of these regions noted significant decreases in glaciomarine sediment accumulations in the fjords to the south. As well, the fjords constitute accessible and nearly perfect natural sediment traps.\u003cbr/\u003e\u003cbr/\u003eThe broader impacts of this study include inter-disciplinary collaboration with Chilean glaciologists and marine geologists, support for one postdoctoral and three doctoral students, inclusion of undergraduates in research, and outreach to under-represented groups in Earth sciences and K-12 educators. The results of the project will also contribute to a better understanding of the linkages between climate and evolution of all high mountain ranges.", "east": -69.36881, "geometry": "POINT(-71.981865 -50.21674)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e WATER BOTTLES; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP; Penguin Glacier", "locations": null, "north": -45.98986, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, John; Hallet, Bernard; Wellner, Julia", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -54.44362, "title": "Collaborative Research: Controls on Sediment Yields from Tidewater Glaciers from Patagonia to Antarctica", "uid": "p0000821", "west": -74.59492}, {"awards": "0538516 Ackley, Stephen", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0709", "datasets": [{"dataset_uid": "002648", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0709", "url": "https://www.rvdata.us/search/cruise/NBP0709"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project is a study of the evolution of the sea ice cover, and the mass balance of ice in the Amundsen Sea and the Bellingshausen Sea in the internationally collaborative context of the International Polar Year (2007-2008). In its simplest terms, the mass balance is the net freezing and melting that occurs over an annual cycle at a given location. If the ice were stationary and were completely to melt every year, the mass balance would be zero. While non-zero balances have significance in questions of climate and environmental change, the process itself has global consequences since the seasonal freeze-melt cycle has the effect of distilling the surface water. Oceanic salt is concentrated into brine and rejected from the ice into deeper layers in the freezing process, while during melt, the newly released and relatively fresh water stabilizes the surface layers. The observation program will be carried out during a drift program of the Nathaniel B. Palmer, and through a buoy network established on the sea ice that will make year-long measurements of ice thickness, and temperature profile, large-scale deformation, and other characteristics. The project is a component of the Antarctic Sea Ice Program, endorsed internationally by the Joint Committee for IPY. Additionally, the buoys to be deployed have been endorsed as an IPY contribution to the World Climate Research Program/Scientific Committee on Antarctic Research (WCRP/SCAR) International Programme on Antarctic Buoys (IPAB). While prior survey information has been obtained in this region, seasonal and time-series measurements on sea ice mass balance are crucial data in interpreting the mechanisms of air-ice-ocean interaction. \u003cbr/\u003e The network will consist of an array of twelve buoys capable of GPS positioning. Three buoys will be equipped with thermister strings and ice and snow thickness measurement gauges, as well as a barometer. Two buoys will be equipped with meteorological sensors including wind speed and direction, atmospheric pressure, and incoming radiation. Seven additional buoys will have GPS positioning only, and will be deployed approximately 100 km from the central site. These outer buoys will be critical in capturing high frequency motion complementary to satellite-derived ice motion products. Additional buoys have been committed internationally through IPAB and will be deployed in the region as part of this program.\u003cbr/\u003e This project will complement similar projects to be carried out in the Weddell Sea by the German Antarctic Program, and around East Antarctica by the Australian Antarctic Program. The combined buoy and satellite deformation measurements, together with the mass balance measurements, will provide a comprehensive annual data set on sea ice thermodynamics and dynamics for comparison with both coupled and high-resolution sea ice models.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Ackley, Stephen", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Sea Ice Mass Balance in the Antarctic-SIMBA Drift Station", "uid": "p0000839", "west": null}, {"awards": "0636773 DeMaster, David; 0636806 Smith, Craig", "bounds_geometry": "POLYGON((-71.2358 -52.7603,-69.75336 -52.7603,-68.27092 -52.7603,-66.78848 -52.7603,-65.30604 -52.7603,-63.8236 -52.7603,-62.34116 -52.7603,-60.85872 -52.7603,-59.37628 -52.7603,-57.89384 -52.7603,-56.4114 -52.7603,-56.4114 -54.29969,-56.4114 -55.83908,-56.4114 -57.37847,-56.4114 -58.91786,-56.4114 -60.45725,-56.4114 -61.99664,-56.4114 -63.53603,-56.4114 -65.07542,-56.4114 -66.61481,-56.4114 -68.1542,-57.89384 -68.1542,-59.37628 -68.1542,-60.85872 -68.1542,-62.34116 -68.1542,-63.8236 -68.1542,-65.30604 -68.1542,-66.78848 -68.1542,-68.27092 -68.1542,-69.75336 -68.1542,-71.2358 -68.1542,-71.2358 -66.61481,-71.2358 -65.07542,-71.2358 -63.53603,-71.2358 -61.99664,-71.2358 -60.45725,-71.2358 -58.91786,-71.2358 -57.37847,-71.2358 -55.83908,-71.2358 -54.29969,-71.2358 -52.7603))", "dataset_titles": "Expedition Data; Expedition data of LMG0802; Expedition data of LMG0902; Expedition Data of LMG0902; Expedition data of NBP0808; Labile Organic Carbon distributions on the West Antarctic Peninsula Shelf; Species List, Species Abundance, and Sediment Geochemistry processed data acquired during Laurence M. Gould expedition LMG0802", "datasets": [{"dataset_uid": "002611", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0808", "url": "https://www.rvdata.us/search/cruise/NBP0808"}, {"dataset_uid": "002725", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0802", "url": "https://www.rvdata.us/search/cruise/LMG0802"}, {"dataset_uid": "601319", "doi": "10.15784/601319", "keywords": "Antarctica; Antarctic Peninsula; Biota; Bioturbation Coefficients; Diagenesis; Labile Organic Carbon; LOC Mean Residence Times; Marguerite Bay; Oceans; Organic Carbon Degradation Rates; Sediment Core", "people": "Taylor, Richard; DeMaster, David; Thomas, Carrie; Smith, Craig; Isla, Enrique", "repository": "USAP-DC", "science_program": null, "title": "Labile Organic Carbon distributions on the West Antarctic Peninsula Shelf", "url": "https://www.usap-dc.org/view/dataset/601319"}, {"dataset_uid": "601303", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Biota; Box Corer; Chlorophyll Concentration; LMG0802; Marcofauna; Megafauna; Oceans; R/v Laurence M. Gould; Seafloor Sampling; Species Abundance", "people": "DeMaster, David; Smith, Craig", "repository": "USAP-DC", "science_program": null, "title": "Species List, Species Abundance, and Sediment Geochemistry processed data acquired during Laurence M. Gould expedition LMG0802", "url": "https://www.usap-dc.org/view/dataset/601303"}, {"dataset_uid": "001486", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of LMG0902", "url": "https://www.rvdata.us/search/cruise/LMG0902"}, {"dataset_uid": "001513", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0802"}, {"dataset_uid": "002669", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0902", "url": "https://www.rvdata.us/search/cruise/LMG0902"}, {"dataset_uid": "002727", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0902", "url": "https://www.rvdata.us/search/cruise/LMG0902"}, {"dataset_uid": "002726", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0802", "url": "https://www.rvdata.us/search/cruise/LMG0802"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The Antarctic Peninsula region exhibits one of the largest warming trends in the world. Climate change in this region will reduce the duration of winter sea-ice cover, altering both the pelagic ecosystem and bentho-pelagic coupling. We postulate that shelf benthic ecosystems are highly suitable for tracking climate change because they act as \"low-pass\" filters, removing high-frequency seasonal noise and responding to longer-term trends in pelagic ecosystem structure and export production. We propose to conduct a 3-year study of bentho-pelagic coupling along a latitudinal climate gradient on the Antarctic Peninsula to explore the potential impacts of climate change (e.g., reduction in sea-ice duration) on Antarctic shelf ecosystems. We will conduct three cruises during summer and winter regimes along a 5- station transect from Smith Island to Marguerite Bay, evaluating a broad range of benthic ecological and biogeochemical processes. Specifically, we will examine the feeding strategies of benthic deposit feeders along this climatic gradient to elucidate the potential response of this major trophic group to climatic warming. In addition, we will (1) quantify carbon and nitrogen cycling and burial at the seafloor and (2) document changes in megafaunal, macrofaunal, and microbial community structure along this latitudinal gradient. We expect to develop predictive insights into the response of Antarctic shelf ecosystems to some of the effects of climate warming (e.g., a reduction in winter sea-ice duration). The proposed research will considerably broaden the ecological and carbon-flux measurements made as parts of the Palmer Station LTER and GLOBEC programs by providing a complementary benthic component. This project also will promote science education from the 9th grade to graduate-student levels. We will partner with the NSF-sponsored Southeastern Center for Ocean Science Education Excellence to reach students of all races in all areas of NC, SC and GA. The project will also benefit students at the post secondary level by supporting three graduate and two undergraduate students. During each of the three field excursions, NCSU and UH students will travel to Chile and Antarctica to participate in scientific research. Lastly, all three PIs will incorporate material from this project into their undergraduate and graduate courses.", "east": -56.4114, "geometry": "POINT(-63.8236 -60.45725)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS", "is_usap_dc": false, "keywords": "LMG0802; R/V LMG; AMD; Amd/Us; LMG0902; USA/NSF; NBP0808; USAP-DC; R/V NBP", "locations": null, "north": -52.7603, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "DeMaster, David; Smith, Craig", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -68.1542, "title": "Collaborative Research: Benthic Faunal Feeding Dynamics on the Antarctic Shelf and the Effects of Global Climate Change on Bentho-Pelagic Coupling", "uid": "p0000552", "west": -71.2358}, {"awards": "9908828 Aronson, Richard", "bounds_geometry": "POLYGON((-70.906 -52.350166,-69.4494 -52.350166,-67.9928 -52.350166,-66.5362 -52.350166,-65.0796 -52.350166,-63.623 -52.350166,-62.1664 -52.350166,-60.7098 -52.350166,-59.2532 -52.350166,-57.7966 -52.350166,-56.34 -52.350166,-56.34 -53.6028324,-56.34 -54.8554988,-56.34 -56.1081652,-56.34 -57.3608316,-56.34 -58.613498,-56.34 -59.8661644,-56.34 -61.1188308,-56.34 -62.3714972,-56.34 -63.6241636,-56.34 -64.87683,-57.7966 -64.87683,-59.2532 -64.87683,-60.7098 -64.87683,-62.1664 -64.87683,-63.623 -64.87683,-65.0796 -64.87683,-66.5362 -64.87683,-67.9928 -64.87683,-69.4494 -64.87683,-70.906 -64.87683,-70.906 -63.6241636,-70.906 -62.3714972,-70.906 -61.1188308,-70.906 -59.8661644,-70.906 -58.613498,-70.906 -57.3608316,-70.906 -56.1081652,-70.906 -54.8554988,-70.906 -53.6028324,-70.906 -52.350166))", "dataset_titles": "Expedition Data; Expedition data of NBP0107", "datasets": [{"dataset_uid": "001962", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0011"}, {"dataset_uid": "002656", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0107", "url": "https://www.rvdata.us/search/cruise/NBP0107"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9908828 Aronson This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a paleoecological and paleoenvironmental study of Seymour Island. Global climate change late in the Eocene epoch had an important influence in Antarctica. This was the beginning of the transition from a cool-temperate climate in Antarctica to the polar climate that exists there today. The cooling trend strongly influenced the structure of shallow-water, Antarctic marine communities, and these effects are still evident in the peculiar ecological relationships among species living in modern Antarctic communities. Cooling late in the Eocene reduced the abundance of fish and crabs, which in turn reduced skeleton-crushing predation on invertebrates. Reduced predation allowed dense populations of ophiuroids (brittlestars) and crinoids (sea lilies) to appear in shallow-water settings at the end of the Eocene. These low-predation communities appear as dense fossil echinoderm assemblages in the upper portion of the late Eocene La Meseta Formation on Seymour Island, off the Antarctic Peninsula. Today, dense ophiuroid and crinoid populations are common in shallow-water habitats in Antarctica but generally have been eliminated by predators from similar habitats at temperate and tropical latitudes; their persistence in Antarctica to this day is an important ecological legacy of climatic cooling in the Eocene. Although the influence of declining predation on Antarctic ophiuroids and crinoids is now well documented, the effects of cooling on the more abundant mollusks have not been investigated. This study will examine the evolutionary ecology of gastropods (snails) and bivalves (clams) in the late Eocene. A series of hypotheses will be tested in the La Meseta Formation, based on the predicted responses of mollusks to declining temperature and changing levels of predation. The shapes of gastropod shells, the activities of gastropods that prey on other mollusks by drilling holes in their shells, and the effects of predation on the thickness of mollusk shells should have changed significantly through late Eocene time. First, defensive features of gastropod shells, such as spines and ribbing, should decline as temperature and, therefore, the activity of skeleton-crushing predators declined. Second, drilling of bivalve prey by predatory gastropods should increase with time since the drillers should themselves have been subject to lower predation pressure as temperature declined. Drilled shells, therefore, should become more common through time. Third, patterns in the thickness of shells through time will make it possible to separate the direct, physiological effects of declining temperature (shells are more difficult to produce at cooler temperatures, and so should be thinner) from the indirect effects of temperature on evolving biological interactions (increased drilling predation should result in thicker shells). Seymour Island contains the only fossil outcrops readily accessible in Antarctica from this crucial period in Earth history. The La Meseta Formation on Seymour Island thus provides a unique opportunity to learn how climate change affected Antarctic marine communities. In practical terms, global climate change will probably increase upwelling over the next few decades to centuries in some temperate coastal regions. Recent ecological evidence suggests that the resultant lowering of sea temperatures could lower predation in those areas. Understanding the response of the La Meseta faunas to global cooling in the late Eocene will provide direct insight into the rapidly changing structure of modern benthic communities.", "east": -56.34, "geometry": "POINT(-63.623 -58.613498)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP; Hugo Island; R/V LMG; Palmer Deep", "locations": "Hugo Island", "north": -52.350166, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Aronson, Richard; Domack, Eugene Walter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -64.87683, "title": "Global Climate Change and the Evolutionary Ecology of Antarctic Mollusks in the Late Eocene", "uid": "p0000617", "west": -70.906}, {"awards": "0650034 Smith, Kenneth", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0806; Expedition data of NBP0902", "datasets": [{"dataset_uid": "002649", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0806", "url": "https://www.rvdata.us/search/cruise/NBP0806"}, {"dataset_uid": "002650", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0902", "url": "https://www.rvdata.us/search/cruise/NBP0902"}, {"dataset_uid": "001484", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0902"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project seeks to examine the importance of icebergs to the pelagic ecosystem of the North-West Weddell Sea. Atmospheric warming has been associated with retreating glaciers and the increasing prevalence of icebergs in the Southern Ocean over the last decade. The highest concentration of icebergs occurs in the NW Weddell Sea, where they drift in a clockwise pattern to the northeast, following the contours of the Antarctic Peninsula through an area dubbed \"Iceberg Alley\". Little is known about the impact of free-drifting icebergs on the pelagic ecosystem of the Weddell Sea or on the Southern Ocean as a whole. It is hypothesized that as drifting islands, icebergs of small to intermediate size (\u003c 10 km in largest dimension) impart unique physical, chemical and biological characteristics to the surrounding water. Three general questions will be asked to address this hypothesis: 1) What are the dynamics (approximate size, abundance and spatial distribution) of free-drifting icebergs on temporal scales of days to months, based on correlation of field measurements with imagery derived from satellite sensors? 2) What is the relationship between the size of free-drifting icebergs and the structure of the associated pelagic communities? 3) What is the estimated combined impact of free-drifting icebergs in the NW Weddell Sea on the biological characteristics of the pelagic zone? This interdisciplinary study will use standard oceanographic sampling coupled with unique methodology for staging shipboard data from all types of sensors and survey methods to determine the sphere of influence for a diverse set of biological factors as a function of iceberg size. The exploratory research proposed here will provide critical data on the effects of atmospheric warming in the Antarctic Peninsula region. The recent prevalence of free drifting icebergs in the Southern Ocean should have a pronounced enrichment effect on the surrounding pelagic ecosystem, altering community dynamics. Enhanced primary production associated with these icebergs could influence the global carbon cycle since the Southern Ocean is considered a major sink for excess CO2 from the atmosphere. \u003cbr/\u003eThe proposed research will include an innovative education component through the Ocean Exploration Center (OEC), whose focus is to provide a comprehensive view of the oceans, intelligible to non-scientists and researchers alike, with direct access to state-of-the-art databases and selected websites. The OEC will allow users to access content which has been classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. The results from this iceberg project will be incorporated into the Antarctic Research division of the OEC, providing databases documenting the impact of free-drifting icebergs on the surrounding pelagic ecosystem. These data then will be extrapolated to evaluate the impact of icebergs on the ecosystem of the Weddell Sea. Graduate students, undergraduates, teachers and volunteers are an important part of the proposed field and laboratory work.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Ken", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Free Drifting Icebergs: Influence of Floating Islands on Pelagic Ecosystems in the Weddell Sea.", "uid": "p0000840", "west": null}, {"awards": "0636474 Rathburn, Anthony", "bounds_geometry": "POLYGON((-64.919 -60.1023,-63.70316 -60.1023,-62.48732 -60.1023,-61.27148 -60.1023,-60.05564 -60.1023,-58.8398 -60.1023,-57.62396 -60.1023,-56.40812 -60.1023,-55.19228 -60.1023,-53.97644 -60.1023,-52.7606 -60.1023,-52.7606 -60.89191,-52.7606 -61.68152,-52.7606 -62.47113,-52.7606 -63.26074,-52.7606 -64.05035,-52.7606 -64.83996,-52.7606 -65.62957,-52.7606 -66.41918,-52.7606 -67.20879,-52.7606 -67.9984,-53.97644 -67.9984,-55.19228 -67.9984,-56.40812 -67.9984,-57.62396 -67.9984,-58.8398 -67.9984,-60.05564 -67.9984,-61.27148 -67.9984,-62.48732 -67.9984,-63.70316 -67.9984,-64.919 -67.9984,-64.919 -67.20879,-64.919 -66.41918,-64.919 -65.62957,-64.919 -64.83996,-64.919 -64.05035,-64.919 -63.26074,-64.919 -62.47113,-64.919 -61.68152,-64.919 -60.89191,-64.919 -60.1023))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001511", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0804"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project studies seasonal variation in the abundance and shell composition of foraminifera from the northern Gerlache-southern Bransfield Straits region of the Western Antarctic Peninsula. Its goal is to improve interpretation of microfaunal and geochemical proxies for reconstruction of ancient ocean currents, climate, and ecologies. Since seasonal variation may greatly affect interpretation, this project focuses on the Antarctic region, where intense seasonality should generate a more obvious signal than at the less extreme mid-latitudes. The results should allow a better understanding of the coupling to seasonal productivity, as well as improve regional reconstructions.\u003cbr/\u003eThe broader impacts are graduate, undergraduate, and postdoctoral student education; as well as outreach to both the English and Spanish-speaking public. The work will also improve society\u0027s understanding of past climate change as an analogue to the future.", "east": -52.7606, "geometry": "POINT(-58.8398 -64.05035)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": -60.1023, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ishman, Scott", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -67.9984, "title": "Collaborative Research: Testing the Impact of Seasonality on Benthic Foraminifers as Paleoenvironmental Proxies.", "uid": "p0000113", "west": -64.919}, {"awards": "0440775 Jacobs, Stanley", "bounds_geometry": null, "dataset_titles": "Amundsen Sea Continental Shelf Mooring Data (2006-2007); Expedition data of NBP0702; NBP0702 surface sediment sample information and images", "datasets": [{"dataset_uid": "601473", "doi": "10.15784/601473", "keywords": "Amundsen Sea; Antarctica; Marine Geoscience; Marine Sediments; NBP0702; Photo; R/v Nathaniel B. Palmer; Seafloor Sampling; Sediment Description; Smith-Mcintyre Grab", "people": "Jacobs, Stanley; Leventer, Amy", "repository": "USAP-DC", "science_program": null, "title": "NBP0702 surface sediment sample information and images", "url": "https://www.usap-dc.org/view/dataset/601473"}, {"dataset_uid": "002645", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0702", "url": "https://www.rvdata.us/search/cruise/NBP0702"}, {"dataset_uid": "601809", "doi": "10.15784/601809", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Mooring; Ocean Currents; Pressure; Salinity; Temperature", "people": "Jacobs, Stanley; Giulivi, Claudia F.", "repository": "USAP-DC", "science_program": null, "title": "Amundsen Sea Continental Shelf Mooring Data (2006-2007)", "url": "https://www.usap-dc.org/view/dataset/601809"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This collaborative study between Columbia University and the Southampton Oceanography Centre will investigate the dynamics of warm water intrusions under antarctic floating ice shelves. The study will focus on the Amundsen Sea and Pine Island Glacier, and will document how this water gains access to the continental shelf, transports heat into the ice shelf cavities via deep, glacially-scoured troughs, and rises beneath the ice to drive basal melting. The resulting seawater-meltwater mixtures upwell near the ice fronts, contributing to the formation of atypical coastal polynyas with strong geochemical signatures. Multidecadal freshening downstream is consistent with thinning ice shelves, which may be triggering changes inland, increasing the flow of grounded ice into the sea. This work will be carried out in combination with parallel modeling, remote sensing and data based projects, in an effort to narrow uncertainties about the response of West Antarctic Ice Sheet to climate change. Using state-of-the-art facilities and instruments, this work will enhance knowledge of water mass production and modification, and the understanding of interactions between the ocean circulation, sea floor and ice shelves. The data and findings will be reported to publicly accessible archives and submitted for publication in the scientific literature. The information obtained should prove invaluable for the development and validation of general circulation models, needed to predict the future role of the Antarctic Ice Sheet in sea level change.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "AMD; Amd/Us; R/V NBP; NSF/USA; Amundsen Sea; USAP-DC", "locations": "Amundsen Sea", "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jacobs, Stanley", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": null, "title": "The Amundsen Continental Shelf and the Antarctic Ice Sheet", "uid": "p0000836", "west": null}, {"awards": "0542456 Caron, David; 0542111 Lonsdale, Darcy", "bounds_geometry": "POLYGON((-179.9999 -43.5663,-143.99993 -43.5663,-107.99996 -43.5663,-71.99999 -43.5663,-36.00002 -43.5663,-0.000050000000016 -43.5663,35.99992 -43.5663,71.99989 -43.5663,107.99986 -43.5663,143.99983 -43.5663,179.9998 -43.5663,179.9998 -46.99537,179.9998 -50.42444,179.9998 -53.85351,179.9998 -57.28258,179.9998 -60.71165,179.9998 -64.14072,179.9998 -67.56979,179.9998 -70.99886,179.9998 -74.42793,179.9998 -77.857,143.99983 -77.857,107.99986 -77.857,71.99989 -77.857,35.99992 -77.857,-0.000049999999987 -77.857,-36.00002 -77.857,-71.99999 -77.857,-107.99996 -77.857,-143.99993 -77.857,-179.9999 -77.857,-179.9999 -74.42793,-179.9999 -70.99886,-179.9999 -67.56979,-179.9999 -64.14072,-179.9999 -60.71165,-179.9999 -57.28258,-179.9999 -53.85351,-179.9999 -50.42444,-179.9999 -46.99537,-179.9999 -43.5663))", "dataset_titles": "Do Crustacean Zooplankton Play a Pivotal Role in Structuring Heterotrophic Plankton Communities in the Ross Sea?; Expedition Data; NBP0802 data; Processed CurrentMeter Data from the Ross Sea near Antarctica acquired during the Nathaniel B. Palmer expedition NBP0801", "datasets": [{"dataset_uid": "001517", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0801"}, {"dataset_uid": "000122", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP0802 data", "url": "https://www.rvdata.us/search/cruise/NBP0802"}, {"dataset_uid": "601344", "doi": null, "keywords": "Antarctica; Cape Adare; Mooring; NBP0801; Physical Oceanography; Ross Sea; R/v Nathaniel B. Palmer; Salinity; Southern Ocean; Temperature", "people": "Huber, Bruce; Gordon, Arnold", "repository": "USAP-DC", "science_program": null, "title": "Processed CurrentMeter Data from the Ross Sea near Antarctica acquired during the Nathaniel B. Palmer expedition NBP0801", "url": "https://www.usap-dc.org/view/dataset/601344"}, {"dataset_uid": "600059", "doi": "10.15784/600059", "keywords": "Antarctica; Biota; Crustacea; Oceans; Phytoplankton; Ross Sea; Southern Ocean", "people": "Lonsdale, Darcy", "repository": "USAP-DC", "science_program": null, "title": "Do Crustacean Zooplankton Play a Pivotal Role in Structuring Heterotrophic Plankton Communities in the Ross Sea?", "url": "https://www.usap-dc.org/view/dataset/600059"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Recent studies of marine ecosystems show conflicting evidence for trophic cascades, and in particular the relative strength of the crustacean zooplankton-phytoplankton link. The Ross Sea is a natural laboratory for investigating this apparent conflict. It is a site of seasonally high abundances of phytoplankton, characterized by regions of distinct phytoplankton taxa; the southcentral polynya is strongly dominated by the colony-forming prymnesiophyte Phaeocystis antarctica, while coastal regions of this sea are typically dominated by diatoms or flagellate species. Recent studies indicate that, while the south-central polynya exhibits a massive phytoplankton bloom, the poor food quality of P. antarctica for many crustacean zooplankton prevents direct utilization of much of this phytoplankton bloom. Rather, evidence suggests that indirect utilization of this production may be the primary mechanism by which carbon and energy become available to those higher trophic levels. Specifically, we hypothesize that nano and microzooplankton constitute an important food source for crustacean zooplankton (largely copepods and juvenile euphausiids) during the summer period in the Ross Sea where the phytoplankton assemblage is dominated by the prymnesiophyte. In turn, we also hypothesize that predation by copepods (and other Crustacea) controls and structures the species composition of these protistan assemblages. We will occupy stations in the south-central Ross Sea Polynya (RSP) and Terra Nova Bay (TNB) during austral summer to test these hypotheses. We hypothesize that the diatom species that dominate the phytoplankton assemblage in TNB constitute a direct source of nutrition to herbivorous/omnivorous zooplankton (relative to the situation in the south-central RSP). That is, the contribution of heterotrophic protists to crustacean diets will be reduced in TNB. Our research will address fundamental gaps in our knowledge of food web structure and trophic cascades, and provide better understanding of the flow of carbon and energy within the biological community of this perennially cold sea. The PIs will play active roles in public education (K-12) via curriculum development (on Antarctic biology) and teacher trainer activities in the Centers for Ocean Science Education Excellence (COSEE-West), an innovative, NSF-funded program centered at USC and UCLA.", "east": 179.9998, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": true, "keywords": "R/V NBP", "locations": null, "north": -43.5663, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Lonsdale, Darcy; Caron, Bruce", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -77.857, "title": "Collaborative Research: Do Crustacean Zooplankton Play a Pivotal Role in Structuring Heterotrophic Plankton Communities in the Ross Sea?", "uid": "p0000520", "west": -179.9999}, {"awards": "0440959 Cande, Steven", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0701", "datasets": [{"dataset_uid": "002644", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0701", "url": "https://www.rvdata.us/search/cruise/NBP0701"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This work will perform a marine geophysical survey of sea floor spreading off Cape Adare, Antarctica. Magnetic, gravity, swath bathymetry and multi-channel seismic data will be acquired from the southern end of the Adare Basin to the northern parts of the Northern Basin and Central Trough in the Ross Embayment. Previous surveys documented 170 km of regional extension between forty-three and twenty-six million years ago, which resulted in some seafloor spreading in the Adare Basin. However, the relationship of Adare Basin spreading to the overall extension and the southward continental basins of the Ross Embayment has not been established. This relationship is critical to understanding the tectonic evolution of East and West Antarctica and linking Pacific plate motions to the rest of the world. The study will also offer unique insight into rifting processes by studying the transition of rifting between oceanic and continental lithosphere. In terms of broader impacts, this project will support two graduate students and field research experience for undergraduates. The project also involves cooperation between scientists from the US, Australia, New Zealand and Japan.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ROCK CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Cande, Steven", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: The Connection Between Mid-Cenozoic Seafloor Spreading and the Western Ross Sea Embayment", "uid": "p0000835", "west": null}, {"awards": "0088143 Luyendyk, Bruce; 0087392 Bartek, Louis", "bounds_geometry": "POLYGON((-179.99786 -75.91667,-143.99852 -75.91667,-107.99918 -75.91667,-71.99984 -75.91667,-36.0005 -75.91667,-0.00115999999997 -75.91667,35.99818 -75.91667,71.99752 -75.91667,107.99686 -75.91667,143.9962 -75.91667,179.99554 -75.91667,179.99554 -76.183531,179.99554 -76.450392,179.99554 -76.717253,179.99554 -76.984114,179.99554 -77.250975,179.99554 -77.517836,179.99554 -77.784697,179.99554 -78.051558,179.99554 -78.318419,179.99554 -78.58528,143.9962 -78.58528,107.99686 -78.58528,71.99752 -78.58528,35.99818 -78.58528,-0.00116000000003 -78.58528,-36.0005 -78.58528,-71.99984 -78.58528,-107.99918 -78.58528,-143.99852 -78.58528,-179.99786 -78.58528,-179.99786 -78.318419,-179.99786 -78.051558,-179.99786 -77.784697,-179.99786 -77.517836,-179.99786 -77.250975,-179.99786 -76.984114,-179.99786 -76.717253,-179.99786 -76.450392,-179.99786 -76.183531,-179.99786 -75.91667))", "dataset_titles": "Expedition Data; NBP0301 data; NBP0306 data", "datasets": [{"dataset_uid": "001724", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0301"}, {"dataset_uid": "001668", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0306"}, {"dataset_uid": "000105", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP0306 data", "url": "https://www.rvdata.us/search/cruise/NBP0306"}, {"dataset_uid": "000104", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP0301 data", "url": "https://www.rvdata.us/search/cruise/NBP0301"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Luyendyk et.al.: OPP 0088143\u003cbr/\u003eBartek: OPP 0087392\u003cbr/\u003eDiebold: OPP 0087983\u003cbr/\u003e\u003cbr/\u003eThis award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research program in marine geology and geophysics in the southern central and eastern Ross Sea. The project will conduct sites surveys for drilling from the Ross Ice Shelf into the seafloor beneath it. Many of the outstanding problems concerning the evolution of the East and West Antarctic Ice Sheets, Antarctic climate, global sea level, and the tectonic history of the West Antarctic Rift System can be addressed by drilling into the seafloor of the Ross Sea. Climate data for Cretaceous and Early Cenozoic time are lacking for this sector of Antarctica. Climate questions include: Was there any ice in Late Cretaceous time? What was the Antarctic climate during the Paleocene-Eocene global warming? When was the Cenozoic onset of Antarctic glaciation, when did glaciers reach the coast and when did they advance out onto the margin? Was the Ross Sea shelf non-marine in Late Cretaceous time; when did it become marine? Tectonic questions include: What was the timing of the Cretaceous extension in the Ross Sea rift; where was it located? What is the basement composition and structure? Where are the time and space limits of the effects of Adare Trough spreading? Another drilling objective is to sample and date the sedimentary section bounding the mapped RSU6 unconformity in the Eastern Basin and Central Trough to resolve questions about its age and regional extent. Deep Sea Drilling Project (DSDP) Leg 28 completed sampling at four drill sites in the early 1970\u0027s but had low recovery and did not sample the Early Cenozoic. Other drilling has been restricted to the McMurdo Sound area of the western Ross Sea and results can be correlated into the Victoria Land Basin but not eastward across basement highs. Further, Early Cenozoic and Cretaceous rocks have not been sampled. A new opportunity is developing to drill from the Ross Ice Shelf. This is a successor program to the Cape Roberts Drilling Project. One overriding difficulty is the need for site surveys at drilling locations under the ice shelf. This project will overcome this impediment by conducting marine geophysical drill site surveys at the front of the Ross Ice Shelf in the Central Trough and Eastern Basin. The surveys will be conducted a kilometer or two north of the ice shelf front where recent calving events have resulted in a southerly position of the ice shelf edge. In several years the northward advance of the ice shelf will override the surveyed locations and drilling could be accomplished. Systems to be used include swath bathymetry, gravity, magnetics, chirp sonar, high resolution seismic profiling, and 48 fold seismics. Cores will be collected to obtain samples for geotechnical properties, to study sub-ice shelf modern sedimentary processes, and at locations where deeper section is exposed.\u003cbr/\u003e\u003cbr/\u003eThis survey will include long profiles and detailed grids over potential drill sites. Survey lines will be tied to existing geophysical profiles and DSDP 270. A recent event that makes this plan timely is the calving of giant iceberg B-15 (in March, 2000) and others from the ice front in the eastern Ross Sea. This new calving event and one in 1987 have exposed 16,000 square kilometers of seafloor that had been covered by ice shelf for decades and is not explored. Newly exposed territory can now be mapped by modern geophysical methods. This project will map geological structure and stratigraphy below unconformity RSU6 farther south and east, study the place of Roosevelt Island in the Ross Sea rifting history, and determine subsidence history during Late Cenozoic time (post RSU6) in the far south and east. Finally the project will observe present day sedimentary processes beneath the ice shelf in the newly exposed areas.", "east": 179.99554, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": true, "keywords": "R/V NBP", "locations": null, "north": -75.91667, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Bartek, Louis; Luyendyk, Bruce P.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -78.58528, "title": "Collaborative Research: Antarctic Cretaceous-Cenozoic Climate, Glaciation, and Tectonics: Site surveys for drilling from the edge of the Ross Ice Shelf", "uid": "p0000425", "west": -179.99786}, {"awards": "9983751 Veit, Richard", "bounds_geometry": "POLYGON((-70.9063 -52.3528,-67.3465 -52.3528,-63.7867 -52.3528,-60.2269 -52.3528,-56.6671 -52.3528,-53.1073 -52.3528,-49.5475 -52.3528,-45.9877 -52.3528,-42.4279 -52.3528,-38.8681 -52.3528,-35.3083 -52.3528,-35.3083 -52.65918,-35.3083 -52.96556,-35.3083 -53.27194,-35.3083 -53.57832,-35.3083 -53.8847,-35.3083 -54.19108,-35.3083 -54.49746,-35.3083 -54.80384,-35.3083 -55.11022,-35.3083 -55.4166,-38.8681 -55.4166,-42.4279 -55.4166,-45.9877 -55.4166,-49.5475 -55.4166,-53.1073 -55.4166,-56.6671 -55.4166,-60.2269 -55.4166,-63.7867 -55.4166,-67.3465 -55.4166,-70.9063 -55.4166,-70.9063 -55.11022,-70.9063 -54.80384,-70.9063 -54.49746,-70.9063 -54.19108,-70.9063 -53.8847,-70.9063 -53.57832,-70.9063 -53.27194,-70.9063 -52.96556,-70.9063 -52.65918,-70.9063 -52.3528))", "dataset_titles": "Expedition Data; Expedition data of LMG0109", "datasets": [{"dataset_uid": "002699", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0109", "url": "https://www.rvdata.us/search/cruise/LMG0109"}, {"dataset_uid": "001683", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0309"}, {"dataset_uid": "002286", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9303"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The goal of this proposal to bring two groups of undergraduate students to the Antarctic, where they will participate in the collection of data on seabird abundance and behavior. This proposal combines research on the dynamics of seabirds that feed on Antarctic krill, with the teaching of mathematical modeling of foraging behavior and spatial statistics. Students will learn a broad collection of skills through collection of data on physical and biological oceanography as part of the research project that focuses on seabirds. The research goal of this proposal is to learn how foraging seabirds in the Antarctic respond to changes in the abundance and distribution of their prey, primarily Antarctic krill. The approach will be to study bird behavior in the vicinity of krill swarms, and to contrast this behavior to that in areas lacking krill. From these comparisons, foraging models that will make predictions about the dispersion of birds under differing levels of krill abundance will be built. The long-term goal is to be able to make predictions about the impact upon seabirds of future changes in krill stocks. Field work will be conducted in the vicinity of Elephant Island in two field seasons. In each season, the insular shelf north of Elephant Island will be surveyed and the abundance, distribution and behavior of seabirds will be recorded. The primary objective will be to quantify the linkage between prey abundance and bird behavior, with the long-term goal of using information on bird behavior to index long-term changes in the prey base. The teaching goal of this proposal is twofold. First, the project will expose inner city college students to a spectacular and economically important ecosystem. Through their work on an oceanographic research vessel, students will be exposed to a broad diversity of research topics and methods, ranging from behavioral ecology to physical oceanography. Second, back at Staten Island, students will participate in the development of a mathematical biology initiative at the College of Staten Island. Here students will be encouraged to apply basic mathematical reasoning and computer modeling to a real problem - that of determining how foraging choices made by seabirds can ultimately impact their reproductive success.", "east": -35.3083, "geometry": "POINT(-53.1073 -53.8847)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V NBP; R/V LMG", "locations": null, "north": -52.3528, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Veit, Richard; Blake, Daniel", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -55.4166, "title": "CAREER: Dynamics of Predator-Prey Behavior in the Antarctic Ocean", "uid": "p0000589", "west": -70.9063}, {"awards": "0126340 Cande, Steven", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0304B; Expedition data of NBP0304C; Expedition data of NBP0304D; Expedition data of NBP0403; Expedition data of NBP0406; Expedition data of NBP0501; Expedition data of NBP0501B", "datasets": [{"dataset_uid": "001609", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0501B"}, {"dataset_uid": "002612", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0406", "url": "https://www.rvdata.us/search/cruise/NBP0406"}, {"dataset_uid": "002613", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0406", "url": "https://www.rvdata.us/search/cruise/NBP0406"}, {"dataset_uid": "002626", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0403", "url": "https://www.rvdata.us/search/cruise/NBP0403"}, {"dataset_uid": "002627", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "002630", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501B", "url": "https://www.rvdata.us/search/cruise/NBP0501B"}, {"dataset_uid": "002632", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0304B", "url": "https://www.rvdata.us/search/cruise/NBP0304B"}, {"dataset_uid": "002634", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0304C", "url": "https://www.rvdata.us/search/cruise/NBP0304C"}, {"dataset_uid": "002635", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0304D", "url": "https://www.rvdata.us/search/cruise/NBP0304D"}, {"dataset_uid": "001660", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0403"}, {"dataset_uid": "001690", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304B"}, {"dataset_uid": "001691", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304C"}, {"dataset_uid": "001692", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304D"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a project to make use of ship-repositioning transit cruises to gather geophysical information relating to plate tectonics of the Southern Ocean and to support student training activities. Well-constrained Cenozoic plate reconstructions of the circum-Antarctic region are critical for examining a number of problems of global geophysical importance. These problems include, e.g., relating the plate kinematics to its geological consequences in various plate circuits (Pacific-North America, Australia-Pacific); a dynamical understanding of what drives plate tectonics (which requires well-constrained kinematic information in order to distinguish between different geodynamic hypotheses); and an understanding of the rheology of the plates themselves, including the amount of internal deformation they can support, and the conditions leading to the formation of new plate boundaries through breakup of existing plates. By obtaining better constraints on the motion of the Antarctica plate with respect to these other plates, and by better quantifying the internal deformation within Antarctica (between East and West Antarctica), contributions will be made to solving these other fundamental problems.\u003cbr/\u003e\u003cbr/\u003eIn this project, existing data will be analyzed to address several specific issues related to plate motions involving the Antarctic plate. First, work will be done on four-plate solutions of Australia-Pacific-West Antarctica-East Antarctica motion, in order to most tightly constrain the rotation parameters for separation between East and West Antarctica for the time period from about 45 to 28 Ma (Adare Basin spreading system). This will be done by imposing closure on the four-plate circuit and using relevant marine geophysical data from all four of the boundaries. The uncertainties in the resulting rotation parameters will be determined based on the uncertainties in the data points. These uncertainties can then be propagated in the plate circuit for use in addressing the various global geodynamic problems mentioned above. Second, rotation parameters for Pacific-West Antarctica during Tertiary time will be determined using recently acquired well-navigated Palmer transit data and any additional data that can be acquired during the course of this project. These parameters and their uncertainties will be used in assessments of plate rigidity and included in the plate circuit studies.\u003cbr/\u003e\u003cbr/\u003eIn the framework of this project, new collection of marine geophysical data will be accomplished on a very flexible schedule. This will be done by collecting underway gravity, magnetics, and swath bathymetric data on Palmer transit cruises of geological importance. This has been successfully done on eight previous Palmer cruises since 1997, the most recent four of which were funded under a collaborative OPP grant to CalTech and Scripps which is now expiring. On one of the suitable transits, a formal class in marine geophysics will be conducted that will afford an opportunity to 12 or more graduate and undergraduate students, from CalTech and Scripps as well as other institutions. In this way, educational activities will be integrated with the usual scientific data collection objectives of the research project.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e WATER BOTTLES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Cande, Steven; Gordon, Arnold; Miller, Alisa", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Improved Cenozoic Plate Reconstructions of the Circum-Antarctic Region", "uid": "p0000825", "west": null}, {"awards": "0635531 Ishman, Scott", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG0804; Expedition data of LMG0808", "datasets": [{"dataset_uid": "002674", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0808", "url": "https://www.rvdata.us/search/cruise/LMG0808"}, {"dataset_uid": "002673", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0804", "url": "https://www.rvdata.us/search/cruise/LMG0804"}, {"dataset_uid": "001511", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0804"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project studies seasonal variation in the abundance and shell composition of foraminifera from the northern Gerlache-southern Bransfield Straits region of the Western Antarctic Peninsula. Its goal is to improve interpretation of microfaunal and geochemical proxies for reconstruction of ancient ocean currents, climate, and ecologies. Since seasonal variation may greatly affect interpretation, this project focuses on the Antarctic region, where intense seasonality should generate a more obvious signal than at the less extreme mid-latitudes. The results should allow a better understanding of the coupling to seasonal productivity, as well as improve regional reconstructions.\u003cbr/\u003eThe broader impacts are graduate, undergraduate, and postdoctoral student education; as well as outreach to both the English and Spanish-speaking public. The work will also improve society\u0027s understanding of past climate change as an analogue to the future.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ishman, Scott", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Testing the Impact of Seasonality on Benthic Foraminifers as Paleoenvironmental Proxies.", "uid": "p0000856", "west": null}, {"awards": "0338164 Sedwick, Peter", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0601", "datasets": [{"dataset_uid": "001580", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0601"}, {"dataset_uid": "002619", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0601", "url": "https://www.rvdata.us/search/cruise/NBP0601"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The objectives of this proposal are to investigate the controls on the large-scale distribution and production of the two major bloom-forming phytoplankton taxa in the Southern Ocean, diatoms and Phaeocystis Antarctica. These two groups, through their involvement in the biogeochemical cycles of carbon, sulfur and nutrient elements, may have played important roles in the climate variations of the late Quaternary, and they also may be key players in future environmental change. A current paradigm is that irradiance and iron availability drive phytoplankton dynamics in the Southern Ocean. Recent work, however, suggests that carbon dioxide (CO2) concentrations may also be important in structuring algal assemblages, due to species-specific differences in the physiology. This proposal examines the interactive effects of iron, light and CO2 on the physiology, ecology and relative dominance of Phaeocystis and diatoms in the Southern Ocean. The Ross Sea is an ideal system in which to investigate the environmental factors that regulate the distribution and production of these two algal groups, since it is characterized by seasonal blooms of both P. Antarctica and diatoms that are typically separated in both space and time. This study will take the form of an interdisciplinary investigation that includes a field survey and statistical analysis of algal assemblage composition, iron, mixed layer depth, and CO2 levels in the southern Ross Sea, coupled with shipboard experiments to examine the response of diatom and P. Antarctica assemblages to high and low levels of iron, light and CO2 during spring and summer. \u003cbr/\u003eThis project will provide information on some of the major factors controlling the production and distribution of the two major bloom forming phytoplankton in the Southern Ocean and the related biogeochemical cycling of carbon, sulfur and nutrient elements. The results may ultimately advance the ability to predict how the Southern Ocean will be affected by and possibly modulate future climate change. This project will also make significant educational contributions at several levels, including the planned research involvement of graduate and undergraduate students, postdoctoral associates, a student teacher, and community outreach and educational activities. A number of activities are planned to interface the project with K-12 education. Presentations will be made at local schools to discuss the research and events of the research cruise. During the cruise there will be daily interactive email contact with elementary classrooms. Established websites will be used to allow students to learn about the ongoing research, and to allow researchers to communicate with students through text and downloaded images.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e WATER BOTTLES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ditullio, Giacomo", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Interactive Effects of Iron, Light and CO2 on Phytoplankton Community Dynamics in the Ross Sea", "uid": "p0000831", "west": null}, {"awards": "0125890 Sidell, Bruce", "bounds_geometry": "POLYGON((-68.1413 -52.6755,-67.47503 -52.6755,-66.80876 -52.6755,-66.14249 -52.6755,-65.47622 -52.6755,-64.80995 -52.6755,-64.14368 -52.6755,-63.47741 -52.6755,-62.81114 -52.6755,-62.14487 -52.6755,-61.4786 -52.6755,-61.4786 -53.8957,-61.4786 -55.1159,-61.4786 -56.3361,-61.4786 -57.5563,-61.4786 -58.7765,-61.4786 -59.9967,-61.4786 -61.2169,-61.4786 -62.4371,-61.4786 -63.6573,-61.4786 -64.8775,-62.14487 -64.8775,-62.81114 -64.8775,-63.47741 -64.8775,-64.14368 -64.8775,-64.80995 -64.8775,-65.47622 -64.8775,-66.14249 -64.8775,-66.80876 -64.8775,-67.47503 -64.8775,-68.1413 -64.8775,-68.1413 -63.6573,-68.1413 -62.4371,-68.1413 -61.2169,-68.1413 -59.9967,-68.1413 -58.7765,-68.1413 -57.5563,-68.1413 -56.3361,-68.1413 -55.1159,-68.1413 -53.8957,-68.1413 -52.6755))", "dataset_titles": "Expedition Data; Expedition data of LMG0304; Expedition data of LMG0304A", "datasets": [{"dataset_uid": "002706", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0304", "url": "https://www.rvdata.us/search/cruise/LMG0304"}, {"dataset_uid": "001704", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0304"}, {"dataset_uid": "001597", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0505"}, {"dataset_uid": "001596", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0506"}, {"dataset_uid": "002707", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0304A", "url": "https://www.rvdata.us/search/cruise/LMG0304A"}, {"dataset_uid": "002708", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0304A", "url": "https://www.rvdata.us/search/cruise/LMG0304A"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Notothenioid fishes that dominate the fish fauna surrounding Antarctica have been evolving for 10-14 million years at a nearly constant body temperature of ~0C throughout their life histories. As a result, this group of animals is uniquely suited to studies aimed at understanding and identifying features of physiology and biochemistry that result from the process of evolution at cold body temperature. This project has three major objectives aimed at examining adaptations for life in cold environments: \u003cbr/\u003e\u003cbr/\u003e1. Identify the amino acid substitutions in the fatty acid-binding pocket of fatty acyl CoA synthetase (FACS) that explain its substrate specificity. Fatty acids are a major fuel of energy metabolism in Antarctic fishes. FACS catalyzes the condensation of CoASH and fatty acids to fatty acyl CoA esters, a step required for subsequent metabolism of these important compounds. This research may permit us to resolve the specific amino acid substitutions that explain both substrate specificity and preservation of catalytic rate of notothenioid FACS at cold physiological temperatures.\u003cbr/\u003e\u003cbr/\u003e2. Produce a rigorous biochemical and biophysical characterization of the intracellular calcium-binding protein, parvalbumin, from white axial musculature of Antarctic fishes. Parvalbumin plays a pivotal role in facilitating the relaxation phase of fast-contracting muscles and is a likely site of strong selective pressure. Preliminary data strongly indicate that the protein from Antarctic fishes has been modified to ensure function at cold temperature. A suite of physical techniques will be used to determine dissociation constants of Antarctic fish parvalbumins for calcium and magnesium and unidirectional rate constants of ion-dissociation from the protein. Full-length cDNA clones for Antarctic fish parvalbumin(s) will permit deduction of primary amino acid sequence These data will yield insight into structural elements that permit the protein from notothenioid fishes to function at very cold body temperature.\u003cbr/\u003e\u003cbr/\u003e3. Conduct a broad survey of the pattern of cardiac myoglobin expression in the Suborder Notothenoidei. Previous work has indicated a variable pattern of presence or absence of the intracellular oxygen-binding protein, myoglobin (Mb), in hearts of one family of Antarctic notothenioid fishes (Channichthyidae; icefishes). Because Mb is of physiological value in species that express the protein, the observed pattern of interspecific expression has been attributed to unusually low niche competition in the Southern Ocean. This leads to the prediction that similar loss of cardiac Mb should be observed in other notothenioid taxa. This part of the project will survey for the presence and absence of cardiac Mb in as many notothenioid species as possible and, if Mb-lacking species are detected, will extend analyses to determine the mechanism(s) responsible for loss of its expression using molecular biological techniques.", "east": -61.4786, "geometry": "POINT(-64.80995 -58.7765)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": -52.6755, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Sidell, Bruce; Detrich, H. William", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -64.8775, "title": "Cold Body Temperature as an Evolutionary Shaping force in the Physiology of Antarctic Fishes", "uid": "p0000241", "west": -68.1413}, {"awards": "9527876 Anderson, John", "bounds_geometry": "POLYGON((-179.9996 -70.29238,-143.99968 -70.29238,-107.99976 -70.29238,-71.99984 -70.29238,-35.99992 -70.29238,0 -70.29238,35.99992 -70.29238,71.99984 -70.29238,107.99976 -70.29238,143.99968 -70.29238,179.9996 -70.29238,179.9996 -71.048723,179.9996 -71.805066,179.9996 -72.561409,179.9996 -73.317752,179.9996 -74.074095,179.9996 -74.830438,179.9996 -75.586781,179.9996 -76.343124,179.9996 -77.099467,179.9996 -77.85581,143.99968 -77.85581,107.99976 -77.85581,71.99984 -77.85581,35.99992 -77.85581,0 -77.85581,-35.99992 -77.85581,-71.99984 -77.85581,-107.99976 -77.85581,-143.99968 -77.85581,-179.9996 -77.85581,-179.9996 -77.099467,-179.9996 -76.343124,-179.9996 -75.586781,-179.9996 -74.830438,-179.9996 -74.074095,-179.9996 -73.317752,-179.9996 -72.561409,-179.9996 -71.805066,-179.9996 -71.048723,-179.9996 -70.29238))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002067", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9902"}, {"dataset_uid": "002125", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9801"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Anderson OPP 9527876 Abstract This award supports continuation of a long term investigation of the continental shelf sediments that is aimed at examining the configuration of the West Antarctic Ice Sheet during the last glacial maximum, the events and mechanisms involved in its retreat, and the timing of retreat. The project involves: 1) characterizing variations in the ice sheet grounding zone in a latitudinal transect extending from Ross Sea to Bransfield Basin, 2) reconstructing conditions at the ice/bed interface prior to and after ice sheet retreat, and 3) radiometrically dating ice sheet retreat along this transect. Detailed sea floor imagery (multibeam and deep-tow side-scan sonar), high resolution seismic reflection profiles, and sediment cores will be used to map and characterize prior grounding zones. Of particular concern are features that indicate the amount and organization (channelization) of basal meltwater and the extent of bed deformation that occurred in different ice streams. The timing of ice sheet retreat provides information about the link between Northern and Southern hemisphere ice expansion, and the role of eustasy in ice sheet decoupling. This research should lead to better predictive models to determine which ice streams are most unstable and likely, therefore, to serve as Oweak linksO in the long term behavior of West Antarctic Ice Sheet.", "east": 179.9996, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -70.29238, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, John", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.85581, "title": "Mechanism and Timing of West Antarctic Ice Sheet Retreat at the End of the Last Glacial Maximum", "uid": "p0000624", "west": -179.9996}, {"awards": "0338248 Takahashi, Taro", "bounds_geometry": "POLYGON((-68.0051 -52.7573,-67.35191 -52.7573,-66.69872 -52.7573,-66.04553 -52.7573,-65.39234 -52.7573,-64.73915 -52.7573,-64.08596 -52.7573,-63.43277 -52.7573,-62.77958 -52.7573,-62.12639 -52.7573,-61.4732 -52.7573,-61.4732 -53.96927,-61.4732 -55.18124,-61.4732 -56.39321,-61.4732 -57.60518,-61.4732 -58.81715,-61.4732 -60.02912,-61.4732 -61.24109,-61.4732 -62.45306,-61.4732 -63.66503,-61.4732 -64.877,-62.12639 -64.877,-62.77958 -64.877,-63.43277 -64.877,-64.08596 -64.877,-64.73915 -64.877,-65.39234 -64.877,-66.04553 -64.877,-66.69872 -64.877,-67.35191 -64.877,-68.0051 -64.877,-68.0051 -63.66503,-68.0051 -62.45306,-68.0051 -61.24109,-68.0051 -60.02912,-68.0051 -58.81715,-68.0051 -57.60518,-68.0051 -56.39321,-68.0051 -55.18124,-68.0051 -53.96927,-68.0051 -52.7573))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001572", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0603"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This proposal is for the continuation and expansion of an underway program on the R/V Laurence M. Gould to measure dissolved carbon dioxide gas (pCO2) along with occasional total carbon dioxide (TCO2) in surface waters on transects of Drake Passage. The added observations include dissolved oxygen, as well as nutrient and carbon-13. The proposed work is similar to the underway measurement program made aboard R/V Nathaniel B. Palmer, and complements similar surface temperature and current data.\u003cbr/\u003eThe Southern Ocean is an important component of the global carbon budget. Low surface temperatures with consequently low vertical stability, ice formation, and high winds produce a very active environment for the exchange of gaseous carbon dioxide between the atmospheric and oceanic reservoirs. The Drake Passage is the narrowest point through which the Antarctic Circumpolar Current and its associated fronts must pass, and is the most efficient location for the measurement of latitudinal gradients of gas exchange. The generated time series will contribute towards two scientific goals: the quantification of the spatial and temporal variability and trends of surface carbon dioxide, oxygen, nutrients and C-13, and an understanding of the dominant processes that contribute to the observed variability.", "east": -61.4732, "geometry": "POINT(-64.73915 -58.81715)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": -52.7573, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Takahashi, Taro", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -64.877, "title": "Collaborative Research: Processes Driving Spatial and Temporal Variability of Surface pCO2 in the Drake Passage", "uid": "p0000572", "west": -68.0051}, {"awards": "0126334 Stock, Joann", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0304B; Expedition data of NBP0304C; Expedition data of NBP0304D; Expedition data of NBP0403; Expedition data of NBP0406; Expedition data of NBP0501; Expedition data of NBP0501B", "datasets": [{"dataset_uid": "002637", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0304D", "url": "https://www.rvdata.us/search/cruise/NBP0304D"}, {"dataset_uid": "002628", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "002633", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0304B", "url": "https://www.rvdata.us/search/cruise/NBP0304B"}, {"dataset_uid": "002631", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501B", "url": "https://www.rvdata.us/search/cruise/NBP0501B"}, {"dataset_uid": "002612", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0406", "url": "https://www.rvdata.us/search/cruise/NBP0406"}, {"dataset_uid": "001691", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304C"}, {"dataset_uid": "001690", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304B"}, {"dataset_uid": "001660", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0403"}, {"dataset_uid": "001692", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304D"}, {"dataset_uid": "001609", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0501B"}, {"dataset_uid": "002627", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "002639", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0403", "url": "https://www.rvdata.us/search/cruise/NBP0403"}, {"dataset_uid": "002636", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0304C", "url": "https://www.rvdata.us/search/cruise/NBP0304C"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a project to make use of ship-repositioning transit cruises to gather geophysical information relating to plate tectonics of the Southern Ocean and to support student training activities. Well-constrained Cenozoic plate reconstructions of the circum-Antarctic region are critical for examining a number of problems of global geophysical importance. These problems include, e.g., relating the plate kinematics to its geological consequences in various plate circuits (Pacific-North America, Australia-Pacific); a dynamical understanding of what drives plate tectonics (which requires well-constrained kinematic information in order to distinguish between different geodynamic hypotheses); and an understanding of the rheology of the plates themselves, including the amount of internal deformation they can support, and the conditions leading to the formation of new plate boundaries through breakup of existing plates. By obtaining better constraints on the motion of the Antarctica plate with respect to these other plates, and by better quantifying the internal deformation within Antarctica (between East and West Antarctica), contributions will be made to solving these other fundamental problems.\u003cbr/\u003e\u003cbr/\u003eIn this project, existing data will be analyzed to address several specific issues related to plate motions involving the Antarctic plate. First, work will be done on four-plate solutions of Australia-Pacific-West Antarctica-East Antarctica motion, in order to most tightly constrain the rotation parameters for separation between East and West Antarctica for the time period from about 45 to 28 Ma (Adare Basin spreading system). This will be done by imposing closure on the four-plate circuit and using relevant marine geophysical data from all four of the boundaries. The uncertainties in the resulting rotation parameters will be determined based on the uncertainties in the data points. These uncertainties can then be propagated in the plate circuit for use in addressing the various global geodynamic problems mentioned above. Second, rotation parameters for Pacific-West Antarctica during Tertiary time will be determined using recently acquired well-navigated Palmer transit data and any additional data that can be acquired during the course of this project. These parameters and their uncertainties will be used in assessments of plate rigidity and included in the plate circuit studies.\u003cbr/\u003e\u003cbr/\u003eIn the framework of this project, new collection of marine geophysical data will be accomplished on a very flexible schedule. This will be done by collecting underway gravity, magnetics, and swath bathymetric data on Palmer transit cruises of geological importance. This has been successfully done on eight previous Palmer cruises since 1997, the most recent four of which were funded under a collaborative OPP grant to CalTech and Scripps which is now expiring. On one of the suitable transits, a formal class in marine geophysics will be conducted that will afford an opportunity to 12 or more graduate and undergraduate students, from CalTech and Scripps as well as other institutions. In this way, educational activities will be integrated with the usual scientific data collection objectives of the research project.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Cande, Steven", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Improved Cenozoic Plate Reconstructions of the Circum-Antarctic Region", "uid": "p0000824", "west": null}, {"awards": "9316035 Gowing, Marcia", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP9406", "datasets": [{"dataset_uid": "002592", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP9406", "url": "https://www.rvdata.us/search/cruise/NBP9406"}, {"dataset_uid": "002252", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9406"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The growing season for phytoplankton in polar oceans is short, but intense. There is an increasing body of evidence that in many Antarctic habitats, the most active period may be very early in the season, a period that has not been emphasized in previous investigations. This project is part of an interdisciplinary program that focuses on the dynamics of the spring phytoplankton bloom in a highly productive subsystem of the Antarctic, the Ross Sea. The overall program will test hypotheses related to the initiation of the phytoplankton bloom shortly after the onset of ice melt, the mechanisms controlling phytoplankton growth and productivity in spring, the implications and short-term fate of high productivity in spring, and the transition from spring to midsummer conditions. The focus of this proposal is the role of microzooplankton in controlling the production and fate of carbon during the two types of blooms. Objectives are: 1) to determine biomass, abundance, size and selected species composition of primary producer assemblages, 2) to determine similar features of nano- and microplanktonic heterotrophic assemblages, 3) to measure total community grazing on heterotrophic bacteria and phytoplankton, 4) to examine which grazers are the major herbivores and bacterivores, and 5) to measure the contribution of microzooplankton and mesozooplankton egesta, sinking of algal cells and colonies, and sinking of protozoan assemblages associated with detritus to the total carbon flux from the euphotic zone through 250 m depth. Water samples for abundance and biomass determinations will be taken and samples will be examined with epifluorescence microscopy. Grazing rates will be measured using the dilution grazing technique and the dual-isotope radiolabeling single cell method. Carbon fluxes will be determined on sinking material collected with particle interceptor traps at the base of the euphotic zone and two deeper depths, using microscopical analysis . An understanding of these processes and other fundamental processes studied by collaborating investigators will contribute to the understanding of the role of the Southern Ocean in present, past and predicted future sequestration of carbon, as well as in other global elemental cycles.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Walker", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Bloom Dynamics and Food Web Structure in the Ross Sea: Role of Microzooplankton in Controlling Production", "uid": "p0000811", "west": null}, {"awards": "0636975 Sweeney, Colm", "bounds_geometry": null, "dataset_titles": "Expedition data of LMG0909", "datasets": [{"dataset_uid": "002721", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0909", "url": "https://www.rvdata.us/search/cruise/LMG0909"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The proposed project will expand the suite of observations and lengthen the existing time series of underway surface dissolved carbon dioxide (pCO2) measurements transects across the Drake Passage on the R/VIB L.M. Gould. The additional observations include oxygen, nutrients and total CO2 (TCO2) concentrations, and the 13C to 12C ratio of TCO2. The continued and expanded time series will contribute towards two main scientific goals: the quantification of the spatial and temporal variability and the trends of surface carbon dioxide species in four major water mass regimes in the Drake Passage, and the understanding of the dominant processes and changes in those processes that contribute to the variability in surface pCO2 and the resulting air-sea flux of CO2 in the Drake Passage. The expanded program will also include the analysis of the 14C/12C of TCO2 and the specific study of the observations on one short wintertime cruise, with the objective of testing the hypothesis that the dissolved carbon dioxide in surface waters of the Drake Passage is determined by the degree of winter mixing. This is of special significance in light of two scenarios that may be affecting the ventilation of Southern Ocean deep water now and in the future: a decrease in water column stratification with the observations of higher zonal winds, or an increase in stratification due to higher precipitation and warming from climate change. If winter mixing determines the mean annual pCO2 in the Drake Passage, the increasing trend in atmospheric pCO2 should have little effect on sea surface pCO2.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Sweeney, Colm; Sweeney, Colm", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Surface pCO2 and the effects of Winter Time Overturning in the Drake Passage", "uid": "p0000872", "west": null}, {"awards": "9725972 Klinkhammer, Gary", "bounds_geometry": "POLYGON((-70.90664 -52.35256,-69.221316 -52.35256,-67.535992 -52.35256,-65.850668 -52.35256,-64.165344 -52.35256,-62.48002 -52.35256,-60.794696 -52.35256,-59.109372 -52.35256,-57.424048 -52.35256,-55.738724 -52.35256,-54.0534 -52.35256,-54.0534 -53.399775,-54.0534 -54.44699,-54.0534 -55.494205,-54.0534 -56.54142,-54.0534 -57.588635,-54.0534 -58.63585,-54.0534 -59.683065,-54.0534 -60.73028,-54.0534 -61.777495,-54.0534 -62.82471,-55.738724 -62.82471,-57.424048 -62.82471,-59.109372 -62.82471,-60.794696 -62.82471,-62.48002 -62.82471,-64.165344 -62.82471,-65.850668 -62.82471,-67.535992 -62.82471,-69.221316 -62.82471,-70.90664 -62.82471,-70.90664 -61.777495,-70.90664 -60.73028,-70.90664 -59.683065,-70.90664 -58.63585,-70.90664 -57.588635,-70.90664 -56.54142,-70.90664 -55.494205,-70.90664 -54.44699,-70.90664 -53.399775,-70.90664 -52.35256))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002064", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9904"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "NSF FORM 1358 (1/94) This award, provided by the Office of Polar Programs of the National Science Foundation, supports research to investigate hydrothermal venting in Bransfield Strait, between the South Shetland Islands and the Antarctic Peninsula. Previous exploratory work in the Strait identified several sites where hot hydrothermal fluids emanate from the sea floor. These discoveries were made using an instrument package specially designed to detect and map the thermal and chemical anomalies that hydrothermal activity imparts on the overlying water column. Hydrothermal sites in the Strait range in water depth from \u003c200 to 1300 meters and occur on the volcanic outcrops that periodically protrude through the sediment cover along the strike of the rift zone. These sites are alligned with the caldera at Deception Island which has active hot springs. These are the first submarine hydrothermal sites discovered in Antarctica and as such represent unique research opportunities. This project will return to the Strait to further map and sample these areas. There are several compelling reasons to believe that further exploration of vent systems in the Bransfield will yield exciting new information: (1) Bransfield Strait is a back-arc rift system and it is likely that the vent fluids and mineral deposits associated with venting in this setting are unlike anything sampled so far from submarine vents. (2) Preliminary evidence suggests that venting in the Bransfield occurs in two different volcanic substrates: andesite and rhyolite. This situation provides a natural laboratory for investigating the effects of substrate chemistry on vent fluid composition. (3) Bransfield Strait is isolated from the system of mid-ocean ridges and has a relatively short history of rifting (approximately 4 my). So, while the region straddles the Atlantic and Pacific, vent biota in the Strait may well have a distinct genealogy. Biochemical information on vent species in the Bransfield will add to our knowledge of the dispersal of life in the deep ocean. In the past such discoveries have led to the identification of new species and the isolation of previously unknown biochemical compounds. (4) The fire and ice environments of hydrothermal sites in the Bransfield may prove to be the closest analog for primordial environments on Earth and extraterrestrial bodies. The Bransfield Strait is one of the most productive areas of the world\u0027s oceans and lies close to the Antarctic continent, far removed from the mid-ocean ridge system. The combination of organic-rich sediment and heat produced by volcanism in this back- arc setting creates a situation conducive to unusual fluids, unique vent biota, and exotic hydrothermal deposits. Collaborative awards: OPP 9725972 and OPP 9813450", "east": -54.0534, "geometry": "POINT(-62.48002 -57.588635)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.35256, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Klinkhammer, Gary", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -62.82471, "title": "Heat and Chemical Exchange During the Early Stages of Backarc Rifting in a Polar Region: Hydrothermal Activity in Bransfield Strait, Antarctica", "uid": "p0000622", "west": -70.90664}, {"awards": "9220848 Bartek, Louis", "bounds_geometry": "POLYGON((-179.9996 -52.35472,-143.99968 -52.35472,-107.99976 -52.35472,-71.99984 -52.35472,-35.99992 -52.35472,0 -52.35472,35.99992 -52.35472,71.99984 -52.35472,107.99976 -52.35472,143.99968 -52.35472,179.9996 -52.35472,179.9996 -54.916322,179.9996 -57.477924,179.9996 -60.039526,179.9996 -62.601128,179.9996 -65.16273,179.9996 -67.724332,179.9996 -70.285934,179.9996 -72.847536,179.9996 -75.409138,179.9996 -77.97074,143.99968 -77.97074,107.99976 -77.97074,71.99984 -77.97074,35.99992 -77.97074,0 -77.97074,-35.99992 -77.97074,-71.99984 -77.97074,-107.99976 -77.97074,-143.99968 -77.97074,-179.9996 -77.97074,-179.9996 -75.409138,-179.9996 -72.847536,-179.9996 -70.285934,-179.9996 -67.724332,-179.9996 -65.16273,-179.9996 -62.601128,-179.9996 -60.039526,-179.9996 -57.477924,-179.9996 -54.916322,-179.9996 -52.35472))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002245", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9407"}, {"dataset_uid": "002265", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9307"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award supports an integrated seismic, sedimentologic, and paleontologic investigation of glacio-marine stratigraphy of the Ross Sea continental shelf. The purpose of this work is to acquire seismic images and sediment cores of the glacial sediments toward a better understanding of the Cenozoic history of glaciation in the Ross Sea region. This investigation will utilize high resolution seismic profiling data to locate regions where the Pleistocene glacial till is thin or perhaps absent. Piston coring at these locations, if the till is penetrated, will provide sedimentary records of Cenozoic depositional environments and could provide important clues to fluctuations of the Antarctic Ice Sheets. The seismic profiling will provide a direct record of the grounding history of the Ross Ice Shelf during the Pleistocene and it will also allow first order correlations of Cenozoic sedimentary units that are represented by sediments recovered in the piston cores. This work will provide important proxy records of the history of both the West Antarctic Ice Sheet and the East Antarctic Ice Sheet and this, in turn, will provide important constraints to climate models.", "east": 179.9996, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.35472, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bartek, Louis", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.97074, "title": "Integrated Biostratigraphy and High Resolution Seismic Stratigraphy of the Ross Sea: Implications for Cenozoic Eustatic and Climatic Change", "uid": "p0000643", "west": -179.9996}, {"awards": "0732995 Barbeau, David", "bounds_geometry": "POLYGON((-67.9988 -52.7596,-66.83756 -52.7596,-65.67632 -52.7596,-64.51508 -52.7596,-63.35384 -52.7596,-62.1926 -52.7596,-61.03136 -52.7596,-59.87012 -52.7596,-58.70888 -52.7596,-57.54764 -52.7596,-56.3864 -52.7596,-56.3864 -54.15258,-56.3864 -55.54556,-56.3864 -56.93854,-56.3864 -58.33152,-56.3864 -59.7245,-56.3864 -61.11748,-56.3864 -62.51046,-56.3864 -63.90344,-56.3864 -65.29642,-56.3864 -66.6894,-57.54764 -66.6894,-58.70888 -66.6894,-59.87012 -66.6894,-61.03136 -66.6894,-62.1926 -66.6894,-63.35384 -66.6894,-64.51508 -66.6894,-65.67632 -66.6894,-66.83756 -66.6894,-67.9988 -66.6894,-67.9988 -65.29642,-67.9988 -63.90344,-67.9988 -62.51046,-67.9988 -61.11748,-67.9988 -59.7245,-67.9988 -58.33152,-67.9988 -56.93854,-67.9988 -55.54556,-67.9988 -54.15258,-67.9988 -52.7596))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001520", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0717"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project studies the relationship between opening of the Drake Passage and formation of the Antarctic ice sheet. Its goal is to answer the question: What drove the transition from a greenhouse to icehouse world thirty-four million years ago? Was it changes in circulation of the Southern Ocean caused by the separation of Antarctica from South America or was it a global effect such as decreasing atmospheric CO2 content? This study constrains the events and timing through fieldwork in South America and Antarctica and new work on marine sediment cores previously collected by the Ocean Drilling Program. It also involves an extensive, multidisciplinary analytical program. Compositional analyses of sediments and their sources will be combined with (U-Th)/He, fission-track, and Ar-Ar thermochronometry to constrain uplift and motion of the continental crust bounding the Drake Passage. Radiogenic isotope studies of fossil fish teeth found in marine sediment cores will be used to trace penetration of Pacific seawater into the Atlantic. Oxygen isotope and trace metal measurements on foraminifera will provide additional information on the timing and magnitude of ice volume changes. \u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eThe broader impacts include graduate and undergraduate education; outreach to the general public through museum exhibits and presentations, and international collaboration with scientists from Argentina, Ukraine, UK and Germany.\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eThe project is supported under NSF\u0027s International Polar Year (IPY) research emphasis area on \"Understanding Environmental Change in Polar Regions\". This project is also a key component of the IPY Plates \u0026 Gates initiative (IPY Project #77), focused on determining the role of tectonic gateways in instigating polar environmental change.", "east": -56.3864, "geometry": "POINT(-62.1926 -59.7245)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": -52.7596, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "MacPhee, Ross", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -66.6894, "title": "Collaborative Research: IPY: Testing the Polar Gateway Hypothesis: An Integrated Record of Drake Passage Opening \u0026 Antarctic Glaciation", "uid": "p0000120", "west": -67.9988}, {"awards": "0739483 Nowacek, Douglas", "bounds_geometry": "POLYGON((-68.0013 -52.7592,-67.34925 -52.7592,-66.6972 -52.7592,-66.04515 -52.7592,-65.3931 -52.7592,-64.74105 -52.7592,-64.089 -52.7592,-63.43695 -52.7592,-62.7849 -52.7592,-62.13285 -52.7592,-61.4808 -52.7592,-61.4808 -53.99669,-61.4808 -55.23418,-61.4808 -56.47167,-61.4808 -57.70916,-61.4808 -58.94665,-61.4808 -60.18414,-61.4808 -61.42163,-61.4808 -62.65912,-61.4808 -63.89661,-61.4808 -65.1341,-62.13285 -65.1341,-62.7849 -65.1341,-63.43695 -65.1341,-64.089 -65.1341,-64.74105 -65.1341,-65.3931 -65.1341,-66.04515 -65.1341,-66.6972 -65.1341,-67.34925 -65.1341,-68.0013 -65.1341,-68.0013 -63.89661,-68.0013 -62.65912,-68.0013 -61.42163,-68.0013 -60.18414,-68.0013 -58.94665,-68.0013 -57.70916,-68.0013 -56.47167,-68.0013 -55.23418,-68.0013 -53.99669,-68.0013 -52.7592))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001467", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1003"}, {"dataset_uid": "001483", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0905"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The krill surplus hypothesis argues that the near-extirpation of baleen whales from Antarctic waters during much the twentieth century led to significant changes in the availability of krill for other predators. Over the past decade, however, overall krill abundance has decreased by over an order of magnitude around the Antarctic Peninsula, in part due to physical forces, including the duration and extent of winter sea ice cover. Krill predators are vulnerable to variability in prey and have been shown to alter their demography in response to changes in prey availability This research will use novel tagging technology combined with traditional fisheries acoustics methods to quantify the prey consumed by a poorly understood yet ecologically integral and recovering krill predator in the Antarctic, the humpback whale (Megaptera novaeangliae). It also will use a combination of advanced non-invasive tag technology to study whale behavior concurrent with hydro-acoustic techniques to map krill aggregations. The project will (1) provide direct and quantitative estimates of krill consumption rates by humpback whales and incorporate these into models for the management of krill stocks and the conservation of the Antarctic marine ecosystem; (2) provide information integral to understanding predator-prey ecology and trophic dynamics, i.e., if/how baleen whales affect the distribution and behavior of krill and/or other krill predators; (3) add significantly to the knowledge of the diving behavior and foraging ecology of baleen whales in the Antarctic; and (4) develop new geospatial tools for the construction of multi-trophic level models that account for physical as well as biological data. \u003cbr/\u003e\u003cbr/\u003eBroader Impacts: Whales are assumed to be a major predator on Antarctic krill, yet there is little understanding of how whales utilize this resource. This knowledge is critical to addressing both bottom-up and top-down questions, e.g., how climate change may affect whales or how whales may affect falling krill abundances. This program will integrate research and education by providing opportunities for undergraduate and graduate students as well as postdoctoral researchers at Duke University, the Florida State University and the University of Massachusetts at Boston. This project will also seek to integrate interactive learning through real time, seasonal and curriculum development in collaboration with the National Geographic Society as well as at the participating universities and local schools in those communities.", "east": -61.4808, "geometry": "POINT(-64.74105 -58.94665)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "R/V NBP; R/V LMG", "locations": null, "north": -52.7592, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Nowacek, Douglas", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.1341, "title": "Collaborative Research: The Ecological Role of a Poorly Studied Antarctic Krill Predator: The Humpback Whale, Megaptera Novaeangliae", "uid": "p0000529", "west": -68.0013}, {"awards": "9910096 Ribic, Christine", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0103; Expedition data of NBP0104; Expedition data of NBP0204", "datasets": [{"dataset_uid": "002603", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}, {"dataset_uid": "002602", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0103", "url": "https://www.rvdata.us/search/cruise/NBP0103"}, {"dataset_uid": "002604", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0204", "url": "https://www.rvdata.us/search/cruise/NBP0204"}, {"dataset_uid": "002595", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0103", "url": "https://www.rvdata.us/search/cruise/NBP0103"}, {"dataset_uid": "002657", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}, {"dataset_uid": "002643", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0204", "url": "https://www.rvdata.us/search/cruise/NBP0204"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on the large-scale distribution, abundance and habitat of seabirds. This will be accomplished using strip-transect surveys and spatial analysis software and models to examine the large-scale data. This research will be coordinated with seabird studies which focus on seabird diet composition and small scale foraging behavior. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ribic, Christine", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "GLOBEC: WinDSSOck: Winter Distribution and Success of Southern Ocean Krill", "uid": "p0000818", "west": null}, {"awards": "0538148 Huber, Bruce", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0801; Processed CurrentMeter Data from the Adare Basin near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1101 ; Processed CurrentMeter Data from the Ross Sea near Antarctica acquired during the Nathaniel B. Palmer expedition NBP0801", "datasets": [{"dataset_uid": "601344", "doi": null, "keywords": "Antarctica; Cape Adare; Mooring; NBP0801; Physical Oceanography; Ross Sea; R/v Nathaniel B. Palmer; Salinity; Southern Ocean; Temperature", "people": "Huber, Bruce; Gordon, Arnold", "repository": "USAP-DC", "science_program": null, "title": "Processed CurrentMeter Data from the Ross Sea near Antarctica acquired during the Nathaniel B. Palmer expedition NBP0801", "url": "https://www.usap-dc.org/view/dataset/601344"}, {"dataset_uid": "601343", "doi": null, "keywords": "Antarctica; Mooring; NBP1101; Ross Sea; Salinity; Southern Ocean; Temperature", "people": "Gordon, Arnold; Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Processed CurrentMeter Data from the Adare Basin near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1101 ", "url": "https://www.usap-dc.org/view/dataset/601343"}, {"dataset_uid": "001517", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0801"}, {"dataset_uid": "002647", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0801", "url": "https://www.rvdata.us/search/cruise/NBP0801"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "An array of moorings will be deployed and maintained east of Cape Adare, Antarctica, at the northwestern corner of the Ross Sea to observe the properties of Antarctic Bottom Water (AABW) exiting the Ross Sea. This location has been identified from recent studies as an ideal place to make such measurements. Antarctic Bottom Water has the highest density of the major global water masses, and fills the deepest parts of the world\u0027s oceans. Because it obtains many of its characteristics during its contact with the atmosphere and with glacial ice along the continental margins of Antarctica, it is expected that changes in newly-formed AABW may represent an effective indicator for abrupt climate change. The heterogeneous nature of the source regions around Antarctica complicates the observation of newly-formed AABW properties. The two most important source regions for AABW are within the Weddell and the Ross Seas, with additional sources drawn from the east Antarctic margins. In the northwestern Weddell Sea, several programs have been undertaken in the last decade to monitor the long term variability of Weddell Sea Deep and Bottom Water, precursors of AABW originating from the Weddell Sea, however no such systematic efforts have yet been undertaken to make longterm measurements of outflow from the Ross Sea. The proposed study will significantly improve our knowledge of the long term variability in the outflow of deep and bottom water from the Ross Sea, and will provide the beginnings of a long-term monitoring effort which ultimately will allow detection of changes in the ocean in the context of global climate change. When joined with similar efforts ongoing in the Weddell Sea, long-term behavior and possible coupling of these two important sources of the ocean\u0027s deepest water mass can be examined in detail.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Caron, Bruce", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": null, "title": "Cape Adare Long-term Mooring (CALM)", "uid": "p0000838", "west": null}, {"awards": "0636696 DeVries, Arthur", "bounds_geometry": "POLYGON((-68.0025 -52.7599,-67.07254 -52.7599,-66.14258 -52.7599,-65.21262 -52.7599,-64.28266 -52.7599,-63.3527 -52.7599,-62.42274 -52.7599,-61.49278 -52.7599,-60.56282 -52.7599,-59.63286 -52.7599,-58.7029 -52.7599,-58.7029 -53.98242,-58.7029 -55.20494,-58.7029 -56.42746,-58.7029 -57.64998,-58.7029 -58.8725,-58.7029 -60.09502,-58.7029 -61.31754,-58.7029 -62.54006,-58.7029 -63.76258,-58.7029 -64.9851,-59.63286 -64.9851,-60.56282 -64.9851,-61.49278 -64.9851,-62.42274 -64.9851,-63.3527 -64.9851,-64.28266 -64.9851,-65.21262 -64.9851,-66.14258 -64.9851,-67.07254 -64.9851,-68.0025 -64.9851,-68.0025 -63.76258,-68.0025 -62.54006,-68.0025 -61.31754,-68.0025 -60.09502,-68.0025 -58.8725,-68.0025 -57.64998,-68.0025 -56.42746,-68.0025 -55.20494,-68.0025 -53.98242,-68.0025 -52.7599))", "dataset_titles": "Expedition Data; Expedition data of LMG0809; Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae)", "datasets": [{"dataset_uid": "601811", "doi": null, "keywords": "Antarctica; Bellingshausen Sea; Cryosphere; Southern Ocean", "people": "Hilton, Eric; Corso, Andrew; Desvignes, Thomas; McDowell, Jan; Cheng, Chi-Hing; Biesack, Ellen; Steinberg, Deborah", "repository": "USAP-DC", "science_program": "LTER", "title": "Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae)", "url": "https://www.usap-dc.org/view/dataset/601811"}, {"dataset_uid": "001504", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0809"}, {"dataset_uid": "002728", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0809", "url": "https://www.rvdata.us/search/cruise/LMG0809"}, {"dataset_uid": "001493", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0810"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Antarctic notothenioid fish evolved antifreeze (AF) proteins that prevent ice crystals that enter their body fluids from growing, and thereby avoid freezing in their icy habitats. However, even in the extreme cold Antarctic marine environment, regional gradations of severity are found. The biological correlate for environmental severity in fish is the endogenous ice load, which likely determines the tolerable limit of environmental severity for notothenioid habitation. The endogenous ice load develops from environmental ice crystals entering through body surfaces and somehow localizing to the spleen. How prone the surface tissues are to ice entry, how ice reaches the spleen, and what the fate of splenic ice is, requires elucidation. Spleen sequestration of ice raises the hypothesis that macrophages may play a role in the translocation and perhaps elimination of AF-bound ice crystals. Antifreeze glycoproteins (AFGP) act in concert with a second, recently discovered antifreeze called antifreeze potentiating protein (AFPP), necessitating an assessment of the contribution of AFPP to freezing avoidance. Recent research suggests that the exocrine pancreas and the anterior stomach, not the liver, synthesize AFGPs and secrete them into the intestine, from where they may be returned to the blood. A GI-to-blood transport is a highly unconventional path for a major plasma protein and also begs the questions, What is the source of blood AFPP?. Why are two distinct AF proteins needed and what is the chronology of their evolution? What genomic changes in the DNA are associated with the development or loss of the antifreeze trait? Experiments described in this proposal address these interrelated questions of environmental, organismal, and evolutionary physiology, and will further our understanding of novel vertebrate physiologies, the limits of environmental adaptation, and climatically driven changes in the genome. The proposed research will (1) determine the temporal and spatial heterogeneity of environmental temperature and iciness in progressively more severe fish habitats in the greater McMurdo Sound area, and in the milder Arthur Harbor at Palmer Station. The splenic ice load in fishes inhabiting these sites will be determined to correlate to environmental severity and habitability. (2) Assess the surface tissue site of ice entry and their relative barrier properties in intact fish and isolated tissues preparations (3) Assess the role of immune cells in the fate of endogenous ice, (4) determine whether the blood AFGPs are from intestinal/rectal uptake, (5) examine the contribution of AFPP to the total blood AF activity (6) evaluate the progression of genomic changes in the AFGP locus across Notothenioidei as modulated by disparate thermal environments, in four selected species through the analyses of large insert DNA BAC clones. The origin and evolution of AFPP will be examined also by analyzing BAC clones encompassing the AFPP genomic locus. The broader impacts of the proposed research include training of graduate and undergraduate students in research approaches ranging from physical field measurements to cutting edge genomics. Undergraduate research projects have lead to co-authored publications and will continue to do so. Outreach includes establishing Wiki websites on topics of Antarctic fish biology and freeze avoidance, providing advisory services to the San Francisco Science Exploratorium, and making BAC libraries available to interested polar biologists. This research theme has repeatedly received national and international science news coverage and will continue to be disseminated to the public in that manner.", "east": -58.7029, "geometry": "POINT(-63.3527 -58.8725)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": -52.7599, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Devries, Arthur", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -64.9851, "title": "Environmental, Organismal and Evolutionary Physiology of Freeze Avoidance in Antarctic Notothenioid Fishes", "uid": "p0000560", "west": -68.0025}, {"awards": "0338350 Dunbar, Robert; 0741411 Hutchins, David; 0338097 DiTullio, Giacomo; 0338157 Smith, Walker; 0127037 Neale, Patrick", "bounds_geometry": "POLYGON((173.31833 -46.5719,173.757539 -46.5719,174.196748 -46.5719,174.635957 -46.5719,175.075166 -46.5719,175.514375 -46.5719,175.953584 -46.5719,176.392793 -46.5719,176.832002 -46.5719,177.271211 -46.5719,177.71042 -46.5719,177.71042 -48.759516,177.71042 -50.947132,177.71042 -53.134748,177.71042 -55.322364,177.71042 -57.50998,177.71042 -59.697596,177.71042 -61.885212,177.71042 -64.072828,177.71042 -66.260444,177.71042 -68.44806,177.271211 -68.44806,176.832002 -68.44806,176.392793 -68.44806,175.953584 -68.44806,175.514375 -68.44806,175.075166 -68.44806,174.635957 -68.44806,174.196748 -68.44806,173.757539 -68.44806,173.31833 -68.44806,173.31833 -66.260444,173.31833 -64.072828,173.31833 -61.885212,173.31833 -59.697596,173.31833 -57.50998,173.31833 -55.322364,173.31833 -53.134748,173.31833 -50.947132,173.31833 -48.759516,173.31833 -46.5719))", "dataset_titles": "Expedition Data; Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea; Processed Fluid Chemistry Data from the Ross Sea acquired during the Nathaniel B. Palmer expedition NBP0601", "datasets": [{"dataset_uid": "001687", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0305"}, {"dataset_uid": "001545", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0608"}, {"dataset_uid": "001584", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0508"}, {"dataset_uid": "601340", "doi": null, "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Fluid Chemistry Data; Geochemistry; NBP0601; Niskin Bottle; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Southern Ocean; Water Measurements", "people": "Smith, Walker; DiTullio, Giacomo", "repository": "USAP-DC", "science_program": null, "title": "Processed Fluid Chemistry Data from the Ross Sea acquired during the Nathaniel B. Palmer expedition NBP0601", "url": "https://www.usap-dc.org/view/dataset/601340"}, {"dataset_uid": "001580", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0601"}, {"dataset_uid": "600036", "doi": "10.15784/600036", "keywords": "Biota; Chemistry:fluid; Chemistry:Fluid; Diatom; Oceans; Phytoplankton; Ross Sea; Southern Ocean", "people": "DiTullio, Giacomo", "repository": "USAP-DC", "science_program": null, "title": "Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea", "url": "https://www.usap-dc.org/view/dataset/600036"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The objectives of this proposal are to investigate the controls on the large-scale distribution and production of the two major bloom-forming phytoplankton taxa in the Southern Ocean, diatoms and Phaeocystis Antarctica. These two groups, through their involvement in the biogeochemical cycles of carbon, sulfur and nutrient elements, may have played important roles in the climate variations of the late Quaternary, and they also may be key players in future environmental change. A current paradigm is that irradiance and iron availability drive phytoplankton dynamics in the Southern Ocean. Recent work, however, suggests that carbon dioxide (CO2) concentrations may also be important in structuring algal assemblages, due to species-specific differences in the physiology. This proposal examines the interactive effects of iron, light and CO2 on the physiology, ecology and relative dominance of Phaeocystis and diatoms in the Southern Ocean. The Ross Sea is an ideal system in which to investigate the environmental factors that regulate the distribution and production of these two algal groups, since it is characterized by seasonal blooms of both P. Antarctica and diatoms that are typically separated in both space and time. This study will take the form of an interdisciplinary investigation that includes a field survey and statistical analysis of algal assemblage composition, iron, mixed layer depth, and CO2 levels in the southern Ross Sea, coupled with shipboard experiments to examine the response of diatom and P. Antarctica assemblages to high and low levels of iron, light and CO2 during spring and summer. \u003cbr/\u003eThis project will provide information on some of the major factors controlling the production and distribution of the two major bloom forming phytoplankton in the Southern Ocean and the related biogeochemical cycling of carbon, sulfur and nutrient elements. The results may ultimately advance the ability to predict how the Southern Ocean will be affected by and possibly modulate future climate change. This project will also make significant educational contributions at several levels, including the planned research involvement of graduate and undergraduate students, postdoctoral associates, a student teacher, and community outreach and educational activities. A number of activities are planned to interface the project with K-12 education. Presentations will be made at local schools to discuss the research and events of the research cruise. During the cruise there will be daily interactive email contact with elementary classrooms. Established websites will be used to allow students to learn about the ongoing research, and to allow researchers to communicate with students through text and downloaded images.", "east": 177.71042, "geometry": "POINT(175.514375 -57.50998)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FRRF; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FRRF", "is_usap_dc": true, "keywords": "B-15J; OCEAN PLATFORMS; FIELD SURVEYS; R/V NBP", "locations": "B-15J", "north": -46.5719, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ditullio, Giacomo; Smith, Walker; Dryer, Jennifer; Neale, Patrick", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; WATER-BASED PLATFORMS \u003e FIXED PLATFORMS \u003e SURFACE \u003e OCEAN PLATFORMS; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -68.44806, "title": "Collaborative Research: Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea", "uid": "p0000540", "west": 173.31833}, {"awards": "9908856 Blake, Daniel", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG0309", "datasets": [{"dataset_uid": "002675", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0309", "url": "https://www.rvdata.us/search/cruise/LMG0309"}, {"dataset_uid": "001683", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0309"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9908856 Blake This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a paleoecological and paleoenvironmental study of Seymour Island. Global climate change late in the Eocene epoch had an important influence in Antarctica. This was the beginning of the transition from a cool-temperate climate in Antarctica to the polar climate that exists there today. The cooling trend strongly influenced the structure of shallow-water, Antarctic marine communities, and these effects are still evident in the peculiar ecological relationships among species living in modern Antarctic communities. Cooling late in the Eocene reduced the abundance of fish and crabs, which in turn reduced skeleton-crushing predation on invertebrates. Reduced predation allowed dense populations of ophiuroids (brittlestars) and crinoids (sea lilies) to appear in shallow-water settings at the end of the Eocene. These low-predation communities appear as dense fossil echinoderm assemblages in the upper portion of the late Eocene La Meseta Formation on Seymour Island, off the Antarctic Peninsula. Today, dense ophiuroid and crinoid populations are common in shallow-water habitats in Antarctica but generally have been eliminated by predators from similar habitats at temperate and tropical latitudes; their persistence in Antarctica to this day is an important ecological legacy of climatic cooling in the Eocene. Although the influence of declining predation on Antarctic ophiuroids and crinoids is now well documented, the effects of cooling on the more abundant mollusks have not been investigated. This study will examine the evolutionary ecology of gastropods (snails) and bivalves (clams) in the late Eocene. A series of hypotheses will be tested in the La Meseta Formation, based on the predicted responses of mollusks to declining temperature and changing levels of predation. The shapes of gastropod shells, the activities of gastropods that prey on other mollusks by drilling holes in their shells, and the effects of predation on the thickness of mollusk shells should have changed significantly through late Eocene time. First, defensive features of gastropod shells, such as spines and ribbing, should decline as temperature and, therefore, the activity of skeleton-crushing predators declined. Second, drilling of bivalve prey by predatory gastropods should increase with time since the drillers should themselves have been subject to lower predation pressure as temperature declined. Drilled shells, therefore, should become more common through time. Third, patterns in the thickness of shells through time will make it possible to separate the direct, physiological effects of declining temperature (shells are more difficult to produce at cooler temperatures, and so should be thinner) from the indirect effects of temperature on evolving biological interactions (increased drilling predation should result in thicker shells). Seymour Island contains the only fossil outcrops readily accessible in Antarctica from this crucial period in Earth history. The La Meseta Formation on Seymour Island thus provides a unique opportunity to learn how climate change affected Antarctic marine communities. In practical terms, global climate change will probably increase upwelling over the next few decades to centuries in some temperate coastal regions. Recent ecological evidence suggests that the resultant lowering of sea temperatures could lower predation in those areas. Understanding the response of the La Meseta faunas to global cooling in the late Eocene will provide direct insight into the rapidly changing structure of modern benthic communities.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Blake, Daniel", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Global Climate Change and the Evolutionary Ecology of Antarctic Mollusks in the Late Eocene.", "uid": "p0000857", "west": null}, {"awards": "0837988 Steig, Eric", "bounds_geometry": "POLYGON((-180 -65,-144 -65,-108 -65,-72 -65,-36 -65,0 -65,36 -65,72 -65,108 -65,144 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.5,-180 -85,-180 -82.5,-180 -80,-180 -77.5,-180 -75,-180 -72.5,-180 -70,-180 -67.5,-180 -65))", "dataset_titles": "West Antarctica Ice Core and Climate Model Data", "datasets": [{"dataset_uid": "609536", "doi": "10.7265/N5QJ7F8B", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Paleoclimate; WAIS Divide", "people": "Steig, Eric J.", "repository": "USAP-DC", "science_program": null, "title": "West Antarctica Ice Core and Climate Model Data", "url": "https://www.usap-dc.org/view/dataset/609536"}], "date_created": "Fri, 30 Apr 2010 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). \u003cbr/\u003e\u003cbr/\u003eThis award supports a project to reconstruct the past physical and chemical climate of Antarctica, with an emphasis on the region surrounding the Ross Sea Embayment, using \u003e60 ice cores collected in this region by US ITASE and by Australian, Brazilian, Chilean, and New Zealand ITASE teams. The ice core records are annually resolved and exceptionally well dated, and will provide, through the analyses of stable isotopes, major soluble ions and for some trace elements, instrumentally calibrated proxies for past temperature, precipitation, atmospheric circulation, chemistry of the atmosphere, sea ice extent, and volcanic activity. These records will be used to understand the role of solar, volcanic, and human forcing on Antarctic climate and to investigate the character of recent abrupt climate change over Antarctica in the context of broader Southern Hemisphere and global climate variability. The intellectual merit of the project is that ITASE has resulted in an array of ice core records, increasing the spatial resolution of observations of recent Antarctic climate variability by more than an order of magnitude and provides the basis for assessment of past and current change and establishes a framework for monitoring of future climate change in the Southern Hemisphere. This comes at a critical time as global record warming and other impacts are noted in the Southern Ocean, the Antarctic Peninsula, and on the Antarctic ice sheet. The broader impacts of the project are that Post-doctoral and graduate students involved in the project will benefit from exposure to observational and modeling approaches to climate change research and working meetings to be held at the two collaborating institutions plus other prominent climate change institutions. The results are of prime interest to the public and the media Websites hosted by the two collaborating institutions contain climate change position papers, scientific exchanges concerning current climate change issues, and scientific contribution series.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Deuterium Isotopes; Deuterium Excess; Not provided; GROUND-BASED OBSERVATIONS; Wais Divide-project", "locations": null, "north": -65.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Antarctic Climate Reconstruction Utilizing the US ITASE Ice Core Array (2009- 2012)", "uid": "p0000180", "west": -180.0}, {"awards": "0335330 Waddington, Edwin", "bounds_geometry": "POLYGON((-60 83,-55.8 83,-51.6 83,-47.4 83,-43.2 83,-39 83,-34.8 83,-30.6 83,-26.4 83,-22.2 83,-18 83,-18 80.5,-18 78,-18 75.5,-18 73,-18 70.5,-18 68,-18 65.5,-18 63,-18 60.5,-18 58,-22.2 58,-26.4 58,-30.6 58,-34.8 58,-39 58,-43.2 58,-47.4 58,-51.6 58,-55.8 58,-60 58,-60 60.5,-60 63,-60 65.5,-60 68,-60 70.5,-60 73,-60 75.5,-60 78,-60 80.5,-60 83))", "dataset_titles": "Borehole Optical Stratigraphy Modeling, Antarctica", "datasets": [{"dataset_uid": "609468", "doi": "10.7265/N5H70CR5", "keywords": "Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Modeling Code", "people": "Hawley, Robert L.; Fudge, T. J.; Waddington, Edwin D.; Smith, Ben", "repository": "USAP-DC", "science_program": null, "title": "Borehole Optical Stratigraphy Modeling, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609468"}], "date_created": "Thu, 01 Apr 2010 00:00:00 GMT", "description": "This award supports a study of the physical nature and environmental origin of optical features (light and dark zones) observed by video in boreholes in polar ice. These features appear to include an annual signal, as well as longer period signals. Borehole logs exist from a previous project, and in this lab-based project the interpretation of these logs will be improved. The origin of the features is of broad interest to the ice-core community. If some components relate to changes in the depositional environment beyond seasonality, important climatic cycles may be seen. If some components relate to post-depositional reworking, insights will be gained into the physical processes that change snow and firn, and the implications for interpretation of the chemical record in terms of paleoclimate. In order to exploit these features to best advantage in future ice-core and climate-change research, the two principal objectives of this project are to determine what physically causes the optical differences that we see and to determine the environmental processes that give rise to these physical differences. In the laboratory at NICL the conditions of a log of a borehole wall will be re-created as closely as possible by running the borehole video camera along sections of ice core, making an optical log of light reflected from the core. Combinations of physical variables that are correlated with optical features will be identified. A radiative-transfer model will be used to aid in the interpretation of these measurements, and to determine the optimum configuration for an improved future logging tool. An attempt will be made to determine the origin of the features. Two broad possibilities exist: 1) temporal changes in the depositional environment, and 2) post-depositional reworking. This project represents an important step toward a new way of learning about paleoclimate with borehole optical methods. Broader impacts include enhancing the infrastructure for research and education, since this instrument will complement high-resolution continuous-melter chemistry techniques and provide a rapid way to log physical variables using optical features as a proxy for climate signals. Since no core is required for this method, it can be used in rapidly drilled access holes or where core quality is poor. This project will support a graduate student who will carry out this project under the direction of the Principal Investigator. K-12 education will be enhanced through an ongoing collaboration with a science and math teacher from a local middle school. International collaboration will be expanded through work on this project with colleagues at the Norwegian Polar Institute and broad dissemination of results will occur through a project website for the general public.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS", "is_usap_dc": true, "keywords": "Ice; Stratigraphy; Optical; Glaciers; Polar Ice; Ice Microphysics; Snow; Firn; Climate Change; LABORATORY; Snow Stratigraphy; Borehole", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Smith, Ben; Waddington, Edwin D.; Hawley, Robert L.; Fudge, T. J.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Borehole Optical Stratigraphy: Ice Microphysics, Climate Change, and the Optical Properties of Firn", "uid": "p0000016", "west": -180.0}, {"awards": "0440666 Waddington, Edwin", "bounds_geometry": null, "dataset_titles": "Histories of Accumulation, Thickness, and WAIS Divide Location, Antarctica", "datasets": [{"dataset_uid": "609473", "doi": "10.7265/N5QR4V2J", "keywords": "Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; WAIS Divide; WAIS Divide Ice Core", "people": "Koutnik, Michelle; Waddington, Edwin D.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Histories of Accumulation, Thickness, and WAIS Divide Location, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609473"}], "date_created": "Thu, 04 Mar 2010 00:00:00 GMT", "description": "This award supports development of a new modeling approach that will extract information about past snow accumulation rate in both space and time in the vicinity of the future ice core near the Ross-Amundsen divide of the West Antarctic Ice Sheet (WAIS). Internal layers, detected by ice-penetrating radar, are isochrones, or former ice-sheet surfaces that have been buried by subsequent snowfall, and distorted by ice flow. Extensive ice-penetrating radar data are available over the inland portion of the WAIS. Layers have been dated back to 17,000 years before present. The radar data add the spatial dimension to the temporally resolved accumulation record from ice cores. Accumulation rates are traditionally derived from the depths of young, shallow layers, corrected for strain using a local 1-D ice-flow model. Older, deeper layers have been more affected by flow over large horizontal distances. However, it is these deeper layers that contain information on longer-term climate patterns. This project will use geophysical inverse theory and a 2.5D flow-band ice-flow forward model comprising ice-surface and layer-evolution modules, to extract robust transient accumulation patterns by assimilating multiple deeper, more-deformed layers that have previously been intractable. Histories of divide migration, geothermal flux, and surface evolution will also be produced. The grant will support the PhD research of a female graduate student who is a mentor to female socio-economically disadvantaged high-school students interested in science, through the University of Washington Women\u0027s Center. It will also provide a research\u003cbr/\u003eexperience for an undergraduate student, and contribute to a freshman seminar on Scientific Research.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS", "is_usap_dc": true, "keywords": "Ross-Amundsen Divide; FIELD SURVEYS; Internal Layers; Ice Flow Model; West Antarctic Ice Sheet; Accumulation; Glacier; Ice Penetrating Radar; Model; MODELS; Snow Accumulation; GPS; Antarctica; Isochron; Not provided; Snowfall; Radar", "locations": "West Antarctic Ice Sheet; Antarctica; Ross-Amundsen Divide", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Koutnik, Michelle; Waddington, Edwin D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e MODELS \u003e MODELS; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Histories of accumulation, thickness and WAIS Divide location from radar layers using a new inverse approach", "uid": "p0000018", "west": null}, {"awards": "0551969 Moran, Amy", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 12 Jan 2010 00:00:00 GMT", "description": "This project seeks to understand the evolutionary physiology of reproductive strategies in Southern Ocean marine invertebrates. The fauna of the Southern Ocean has evolved under stable, cold temperatures for approximately 14 million years. These conditions have led to the evolution of unusual physiological and biochemical characteristics, many of which may reflect adaptations to relatively low oxygen availability and high larval oxygen demands. The goal of the proposed projects is to understand latitudinal variation in the function of invertebrate egg masses in relation to oxygen availability and temperature. This relationship is critical to larval survival in the low-temperature, high-oxygen conditions found at high latitudes. In particular, the investigators will: (1) use first principles to model the diffusion of oxygen into egg and embryo masses of Antarctic organisms at environmentally relevant temperatures; (2) test model assumptions by measuring the temperature-dependence of embryonic metabolism and oxygen diffusivity through natural and artificial gels; (3) test model predictions by using oxygen microelectrodes to measure oxygen gradients in both artificial and natural egg masses, and by measuring developmental rates of embryos at different positions in masses; and (4) compare the structure and function of egg masses from the Southern Ocean to those from temperate waters. These components of the study constitute an integrated examination of the evolutionary physiology of egg mass structure and function. Studies of masses endemic to polar conditions will increase the understanding of egg mass evolution across equator-to-pole gradients in temperature and across gradients in oxygen partial pressure. The proposal will support graduate students and will involve several undergraduates in research. The PIs will also design and implement units on polar biology for undergraduate classes at their respective institutions. These educational units will focus on the PIs\u0027 photographs, video footage, experiments, and data from this project. The PIs will use web-linked video and instructional technologies to design and co-teach a new class on polar ecological physiology, will work with local grade school institutions to involve high school students in research, and will develop high school course modules about polar biology.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Moran, Amy", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Effects of Oxygen and Temperature on Egg Mass Function of Southern Ocean Marine Minvertebrates", "uid": "p0000716", "west": null}, {"awards": "0338008 Wemple, Beverley", "bounds_geometry": null, "dataset_titles": "Laboratory Studies of Isotopic Exchange in Snow; Snow Accumulation and Snow Melt in a Mixed Northern Hardwood-Conifer Forest", "datasets": [{"dataset_uid": "609445", "doi": "10.7265/N51834DX", "keywords": "Atmosphere; Chemistry:ice; Chemistry:Ice; Snow/ice; Snow/Ice; Snow Sublimation Rate", "people": "Neumann, Thomas A.", "repository": "USAP-DC", "science_program": null, "title": "Laboratory Studies of Isotopic Exchange in Snow", "url": "https://www.usap-dc.org/view/dataset/609445"}, {"dataset_uid": "609441", "doi": "10.7265/N54X55R2", "keywords": "Snow/ice; Snow/Ice", "people": "Wemple, Beverley C.", "repository": "USAP-DC", "science_program": null, "title": "Snow Accumulation and Snow Melt in a Mixed Northern Hardwood-Conifer Forest", "url": "https://www.usap-dc.org/view/dataset/609441"}], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "This award supports a project to develop a quantitative understanding of the processes active in isotopic exchange between snow/firn and water vapor, which is of paramount importance to ice core interpretation. Carefully controlled laboratory studies will be conducted at a variety of temperatures to empirically measure the mass transfer coefficient (the rate at which water moves from the solid to the vapor phase) for sublimating snow and to determine the time scale for isotopic equilibration between water vapor and ice. In addition the isotopic fractionation coefficient for vapor derived from sublimating ice will be determined and the results will be used to update existing models of mass transfer and isotopic evolution in firn. It is well known that water vapor moves through firn due to diffusion, free convection and forced convection. Although vapor movement through variably-saturated firn due to these processes has been modeled, because of a lack of laboratory data the mass transfer coefficient had to be estimated. Field studies have documented the magnitudes of post-depositional changes, but field studies do not permit rigorous analysis of the relative importance of the many processes which are likely to act in natural snow packs. The results of these laboratory investigations will be broadly applicable to a number of studies and will allow for improvement of existing physically-based models of post-depositional isotopic change, isotopic diffusion in firn, and vapor motion in firn. A major component of this project will be the design and fabrication of the necessary, novel experimental apparatus, which will be facilitated by existing technical expertise, cold room facilities, and laboratory equipment at CRREL. This project is a necessary step toward a quantitative understanding of the isotopic effects of water vapor movement in firn. The proposed work has broader impacts in several different areas. The modeling results will be applicable to a wide range of studies of water in the polar environment, including studies of wind-blown or drifting snow. The proposed collaborative study will partially support a Dartmouth graduate student for three years. This project will also provide support for a young first-time NSF investigator at the University of Vermont. Undergraduate students from Dartmouth will be involved in the research through the Women in Science Project and undergraduate students at the University of Vermont will be supported through the Research Experiences for Undergraduates program. The principal investigators and graduate student will continue their tradition of k-12 school outreach by giving science lessons and talks in local schools each year. Research results will be disseminated through scientific conferences, journal publications, and institutional seminars.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e SNOW TUBE; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HYGROMETERS \u003e HYGROMETERS", "is_usap_dc": true, "keywords": "Snow Accumulation; Snow Chemistry; Snow Melt; Snowfall; Snow Water Equivalent; LABORATORY; Seasonal Snow Cover; Not provided; Snow; Sublimation Rate; FIELD SURVEYS; FIELD INVESTIGATION", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Neumann, Thomas A.; Wemple, Beverley C.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Laboratory Studies of Isotopic Exchange in Snow and Firn", "uid": "p0000132", "west": null}, {"awards": "0230285 Wilson, Terry", "bounds_geometry": "POLYGON((152.833 -75.317,154.4897 -75.317,156.1464 -75.317,157.8031 -75.317,159.4598 -75.317,161.1165 -75.317,162.7732 -75.317,164.4299 -75.317,166.0866 -75.317,167.7433 -75.317,169.4 -75.317,169.4 -75.9186,169.4 -76.5202,169.4 -77.1218,169.4 -77.7234,169.4 -78.325,169.4 -78.9266,169.4 -79.5282,169.4 -80.1298,169.4 -80.7314,169.4 -81.333,167.7433 -81.333,166.0866 -81.333,164.4299 -81.333,162.7732 -81.333,161.1165 -81.333,159.4598 -81.333,157.8031 -81.333,156.1464 -81.333,154.4897 -81.333,152.833 -81.333,152.833 -80.7314,152.833 -80.1298,152.833 -79.5282,152.833 -78.9266,152.833 -78.325,152.833 -77.7234,152.833 -77.1218,152.833 -76.5202,152.833 -75.9186,152.833 -75.317))", "dataset_titles": null, "datasets": null, "date_created": "Sat, 12 Dec 2009 00:00:00 GMT", "description": "OPP-0230285/OPP-0230356\u003cbr/\u003ePIs: Wilson, Terry J./Hothem, Larry D.\u003cbr/\u003e\u003cbr/\u003eThis award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to conduct GPS measurements of bedrock crustal motions in an extended Transantarctic Mountains Deformation network (TAMDEF) to document neotectonic displacements due to tectonic deformation within the West Antarctic rift and/or to mass change of the Antarctic ice sheets. Horizontal displacements related to active neotectonic rifting, strike-slip translations, and volcanism will be tightly constrained by monitoring the combined TAMDEF and Italian VLNDEF networks of bedrock GPS stations along the Transantarctic Mountains and on offshore islands in the Ross Sea. Glacio-isostatic adjustments due to deglaciation since the Last Glacial Maximum and to modern mass change of the ice sheets will be modeled from GPS-derived crustal motions together with new information from other programs on the configurations, thicknesses, deglaciation history and modern mass balance of the ice sheets. Tectonic and rheological information from ongoing structural and seismic investigations in the Victoria Land region will also be integrated in the modeling. The integrative and iterative modeling will yield a holistic interpretation of neotectonics and ice sheet history that will help us to discriminate tectonic crustal displacements from viscoelastic/elastic glacio-isostatic motions. These results will provide key information to interpret broad, continental-scale crustal motion patterns detected by sparse, regionally distributed GPS continuous trackers and by spaceborne instruments. This study will contribute to international programs focused on Antarctic neotectonic and global change issues.\u003cbr/\u003e\u003cbr/\u003eStrategies to meet these science objectives include repeat surveys of key sites in the existing TAMDEF network, extension of the array of TAMDEF sites southward about 250 km along the Transantarctic Mountains, linked measurements with the VLNDEF network, and integration of quasi-continuous trackers within the campaign network. By extending the array of bedrock sites southward, these measurements will cross gradients in predicted vertical motion due to viscoelastic rebound. The southward extension will also allow determination of the southern limit of the active Terror Rift and will provide a better baseline for constraints on any ongoing tectonic displacements across the West Antarctic rift system as a whole that might be possible using GPS data collected by the West Antarctic GPS Network. This project will also investigate unique aspects of GPS geodesy in Antarctica to determine how the error spectrum compares to mid-latitude regions and to identify the optimum measurement and data processing schemes for Antarctic conditions. The geodetic research will improve position accuracies within our network and will also yield general recommendations for deformation monitoring networks in polar regions.\u003cbr/\u003e\u003cbr/\u003eAn education and outreach program is planned and will be targeted at non-science-major undergraduate students taking Earth System Science at Ohio State University. The objective will be to illuminate the research process for nonscientists. This effort will educate students on the process of science and inform them about Antarctica and how it relates to global science issues.", "east": 169.4, "geometry": "POINT(161.1165 -78.325)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "GPS", "locations": null, "north": -75.317, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Wilson, Terry", "platforms": "SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repositories": null, "science_programs": null, "south": -81.333, "title": "Collaborative Research: Transantarctic Mountains Deformation Network: GPS Measurements of Neotectonic Motion in the Antarctic Interior", "uid": "p0000574", "west": 152.833}, {"awards": "0437887 Sidell, Bruce", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis; Expedition Data; Expedition data of LMG0705; Expedition data of LMG0706", "datasets": [{"dataset_uid": "002712", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0705", "url": "https://www.rvdata.us/search/cruise/LMG0705"}, {"dataset_uid": "002713", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0706", "url": "https://www.rvdata.us/search/cruise/LMG0706"}, {"dataset_uid": "001534", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0705"}, {"dataset_uid": "600039", "doi": "10.15784/600039", "keywords": "Biota; Oceans; Pot; Sample/collection Description; Sample/Collection Description; Southern Ocean; Trawl", "people": "Sidell, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis", "url": "https://www.usap-dc.org/view/dataset/600039"}], "date_created": "Sun, 06 Dec 2009 00:00:00 GMT", "description": "The polar ocean presently surrounding Antarctica is the coldest, most thermally stable marine environment on earth. Because oxygen solubility in seawater is inversely proportional to temperature, the cold Antarctic seas are an exceptionally oxygen-rich aquatic habitat. Eight families of a single perciform suborder, the Notothenioidei, dominate the present fish fauna surrounding Antarctica. Notothenioids account for approximately 35% of fish species and 90% of fish biomass south of the Antarctic Polar Front. Radiation of closely related notothenioid species thus has occurred rapidly and under a very unusual set of conditions: relative oceanographic isolation from other faunas due to circumpolar currents and deep ocean trenches surrounding the continent, chronically, severely cold water temperatures, very high oxygen availability, very low levels of niche competition in a Southern Ocean depauperate of species subsequent to a dramatic crash in species diversity of fishes that occurred sometime between the mid-Tertiary and present. These features make Antarctic notothenioid fishes an uniquely attractive group for the study of physiological and biochemical adaptations to cold body temperature. \u003cbr/\u003eFew distinctive features of Antarctic fishes are as unique as the pattern of expression of oxygen-binding proteins in one notothenioid family, the Channichthyidae (Antarctic icefishes). All channichthyid icefishes lack the circulating oxygen-binding protein, hemoglobin (Hb); the intracellular oxygen-binding protein, myoglobin (Mb) is not uniformly expressed in species of this family. Both proteins are normally considered essential for adequate delivery of oxygen to aerobically poised tissues of animals. To compensate for the absence of Hb, icefishes have developed large hearts, rapidly circulate a large blood volume and possess elaborate vasculature of larger lumenal diameter than is seen in red-blooded fishes. Loss of Mb expression in oxidative muscles correlates with dramatic elevation in density of mitochondria within the cell, although each individual organelle is less densely packed with respiratory proteins. \u003cbr/\u003eWithin the framework of oxygen movement, the adaptive significance of greater vascular density and mitochondrial populations is understandable but mechanisms underlying development of these characteristics remain unknown. The answer may lie in another major function of both Hb and Mb, degradation of the ubiquitous bioactive compound, nitric oxide (NO). The research will test the hypothesis that loss of hemoprotein expression in icefishes has resulted in an increase in levels of NO that mediate modification of vascular systems and expansion of mitochondrial populations in oxidative tissues. The objectives of the proposal are to quantify the vascular density of retinas in +Hb and -Hb notothenioid species, to characterize NOS isoforms and catalytic activity in retina and cardiac muscle of Antarctic notothenioid fishes, to evaluate level of expression of downstream factors implicated in angiogenesis (in retinal tissue) and mitochondrial biogenesis (in cardiac muscle), and to determine whether inhibition of NOS in vivo results in regression of angiogenic and mitochondrial biogenic responses in icefishes. Broader impacts range from basic biology, through training of young scientists, to enhanced understanding of clinically relevant biomedical processes.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS", "is_usap_dc": true, "keywords": "R/V LMG; Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Sidell, Bruce", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis.", "uid": "p0000527", "west": -180.0}, {"awards": "0440975 Severinghaus, Jeffrey", "bounds_geometry": "POINT(-119.533333 -80.016667)", "dataset_titles": "Nitrogen and Oxygen Gas Isotopes in the Siple Dome and Byrd Ice Cores, Antarctica", "datasets": [{"dataset_uid": "609407", "doi": "10.7265/N55X26V0", "keywords": "Antarctica; Arctic; Atmosphere; Byrd Glacier; Byrd Ice Core; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Nitrogen and Oxygen Gas Isotopes in the Siple Dome and Byrd Ice Cores, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609407"}], "date_created": "Fri, 17 Jul 2009 00:00:00 GMT", "description": "The award supports the development of high-resolution nitrogen and oxygen isotope records on trapped gases in the Byrd and Siple Dome ice cores, and the Holocene part of the GISP2 ice core. The primary scientific goals of this work are to understand the enigmatic d15N anomalies seen thus far in the Siple Dome record at 15.3 ka and 35 ka, and to find other events that may occur in both cores. At these events, d15N of trapped air approaches zero, implying little or no gravitational fractionation of gases in the firn layer at the time of formation of the ice. These events may represent times of low accumulation rate and arid meteorological conditions, and thus may contain valuable information about the climatic history of West Antarctica. Alternatively, they may stem from crevassing and thus may reveal ice-dynamical processes. Finding the events in the Byrd core, which is located 500 km from Siple Dome, would place powerful constraints on their origin and significance. A second major goal is to explore the puzzling absence of the abrupt warming event at 22 ka (seen at Siple Dome) in the nearby Byrd 18O/16O record in the ice (d18Oice), and search for a possible correlative signal in Byrd d15N. A third goal takes advantage of the fact that precise measurements of the oxygen isotopic composition of atmospheric O2 (d18Oatm) are obtained as a byproduct of the d15N measurement. The proposed gas-isotopic measurements will underpin an integrated suite of West Antarctic climate and atmospheric gas records, which will ultimately include the WAIS Divide core. These records will help separate regional from global climate signals, and may place constraints on the cause of abrupt climate change. Education of two graduate students, and training of two staff members in the laboratory, contribute to the nation\u0027s human resource base. Education and outreach will be an important component of the project.", "east": -119.533333, "geometry": "POINT(-119.533333 -80.016667)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Antarctica; Firn Air Isotopes; Not provided; Nitrogen Isotopes; LABORATORY; Firn Isotopes; Paleoclimate; FIELD SURVEYS; Ice Core; Oxygen Isotope; FIELD INVESTIGATION; Siple Dome", "locations": "Antarctica; Siple Dome", "north": -80.016667, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -80.016667, "title": "Nitrogen and oxygen gas isotopes in the Siple Dome and Byrd ice cores", "uid": "p0000450", "west": -119.533333}, {"awards": "0536526 Le Masurier, Wesley", "bounds_geometry": "POLYGON((-136 -73,-133.4 -73,-130.8 -73,-128.2 -73,-125.6 -73,-123 -73,-120.4 -73,-117.8 -73,-115.2 -73,-112.6 -73,-110 -73,-110 -73.425,-110 -73.85,-110 -74.275,-110 -74.7,-110 -75.125,-110 -75.55,-110 -75.975,-110 -76.4,-110 -76.825,-110 -77.25,-112.6 -77.25,-115.2 -77.25,-117.8 -77.25,-120.4 -77.25,-123 -77.25,-125.6 -77.25,-128.2 -77.25,-130.8 -77.25,-133.4 -77.25,-136 -77.25,-136 -76.825,-136 -76.4,-136 -75.975,-136 -75.55,-136 -75.125,-136 -74.7,-136 -74.275,-136 -73.85,-136 -73.425,-136 -73))", "dataset_titles": "Geochemistry and Petrologic Evolution of Felsic Volcanoes in Western Marie Byrd Land, Antarctica", "datasets": [{"dataset_uid": "600051", "doi": "10.15784/600051", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Intracontinental Magmatism; IntraContinental Magmatism; Marie Byrd Land; Solid Earth", "people": "Le Masurier, Wesley", "repository": "USAP-DC", "science_program": null, "title": "Geochemistry and Petrologic Evolution of Felsic Volcanoes in Western Marie Byrd Land, Antarctica", "url": "https://www.usap-dc.org/view/dataset/600051"}], "date_created": "Wed, 24 Jun 2009 00:00:00 GMT", "description": "This project uses geochemical studies to determine the origin of volcanic rocks from Marie Byrd Land (MBL), Antarctica. Surprisingly, adjacent volcanoes in the MBL have dramatically different compositions, ranging from phonolite to trachyte to rhyolite. This diversity offers an opportunity to constrain the processes responsible for generating silica oversaturated and undersaturated magmas in a single geologic setting. Previous work suggests that the most obvious and simplest explanation--crustal contamination--is not a significant factor, and that polybaric fractional crystallization is the major cause. This study evaluates these factors through analyses and interpretation of trace and rare earth element abundances, as well as Sr and Nd isotopic ratios. \u003cbr/\u003e\u003cbr/\u003eThe broader impacts include outreach programs to the Girl Scouts of America, and dissemination of results through publications and meetings.", "east": -110.0, "geometry": "POINT(-123 -75.125)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS", "locations": null, "north": -73.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Le Masurier, Wesley", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.25, "title": "Geochemistry and Petrologic Evolution of Felsic Volcanoes in Western Marie Byrd Land, Antarctica", "uid": "p0000534", "west": -136.0}, {"awards": "0741380 Smith, Walker", "bounds_geometry": "POLYGON((100 -65,106 -65,112 -65,118 -65,124 -65,130 -65,136 -65,142 -65,148 -65,154 -65,160 -65,160 -66.5,160 -68,160 -69.5,160 -71,160 -72.5,160 -74,160 -75.5,160 -77,160 -78.5,160 -80,154 -80,148 -80,142 -80,136 -80,130 -80,124 -80,118 -80,112 -80,106 -80,100 -80,100 -78.5,100 -77,100 -75.5,100 -74,100 -72.5,100 -71,100 -69.5,100 -68,100 -66.5,100 -65))", "dataset_titles": "Small Grants for Exploratory Research - Oceanographic Research in the Amundsen and Ross Seas", "datasets": [{"dataset_uid": "600085", "doi": "10.15784/600085", "keywords": "Amundsen Sea; Chemistry:fluid; Chemistry:Fluid; CTD Data; Geochemistry; Oceans; Oden; OSO2007; Sea Surface; Southern Ocean", "people": "Smith, Walker", "repository": "USAP-DC", "science_program": null, "title": "Small Grants for Exploratory Research - Oceanographic Research in the Amundsen and Ross Seas", "url": "https://www.usap-dc.org/view/dataset/600085"}], "date_created": "Mon, 22 Jun 2009 00:00:00 GMT", "description": "The research will examine the relative importance of the physical and chemical controls on phytoplankton dynamics and carbon flux in continental margin regions of the Southern Ocean, and elucidate mechanisms by which plankton populations and carbon export might be altered by climate change. We specifically will address (1) how the phytoplankton on the continental margins of the southern Ocean respond to spatial and temporal changes in temperature, light, iron supply, and carbon dioxide levels, (2) how these factors initiate changes in phytoplankton assemblage structure, and (3) how carbon export and the efficiency of the biological pump are impacted by the biomass and composition of the phytoplankton. Two regions of study (the Amundsen and Ross Seas) will be investigated, one well studied (Ross Sea) and one poorly described (Amundsen Sea). It is hypothesized that each region will have markedly different physical forcing, giving rise to distinct chemical conditions and therefore biological responses. As such, the comparison of the two may give us insights into the mechanisms of how Antarctic continental margins will respond under changing environmental conditions. Broader impacts include participation by an international graduate student from Brazil, outreach via seminars to the general public, collaboration with the teachers-in-residence on the cruise, development of a cruise web site and interactive email exchanges with local middle school students while at sea", "east": 160.0, "geometry": "POINT(130 -72.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -65.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Walker", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.0, "title": "Small Grants for Exploratory Research - Oceanographic Research in the Amundsen and Ross Seas:", "uid": "p0000217", "west": 100.0}, {"awards": "9221598 Mopper, Kenneth", "bounds_geometry": null, "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002282", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9306"}], "date_created": "Fri, 19 Jun 2009 00:00:00 GMT", "description": "Decreases in stratospheric ozone over the Antarctic result in an increase in the ultraviolet radiation flux in the euphotic zone of the ocean. This increase may lead to cellular damage in aquatic organisms resulting in photo-inhibition and decreased productivity. Cellular damage can occur either intracellularly, or externally at the cell surface from biomolecular reactions with externally-generated reactive transient species. Extracellular damage will depend to a large degree on the photochemistry of the seawater surrounding the cell. To date, little is known about the photochemistry of the unique Antarctic waters. This project integrates a field and laboratory approach to obtain baseline information regarding the marine photochemistry of the euphotic zone in Antarctica waters as related to changes in ultraviolet radiation levels. In situ photochemical production rates and steady state concentrations of a suite of reactive species and dissolved organic matter degradation products as well as downwelling ultraviolet radiation will be measured. Additionally, flux by in situ chemical actinometry, action spectra for photochemical production of various reactive species and dissolved organic matter degradation products, and fluorescence and absorbance properties of dissolved organic matter will be determined. This information will serve as a basis for understanding and predicting the effects of ultraviolet radiation-induced marine photochemical processes on the productivity and ecology in the euphotic zone of the Antarctic Ocean.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Mopper, Kenneth; Neale, Patrick", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Photochemistry of Antarctic Waters in Repsonse to Changing Ultraviolet Radiation Fluxes", "uid": "p0000649", "west": null}, {"awards": "9220373 Neale, Patrick", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP9306", "datasets": [{"dataset_uid": "002282", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9306"}, {"dataset_uid": "002589", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP9306", "url": "https://www.rvdata.us/search/cruise/NBP9306"}], "date_created": "Fri, 19 Jun 2009 00:00:00 GMT", "description": "Increases in middle ultraviolet radiation associated with the Antarctic ozone hole have been shown to inhibit the photosynthesis of phytoplankton, and results have been extrapolated to estimate the effect of ozone depletion on primary productivity in the marginal ice zone. This research will refine the assessment by specifying detailed wavelength-dependent biological weighting functions for the inhibition of photosynthesis by ultraviolet radiation, and by considering the mitigating effects of vertical mixing. Biological weighting functions of phytoplankton in the marginal ice zone will be measured under controlled conditions and applied in a new model of photosynthesis to predict primary productivity in situ, as well as under altered ultraviolet irradiance. These predictions will be compared with observations on samples from the water column and with measurements during incubations of several hours under different irradiance regimes. Results of these comparisons will be used to test the model and to quantify the potential artifact of long incubations. Assumptions about the kinetics of photoinhibition and recovery, critical to modeling the effects of vertical mixing, will be examined with time-course experiments. Results will be incorporated into a model of photosynthesis and photoinhibition in the water column that will be used to predict the influence of ozone depletion on marine primary production, particularly in the marginal zone.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Neale, Patrick", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Effects of Ultraviolet Radiation on the Photosynthesis of Phytoplankton in the Antarctic Marginal Ice Zone", "uid": "p0000808", "west": null}, {"awards": "0636269 Harpp, Karen", "bounds_geometry": "POLYGON((161.55 -77.50314,161.5883 -77.50314,161.6266 -77.50314,161.66490000000002 -77.50314,161.7032 -77.50314,161.7415 -77.50314,161.7798 -77.50314,161.8181 -77.50314,161.8564 -77.50314,161.8947 -77.50314,161.933 -77.50314,161.933 -77.507124,161.933 -77.51110800000001,161.933 -77.515092,161.933 -77.519076,161.933 -77.52306,161.933 -77.527044,161.933 -77.531028,161.933 -77.535012,161.933 -77.538996,161.933 -77.54298,161.8947 -77.54298,161.8564 -77.54298,161.8181 -77.54298,161.7798 -77.54298,161.7415 -77.54298,161.7032 -77.54298,161.66490000000002 -77.54298,161.6266 -77.54298,161.5883 -77.54298,161.55 -77.54298,161.55 -77.538996,161.55 -77.535012,161.55 -77.531028,161.55 -77.527044,161.55 -77.52306,161.55 -77.519076,161.55 -77.515092,161.55 -77.51110800000001,161.55 -77.507124,161.55 -77.50314))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 03 Jun 2009 00:00:00 GMT", "description": "This project is a field and laboratory based investigation of the Vanda dike swarm in the Dry Valleys of Antarctica. These dikes crosscut Cambro-Ordovician granitoid plutons produced during the Ross Orogeny, and mark the transition between the cessation of subduction and the onset of extensional magmatism. Many dying convergent plate margins convert to extensional magmatism, and the Dry Valleys provide a magnificent opportunity to examine the shallow roots of a plate that experienced this transition. Because of their exceptional exposure, bimodal felsic and mafic compositions, and complex field relations, the Vanda dikes have the potential to reveal insights into this important phase of Antarctic tectonic history. \u003cbr/\u003eThe broader impacts include collaboration between a primarily undergraduate and two research institutions, and support for undergraduate participation in an exciting, field-based research project.", "east": 161.933, "geometry": "POINT(161.7415 -77.52306)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.50314, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Harpp, Karen", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -77.54298, "title": "Collaborative Research, RUI: The Transition from Subduction to Extensional Magmatism in the Dry Valleys of Antarctica", "uid": "p0000546", "west": 161.55}, {"awards": "9814810 Bales, Roger", "bounds_geometry": "POLYGON((-124 -76,-120 -76,-116 -76,-112 -76,-108 -76,-104 -76,-100 -76,-96 -76,-92 -76,-88 -76,-84 -76,-84 -77.4,-84 -78.8,-84 -80.2,-84 -81.6,-84 -83,-84 -84.4,-84 -85.8,-84 -87.2,-84 -88.6,-84 -90,-88 -90,-92 -90,-96 -90,-100 -90,-104 -90,-108 -90,-112 -90,-116 -90,-120 -90,-124 -90,-124 -88.6,-124 -87.2,-124 -85.8,-124 -84.4,-124 -83,-124 -81.6,-124 -80.2,-124 -78.8,-124 -77.4,-124 -76))", "dataset_titles": "Atmospheric Mixing Ratios of Hydroperoxides above the West Antarctic Ice Sheet; Twenty-Three Century-scale Ice Core Records of Hydrogen Peroxide (H2O2) from West Antarctica", "datasets": [{"dataset_uid": "609392", "doi": "10.7265/N5TM7826", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; WAIS", "people": "Bales, Roger; Frey, Markus; McConnell, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Twenty-Three Century-scale Ice Core Records of Hydrogen Peroxide (H2O2) from West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609392"}, {"dataset_uid": "609394", "doi": "10.7265/N5PZ56RS", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; ITASE; WAIS", "people": "McConnell, Joseph; Bales, Roger; Frey, Markus", "repository": "USAP-DC", "science_program": null, "title": "Atmospheric Mixing Ratios of Hydroperoxides above the West Antarctic Ice Sheet", "url": "https://www.usap-dc.org/view/dataset/609394"}], "date_created": "Mon, 01 Jun 2009 00:00:00 GMT", "description": "This award supports a project to improve understanding of atmospheric photochemistry over West Antarctica, as recorded in snow, firn and ice. Atmospheric and firn sampling will be undertaken as part of the U.S. International Trans-Antarctic Scientific Expedition (US ITASE) traverses. Measurements of hydrogen peroxide (H2O2) and formaldehyde (HCHO) will be made on these samples and a recently developed, physically based atmosphere-to-snow transfer model will be used to relate photochemical model estimates of these components to the concentrations of these parameters in the atmosphere and snow. The efficiency of atmosphere-to-snow transfer and the preservation of these components is strongly related to the rate and timing of snow accumulation. This information will be obtained by analyzing the concentration of seasonally dependent species such as hydrogen peroxide, nitric acid and stable isotopes of oxygen. Collection of samples along the US ITASE traverses will allow sampling at a wide variety of locations, reflecting both a number of different depositional environments and covering much of the West Antarctic region.", "east": -84.0, "geometry": "POINT(-104 -83)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUORESCENCE SPECTROSCOPY; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS SENSORS", "is_usap_dc": true, "keywords": "Ice Core; Ice Core Chemistry; FIELD INVESTIGATION; FIELD SURVEYS; Antarctica; West Antarctica; Antarctic; LABORATORY; Ice Core Gas Records; Not provided; Ice Core Data; Polar Firn Air; Hydrogen Peroxide; West Antarctic Ice Sheet; Shallow Firn Air; US ITASE; Antarctic Ice Sheet; Snow Chemistry", "locations": "Antarctica; West Antarctica; Antarctic; Antarctic Ice Sheet; West Antarctic Ice Sheet", "north": -76.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Bales, Roger; Frey, Markus; McConnell, Joseph", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Hydrogen Peroxide, Formaldehyde, and Sub-Annual Snow Accumulation in West Antarctica: Participation in West Antarctic Traverse", "uid": "p0000253", "west": -124.0}, {"awards": "0739702 Head, James", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 14 May 2009 00:00:00 GMT", "description": "Abstract\u003cbr/\u003e\u003cbr/\u003eThis project uses Aster and Hyperion remote sensing data combined with field observations and laboratory analysis to map soils in the McMurdo Dry Valleys of Antarctica. The goal is to use mineral abundances, compositions, and spatial heterogeneities to investigate the connections between microclimate and surface characteristics. The valleys are one of the most unique landscapes on earth. The outcomes will be relevant to understanding their geologic, biologic, and climactic history, and offer insight into the Martian landscape. The main broader impacts are graduate education and curriculum development involving K12 teachers.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Wyatt, Michael", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -90.0, "title": "Orbital Spectral Mapping of Surface Compositions in the Antarctic Dry Valleys: Regional Distributions of Secondary Mineral-Phases as Climate Indicators", "uid": "p0000549", "west": -180.0}, {"awards": "0440478 Tang, Kam", "bounds_geometry": "POINT(166.66267 -77.85067)", "dataset_titles": "Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial Forms of Phaeocystis Antarctica", "datasets": [{"dataset_uid": "600043", "doi": "10.15784/600043", "keywords": "Biota; McMurdo Sound; Oceans; Phytoplankton; Ross Sea; Southern Ocean; Zooplankton", "people": "Smith, Walker; Tang, Kam", "repository": "USAP-DC", "science_program": null, "title": "Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial Forms of Phaeocystis Antarctica", "url": "https://www.usap-dc.org/view/dataset/600043"}], "date_created": "Mon, 04 May 2009 00:00:00 GMT", "description": "Phaeocystis Antarctica is a widely distributed phytoplankton that forms dense blooms and aggregates in the Southern Ocean. This phytoplankton and plays important roles in polar ecology and biogeochemistry, in part because it is a dominant primary producer, a main component of organic matter vertical fluxes, and the principal producer of volatile organic sulfur in the region. Yet P. Antarctica is also one of the lesser known species in terms of its physiology, life history and trophic relationships with other organisms; furthermore, information collected on other Phaeocystis species and from different locations may not be applicable to P. Antarctica in the Ross Sea. P. Antarctica occurs mainly as two morphotypes: solitary cells and mucilaginous colonies, which differ significantly in size, architecture and chemical composition. Relative dominance between solitary cells and colonies determines not only the size spectrum of the population, but also its carbon dynamics, nutrient uptake and utilization. Conventional thinking of the planktonic trophic processes is also challenged by the fact that colony formation could effectively alter the predator-prey interactions and interspecific competition. However, the factors that regulate the differences between solitary and colonial forms of P. Antarctica are not well-understood. The research objective of this proposal is therefore to address these over-arching questions:\u003cbr/\u003eo Do P. Antarctica solitary cells and colonies differ in growth, composition and\u003cbr/\u003ephotosynthetic rates?\u003cbr/\u003eo How do nutrients and grazers affect colony development and size distribution of P. \u003cbr/\u003eAntarctica?\u003cbr/\u003eo How do nutrients and grazers act synergistically to affect the long-term population\u003cbr/\u003edynamics of P. Antarctica? Experiments will be conducted in the McMurdo station with natural P. Antarctica assemblages and co-occurring grazers. Laboratory experiments will be conducted to study size-specific growth and photosynthetic rates of P. Antarctica, size-specific grazing mortality due to microzooplankton and mesozooplankton, the effects of macronutrients on the (nitrogen compounds) relative dominance of solitary cells and colonies, and the effects of micronutrient (Fe) and grazing related chemical signals on P. Antarctica colony development. Because this species is of critical importance in the Southern Ocean, and because this research will provide critical information on factors that regulate the role of P.Antarctica in food webs and biogeochemical cycles, a major gap in knowledge will be addressed. This project will train two marine science PhD students. The investigators will also collaborate with the School of Education and a marine science museum to communicate polar science to a broader audience.", "east": 166.66267, "geometry": "POINT(166.66267 -77.85067)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.85067, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Tang, Kam; Smith, Walker", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.85067, "title": "Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial forms of Phaeocystis antarctica", "uid": "p0000214", "west": 166.66267}, {"awards": "0636850 Dalziel, Ian", "bounds_geometry": "POLYGON((-70 -52,-66.5 -52,-63 -52,-59.5 -52,-56 -52,-52.5 -52,-49 -52,-45.5 -52,-42 -52,-38.5 -52,-35 -52,-35 -53,-35 -54,-35 -55,-35 -56,-35 -57,-35 -58,-35 -59,-35 -60,-35 -61,-35 -62,-38.5 -62,-42 -62,-45.5 -62,-49 -62,-52.5 -62,-56 -62,-59.5 -62,-63 -62,-66.5 -62,-70 -62,-70 -61,-70 -60,-70 -59,-70 -58,-70 -57,-70 -56,-70 -55,-70 -54,-70 -53,-70 -52))", "dataset_titles": "Expedition Data; NBP0805", "datasets": [{"dataset_uid": "000139", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP0805", "url": "https://www.rvdata.us/search/cruise/NBP0805"}, {"dataset_uid": "001510", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0805"}], "date_created": "Wed, 15 Apr 2009 00:00:00 GMT", "description": "This project studies the opening of the Drake Passage between South America and Antarctica through a combined marine geophysical survey and geochemical study of dredged ocean floor basalts. Dating the passage\u0027s opening is key to understanding the formation of the circum-Antarctic current, which plays a major role in worldwide ocean circulation, and whose formation is connected with growth of the Antarctic ice sheet. Dredge samples will undergo various geochemical studies to determine their age and constrain mantle flow beneath the region. \u003cbr/\u003e\u003cbr/\u003eBroader impacts include support for graduate education, as well as undergraduate and K12 teacher involvement in a research cruise. The project also involves international collaboration with the UK and is part of IPY Project #77: Plates\u0026Gates, which aims to reconstruct the geologic history of polar ocean basins and gateways for computer simulations of climate change. See http://www.ipy.org/index.php?/ipy/detail/plates_gates/ for more information.", "east": -35.0, "geometry": "POINT(-52.5 -57)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": true, "keywords": "R/V NBP; Not provided", "locations": null, "north": -52.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Lawver, Lawrence; Dalziel, Ian W.", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -62.0, "title": "Central Scotia Seafloor and the Drake Passage Deep Ocean Current Gateway", "uid": "p0000208", "west": -70.0}, {"awards": "0338260 Chin, Yu-Ping; 0338342 Foreman, Christine", "bounds_geometry": "POINT(166.167 -77.55)", "dataset_titles": "Biogeochemistry of Dissolved Organic Matter in Pony Lake, Ross Island", "datasets": [{"dataset_uid": "600168", "doi": "10.15784/600168", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Critical Zone; Ross Island; Sample/collection Description; Sample/Collection Description; Water Samples", "people": "Foreman, Christine; Chin, Yu-Ping", "repository": "USAP-DC", "science_program": null, "title": "Biogeochemistry of Dissolved Organic Matter in Pony Lake, Ross Island", "url": "https://www.usap-dc.org/view/dataset/600168"}], "date_created": "Mon, 16 Mar 2009 00:00:00 GMT", "description": "Dissolved organic matter (DOM) is a significant chemical component in aquatic systems because it acts as an important carbon source for microorganisms, absorbs harmful radiation in sunlight, is able to complex metals, and can participate in important biogeochemical reactions. This study will investigate the biogeochemical cycling of DOM in a small coastal Antarctic pond, Pony Lake, located on Cape Royds, Ross Island. Because there are no higher plants present at this site all of the DOM in this lake is derived from microorganisms. Thus, Pony Lake is an ideal site to study the effect of physical, chemical, and microbial processes on the composition and character of the DOM pool. Finally, Pony Lake is also an ideal site to collect an International Humic Substances Society (IHSS) fulvic acid standard. Unlike other IHSS standards, this standard will not contain DOM components derived from higher land plants. To better understand the role of physical influences, the project will study the changes in the DOM pool as the lake evolves from ice-covered to ice-free conditions during the summer, as well as the relationship of DOM to the observed turnover of dominant microbial communities in the lake. Scientists will also monitor changes in microbial abundance, diversity, and productivity that may occur during the ice to open-water transition period. This research will provide much needed information regarding the relationship between microbial diversity and DOM biogeochemistry. Middle school science students will be active participants in this project through the Internet, while scientists are in the field, and in the lab.", "east": 166.167, "geometry": "POINT(166.167 -77.55)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided; FIELD SURVEYS", "locations": null, "north": -77.55, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Foreman, Christine; Chin, Yu-Ping", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.55, "title": "Collaborative Research: Biogeochemistry of Dissolved Organic Matter in Pony Lake, Ross Island", "uid": "p0000548", "west": 166.167}, {"awards": "0438777 Fritts, David", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Correlative Antarctic and Inter-Hemispheric Dynamics Studies Using the MF Radar at Rothera", "datasets": [{"dataset_uid": "600040", "doi": "10.15784/600040", "keywords": "Antarctica; Atmosphere; Meteorology; Radar", "people": "Fritts, David", "repository": "USAP-DC", "science_program": null, "title": "Correlative Antarctic and Inter-Hemispheric Dynamics Studies Using the MF Radar at Rothera", "url": "https://www.usap-dc.org/view/dataset/600040"}], "date_created": "Mon, 16 Mar 2009 00:00:00 GMT", "description": "This proposal is to continue operation and scientific studies with the middle-frequency (MF, 1-30 MHz) mesospheric radar deployed at the British Antarctic station Rothera in 1996. This system is now a key site in the Antarctic MF radar chain near 68 deg. S, which includes also MF radars at Syowa (Japan) and Davis (Australia) stations. This radar comprises the winds component of a developing instrument suite for the mesosphere-thermosphere (MLT) studies at Rothera - a focus of the new BAS 5-year plan, which also includes the Fe temperature lidar (formerly at South Pole) and the mesopause airglow imager for gravity wave studies (formerly at Halley). The Rothera MF radar has just had its antennas and electronics upgraded to achieve better signal-to-noise ratio and more continuous measurements in height and time. The main focus of the proposed research is to extend the knowledge of the polar mesosphere dynamics. The instrument suite at Rothera is ideally positioned for correlative interhemispheric studies with northern hemisphere sites at Poker Flat, Alaska (65 deg. N) and ALOMAR, Norway (69 deg. N) having comparable instrumentation. Further research efforts performed with continued funding will focus on: (1) multi-instrument collaborative studies at Rothera to quantify as fully as possible the dynamics, structure, and variability of the MLT at that location, (2) multi-site (and multi-instrument) studies of large-scale dynamics and variability in the Antarctic (together with the radars and other instrumentation at Davis and Syowa), and (3) interhemispheric studies employing instruments (e.g., the Na resonance lidar and MF radar) at Poker Flat and ALOMAR. It is expected that these studies will lead to a more detailed understanding of (1) mean, tidal, and planetary wave structures at polar latitudes, (2) seasonal, inter-annual, and short-term variability of these structures, (3) hemispheric differences in the tidal and planetary wave structures arising from different source and wave interaction conditions, and (4) the relative influences of gravity waves in the two hemispheres. Such studies will also contribute more generally to an increased awareness of the role of high-latitude processes in global atmospheric dynamics and variability.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Astrophysics and Geospace Sciences", "paleo_time": null, "persons": "Fritts, David", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Correlative Antarctic and Inter-Hemispheric Dynamics Studies Using the MF Radar at Rothera", "uid": "p0000021", "west": -180.0}, {"awards": "9911617 Blankenship, Donald; 9319379 Blankenship, Donald", "bounds_geometry": null, "dataset_titles": "Antarctic Aerogeophysics Data; Antarctic Subglacial Lake Classification Inventory; RBG - Robb Glacier Survey; SOAR-Lake Vostok Survey airborne radar data; SOAR-Lake Vostok Survey bed elevation data; SOAR-Lake Vostok Survey Gravity data; SOAR-Lake Vostok Survey ice thickness data; SOAR-Lake Vostok survey magnetic anomaly data; SOAR-Lake Vostok Survey surface elevation data", "datasets": [{"dataset_uid": "601604", "doi": "10.15784/601604", "keywords": "Airborne Radar; Antarctica; Bed Elevation; Geophysics; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Surface Elevation; Ice Thickness; Robb Glacier; Transantarctic Mountains", "people": "Young, Duncan A.; Blankenship, Donald D.; Bell, Robin; Buck, W. Roger", "repository": "USAP-DC", "science_program": null, "title": "RBG - Robb Glacier Survey", "url": "https://www.usap-dc.org/view/dataset/601604"}, {"dataset_uid": "601300", "doi": "10.1594/IEDA/306568", "keywords": "Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Lake Vostok; Navigation; Radar; SOAR; Subglacial Lakes", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey airborne radar data", "url": "https://www.usap-dc.org/view/dataset/601300"}, {"dataset_uid": "601299", "doi": "10.1594/IEDA/306565", "keywords": "Airborne Laser Altimeters; Airborne Laser Altimetry; Airborne Radar; Airplane; Antarctica; Bed Elevation; Bedrock Elevation; Digital Elevation Model; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Lake Vostok; Radar; Radar Echo Sounder; SOAR", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey bed elevation data", "url": "https://www.usap-dc.org/view/dataset/601299"}, {"dataset_uid": "601298", "doi": "10.1594/IEDA/306566", "keywords": "Airborne Altimetry; Airborne Laser Altimeters; Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Ice Sheet Elevation; Ice Surface; Lake Vostok; Radar Echo Sounder; SOAR; Surface Elevation", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey surface elevation data", "url": "https://www.usap-dc.org/view/dataset/601298"}, {"dataset_uid": "601297", "doi": "10.1594/IEDA/306567", "keywords": "Airborne Laser Altimeters; Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Sheet; Ice Stratigraphy; Ice Thickness; Ice Thickness Distribution; Lake Vostok; Radar; Radar Altimetry; Radar Echo Sounder; SOAR; Subglacial Lake", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey ice thickness data", "url": "https://www.usap-dc.org/view/dataset/601297"}, {"dataset_uid": "601296", "doi": " 10.1594/IEDA/306564", "keywords": "Airborne Magnetic; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Lake Vostok; Magnetic; Magnetic Anomaly; Magnetometer; Potential Field; SOAR; Solid Earth", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok survey magnetic anomaly data", "url": "https://www.usap-dc.org/view/dataset/601296"}, {"dataset_uid": "601295", "doi": "10.1594/IEDA/306563", "keywords": "Airborne Gravity; Airplane; Antarctica; East Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Lake Vostok; Potential Field; Solid Earth", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey Gravity data", "url": "https://www.usap-dc.org/view/dataset/601295"}, {"dataset_uid": "609240", "doi": "", "keywords": "Airborne Radar; Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Navigation; Potential Field; SOAR; Solid Earth", "people": "Dalziel, Ian W.; Morse, David L.; Blankenship, Donald D.; Holt, John W.", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Aerogeophysics Data", "url": "https://www.usap-dc.org/view/dataset/609240"}, {"dataset_uid": "609336", "doi": "10.7265/N5CN71VX", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Subglacial Lake", "people": "Holt, John W.; Carter, Sasha P.; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Subglacial Lake Classification Inventory", "url": "https://www.usap-dc.org/view/dataset/609336"}], "date_created": "Fri, 06 Feb 2009 00:00:00 GMT", "description": "9911617 Blankenship This award, provided jointly by the Antarctic Geology and Geophysics Program, the Antarctic Glaciology Program, and the Polar Research Support Section of the Office of Polar Programs, provides funds for continuation of the Support Office for Aerogeophysical Research (SOAR). From July 1994 to July 2000, SOAR served as a facility to accomplish aerogeophysical research in Antarctica under an agreement between the University of Texas at Austin and the National Science Foundation\u0027s Office of Polar Programs (NSF/OPP). SOAR operated and maintained an aerogeophysical instrument package that consists of an ice-penetrating radar sounder, a laser altimeter, a gravimeter and a magnetometer that are tightly integrated with each other as well as with the aircraft\u0027s avionics and power packages. An array of aircraft and ground-based GPS receivers supported kinematic differential positioning using carrier-phase observations. SOAR activities included: developing aerogeophysical research projects with NSF/OPP investigators; upgrading of the aerogeophysical instrumentation package to accommodate new science projects and advances in technology; fielding this instrument package to accomplish SOAR-developed projects; and management, reduction, and analysis of the acquired aerogeophysical data. In pursuit of 9 NSF-OPP funded aerogeophysical research projects (involving 14 investigators from 9 institutions), SOAR carried out six field campaigns over a six-year period and accomplished approximately 200,000 line kilometers of aerogeophysical surveying over both East and West Antarctica in 377 flights. This award supports SOAR to undertake a one year and 8 month program of aerogeophysical activities that are consistent with continuing U.S. support for geophysical research in Antarctica. - SOAR will conduct an aerogeophysical campaign during the 200/01 austral summer to accomplish surveys for two SOAR-developed projects: \"Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Studies\" (Co-PI\u0027s Bell and Studinger, LDEO); and \"Collaborative Research: Seismic Investigation of the Deep Continental Structure Across the East-West Antarctic Boundary\" (Co-PI\u0027s Weins, Washington U. and Anandakrishnan, U. Alabama). After configuration and testing of the survey aircraft in McMurdo, SOAR will conduct survey flights from an NSF-supported base adjacent to the Russian Station above Lake Vostok and briefly occupy one or two remote bases on the East Antarctic ice sheet. - SOAR will reduce these aerogeophysical data and produce profiles and maps of surface elevation, bed elevation, gravity and magnetic field intensity. These results will be provided to the respective project investigators within nine months of conclusion of field activities. We will also submit a technical manuscript that describes these results to a refereed scientific journal and distribute these results to appropriate national geophysical data centers within approximately 24 months of completion of field activities. - SOAR will standardize all previously reduced SOAR data products and transfer them to the appropriate national geophysical data centers by the end of this grant. - SOAR will convene a workshop to establish a community consensus for future U.S. Antarctic aerogeophysical research. This workshop will be co-convened by Ian Dalziel and Richard Alley and will take place during the spring of 2001. - SOAR will upgrade the existing SOAR in-field quality control procedures to serve as a web-based interface for efficient browsing of many low-level SOAR data streams. - SOAR will repair and/or refurbish equipment that was used during the 2000/01 field campaign. Support for SOAR is essential for accomplishing major geophysical investigations in Antarctica. Following data interpretation by the science teams, these data will provide valuable insights to the structure and evolution of the Antarctic continent.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e IMAGING RADAR SYSTEMS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LIDAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e PROTON MAGNETOMETER", "is_usap_dc": true, "keywords": "Ice Sheet; Ice Sheet Elevation; Surface Winds; Snow Temperature; Atmospheric Pressure; Antarctic; West Antarctic Ice Sheet; Surface Temperature Measurements; FIELD INVESTIGATION; Surface Wind Speed Measurements; Subglacial Topography; Atmospheric Humidity Measurements; Not provided; Aerogeophysics; FIELD SURVEYS; GROUND STATIONS; Antarctica; SOAR; Snow Temperature Measurements; West Antarctica; Antarctic Ice Sheet; East Antarctic Plateau", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; West Antarctica; West Antarctic Ice Sheet; East Antarctic Plateau", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Carter, Sasha P.; Holt, John W.; Blankenship, Donald D.; Morse, David L.; Dalziel, Ian W.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR)", "uid": "p0000125", "west": null}, {"awards": "0440602 Saltzman, Eric; 0440701 Severinghaus, Jeffrey; 0440509 Battle, Mark; 0440759 Sowers, Todd; 0440498 White, James; 0440615 Brook, Edward J.", "bounds_geometry": "POINT(-112.085 -79.467)", "dataset_titles": "Gases in Firn Air and Shallow Ice at the WAIS Drilling Site, Antarctica; Ice Core Air Carbonyl Sulfide Measurements - SPRESSO Ice Core; Methane Isotopes from the WAIS Divide Ice Core; Surface Temperature Reconstruction from Borehole Temperature Measurement in WDC05A; WAIS ice core Methane Data, Carbon Dioxide Data", "datasets": [{"dataset_uid": "609493", "doi": "10.7265/N5319SV3", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Brook, Edward J.; Mitchell, Logan E; Sowers, Todd A.; Taylor, Kendrick C.; McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS ice core Methane Data, Carbon Dioxide Data", "url": "https://www.usap-dc.org/view/dataset/609493"}, {"dataset_uid": "609638", "doi": "10.7265/N56971HF", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Temperature; WAIS Divide; WAIS Divide Ice Core", "people": "Orsi, Anais J.; Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Surface Temperature Reconstruction from Borehole Temperature Measurement in WDC05A", "url": "https://www.usap-dc.org/view/dataset/609638"}, {"dataset_uid": "609412", "doi": "10.7265/N5251G40", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice; WAIS Divide; WAIS Divide Ice Core", "people": "Saltzman, Eric", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Gases in Firn Air and Shallow Ice at the WAIS Drilling Site, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609412"}, {"dataset_uid": "601357", "doi": "10.15784/601357", "keywords": "Antarctica; Atmospheric Gases; Gas Measurement; Ice Core; Ice Core Gas Records; Trace Gases", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Air Carbonyl Sulfide Measurements - SPRESSO Ice Core", "url": "https://www.usap-dc.org/view/dataset/601357"}, {"dataset_uid": "609435", "doi": "10.7265/N5J67DW0", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Methane; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Sowers, Todd A.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Methane Isotopes from the WAIS Divide Ice Core", "url": "https://www.usap-dc.org/view/dataset/609435"}], "date_created": "Tue, 03 Feb 2009 00:00:00 GMT", "description": "This award supports a project to measure the elemental and isotopic composition of firn air and occluded air in shallow boreholes and ice cores from the WAIS Divide site, the location of a deep ice-coring program planned for 2006-07 and subsequent seasons. The three primary objectives are: 1) to establish the nature of firn air movement and trapping at the site to aid interpretations of gas data from the deep core; 2) to expand the suite of atmospheric trace gas species that can be measured in ice and replicate existing records of other species; and 3) to inter-calibrate all collaborating labs to insure that compositional and isotopic data sets are inter-comparable. The program will be initiated with a shallow drilling program during the 05/06 field season which will recover two 300+m cores and firn air samples. The ice core and firn air will provide more than 700 years of atmospheric history that will be used to address a number of important questions related to atmospheric change over this time period. The research team consists of six US laboratories that also plan to participate in the deep core program. This collaborative research program has a number of advantages. First, the scientists will be able to coordinate sample allocation a priori to maximize the resolution and overlap of records of interrelated species. Second, sample registration will be exact, allowing direct comparison of all records. Third, a coherent data set will be produced at the same time and all PI.s will participate in interpreting and publishing the results. This will insure that the best possible understanding of gas records at the WAIS Divide site will be achieved, and that all work necessary to interpret the deep core is conducted in a timely fashion. The collaborative structure created by the proposal will encourage sharing of techniques, equipment, and ideas between the laboratories. The research will identify impacts of various industrial/agricultural activities and help to distinguish them from natural variations, and will include species for which there are no long records of anthropogenic impact. The work will also help to predict future atmospheric loadings. The project will contribute to training scientists at several levels, including seven undergraduates, two graduate students and one post doctoral fellow.", "east": -112.085, "geometry": "POINT(-112.085 -79.467)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GC-MS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e SPECTROMETERS \u003e SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e FLASKS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS", "is_usap_dc": true, "keywords": "Ice Core Chemistry; WAIS Divide; Firn; LABORATORY; Ice Core; Firn Air Isotope Measurements; Shallow Firn Air; FIELD INVESTIGATION; Ice Core Gas Records; GROUND-BASED OBSERVATIONS; Firn Isotopes; Wais Divide-project; Gas Data; Polar Firn Air; Not provided; Trace Gas Species; Trapped Gases; West Antarctic Ice Sheet; Deep Core; Ice Sheet; Gas; Firn Air Isotopes; FIELD SURVEYS; Air Samples; Atmospheric Gases; Isotope; Cores; Atmosphere; Ice Core Data; Surface Temperatures; Firn Air; Borehole; Antarctica", "locations": "West Antarctic Ice Sheet; Antarctica; WAIS Divide", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Battle, Mark; Mischler, John; Saltzman, Eric; Aydin, Murat; White, James; Brook, Edward J.; Orsi, Anais J.; Severinghaus, Jeffrey P.; Sowers, Todd A.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site", "uid": "p0000368", "west": -112.085}, {"awards": "0230268 Anderson, Robert", "bounds_geometry": "POLYGON((-180 -50,-169 -50,-158 -50,-147 -50,-136 -50,-125 -50,-114 -50,-103 -50,-92 -50,-81 -50,-70 -50,-70 -51.5,-70 -53,-70 -54.5,-70 -56,-70 -57.5,-70 -59,-70 -60.5,-70 -62,-70 -63.5,-70 -65,-81 -65,-92 -65,-103 -65,-114 -65,-125 -65,-136 -65,-147 -65,-158 -65,-169 -65,180 -65,177 -65,174 -65,171 -65,168 -65,165 -65,162 -65,159 -65,156 -65,153 -65,150 -65,150 -63.5,150 -62,150 -60.5,150 -59,150 -57.5,150 -56,150 -54.5,150 -53,150 -51.5,150 -50,153 -50,156 -50,159 -50,162 -50,165 -50,168 -50,171 -50,174 -50,177 -50,-180 -50))", "dataset_titles": "Southern Ocean Deglacial Opal, Radionuclide, and Diatom Upwelling Data", "datasets": [{"dataset_uid": "000199", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Southern Ocean Deglacial Opal, Radionuclide, and Diatom Upwelling Data", "url": "https://www.ncdc.noaa.gov/paleo/study/8439"}], "date_created": "Mon, 12 Jan 2009 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the \"Silicic Acid Leakage Hypothesis\" as it relates to global carbon dioxide fluctuations during glacial-interglacial cycles.\u003cbr/\u003e\u003cbr/\u003eIntellectual Merit\u003cbr/\u003eThis project will evaluate the burial rate of biogenic opal in the Pacific sector of the Southern Ocean, both during the Last Glacial Maximum (LGM) and during the Holocene, as a critical test of the \"Silicic Acid Leakage Hypothesis\". \u003cbr/\u003e\u003cbr/\u003eThe \"Silicic Acid Leakage Hypothesis\" has been proposed recently to explain the glacial reduction in the carbon dioxide content of the atmosphere that has been reconstructed from Antarctic ice cores. Vast amounts of dissolved Si (silicic acid) are supplied to surface waters of the Southern Ocean by wind-driven upwelling of deep waters. Today, that dissolved Si is consumed almost quantitatively by diatoms who form skeletal structures composed of biogenic opal (a mineral form of silicon). According to the \"Silicic Acid Leakage Hypothesis\", environmental conditions in the Southern Ocean during glacial periods were unfavorable for diatom growth, leading to reduced (compared to interglacials) efficiency of dissolved Si utilization. Dissolved Si that was not consumed biologically in the glacial Southern ocean was then exported to the tropics in waters that sink in winter to depths of a few hundred meters along the northern fringes of the Antarctic Circumpolar Current, and return some decades later to the sunlit surface in tropical regions of wind-driven upwelling. \u003cbr/\u003e\u003cbr/\u003eAn increase in the amount of dissolved Si that \"leaks\" out of the Southern Ocean and later upwells at low latitudes could shift the global average composition of phytoplankton toward a greater abundance of diatoms and fewer CaCO3-secreting taxa (especially coccolithophorids). Consequences of such a taxonomic shift in the ocean\u0027s phytoplankton assemblage include:\u003cbr/\u003e a) an increase in the global average organic carbon/calcium carbonate ratio of particulate biogenic material sinking into the deep sea;\u003cbr/\u003e b) a reduction in the preservation and burial of calcium carbonate in marine sediments;\u003cbr/\u003e c) an increase in ocean alkalinity as a consequence of the first two changes mentioned above, and;\u003cbr/\u003e d) a lowering of atmospheric CO2 concentrations in response to increased alkalinity of ocean waters. \u003cbr/\u003e\u003cbr/\u003eA complete assessment of the Silicic acid leakage hypothesis will require an evaluation of: (1) Si utilization efficiencies using newly-developed stable isotopic techniques; (2) opal burial rates in low-latitude upwelling regions; and (3) opal burial rates in the Southern Ocean. This project addresses the last of these topics. \u003cbr/\u003e\u003cbr/\u003ePrevious work has shown that there was little change in opal burial rate between the LGM and the Holocene in the Atlantic and Indian sectors of the Southern Ocean. Preliminary results (summarized in this proposal) suggest that the Pacific may have been different, however, in that opal burial rates in the Pacific sector seem to have been lower during the LGM than during the Holocene, allowing for the possibility of \"Si leakage\" from this region. However, available results are too sparse to make any quantitative conclusions at this time. For that reason, we propose to make a comprehensive evaluation of opal burial rates in the Pacific sector of the Southern Ocean. \u003cbr/\u003e\u003cbr/\u003eSignificance and Broader Impacts\u003cbr/\u003eDetermining the mechanism(s) by which the ocean has regulated climate-related changes in the CO2 content of the atmosphere has been the focus of a substantial effort by paleoceanographers over the past two decades. The Silicic Acid Leakage Hypothesis is a viable new candidate mechanism that warrants further exploration and testing. Completion of the proposed work will contribute significantly to that effort. \u003cbr/\u003e\u003cbr/\u003eDuring the course of this work, several undergraduates will be exposed to paleoclimate research through their involvement in this project. Burckle and Anderson are both dedicated to the education and training of young scientists, and to the recruitment of women and under-represented minorities. To illustrate, two summer students (undergraduates) worked in Burckle\u0027s lab during the summer of 2002. One was a woman and the other (male) was a member of an under-represented minority. Anderson and Burckle will continue with similar recruitment efforts during the course of the proposed study. A minority student who has expressed an interest in working on this research during the summer of 2003 has already been identified.", "east": -70.0, "geometry": "POINT(-140 -57.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -50.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, Robert; Burckle, Lloyd", "platforms": "Not provided", "repo": "NCEI", "repositories": "NCEI", "science_programs": null, "south": -65.0, "title": "Opal Burial in the Pacific Sector of the Southern Ocean: A Test of the \"Silicic Acid Leakage Hypothesis.\"", "uid": "p0000457", "west": 150.0}, {"awards": "0443403 Measures, Christopher; 0444040 Zhou, Meng; 0230445 Measures, Christopher", "bounds_geometry": "POLYGON((-63 -60.3,-62 -60.3,-61 -60.3,-60 -60.3,-59 -60.3,-58 -60.3,-57 -60.3,-56 -60.3,-55 -60.3,-54 -60.3,-53 -60.3,-53 -60.77,-53 -61.24,-53 -61.71,-53 -62.18,-53 -62.65,-53 -63.12,-53 -63.59,-53 -64.06,-53 -64.53,-53 -65,-54 -65,-55 -65,-56 -65,-57 -65,-58 -65,-59 -65,-60 -65,-61 -65,-62 -65,-63 -65,-63 -64.53,-63 -64.06,-63 -63.59,-63 -63.12,-63 -62.65,-63 -62.18,-63 -61.71,-63 -61.24,-63 -60.77,-63 -60.3))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001663", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0402"}], "date_created": "Mon, 12 Jan 2009 00:00:00 GMT", "description": "The Shackleton Fracture Zone (SFZ) in the Drake Passage defines a boundary between low and high phytoplankton waters. West of Drake Passage, Southern Ocean waters south of the Polar Front and north of the Antarctic continent shelf have very low satellite-derived surface chlorophyll concentrations. Chlorophyll and mesoscale eddy kinetic energy are higher east of SFZ compared to values west of the ridge. In situ data from a 10-year survey of the region as part of the National Marine Fisheries Service\u0027s Antarctic Marine Living Resources program confirm the existence of a strong hydrographic and chlorophyll gradient in the region. An interdisciplinary team of scientists hypothesizes that bathymetry, including the 2000 m deep SFZ, influences mesoscale circulation and transport of iron leading to the observed phytoplankton patterns. To address this\u003cbr/\u003ehypothesis, the team proposes to examine phytoplankton and bacterial physiological states (including responses to iron enrichment) and structure of the plankton communities from virus to zooplankton, the concentration and distribution of Fe, Mn, and Al, and mesoscale flow patterns near the SFZ. Relationships between iron concentrations and phytoplankton characteristics will be examined in the context of the mesoscale transport of trace nutrients to determine how much of the observed variability in phytoplankton biomass can be attributed to iron supply, and to determine the most important sources of iron to pelagic waters east of the Drake Passage. The goal is to better understand how plankton productivity and community structure in the Southern Ocean are affected by the coupling between bathymetry, mesoscale circulation, and limiting nutrient distributions.\u003cbr/\u003e\u003cbr/\u003eThe research program includes rapid surface surveys of chemical, plankton, and hydrographic properties complemented by a mesoscale station grid for vertical profiles, water sampling, and bottle incubation enrichment experiments. Distributions of manganese and aluminum will be determined to help distinguish aeolian, continental shelf and upwelling sources of iron. The physiological state of the phytoplankton will be monitored by active fluorescence methods sensitive to the effects of iron limitation. Mass concentrations of pigment, carbon and nitrogen will be obtained by analysis of filtered samples, cell size distributions by flow cytometry, and species identification by microscopy. Primary production and photosynthesis parameters (absorption, quantum yields, variable fluorescence) will be measured on depth profiles, during surface surveys and on bulk samples from enrichment experiments. Viruses and bacteria will be examined for abundances, and bacterial production will be assessed in terms of whether it is limited by either iron or organic carbon sources. The proposed work will improve our understanding of processes controlling distributions of iron and the response of plankton communities in the Southern Ocean. This proposal also includes an outreach component comprised of Research Experiences for Undergraduates (REU), Teachers Experiencing the Antarctic and Arctic (TEA), and the creation of an educational website and K-12 curricular modules based on the project.", "east": -53.0, "geometry": "POINT(-58 -62.65)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": true, "keywords": "R/V LMG", "locations": null, "north": -60.3, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Measures, Christopher; Selph, Karen; Zhou, Meng", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.0, "title": "Collaborative Research: Plankton Community Structure and Iron Distribution in the Southern Drake Passage", "uid": "p0000585", "west": -63.0}, {"awards": "0234249 Hollibaugh, James", "bounds_geometry": "POLYGON((-73 -64,-72.1 -64,-71.2 -64,-70.3 -64,-69.4 -64,-68.5 -64,-67.6 -64,-66.7 -64,-65.8 -64,-64.9 -64,-64 -64,-64 -64.4,-64 -64.8,-64 -65.2,-64 -65.6,-64 -66,-64 -66.4,-64 -66.8,-64 -67.2,-64 -67.6,-64 -68,-64.9 -68,-65.8 -68,-66.7 -68,-67.6 -68,-68.5 -68,-69.4 -68,-70.3 -68,-71.2 -68,-72.1 -68,-73 -68,-73 -67.6,-73 -67.2,-73 -66.8,-73 -66.4,-73 -66,-73 -65.6,-73 -65.2,-73 -64.8,-73 -64.4,-73 -64))", "dataset_titles": "Ammonia Oxidizing Bacteria and Archaea Abundance", "datasets": [{"dataset_uid": "000117", "doi": "", "keywords": null, "people": null, "repository": "LTER", "science_program": null, "title": "Ammonia Oxidizing Bacteria and Archaea Abundance", "url": "http://oceaninformatics.ucsd.edu/datazoo/data/pallter/datasets?action=summary\u0026id=114"}], "date_created": "Mon, 01 Dec 2008 00:00:00 GMT", "description": "This project will investigate the distribution, phylogenetic affinities and ecological aspects of ammonium-oxidizing bacteria in the Palmer Long-Term Ecological Research study area. Ammonia oxidation is the first step in the conversion of regenerated nitrogen to dinitrogen gas via denitrification, a 3-step pathway mediated by three distinct guilds of bacteria. As such, ammonia oxidation is important to the global nitrogen cycle. Ammonia oxidation and the overall process of nitrification-denitrification have received little attention in polar oceans where it is significant and where the effects of climate change on biogeochemical rates are likely to be pronounced. The goals of the studies proposed here are A) to obtain more conclusive information concerning composition of Antarctic ammonia oxidizers; B) to begin characterizing their ecophysiology and ecology; and C) to obtain cultures of the organism for more detailed studies. Water column and sea ice AOB assemblages will be characterized phylogenetically and the different kinds of AOB in various samples will be quantified. Nitrification rates will be measured across the LTER study area in water column, sea ice and sediment samples. Grazing rates on AOB will be determined and their sensitivity to UV light evaluated. In addition, the significance of urea nitrogen as a source of reduced nitrogen to AOB will be assessed and the temperature response of nitrification over temperature ranges appropriate to polar regions will be evaluated. This work will provide insights into the ecology of AOB and the knowledge needed to model how water column nitrification will respond to changes in the polar ecosystems accompanying global climate change.", "east": -64.0, "geometry": "POINT(-68.5 -66)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Hollibaugh, James T.", "platforms": "Not provided", "repo": "LTER", "repositories": "LTER", "science_programs": "LTER", "south": -68.0, "title": "Distribution And Ecology Of Ammonia Oxidizing Bacteria In The Palmer LTER Study Area", "uid": "p0000225", "west": -73.0}, {"awards": "0636706 Sivjee, Gulamabas", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "NCAR Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) Data System ID# 5700 (full data link not provided)", "datasets": [{"dataset_uid": "000137", "doi": "", "keywords": null, "people": null, "repository": "NCAR", "science_program": null, "title": "NCAR Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) Data System ID# 5700 (full data link not provided)", "url": "http://cedarweb.hao.ucar.edu/"}], "date_created": "Thu, 23 Oct 2008 00:00:00 GMT", "description": "This project will provide for the continued operation and data analysis of an electro-optical remote sensing facility at South Pole Station. The facility will be used to examine 1) the source(s) and propagation of patches of enhanced plasma density in the F-region of the Antarctic ionosphere, 2) changes in the Antarctic E-region O/N2 ratio in the center of the night-sector of the auroral oval and compare the ratios with those found in the sun-aligned auroral arcs in the Polar Cap region, 3) Antarctic middle atmosphere disturbances generated by Stratospheric Warming Events (SWE), 4) quantitative characterization of the effects of solar variability on the temperature of the upper mesosphere region, 5) Antarctic thermospheric response to Solar Magnetic Cloud/Coronal Mass Ejection (SMC/CME) events, and 6) the effects of Joule heating on the thermodynamics of the Antarctic F-region. Data for all these studies will come from two sets of remote-sensing facilities at SPS: 1) Auroral emissions brightness measurements from the sun-synchronous Meridian Scanning Photon Counting Multichannel photometer; 2) Airglow and Auroral emission spectra recorded continuously during Austral winter at SPS with the high throughput, high resolution Infrared Michelson Interferometer as well as Visible - Near Infrared CCD spectrographs. \u003cbr/\u003e\u003cbr/\u003eMeridional variations in the brightness of F-region\u0027s auroral emissions provide the necessary data for investigations of the dynamics and IMF control, as well as the excitation mechanism(s), of the F-region patches. The brightness of auroral emissions from O and N relative to those from molecular species (O2 and N2) can be analyzed to assess, quantitatively, changes in the thermospheric composition. These data (from continuous (24 hours a day) measurements during the totally dark six months of each Austral winter at SPS) will be used to investigate the effects of solar-terrestrial disturbances on Antarctic thermospheric composition and thermodynamics, including response of the mesopause to solar cycle variations. Changes in airglow temperature (derived from OH and O2 bands), from different mesosphere/lower-thermosphere (MLT) heights, permit studies of the dynamical effects of Planetary, Tidal and Gravity waves propagating in the MLT regions as well as non-linear interactions among these waves. Coupling of different atmospheric regions over SPS, through enhanced gravity wave activities during SWE that lead to a precursor as Mesospheric cooling, will be investigated through the observed changes in MLT kinetic air temperature and density. \u003cbr/\u003e\u003cbr/\u003eThe project will enhance the infrastructure for research and education at Embry-Riddle Aeronautical University, bringing together the PI/Co-I and students from Departments of Physical Sciences and Aerospace Engineering. Graduate and undergraduate students will participate in modern research and software development.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Astrophysics and Geospace Sciences", "paleo_time": null, "persons": "Gulamabas, Sivjee; Azeem, Syed", "platforms": "Not provided", "repo": "NCAR", "repositories": "NCAR", "science_programs": null, "south": -90.0, "title": "Observations of Upper Atmospheric Energetics, Dynamics, and Long-Term Variations over the South Pole Station", "uid": "p0000292", "west": -180.0}, {"awards": "0636953 Saltzman, Eric", "bounds_geometry": "POINT(-148.82 -81.66)", "dataset_titles": "Carbonyl Sulfide Measurements in the Taylor Dome M3C1 Ice Core; Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core; Methyl Bromide Measurements in the Taylor Dome M3C1 Ice Core; Methyl Chloride Measurements from the Siple Dome A Deep Core, Antarctica; Methyl Chloride Measurements in the Taylor Dome M3C1 Ice Core", "datasets": [{"dataset_uid": "609599", "doi": "10.7265/N5S75D8P", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Taylor Dome; Taylor Dome Ice Core", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Carbonyl Sulfide Measurements in the Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/609599"}, {"dataset_uid": "609598", "doi": "10.7265/N5X0650D", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Taylor Dome; Taylor Dome Ice Core", "people": "Aydin, Murat; Saltzman, Eric", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Methyl Bromide Measurements in the Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/609598"}, {"dataset_uid": "609600", "doi": "10.7265/N5PG1PPB", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Taylor Dome; Taylor Dome Ice Core", "people": "Aydin, Murat; Saltzman, Eric", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Methyl Chloride Measurements in the Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/609600"}, {"dataset_uid": "609356", "doi": "10.7265/N56W9807", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Aydin, Murat; Saltzman, Eric; Williams, Margaret", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Methyl Chloride Measurements from the Siple Dome A Deep Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609356"}, {"dataset_uid": "601361", "doi": "10.15784/601361", "keywords": "Antarctica; Carbonyl Sulfide; Trace Gases", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/601361"}], "date_created": "Wed, 22 Oct 2008 00:00:00 GMT", "description": "Saltzman/0636953\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to measure methyl chloride, methyl bromide, and carbonyl sulfide in air extracted from Antarctic ice cores. Previous measurements in firn air and shallow ice cores suggest that the ice archive contains paleo-atmospheric signals for these gases. The goal of this study is to extend these records throughout the Holocene and into the last Glacial period to examine the behavior of these trace gases over longer time scales and a wider range of climatic conditions. These studies are exploratory, and both the stability of these trace gases and the extent to which they may be impacted by in situ processes will be assessed. This project will involve sampling and analyzing archived ice core samples from the Siple Dome, Taylor Dome, Byrd, and Vostok ice cores. The ice core samples will be analyzed by dry extraction, with gas chromatography/mass spectrometry with isotope dilution. The ice core measurements will generate new information about the range of natural variability of these trace gases in the atmosphere. The intellectual merit of this project is that this work will provide an improved basis for assessing the impact of anthropogenic activities on biogeochemical cycles, and new insight into the climatic sensitivity of the biogeochemical processes controlling atmospheric composition. The broader impact of this project is that there is a strong societal interest in understanding how man\u0027s activities impact the atmosphere, and how atmospheric chemistry may be altered by future climate change. The results of this study will contribute to the development of scenarios used for future projections of stratospheric ozone and climate change. In terms of human development, this project will support the doctoral dissertation of a graduate student in Earth System Science, and undergraduate research on polar ice core chemistry. This project will also contribute to the development of an Earth Sciences teacher training curriculum for high school teachers in the Orange County school system in collaboration with an established, NSF-sponsored Math and Science Partnership program (FOCUS).", "east": -148.82, "geometry": "POINT(-148.82 -81.66)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Antarctica; Methyl Bromide; Antarctic; Ice Core Gas Records; Ice Core Data; Carbonyl Sulfide; Methyl Chloride; Antarctic Ice Sheet; Siple Dome; Trace Gases; Ice Core Chemistry; Biogeochemical; Atmospheric Chemistry; West Antarctic Ice Sheet; LABORATORY; Ice Core; West Antarctica", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; Siple Dome; West Antarctica; West Antarctic Ice Sheet", "north": -81.66, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Saltzman, Eric; Aydin, Murat; Williams, Margaret", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core; Siple Dome Ice Core", "south": -81.66, "title": "Methyl Chloride, Methyl Bromide, and Carbonyl Sulfide in Deep Antarctic Ice Cores", "uid": "p0000042", "west": -148.82}, {"awards": "0228052 Kreutz, Karl", "bounds_geometry": "POLYGON((161.0434 -77.3002,161.241645 -77.3002,161.43989 -77.3002,161.638135 -77.3002,161.83638 -77.3002,162.034625 -77.3002,162.23287 -77.3002,162.431115 -77.3002,162.62936 -77.3002,162.827605 -77.3002,163.02585 -77.3002,163.02585 -77.3784846,163.02585 -77.4567692,163.02585 -77.5350538,163.02585 -77.6133384,163.02585 -77.691623,163.02585 -77.7699076,163.02585 -77.8481922,163.02585 -77.9264768,163.02585 -78.0047614,163.02585 -78.083046,162.827605 -78.083046,162.62936 -78.083046,162.431115 -78.083046,162.23287 -78.083046,162.034625 -78.083046,161.83638 -78.083046,161.638135 -78.083046,161.43989 -78.083046,161.241645 -78.083046,161.0434 -78.083046,161.0434 -78.0047614,161.0434 -77.9264768,161.0434 -77.8481922,161.0434 -77.7699076,161.0434 -77.691623,161.0434 -77.6133384,161.0434 -77.5350538,161.0434 -77.4567692,161.0434 -77.3784846,161.0434 -77.3002))", "dataset_titles": "Late Holocene Climate Variability, Dry Valleys, Antarctica", "datasets": [{"dataset_uid": "609399", "doi": "10.7265/N5FF3Q92", "keywords": "Antarctica; Borehole Temperature; Chemistry:ice; Chemistry:Ice; Dry Valleys; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Mass Balance; Paleoclimate; Physical Properties", "people": "Kreutz, Karl; Mayewski, Paul A.", "repository": "USAP-DC", "science_program": null, "title": "Late Holocene Climate Variability, Dry Valleys, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609399"}], "date_created": "Tue, 21 Oct 2008 00:00:00 GMT", "description": "This award supports a project to collect and develop high-resolution ice core records from the Dry Valleys region of Antarctica, and provide interpretations of interannual to decadal-scale climate variability during the last 2000 years (late Holocene). The project will test hypotheses related to ocean/atmosphere teleconnections (e.g., El Nino Southern Oscillation, Antarctic Oscillation) that may be responsible for major late Holocene climate events such as the Little Ice Age in the Southern Hemisphere. Conceptual and quantitative models of these processes in the Dry Valleys during the late Holocene are critical for understanding recent climate changes, and represent the main scientific merit of the project. We plan to collect intermediate-length ice cores (100-200m) at four sites along transects in Taylor Valley and Wright Valley, and analyze each core at high resolution for stable isotopes (d18O, dD), major ions (Na+, Mg2+, Ca2+, K+, NH4+, Cl-, NO3-, SO42-, MSA), and trace elements (Al, Fe, S, Sr, B). A suite of statistical techniques will be applied to the multivariate glaciochemical dataset to identify chemical associations and to calibrate the time-series records with available instrumental data. Broader impacts of the project include: 1) contributions to several ongoing interdisciplinary Antarctic research programs; 2) graduate and undergraduate student involvement in field, laboratory, and data interpretation activities; 3) use of project data and ideas in several UMaine courses and outreach activities; and 4) data dissemination through peer-reviewed publications, UMaine and other paleoclimate data archive websites, and presentations at national and international meetings.", "east": 163.02585, "geometry": "POINT(162.034625 -77.691623)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MC-ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HUMIDITY SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS", "is_usap_dc": true, "keywords": "Holocene; Climate Research; AWS Climate Data; Paleoclimate; Climate Variation; Dry Valleys; Wright Valley; Little Ice Age; Stable Isotopes; Glaciochemical; Ice Core; FIELD INVESTIGATION; Enso; Antarctic Oscillation; Climate; GPS; El Nino-Southern Oscillation; LABORATORY; Not provided; Climate Change; Ice Core Records; Antarctica; Taylor Valley; FIELD SURVEYS; Variability", "locations": "Antarctica; Dry Valleys; Taylor Valley; Wright Valley", "north": -77.3002, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Kreutz, Karl; Arcone, Steven; Mayewski, Paul A.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.083046, "title": "Dry Valleys Late Holocene Climate Variability", "uid": "p0000155", "west": 161.0434}, {"awards": "0229546 MacAyeal, Douglas", "bounds_geometry": "POINT(-178 -78)", "dataset_titles": "collection of nascent rift images and description of station deployment; Continuous GPS (static) Data from the Ross Ice Shelf, Antarctica; Giant Icebergs of the Ross Sea, in situ Drift and Weather Measurements, Antarctica; Iceberg Firn Temperatures, Antarctica; Iceberg Harmonic Tremor, Seismometer Data, Antarctica; Iceberg Satellite imagery from stations and ice shelves (full data link not provided); Iceberg Tiltmeter Measurements, Antarctica; Ice Shelf Rift Time-Lapse Photography, Antarctica; Incorporated Research Institutions for Seismology; Nascent Iceberg Webcam Images available during the deployment period; Ross Ice Shelf Firn Temperature, Antarctica; The files contain a short header (number of data samples, sample rate, start time, stop time, channel title)The time series data then follow the header above.; This site mirrors the NSIDC website archive.", "datasets": [{"dataset_uid": "609352", "doi": "10.7265/N5M61H55", "keywords": "Glaciology; Iceberg; Oceans; Ross Ice Shelf; Sea Ice; Snow/ice; Snow/Ice; Southern Ocean; Temperature", "people": "Thom, Jonathan; MacAyeal, Douglas; Sergienko, Olga", "repository": "USAP-DC", "science_program": null, "title": "Iceberg Firn Temperatures, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609352"}, {"dataset_uid": "609353", "doi": "10.7265/N5GF0RFF", "keywords": "Glaciology; Iceberg; Oceans; Ross Ice Shelf; Sea Ice; Southern Ocean; Tiltmeter", "people": "Kim, Young-Jin; Bliss, Andrew; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Iceberg Tiltmeter Measurements, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609353"}, {"dataset_uid": "609351", "doi": "10.7265/N5QV3JGV", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Photo/video; Photo/Video; Ross Ice Shelf", "people": "Brunt, Kelly; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Ice Shelf Rift Time-Lapse Photography, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609351"}, {"dataset_uid": "609350", "doi": "10.7265/N5VM496K", "keywords": "AWS; Glaciology; GPS; Iceberg; Meteorology; Oceans; Ross Sea; Sea Ice; Southern Ocean; Weatherstation", "people": "Okal, Emile; MacAyeal, Douglas; Aster, Richard; Bassis, Jeremy", "repository": "USAP-DC", "science_program": null, "title": "Giant Icebergs of the Ross Sea, in situ Drift and Weather Measurements, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609350"}, {"dataset_uid": "609349", "doi": "10.7265/N5445JD6", "keywords": "Geology/Geophysics - Other; Glaciology; Iceberg; Oceans; Ross Sea; Sea Ice; Seismometer; Southern Ocean", "people": "MacAyeal, Douglas; Okal, Emile; Aster, Richard; Bassis, Jeremy", "repository": "USAP-DC", "science_program": null, "title": "Iceberg Harmonic Tremor, Seismometer Data, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609349"}, {"dataset_uid": "002504", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Nascent Iceberg Webcam Images available during the deployment period", "url": "https://amrc.ssec.wisc.edu/data/iceberg.html"}, {"dataset_uid": "001685", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Incorporated Research Institutions for Seismology", "url": "http://www.iris.edu/data/sources.htm"}, {"dataset_uid": "609347", "doi": "10.7265/N57W694M", "keywords": "Antarctica; Geodesy; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ross Ice Shelf; Southern Ocean", "people": "Brunt, Kelly; MacAyeal, Douglas; King, Matthew", "repository": "USAP-DC", "science_program": null, "title": "Continuous GPS (static) Data from the Ross Ice Shelf, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609347"}, {"dataset_uid": "001684", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "This site mirrors the NSIDC website archive.", "url": "http://uwamrc.ssec.wisc.edu/"}, {"dataset_uid": "001639", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "collection of nascent rift images and description of station deployment", "url": "http://thistle.org/nascent/index.shtml"}, {"dataset_uid": "001598", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "The files contain a short header (number of data samples, sample rate, start time, stop time, channel title)The time series data then follow the header above.", "url": "http://nsidc.org"}, {"dataset_uid": "609354", "doi": "10.7265/N5BP00Q3", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ross Ice Shelf; Snow/ice; Snow/Ice; Temperature", "people": "Muto, Atsu; Sergienko, Olga; MacAyeal, Douglas; Scambos, Ted", "repository": "USAP-DC", "science_program": null, "title": "Ross Ice Shelf Firn Temperature, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609354"}, {"dataset_uid": "002568", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Iceberg Satellite imagery from stations and ice shelves (full data link not provided)", "url": "http://amrc.ssec.wisc.edu/"}], "date_created": "Fri, 19 Sep 2008 00:00:00 GMT", "description": "This award supports the study of the drift and break-up of Earth\u0027s largest icebergs, which were recently released into the Ross Sea of Antarctica as a result of calving from the Ross Ice Shelf. The scientific goals of the study are to determine the physics of iceberg motion within the dynamic context of ocean currents, winds, and sea ice, which determine the forces that drive iceberg motion, and the relationship between the iceberg and geographically and topographically determined pinning points on which the iceberg can ground. In addition, the processes by which icebergs influence the local environments (e.g., sea ice conditions near Antarctica, access to penguin rookeries, air-sea heat exchange and upwelling at iceberg margins, nutrient fluxes) will be studied. The processes by which icebergs generate globally far-reaching ocean acoustic signals that are detected within the global seismic (earthquake) sensing networks will also be studied. A featured element of the scientific research activity will be a field effort to deploy automatic weather stations, seismometer arrays and GPS-tracking stations on several of the largest icebergs presently adrift, or about to be adrift, in the Ross Sea. Data generated and relayed via satellite to home institutions in the Midwest will motivate theoretical analysis and computer simulation; and will be archived on an \"iceberg\" website (http://amrc.ssec.wisc.edu/amrc/iceberg.html) for access by scientists and the general public. At the most broad level, the study is justified by the fact that icebergs released by the Antarctic ice sheet represent the largest movements of fresh water within the natural environment (e.g., several of the icebergs to be studied, B15, C19 and others calved since 2000 CE, represent over 6000 cubic kilometers of fresh water-an amount roughly equivalent to 100 years of the flow of the Nile River). A better understanding of the impact of iceberg drift through the environment, and particularly the impact on ocean stratification and mixing, is essential to the understanding of the abrupt global climate changes witnessed by proxy during the ice age and of concern under conditions of future greenhouse warming. On a more specific level, the study will generate a knowledge base useful for the better management of Antarctic logistical resources (e.g., the shipping lanes to McMurdo Station) that can occasionally be influenced by adverse effects icebergs have on sea ice conditions.", "east": -178.0, "geometry": "POINT(-178 -78)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HUMIDITY SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e MMS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e TEMPERATURE LOGGERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e TEMPERATURE PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS", "is_usap_dc": true, "keywords": "SEISMOLOGICAL STATIONS; Pressure; AWS; Velocity Measurements; Firn Temperature Measurements; Ice Velocity; Seismology; Ice Sheet Elevation; Harmonic Tremor; Ice Shelf Temperature; Wind Speed; Iceberg; Ice Surface Elevation; Non-Volcanic Tremor; Not provided; Antarctic; Iceberg Tremor; Solar Radiation; Antarctic Ice Sheet; Ross Ice Shelf; Elevation; GPS; Temperature Profiles; Ice Shelf Rift Camera; GROUND STATIONS; Latitude; GROUND-BASED OBSERVATIONS; Ice Shelf Weather; FIELD INVESTIGATION; ARWS; Surface Elevation; Ice Shelf Flow; Antarctica; FIELD SURVEYS; Camera; Seismometer; Iceberg Weather (aws); Ice Movement; Photo; Wind Direction; Iceberg Snow Accumulation; Tremor And Slow Slip Events; AWS Climate Data; Location; Iceberg Drift; Iceberg Collisions; Iceberg Tilt; Atmospheric Pressure; Iceberg Seismicity; Firn Temperature", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; Ross Ice Shelf", "north": -78.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Okal, Emile; Aster, Richard; Bassis, Jeremy; Kim, Young-Jin; Bliss, Andrew; Sergienko, Olga; Thom, Jonathan; Scambos, Ted; Muto, Atsu; Brunt, Kelly; King, Matthew; Parker, Tim; Okal, Marianne; Cathles, Mac; MacAyeal, Douglas", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e ARWS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS; Not provided; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "AMRDC; IRIS; NSIDC; Project website; USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research of Earth\u0027s Largest Icebergs", "uid": "p0000117", "west": -178.0}, {"awards": "0338295 Tulaczyk, Slawek", "bounds_geometry": "POLYGON((-139 -82,-138.2 -82,-137.4 -82,-136.6 -82,-135.8 -82,-135 -82,-134.2 -82,-133.4 -82,-132.6 -82,-131.8 -82,-131 -82,-131 -82.08,-131 -82.16,-131 -82.24,-131 -82.32,-131 -82.4,-131 -82.48,-131 -82.56,-131 -82.64,-131 -82.72,-131 -82.8,-131.8 -82.8,-132.6 -82.8,-133.4 -82.8,-134.2 -82.8,-135 -82.8,-135.8 -82.8,-136.6 -82.8,-137.4 -82.8,-138.2 -82.8,-139 -82.8,-139 -82.72,-139 -82.64,-139 -82.56,-139 -82.48,-139 -82.4,-139 -82.32,-139 -82.24,-139 -82.16,-139 -82.08,-139 -82))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 04 Aug 2008 00:00:00 GMT", "description": "This award supports a project to test whether Kamb Ice Stream (formerly Ice Stream C (ISC)), an ice stream\u003cbr/\u003ethat is thought to have stopped ~150 years ago, may be already in the process of restarting. If yes, it will help establish what is the rate of ice stream reactivation and what mechanisms are controlling this rate. If there is no evidence for ongoing ice stream reactivation, the physical controls that are preventing it will be examined and alternative scenarios for near-future evolution of this ice stream will be explored. One such scenario is an increase in ice diversion toward the neighboring Whillans Ice Stream. Such diversion may help prevent a complete stoppage of Whillans Ice Stream,which has been slowing down for at least the last 24 years. This project will consist of two components: (1) field observations of bed properties,geometry of internal radar reflectors, as well as surface strain rates and velocity/topography changes using Ice-Penetrating Radar and differential Global Positioning System, (2) numerical modeling study of near future(~100-1000 years) evolution of Kamb Ice Stream. The field component will be focused on the bulge-to-trunk transition, which is located at the present time just downstream of the so-called camp UpC. Reactivation of Kamb Ice Stream should be reflected in a downstream migration of the bulge-trunk transition at possibly high rates (bulge migration rates of ~km/yr occur on surging mountain glaciers). The modeling\u003cbr/\u003ecomponent will be used to generate predictions regarding the near-future behavior of Kamb Ice Stream. This project will provide training opportunities for at least two undergraduate students (per year) at St. Olaf College and for one\u003cbr/\u003eundergraduate student (per year) at UCSC. This collaboration will bring together scientists from three different types of US institutions: (1) a liberal arts college (St.Olaf College), (2) a public research university (UCSC) and (3) a NASA research laboratory (JPL). The project will also help build a new glaciological research program at UCSC. Project results will be incorporated into undergraduate and graduate courses at UCSC and will be made available\u003cbr/\u003eto the general public and educators through downloadable graphics and animations posted on the research website of the UCSC PI. Field data resulting from the project will be posted in the Antarctic Glaciological Data Center for use by other investigators.", "east": -131.0, "geometry": "POINT(-135 -82.4)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": false, "keywords": "Topography; GPS; Kamb Ice Stream; Ice Stream; FIELD SURVEYS; FIELD INVESTIGATION; Not provided; Ice Penetrating Radar; Ice Stream C; Velocity; Surface Strain Rates; Antarctic", "locations": "Antarctic; Kamb Ice Stream; Ice Stream C", "north": -82.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Tulaczyk, Slawek; Joughin, Ian", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repositories": null, "science_programs": null, "south": -82.8, "title": "Collaborative Research: Is Kamb Ice Stream Restarting? Glaciological Investigations of the Bulge-Trunk Transition on Kamb Ice Stream, West Antarctica", "uid": "p0000238", "west": -139.0}, {"awards": "0233823 Fountain, Andrew; 0230338 Hallet, Bernard", "bounds_geometry": "POLYGON((162.132 -77.73,162.1495 -77.73,162.167 -77.73,162.1845 -77.73,162.202 -77.73,162.2195 -77.73,162.237 -77.73,162.2545 -77.73,162.272 -77.73,162.2895 -77.73,162.307 -77.73,162.307 -77.7303,162.307 -77.7306,162.307 -77.7309,162.307 -77.7312,162.307 -77.7315,162.307 -77.7318,162.307 -77.7321,162.307 -77.7324,162.307 -77.7327,162.307 -77.733,162.2895 -77.733,162.272 -77.733,162.2545 -77.733,162.237 -77.733,162.2195 -77.733,162.202 -77.733,162.1845 -77.733,162.167 -77.733,162.1495 -77.733,162.132 -77.733,162.132 -77.7327,162.132 -77.7324,162.132 -77.7321,162.132 -77.7318,162.132 -77.7315,162.132 -77.7312,162.132 -77.7309,162.132 -77.7306,162.132 -77.7303,162.132 -77.73))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 02 Jul 2008 00:00:00 GMT", "description": "This award supports a comprehensive study of land-based polar ice cliffs. Through field measurements, modeling, and remote sensing, the physics underlying the formation of ice cliffs at the margin of Taylor Glacier in the McMurdo Dry Valleys will be investigated. At three sites, measurements of ice deformation and temperature fields near the cliff face will be combined with existing energy balance data to quantify ice-cliff evolution over one full seasonal cycle. In addition, a small seismic network will monitor local \"ice quakes\" associated with calving events. Numerical modeling, validated by the field data, will enable determination of the sensitivity of ice cliff evolution to environmental variables. There are both local and global motivations for studying the ice cliffs of Taylor Glacier. On a global scale, this work will provide insight into the fundamental processes of calving and glacier terminus A better grasp of ice cliff processes will also improve boundary conditions required for predicting glaciers\u0027 response to climate change. Locally, the Taylor Glacier is an important component of the McMurdo Dry Valleys landscape and the results of this study will aid in defining ecologically-important sources of glacial meltwater and will lead to a better understanding of moraine formation at polar ice cliffs. This study will help launch the career of a female scientist, will support one graduate student, and provide experiential learning experiences for two undergraduates. The post-doctoral researcher will also use this research in the curriculum of a wilderness science experiential education program for high school girls.", "east": 162.307, "geometry": "POINT(162.2195 -77.7315)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOCOUPLES \u003e THERMOCOUPLES; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e SURVEYING TOOLS", "is_usap_dc": false, "keywords": "SEISMOLOGICAL STATIONS; Ice Quakes; Ice Cliffs; Not provided; Taylor Glacier; FIELD SURVEYS; Remote Sensing; GROUND-BASED OBSERVATIONS; Modeling; Ice Deformation; Glacial Meltwater; FIELD INVESTIGATION; McMurdo Dry Valleys", "locations": "McMurdo Dry Valleys; Taylor Glacier", "north": -77.73, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Pettit, Erin; Hallet, Bernard; Fountain, Andrew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS; Not provided", "repositories": null, "science_programs": null, "south": -77.733, "title": "Collaborative Research: Mechanics of Dry-Land Calving of Ice Cliffs", "uid": "p0000721", "west": 162.132}, {"awards": "0338218 Halanych, Kenneth; 0338087 Scheltema, Rudolf", "bounds_geometry": "POLYGON((-70 -55,-68 -55,-66 -55,-64 -55,-62 -55,-60 -55,-58 -55,-56 -55,-54 -55,-52 -55,-50 -55,-50 -56,-50 -57,-50 -58,-50 -59,-50 -60,-50 -61,-50 -62,-50 -63,-50 -64,-50 -65,-52 -65,-54 -65,-56 -65,-58 -65,-60 -65,-62 -65,-64 -65,-66 -65,-68 -65,-70 -65,-70 -64,-70 -63,-70 -62,-70 -61,-70 -60,-70 -59,-70 -58,-70 -57,-70 -56,-70 -55))", "dataset_titles": "Expedition Data; Expedition data of LMG0414; Expedition data of LMG0605; Relevance of Planktonic Larval Dispersal to Endemism and Biogeography of Antarctic Benthic Invertebrates", "datasets": [{"dataset_uid": "001565", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0414"}, {"dataset_uid": "002682", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0605", "url": "https://www.rvdata.us/search/cruise/LMG0605"}, {"dataset_uid": "600035", "doi": "10.15784/600035", "keywords": "Antarctica; Biota; Oceans; R/v Laurence M. Gould; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Scheltema, Rudolf", "repository": "USAP-DC", "science_program": null, "title": "Relevance of Planktonic Larval Dispersal to Endemism and Biogeography of Antarctic Benthic Invertebrates", "url": "https://www.usap-dc.org/view/dataset/600035"}, {"dataset_uid": "002711", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0414", "url": "https://www.rvdata.us/search/cruise/LMG0414"}], "date_created": "Wed, 18 Jun 2008 00:00:00 GMT", "description": "Because of extreme isolation of the Antarctic continent since the Early Oligocene, one expects a unique invertebrate benthic fauna with a high degree of endemism. Yet some invertebrate taxa that constitute important ecological components of sedimentary benthic communities include more than 40 percent non-endemic species (e.g., benthic polychaetes). To account for non-endemic species, intermittent genetic exchange must occur between Antarctic and other (e.g. South American) populations. The most likely mechanism for such gene flow, at least for in-faunal and mobile macrobenthos, is dispersal of planktonic larvae across the sub- Antarctic and Antarctic polar fronts. To test for larval dispersal as a mechanism of maintaining genetic continuity across polar fronts, the scientists propose to (1) take plankton samples along transects across Drake passage during both the austral summer and winter seasons while concurrently collecting the appropriate hydrographic data. Such data will help elucidate the hydrographic mechanisms that allow dispersal across Drake Passage. Using a molecular phylogenetic approach, they will (2) compare seemingly identical adult forms from Antarctic and South America continents to identify genetic breaks, historical gene flow, and control for the presence of cryptic species. (3) Similar molecular tools will be used to relate planktonic larvae to their adult forms. Through this procedure, they propose to link the larval forms respectively to their Antarctic or South America origins. The proposed work builds on previous research that provides the basis for this effort to develop a synthetic understanding of historical gene flow and present day dispersal mechanism in South American/Drake Passage/Antarctic Peninsular region. Furthermore, this work represents one of the first attempts to examine recent gene flow in Antarctic benthic invertebrates. Graduate students and a postdoctoral fellow will be trained during this research.", "east": -50.0, "geometry": "POINT(-60 -60)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": true, "keywords": "EU735823-EU735850; R/V LMG; FIELD SURVEYS; Genbank Ef565745-Ef565820; Not provided", "locations": null, "north": -55.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Scheltema, Rudolf; Halanych, Kenneth", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -65.0, "title": "Collaborative Research: Relevance of Planktonic Larval Dispersal to Endemism and Biogeography of Antarctic Benthic Invertebrates", "uid": "p0000189", "west": -70.0}, {"awards": "0127022 Jeffrey, Wade", "bounds_geometry": "POLYGON((-177.639 -43.5676,-143.1091 -43.5676,-108.5792 -43.5676,-74.0493 -43.5676,-39.5194 -43.5676,-4.9895 -43.5676,29.5404 -43.5676,64.0703 -43.5676,98.6002 -43.5676,133.1301 -43.5676,167.66 -43.5676,167.66 -46.99877,167.66 -50.42994,167.66 -53.86111,167.66 -57.29228,167.66 -60.72345,167.66 -64.15462,167.66 -67.58579,167.66 -71.01696,167.66 -74.44813,167.66 -77.8793,133.1301 -77.8793,98.6002 -77.8793,64.0703 -77.8793,29.5404 -77.8793,-4.9895 -77.8793,-39.5194 -77.8793,-74.0493 -77.8793,-108.5792 -77.8793,-143.1091 -77.8793,-177.639 -77.8793,-177.639 -74.44813,-177.639 -71.01696,-177.639 -67.58579,-177.639 -64.15462,-177.639 -60.72345,-177.639 -57.29228,-177.639 -53.86111,-177.639 -50.42994,-177.639 -46.99877,-177.639 -43.5676))", "dataset_titles": "Expedition Data; Ross Sea microbial biomass and production", "datasets": [{"dataset_uid": "600029", "doi": "10.15784/600029", "keywords": "Biota; Chemistry:fluid; Chemistry:Fluid; CTD Data; Microbiology; Oceans; Phytoplankton; Ross Sea; Southern Ocean", "people": "Jeffrey, Wade H.", "repository": "USAP-DC", "science_program": null, "title": "Ross Sea microbial biomass and production", "url": "https://www.usap-dc.org/view/dataset/600029"}, {"dataset_uid": "001584", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0508"}, {"dataset_uid": "001690", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304B"}], "date_created": "Thu, 12 Jun 2008 00:00:00 GMT", "description": "Ultraviolet radiation influences the dynamics of plankton processes in the near-surface waters of most aquatic ecosystems. In particular, the Southern Ocean is affected in the austral spring period when biologically damaging ultraviolet radiation is enhanced by ozone depletion. While progress has been made in estimating the quantitative impact of ultraviolet radiation on bacteria and phytoplankton in the Southern Ocean, some important issues remain to be resolved. Little is known about responses in systems dominated by the colonial haptophyte Phaeocystis antarctica, which dominates spring blooms in a polyna that develops in the southern Ross Sea. The Ross Sea is also of interest because of the occurrence of open water at a far southerly location in the spring, well within the ozone hole, and continuous daylight, with implications for the regulation of DNA repair. A number of studies suggest that vertical mixing can significant modify the impact of ultraviolet radiation in the Southern Ocean and elsewhere. However, there are limited measurements of turbulence intensity in the surface layer and measurements have not been integrated with parallel studies of ultraviolet radiation effects on phytoplankton and bacterioplankton. To address these issues, this collaborative study will focus on vertical mixing and the impact of ultraviolet radiation in the Ross Sea. The spectral and temporal responses of phytoplankton and bacterioplankton to ultraviolet radiation will be characterized in both laboratory and solar incubations. These will lead to the definition of biological weighting functions and response models capable of predicting the depth and time distribution of ultraviolet radiation impacts on photosynthesis, bacterial incorporation and DNA damage in the surface layer. Diel sampling will measure depth-dependent profiles of DNA damage, bacterial incorporation, photosynthesis and fluorescence parameters over a 24 h cycle. Sampling will include stations with contrasting wind-driven mixing and stratification as the polyna develops. The program of vertical mixing measurements is optimized for the typical springtime Ross Sea situation in which turbulence of intermediate intensity is insufficient to mix the upper layer thoroughly in the presence of stabilizing influences like solar heating and/or surface freshwater input from melting ice. Fine-scale vertical density profiles will be measured with a free-fall CTD unit and the profiles will be used to directly estimate large-eddy scales by determining Thorpe scales. Eddy scales and estimated turbulent diffusivities will be directly related to surface layer effects, and used to generate lagrangian depth-time trajectories in models of ultraviolet radiation responses in the surface mixed layer. The proposed research will be the first in-depth study of ultraviolet radiation effects in the Ross Sea and provide a valuable comparison with previous work in the Weddell-Scotia Confluence and Palmer Station regions. It will also enhance the understanding of vertical mixing processes, trophic interactions and biogeochemical cycling in the Ross Sea.", "east": 167.66, "geometry": "POINT(-4.9895 -60.72345)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e WATER BOTTLES; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUORESCENCE MICROSCOPY; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e GO-FLO BOTTLES", "is_usap_dc": true, "keywords": "R/V NBP; B-15J", "locations": "B-15J", "north": -43.5676, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Jeffrey, Wade H.; Neale, Patrick", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -77.8793, "title": "Collaborative Proposal: Interactive Effects of UV Radiation and Vertical Mixing on Phytoplankton and Bacterial Productivity of Ross See Phaeocystis Blooms", "uid": "p0000578", "west": -177.639}, {"awards": "0338142 Domack, Eugene; 0338163 Leventer, Amy; 0338220 Ishman, Scott", "bounds_geometry": "POLYGON((-63 -62,-62.3 -62,-61.6 -62,-60.9 -62,-60.2 -62,-59.5 -62,-58.8 -62,-58.1 -62,-57.4 -62,-56.7 -62,-56 -62,-56 -62.5,-56 -63,-56 -63.5,-56 -64,-56 -64.5,-56 -65,-56 -65.5,-56 -66,-56 -66.5,-56 -67,-56.7 -67,-57.4 -67,-58.1 -67,-58.8 -67,-59.5 -67,-60.2 -67,-60.9 -67,-61.6 -67,-62.3 -67,-63 -67,-63 -66.5,-63 -66,-63 -65.5,-63 -65,-63 -64.5,-63 -64,-63 -63.5,-63 -63,-63 -62.5,-63 -62))", "dataset_titles": "Expedition Data; Expedition data of LMG0404; NBP0603 - Expedition Data; NBP0603 - Paleohistory of the Larsen Ice Shelf System", "datasets": [{"dataset_uid": "001610", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0502"}, {"dataset_uid": "002710", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0404", "url": "https://www.rvdata.us/search/cruise/LMG0404"}, {"dataset_uid": "600027", "doi": "10.15784/600027", "keywords": "ADCP Acoustic Doppler Current Profiler; Antarctic Peninsula; Biota; Diatom; Electromagnetic Data; Flask Glacier; Foehn Winds; Larsen Ice Shelf; Marine Sediments; NBP0603; Oceans; Physical Ice Properties; R/v Nathaniel B. Palmer; Scar Inlet; Southern Ocean", "people": "Domack, Eugene Walter", "repository": "USAP-DC", "science_program": null, "title": "NBP0603 - Paleohistory of the Larsen Ice Shelf System", "url": "https://www.usap-dc.org/view/dataset/600027"}, {"dataset_uid": "000236", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP0603 - Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0603"}], "date_created": "Wed, 11 Jun 2008 00:00:00 GMT", "description": "The Larsen Ice Shelf is the third largest ice shelf in Antarctica and has continued a pattern of catastrophic decay since the mid 1990\u0027s. The proposed marine geologic work at the Larsen Ice Shelf builds upon our previous NSF-OPP funding and intends to test the working hypothesis that the Larsen B Ice Shelf system has been a stable component of Antarctica\u0027s glacial system since it formed during rising sea levels 10,000 years BP. This conclusion, if supported by observations from our proposed work, is an important first step in establishing the uniqueness and consequences of rapid regional warming currently taking place across the Peninsula. Our previous work in the Larsen A and B embayments has allowed us to recognize the signature of past ice shelf fluctuations and their impact on the oceanographic and biologic environments. We have also overcome many of the limitations of standard radiocarbon dating in Antarctic marine sequences by using variations in the strength of the earth\u0027s magnetic field for correlation of sediment records and by using specific organic compounds (instead of bulk sediment) for radiocarbon dating. We intend to pursue these analytical advances and extend our sediment core stratigraphy to areas uncovered by the most recent collapse of the Larsen B Ice Shelf and areas immediately adjacent to the Larsen C Ice Shelf. In addition to the core recovery program, we intend to utilize our unique access to the ice shelf front to continue our observations of the snow/ice stratigraphy, oceanographic character, and ocean floor character. Sediment traps will also be deployed in order to measure the input of debris from glaciers that are now surging in response to the ice shelf collapse. This proposal is a multi-institutional, international (USAP, Italy, and Canada) effort that combines the established expertise in a variety of disciplines and integrates the research plan into the educational efforts of primarily undergraduate institutions but including some graduate education. This is a three-year project with field seasons planned with flexibility in order to accommodate schedules for the RVIB L.M. Gould. The Antarctic Peninsula is undergoing greater warming than almost anywhere on Earth, perhaps associated with human-induced greenhouse effects. Our proposed work contributes to understanding of these changes where they are occurring first and with greatest magnitude and impact upon the environment.", "east": -56.0, "geometry": "POINT(-59.5 -64.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": true, "keywords": "R/V LMG; R/V NBP; Not provided", "locations": null, "north": -62.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Ishman, Scott; Leventer, Amy; Domack, Eugene Walter", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -67.0, "title": "Collaborative Research: Paleohistory of the Larsen Ice Shelf System: Phase II", "uid": "p0000215", "west": -63.0}, {"awards": "0440609 Price, P. Buford", "bounds_geometry": "POINT(-112.06556 -79.469444)", "dataset_titles": null, "datasets": null, "date_created": "Tue, 03 Jun 2008 00:00:00 GMT", "description": "This award supports a project to use three downhole instruments - an optical logger; a\u003cbr/\u003eminiaturized biospectral logger at 420 nm (miniBSL-420); and an Acoustic TeleViewer (ATV) - to log a 350-m borehole at the WAIS Divide drill site. In addition, miniBSL-224 (at 224 nm) and miniBSL-420 will scan ice core sections at NICL to look for abrupt climate changes, volcanic ash, microbial concentrations, and correlations among them. Using the optical logger and ATV to log bubble number densities vs depth in a WAIS Divide borehole, we will detect annual layers, from which we can establish the age vs depth relation to the bottom of the borehole that will be available during the three-year grant period. With the same instruments we will search for long-period modulation of bubble and dust concentrations in order to provide definitive evidence for or against an effect of long-period variability of the sun or solar wind on climate. We will detect and accurately date ash layers in a WAIS Divide borehole. We will match them with ash layers that we previously detected in the Siple Dome borehole, and also match them with sulfate and ash layers found by others at Vostok, Dome Fuji, Dome C, and GISP2. The expected new data will allow us to extend our recent study which showed that the Antarctic record of volcanism correlates with abrupt climate change at a 95% to \u003e99.8% significance level and that the volcanic signatures at bipolar locations match at better than 3 sigma during the interval 2 to 45 kiloyears. The results to be obtained during this grant period will position us to extend an accurate age vs depth relation and volcano-climate correlations to earlier than 150 kiloyears ago in the future WAIS Divide borehole to be drilled to bedrock. Using the miniBSLs to identify biomolecules via their fluorescence, we will log a 350-m borehole at WAIS Divide, and we will scan selected lengths of ice core at NICL. Among the biomolecules the miniBSLs can identify will be chlorophyll, which will provide the first map of aerobic microbes in ice, and F420, which will provide the first map of methanogens in ice. We will collaborate with others in relating results from WAIS Divide and NICL ice cores to broader topics in climatology, volcanology, and microbial ecology. We will continue to give broad training to undergraduate and graduate students, to attract underrepresented minorities to science, engineering, and math, and to educate the press and college teachers. A deeper understanding of the causes of abrupt climate change, including a causal relationship with strong volcanic eruptions, can enable us to understand and mitigate adverse effects on climate.", "east": -112.06556, "geometry": "POINT(-112.06556 -79.469444)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUORESCENCE SPECTROSCOPY; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS", "is_usap_dc": false, "keywords": "Volcanic Ash; Dust Concentration; Antarctica; FIELD INVESTIGATION; Liquid Veins In Ice; Optical Logger; Borehole; Ash Layer; FIELD SURVEYS; Microbial Metabolism; Climate; Biospectral Logger; Not provided; Protein Fluorescence; Gas Artifacts; Aerosol Fluorescence; Volcanism; WAIS Divide; Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.469444, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bay, Ryan; Price, Buford", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repositories": null, "science_programs": null, "south": -79.469444, "title": "Climatology, Volcanism, and Microbial Life in Ice with Downhole Loggers", "uid": "p0000746", "west": -112.06556}, {"awards": "0338244 Schaefer, Joerg", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 10 Dec 2007 00:00:00 GMT", "description": "This project will determine the age, origin, and climatic significance of buried ice found in the western Dry Valleys of Antarctica. Previous studies indicate that this ice may be over a million years in age, making it by far the oldest ice yet discovered on Earth. An alternative view is that this ice is represents recently frozen groundwater. To distinguish between these hypotheses and characterize the ice, we are undertaking an interdisciplinary research program focused on: 1) understanding the surface processes that permit ice preservation; and 2) testing the efficacy of cosmogenic nuclides and 40Ar/39Ar analyses in dating both tills and volcanic ash associated with the ice. Our plan calls for the analysis of a minimum of six cosmogenic depth profiles to determine if and how cryoturbation reworks sublimation tills and assess the average rate of ice sublimation for three debris-covered glaciers. We will model through finite- element analyses at least three buried glaciers and compare flow rates with those based on radiometric dating of surface deposits. Ten ice cores will also be collected for measurement of d18O, dD, ice fabric, ice texture, total gas content/composition. Better understanding of surface processes above buried ice will permit researchers to gain access to a record of atmospheric and climate change that could well cover intervals that predate Quaternary time. The work may also add valuable insight into Martian history. In terms of broader impacts, we have recruited three female PhD students and developed interdisciplinary collaborations among geochemists at Columbia University, planetary geologists at Brown University, geomorphologists at Boston University, and numerical modelers at the University of Maine.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": false, "keywords": "FIELD INVESTIGATION", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY", "persons": "Schaefer, Joerg", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Age, Origin and Climatic Significance of Buried Ice in the Western Dry Valleys, Antarctica", "uid": "p0000255", "west": null}, {"awards": "0337891 Brook, Edward J.", "bounds_geometry": "POINT(158 -77.666667)", "dataset_titles": "Atmospheric CO2 and Climate: Byrd Ice Core, Antarctica; Atmospheric CO2 and Climate: Taylor Dome Ice Core, Antarctica", "datasets": [{"dataset_uid": "609315", "doi": "10.7265/N5542KJK", "keywords": "Antarctica; Atmosphere; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Taylor Dome; Taylor Dome Ice Core", "people": "Brook, Edward J.; Ahn, Jinho", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Atmospheric CO2 and Climate: Taylor Dome Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609315"}, {"dataset_uid": "609314", "doi": "10.7265/N58W3B80", "keywords": "Antarctica; Atmosphere; Byrd Glacier; Byrd Ice Core; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate", "people": "Brook, Edward J.; Ahn, Jinho", "repository": "USAP-DC", "science_program": "Byrd Ice Core", "title": "Atmospheric CO2 and Climate: Byrd Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609314"}], "date_created": "Mon, 05 Nov 2007 00:00:00 GMT", "description": "This award supports the development of a new laboratory capability in the U.S. to measure CO2 in ice cores and investigate millennial-scale changes in CO2 during the last glacial period using samples from the Byrd and Siple Dome ice cores. Both cores have precise relative chronologies based on correlation of methane and the isotopic composition of atmospheric oxygen with counterpart records from Greenland ice cores. The proposed work will therefore allow comparison of the timing of CO2 change, Antarctic temperature change, and Greenland temperature change on common time scales. Such comparisons are vital for evaluating models that explain changes in atmospheric CO2. The techniques being developed will also be available for future projects, specifically the proposed Inland WAIS ice core, for which a highly detailed CO2 record is a major objective, and studies greenhouse and other atmospheric gases and their isotopic composition for which dry extraction is necessary (stable isotopes in CO2, for example). There are many broad impacts of the proposed work. Ice core greenhouse gas records are central contributions of paleoclimatology to research and policy-making concerning global change. The proposed work will enhance those contributions by improving our understanding of the natural cycling of the most important greenhouse gas. It will contribute to the training of a postdoctoral researcher, who will be an integral part of an established research group and benefit from the diverse paleoclimate and geochemistry community at OSU. The PI teaches major and non-major undergraduate and graduate courses on climate and global change. The proposed work will enrich those courses and the courses will provide an opportunity for the postdoctoral researcher to participate in teaching by giving guest lectures. The PI also participates in a summer climate workshop for high school teachers at Washington State University and the proposed work will enrich that contribution. The extraction device that is built and the expertise gained in using it will be resources for the ice core community and available for future projects. Data will be made available through established national data center and the equipment designs will also be made available to other researchers.", "east": 158.0, "geometry": "POINT(158 -77.666667)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Ice Core; Climate Change; CO2; Atmospheric Chemistry; Atmospheric CO2; LABORATORY; Not provided; Ice Core Data; Climate; Ice Core Chemistry; Atmospheric Gases; Ice Core Gas Records; GROUND STATIONS; Climate Research", "locations": null, "north": -77.666667, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Ahn, Jinho; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": -77.666667, "title": "Developing Dry Extraction of Ice Core Gases and Application to Millennial-Scale Variability in Atmospheric CO2", "uid": "p0000268", "west": 158.0}, {"awards": "9909665 Berger, Glenn", "bounds_geometry": "POLYGON((-67.25 -62,-66.025 -62,-64.8 -62,-63.575 -62,-62.35 -62,-61.125 -62,-59.9 -62,-58.675 -62,-57.45 -62,-56.225 -62,-55 -62,-55 -62.525,-55 -63.05,-55 -63.575,-55 -64.1,-55 -64.625,-55 -65.15,-55 -65.675,-55 -66.2,-55 -66.725,-55 -67.25,-56.225 -67.25,-57.45 -67.25,-58.675 -67.25,-59.9 -67.25,-61.125 -67.25,-62.35 -67.25,-63.575 -67.25,-64.8 -67.25,-66.025 -67.25,-67.25 -67.25,-67.25 -66.725,-67.25 -66.2,-67.25 -65.675,-67.25 -65.15,-67.25 -64.625,-67.25 -64.1,-67.25 -63.575,-67.25 -63.05,-67.25 -62.525,-67.25 -62))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001818", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0107"}, {"dataset_uid": "001707", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0303"}], "date_created": "Wed, 10 Oct 2007 00:00:00 GMT", "description": "9909665 Berger This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports project to test and develop approaches for using thermoluminescence techniques to determine the age of Antarctic marine sediments. Quaternary (last 2 million yrs) marine sediments surrounding Antarctica record the waxing and waning of ice shelves and ice sheets, and also other paleoclimatic information, yet accurate chronologies of these sediments are difficult to obtain. Such chronologies provide the essential foundation for study of geological processes in the past. Within the range of radiocarbon (14C) dating (less than 30-40 thousand yrs, note - \"ka\" below means 1000 yrs) 14C dates can be inaccurate because of a variable 14C reservoir effect, and beyond 30-40 ka few methods are applicable. Photon-stimulated-luminescence sediment dating (photonic dating) of eolian and waterlain deposits in temperate latitudes spans the range from decades to hundreds of ka, but marine sediments in and around Antarctica pose special difficulty because of the potentially restricted exposure to daylight (the clock-zeroing process) of most detrital grains before deposition. This proposal will test the clock-zeroing assumption in representative Antarctic glaciomarine depositional settings, and thereby determine the potential reliability of photonic dating of Antarctic marine sediments. Limited luminescence dating and signal-zeroing tests using glaciomarine and marine deposits have been conducted in the northern temperate and polar latitudes, but the effects on luminescence of the different glaciomarine depositional processes have never been studied in detail. Furthermore, the depositional settings around Antarctica are almost entirely polar, with consequent specific processes operating there. For example, transport of terrigenous suspensions by neutrally buoyant \"cold-tongue\" (mid-water) plumes may be common around Antarctica, yet the effect of such transport on luminescence zeroing is unknown. Typical marine cores near Antarctica may contain an unknown fraction of detrital grains from cold-tongue and near-bottom suspensions. Thus the extent to which the polar glaciomarine depositional processes around Antarctica may limit the potential accuracy of photonic dating of marine cores is unknown (age overestimates would result if grains are not exposed to daylight before deposition). This project will collect detrital grains from a variety of \"zero-age\" (modern) marine depositional settings within the Antarctic Peninsula, where representative Antarctic depositional processes have been documented and where logistics permit access. Suspensions will be collected from four fjords representing a transect from polar through subpolar conditions. Suspensions will be collected from two stations and from up to 3 depths (surface and 2 deep plumes) at each station. Sediment traps will be deployed at two of these fjord settings. As well, core-top sediments will be collected from several sites. All samples will be shielded from light and transported to Reno, Nevada, for luminescence analyses. Systematic study of the effectiveness of luminescence-clock-zeroing in Antarctic glaciomarine settings will determine if photonic dating can be reliable for future applications to Antarctic marine sediments. Refined sedimentological criteria for the selection of future samples for photonic dating are expected from this project. A photonic-dating capability would provide a numeric geochronometer extending well beyond the age range of 14C dating. Such a capability would permit answering a number of broader questions about the timing and extent of past glaciations near and on the Antarctic shelves.", "east": -55.0, "geometry": "POINT(-61.125 -64.625)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS", "is_usap_dc": false, "keywords": "R/V LMG; Not provided; Luminescence; Hugo Island; Geochronology; R/V NBP; Palmer Deep", "locations": "Hugo Island", "north": -62.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Berger, Glenn; Domack, Eugene Walter", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -67.25, "title": "Collaborative Research: Development of a Luminescence Dating Capability for Antarctic Glaciomarine Sediments: Tests of Signal Zeroing at the Antarctic Pennisula", "uid": "p0000592", "west": -67.25}, {"awards": "0540915 Scambos, Ted", "bounds_geometry": "POLYGON((-57.9857 -48.444,-55.95557 -48.444,-53.92544 -48.444,-51.89531 -48.444,-49.86518 -48.444,-47.83505 -48.444,-45.80492 -48.444,-43.77479 -48.444,-41.74466 -48.444,-39.71453 -48.444,-37.6844 -48.444,-37.6844 -50.12802,-37.6844 -51.81204,-37.6844 -53.49606,-37.6844 -55.18008,-37.6844 -56.8641,-37.6844 -58.54812,-37.6844 -60.23214,-37.6844 -61.91616,-37.6844 -63.60018,-37.6844 -65.2842,-39.71453 -65.2842,-41.74466 -65.2842,-43.77479 -65.2842,-45.80492 -65.2842,-47.83505 -65.2842,-49.86518 -65.2842,-51.89531 -65.2842,-53.92544 -65.2842,-55.95557 -65.2842,-57.9857 -65.2842,-57.9857 -63.60018,-57.9857 -61.91616,-57.9857 -60.23214,-57.9857 -58.54812,-57.9857 -56.8641,-57.9857 -55.18008,-57.9857 -53.49606,-57.9857 -51.81204,-57.9857 -50.12802,-57.9857 -48.444))", "dataset_titles": "Atlas of the Cryosphere - View dynamic maps of snow, sea ice, glaciers, ice sheets, permafrost, and more.; Climate, Drift, and Image Data from Antarctic Icebergs A22A and UK211, 2006-2007; MODIS Mosaic of Antarctica (MOA)", "datasets": [{"dataset_uid": "000190", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "MODIS Mosaic of Antarctica (MOA)", "url": "http://nsidc.org/data/nsidc-0280.html"}, {"dataset_uid": "609466", "doi": "10.7265/N5N014GW", "keywords": "Ablation; Atmosphere; Glaciology; GPS; Meteorology; Oceans; Photo/video; Photo/Video; Sea Ice; Southern Ocean; Temperature", "people": "Thom, Jonathan; Bohlander, Jennifer; Scambos, Ted; Yermolin, Yevgeny; Bauer, Rob", "repository": "USAP-DC", "science_program": null, "title": "Climate, Drift, and Image Data from Antarctic Icebergs A22A and UK211, 2006-2007", "url": "https://www.usap-dc.org/view/dataset/609466"}, {"dataset_uid": "000189", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Atlas of the Cryosphere - View dynamic maps of snow, sea ice, glaciers, ice sheets, permafrost, and more.", "url": "http://nsidc.org/MMS/atlas/cryosphere_atlas_north.html"}], "date_created": "Thu, 16 Aug 2007 00:00:00 GMT", "description": "This award supports a small grant for exploratory research to study the processes that contribute to the melting and break-up of tabular polar icebergs as they drift north. This work will enable the participation of a group of U.S. scientists in this international project which is collaborative with the Instituto Antartico Argentino. The field team will place weather instruments, firn sensors, and a video camera on the iceberg to measure the processes that affect it as it drifts north. In contrast to icebergs in other sectors of Antarctica, icebergs in the northwestern Weddell Sea drift northward along relatively predictable paths, and reach climate and ocean conditions that lead to break-up within a few years. The timing of this study is critical due to the anticipated presence of iceberg A43A, which broke off the Ronne Ice Shelf in February 2000 and which is expected to be accessible from Marambio Station in early 2006. It has recently been recognized that the end stages of break-up of these icebergs can imitate the rapid disintegrations due to melt ponding and surface fracturing observed for the Larsen A and Larsen B ice shelves. However, in some cases, basal melting may play a significant role in shelf break-up. Resolving the processes (surface ponding/ fracturing versus basal melt) and observing other processes of iceberg drift and break up in-situ are of high scientific interest. An understanding of the mechanisms that lead to the distintegration of icebergs as they drift north may enable scientists to use icebergs as proxies for understanding the processes that could cause ice shelves to disintegrate in a warming climate. A broader impact would thus be an ability to predict ice shelf disintegration in a warming world. Glacier mass balance and ice shelf stability are of critical importance to sea level change, which also has broader societal relevance.", "east": -37.6844, "geometry": "POINT(-47.83505 -56.8641)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ICE AUGERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SNOW DENSITY CUTTER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e MODIS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e MMS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS", "is_usap_dc": true, "keywords": "Air Temperature; Weddell Sea; Edge-Wasting; Ice Shelf Meltwater; TERRA; Antarctic; GPS; Iceberg; Ice Breakup; South Atlantic Ocean; AQUA; Tabular; Photo; Not provided; Icetrek; HELICOPTER; Antarctica", "locations": "Antarctic; Weddell Sea; Antarctica; South Atlantic Ocean", "north": -48.444, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Scambos, Ted; Bohlander, Jennifer; Bauer, Rob; Yermolin, Yevgeny; Thom, Jonathan", "platforms": "AIR-BASED PLATFORMS \u003e ROTORCRAFT/HELICOPTER \u003e HELICOPTER; Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e AQUA; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e TERRA; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "NSIDC", "repositories": "NSIDC; USAP-DC", "science_programs": null, "south": -65.2842, "title": "Investigating Iceberg Evolution During Drift and Break-Up: A Proxy for Climate-Related Changes in Antarctic Ice Shelves", "uid": "p0000003", "west": -57.9857}, {"awards": "0229698 Hammer, William", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 07 Aug 2007 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate Triassic and Jurassic dinosaurs and other vertebrates from the central Transantarctic Mountains of Antarctica. A field program to search for Upper Triassic to Jurassic age fossil vertebrates in the Beardmore Glacier region will be carried out in the 2003-04 austral summer. Initially, field efforts will concentrate on the Hanson Formation that has produced the only Jurassic dinosaur fauna from Antarctica. Further excavation of the Hanson dinosaur locality on Mt. Kirkpatrick will occur, followed by an extensive search of other exposures of the Hanson, Falla and Upper Fremouw Formations in the Beardmore area. A field party of six persons will allow two smaller groups to work independently at different sites. This group will operate for 3-4 weeks out of a small helicopter camp located in the Beardmore area. In addition to collecting new specimens an interpretation of the depositional settings for each of the vertebrate sites will be made. The second and third years of this project will be dedicated to preparation and study of the vertebrates. Antarctic vertebrates provide a unique opportunity to study the evolutionary and biogeographic significance of high latitude Mesozoic faunas and this project should result in significant advances in knowledge in this field.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e MESOZOIC", "persons": "Hammer, William R.", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Vertebrate Paleontology of the Triassic to Jurassic Sedimentary Sequence in the Beardmore Glacier Area, Antarctica", "uid": "p0000366", "west": null}, {"awards": "0603729 Mukasa, Samuel", "bounds_geometry": "POLYGON((161.2 -77.5029,161.26 -77.5029,161.32 -77.5029,161.38 -77.5029,161.44 -77.5029,161.5 -77.5029,161.56 -77.5029,161.62 -77.5029,161.68 -77.5029,161.74 -77.5029,161.8 -77.5029,161.8 -77.52511,161.8 -77.54732,161.8 -77.56953,161.8 -77.59174,161.8 -77.61395,161.8 -77.63616,161.8 -77.65837,161.8 -77.68058,161.8 -77.70279,161.8 -77.725,161.74 -77.725,161.68 -77.725,161.62 -77.725,161.56 -77.725,161.5 -77.725,161.44 -77.725,161.38 -77.725,161.32 -77.725,161.26 -77.725,161.2 -77.725,161.2 -77.70279,161.2 -77.68058,161.2 -77.65837,161.2 -77.63616,161.2 -77.61395,161.2 -77.59174,161.2 -77.56953,161.2 -77.54732,161.2 -77.52511,161.2 -77.5029))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 02 Aug 2007 00:00:00 GMT", "description": "This Small Grant for Exploratory Research supports measurement of PGE abundances and Hf, Nd, Sr and Pb isotopic ratios of the Basement Sill and Dais Intrusion lobe of the Ferrar Magmatic Province, Antarctica. This province played a key role in the breakup of Gondwanaland. Models to be tested are magma production by plume activity versus decompression melting in a fossil subduction zone. The PGE data will also be used to evaluate the behavior of volatiles during magma crystallization, which other evidence indicates may have reached saturation. The samples to be studied were collected during the NSF-sponsored, Magmatic Field Laboratory Workshop held in Antarctica in 2005. This study\u0027s results will be compliled with complementary data from other attendees to develop a new multidisciplinary model of Ferrar magmatism.\u003cbr/\u003e\u003cbr/\u003eThe broader impacts fo this work include international collaboration and informal science education through public outreach to K12 students.", "east": 161.8, "geometry": "POINT(161.5 -77.61395)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS", "is_usap_dc": false, "keywords": "Magma Crystallization; Ferrar Magmatic Province; Dais Intrusion Lobe; Basement Sill; Antarctic; HELICOPTER; Ferrar Magmatism; Antarctica", "locations": "Basement Sill; Ferrar Magmatic Province; Antarctica; Antarctic", "north": -77.5029, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Mukasa, Samuel", "platforms": "AIR-BASED PLATFORMS \u003e ROTORCRAFT/HELICOPTER \u003e HELICOPTER", "repositories": null, "science_programs": null, "south": -77.725, "title": "SGER: Basement Sill, Antarctica: Constraints from its PGE Abundance Patterns and Isotopic Compositions on Magma Source Characteristics and Crystallization Processes", "uid": "p0000278", "west": 161.2}, {"awards": "9526556 Sowers, Todd", "bounds_geometry": "POINT(-148.3023 -81.403)", "dataset_titles": "Carbon-13 Isotopic Composition of Atmospheric Methane in Firn Air, South Pole and Siple Dome, Antarctica", "datasets": [{"dataset_uid": "609310", "doi": "10.7265/N5ST7MR2", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Siple Dome; Snow/ice; Snow/Ice; South Pole", "people": "Sowers, Todd A.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Carbon-13 Isotopic Composition of Atmospheric Methane in Firn Air, South Pole and Siple Dome, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609310"}], "date_created": "Mon, 09 Jul 2007 00:00:00 GMT", "description": "This award is for support for a program to reconstruct records of the isotopic composition of paleoatmospheric methane and nitrous oxide covering the last 200,000 years. High resolution measurements of the carbon-13 isotopic composition of methane from shallow ice cores will help to determine the relative contributions of biogenic (wetlands, rice fields and ruminants) and abiogenic (biomass burning and natural gas) methane emissions which have caused the concentrations of this gas to increase at an exponential rate during the anthropogenic period. Isotopic data on methane and nitrous oxide over glacial/interglacial timescales will help determine the underlying cause of the large concentration variations that are known to occur. This project will make use of a new generation mass spectrometer which is capable of generating precise isotopic information on nanomolar quantities of methane and nitrous oxide, which means that samples can be 1000 times smaller than those needed for a standard isotope ratio instrument. The primary objective of the work is to further our understanding of the biogeochemical cycles of these two greenhouse gases throughout the anthropogenic period as well as over glacial interglacial timescales.", "east": -148.3023, "geometry": "POINT(-148.3023 -81.403)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Ice Core; Firn Air Isotope Measurements; Ice Core Chemistry; Firn Isotopes; Stable Isotopes; Methane; Carbon; Paleoclimate; LABORATORY; Siple Dome; Antarctica; Ice Core Data; Firn Air Isotopes; Antarctic Ice Sheet", "locations": "Antarctica; Antarctic Ice Sheet; Siple Dome", "north": -81.403, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Sowers, Todd A.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.403, "title": "Constructing Paleoatmospheric Records of the Isotopic Composition of Methane and Nitrous Oxide", "uid": "p0000611", "west": -148.3023}, {"awards": "9725882 Raymond, Charles", "bounds_geometry": "POLYGON((-141.6722 -80.1678,-141.34195 -80.1678,-141.0117 -80.1678,-140.68145 -80.1678,-140.3512 -80.1678,-140.02095 -80.1678,-139.6907 -80.1678,-139.36045 -80.1678,-139.0302 -80.1678,-138.69995 -80.1678,-138.3697 -80.1678,-138.3697 -80.4863,-138.3697 -80.8048,-138.3697 -81.1233,-138.3697 -81.4418,-138.3697 -81.7603,-138.3697 -82.0788,-138.3697 -82.3973,-138.3697 -82.7158,-138.3697 -83.0343,-138.3697 -83.3528,-138.69995 -83.3528,-139.0302 -83.3528,-139.36045 -83.3528,-139.6907 -83.3528,-140.02095 -83.3528,-140.3512 -83.3528,-140.68145 -83.3528,-141.0117 -83.3528,-141.34195 -83.3528,-141.6722 -83.3528,-141.6722 -83.0343,-141.6722 -82.7158,-141.6722 -82.3973,-141.6722 -82.0788,-141.6722 -81.7603,-141.6722 -81.4418,-141.6722 -81.1233,-141.6722 -80.8048,-141.6722 -80.4863,-141.6722 -80.1678))", "dataset_titles": "Radar Investigations of Antarctic Ice Stream Margins, Siple Dome, 1998", "datasets": [{"dataset_uid": "609303", "doi": "10.7265/N52B8VZP", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Radar; Siple Dome", "people": "Raymond, Charles; Nereson, Nadine A.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Radar Investigations of Antarctic Ice Stream Margins, Siple Dome, 1998", "url": "https://www.usap-dc.org/view/dataset/609303"}], "date_created": "Fri, 06 Jul 2007 00:00:00 GMT", "description": "9725882 Raymond This award is for support for a program of surface-based radio echo sounding to examine the geometry of the internal layering and the presence or absence of thawed zones outside the margins of active Ice Streams B and E and across the flow band feeding Ice Stream D. Melting in the marginal shear zone and/or on the bed outside an ice stream relates to the amount of support of the ice stream from the sides compared to the bed and the conditions that limit expansion of its width. Radar observations will be extended over the crest of adjacent inter-ice-stream ridges (B/C and D/E) and areas next to the flow band in the onset of D. The purpose is to examine internal layering indicative of the histories of these areas adjacent to ice streams and to determine whether ice streams have expanded into these presently stable areas in the past. These goals concerning the physical controls and history of ice stream width relate to how the discharge of ice streams has changed in the past and could change in the future to affect sea level.", "east": -138.3697, "geometry": "POINT(-140.02095 -81.7603)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS", "is_usap_dc": true, "keywords": "Ice Stream; Antarctica; Bed Geometry; GROUND-BASED OBSERVATIONS; Internal Layering; Internal Layer Geometry; Siple Dome; Shabtaie Ridge; Not provided; Engelhardt Ridge; Ice Stream Margins; Radar; Whillans Ice Stream; GPS; Bed Reflectivity; Macayeal Ice Stream; Surface Geometry", "locations": "Antarctica; Engelhardt Ridge; Macayeal Ice Stream; Shabtaie Ridge; Siple Dome; Whillans Ice Stream", "north": -80.1678, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Raymond, Charles; Nereson, Nadine A.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -83.3528, "title": "Internal Stratigraphy and Basal Conditions at the Margins ofActive Ice Streams of the Siple Coast, Antarctica", "uid": "p0000626", "west": -141.6722}, {"awards": "0126146 Miller, Molly", "bounds_geometry": "POINT(171 -83.75)", "dataset_titles": null, "datasets": null, "date_created": "Wed, 20 Jun 2007 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a study to investigate paleoenvironmental conditions during the late Paleozoic and Mesozoic in central interior Antarctica. The 4 km thick sequence of sedimentary rocks, known as the Beacon Supergroup, in the Beardmore Glacier area records 90 million years of Permian through Jurassic history of this high-paleolatitude sector of Gondwana. It accumulated in a foreland basin with a rate of subsidence approximately equal to the rate of deposition. The deposits have yielded diverse vertebrate fossils, in situ fossil forests, and exceptionally well preserved plant fossils. They give a unique glimpse of glacial, lake, and stream/river environments and ecosystems and preserve an unparalleled record of the depositional, paleoclimatic, and tectonic history of the area. The excellent work done to date provides a solid base of information on which to build understanding of conditions and processes.\u003cbr/\u003e\u003cbr/\u003eThis project is a collaborative study of this stratigraphic section that will integrate sedimentologic, paleontologic, and ichnologic observations to answer focused questions, including: (1) What are the stratigraphic architecture and alluvial facies of Upper Permian to Jurassic rocks in the Beardmore area?; (2) In what tectonostratigraphic setting were these rocks deposited?; (3) Did vertebrates inhabit the cold, near-polar, Permian floodplains, as indicated by vertebrate burrows, and can these burrows be used to identify, for the first time, the presence of small early mammals in Mesozoic deposits?; and (4) How did bottom-dwelling animals in lakes and streams use substrate ecospace, how did ecospace use at these high paleolatitudes differ from ecospace use in equivalent environments at low paleolatitudes, and what does burrow distribution reveal about seasonality of river flow and thus about paleoclimate? Answers to these questions will (1) clarify the paleoclimatic, basinal, and tectonic history of this part of Gondwana, (2) elucidate the colonization of near-polar ecosystems by vertebrates, (3) provide new information on the environmental and paleolatitudinal distributions of early mammals, and (4) allow semi-quantitative assessment of the activity and abundance of bottom-dwelling animals in different freshwater environments at high and low latitudes. In summary, this project will contribute significantly to an understanding of paleobiology and paleoecology at a high latitude floodplain setting during a time in Earth history when the climate was much different than today.", "east": 171.0, "geometry": "POINT(171 -83.75)", "instruments": null, "is_usap_dc": false, "keywords": "Beardmore Glacier; FIELD SURVEYS; Paleoclimate; Permian; Paleontology; FIELD INVESTIGATION; Sedimentologic; Ichnologic; Stratigraphic; Gondwana", "locations": "Beardmore Glacier", "north": -83.75, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e MESOZOIC \u003e JURASSIC; PHANEROZOIC \u003e PALEOZOIC \u003e PERMIAN; PHANEROZOIC \u003e MESOZOIC \u003e TRIASSIC", "persons": "Miller, Molly", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -83.75, "title": "Collaborative Research: Late Paleozoic-Mesozoic Fauna, Environment, Climate and Basinal History: Beardmore Glacier Area, Transantarctic Mountains", "uid": "p0000736", "west": 171.0}, {"awards": "0337838 Fricker, Helen", "bounds_geometry": "POINT(71 -69.75)", "dataset_titles": "Access to data", "datasets": [{"dataset_uid": "001537", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Access to data", "url": "http://www.iris.edu/data/data.htm"}], "date_created": "Fri, 27 Apr 2007 00:00:00 GMT", "description": "This award supports a comprehensive study of rift growth on the Amery Ice Shelf (AIS), East Antarctica, using a combination of in situ and remote sensing data with numerical modeling. On the AIS there is an opportunity to examine an active rift system, which is a combination of two longitudinal-to-flow rifts, which originated at the ice shelf front in the suture zones between merging flowbands, and two transverse-to-flow rifts, which formed at the tip of the western longitudinal rift around 1996. Work in progress indicates that these two transverse rifts do not propagate independently of each other, but somehow grow more or less synchronously. The longest of these rifts-the eastern one-grows at an average rate of about 8m per day. When it meets the eastern longitudinal rift, an event that is expected to occur during the funding period (mid-2006), an iceberg (~30 x 30 km) will calve. Based on observations collected over the past half century, there is reason to believe that such a calving event may be a part of a repetitive sequence. In the proposed project, the expansion and propagation of both transverse rifts will be studied using a network of GPS and seismometers deployed around the tip of each transverse rift. Once the iceberg has calved, the effects its calving has on the dynamics of the ice shelf and the activation of previously inactive rifts will also be studied. Insofar as the rate of calving activity is a proxy for local and regional climate conditions, a broader impact of the proposed work is directly related to the socio-environmental topics of climate and sea-level change. The subject of iceberg calving has a history of sparking a great deal of interest from the media and the public alike, especially since the recent large calving events from the Ross and Ronne ice shelves and the remarkably sudden break-up of the Larsen Ice Shelf. The work will involve at least one graduate student, and will involve a partnership with a local charter high school. Field work, instrument deployments, and data collection and analysis will be conducted in close collaboration with the Australian Antarctic Division and the University of Tasmania, which has been a crucial component of research conducted to date. This project will also make use of the Scripps Institution of Oceanography Visualization Center as a means to display results to faculty and researchers of the University of California, San Diego, undergraduate and graduate students, to school children and their teachers, and ultimately to the visiting public.", "east": 71.0, "geometry": "POINT(71 -69.75)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS", "is_usap_dc": false, "keywords": "Not provided; Geodesy; Seismic", "locations": null, "north": -69.75, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Fricker, Helen; Minster, Jean-Bernard", "platforms": "Not provided", "repo": "IRIS", "repositories": "IRIS", "science_programs": null, "south": -69.75, "title": "Monitoring an Active Rift System at the Front of Amery Ice Shelf, East Antarctica", "uid": "p0000668", "west": 71.0}, {"awards": "0538475 Bart, Philip", "bounds_geometry": "POLYGON((-180 -75,-178 -75,-176 -75,-174 -75,-172 -75,-170 -75,-168 -75,-166 -75,-164 -75,-162 -75,-160 -75,-160 -75.3,-160 -75.6,-160 -75.9,-160 -76.2,-160 -76.5,-160 -76.8,-160 -77.1,-160 -77.4,-160 -77.7,-160 -78,-162 -78,-164 -78,-166 -78,-168 -78,-170 -78,-172 -78,-174 -78,-176 -78,-178 -78,-180 -78,-180 -77.7,-180 -77.4,-180 -77.1,-180 -76.8,-180 -76.5,-180 -76.2,-180 -75.9,-180 -75.6,-180 -75.3,-180 -75))", "dataset_titles": "NBP0802 and NBP0803 Sediment samples (full data link not provided); NBP0802 data; NBP0803 data", "datasets": [{"dataset_uid": "000123", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP0803 data", "url": "https://www.rvdata.us/search/cruise/NBP0803"}, {"dataset_uid": "000122", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP0802 data", "url": "https://www.rvdata.us/search/cruise/NBP0802"}, {"dataset_uid": "000138", "doi": "", "keywords": null, "people": null, "repository": "AMGRF", "science_program": null, "title": "NBP0802 and NBP0803 Sediment samples (full data link not provided)", "url": "http://www.arf.fsu.edu/"}], "date_created": "Thu, 29 Mar 2007 00:00:00 GMT", "description": "This project determines the recent history of the West Antarctic Ice Sheet (WAIS) through a multidisciplinary study of the seabed in the Ross Sea of Antarctica. WAIS is perhaps the world\u0027s most critical ice sheet to sea level rise dut to near-future global warming. its history has been a key focus for the past decade, but there are significant questions as to whether WAIS was stable during the last glacial maximum--about 20,000 years ago--or undergoing advance and retreat. This project studies grounding zone translantions in Eastern Basin to constrain WAIS movements using a multidisciplinary approach that integrates multibeam bathymetry, seismic stratigraphy, sedimentology, diatom biostratigraphy, radiocarbon dating, 10Be concentration analyses, and numerical modeling.\u003cbr/\u003e\u003cbr/\u003eThe broader impacts include improving society\u0027s understanding of sea level rise linked to global warming; postdoctoral, graduate, and undergraduate education; and expanding the participation of groups underrepresented in Earth sciences through links with LSU\u0027s Geoscience Alliance to Encourage Minority Participation.", "east": -160.0, "geometry": "POINT(-170 -76.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e SEISMIC REFLECTION PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e WATERGUNS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES", "is_usap_dc": true, "keywords": "Ross Sea; R/V NBP; Ice Sheet; Last Glacial Maximum; Seismic Stratigraphy", "locations": "Ross Sea", "north": -75.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY", "persons": "Bart, Philip; Tomkin, Jonathan", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "AMGRF; R2R", "science_programs": null, "south": -78.0, "title": "WAIS grounding-zone migrations in Eastern Basin, Ross Sea and the LGM dilemma: New strategies to resolve the style and timing of outer continental shelf grounding events", "uid": "p0000539", "west": -180.0}, {"awards": "0003844 Case, Judd", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG0309", "datasets": [{"dataset_uid": "001683", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0309"}, {"dataset_uid": "002676", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0309", "url": "https://www.rvdata.us/search/cruise/LMG0309"}], "date_created": "Wed, 28 Mar 2007 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research project between the Saint Mary\u0027s College of California, the South Dakota School of Mines and technology, and the Argentine Antarctic Institute (Instituto Antartico Argentino or IAA) to investigate the Late Mesozoic vertebrate paleontology of the James Ross Basin in the Antarctic Peninsula region. The Campanian through the Maastrichtian ages (80 to 65 million years ago) is an important time interval concerning vertebrate biogeography (i.e. dispersals and separations due to moving landmasses) and evolution between Antarctica and other Southern Hemisphere continents (including India, i.e. Gondwana). Moreover, the dispersal of terrestrial vertebrates (i.e. dinosaurs and marsupial mammals) from North America to Antarctica and beyond (e.g. Australia) via Patagonia and the Antarctic Peninsula, as well as the dispersal of modern birds from Antarctica northward are important unresolved questions in paleontology. These dispersal events include vertebrates not only in the terrestrial realms, but also in marine settings. Both widely distributed and localized marine reptile species have been identified in Antarctica, creating questions concerning their dispersal in conjunction with the terrestrial animals.\u003cbr/\u003e\u003cbr/\u003eThe Antarctic Peninsula and Patagonia represent the western-most portion of the Weddellian Paleobiogeographic Province, a region that extends from Patagonia through the Antarctic Peninsula and western Antarctica to Australia and New Zealand. Within this province lie the dispersal routes for interchanges of vertebrates between South America and: 1) Madagascar and India, and 2) Australia. As the result of previous work by the principal investigators, it is postulated that an isthmus between more northern South America and the Antarctic craton has served to bring typical North American dinosaurs, such as hadrosaurs (duck-billed dinosaurs) and presumably marsupials traveling overland, while marine reptiles swam along coastal waters, to Antarctica in the latest Cretaceous. Finally, this region has served as the cradle for the evolution, if not the origin, for groups of modern birds, and evolution of a suite of typical southern hemisphere plants.\u003cbr/\u003e\u003cbr/\u003eIn order to confirm and expand upon these hypotheses, investigations into the latest Cretaceous deposits of the James Ross Basin, Antarctica Peninsula must be continued. The Cape Lamb and Sandwich Bluff geological units, of the Lopez de Bertodano Formation in the James Ross Basin along the eastern Antarctic Peninsula, exhibit a mixture of marine and terrestrial deposits. The following vertebrates have been recovered from these sedimentary deposits during previous field seasons: plesiosaur and mosasaur marine reptiles; plant eating dinosaurs; a meat eating dinosaur; and a variety of modern bird groups, including shorebirds, wading birds and lagoonal birds.\u003cbr/\u003e\u003cbr/\u003eThis project will undertake new fieldwork to recover new specimens in order to test biogeographic and evolutionary hypotheses concerning Late Cretaceous vertebrates in Gondwana. Fieldwork is planned in January 2002 and 2003 to explore the eastern slopes of Cape Lamb, Sandwich Bluff and False Island Point on Vega Island, and the Santa Marta Cove area of James Ross Island.\u003cbr/\u003e\u003cbr/\u003eThis research will result in important new insights about the evolution and geographic dispersal of several vertebrate species. The results are important to understanding the development and evolution of life on Earth.\u003cbr/\u003e\u003cbr/\u003eThis is a collaborative research project with Argentinean scientists from the IAA and it continues a productive collaboration that began in 1995. In addition, collaboration with vertebrate paleontologists from the Museo de La Plata, both in the field and at our respective institutions in Argentina and in the United States, will continue.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "Not provided; R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e MESOZOIC \u003e CRETACEOUS", "persons": "Case, Judd; Blake, Daniel", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Evolution and Biogeography of Late Cretaceous Vertebrates from the James Ross Basin, Antarctic Peninsula", "uid": "p0000129", "west": null}, {"awards": "0230288 Anastasio, Cort", "bounds_geometry": "POLYGON((123.30014 -75.093445,123.307404 -75.093445,123.314668 -75.093445,123.321932 -75.093445,123.329196 -75.093445,123.33646 -75.093445,123.343724 -75.093445,123.350988 -75.093445,123.358252 -75.093445,123.365516 -75.093445,123.37278 -75.093445,123.37278 -75.0952669,123.37278 -75.0970888,123.37278 -75.0989107,123.37278 -75.1007326,123.37278 -75.1025545,123.37278 -75.1043764,123.37278 -75.1061983,123.37278 -75.1080202,123.37278 -75.1098421,123.37278 -75.111664,123.365516 -75.111664,123.358252 -75.111664,123.350988 -75.111664,123.343724 -75.111664,123.33646 -75.111664,123.329196 -75.111664,123.321932 -75.111664,123.314668 -75.111664,123.307404 -75.111664,123.30014 -75.111664,123.30014 -75.1098421,123.30014 -75.1080202,123.30014 -75.1061983,123.30014 -75.1043764,123.30014 -75.1025545,123.30014 -75.1007326,123.30014 -75.0989107,123.30014 -75.0970888,123.30014 -75.0952669,123.30014 -75.093445))", "dataset_titles": "Light Absorption Coefficients for Soluble Species in Snow, Dome C, Antarctica", "datasets": [{"dataset_uid": "609519", "doi": "10.7265/N5MS3QP0", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Dome C Ice Core; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Physical Properties; Snow/ice; Snow/Ice", "people": "Robles, Tony; Anastasio, Cort", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Light Absorption Coefficients for Soluble Species in Snow, Dome C, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609519"}], "date_created": "Wed, 07 Mar 2007 00:00:00 GMT", "description": "Photochemical reactions in snow can have important effects on the chemistry and composition of the snowpack as well as the overlying atmosphere. For example, recent measurements in the Antarctic and Arctic have revealed that sunlit snow releases a number of important pollutants to the atmosphere. Our ability to understand and model this chemistry is currently limited, in part because we lack fundamental photochemical information for a number of important chemical species in snow. This award supports research that will help fill this gap by characterizing the low-temperature photochemistry of three of these key species: nitrite (NO2-), nitrous acid (HNO2), and hydrogen peroxide (HOOH). We will measure quantum yields for these reactions on ice using a sensitive technique that we recently developed during a study of nitrate (NO3-) photochemistry. In addition to this basic research, we will also measure the rates of formation of hydroxyl radical (OH), nitrogen oxides (NOx), and HOOH in illuminated Antarctic snow samples. These measurements will be important inputs for future models, and will allow us to test whether known species (e.g., NO3-, NO2- and HNO2) are responsible for most of snowpack reactivity (e.g., OH formation). Overall, results from this award will significantly improve our ability to understand snowpack chemistry, and the resulting effects on the atmosphere, both in the Antarctic as well as in the many other regions with permanent or seasonal snow. These results will also strengthen efforts to use ice core records to monitor global change. In addition to these impacts, this award will help train students and a postdoctoral fellow, and results from this work will be integrated into two classes in order to expose students to some of the important issues facing polar regions.", "east": 123.37278, "geometry": "POINT(123.33646 -75.1025545)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PHOTOMETERS \u003e SPECTROPHOTOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e HPLC; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Snow Chemistry; Antarctica; Snowpack Chemistry; Snow Samples; Hydrogen Peroxide; Snow Properties; Pollutants; Chemistry; Light Absorption; Antarctic; Chemical Species; Snow; East Antarctica; Organic Compounds; Photochemistry; LABORATORY", "locations": "Antarctica; East Antarctica; Antarctic", "north": -75.093445, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Anastasio, Cort; Robles, Tony", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Dome C Ice Core", "south": -75.111664, "title": "Laboratory Studies of Photochemistry in Antarctic Snow and Ice", "uid": "p0000175", "west": 123.30014}, {"awards": "0125579 Cuffey, Kurt; 0126202 Blankenship, Donald", "bounds_geometry": "POLYGON((160 -77.6,160.25 -77.6,160.5 -77.6,160.75 -77.6,161 -77.6,161.25 -77.6,161.5 -77.6,161.75 -77.6,162 -77.6,162.25 -77.6,162.5 -77.6,162.5 -77.63,162.5 -77.66,162.5 -77.69,162.5 -77.72,162.5 -77.75,162.5 -77.78,162.5 -77.81,162.5 -77.84,162.5 -77.87,162.5 -77.9,162.25 -77.9,162 -77.9,161.75 -77.9,161.5 -77.9,161.25 -77.9,161 -77.9,160.75 -77.9,160.5 -77.9,160.25 -77.9,160 -77.9,160 -77.87,160 -77.84,160 -77.81,160 -77.78,160 -77.75,160 -77.72,160 -77.69,160 -77.66,160 -77.63,160 -77.6))", "dataset_titles": "Ablation Rates of Taylor Glacier, Antarctica; Stable Isotopes of Ice on the Surface of Taylor Glacier, Antarctica; Surface Velocities of Taylor Glacier, Antarctica", "datasets": [{"dataset_uid": "609326", "doi": "10.7265/N5N29TW8", "keywords": "Ablation Poles; Ablation Rates; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Taylor Glacier", "people": "Cuffey, Kurt M.; Bliss, Andrew; Kavanaugh, Jeffrey", "repository": "USAP-DC", "science_program": null, "title": "Ablation Rates of Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609326"}, {"dataset_uid": "609324", "doi": "10.7265/N5RV0KM7", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Velocity; Taylor Glacier", "people": "Kavanaugh, Jeffrey; Cuffey, Kurt M.; Bliss, Andrew; Aciego, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Surface Velocities of Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609324"}, {"dataset_uid": "609323", "doi": "10.7265/N5WM1BBZ", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Isotope; Taylor Glacier", "people": "Aciego, Sarah; Cuffey, Kurt M.; Bliss, Andrew; Kavanaugh, Jeffrey", "repository": "USAP-DC", "science_program": null, "title": "Stable Isotopes of Ice on the Surface of Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609323"}], "date_created": "Tue, 13 Feb 2007 00:00:00 GMT", "description": "This award supports a project to significantly improve our understanding of how Taylor Glacier flows and responds to climate changes. Taylor Glacier drains the Taylor Dome region of the East Antarctic Ice Sheet and terminates in Taylor Valley, one of the Dry Valleys of Victoria Land. It provides a crucial and unique link between two intensively studied Antarctic environments: the Taylor Dome, from which a 130 kyr ice core paleoclimate record has recently been extracted, and the Dry Valleys, a pivotal Long-Term Ecological Research (LTER) site and a focus of research on geomorphology and glacial geology. The proposed work will thus make an important contribution to ongoing efforts to exploit the Taylor Dome - Dry Valleys system to build a uniquely comprehensive view of regional long-term environmental changes. The proposed work has two complementary components: field research and numerical modelling. Two field seasons will be used to measure velocity, surface strain rate, mass balance, ice thickness, glacier bed reflectance, and subglacial topography, along a nearly complete longitudinal transect of the Taylor Glacier, and along select cross-valley transects. This information will be used to constrain numerical models of ice and heat flow for the Taylor Dome - Taylor Glacier system. These calibrated models will be used to analyze the time-dependent response of the Taylor Glacier to climate changes. The synthesis of results will be aimed to improve understanding of the glacial geomorphology of Taylor Valley, and to illuminate impacts on the Taylor Valley lakes ecosystem. The project will have a major role in furthering the careers of a doctoral-level graduate student and a post-doctoral researcher.", "east": 162.5, "geometry": "POINT(161.25 -77.75)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Glacier; Glacier Surface; Glacier Surface Ablation; Ice Velocity; Velocity Measurements; Taylor Glacier; Isotope; GPS; Ice Sheet Elevation; Not provided; FIELD INVESTIGATION; Ice Surface Elevation; Ablation; Oxygen Isotope; Elevation; Deuterium; GROUND-BASED OBSERVATIONS; Glacier Surface Ablation Rate; Surface Elevation", "locations": "Taylor Glacier", "north": -77.6, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Bliss, Andrew; Kavanaugh, Jeffrey; Aciego, Sarah; Cuffey, Kurt M.; Morse, David L.; Blankenship, Donald D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Collaborative Research: Dynamics and Climatic Response of the Taylor Glacier System", "uid": "p0000084", "west": 160.0}, {"awards": "9814816 Blankenship, Donald", "bounds_geometry": "POLYGON((-129 -80.5,-128.4 -80.5,-127.8 -80.5,-127.2 -80.5,-126.6 -80.5,-126 -80.5,-125.4 -80.5,-124.8 -80.5,-124.2 -80.5,-123.6 -80.5,-123 -80.5,-123 -80.55,-123 -80.6,-123 -80.65,-123 -80.7,-123 -80.75,-123 -80.8,-123 -80.85,-123 -80.9,-123 -80.95,-123 -81,-123.6 -81,-124.2 -81,-124.8 -81,-125.4 -81,-126 -81,-126.6 -81,-127.2 -81,-127.8 -81,-128.4 -81,-129 -81,-129 -80.95,-129 -80.9,-129 -80.85,-129 -80.8,-129 -80.75,-129 -80.7,-129 -80.65,-129 -80.6,-129 -80.55,-129 -80.5))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 13 Feb 2007 00:00:00 GMT", "description": "9814816 Blankenship This award supports a four year project to develop of better understanding the ice streams of the Ross Sea Embayment (A--F) which drain the interior West Antarctic Ice Sheet (WAIS) by rapidly moving vast quantities of ice to the calving front of the Ross Ice Shelf. The project will examine the role of these ice streams as buffers between the interior ice and the floating ice shelves. The reasons for their fast flow, the factors controlling their current grounding-line-, margin-, and head-positions are crucial to any attempt at modeling the WAIS system and predicting the future of the ice sheet. For the Antarctic ice streams of the Siple Coast, the transition from no-sliding (or all internal deformation) to motion dominated by sliding is defined as the \"onset-region\". To fully understand (and adequately model) the WAIS, this onset region must be better understood. The lateral margins of the ice streams are also a transition that need better explanation. Hypotheses on controls of the location of the onset region range from the \"purely-glaciologic\" to the \"purely-geologic. Thus, to model the ice sheet accurately, the basal boundary conditions (roughness, wetness, till properties) and a good subglacial geologic map, showing the distribution, thickness, and properties of the sedimentary basins, are required. These parameters can be estimated from seismic, radar, and other geophysical methods. The transition region of ice stream D will be studied in detail with this coupled geophysical experiment. In addition, selected other locations on ice streams C \u0026 D will be made, to compare and contrast conditions with the main site on ice stream D. Site-selection for the main camp will be based on existing radar, GPS, and satellite data as well as input from the modeling community.", "east": -123.0, "geometry": "POINT(-126 -80.75)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": -80.5, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Blankenship, Donald D.", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -81.0, "title": "Collaborative Research: Characterizing the Onset of Ice Stream Flow: A Ground Geophysical Field Program", "uid": "p0000603", "west": -129.0}, {"awards": "0230197 Holt, John", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment; Amundsen Sea Sector Data Set; Subglacial Topography: Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica", "datasets": [{"dataset_uid": "601673", "doi": "10.15784/601673", "keywords": "Antarchitecture; Antarctica; Ice Penetrating Radar; Isochron; Layers; Radar; Radioglaciology; Thwaites Glacier", "people": "Blankenship, Donald D.; Muldoon, Gail R.; Young, Duncan A.; Jackson, Charles", "repository": "USAP-DC", "science_program": null, "title": "AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment", "url": "https://www.usap-dc.org/view/dataset/601673"}, {"dataset_uid": "609292", "doi": "10.7265/N59W0CDC", "keywords": "AGASEA; Airborne Radar; Amundsen Sea; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Solid Earth", "people": "Holt, John W.; Young, Duncan A.; Corr, Hugh F. J.; Blankenship, Donald D.; Morse, David L.; Vaughan, David G.", "repository": "USAP-DC", "science_program": null, "title": "Subglacial Topography: Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609292"}, {"dataset_uid": "609312", "doi": "10.7265/N5J9649Q", "keywords": "Amundsen Sea; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology", "people": "Fastook, James L.", "repository": "USAP-DC", "science_program": null, "title": "Amundsen Sea Sector Data Set", "url": "https://www.usap-dc.org/view/dataset/609312"}], "date_created": "Mon, 01 Jan 2007 00:00:00 GMT", "description": "This award supports a comprehensive aerogeophysical survey of the Amundsen Sea Embayment (ASE) in West Antarctica. The University of Texas will join forces with the British Antarctic Survey to use both US and UK aircraft and instrumentation to achieve this survey. Analyses of the new aerogeophysical\u003cbr/\u003edata will result in the generation of maps of ice sheet surface, volume and bottom-interface characteristics. These maps will support the efforts of a community of US and international researchers to assess the present and predict the future behavior of the ice sheet in the ASE.\u003cbr/\u003eThe West Antarctic ice sheet has been the subject of intensive interdisciplinary study by both the European and U.S. scientific communities since it was recognized to be a potential source for up to 5 meters of sea\u003cbr/\u003elevel rise, possibly on short timescales. In terms of ice discharge, the ASE is the largest drainage system in West Antarctica. Yet it has been comparatively unstudied, primarily due to its remoteness from logistical\u003cbr/\u003ecenters. The ASE is the only major drainage to exhibit significant elevation change over the period of available satellite observations. Present knowledge of the ice thickness and subglacial boundary conditions in the ASE are insufficient to understand its evolution or its sensitivity to climatic change.\u003cbr/\u003eThe results from our surveys are required to achieve the fundamental research objectives outlined by the US scientific community in an ASE Science Plan. The surveys and analyses will be achieved through international collaboration and will involve graduate students, undergraduates and high school apprentices.\u003cbr/\u003eThrough its potential for influencing sea level, the future behavior of the ASE is of primary societal importance. Given the substantial public and scientific interest that recent reports of change in West Antarctica have generated, we expect fundamental research in the Amundsen Sea Embayment, enabled by our surveys, will have widespread impact.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e RADAR ALTIMETERS", "is_usap_dc": true, "keywords": "Thwaites Glacier; Ice Velocity; Ablation; Amundsen Sea; Pine Island Glacier; Elevation; Antarctica (agasea); Ice Sheet Elevation; West Antarctic Ice Sheet; Ice Temperature; Amundsen Basin; Subglacial Topography; Ice Melt; West Antarctica; Velocity Measurements; Snow Accumulation; Antarctica; Bedrock Elevation; Modeling", "locations": "Antarctica; West Antarctica; Amundsen Basin; Pine Island Glacier; Thwaites Glacier; West Antarctic Ice Sheet; Amundsen Sea", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Blankenship, Donald D.; Fastook, James L.; Corr, Hugh F. J.; Holt, John W.; Morse, David L.; Vaughan, David G.; Young, Duncan A.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA)", "uid": "p0000243", "west": -180.0}, {"awards": "9909484 Lal, Devendra", "bounds_geometry": "POINT(106.133 -76.083)", "dataset_titles": null, "datasets": null, "date_created": "Mon, 02 Oct 2006 00:00:00 GMT", "description": "9909484 Lal This award is for support for three years of funding to develop a history of snow accumulation and physical processes occurring in the upper layers of ice deposited at several sites in Antarctica, using cosmogenic in-situ Carbon-14 (14C) and cosmogenic Beryllium-10 (10Be) as radiotracers. The proposed research emerges from recent studies of cosmogenic in-situ 14C in GISP2 Holocene and several Antarctic ice samples, which revealed marked differences in the 14C concentrations in the samples, compared to the theoretically expected values. The GISP2 samples have about the expected amount of 14C but the Antarctic samples are deficient by 30-50% or more. These results suggest that in slowly accumulating ice samples (such as occur in Antarctica), the cosmic ray implanted 14C is somehow partially lost, but quantitatively preserved in samples from areas of high accumulation. These results suggest that after deposition of the cosmogenic 14C, its concentration is decreased in firn due to processes such as recrystallization, sublimation/evaporation and redeposition. In order to quantify these processes, the atmospheric cosmogenic 10Be in ice samples will also be measured. Since 10Be and 14C have different responses to the firnification processes, their simultaneous study can help to elucidate the nature and importance of these processes. Samples from Taylor Dome, Vostok and Siple Dome will all be studied.", "east": 106.133, "geometry": "POINT(106.133 -76.083)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided; Radiotracers; Firn; Holocene; Taylor Dome; Vostok; Siple Dome; Cosmogenic 14 C; Carbon-14; Accumulation; 10Be", "locations": "Siple Dome; Taylor Dome; Vostok", "north": -76.083, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Lal, Devendra", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -76.083, "title": "Firn Accumulation Processes in Taylor Dome, Vostok and Siple Dome Ice Using Cosmogenic 14 C and 10Be as Tracers", "uid": "p0000732", "west": 106.133}, {"awards": "0230452 Severinghaus, Jeffrey", "bounds_geometry": "POINT(124.5 -80.78)", "dataset_titles": "Antarctic megadunes", "datasets": [{"dataset_uid": "000191", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Antarctic megadunes", "url": "http://nsidc.org/antarctica/megadunes/"}], "date_created": "Wed, 27 Sep 2006 00:00:00 GMT", "description": "This award supports a study of the chemical composition of air in the snow layer (firn) in a region of \"megadunes\" near Vostok station, Antarctica. It will test the hypothesis that a deep \"convective zone\" of vigorous wind-driven mixing can prevent gas fractionation in the upper one-third of the polar firn layer. In the megadunes, ultralow snow accumulation rates lead to structural changes (large grains, pipes, and cracks) that make the permeability of firn to air movement orders of magnitude higher than normal. The unknown thickness of the convective zone has hampered the interpretation of ice core 15N/14N and 40Ar/36Ar ratios as indicators of past firn thickness, which is a key constraint on the climatically important variables of temperature, accumulation rate, and gas age-ice age difference. Studying this \"extreme end-member\" example will better define the role of the convective zone in gas reconstructions. This study will pump air from a profile of ~20 depths in the firn, to definitively test for the presence of a convective zone based on the fit of observed 15 N/14N and 40Ar/36Ar to a molecular- and eddy-diffusion model. Permeability measurements on the core and 2-D air flow modeling (in collaboration with M. Albert) will permit a more physically realistic interpretation of the isotope data and will relate mixing vigor to air velocities. A new proxy indicator of convective zone thickness will be tested on firn and ice core bubble air, based on the principle that isotopes of slow-diffusing heavy noble gases (Kr, Xe) should be more affected by convection than isotopes of fast-diffusing N2 . These tools will be applied to a test of the hypothesis that the megadunes and a deep convective zone existed at the Vostok site during glacial periods, which would explain the anomalously low 15N/14N and 40Ar/36Ar in the Vostok ice core glacial periods. The broader impacts of this work include 1) clarification of phase relationships of greenhouse gases and temperature in ice core records, with implications for understanding of past and future climates, 2) education of one graduate student, and 3) building of collaborative relationships with five investigators.", "east": 124.5, "geometry": "POINT(124.5 -80.78)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e FLASKS", "is_usap_dc": false, "keywords": "Antarctica; Methane; Carbon-14; Permeability; CO2; Firn Core; FIELD SURVEYS; Deuterium Excess; GROUND-BASED OBSERVATIONS; LABORATORY; Isotope; Ice Core Density; Firn Air; Megadunes; Ice Core; Not provided; FIELD INVESTIGATION", "locations": "Antarctica", "north": -80.78, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bauer, Rob; Albert, Mary R.; Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "NSIDC", "repositories": "NSIDC", "science_programs": null, "south": -80.78, "title": "How Thick Is the Convective Zone: A Study of Firn Air in the Megadunes Near Vostok, Antarctica", "uid": "p0000097", "west": 124.5}, {"awards": "0338363 Thiemens, Mark; 0337933 Cole-Dai, Jihong", "bounds_geometry": null, "dataset_titles": "Major Ion Concentrations in 2004 South Pole Ice Core", "datasets": [{"dataset_uid": "609542", "doi": "10.7265/N5HX19N8", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ion Chromatograph; South Pole", "people": "Cole-Dai, Jihong", "repository": "USAP-DC", "science_program": null, "title": "Major Ion Concentrations in 2004 South Pole Ice Core", "url": "https://www.usap-dc.org/view/dataset/609542"}], "date_created": "Fri, 11 Aug 2006 00:00:00 GMT", "description": "This award supports a collaborative study between South Dakota State University (SDSU) and University of California, San Diego (UCSD) to investigate the oxygen and sulfur isotope composition of sulfates from a number of large volcanic eruptions in the past 1000 years. The project aims to drill a number of shallow ice cores at South Pole and return them to SDSU and UCSD lab for chemical and isotope analysis. Preliminary results from measurements of isotopes in sulfate samples from several volcanic eruptions in Antarctic snow and ice indicate that isotopic composition of volcanic sulfate contains abundant valuable information on atmospheric chemical and dynamic processes that have not been previously investigated. One tentative conclusion is that mass-independently fractionated sulfur isotopes reveal that atmospheric photolysis of sulfur compounds occurs at longer UV wavelengths than those in the Archean atmosphere, possibly reflecting the atmospheric ozone and/or oxygen concentration. This suggests that isotopic composition of atmospheric sulfate may be used to understand the role of UV radiation in sulfur dioxide conversion in the atmosphere and to track the evolution (i.e., oxygenation) of the atmosphere and the origin of life on Earth. Other major research objectives include understanding what impact massive volcanic eruptions have on the oxidative capacity of the atmosphere, what oxidants and mechanisms are involved in the oxidation or conversion of volcanic sulfur dioxide to sulfate in the stratosphere and what isotopic criteria may be used to differentiate ice core signals of stratospheric eruptions from those of tropospheric eruptions. By providing educational and research opportunities to graduate and undergraduate students at both SDSU and UCSD, the proposed project will promote the integration of research and education and contribute to human resource development in science and engineering. The project will contribute to a proposed REU chemistry site program at SDSU. This collaboration will utilize the complementary strengths of both labs and promote exchange between the two institutions. International collaboration will enhance scientific cooperation between France and US.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Not provided; Ion Chromatograph; Ions; LABORATORY; GROUND-BASED OBSERVATIONS", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Cole-Dai, Jihong", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Investigating Atmospheric Chemistry and Dynamics through Oxygen and Sulfur Isotopes in Volcanic Sulfate from South Pole Ice Cores", "uid": "p0000031", "west": null}, {"awards": "0230316 White, James; 0230348 Dunbar, Nelia; 0230021 Sowers, Todd", "bounds_geometry": "POINT(135.1333 -76.05)", "dataset_titles": "Mount Moulton Isotopes and Other Ice Core Data", "datasets": [{"dataset_uid": "609640", "doi": "10.7265/N5FT8J0N", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Epica Dome C; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Lake Vostok; Mount Moulton; Paleoclimate; Talos Dome; Taylor Dome", "people": "Steig, Eric J.; White, James; Popp, Trevor", "repository": "USAP-DC", "science_program": null, "title": "Mount Moulton Isotopes and Other Ice Core Data", "url": "https://www.usap-dc.org/view/dataset/609640"}], "date_created": "Tue, 01 Aug 2006 00:00:00 GMT", "description": "The summit crater of Mt. Moulton, in West Antarctica, contains a 600-m thick horizontally-exposed section of ice with intercalated tephra layers from nearby Mt Berlin. Argon-40/Argon-39 dating of the thick, near-source tephra indicates that the age of the horizontal ice section ranges between 15,000 and 492,000 years. Thus, the Mt Moulton site offers an unparalleled repository of ancient West Antarctic snow and trapped air that can be used to investigate West Antarctic climate over much of the past 500,000 years. The planar nature and consistent dips of the tephra layers suggests that, although the ice section has thinned, it is otherwise undeformed. The Mt. Moulton site was visited during the 1999/2000 field season, at which time a horizontal ice core representing approximately 400 meters of ice was collected, ranging in age from 15,000 to older than 480,000 years. In addition to this horizontal core, samples of ice at a range of depths were collected in order to test the quality of the climate record in the ice. Forty tephra layers intercalated in the ice were also collected in order to provide chronology for the ice section. The results of this first effort are extremely encouraging. Based on the d?18 O of ice, for example, there is clearly a useable record of past climate at Mt. Moulton extending back beyond 140,000 years. There is work to do, however, to realize the full potential of this horizontal ice core. The elemental and isotopic composition of trapped gases suggest some contamination with modern air, for example. As gas cross-dating of ice cores is the current standard by which climate records are intercompared, we need to understand why and how the gas record is compromised before adding Moulton to our arsenal of ice core paleoclimate records. This award supports a collaborative effort between three institutions with following objectives: 1) to evaluate more thoroughly the integrity of the climatic record through shallow drilling of the blue ice area, as well as the snow field upslope from the blue ice; 2) to improve the radioisotopic dating of specific tephra layers; 3) to obtain baseline information about modern snowfall deposition, mean annual temperature, and wind pumping around the summit of Mt. Moulton; and 4) to study how firn densification differs when surface accumulation changes from net accumulation to net ablation.", "east": 135.1333, "geometry": "POINT(135.1333 -76.05)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES", "is_usap_dc": true, "keywords": "LABORATORY; Climate; Argon-40; 40Ar; Argon-39; FIELD SURVEYS; Chronology; Ice Core Gas Age; Gas Record; Ice Core; FIELD INVESTIGATION; Tephra; Mount Moulton; Not provided; Caldera; 39Ar; Stratigraphy; Ice Core Depth", "locations": "Mount Moulton", "north": -76.05, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "White, James; Popp, Trevor; Dunbar, Nelia; Sowers, Todd A.; Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.05, "title": "Collaborative Research: Refining a 500-kry Climate Record From the Moulton Blue Ice Field in West Antarctica", "uid": "p0000755", "west": 135.1333}, {"awards": "0196441 Hamilton, Gordon", "bounds_geometry": null, "dataset_titles": "The Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program.; US ITASE International Trans-Antarctic Scientific Expedition", "datasets": [{"dataset_uid": "000586", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "The Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program.", "url": "https://nsidc.org/data/agdc"}, {"dataset_uid": "000109", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "US ITASE International Trans-Antarctic Scientific Expedition", "url": "http://www2.umaine.edu/USITASE/"}], "date_created": "Thu, 30 Mar 2006 00:00:00 GMT", "description": "Not Available", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": false, "keywords": "Transantarctic Mountains; Not provided; US ITASE; Snow Accumulation; Mass Balance; Transantarctic; Outlet Glaciers; Antarctica; FIELD INVESTIGATION; FIELD SURVEYS", "locations": "Antarctica; Transantarctic Mountains", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Hamilton, Gordon S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repo": "NSIDC", "repositories": "NSIDC; Project website", "science_programs": null, "south": null, "title": "Mass Balance and Accumulation Rate Along US ITASE Routes", "uid": "p0000727", "west": null}, {"awards": "0230448 Severinghaus, Jeffrey; 0230260 Bender, Michael", "bounds_geometry": "POLYGON((-75.34 86.6,-68.742 86.6,-62.144 86.6,-55.546 86.6,-48.948 86.6,-42.35 86.6,-35.752 86.6,-29.154 86.6,-22.556 86.6,-15.958 86.6,-9.36 86.6,-9.36 83.618,-9.36 80.636,-9.36 77.654,-9.36 74.672,-9.36 71.69,-9.36 68.708,-9.36 65.726,-9.36 62.744,-9.36 59.762,-9.36 56.78,-15.958 56.78,-22.556 56.78,-29.154 56.78,-35.752 56.78,-42.35 56.78,-48.948 56.78,-55.546 56.78,-62.144 56.78,-68.742 56.78,-75.34 56.78,-75.34 59.762,-75.34 62.744,-75.34 65.726,-75.34 68.708,-75.34 71.69,-75.34 74.672,-75.34 77.654,-75.34 80.636,-75.34 83.618,-75.34 86.6))", "dataset_titles": "Firn Air Inert Gas and Oxygen Observations from Siple Dome, 1996, and the South Pole, 2001; Trapped Gas Composition and Chronology of the Vostok Ice Core", "datasets": [{"dataset_uid": "609311", "doi": "10.7265/N5P26W12", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Lake Vostok; Paleoclimate; Vostok; Vostok Ice Core", "people": "Bender, Michael; Suwa, Makoto", "repository": "USAP-DC", "science_program": null, "title": "Trapped Gas Composition and Chronology of the Vostok Ice Core", "url": "https://www.usap-dc.org/view/dataset/609311"}, {"dataset_uid": "609290", "doi": "10.7265/N5FJ2DQC", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciology; Paleoclimate; Siple Dome; Snow/ice; Snow/Ice; South Pole", "people": "Battle, Mark; Severinghaus, Jeffrey P.; Bender, Michael", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Firn Air Inert Gas and Oxygen Observations from Siple Dome, 1996, and the South Pole, 2001", "url": "https://www.usap-dc.org/view/dataset/609290"}], "date_created": "Wed, 18 Jan 2006 00:00:00 GMT", "description": "High latitude deep ice cores contain fundamental records of polar temperatures, atmospheric dust loads (and continental aridity), greenhouse gas concentrations, the status of the biosphere, and other essential properties of past environments. An accurate chronology for these records is needed if their significance is to be fully realized. The dating challenge has stimulated efforts at orbital tuning. In this approach, one varies a timescale, within allowable limits, to optimize the match between a paleoenvironmental property and a curve of insolation through time. The ideal property would vary with time due to direct insolation forcing. It would be unaffected by complex climate feedbacks and teleconnections, and it would give a clean record with high signal/noise ratio. It is argued strongly that the O2/N2 ratio of ice core trapped gases is such a property, and evidence is presented that this property, whose atmospheric ratio is nearly constant, is tied to local summertime insolation. This award will support a project to analyze the O2/N2 ratios at 1 kyr intervals from ~ 115-400 ka in the Vostok ice core. Ancillary measurements will be made of Ar/N2, and Ne/N2 and heavy noble gas ratios, in order to understand bubble close-off fractionation and its manifestation in the Vostok trapped gas record. O2/N2 variations will be matched with summertime insolation at Vostok to achieve a high-accuracy chronology for the Vostok core. The Vostok and other correlatable climate records will then be reexamined to improve our understanding of the dynamics of Pleistocene climate change.", "east": 106.8, "geometry": "POINT(106.8 -72.4667)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e FLASKS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Paleoclimate; Siple Dome; Ice Age; Shallow Firn Air; Firn Air Isotope Measurements; Polar Firn Air; Ice Sample Gas Integrity; Oxygen Isotope; Noble Gas; Ice Core Gas Records; Atmospheric Gases; Trapped Gases; Not provided; LABORATORY; Vostok; Firn Air Isotopes; Thermal Fractionation; Ice Core Chemistry; Trapped Air Bubbles; Ice Core; Antarctica; South Pole; Ice Core Data; GROUND-BASED OBSERVATIONS; Gas Age; Firn Isotopes", "locations": "Antarctica; Vostok; Siple Dome; South Pole", "north": -72.4667, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Battle, Mark; Bender, Michael; Suwa, Makoto; Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -72.4667, "title": "Collaborative Research: Trapped Gas Composition and the Chronology of the Vostok Ice Core", "uid": "p0000257", "west": 106.8}, {"awards": "0125570 Scambos, Ted; 0125276 Albert, Mary", "bounds_geometry": null, "dataset_titles": "Access AGDC data online by navigating to Data Sets. Data sets are arranged by Principal Investigators. Access data that are combined into multiple data sets, or compiled products.; AWS Data: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation; GPR and GPS Data: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation; Snow and Firn Permeability: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation; The Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program.", "datasets": [{"dataset_uid": "609283", "doi": "10.7265/N5K935F3", "keywords": "Antarctica; Atmosphere; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Meteorology; Snow/ice; Snow/Ice", "people": "Fahnestock, Mark; Haran, Terry; Bauer, Rob; Scambos, Ted", "repository": "USAP-DC", "science_program": null, "title": "AWS Data: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "url": "https://www.usap-dc.org/view/dataset/609283"}, {"dataset_uid": "001669", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Access AGDC data online by navigating to Data Sets. Data sets are arranged by Principal Investigators. Access data that are combined into multiple data sets, or compiled products.", "url": "http://nsidc.org/data/agdc_investigators.html"}, {"dataset_uid": "001343", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "The Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program.", "url": "https://nsidc.org/data/agdc/"}, {"dataset_uid": "609282", "doi": "10.7265/N5Q23X5F", "keywords": "Antarctica; East Antarctic Plateau; Glaciology; GPR; GPS; Navigation; Paleoclimate; Snow/ice; Snow/Ice", "people": "Scambos, Ted; Bauer, Rob", "repository": "USAP-DC", "science_program": null, "title": "GPR and GPS Data: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation", "url": "https://www.usap-dc.org/view/dataset/609282"}, {"dataset_uid": "609299", "doi": "10.7265/N5639MPD", "keywords": "Antarctica; East Antarctic Plateau; Glaciology; Physical Properties; Snow/ice; Snow/Ice", "people": "Cathles, Mac; Albert, Mary R.; Courville, Zoe", "repository": "USAP-DC", "science_program": null, "title": "Snow and Firn Permeability: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation", "url": "https://www.usap-dc.org/view/dataset/609299"}], "date_created": "Wed, 04 Jan 2006 00:00:00 GMT", "description": "This award supports a program of field surveys of an area within the large, well-developed megadune field southeast of Vostok station. The objectives are to determine the physical characteristics of the firn across the dunes, including typical climate indicators such as stable isotopes and major chemical species, and to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. Field study will consist of surface snowpit and shallow core sampling, ground penetrating radar (GPR) profiling, GPS topographic and ice motion surveys, AWS installation, accumulation/ ablation measurements, subsurface temperature, and firn permeability studies. Field work in two successive seasons is proposed. Continent-wide remote sensing studies of the dunes will be continued, using the new group of instruments that are now, or will shortly be available (e.g., MODIS, MISR, GLAS, AMSR). The earlier study of topographic, passive microwave, and SAR characteristics will be extended, with the intent of determining the relationships of dune amplitude and wavelength to climate parameters, and further development of models of dune formation. Diffusion, ventilation, and vapor transport processes within the dune firn will be modeled as well. A robust program of outreach is planned and reporting to inform both the public and scientists of the fundamental in-situ and remote sensing characteristics of these uniquely Antarctic features will be an important part of the work. Because of their extreme nature, their broad extent, and their potential impact on the climate record, it is important to improve our current understanding of these. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on past terrestrial climate, or to processes active on other planets. Megadunes are likely to represent an end-member in firn diagenesis, and as such, may have much to teach us about the processes involved.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ICE AUGERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e SNOWPACK TEMPERATURE PROBE; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e PERMEAMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e SAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e AIR PERMEAMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e RADIO \u003e ARGOS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e WIND PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e DENSIOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e GAUGES \u003e BALANCE", "is_usap_dc": true, "keywords": "Internal Layering; ICESAT; Vapor-Redeposition; Antarctic; Wind Speed; FIELD INVESTIGATION; Surface Morphology; Antarctica; GROUND-BASED OBSERVATIONS; ARWS; Polar Firn Air; Microstructure; Gas Diffusivity; WEATHER STATIONS; Surface Temperatures; RADARSAT-2; Ice Core; Wind Direction; AWS; Ice Sheet; Snow Pit; Dunefields; Climate Record; Megadunes; GROUND STATIONS; METEOROLOGICAL STATIONS; Antarctic Ice Sheet; Density; Atmospheric Pressure; Firn Permeability; FIELD SURVEYS; Radar; Permeability; Field Survey; Firn Temperature Measurements; Snow Megadunes; Thermal Conductivity; LANDSAT; Firn; Ice Core Interpretation; East Antarctic Plateau; Not provided; Surface Winds; Sublimation; Snow Density; Ice Climate Record; Glaciology; Snow Permeability; Air Temperature; Paleoenvironment; Automated Weather Station", "locations": "Antarctica; Antarctic Ice Sheet; Antarctic; East Antarctic Plateau", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Courville, Zoe; Cathles, Mac; Scambos, Ted; Bauer, Rob; Fahnestock, Mark; Haran, Terry; Shuman, Christopher A.; Albert, Mary R.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e ARWS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e METEOROLOGICAL STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e WEATHER STATIONS; Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e ICE, CLOUD AND LAND ELEVATION SATELLITE (ICESAT) \u003e ICESAT; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e LANDSAT \u003e LANDSAT; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e RADARSAT \u003e RADARSAT-2", "repo": "USAP-DC", "repositories": "NSIDC; USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "uid": "p0000587", "west": null}, {"awards": "0125761 Thiemens, Mark", "bounds_geometry": null, "dataset_titles": "Atmospheric Nitrate Isotopic Analysis at Amundsen-Scott South Pole Station, A Twenty-Five Year Record", "datasets": [{"dataset_uid": "609281", "doi": "10.7265/N5TT4NWF", "keywords": "Aerosol; Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; NBP1502; Snow/ice; Snow/Ice; South Pole Station", "people": "Savarino, Joel; Thiemens, Mark H.", "repository": "USAP-DC", "science_program": null, "title": "Atmospheric Nitrate Isotopic Analysis at Amundsen-Scott South Pole Station, A Twenty-Five Year Record", "url": "https://www.usap-dc.org/view/dataset/609281"}], "date_created": "Tue, 27 Dec 2005 00:00:00 GMT", "description": "This award supports a detailed laboratory analysis of the mass-independent isotopic composition of processes associated with atmospheric nitrate trapped in the snow pack at the South Pole. The project will specifically test if the oxygen isotopes 16O, 17O, 18O of nitrate can be used to probe the denitrification of the Antarctic stratosphere. Despite decades of research, there are several important issues in Antarctic atmospheric science, which are presently inadequately resolved. This includes quantification over time of the sources of nitrate aerosols. Today, little is known about the past denitrification of the stratosphere in high latitude regions. This lack of knowledge significantly limits our ability to understand the chemical state of ancient atmospheres and therefore evaluate present and past-coupled climate/atmosphere models. The role of nitrogen in environmental degradation is well known. This issue will also be addressed in this proposal. Atmospheric aerosols have now been shown to possess a mass-independent oxygen isotopic content. The proposed research will investigate the stable oxygen isotope ratios of nitrate in Antarctica both collected in real time and from the snow. Two periods of time will be covered. Full year nitrate aerosol collections, with week resolution time horizons, will be performed at the South Pole. Weekly aerosol collections will help us to identify any seasonal trend of the oxygen-17 excess anomaly, and eventually link this anomaly to the denitrification of the Antarctic stratosphere. This data set will also be used to test our assumption that the oxygen isotopic anomaly of nitrate is mainly formed in the stratosphere and is well preserved in the snow pack. If true, we will for the first time resolve an atmospheric signal extracted from a nitrate profile. The snow pit will allow us to see any trend in the data on a multiple decade timescale.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Snow; GROUND STATIONS; Ion Chemistry; South Pole; Not provided; Aerosol; Oxygen Isotope; GROUND-BASED OBSERVATIONS; Snow Pit; Antarctica; Admundsen-Scott Station", "locations": "Antarctica; South Pole", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Savarino, Joel; Thiemens, Mark H.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "South Pole Atmospheric Nitrate Isotopic Analysis (SPANIA)", "uid": "p0000242", "west": null}, {"awards": "0232042 Finn, Carol", "bounds_geometry": "POLYGON((139.27539 -82.35733,142.369695 -82.35733,145.464 -82.35733,148.558305 -82.35733,151.65261 -82.35733,154.746915 -82.35733,157.84122 -82.35733,160.935525 -82.35733,164.02983 -82.35733,167.124135 -82.35733,170.21844 -82.35733,170.21844 -82.516831,170.21844 -82.676332,170.21844 -82.835833,170.21844 -82.995334,170.21844 -83.154835,170.21844 -83.314336,170.21844 -83.473837,170.21844 -83.633338,170.21844 -83.792839,170.21844 -83.95234,167.124135 -83.95234,164.02983 -83.95234,160.935525 -83.95234,157.84122 -83.95234,154.746915 -83.95234,151.65261 -83.95234,148.558305 -83.95234,145.464 -83.95234,142.369695 -83.95234,139.27539 -83.95234,139.27539 -83.792839,139.27539 -83.633338,139.27539 -83.473837,139.27539 -83.314336,139.27539 -83.154835,139.27539 -82.995334,139.27539 -82.835833,139.27539 -82.676332,139.27539 -82.516831,139.27539 -82.35733))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 16 Aug 2005 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the Transantarctic Mountains and an adjacent region of East Antarctica. The East Antarctic shield is one of Earth\u0027s oldest and largest cratonic assemblies, with a long-lived Archean to early Paleozoic history. Long-standing interest in the geologic evolution of this shield has been rekindled over the past decade by tectonic models linking East Antarctica with other Precambrian crustal elements in the Rodinia and Gondwanaland supercontinents. It is postulated that the Pacific margin of East Antarctica was rifted from Laurentia during late Neoproterozoic breakup of Rodinia, and it then developed as an active plate boundary during subsequent amalgamation of Gondwanaland in the earliest Paleozoic. If true, the East Antarctic shield played a key role in supercontinent transformation at a time of global changes in plate configuration, terrestrial surficial process, sea level, and marine geochemistry and biota. A better understanding of the geological evolution of the East Antarctic shield is therefore critical for studying Precambrian crustal evolution in general, as well as resource distribution, biosphere evolution, and glacial and climate history during later periods of Earth history. Because of nearly complete coverage by the polar ice cap, however, Antarctica remains the single most geologically unexplored continent. Exposures of cratonic basement are largely limited to coastal outcrops in George V Land and Terre Adelie (Australian sector), the Prince Charles Mountains and Enderby Land (Indian sector), and Queen Maud Land (African sector), where the geology is reasonably well-known. By contrast, little is known about the composition and structure of the shield interior. Given the extensive ice cover, collection of airborne geophysical data is the most cost-effective method to characterize broad areas of sub-ice basement and expand our knowledge of the East Antarctic shield interior. \u003cbr/\u003e\u003cbr/\u003eThis project will conduct an airborne magnetic survey (coupled with ground-based gravity measurements) across an important window into the shield where it is exposed in the Nimrod Glacier area of the central Transantarctic Mountains. Specific goals are to:\u003cbr/\u003e1. Characterize the magnetic and gravity signature of East Antarctic crustal basement exposed at the Ross margin (Nimrod Group),\u003cbr/\u003e2. Extend the magnetic data westward along a corridor across the polar ice cap in order to image the crust in ice-covered areas,\u003cbr/\u003e3. Obtain magnetic data over the Ross Orogen in order to image the ice-covered boundary between basement and supracrustal rocks, allowing us to better constrain the geometry of fundamental Ross structures, and\u003cbr/\u003e4. Use the shape, trends, wavelengths, and amplitudes of magnetic anomalies to define magnetic domains in the shield, common building blocks for continent-scale studies of Precambrian geologic structure and evolution.\u003cbr/\u003e\u003cbr/\u003eHigh-resolution airborne magnetic data will be collected along a transect extending from exposed rocks of the Nimrod Group across the adjacent polar ice cap. The Nimrod Group represents the only bona fide Archean-Proterozoic shield basement exposed for over 2500 km of the Pacific margin of Antarctica. This survey will characterize the geologically well-known shield terrain in this sector using geophysical methods for the first time. This baseline over the exposed shield will allow for better interpretation of geophysical patterns in other ice-covered regions and can be used to target future investigations. In collaboration with colleagues from the BGR (Germany), a tightly-spaced, \"draped\" helicopter magnetic survey will be flown during the 2003-04 austral summer, to be complemented by ground measurements of gravity over the exposed basement. Data reduction, interpretation and geological correlation will be completed in the second year. This project will enhance the education of students, the advancement of under-represented groups, the research instrumentation of the U.S. Antarctic Program, partnerships between the federal government and institutions of higher education, and cooperation between national research programs. It will benefit society through the creation of new basic knowledge about the Antarctic continent, which in turn may help with applied research in other fields such as the glacial history of Antarctica.", "east": 170.21844, "geometry": "POINT(154.746915 -83.154835)", "instruments": "SOLAR/SPACE OBSERVING INSTRUMENTS \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e MAM", "is_usap_dc": false, "keywords": "Central Transantarctic Mountains; Aeromagnetic Data; HELICOPTER; DHC-6; Not provided", "locations": "Central Transantarctic Mountains", "north": -82.35733, "nsf_funding_programs": null, "paleo_time": null, "persons": "Finn, C. A.; FINN, CAROL", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6; AIR-BASED PLATFORMS \u003e ROTORCRAFT/HELICOPTER \u003e HELICOPTER; Not provided", "repositories": null, "science_programs": null, "south": -83.95234, "title": "Collaborative Research: Geophysical Mapping of the East Antarctic Shield Adjacent to the Transantarctic Mountains", "uid": "p0000249", "west": 139.27539}, {"awards": "0125981 Sowers, Todd", "bounds_geometry": "POLYGON((-180 -62.83,-144 -62.83,-108 -62.83,-72 -62.83,-36 -62.83,0 -62.83,36 -62.83,72 -62.83,108 -62.83,144 -62.83,180 -62.83,180 -65.547,180 -68.264,180 -70.981,180 -73.698,180 -76.415,180 -79.132,180 -81.849,180 -84.566,180 -87.283,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.283,-180 -84.566,-180 -81.849,-180 -79.132,-180 -76.415,-180 -73.698,-180 -70.981,-180 -68.264,-180 -65.547,-180 -62.83))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 05 May 2005 00:00:00 GMT", "description": "0125981\u003cbr/\u003eSowers\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to construct an isotopic record of atmospheric methane and nitrous oxide over the last century from South Pole firn air. Over the last 150 years, atmospheric methane and nitrous oxide concentrations have risen in response to increased emissions from various anthropogenic activities. As this trend is liable to continue in the foreseeable future, it is important to understand the biogeochemical processes that contribute to the emissions of these two greenhouse gases. In this context, records of the variations in the atmospheric loading of trace gases found in ice cores and interstitial spaces in the snow near the surface of the ice sheet (firn air) provide fundamental boundary conditions for reconstructing historical emission records. One way to improve our understanding of the cycling of bioactive trace gases and their emission records is to use stable isotope tracers, which have been recorded in the ice cores and firn air. This project will develop records of carbon-13 and deuterium isotope ratios of methane, as well as the nitrogen-15, oxygen-18 and the isotopomer composition of nitrous oxide trapped in firn air samples collected in January 2001 at the South Pole. These measurements will allow isotopic records of these atmospheric gases to be reconstructed throughout the 20th century. Such records will help to establish the relative contribution of individual sources with a higher degree of confidence than is currently available.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": -62.83, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Sowers, Todd A.", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -90.0, "title": "Generating an Isotopic Record of Atmospheric Methane and Nitrous Oxide Over the Last Century from South Pole Firn Air", "uid": "p0000086", "west": -180.0}, {"awards": "0088035 Arcone, Steven", "bounds_geometry": "POLYGON((-135 -75,-130.5 -75,-126 -75,-121.5 -75,-117 -75,-112.5 -75,-108 -75,-103.5 -75,-99 -75,-94.5 -75,-90 -75,-90 -76.5,-90 -78,-90 -79.5,-90 -81,-90 -82.5,-90 -84,-90 -85.5,-90 -87,-90 -88.5,-90 -90,-94.5 -90,-99 -90,-103.5 -90,-108 -90,-112.5 -90,-117 -90,-121.5 -90,-126 -90,-130.5 -90,-135 -90,-135 -88.5,-135 -87,-135 -85.5,-135 -84,-135 -82.5,-135 -81,-135 -79.5,-135 -78,-135 -76.5,-135 -75))", "dataset_titles": "US International Trans-Antarctic Scientific Expedition 400 MHz Subsurface Radar Profiles; US International Trans-Antarctic Scientific Expedition (US ITASE): GPR Profiles and Accumulation Mapping", "datasets": [{"dataset_uid": "609269", "doi": "10.7265/N5GH9FV6", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; ITASE; WAIS", "people": "Mayewski, Paul A.; Kaspari, Susan; Arcone, Steven; Spikes, Vandy Blue; Hamilton, Gordon S.", "repository": "USAP-DC", "science_program": "ITASE", "title": "US International Trans-Antarctic Scientific Expedition (US ITASE): GPR Profiles and Accumulation Mapping", "url": "https://www.usap-dc.org/view/dataset/609269"}, {"dataset_uid": "609254", "doi": "10.7265/N58050J7", "keywords": "Airborne Radar; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; ITASE; Radar; WAIS", "people": "Arcone, Steven", "repository": "USAP-DC", "science_program": null, "title": "US International Trans-Antarctic Scientific Expedition 400 MHz Subsurface Radar Profiles", "url": "https://www.usap-dc.org/view/dataset/609254"}], "date_created": "Sun, 01 May 2005 00:00:00 GMT", "description": "This award supports continued acquisition of high resolution, radar reflection profiles of the snow and ice stratigraphy between core sites planned along traverse routes of the U.S. component of the International\u003cbr/\u003eTrans-Antarctic Scientific Expedition (U.S.-ITASE). The purpose is to use the profiles to establish the structure and continuity of firn stratigraphic horizons over hundreds of kilometers and to quantitatively\u003cbr/\u003eassess topographic and ice movement effects upon snow deposition. Other objectives are to establish the climatic extent that a single site represents and to investigate the cause of firn reflections. The radar\u003cbr/\u003ewill also be used to identify crevasses ahead of the traverse vehicles in order to protect the safety of the scientists and support personnel on the traverse. Collaboration with other ITASE investigators will use the radar horizons as continuous isochronic references fixed by the core dating to calculate historical snow accumulation rates. The primary radar system uses 400-MHz (center frequency) short-pulse antennas, which (with processing) gives the penetration of 50-70 meters. This is the depth which is required to exceed the 200-year deposition horizon along the traverse routes. Profiles at 200 MHz will also be recorded if depths greater than 70 meters are of interest. Processing will be accomplished by data compression (stacking) to reveal long distance stratigraphic deformation, range gain corrections to give proper weight to signal amplitudes, and GPS corrections to adjust the records for the present ice sheet topography. Near surface stratigraphy will allow topographic and ice movement effects to be separated. This work is critical to the success of the U.S.-ITASE program.", "east": -90.0, "geometry": "POINT(-112.5 -82.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": true, "keywords": "Ice; Radar Echo Sounder; USAP-DC; US ITASE; Ice Cover; West Antarctic Ice Sheet; Snow Accumulation; CRREL; Antarctic Ice Sheet; Radar; Ice Surveys; ITASE; Ice Sheet; Radar Echo Sounding; GROUND-BASED OBSERVATIONS; Ice Thickness; Mass Balance", "locations": "Antarctic Ice Sheet; West Antarctic Ice Sheet", "north": -75.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Spikes, Vandy Blue; Arcone, Steven; Kaspari, Susan; Hamilton, Gordon S.; Mayewski, Paul A.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": -90.0, "title": "High Resolution Radar Profiling of the Snow and Ice Stratigraphy beneath the ITASE Traverses, West Antarctic Ice Sheet", "uid": "p0000146", "west": -135.0}, {"awards": "0088054 Goldstein, Steven", "bounds_geometry": "POLYGON((-180 -39.57,-144 -39.57,-108 -39.57,-72 -39.57,-36 -39.57,0 -39.57,36 -39.57,72 -39.57,108 -39.57,144 -39.57,180 -39.57,180 -42.967,180 -46.364,180 -49.761,180 -53.158,180 -56.555,180 -59.952,180 -63.349,180 -66.746,180 -70.143,180 -73.54,144 -73.54,108 -73.54,72 -73.54,36 -73.54,0 -73.54,-36 -73.54,-72 -73.54,-108 -73.54,-144 -73.54,-180 -73.54,-180 -70.143,-180 -66.746,-180 -63.349,-180 -59.952,-180 -56.555,-180 -53.158,-180 -49.761,-180 -46.364,-180 -42.967,-180 -39.57))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 26 Apr 2005 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the sediment core from the Southern Ocean for paleoenvironmental research. The polar regions are susceptible to the largest changes in climate and are among the least accessible places on Earth. Current concern about the instability of the West Antarctic Ice Sheet has heightened awareness of the vulnerability of polar regions. This proposal seeks to gain a basic understanding of the isotopic characteristics of terrigenous sediment sources derived from Antarctica in the Holocene and Last Glacial Maximum, and their dispersal into the Southern Ocean. Terrigenous clastic sediments are brought to the ocean from continental sources via rivers, ice and wind, and distributed within the ocean by surface and deep currents. At present there are virtually no isotopic data on circumpolar detritus, save a few strontium (Sr) isotopic ratios in the Atlantic sector. This project will fill part of this gap. From the large range in geological ages of crustal provinces of Antarctica, we would predict that there are large isotopic differences in detritus around the continent. The main objectives are to (1) characterize the strontium-neodymium-lead-argon (Sr-Nd-Pb-Ar) isotope compositions of sediment sources derived from Antarctica, (2) to identify the composition and source ages of major ice rafted detritus (IRD) contributions by analyzing individual grains of hornblende and feldspar in conjunction with bulk isotopic analysis, and (3) track sediment dispersal into the Antarctic Circumpolar Current (ACC) during the Holocene and Last Glacial Maximum.\u003cbr/\u003e\u003cbr/\u003eBecause of the paucity of circumpolar data, this research necessarily has a large exploratory component. Consequently, it will provide a basic database for future studies. Nevertheless there are important hypothesis-driven questions that will be addressed in this primary pass. Can lessons learned in North Atlantic IRD studies be applied toward understanding the history of Antarctic ice sheets? Can the large geological variability around the Antarctic margin be treated as a series of natural tracer injections into the ACC, and thus characterize its trajectory, speed, and interaction with other current systems today and in the past? The proposed study is motivated by an exciting set of results from the South Atlantic, showing that detrital Sr isotope ratios are a sensitive current tracer in that region. This research should serve a basic need across many Earth Science disciplines if the use of long-lived radiogenic isotopes (Sr-Nd-Pb-Ar) as tracers of marine sediment sources is successful in elucidating processes related to changing climatic conditions. The results of this study will fill a basic gap in our knowledge of an important region of the Earth. At the same time, it will provide an essential basis for attempting reconstruction of the ACC during the LGM, as well as for future studies of Antarctic geology, ice sheet history, and the Southern Ocean circulation.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": -39.57, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Roy, Martin; Hemming, Sidney R.; Goldstein, Steven L.; Van De Flierdt, Christina-Maria", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -73.54, "title": "Establishing the Pattern of Holocene-LGM Changes in Sediment Contributions from Antarctica to the Southern Ocean", "uid": "p0000724", "west": -180.0}, {"awards": "8411018 Frisic, David", "bounds_geometry": null, "dataset_titles": "Dominion Range Ice Core Beta Profiles, Chemistry, and Density Data; Newall Glacier Ice Core and Snow Pit Beta Profiles, Chemistry, and Stratigraphy; Newall Glacier Snow Pit and Ice Core, 1987 to 1989", "datasets": [{"dataset_uid": "609248", "doi": "", "keywords": "Antarctica; Beta Profiles; Chemistry:ice; Chemistry:Ice; Density; Dominion Range; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Physical Properties", "people": "Meese, Deb; Gow, Tony; Saltzman, Eric; Watson, M. Scott; Grootes, Pieter; Mayewski, Paul A.; Sowers, Todd A.", "repository": "USAP-DC", "science_program": null, "title": "Dominion Range Ice Core Beta Profiles, Chemistry, and Density Data", "url": "https://www.usap-dc.org/view/dataset/609248"}, {"dataset_uid": "609088", "doi": "10.7265/N5JM27JP", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Newall Glacier; Paleoclimate; Snow/ice; Snow/Ice", "people": "Mayewski, Paul A.; Whitlow, Sallie", "repository": "USAP-DC", "science_program": null, "title": "Newall Glacier Snow Pit and Ice Core, 1987 to 1989", "url": "https://www.usap-dc.org/view/dataset/609088"}, {"dataset_uid": "609249", "doi": "", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Newall Glacier; Paleoclimate; Physical Properties; Snow/ice; Snow/Ice; Statigraphy", "people": "Mayewski, Paul A.; Welch, Kathy A.", "repository": "USAP-DC", "science_program": null, "title": "Newall Glacier Ice Core and Snow Pit Beta Profiles, Chemistry, and Stratigraphy", "url": "https://www.usap-dc.org/view/dataset/609249"}], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "Not available", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "GROUND STATIONS", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Frisic, David; Meese, Deb; Gow, Tony; Saltzman, Eric; Mayewski, Paul A.; Sowers, Todd A.; Welch, Kathy A.; Grootes, Pieter; Watson, M. Scott; Grootes, Peiter", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Characterization of Climatic Events for the Last 2 x 103y through the Retrieval of Ice Cores from the Transantarctic Mountains, Antarctica", "uid": "p0000169", "west": null}, {"awards": "9316564 Mayewski, Paul", "bounds_geometry": null, "dataset_titles": "Ross Ice Drainage System (RIDS) Glaciochemical Analysis; Siple Dome Ice Core Chemistry and Ion Data", "datasets": [{"dataset_uid": "609266", "doi": "10.7265/N5M906KG", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice; Snow Pit", "people": "Kreutz, Karl; Meeker, Loren D.; Twickler, Mark; Mayewski, Paul A.; Whitlow, Sallie", "repository": "USAP-DC", "science_program": null, "title": "Ross Ice Drainage System (RIDS) Glaciochemical Analysis", "url": "https://www.usap-dc.org/view/dataset/609266"}, {"dataset_uid": "609251", "doi": "", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Dunbar, Nelia; Brook, Edward J.; Mayewski, Paul A.; Blunier, Thomas; Severinghaus, Jeffrey P.; Kreutz, Karl", "repository": "NCEI", "science_program": "Siple Dome Ice Core", "title": "Siple Dome Ice Core Chemistry and Ion Data", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/2461"}], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "9316564 Mayewski This award is for support for a three year program to provide a high resolution record of the Antarctic climate through the acquisition, analysis, and interpretation of records of atmospheric chemical deposition taken from three ice cores located at sites within or immediately adjacent to the Ross Ice Drainage System (RIDS). These cores include one from Taylor Dome, and two from West Antarctic locations identified as potential deep drilling sites for the WAISCORES program. Collection of the two West Antarctic cores is intended to be a lightweight dry-drilling operation to depths of ~ 200 m, which will provide records of \u003e 2 kyr. Glaciochemical analyses will focus on the major cations and anions found in the antarctic atmosphere, plus methanesulfonic acid and selected measurements of the hydrogen ion, aluminum, iron, and silica. These analyses, and companion stable isotope and particle measurements to be carried out by other investigators require \u003c 7% by volume of each core, leaving \u003e 90% for other investigators and storage at the U.S. National Ice Core Laboratory. These records are intended to solve a variety of scientific objectives while also providing spatial sampling and reconnaissance for future U.S. efforts in West Antarctica. ***", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Magnesium; GROUND STATIONS; Nitrate; Methane Sulfonic Acid; Sodium; Ice Core Chemistry; Ammonium (NH4); Sulfate; Ice Core; Chloride; Potassium (k); Calcium (ca)", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Kreutz, Karl; Twickler, Mark; Whitlow, Sallie; Blunier, Thomas; Dunbar, Nelia; Brook, Edward J.; Mayewski, Paul A.; Meeker, Loren D.; Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "NCEI; USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Ross Ice Drainage System (RIDS) Late Holocene Climate Variability", "uid": "p0000145", "west": null}, {"awards": "9714687 Brook, Edward J.", "bounds_geometry": null, "dataset_titles": "Byrd Ice Core Microparticle and Chemistry Data", "datasets": [{"dataset_uid": "609247", "doi": "", "keywords": "Antarctica; Byrd; Byrd Ice Core; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate", "people": "Blunier, Thomas; Brook, Edward J.; Thompson, Lonnie G.; Fluckiger, Jacqueline", "repository": "USAP-DC", "science_program": "Byrd Ice Core", "title": "Byrd Ice Core Microparticle and Chemistry Data", "url": "https://www.usap-dc.org/view/dataset/609247"}], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "This award is for support for a program to make high resolution studies of variations in the concentration of methane, the oxygenisotope composition of paleoatmospheric oxygen, and the total gas content of deep Antarctic ice cores. Studies of the concentration and isotopic composition of air in the firn of the Antarctic ice sheet will also be continued. One objective of this work is to use the methane concentration and oxygen-isotope composition of oxygen of air in ice as time-stratigraphic markers for the precise intercorrelation of Greenland and Antarctic ice cores as well as the correlation of ice cores to other climatic records. A second objective is to use variations in the concentration and interhemispheric gradient of methane measured in Greenland and Antarctic ice cores to deduce changes in continental climates and biogeochemistry on which the atmospheric methane distribution depends. A third objective is to use data on the variability of total gas content in the Siple Dome ice core to reconstruct aspects of the glacial history of West Antarctica during the last glacial maximum. The fourth objective is to participate in collaborative studies of firn air chemistry at Vostok, Siple Dome, and South Pole which will yield much new information about gas trapping in ice as well as the concentration history and isotopic composition of greenhouse gases, oxygen, trace biogenic gases and trace anthropogenic gases during the last 100 years.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "GROUND STATIONS", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Blunier, Thomas; Fluckiger, Jacqueline; Thompson, Lonnie G.; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Studies of Trapped Gases in Firn and Ice from Antarctic Deep Ice Cores", "uid": "p0000168", "west": null}, {"awards": "0087390 Grunow, Anne", "bounds_geometry": "POLYGON((-170 -79,-164 -79,-158 -79,-152 -79,-146 -79,-140 -79,-134 -79,-128 -79,-122 -79,-116 -79,-110 -79,-110 -79.5,-110 -80,-110 -80.5,-110 -81,-110 -81.5,-110 -82,-110 -82.5,-110 -83,-110 -83.5,-110 -84,-116 -84,-122 -84,-128 -84,-134 -84,-140 -84,-146 -84,-152 -84,-158 -84,-164 -84,-170 -84,-170 -83.5,-170 -83,-170 -82.5,-170 -82,-170 -81.5,-170 -81,-170 -80.5,-170 -80,-170 -79.5,-170 -79))", "dataset_titles": "Polar Rock Repository; Rock Magnetic Clast data are at this website", "datasets": [{"dataset_uid": "200243", "doi": "", "keywords": null, "people": null, "repository": "PRR", "science_program": null, "title": "Polar Rock Repository", "url": "https://prr.osu.edu/"}, {"dataset_uid": "001970", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Rock Magnetic Clast data are at this website", "url": "http://bprc.osu.edu/"}], "date_created": "Mon, 23 Aug 2004 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research project between the University of California-Santa Cruz, the University of Texas-Austin, and the Ohio State University to investigate sediment samples recovered from the base of the West Antarctic Ice Sheet (WAIS). West Antarctica is a remote polar region but its dynamic ice sheet, complicated tectonic history, and the sedimentary record of Cenozoic glaciation make it of particular interest to glaciologists and geologists. Glaciologists are concerned with the possibility of significant near-future changes in mass balance of the WAIS that may contribute to the ongoing global sea level rise. Geologists are investigating in West Antarctica the fundamental process of continental extension and are constructing models of a polar marine depositional system using this region as the prime modern example. The subglacial part of West Antarctica has escaped direct geological investigations and all that is known about subglacial geology comes from geophysical remote sensing. Recent acquisitions of new, high-quality geophysical data have led to generation of several enticing models. For instance, subglacial presence of high-magnitude, short-wavelength magnetic anomalies has prompted the proposition that there may be voluminous (\u003e1 million cubic km), Late Cenozoic flood basalts beneath the ice sheet. Another important model suggests that the patterns of fast ice streaming (~100 meters/year) and slow ice motion (~1-10 meters/year) observed within the WAIS are controlled by subglacial distribution of sedimentary basins and resistant bedrock. These new geophysics-based models should be tested with direct observations because they are of such great importance to our understanding of the West Antarctic tectonic history and to our ability to predict the future behavior of the WAIS.\u003cbr/\u003e\u003cbr/\u003eThis research is designed as a pilot study to provide new geologic data, which may help to test the recent models inferred from geophysical observations. The new constraints on subglacial geology and on its interactions with the WAIS will be obtained through petrological and geochemical analyses of basal and subglacial sediments collected previously from seven localities. This investigation will take place in the context of testing the following three hypotheses: (A) the provenance of bedrock clasts in the glacial sediment samples is primarily from West Antarctica, (B) some clasts and muds from the West Antarctic subglacial sediments have been derived by erosion of the (inferred) subglacial Late Cenozoic flood basalts, and (C) the sediments underlying the West Antarctic ice streams were generated by glacial erosion of preglacial sedimentary basins but the sediments recovered from beneath the slow-moving parts of the WAIS were produced through erosion of resistant bedrock.\u003cbr/\u003e\u003cbr/\u003eThe individual hypotheses will be tested by collecting data on: (A) petrology, geochemistry and age of granitoid clasts, (B) petrology, geochemistry and age of basaltic clasts combined with mud geochemistry, and (C) clay mineralogy/paragenesis combined with textural maturity of sand and silt grains. The results of these tests will help evaluate the interesting possibility that subglacial geology may have first-order control on the patterns of fast ice flow within the WAIS. The new data will also help to determine whether the subglacial portion of West Antarctica is a Late Cenozoic flood basalt province. By combining glaciological and geological aspects of West Antarctic research the proposed collaborative project will add to the ongoing U.S. effort to create a multidisciplinary understanding of this polar region.", "east": -110.0, "geometry": "POINT(-140 -81.5)", "instruments": null, "is_usap_dc": false, "keywords": "Till; Subglacial; Clasts; Magnetic Properties; Rock Magnetics; FIELD INVESTIGATION; West Antarctic Ice Sheet", "locations": "West Antarctic Ice Sheet", "north": -79.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Grunow, Anne; Vogel, Stefan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "PRR", "repositories": "PI website; PRR", "science_programs": null, "south": -84.0, "title": "Collaborative Research: Relationship Between Subglacial Geology and Glacial Processes in West Antarctica: Petrological and Geochemical Analyses of Subglacial and Basal Sediments", "uid": "p0000740", "west": -170.0}, {"awards": "0087235 Grew, Edward", "bounds_geometry": "POLYGON((42 -64,43.2 -64,44.4 -64,45.6 -64,46.8 -64,48 -64,49.2 -64,50.4 -64,51.6 -64,52.8 -64,54 -64,54 -64.4,54 -64.8,54 -65.2,54 -65.6,54 -66,54 -66.4,54 -66.8,54 -67.2,54 -67.6,54 -68,52.8 -68,51.6 -68,50.4 -68,49.2 -68,48 -68,46.8 -68,45.6 -68,44.4 -68,43.2 -68,42 -68,42 -67.6,42 -67.2,42 -66.8,42 -66.4,42 -66,42 -65.6,42 -65.2,42 -64.8,42 -64.4,42 -64))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 09 Aug 2004 00:00:00 GMT", "description": "0087235\u003cbr/\u003eGrew\u003cbr/\u003e\u003cbr/\u003eThis award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the role of beryllium in lower crustal partial melting events. The formation of granitic liquids by partial melting deep in the Earth\u0027s crust is one of the major topics of research in igneous and metamorphic petrology today. One aspect of this sphere of research is the beginning of the process, specifically, the geochemical interaction between melts and source rocks before the melt has left the source area. One example of anatexis in metamorphic rocks affected by conditions found deep in the Earth\u0027s crust is pegmatite in the Archean ultrahigh temperature granulite-facies Napier Complex of Enderby Land, East Antarctica. Peak conditions for this granulite-facies metamorphism are estimated to have reached nearly 1100 Degrees Celsius and 11 kilobar, that is, conditions in the Earth\u0027s lower crust in Archean time. The proposed research is a study of the Napier Complex pegmatites with an emphasis on the minerals and geochemistry of beryllium. This element, which is estimated to constitute 3 ppm of the Earth\u0027s upper crust, is very rarely found in any significant concentrations in metamorphic rocks subjected to conditions of the Earth\u0027s lower crust. Structural, geochronological, and mineralogical studies will be carried out to test the hypothesis that the beryllium pegmatites resulted from anatexis of their metapelitic host rocks during the ultrahigh-temperature metamorphic event in the late Archean. Host rocks will be analyzed for major and trace elements. Minerals will be analyzed by the electron microprobe for major constituents including fluorine and by the ion microprobe for lithium, beryllium and boron. The analytical data will be used to determine how beryllium and other trace constituents were extracted from host rocks under ultrahigh-temperature conditions and subsequently concentrated in the granitic melt, eventually to crystallize out in a pegmatite as beryllian sapphirine and khmaralite, minerals not found in pegmatites elsewhere. Mineral compositions and assemblages will be used to determine the evolution and conditions of crystallization and recrystallization of the pegmatites and their host rocks during metamorphic episodes following the ultrahigh-temperature event. Monazite will be analyzed for lead, thorium and uranium to date the ages of these events. Because fluorine is instrumental in mobilizing beryllium, an undergraduate student will study the magnesium fluorphosphate wagnerite in the pegmatites in order to estimate fluorine activity in the melt as part of a senior project. The results of the present project will provide important insights on the melting process in general and on the geochemical behavior of beryllium in particular under the high temperatures and low water activities characteristic of the Earth\u0027s lower crust.", "east": 54.0, "geometry": "POINT(48 -66)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ION MICROPROBES", "is_usap_dc": false, "keywords": "Metamorphism; Li; Be; Pegmatitic Leucosomes; Partial Melting; Lithium; Granulites; Napier Complex; Boron; Beryllium; Mineralogy; Not provided; Continental Crust", "locations": "Napier Complex", "north": -64.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Grew, Edward", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -68.0, "title": "Beryllium in Antarctic Ultrahigh-Temperature Granulite-Facies Rocks and its Role in Partial Melting of the Lower Continental Crust", "uid": "p0000370", "west": 42.0}, {"awards": "0126286 McConnell, Joseph", "bounds_geometry": "POLYGON((-180 -62.83,-144 -62.83,-108 -62.83,-72 -62.83,-36 -62.83,0 -62.83,36 -62.83,72 -62.83,108 -62.83,144 -62.83,180 -62.83,180 -65.547,180 -68.264,180 -70.981,180 -73.698,180 -76.415,180 -79.132,180 -81.849,180 -84.566,180 -87.283,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.283,-180 -84.566,-180 -81.849,-180 -79.132,-180 -76.415,-180 -73.698,-180 -70.981,-180 -68.264,-180 -65.547,-180 -62.83))", "dataset_titles": "Siple Shallow Core Density Data", "datasets": [{"dataset_uid": "609129", "doi": "10.7265/N52F7KCD", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Lamorey, Gregg W.", "repository": "USAP-DC", "science_program": null, "title": "Siple Shallow Core Density Data", "url": "https://www.usap-dc.org/view/dataset/609129"}], "date_created": "Mon, 19 Apr 2004 00:00:00 GMT", "description": "This award provides one year of support to use newly developed technology in which an ice-core melter is coupled with both an Inductively Coupled Plasma - Mass Spectrometer (ICP-MS) and a traditional Continuous Flow Analysis (CFA) system, to measure a continuous time series of chemical and trace element deposition on the Siple Dome ice core from West Antarctica. A coupled ice-core melter, ICP-MS, and CFA system will be used to measure concentrations of a number of elements, isotopes and chemical species at very high depth resolution (~2-cm) in the top 54 m of the Siple Dome A-core. Pilot data from analyses of ~6 m from the nearby but much lower accumulation J-core site at Siple Dome, together with more extensive results from Summit, Greenland, indicate that it will be possible to obtain exactly co-registered, high-quality records of at least 12 seasonally varying elements (sodium, magnesium, aluminum, potassium, calcium, iron, manganese, rubidium, strontium, zirconium, barium, lead) and three other chemical species and ions (ammonium, nitrate, calcium ion) with this system. Under this proposed research, we will also add continuous measurements of sulfate to our system. Because more than sufficient core from Siple Dome for these depths is archived at the National Ice Core Laboratory, the proposed research will require no fieldwork. The continuous, very high-resolution, ~350-y record of these elemental tracers will enhance the value of previous chemical and isotopic measurements that have been made on the Siple Dome core and will be particularly valuable for comparisons between ice-core proxies and modern instrumental data related to El Nino-Southern Oscillation (ENSO) as well as for validation of model simulations of atmospheric circulation. These data, and the expertise gained through this research, will be invaluable when this novel chemical analysis technology is eventually applied to deep ice-core records for the study of rapid climate-change events.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "WAISCORES; Siple Coast; Glaciology; Not provided; GROUND-BASED OBSERVATIONS; Ice Core; Siple; Antarctica; Density; Snow; Ice Sheet; Siple Dome; Shallow Core; GROUND STATIONS; Stratigraphy", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": -62.83, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Lamorey, Gregg W.; McConnell, Joseph", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -90.0, "title": "Continuous High Resolution Ice-Core Chemistry using ICP-MS at Siple Dome", "uid": "p0000159", "west": -180.0}, {"awards": "8919147 Elliot, David", "bounds_geometry": null, "dataset_titles": "Ice Thickness and Surface Elevation, Southeastern Ross Embayment, West Antarctica", "datasets": [{"dataset_uid": "609099", "doi": "10.7265/N5WW7FKC", "keywords": "Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ross Embayment; West Antarctica", "people": "Brozena, J. M.; Finn, C. A.; Blankenship, Donald D.; Morse, David L.; Bell, Robin; Peters, M. E.; Kempf, Scott D.; Hodge, S. M.; Studinger, Michael S.; Behrendt, J. C.", "repository": "USAP-DC", "science_program": null, "title": "Ice Thickness and Surface Elevation, Southeastern Ross Embayment, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609099"}], "date_created": "Wed, 17 Mar 2004 00:00:00 GMT", "description": "This award will support a combined airborne radar and aeromagnetic survey of two 220 x 330 km regions between the Transantarctica Mountains and Marie Byrd Land during the 1990-91 and 1991-92 field seasons. These efforts will address significant problems identified in the Ross Transect Zone (RTZ) by the National Academy of Sciences (1986) report \"Antarctic Solid Earth Sciences Research,\" and by the report to NSF \"A Plan for a United States Program to Study the Structure and Evolution of the Antarctic Lithosphere (SEAL).\" The surveys will be flown using the NSF/TUD radar and an areomagnetics system mounted in a light aircraft. The grid spacing will be 5 km and navigation will be by radiopositioning. In addition to maps of subglacial topography and magnetic intensity, attempts will be made to reconstruct the position of subglacial diffractors in three dimensions. This reconstruction should give new information about the distribution of escarpments and therefore the tectonic relationships within the region, especially when combined with the magnetic results. These experiments will be conducted by the Byrd Polar Research Center of the Ohio State University and the Water Resources and Geological Divisions of the U.S. Geological Survey.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS", "is_usap_dc": true, "keywords": "Subglacial Topography; SOAR; Airborne Laser Altimeters; Ross Embayment; West Antarctica; Ice Stream; Surface Morphology; Airborne Laser Altimetry; Aerogeophysics; Ice Sheet Thickness; Airborne Radar Sounding; Ice Thickness; West Antarctic Ice Sheet; Ice Surface Elevation; Casertz", "locations": "Ross Embayment; West Antarctica; West Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Elliot, David; Bell, Robin; Blankenship, Donald D.; Brozena, J. M.; Finn, C. A.; Hodge, S. M.; Kempf, Scott D.; Behrendt, J. C.; Morse, David L.; Peters, M. E.; Studinger, Michael S.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Corridor Aerogeophysics of the Southeastern Ross Transect Zone (CASERTZ), Antarctica", "uid": "p0000056", "west": null}, {"awards": "9615333 Saltzman, Eric", "bounds_geometry": "POINT(-148.8 -81.7)", "dataset_titles": "Biogenic Sulfur in the Siple Dome Ice Core", "datasets": [{"dataset_uid": "609201", "doi": "10.7265/N5S180F1", "keywords": "Antarctica; Biota; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Saltzman, Eric; Finley, Brandon; Dioumaeva, Irina", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Biogenic Sulfur in the Siple Dome Ice Core", "url": "https://www.usap-dc.org/view/dataset/609201"}], "date_created": "Tue, 09 Mar 2004 00:00:00 GMT", "description": "This award is for support for four years of funding for a program of biogenic sulfur measurements on the Siple Dome ice core. Biogenic sulfur is a major aerosol-forming constituent of the atmosphere and has potentially important links to the earth\u0027s radiation budget. Previous work on the Vostok ice core has demonstrated a remarkable climate-related variability in biogenic sulfur, suggesting that the sulfur cycle may act to stabilize climate (keep the glacial atmosphere cool and the interglacial atmosphere warm) in the Southern Hemisphere. In this study, methane-sulfonate (MSA) will be measured on the Siple Dome ice core as part of the West Antarctic ice sheet program (WAIS). Siple Dome is located in a region which is strongly impacted by the incursion of marine air onto the Antarctic plateau. Because of its proximity to the coast and meteorological setting, it is expected that variability in high-latitude marine biogenic sulfur emissions should dominate the MSA record at this site. In addition to the deep ice core record, samples from shallow cores will also be analyzed to provide information about regional variability and decadal-to-centennial scale variability in the deposition of sulfur-containing aerosols from high latitude source regions over the past 200 years.", "east": -148.8, "geometry": "POINT(-148.8 -81.7)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "FIELD SURVEYS; Siple Dome; GROUND-BASED OBSERVATIONS; Biogenic Sulfur; FIELD INVESTIGATION; Not provided; LABORATORY; Methane Sulfonate", "locations": "Siple Dome", "north": -81.7, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Saltzman, Eric; Dioumaeva, Irina; Finley, Brandon", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.7, "title": "Biogenic Sulfur in the Siple Dome Ice Core", "uid": "p0000251", "west": -148.8}, {"awards": "9980691 Wahlen, Martin", "bounds_geometry": null, "dataset_titles": "Atmospheric CO2 Trapped in the Ice Core from Siple Dome, Antarctica", "datasets": [{"dataset_uid": "609202", "doi": "10.7265/N5N877Q9", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; CO2; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Deck, Bruce; Ahn, Jinho; Wahlen, Martin", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Atmospheric CO2 Trapped in the Ice Core from Siple Dome, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609202"}], "date_created": "Thu, 11 Dec 2003 00:00:00 GMT", "description": "9980691 Wahlen This award is for support for three years of funding to reconstruct the atmospheric carbon dioxide (CO2) and carbon-13 isotope (d13C) concentration in ice cores from Antarctica over several climatic periods. Samples from the Holocene, the Last Glacial Maximum (LGM)-Holocene transition and glacial stadial/interstadial episodes will be examined. Samples from the Siple Dome ice core drilled in 1998/99 will be made, in addition to measurements from the Taylor Dome and Vostok ice cores. The major objectives are to investigate the phase relationships between variations in the concentration of atmospheric CO2, its carbon isotope composition, and temperature changes (indicated by 18dO and dD of the ice) during deglaciations as well as across rapid climate change events (e.g. Dansgaard-Oeschger events). This will help to determine systematic changes in the global carbon cycle during and between different climatic periods, and to ascertain if the widely spread northern hemisphere temperature stadial/interstadial events produced a global atmospheric carbon dioxide signal. Proven experimental techniques will be used.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "FIELD SURVEYS; Siple Dome; Ice Core; USAP-DC; Carbon Dioxide", "locations": "Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Wahlen, Martin; Ahn, Jinho; Deck, Bruce", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "CO2 and Delta 13CO2 in Antarctic Ice Cores", "uid": "p0000166", "west": null}, {"awards": "9420648 Waddington, Edwin", "bounds_geometry": null, "dataset_titles": "Siple Dome Ice Core Age-Depth Scales", "datasets": [{"dataset_uid": "609130", "doi": "10.7265/N5T151KD", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Nereson, Nadine A.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Siple Dome Ice Core Age-Depth Scales", "url": "https://www.usap-dc.org/view/dataset/609130"}], "date_created": "Tue, 09 Sep 2003 00:00:00 GMT", "description": "This award is for support for a three year program to investigate the response of ice domes, such as Siple Dome in West Antarctica, to changing boundary conditions, for example as arising from fluctuations in thickness or position of bounding ice streams. A range of models will be used, from simple one-dimensional analytical models to coupled dynamic-thermodynamic flow models, to investigate the response of the ice dome to boundary forcing, and the record that boundary forcing can leave in the ice core record. Using radar, temperature, and ice core data from the currently funded field programs on Siple Dome, and ice flux and thickness values from the map view model as boundary conditions, a flow line across Siple Dome will be studied and possible ranges of time scales, the likely origin of ice near the bed, and the basal temperature conditions that exist now and existed in the past will be determined.The response of internal stratigraphy patterns to climate and dynamic forcing effects will be investigated and observed internal layers from ice cores will be used to infer the forcing history.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Ice Sheet; Snow; Not provided; Stratigraphy; Shallow Core; Siple Coast; Antarctica; Ice Core; Siple Dome; Glaciology; Density; Siple; WAISCORES; GROUND STATIONS; GROUND-BASED OBSERVATIONS", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Nereson, Nadine A.; Waddington, Edwin D.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Ice Modelling Study of Siple Dome: WAIS Ice Dynamics, WAISCORES Paleoclimate and Ice Stream/Ice Dome Interactions", "uid": "p0000058", "west": null}, {"awards": "9909469 Scambos, Ted", "bounds_geometry": null, "dataset_titles": "Ice Motion and Topography Near Margin Areas of Kamb Ice Stream, Antarctica", "datasets": [{"dataset_uid": "609141", "doi": "10.7265/N5WS8R52", "keywords": "Antarctica; Geodesy; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Kamb Ice Stream", "people": "Catania, Ginny; Conway, Howard; Raymond, Charles; Scambos, Ted; Gades, Anthony", "repository": "USAP-DC", "science_program": null, "title": "Ice Motion and Topography Near Margin Areas of Kamb Ice Stream, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609141"}], "date_created": "Fri, 01 Aug 2003 00:00:00 GMT", "description": "9909469 Scambos This award provides support for three years of funding to study the scar-like features that are well-known from the Siple Coast ice stream system in West Antarctica. The objective of the proposed field work is to identify the nature of several as yet unvisited scars, and to further characterize previously-identified margin scars that are poorly dated. Advanced Very High Resolution Radiometer (AVHRR) and Radarsat image data will be used to locate and map the features, and place them in a regional context. The study seeks to describe the recent history of the Siple Coast glaciers and investigate the causes of their changes in configuration. The main investigative tools will be low-frequency RES and high-frequency ground penetrating radar (GPR) profiles to image internal layers and measure depths to buried crevasses or disrupted layering. This, coupled with accumulation rates determined from shallow ice cores, will provide \"shutdown\" ages for the margin features. The field data will provide input parameters for simple models of ice flow for margins and inter-ice stream ridges during active shearing and after shutdown. This modeling will estimate the initial elevation of a scar at the time of shut down and the corresponding ice stream elevation at that time.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS", "is_usap_dc": true, "keywords": "Ice Velocity; Ice Acceleration; Ice Sheet Elevation; GROUND-BASED OBSERVATIONS; Ice Stream; Antarctic Ice Sheet; Ice Sheet; Ice Surface Elevation; Ice Position; Ice Surface; Ice Stream C Velocities; Ice Movement; Ice; Cryosphere", "locations": "Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Scambos, Ted; Catania, Ginny; Conway, Howard; Gades, Anthony; Raymond, Charles", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: History and Evolution of the Siple Coast Ice Stream System as Recorded by Former Shear-Margin Scars", "uid": "p0000165", "west": null}, {"awards": "9615347 Conway, Howard", "bounds_geometry": null, "dataset_titles": "Roosevelt Island Bedrock and Surface Elevations; Roosevelt Island Ice Core Density and Beta Count Data", "datasets": [{"dataset_uid": "609140", "doi": "10.7265/N51J97NB", "keywords": "Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Roosevelt Island; Solid Earth", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Bedrock and Surface Elevations", "url": "https://www.usap-dc.org/view/dataset/609140"}, {"dataset_uid": "609139", "doi": "10.7265/N55718ZW", "keywords": "Antarctica; Beta Count; Density; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; Roosevelt Island", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Ice Core Density and Beta Count Data", "url": "https://www.usap-dc.org/view/dataset/609139"}], "date_created": "Fri, 23 May 2003 00:00:00 GMT", "description": "This award is for two years of support to perform radar investigations across former shear margins at Roosevelt Island and Ice Stream C in order to measure changes in the configuration and continuity of internal layers and the bed. The broad goal of these investigations is to gain an understanding of ice stream flow and the timing and mechanisms of ice stream shutdown. A high-resolution short-pulse radar system will be used for detailed examination of the uppermost hundred meters of the firn and ice, and a monopulse sounding-radar system will be used to image the rest of the ice column (including internal layers) and the bed. Changes in the shape and continuity of layers will be used to interpret mechanisms and modes of ice stream flow including the possible migration of stagnation fronts and rates of shut-down. Variations in bed reflectivity will be used to deduce basal hydrology conditions across lineations. Accumulation rates deduced from snow pits and shallow cores will be used to estimate near-surface depth-age profiles. Improved understanding of ice stream history opens the possibility of linking changes in the West Antarctic ice sheet with the geologic evidence from Northern Victoria Land and the ocean record of the retreat of the grounding line in the Ross Sea.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e RA; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Radioactive Decay; Radar Echo Sounder; Antarctica; Radar Altimetry; Densification; Bedrock Elevation; Ice Sheet Elevation; Satellite Radar Data; GROUND-BASED OBSERVATIONS; Radar; Ice Core; Snow Stratigraphy; Terrain Elevation; Antarctic Ice Sheet; Stable Isotopes; Ice Surface Elevation; Surface Elevation; Glaciology; Snow Densification; Ice Core Data; GROUND STATIONS; Not provided; Altimetry; Antarctic; Ice Core Stratigraphy; Ice Stratigraphy", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Conway, Howard", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Radar Investigations of Former Shear Margins: Roosevelt Island and Ice Stream C", "uid": "p0000164", "west": null}, {"awards": "9615554 Fitzpatrick, Joan", "bounds_geometry": null, "dataset_titles": "Digital Images of Thin Sections from Siple Dome; Digital Imaging for Siple Dome Ice Core Analysis, Antarctica", "datasets": [{"dataset_uid": "609127", "doi": "10.7265/N59Z92T4", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Photo/video; Photo/Video; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Fitzpatrick, Joan", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Digital Images of Thin Sections from Siple Dome", "url": "https://www.usap-dc.org/view/dataset/609127"}, {"dataset_uid": "609413", "doi": "10.7265/N5XG9P2G", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Photo/video; Photo/Video; Siple Dome; Siple Dome Ice Core", "people": "Fitzpatrick, Joan; Alley, Richard; Spencer, Matthew", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Digital Imaging for Siple Dome Ice Core Analysis, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609413"}], "date_created": "Wed, 14 May 2003 00:00:00 GMT", "description": "This award is for support for two years to develop the technology and methodology for digitizing the photographs and analyzing the thin sections from ice cores. In addition, the application of digital technology for whole-core stratigraphy, using digital photography, image enhancement and image processing will be investigated. The thin section analysis will be piloted with samples already in hand from the Taylor Dome ice core. If successful, these techniques will be applied to samples from the Siple Dome ice core, in cooperation with Principal Investigators already funded to retrieve and examine these sections. The original digital images with all original data annotation files will be distributed to Siple Dome principal investigators for their use in the interpretation of their own data. All software and hardware acquired for this project will become part of the permanent equipment inventory at the U.S. National Ice Core Laboratory and will be available for use by clients at the facility.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Antarctica; Glaciology; Ice Sheet; Siple; Ice Core; Stratigraphy; GROUND STATIONS; Siple Dome; WAISCORES; Trapped Air Bubbles; Photo; Snow; Density; Volcanic Deposits; Not provided; Ice Core Data; GROUND-BASED OBSERVATIONS; Siple Coast; Chemical Composition", "locations": "Siple Dome; Antarctica; Siple; Siple Coast", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Fitzpatrick, Joan; Alley, Richard; Spencer, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Digital Imaging for Ice Core Analysis", "uid": "p0000011", "west": null}, {"awards": "9527262 Gow, Anthony", "bounds_geometry": null, "dataset_titles": "Physical and Structural Properties of the Siple Dome Ice Cores", "datasets": [{"dataset_uid": "609128", "doi": "10.7265/N5668B34", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Photo/video; Photo/Video; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Meese, Deb; Gow, Tony", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Physical and Structural Properties of the Siple Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609128"}], "date_created": "Wed, 14 May 2003 00:00:00 GMT", "description": "This award is for support for a program to investigate the visual stratigraphy, index physical properties, relaxation characteristics and crystalline structure of ice cores from Siple Dome, West Antarctica. This investigation will include measurements of a time-priority nature that must be initiated at the drill site on freshly-drilled cores. This will be especially true of cores from the brittle ice zone, which is expected to comprise a significant fraction of the ice core. The brittle zone includes ice in which relaxation , resulting from the release of confining pressure is maximized and leads to significant changes in the mechanical condition of the core that must be considered in relation to the processing and analysis of ice samples for entrapped gas and chemical studies. This relaxation will be monitored via precision density measurements made initially at the drill site and repeated at intervals back in the U.S. Other studies will include measurement of the annual layering in the core to as great a depth as visual stratigraphy can be deciphered, crystal size measurements as a function of depth and age, c-axis fabric studies, and analysis of the physical properties of any debris-bearing basal ice and its relationship to the underlying bedrock. Only through careful documentation and analysis of these key properties can we hope to accurately assess the dynamic state of the ice and the age-depth relationships essential to deciphering the paleoclimate record at this location.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Siple Dome; Antarctica; Stratigraphy; Ice Sheet; GROUND-BASED OBSERVATIONS; Density; Siple; Chemical Composition; Volcanic Deposits; Siple Coast; WAISCORES; Not provided; GROUND STATIONS; Pico; Ice Core; Tephra; Fabric; Glaciology; Snow", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Gow, Tony; Meese, Deb", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Physical and Structural Properties of the Siple Dome Core", "uid": "p0000064", "west": null}, {"awards": "9615167 Dunbar, Nelia; 9527373 Dunbar, Nelia", "bounds_geometry": null, "dataset_titles": "Blue Ice Tephra II - Brimstone Peak; Blue Ice Tephra II - Mt. DeWitt; Tephra in Siple and Taylor Dome Ice Cores; Volcanic Records in the Siple and Taylor Dome Ice Cores", "datasets": [{"dataset_uid": "609110", "doi": "10.7265/N50P0WXF", "keywords": "Antarctica; Backscattered Electron Images; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Siple Dome Ice Core; Taylor Dome Ice Core; WAIS", "people": "Dunbar, Nelia", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Tephra in Siple and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609110"}, {"dataset_uid": "609114", "doi": "10.7265/N5MG7MDK", "keywords": "Antarctica; Blue Ice; Brimstone Peak; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Petrography; Tephra", "people": "Dunbar, Nelia", "repository": "USAP-DC", "science_program": null, "title": "Blue Ice Tephra II - Brimstone Peak", "url": "https://www.usap-dc.org/view/dataset/609114"}, {"dataset_uid": "609110", "doi": "10.7265/N50P0WXF", "keywords": "Antarctica; Backscattered Electron Images; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Siple Dome Ice Core; Taylor Dome Ice Core; WAIS", "people": "Dunbar, Nelia", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Tephra in Siple and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609110"}, {"dataset_uid": "609115", "doi": "10.7265/N5GQ6VPV", "keywords": "Antarctica; Blue Ice; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Mount Dewitt; Petrography; Tephra", "people": "Dunbar, Nelia", "repository": "USAP-DC", "science_program": null, "title": "Blue Ice Tephra II - Mt. DeWitt", "url": "https://www.usap-dc.org/view/dataset/609115"}, {"dataset_uid": "609126", "doi": "10.7265/N5FQ9TJG", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome Ice Core; Taylor Dome Ice Core; Tephra; WAIS; WAISCORES", "people": "Dunbar, Nelia; Zielinski, Gregory", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Volcanic Records in the Siple and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609126"}, {"dataset_uid": "609126", "doi": "10.7265/N5FQ9TJG", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome Ice Core; Taylor Dome Ice Core; Tephra; WAIS; WAISCORES", "people": "Dunbar, Nelia; Zielinski, Gregory", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Volcanic Records in the Siple and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609126"}], "date_created": "Sat, 01 Jun 2002 00:00:00 GMT", "description": "Dunbar/Kyle OPP 9527373 Zielinski OPP 9527824 Abstract The Antarctic ice sheets are ideal places to preserve a record the volcanic ash (tephra) layers and chemical aerosol signatures of volcanic eruptions. This record, which is present both in areas of bare blue ice, as well as in deep ice cores, consists of a combination of local eruptions, as well as eruptions from more distant volcanic sources from which glassy shards can be chemically fingerprinted and related to a source volcano. Field work carried out during the 1994/1995 Antarctic field season in the Allan Hills area of Antarctica, and subsequent microbeam chemical analysis and 40Ar/39Ar dating has shown that tephra layers in deep Antarctic ice preserve a coherent, systematic stratigraphy, and can be successfully mapped, dated, chemically fingerprinted and tied to source volcanoes. The combination of chemical fingerprinting of glass shards, and chemical analysis of volcanic aerosols associated with ash layers will allow establishment of a high-resolution chronology of local and distant volcanism that can help understand patterns of significant explosive volcanisms and atmospheric loading and climactic effects associated with volcanic eruptions. Correlation of individual tephra layers, or sets of layers, in blue ice areas, which have been identified in many places the Transantarctic Mountains, will allow the geometry of ice flow in these areas to be better understood and will provide a useful basis for interpreting ice core records.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES", "is_usap_dc": true, "keywords": "USAP-DC; Siple Coast; Sulfur Dioxide; Siple Dome; Taylor Dome; Chlorine; WAISCORES; Ice Core; Tephra; Geochemistry; Volcanic Deposits; GROUND STATIONS; Brimstone Peak; GROUND-BASED OBSERVATIONS; Magnesium Oxide; Glaciology; Mount Dewitt; Silicon Dioxide; Glass Shards; Ice Sheet; Siple; Nickel Oxide; Potassium Dioxide; Not provided; Manganese Oxide; Volcanic; Snow; Nitrogen; Iron Oxide; Titanium Dioxide; Stratigraphy; Antarctica", "locations": "Antarctica; Siple; Siple Coast; Siple Dome; Taylor Dome; Brimstone Peak; Mount Dewitt", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Dunbar, Nelia; Zielinski, Gregory", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": null, "title": "Collaborative Research: Volcanic Record in Antarctic Ice: Implications for Climatic and Eruptive History and Ice Sheet Dynamics of the South Polar Region", "uid": "p0000065", "west": null}, {"awards": "9615292 Wahlen, Martin", "bounds_geometry": null, "dataset_titles": "Carbon-Isotopic Composition of Atmospheric CO2 since the Last Glacial Maximum; Taylor Dome Ice Core Chemistry, Ion, and Isotope Data", "datasets": [{"dataset_uid": "609246", "doi": "", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Paleoclimate; Taylor Dome; Taylor Dome Ice Core", "people": "Indermuhle, A.; Sowers, Todd A.; Smith, Jesse; Brook, Edward J.; Mayewski, Paul A.; Steig, Eric J.", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Taylor Dome Ice Core Chemistry, Ion, and Isotope Data", "url": "https://www.usap-dc.org/view/dataset/609246"}, {"dataset_uid": "609108", "doi": "10.7265/N54F1NN5", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Taylor Dome; Taylor Dome Ice Core", "people": "Wahlen, Martin", "repository": "USAP-DC", "science_program": null, "title": "Carbon-Isotopic Composition of Atmospheric CO2 since the Last Glacial Maximum", "url": "https://www.usap-dc.org/view/dataset/609108"}], "date_created": "Tue, 01 Jan 2002 00:00:00 GMT", "description": "This award is for support of a program to reconstruct the record of atmospheric carbon dioxide (and the carbon-13 isotopes of carbon dioxide) over several intervals, including the Last Glacial Maximum-Holocene transition, interstadial episodes, the mid-Holocene, the last 1000 years and the penultimate glacial period, using ice from the Taylor Dome and Vostok ice cores. The major objective of this study is to investigate the phase relationship between variations of the greenhouse gases occluded in the ice cores and temperature changes (indicated by oxygen and deuterium isotopes) during the last deglaciation. In addition, the concentration of atmospheric carbon dioxide over the past 1000 years and during the mid-Holocene will be determined in these cores.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "USAP-DC; Ice Core; GROUND-BASED OBSERVATIONS; Carbon; Trapped Gases; Glaciology; GROUND STATIONS; Taylor Dome; Carbon Dioxide; Isotope; Antarctica; Nitrogen", "locations": "Antarctica; Taylor Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Steig, Eric J.; Wahlen, Martin; Smith, Jesse; Brook, Edward J.; Indermuhle, A.; Mayewski, Paul A.; Sowers, Todd A.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": null, "title": "Carbon Dioxide and Carbon Isotopes in the Taylor Dome and Vostok Ice Cores", "uid": "p0000153", "west": null}, {"awards": "9222121 Dalziel, Ian", "bounds_geometry": null, "dataset_titles": "Concentration and Isotopic Composition of O2 and N2 in Trapped Gases of the Vostok Ice Core", "datasets": [{"dataset_uid": "609107", "doi": "10.7265/N5862DCW", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciology; Ice Core Records; Lake Vostok; Paleoclimate; UPLC-Q-TOF; Vostok Ice Core", "people": "Bender, Michael", "repository": "USAP-DC", "science_program": null, "title": "Concentration and Isotopic Composition of O2 and N2 in Trapped Gases of the Vostok Ice Core", "url": "https://www.usap-dc.org/view/dataset/609107"}], "date_created": "Tue, 01 Jan 2002 00:00:00 GMT", "description": "This award supports an in situ and short traverse seismic reflection/refraction and magnetotelluric experiment in West Antarctica. This collaborative experiment involves four awards at four institutions. The four-fold purpose is 1) to investigate part of the Byrd Subglacial Basin, 2) to test techniques for this work that could be done in a long traverse, 3) to determine the viability of the magnetotelluric method on a thick (electrically resistive) ice sheet, and 4) to evaluate the relative merits of refraction with wide reflection versus reflection with narrow refraction seismic studies in imaging the lithosphere. The geophysical techniques that will be employed are capable of imaging the ice sheet, the continental lithosphere, and the upper mantle, as well as determining physical properties of parts of the lithosphere and mantle. Investigations of outcrop geology over the last thirty years in West Antarctica and the Transantarctic Mountains have lead to recent interpretations that the crust is made up of many different lithospheric blocks. Seismic reflection work is the only way to image the crust in detail and the refraction work is the only way to determine physical properties of the layers and blocks defined by the reflection work. The magnetotelluric work is scientifically risky because it may not yield useful information when used over the electrically resistive ice sheet; however, if it works it has the potential to image molten rock in the crust and upper mantle. In a continental rift region such as West Antarctica, the presence of melt in the lithosphere is likely and, if documented, has very important ramifications to ice sheet dynamics. Research work supported by this award is expected to provide constraints to models of a range of crustal processes from models of ice sheet dynamics to tectonic and kinematic models of lithospheric thinning and rifting.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Isotope; Vostok; USAP-DC; Antarctica; Trapped Gases; Ice Core; Glaciology; Nitrogen; GROUND STATIONS", "locations": "Antarctica; Vostok", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bender, Michael; Dalziel, Ian W.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Seismic Traverse of the Byrd Subglacial Basin-Field Test", "uid": "p0000150", "west": null}, {"awards": "9526601 Albert, Mary", "bounds_geometry": null, "dataset_titles": "Snow and Firn Temperature and Permeability Measurements from Siple Dome, Antarctica", "datasets": [{"dataset_uid": "609100", "doi": "10.7265/N5S46PVZ", "keywords": "Antarctica; Glaciology; Permeability; Siple Dome; Siple Dome Ice Core; Snow/ice; Snow/Ice; Temperature", "people": "Albert, Mary R.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Snow and Firn Temperature and Permeability Measurements from Siple Dome, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609100"}], "date_created": "Sat, 01 Dec 2001 00:00:00 GMT", "description": "This award supports a project to examine the physical processes that affect the manner in which heat, vapor and chemical species in air are incorporated into snow and polar firn. The processes include advection, diffusion, and the effects of solar radiation penetration into the snow. An understanding of these processes is important because they control the rate at which reactive and non-reactive chemical species in the atmosphere become incorporated into the snow, firn, and polar ice, and thus will affect interpretation of polar ice core data. Currently, the interpretation of polar ice core data assumes that diffusion controls the rate at which chemical species are incorporated into firn. This project will determine whether ventilation, or advection of the species by air movement in the firn, and radiation penetration processes have a significant effect. Field studies at the two West Antarctic ice sheet deep drilling sites will be conducted to determine the spatial and temporal extent for key parameters, and boundary conditions needed to model the advection, conduction, and radiation transmission/absorption processes. An existing multidimensional numerical model is being expanded to simulate the processes and to serve as the basis for ongoing and future work in transport and distribution of reactive chemical species.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e PERMEAMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS", "is_usap_dc": true, "keywords": "Glaciology; Antarctica; Snow Permeability; Firn Permeability; USAP-DC; GROUND-BASED OBSERVATIONS; Not provided; GROUND STATIONS; Snow Properties; Snow Temperature; Siple Dome; Firn Temperature", "locations": "Antarctica; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Albert, Mary R.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Near-Surface Processes Affecting Gas Exchange: West Antarctic Ice Sheet", "uid": "p0000061", "west": null}, {"awards": "9318121 Anandakrishnan, Sridhar", "bounds_geometry": null, "dataset_titles": "Ice Velocity Data from Ice Stream C, West Antarctica", "datasets": [{"dataset_uid": "609106", "doi": "10.7265/N5CZ3539", "keywords": "Antarctica; Geodesy; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; WAIS", "people": "Anandakrishnan, Sridhar", "repository": "USAP-DC", "science_program": null, "title": "Ice Velocity Data from Ice Stream C, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609106"}], "date_created": "Sat, 01 Dec 2001 00:00:00 GMT", "description": "9318121 Anandakrishnan This award is for support for a three year project to test the hypothesis that a controlling parameter of fast ice-stream flow is the hydrologic state of discrete zones of high friction (\"sticky spots\") at the bed of the ice streams. Previous work has discovered an enormous difference in basal microearthquake activity between fast-flowing ice stream B and ice stream C, which stopped flowing within the last 200 years. It is hypothesized that the basal water system is lubricating the sticky spots under the fast ice stream and thus inhibiting microearthquake activity, and at the same time permitting fast ice flow. This experiment is intended to collect a continuous record of wide-bandwidth microearthquake data from a variety of sites, on the ice streams, in the transition zone, and on the inland ice. ***", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS", "is_usap_dc": true, "keywords": "Glaciology; USAP-DC; Ice Stream; Velocity Measurements; Ice Velocity; GROUND-BASED OBSERVATIONS; Ice Sheet; West Antarctic Ice Sheet; Ice Stream C Velocities; GPS; Antarctica", "locations": "Antarctica; West Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Anandakrishnan, Sridhar", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Microearthquake Monitoring of Ice Stream C, West Antarctica: A Sensor for Sticky Spots", "uid": "p0000161", "west": null}, {"awards": "9980538 Lohmann, Kyger", "bounds_geometry": "POINT(-56 -64)", "dataset_titles": "Stable isotope and minor element proxies for Eocene climate of Seymour Island, Antarctica", "datasets": [{"dataset_uid": "600019", "doi": "", "keywords": null, "people": "Lohmann, Kyger", "repository": "USAP-DC", "science_program": null, "title": "Stable isotope and minor element proxies for Eocene climate of Seymour Island, Antarctica", "url": "https://www.usap-dc.org/view/dataset/600019"}], "date_created": "Mon, 11 Jun 2001 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research for construction of a long-term record of climate during the late Cretaceous and early Paleogene to assess the annual seasonality in temperature on the coastal margin of Antarctica. Stable isotope and element compositions of well-preserved bivalve shells collected on Seymour Island will be the primary source of data used to reconstruct paleoenvironmental conditions. Seasonal temperature records collected through high-resolution sampling along growth structures in bivalve shells will allow seasonality to be assessed during different climate states and during periods of rapid climate change. In addition, high stratigraphic resolution will enable this project to detect the presence and frequency of short-lived thermal excursions that may have extended to such high latitudes. To compile a reliable temporal record of paleoclimate, two major avenues of investigation will be undertaken: 1) precise stratigraphic (and therefore, temporal) placement of fossils over a large geographic area will be employed through the use of a graphical technique employing geometric projections; 2) stable isotope and elemental analyses will be performed to derive paleotemperatures and to evaluate diagenetic alteration of shell materials. To provide realistic comparisons of paleotemperatures across stratigraphic horizons, this study will focus on a single taxon, thus avoiding complications due to the mixing of faunal assemblages that have been encountered in previous studies of this region. The near-shore marine fossil record on Seymour Island provides a unique opportunity to address many questions about the Antarctic paleoenvironment, including the relation between seasonality and different climate states, the influence of climate on biogeographic distribution of specific taxa, the effect of ice-volume changes on the stable isotope record from the late Cretaceous through the Eocene, and the plausibility of high-latitude bottom water formation during this time interval. In particular, information that will be collected concerning patterns of seasonality and the presence (or absence) of short-lived thermal excursions will be extremely valuable to an understanding of the response of high latitude sites during climate transitions from globally cool to globally warm conditions.", "east": -56.0, "geometry": "POINT(-56 -64)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided; Bivalves; Geochemical Composition; Carbon Isotopes; Climate", "locations": null, "north": -64.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e PALEOGENE \u003e EOCENE", "persons": "Lohmann, Kyger; Barrera, Enriqueta", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.0, "title": "Evolution of Sea Surface Temperatures in the Coastal Antarctic Paleoenvironment During the Late Cretaceous and Paleogene", "uid": "p0000613", "west": -56.0}, {"awards": "9725305 Severinghaus, Jeffrey", "bounds_geometry": null, "dataset_titles": "Firn Air Isotope and Temperature Measurements from Siple Dome and South Pole", "datasets": [{"dataset_uid": "609098", "doi": "10.7265/N51N7Z2P", "keywords": "Antarctica; Atmosphere; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciology; Isotope; Paleoclimate; Siple Dome; Snow/ice; Snow/Ice; South Pole; Temperature", "people": "Battle, Mark; Severinghaus, Jeffrey P.; Grachev, Alexi", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Firn Air Isotope and Temperature Measurements from Siple Dome and South Pole", "url": "https://www.usap-dc.org/view/dataset/609098"}], "date_created": "Mon, 01 Jan 2001 00:00:00 GMT", "description": "9725305 Severinghaus This award supports a project to develop and apply a new technique for quantifying temperature changes in the past based on the thermodynamic principle of thermal diffusion, in which gas mixtures in a temperature gradient become fractionated. Air in polar firn is fractionated by temperature gradients induced by abrupt climate change, and a record of this air is preserved in bubbles in the ice. The magnitude of the abrupt temperature change, the precise relative timing, and an estimate of the absolute temperature change can be determined. By providing a gas-phase stratigraphic marker of temperature change, the phasing of methane (with decadal precision) and hence widespread climate change (relative to local polar temperature changes) can be determined (across five abrupt warming events during the last glacial period).", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e FLASKS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS", "is_usap_dc": true, "keywords": "Isotopic History; GROUND STATIONS; Thermal Diffusion; Firn Temperature Measurements; Not provided; Oxygen Isotope; Trapped Air Bubbles; Shallow Firn Air; Firn Air Isotope Measurements; Seasonal Temperature Gradients; Mass Spectrometry; GROUND-BASED OBSERVATIONS; Thermal Fractionation; Polar Firn Air; Isotopic Anomalies; Xenon; Atmospheric Gases; Argon Isotopes; Siple Dome; Krypton; Nitrogen Isotopes; Seasonal Temperature Changes; Antarctica; Ice Core Gas Records; Firn Air Isotopes; Mass Spectrometer; South Pole; Firn Isotopes; Borehole", "locations": "Antarctica; Siple Dome; South Pole", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Battle, Mark; Grachev, Alexi; Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Thermal Fractionation of Firn Air and the Ice Core Record of Abrupt Interstadial Climate Change", "uid": "p0000160", "west": null}, {"awards": "0636873 Lazzara, Matthew", "bounds_geometry": "POLYGON((-71 85,-65.8 85,-60.6 85,-55.4 85,-50.2 85,-45 85,-39.8 85,-34.6 85,-29.4 85,-24.2 85,-19 85,-19 82.5,-19 80,-19 77.5,-19 75,-19 72.5,-19 70,-19 67.5,-19 65,-19 62.5,-19 60,-24.2 60,-29.4 60,-34.6 60,-39.8 60,-45 60,-50.2 60,-55.4 60,-60.6 60,-65.8 60,-71 60,-71 62.5,-71 65,-71 67.5,-71 70,-71 72.5,-71 75,-71 77.5,-71 80,-71 82.5,-71 85))", "dataset_titles": "Access data.", "datasets": [{"dataset_uid": "001302", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access data.", "url": "ftp://amrc.ssec.wisc.edu"}], "date_created": "Thu, 01 Jan 1970 00:00:00 GMT", "description": "This is a three-year project to maintain and augment as necessary, the network of approximately fifty automatic weather stations established on the antarctic continent and on several surrounding islands. These weather stations measure surface wind, pressure, temperature, humidity, and in some instances other atmospheric variables, such as snow accumulation and incident solar radiation, and report these via satellite to a number of ground stations. The data are used for operational weather forecasting in support of the United States Antarctic program, for global forecasting through the WMO Global Telecommunications System, for climatological records, and for research purposes. The AWS network, which began as a small-scale program in 1980, has been extremely reliable and has proven indispensable for both forecasting and research purposes.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e GAUGES \u003e ADG; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e BAROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HUMIDITY SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e SNOWPACK TEMPERATURE PROBE; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e RADIO \u003e ARGOS", "is_usap_dc": false, "keywords": "Automated Weather Station; FIXED OBSERVATION STATIONS; Antarctica; AWS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew; Costanza, Carol", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS", "repo": "AMRDC", "repositories": "AMRDC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Antarctic Automatic Weather Station Program: 2007-2010", "uid": "p0000284", "west": -180.0}, {"awards": "9527329 Kyle, Philip", "bounds_geometry": "POLYGON((-180 -65,-175.5 -65,-171 -65,-166.5 -65,-162 -65,-157.5 -65,-153 -65,-148.5 -65,-144 -65,-139.5 -65,-135 -65,-135 -66.5,-135 -68,-135 -69.5,-135 -71,-135 -72.5,-135 -74,-135 -75.5,-135 -77,-135 -78.5,-135 -80,-139.5 -80,-144 -80,-148.5 -80,-153 -80,-157.5 -80,-162 -80,-166.5 -80,-171 -80,-175.5 -80,180 -80,177 -80,174 -80,171 -80,168 -80,165 -80,162 -80,159 -80,156 -80,153 -80,150 -80,150 -78.5,150 -77,150 -75.5,150 -74,150 -72.5,150 -71,150 -69.5,150 -68,150 -66.5,150 -65,153 -65,156 -65,159 -65,162 -65,165 -65,168 -65,171 -65,174 -65,177 -65,-180 -65))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 01 Jan 1970 00:00:00 GMT", "description": "Kyle OPP 9527329 Abstract The Cape Roberts Project is an international drilling project to obtain a series of cores from the sedimentary strata beneath the sea floor off Cape Roberts in the Ross Sea. The project is a joint venture by scientists from the national Antarctic programs of Germany, Italy, New Zealand, the United Kingdom., Australia, and the United States. Drilling will continuously core a composite section of sediments over 1500 m thick which is expected to represent parts of the time period between 30 and more than 100 million years ago. The principle objectives of this component of the project will be to examine the record of igneous material in the drill core and provide high precision 40Ar/39Ar dates from tephra (volcanic ash) layers, disseminated ash, feldspars and epiclastic volcanic detrital grains to constrain depositional age and provenance of the sediments in the cores. This project will contribute to general geologic logging of the core and will characterize any igneous material using electron microprobe, x-ray fluorescence (XRF) and instrumental neutron activation analysis (INAA) analyses. The presence of alkalic volcanic detritus from the Cenozoic McMurdo Volcanics will constrain the initiation of this phase of volcanism and improve our understanding of the relationship between volcanism and tectonism. The influx of sediments eroded from Jurassic Kirkpatrick Basalts and Ferrar Dolerites will be used to time the unroofing and rates of uplift of the Transantarctic Mountains. Geochemical analyses of core samples will examine the geochemistry and provenance of the sediments.", "east": -135.0, "geometry": "POINT(-172.5 -72.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ROCK CORERS", "is_usap_dc": false, "keywords": "Radiometric Dating; Radiometric Ages; Argon-Argon Dates; Geochronology; 40Ar/39Ar; Tephra; Geochemistry; Cape Roberts Project; Geology; Not provided", "locations": null, "north": -65.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kyle, Philip; Krissek, Lawrence", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -80.0, "title": "The Cape Roberts Project: Volcanic Record, Geochemistry and 40Ar/39Ar Chronology", "uid": "p0000050", "west": 150.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
The Results Map and the Results Table
The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
As the map is panned or zoomed, the highlighted rows in the table will update.
If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page.
The bounds for the project(s)/dataset(s) selected will be displayed in red.
The selected result(s) will be highlighted in red and brought to the top of the table.
The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds
and highlight the centroid on the Results Map.
Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other
search criteria already selected.
After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
Clicking Clear in the map will clear any drawn polygon.
Clicking Search in the map, or Search on the form will have the same effect.
The returned results will be any projects/datasets with bounds that intersect the polygon.
Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Voluminous outpourings of iron-rich molten rock (magma), which can initiate from deep within the earth, occur regularly throughout geologic time. Understanding volcanic eruptions requires knowledge of the magmatic plumbing systems and magma chambers that feed eruptions. While many magma chambers are typically emplaced in the shallow subsurface of the earth, only rarely are the entirety of the solidified remnants of these chambers later exposed at the surface of the earth for study. One such magma chamber, the Dufek Intrusion, exists in Antarctica. The Dufek Intrusion is part of the Ferrar magmatic event, which was triggered by the separation or rifting of South America, Africa and Antarctic continents approximately 182 million years ago. The research objectives focus on analyzing existing samples to understand the thermal and chemical evolution of the magma in the Dufek Intrusion magma chamber and deciphering whether the exposed sections are part of the same magma chamber or represent two separate magma chambers. Results from this study may result in the research community questioning the assumption that small intrusions crystallized faster than larger layered intrusions such as the Dufek Intrusion. This project supports multiple early career researchers and provides laboratory training for undergraduate students. Preliminary high-precision U-Pb ages from zircon throughout the Dufek Intrusion show that rocks thought to represent the lowermost section of stratigraphy (the Dufek Massif) are younger than the rocks thought to represent the uppermost section (the Forrestal Range). This study tests whether the zircon ages represent a cooling profile of a single large layered intrusion, or whether the Dufek Massif and Forrestal Range are two separate smaller intrusions. Crystallization temperatures of the cumulus phases (plagioclase and clinopyroxene) and the zircons, as well as cooling rates from the cumulus phases will be obtained to test the cooling profile hypothesis. The research team will construct thermal models of emplacement and cooling to compare with the laboratory analyses. In order to test the two intrusions hypothesis, the team will analyze zircon Hf isotopic compositions and whole rock Sr, Nd, Pb isotopes from samples of the two intrusions to determine whether they are similar and therefore genetically related. Results will provide important constraints on the duration of magmatism associated with continental breakup and present a coherent picture of the construction of (possibly) one of the largest magmatic intrusions exposed on earth today. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The ice shelves around the perimeter Antarctica hold back inland ice that has the potential to raise global sea level by meters. By how much and how rapidly this could occur is a central question in glaciology. The underside of these ice shelves is in contact with the ocean, and there are signs that warming of ocean water is causing melting and retreat of these shelves, with direct implications for sea-level rise. This project will seize an emergent opportunity to work with Australian and South Korean colleagues to acquire snapshot profiles of ocean temperature, salinity, and velocity, and improve bathymetric knowledge, where no prior data exist. The team will work near three glaciers draining ice with substantial sea-level potential from the East and West Antarctic Ice Sheets. The targets are Shackleton and Cook Ice Shelves in East Antarctica, and Thwaites Glacier in West Antarctica. An undergraduate student will be engaged through the Scripps Undergraduate Research Fellowship program and the team will work through the Scripps Educational Alliances program to identify educational outreach opportunities through which to build community engagement in this project. The team will use high-resolution general circulation model simulations to optimize sensor targeting (to be deployed from helicopter and fixed-wing aircraft) and evaluate the relative roles of subglacial freshwater discharge and ocean forcing on subglacial melt rates. The aim is to better understand why grounding-line melt rates are higher at the East Antarctic sites despite data indicating warmer ambient ocean temperatures at the West Antarctic sites. Such behavior could be explained by discharge of subglacial freshwater into ice-shelf cavities, but insufficient data currently exist to test this hypothesis. The team aims to build on ongoing international, collaborative airborne oceanographic sampling with colleagues in the Republic of Korea, Australia, and the United States. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Surface and upper-ocean processes in the Antarctic Circumpolar Current (ACC) play an important role in ocean heat transport, air-sea gas fluxes (such as pCO2) and in sea-ice formation. The net of these in turn modulate global climate, sea level rise and global circulation. This project continues the field development of a surface autonomous vehicle (https://www.liquid-robotics.com/wave-glider/overview/ ) to better measure and study these processes in the remote Southern Ocean, where continuous data is otherwise very difficult to obtain. Mobile autonomous surface vehicles, powered by sunlight and wave action provide a very cost effective manner of solving the problem of obtaining unattended observational coverage in the remote Southern Ocean. The project will support ongoing education and outreach efforts by the PIs including school presentations, visits to science centers and the development of educational materials. The WaveGlider has an established track record of navigating successful spatial surveys and positioned time series measurements in otherwise inhospitable waters and sea-states. The study includes the addition of some new measurement capabilities such as an (upper mixed) layer profiling CTD winch, a high frequency acoustic Doppler turbulence system, and a biogeochemical chlorophyll fluorescence sensor. This augmented instrumentation package will be used for a set of Austral summer season experiments observing ocean-shelf exchange along with frontal air-sea interactions in the vicinity of the West Antarctic Peninsula. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The main goal of this project is to identify and geochemically characterize atmospheric mineral nanoparticles in pre-industrial Antarctic ice during the last climatic cycle. Recent technological and industrial development is introducing a large number of natural and engineered nanoparticles into Earth's atmosphere. These constitute a concern for human health, mainly due to their high chemical reactivity. While many atmospheric nanoparticle studies have been performed in modern urban environments, there is essentially no information about their occurrence in a pristine pre-industrial atmosphere. This information is critical, as it constitutes an important benchmark for comparison to the modern atmosphere. Information on nanoparticles from the pre-industrial atmosphere can be obtained from atmospheric mineral nanoparticles that are entrapped in remote pre-industrial Antarctic ice covering the last climatic cycles. Mineral nanoparticles can also affect several climatic processes. First, they directly influence the global energy balance by reflecting solar radiation and indirectly influence through changes in cloud formation (and clouds also reflect solar radiation). Second, atmospheric mineral nanoparticles such as iron oxides could have fertilized the oceans, causing blooms of marine phytoplankton that may have drawn part of the atmospheric carbon dioxide into the oceans during glacial ages (the "biological pump"). Third, a significant amount of extraterrestrial material entering the Earth atmosphere is thought to be transported to the poles as nanoparticles called "meteoric smoke" that form polar stratospheric clouds implicated in changes of the ozone hole. This project aims to establish the natural background of unknown classes of glacial particles whose size is below the detection limit of the conventional dust analyzers. The team will take advantage of ice samples from the "horizontal ice core", already extracted from the remote Taylor Glacier (coastal East Antarctica) covering the last ~44,000 years. These ancient samples are particularly suited to project scope because i) a large ice volume is available ii) the team expects to find a markedly different geochemistry between nanoparticles deposited during the last glacial age and during the current interglacial. A set of advanced techniques including Transmission Electron Microscopy, Single Particle Inductively Coupled Plasma Mass Spectrometry (spICP-MS), spICP-Time of Flight MS, and Field Flow Fractionation will be employed to determine mineral nanoparticle sizes, number/volume, and chemical composition. So far, the elemental composition of dust entrapped in polar ice has been mainly determined by Inductively Coupled Plasma Sector Field Mass Spectrometry and it is generally assumed to be descriptive of the coarse aeolian dust fraction. However, project will test whether or not the determined elemental composition is instead mainly linked to the previously unobserved smaller mineral nanoparticle content. Results on nanoparticles will be compared with a set of new experiments of total dust composition measured by Inductively Coupled Plasma Sector Field Mass Spectrometry, using the same ice samples from Taylor Glacier. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part I: Nontechnical Description Flowering plants are the dominant land plant group on Earth today. They play essential roles in climate-life interactions and are fundamental for human well-being (health, food, materials). Despite their importance to us, their early evolution has remained enigmatic. Without the geological context of how these plants evolved, we will not fully understand their roles in regulating climate and structuring environments. This is important as terrestrial ecosystems today are undergoing many changes. The fossil record indicates that critical events relating to the early diversification of flowering plants occurred during the Cretaceous period (145–66 million years ago). Recent discoveries of fossil flowers and fruits from this time period have significantly furthered our understanding of early flowering plant evolution. However, the majority of these discoveries are from the Northern Hemisphere while similar discoveries from the Southern Hemisphere are relatively lacking. This project will address this paucity of data by collecting and describing Late Cretaceous flowering plant fossils from Western Antarctica and placing them in evolutionary frameworks to better understand early flowering plant evolution, biogeographic history, and Antarctica’s role in the formation of modern ecosystems. Western Antarctica is the only place in the Southern Hemisphere that is reported to contain Late Cretaceous-aged (100–66 million years ago) three-dimensionally preserved flowers and fruits. Therefore, the recovery and study of these fossils can meaningfully further our understanding of the early phases of flowering plant evolution. This work will result in the description of new species that will be placed in evolutionary analyses and biogeographic frameworks, which will help clarify the Cretaceous diversification of flowering plants in the Southern Hemisphere. These fossils will provide insights that will allow us to anticipate which plants might thrive in a warming Antarctic and world. Part II: Technical Description The Late Cretaceous diversification of flowering plants (angiosperms) in the Southern Hemisphere is poorly understood due in part to the limited amount of well-characterized fossil plant reproductive structures. Paleobotanical studies indicate that Antarctica was an important area for the Cretaceous diversification of flowering plants and is the only place in the Southern Hemisphere that is known to contain permineralized Late Cretaceous-aged angiosperm reproductive structures. The proposed research will elucidate Antarctica’s role in the evolution of angiosperms and assembly of modern ecosystems by recovering and characterizing Late Cretaceous Antarctic angiosperms, placing them within a phylogenetic context, and testing for biogeographic links between North America and Gondwana as has been observed for animals. Fieldwork will be conducted in the James Ross Basin of West Antarctica where previous reports and preliminary data indicate the presence of Late Cretaceous-aged floras that include structurally preserved reproductive structures. The exceptional preservation of these fossils allows us to record data essential for placing them in a phylogenetic framework from which their evolutionary and biogeographical context can be determined. The taxonomically informative and well-preserved angiosperm reproductive structures within the James Ross Basin are of a crucial age and from an important geographic area for understanding the phylogenetic diversification of Southern Hemisphere angiosperms and ecosystems. Collected fossils will be examined using standard physical techniques and microCT imaging. The study of these fossils will result in the description of new species and possibly higher taxa and provide a unique perspective into the floral diversity and composition of West Antarctica during the Cretaceous. In addition, the fossils will be placed within a phylogenetic framework, which will help to elucidate which lineages were diversifying in Antarctica. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Climate change is disproportionately affecting polar regions, with the Arctic now warming nearly four times faster than the global average. Polar warming drives coastal erosion and increases sediment delivery to the coastal ocean, affecting ecosystem processes ranging from primary productivity to carbon sequestration. Tracking changes in sedimentation rate is urgently needed to determine current conditions and measure further change. In polar regions, however, two of the most globally reliable sediment tracers, the radioisotopes lead-210 (210Pb) and cesium-137 (137Cs), have yielded mixed results. To understand the distribution and usefulness of these radioisotopes at high latitudes, this research makes use of a wealth of polar sediment cores archived at the Oregon State University Marine and Geology Repository combined with data synthesized from the literature. Results provide the first systematic study of Arctic and Antarctic sediment accretion. Improving the tools we use to track changes in sedimentation will help coastal managers and decisionmakers understand how climate change is impacting polar coastlines and marine environments, and what local communities should expect in the future. Sediment cores will be subsampled and analyzed for the activities of 210Pb (half-life = 22.3 years) and 137Cs (half-life = 30.1 years) using alpha and gamma spectroscopy, respectively. To provide context related to depositional environment, select subsamples will also be analyzed for sediment bulk density, grain size distribution, and organic content. A subset of samples with no measurable 210Pb or 137Cs activity will be analyzed for 14C to determine whether the lack of radioisotopes in a sample is because the core is simply too old, the true surface layer is missing, or because the shorter-lived radioisotopes did not accumulate. By undertaking comprehensive spatial analysis of the distribution of 210Pb and 137Cs in Arctic and Antarctic sediments, this research will achieve three goals: first, measure the activity of short-lived radioisotopes in archived sediment cores, a service to the science community that is urgently needed before the isotopes decay beyond detection; second, produce a comprehensive pole-wide atlas of sediment accretion rates; and finally, conduct a temporal analysis of sedimentation rate changes over the last ~60 to 125 years along the Beaufort Sea coast of northern Alaska, an ecologically and economically important region experiencing environmental transformation due to climate warming. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Non-technical description Marine invertebrates often have mutually beneficial partnerships with microorganisms that biosynthesize compounds with nutritive or defensive functions and are integral for survival. Additionally, these “natural products” often have bioactive properties with human health applications fighting infection or different types of cancer. This project focuses on the ascidian (“sea squirt”) Synoicum adareanum, found in the Anvers Island region of the Antarctic Peninsula, and was recently discovered to contain high levels of a natural product, palmerolide A (palA) in its tissues. The microorganism that produces palA is a new bacterial species, Candidatus Synoicihabitans palmerolidicus, found in a persistent partnership with the sea squirt. There is still much to be learned about the fundamental properties of this sea squirt-microbe-palA system including the geographical range of the animal-microbe partnership, its chemical and microbiome complexity and diversity, and the biological effect of palA in the sea squirt. To address these questions, this multidisciplinary research team will investigate the sea squirt-microbiome partnership in the Antarctic Peninsula and McMurdo Sound regions of the Ross Sea using a state-of-the-art strategy that will advance our understanding of the structural and functional features of the sea squirt and microbiome in detail, and reveal the roles that the palA natural product plays in the host ecology in its native Antarctic seafloor habitat. The project will broaden diversity and provide new opportunities for early career students and postdoctoral researchers to participate in field and laboratory-based research that builds an integrative understanding of Antarctic marine biology, ecology, physiology and chemistry. In addition, advancing the understanding of palA and its biological properties may be of future benefit to biomedicine and human health. Technical description Marine invertebrates and their associated microbiomes can produce bioactive natural products; in fact, >600 such compounds have been identified in species from polar waters. Although such compounds are typically hypothesized to serve ecological roles in host survival through deterring predation, fouling, and microbial infection, in most cases neither the producing organism nor the genome-encoded biosynthetic enzymes are known. This project will study an emerging biosynthetic system from a polar ascidian-microbe association that produces palA, a natural product with bioactivity against the proton-pumping enzyme V-type H+-ATPase (VHA). The objectives include: (i) Determining the microbiome composition, metabolome complexity, palA levels, and mitochondrial DNA sequence of S. adareanum morphotypes at sites in the Antarctic Peninsula and in McMurdo Sound, (ii) Characterizing the Synoicum microbiome using a multi-omics strategy, and (iii) Assessing the potential for co-occurrence of Ca. S. palmerolidicus-palA-VHA in host tissues, and (iv) exploring the role of palA in modulating VHA activity in vivo and its effects on ascidian-microbe ecophysiology. Through a coupled study of palA-producing and non-producing S. adareanum specimens, structural and functional features of the ascidian microbiome metagenome will be characterized to better understand the relationship between predicted secondary metabolite pathways and whether they are expressed in situ using a paired metatranscriptome sequencing and secondary metabolite detection strategy. Combined with tissue co-localization results, functional ecophysiological assays aim to determine the roles that the natural product plays in the host ecology in its native Antarctic seafloor habitat. The contributions of the project will inform this intimate host-microbial association in which the ascidian host bioaccumulates VHA-inhibiting palA, yet its geo-spatial distribution, cellular localization, ecological and physiological role(s) are not known. In addition to elucidating the ecophysiological roles of palA in their native ascidian-microbe association, the results will contribute to the success of translational science, which aligns with NSF’s interests in promoting basic research that leads to advances in Biotechnology and Bioeconomy. The project will also broaden diversity and provide new opportunities for early career students and postdoctoral researchers to participate in field and laboratory-based research that builds an integrative understanding of Antarctic marine biology, ecology, physiology and chemistry. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Phytoplankton, or microscopic marine algae, are an important part of the carbon cycle and can lower the rates of atmospheric carbon dioxide by transferring the atmospheric carbon into the oceans. The concentration of phytoplankton in the Southern Ocean is regularly limited by the availability of marine iron. This in turn influences the rate of carbon transfer from the atmosphere to the ocean. The primary source of iron in the Southern Ocean is eroded continental rock. Understanding the current and future sources of iron to the Southern Ocean as a result of increased melting of terrestrial glaciers is necessary for predicting future concentrations of Southern Ocean phytoplankton and the subsequent influence on the carbon cycle. A poorly understood source of iron to the Southern Ocean is stream input from ice-free regions such as the McMurdo Dry Valleys in Antarctica. This source of iron is likely to become larger if glaciers retreat. This study investigates the sources and amount of iron transported by McMurdo Dry Valley streams directly into the Southern Ocean. Because not all forms of iron can be used by phytoplankton, experiments will be performed to determine how available iron is to phytoplankton and how iron mixes with seawater. Immersive 360-degree video, infographics, and educational videos of findings from this project will be shared on social media, at schools and science events, and in an urban science center. In the Southern Ocean (SO) there is an excess of macronutrients but regional primary production is limited or co-limited due to iron. An addition of iron to the ocean will affect biochemical cycles, increase primary production, and affect the structure and composition of phytoplankton communities in the SO. Iron flux to the SO is globally significant, as increased Fe fertilization leads to increased carbon sequestration which acts as a negative feedback to increased atmospheric pCO2. One source of potentially bioavailable iron to the coastal regions of the SO is from direct sub-aerial stream discharge in ice-free areas of Antarctica, a source that may become more important if terrestrial glaciers retreat. It is imperative to understand the source, nature, potential fate, and flux of iron to the SO if better predictive models for the carbon cycle and atmospheric chemistry are to be developed. This project will investigate in-stream processes and characteristics controlling dissolved iron draining into the Ross Sea including photoreduction, temperature, and complexation with organic matter. The novel study will quantify bioavailability of particulate iron and bioavailability of dissolved iron in Antarctic in streams draining into the SO. On-site speciation measurements will be performed on dissolved iron species, particulate iron speciation will be determined using high-resolution spectroscopy, mixing experiments will be performed with coastal marine water, and the bioavailability of Fe will be determined through marine bioassays. This project will provide two students with valuable Antarctic field experience and reach thousands of individuals through existing partnerships with K-12 schools, public STEM events, an urban science center, and a strong social media presence. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Perennially ice-covered lakes in the McMurdo Dry Valleys of Antarctica contain abundant microbial mats, and the export of this mat material can fertilize the surrounding polar desert ecosystems. These desert soils are one of the most organic-poor on earth yet host a community of microorganisms. Microbial mat material is exported from the shallow, gas-supersaturated regions of the lakes when gas bubbles form in the mats, lifting them to the ice cover; the perennial ice cover maintains gas supersaturation. These mats freeze in and are exported to the surrounding soils through ice ablation. The largest seasonal decrease and thinnest ice cover in the history of Lake Fryxell was recorded during the 2022-2023 Austral summer. In this thin ice year, the water column dissolved oxygen increased over prior observations, and the lake bottom surface area with bubble-disrupted mat was more than double that observed in 1980-1981 and 2006-2007. This work will constrain mat mobilization within and out of Lake Fryxell in the McMurdo Dry Valleys during a period of unprecedented ice thinning to understand how future changing regional climate and predicted seasonal loss of lake ice cover will affect nutrient transport in the McMurdo Dry Valleys. Exceptional years of mat export are hypothesized to have the most significant impact on nutrient export to soil communities; variability in mat liftoff may thus play a role in the McMurdo Dry Valleys ecosystem response to changing climate. The perennial ice cover of lakes in the McMurdo Dry Valleys of Antarctica modulates the transfer of gasses, organic and inorganic material, between the lakes and surrounding soils. The export of biomass in these lakes is driven by the supersaturation of atmospheric gasses in the shallow regions under perennial ice cover. Gas bubbles nucleate in the mats, producing buoyancy that lifts them to the bottom of the ice, where they freeze in and are exported to the surrounding soils through ice ablation. These mats represent a significant source of biomass and nutrients to the McMurdo Dry Valleys soils, which are among the most organic-poor on earth. Nevertheless, this biomass remains unaccounted for in organic carbon cycling models for the McMurdo Dry Valleys. Ice cover data from the McMurdo Dry Valleys Long Term Ecological Research Project shows that the ice thickness has undergone cyclical variation over the last 40 years, reaching the largest seasonal decrease and thinnest ice-cover in the recorded history of Lake Fryxell during the 2022-2023 austral summer. Preliminary work shows that the surface area with mat liftoff at Lake Fryxell is more than double that observed in 1980-1981 and 2006-2007, coinciding with this unprecedented thinning of the ice-cover and an increase in the water column dissolved O2. This research will constrain biomass mobilization within and out of Lake Fryxell in the McMurdo Dry Valleys during a period of unprecedented ice thinning. The researchers hypothesize that a thinner ice cover promotes more biomass mobilization by 1) stimulating additional production of gas bubbles from the existing gas-supersaturated waters during summertime photosynthesis to create microbial mat liftoff and 2) promoting mat liftoff in deeper, thicker microbial mats, and 3) that this biomass can be traced into the soils by characterizing its chemistry and modeling the most likely depositional settings. This work will use microbial mat samples, lake dissolved oxygen and photosynthetically active radiation data and underwater drone footage documenting the depth distribution of liftoff mats in January 2023, and long-term ice cover thickness, photosynthetically active radiation, and lake level change data collected by the McMurdo Dry Valleys Long Term Ecological Research Project to test hypotheses 1-3. The dispersal of the liftoff mat exposed at Lake Fryxell surface will be modeled using a Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Exceptional liftoff years like the present are hypothesized to have the most significant impact on the soil communities as the rates of soil respiration increase with the addition of carbon. However, continued warming in the next 10 - 40 years may result in seasonal loss of the ice cover and cessation of liftoff mat export. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The objective of this project is to understand why the nitrous oxide (N2O) content of the atmosphere was lower during the last ice age (about 20,000-100,000 years ago) than in the subsequent warm period (10,000 years ago to present) and why it fluctuated during climate changes within the ice age. Nitrous oxide is a greenhouse gas that contributes to modern global warming. It is thought that modern warming will in turn cause increases in natural sources of nitrous oxide from bacteria in soils and the ocean, creating a "positive feedback." However, the amount these sources will increase is uncertain because the different ways that nitrous oxide are produced, and how sensitive they are to warmer climate, are not well known. This project will measure a unique property of the nitrous oxide molecule in very large ancient air samples from a glacier in Antarctica. This method can distinguish between different microbial processes that produce nitrous oxide but it has not been applied yet to the time periods in question. The data will provide information about how natural climate changes affect nitrous oxide production. This, in turn, will be useful for predicting future changes and for understanding why the Earth's climate shifts from ice ages to warm periods and back again. Ice-core records of greenhouse gas isotopic composition are useful for determining past changes in natural source and sink strengths and for understanding how natural emissions are linked to climate change. This project will develop two records of the intramolecular site preference of Nitrogen-15 in N2O. One record spans the last deglaciation (10,000-21,000 years ago) when atmospheric N2O concentration rose by 30 percent, and the other record spans millennial-scale climate changes during the last ice age when N2O varied by smaller amounts (Heinrich Stadial 4 and Dansgaard Oeschger 8, 35,000-41,000 years ago). The records will be used to understand what changes in the nitrogen cycle caused atmospheric N2O concentration to vary and what mechanisms link the N2O emissions to climate change. Ideally, studying the two different time periods will isolate the millennial climate responses entangled with the full deglacial sequence, creating a clearer picture of how N2O biogeochemistry responds to climate change. This work will also allow exploration of an isotopic tracer for in situ production of N2O that contaminates the atmospheric signal in particularly dusty ice. The project will use a unique, well-dated suite of ice samples from Taylor Glacier, Antarctica and continuous flow isotope ratio mass spectrometry on a custom gas extraction line operated in the Oregon State University laboratory. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
General abstract Most organisms alternate between life stages that vary in the number and arrangement of their chromosomes, in the number of cells they possess, and in the environmental conditions in which they are best adapted to live. Much of what we understand about these alternations comes from organisms like animals and land plants in which one of the two stages dominates the life cycle with the other small and short-lived. However, across the tree of life there are countless examples of organisms in which both stages are of long duration, multicellular, or both. These life cycles challenge common ideas used to explain ecological and evolutionary patterns we see in nature. Macroalgae (seaweeds) display a wide range of life cycle types and consequently are excellent models to test and expand ideas about how life cycles evolve. Undersea forests of seaweeds with a variety of life cycle types dominate the shallow waters of the western Antarctic Peninsula where they are ecologically important and, for most of the species, at the southern end of their geographic range. Using existing samples from previous expeditions to Antarctica, the investigators are uniquely positioned to test and expand knowledge of life cycle evolution and how this intersects with reproductive mode variation. This project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the public. The project will support a postdoctoral scholar as well as a faculty member new to US Antarctic research. The investigators will take advantage of an existing program to include high school or undergraduate students in the work which will also expand mentorship experience for the postdoc. All team members will contribute by writing for blogs produced by professional societies for the public. Technical abstract Existing macroalgal taxa samples from across a latitudinal gradient in the western Antarctic Peninsula will be used to explore patterns of genetic diversity from the center to the southern latitudinal limits of their range. Not only will genetic diversity be documented for an understudied and critical group of Antarctic organisms, but how it changes with latitude, compounded by high levels of endemism, will be explored. This will be accomplished by (i) characterization of latitudinal gradients in genetic diversity of many species and (ii) determination of the reproductive system of five focal foundation species. At present, there are few genetic data for macroalgae, dominant primary producers in coastal ecosystems around the world. This gap is particularly acute along Antarctic coastlines that are experiencing rapid climate change. Furthermore, Antarctica is isolated by the Southern Ocean, decreasing the likelihood of regular migration from other land masses. Latitudinal reproductive system patterns are predicted to be largely driven by recolonization events that increase with latitude due to changes in iceberg scour and sea ice coverage. Thus, Antarctica is the best place to understand what processes underlie reproductive mode variation in populations that are isolated, including many endemic taxa, while simultaneously extending our knowledge about how marginal environments converge with complex life cycles. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This RAPID project aims to study a sporadic occurrence of sea star wasting disease in McMurdo sound by leveraging diving resources of a CAREER grant to Thurber. The disease was first noted in 2019, with a second occurrence documented by the group at their study site near a methane seep at Cinder Cone in McMurdo Sound in 2022. Sea stars are key species in many benthic ecosystems, including the Antarctic, and this disease has caused significant losses in populations worldwide. In the Southern Ocean, the sea star Odontaster validus preys upon Acodontaster conspicuous, a predator of Antarctic giant sponges. In 2022, about 30% of the O. validus at the methane seep were affected. The conditions associated with the disease in other areas are environmental hypoxia, warm temperatures, and organic enrichment. This recent outbreak provides the opportunity to study how the disease may progress in the SO, and test the hypothesis that oxygen dynamics play a key role in the development of SSWS. The investigators aim to measure oxygen concentrations on and off the Cinder Cone methane seep and at the surface of affected and unaffected sea stars and identify whether the disease causes and microbiome characteristics of SSWS are similar between Antarctic and non-Antarctic outbreaks. These findings can be used to understand the potential effects of future climate conditions on disease outbreaks of Southern Ocean marine organisms critical to ecosystem function and health. In addition to disease dynamics, the study will also help to understand how methane seepage impacts benthic oxygen dynamics. Other broader impacts include communicating the research through a student led YouTube documentary and facilitating the transition of an early career URM researcher from NSF postdoc to a faculty position (lead on viral component of the project). This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Phytoplankton are microscopic single-celled plants that grow at the sun-lit surface of the ocean. In the Southern Ocean around Antarctica, phytoplankton live in sub-optimal conditions because the amount of iron in seawater is insufficient for growth. Moreover, the chemical composition of Southern Ocean phytoplankton is distinct from that in other ocean regions, with a higher proportion of phosphorus relative to other elements, a characteristic that ultimately influences the distribution of nutrients ocean-wide. The researchers hypothesize that the high phosphorus composition of phytoplankton in the Southern Ocean is caused by their low iron content. Specifically, they postulate that a phosphorus-rich molecule, phytic acid, is synthesized by phytoplankton in order to assist in the storage of iron in designated cellular compartments, such as vacuoles. Recent observations show that some phytoplankton can absorb phytic acid, suggesting that it may be produced by certain species. Phytic acid is pervasive in soils, wherein it aids absorption of iron via plant roots and could similarly help phytoplankton in the Southern Ocean acquire iron via the cell membranes. This project benefits the National Science Foundation's goals of improving understanding of interactions between the Southern Ocean and the global ocean, of expanding fundamental knowledge of Antarctic biota and associated processes by focusing on phytoplankton species unique to the Antarctic. As part of this project, the Department of Marine Sciences from the College of Liberal Arts and Sciences at the University of Connecticut will sponsor the recruitment, relocation and mentorship of a graduate student under-represented in the sciences. This project aims to determine whether the unusual elemental composition of phytoplankton at the Southern Ocean is a result of anemia. The work will query whether inositol hexakisphosphate (phytic acid) aids Antarctic phytoplankton acquire and store iron, resulting in an elevated fraction of cellular phosphorus relative to other elements. The researchers, including a graduate student, will conduct laboratory culture experiments with phytoplankton strains isolated from the Southern Ocean. They will grow cells in iron- deficient versus iron-replete media to see if their phosphorus content is higher in iron-deficient conditions. They will test whether cells grown with sufficient phosphorus acquire more iron, allowing them to grow better in iron-deficient conditions than cells deriving from phosphorus-poor conditions. They will also query whether cells grown in iron-deficient conditions achieve faster growth rates in the presence of phytic acid. Results will inform the design of CRISPR mutants with which to investigate phosphorus and iron co-metabolism in Antarctic marine phytoplankton. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part I, Non-technical Abstract Concerns that the West Antarctic Ice Sheet (WAIS) might be susceptible to releasing its ice as giant icebergs into the Southern Ocean due to a warming climate, raising global sea level, were first expressed more than 40 years ago. To best-assess this threat, scientists need to know whether such events occurred in the geologically recent past, during warm intervals of past glacial-interglacial cycles. Ocean drilling near the most vulnerable sector of the WAIS, in 2019, yielded seafloor geologic records demonstrating times when icebergs dropped large volumes of sands and pebbles, called ice-rafted detritus (IRD) in deep water of the Amundsen Sea. Occurring together with IRD that was eroded from bedrock beneath the ice sheets, there are abundant microfossils of diatoms (algal plankton), which indicate high biological productivity in the open ocean. The new sediment cores provide a complete, uninterrupted record of a time of dramatic fluctuations of ice sheet extent that occurred over the last 3 million years. Therefore, they provide the means to obtain clear answers to the question whether ice sheet collapse occurred in the past and offering clues to its potential future. This project will investigate sediment intervals where IRD coincides with evidence of high diatom production, to test whether these two criteria indicate rapid ice sheet collapse. Geochemical analysis of IRD pebbles will help trace the source of the icebergs to likely on-land sites. By analyzing conditions of high diatom and IRD accumulation in deep ocean sediment, where local coastal influences can be avoided, we will assess oceanographic and climatic conditions associated with past ice sheet collapse events. Diatoms provide powerful evidence of temperature and ocean productivity changes in the past, that, when linked to time, can translate into rates of ice sheet drawdown. These results will provide critical data for designing, constraining and testing the next suite computer models that can determine the likelihood and timing of future ice sheet collapse in a warming world. The project will include training of undergraduate and graduate students from diverse backgrounds, and the public will be introduced to Antarctic science and engaged through several different outreach efforts. Part 2, Technical Abstract New drillcores from the Amundsen Sea, Antarctica (IODP Expedition 379) contain a continuous record of oceanographic changes and iceberg rafted debris (IRD) spanning the last 5 million years. This study aims to identify the signature of retreat/collapse of the West Antarctic Ice Sheet (WAIS) in these continental margin, deep-sea sediments by quantitatively analyzing, in detail, diatom and IRD records across glacial-interglacial lithostratigraphic transitions to establish the timing and frequency of Late Pliocene and Pleistocene WAIS collapse events. The investigators will secure age constraints and diagnostic observations of marine paleoenvironmental conditions for selected interglacial intervals of cores from sites U1532 and U1533, using high resolution micropaleontology of diatom assemblages coupled with microstratigraphic analysis of IRD depositional events, while petrography, geochronology and thermochronology of iceberg rafted clasts will provide evidence of iceberg sources and pathways. Depositional paleotemperatures will be assessed via a new paleotemperature proxy based on quantitative assessment of morphologic changes in the dominant Southern Ocean diatom Fragilariopsis kerguelensis. Their results will contribute to parameterization of new ice sheet models that seek to reconstruct and forecast West Antarctic Ice Sheet behavior. This project will directly contribute to undergraduate education at an undergraduate-only college and at a public university that serves a demographic typified by first generation university students and underrepresented groups. Spanning geology, geochemistry, sedimentology, paleontology and paleoceanography, the proposed work will allow undergraduate students to develop diverse skills through hands-on research within a collaborative team that is dedicated to societally relevant research. The two graduate students will conduct original research and work alongside/mentor undergraduates, making for a well-rounded research experience that prepares them for success in future academic or employment sectors. The discoveries that come from this deep-sea record from West Antarctica will be communicated by students and investigators at national and international conferences and an array of public science outreach events. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part 1: Nontechnical Unlike other locations on the globe Antarctica is not known for having large earthquakes and the remote nature and harsh conditions make it difficult to install and maintain seismometers for earthquake detection. Some researchers believe the lack of large earthquakes is due to the continent being surrounded by inactive tectonic margins. However, in the last two decades, scientists have discovered that more earthquakes occur in the interior of the continent than previously observed. This suggests that there are many earthquakes missing from historic earthquake catalogs. This study aims to find the missing earthquakes using novel earthquake detection and location techniques from seismic data collected from temporary and permanent seismic stations in Antarctica over the last 25 years. Locating these earthquakes will help understand if and where earthquakes are located in Antarctica and will help in planning future seismic deployments. As part of the project broader impacts, a field expedition with the Girls on Rock program will be conducted to teach high school age girls, and especially those from underrepresented backgrounds, data visualization techniques using scientific data. Part 2: Technical The spatial distribution of seismicity and the number of moderate magnitude earthquakes in Antarctica is not well-defined. The current catalog of earthquakes may be biased by uneven and sparse seismograph distribution on the continent. We will mine existing broadband seismic data from both permanent and temporary deployments to lower the earthquake detection threshold across Interior Antarctica, with a focus on tectonic earthquakes. The hypothesis is that Interior Antarctica has abundant moderate magnitude earthquakes, previously undetected. These earthquakes are likely collocated with major tectonic features such as the Transantarctic Mountains, the suspected Vostok collision zone, the West Antarctic Rift System, the crustal compositional boundary between East and West Antarctica, and the Cretaceous East Antarctic Rift. Previous seismic deployments have recorded earthquakes in the Antarctic interior, suggesting there are many earthquakes missing from the current catalog. We propose to use novel earthquake location techniques designed for automated detection and location using 25 years of continuous data archived at IRIS from PASSCAL experiments and permanent stations. The approach will use STA/LTA detectors on the first arrival P-wave to 90 degrees distance, Reverse Time Imaging to locate events, and beamforming at dense arrays strategically located on cratons for enhanced detection and location. The combination of detection and location techniques used in this work has not been used on teleseismic body waves, although similar methods have worked well for surface wave studies. If successful the project would provide an excellent training dataset for future scrutiny of newly discovered Antarctic seismicity with machine learning approaches and/or new targeted data collection. We plan to collaborate with Girls on Rock, a local and international organization committed to building a culturally diverse community in science, art, and wilderness exploration, in a summer field expedition and integrating computer coding into post-field scientific projects. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The evolution of surface and shallow subsurface meltwater across Antarctic ice shelves has important implications for their (in)stability, as demonstrated by the 2002 rapid collapse of the Larsen B Ice Shelf. It is vital to understand the causes of ice-shelf (in)stability because ice shelves buttress against the discharge of inland ice and therefore influence ice-sheet contributions to sea-level rise. Ice-shelf break-up may be triggered by stress variations associated with surface meltwater movement, ponding, and drainage. These variations may cause an ice shelf to flex and fracture. This four-year project will provide key geophysical observations to improve understanding of ice-shelf meltwater and its effects on (in)stability. The work will be conducted on the George VI Ice Shelf on the Antarctic Peninsula, where hundreds of surface lakes form each summer. Over a 27-month period, global positioning systems, seismometers, water pressure transducers, automatic weather stations, and in-ice thermistor strings will be deployed to record ice shelf flexure, fracture seismicity, water depths, and surface and subsurface melting, respectively, in and around several surface lakes on the George VI Ice Shelf, within roughly 20 km of the British Antarctic Survey's Fossil Bluff Station. Field data will be used to validate and extend the team's approach to modelling ice-shelf flexure and stress, and possible "Larsen-B style" ice-shelf instability and break-up. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Couradeau, Estelle; Maximova, Siela; Machado, Jose Luis
No dataset link provided
Páramos are high-altitude tundra ecosystems nested at the heart of the Andes mountains. These cold and humid environments are home to a multitude of plants, animals, and insects. Páramos are a critical water source for downstream urban centers, including Colombia's capital city, Bogota. Additionally, the Páramos soils contain substantial organic carbon reserves due to slow rates of organic matter decomposition. Beyond being a pool of carbon sequestered away from the atmosphere, this large reservoir of organic matter controls the soils’ hydraulic and fertility properties. The Páramos’ unique geographic location, at an elevation above 2,800 m above sea level, makes them highly vulnerable to the impacts of climate change. In fact, these ecosystems’ surface areas are projected to shrink by half within the next 50 years possibly causing loss of the essential services they provide. This project aims to characterize the microbial diversity in the Páramos soils in Colombia and investigate how climate change will affect microbes’ functions. The research is of high importance, considering that immediate and long-term changes in microbial metabolism could impact the ability of Páramos soils to store organic carbon and regulate downstream water flow. To study the cascading effect of climate change on Páramos ecosystems, this project will jumpstart collaborations among transdisciplinary experts that will integrate the research of below-ground microbial communities with above-ground vegetation functions. The project will also engage high school and undergraduate students that will work together to develop and deploy low-cost long-term soil monitoring data loggers in Chingaza National Natural Park, near the city of Bogota. This project will address the critical need to disentangle the effect of moisture and temperature on the fate of organic carbon in Páramos soils while building a transdisciplinary team capable of expanding the scope of the research to an ecosystem level. The project includes establishing controlled soil mesocosms that will allow to independently vary moisture and temperature levels. Additionally, functions of the soil microbiome will be investigated using metagenomics and amplicon sequencing, and probes will be deployed to initiate long-term monitoring of the soil response to climate change in situ. This project will culminate in the organization of an international Páramos symposium that will set up priorities for future systems research. The symposium will bring together scientists from diverse fields to discuss the linkages between above-ground and below-ground ecosystem functions and plan future collaborations in predicting Páramos-wide effects of climate change. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
General Description: This project is intended to reveal the magma source regions, staging areas, and eruptive pathways within the active volcano Mount Erebus. This volcano is an end-member type known as phonolitic, which refers to the lava composition, and is almost purely carbon-dioxide-bearing and occurs in continental rift settings. It is in contrast to the better known water-bearing volcanoes which occur at plate boundary settings (such as Mount St Helens or Mount Fuji). Phonolitic volcanic eruptions elsewhere such as Tamboro or Vesuvius have caused more than 50,000 eruption related fatalities. Phonolites are also associated with rare earth element deposits, giving them economic interest. To illuminate the inner workings of Mount Erebus, we will cover the volcano with a dense network of geophysical probes based on magnetotelluric (MT) measurements. MT makes use of naturally occurring electromagnetic (EM) waves generated mainly by the sun as sources to provide images of the electrical conductivity structure of the Earth's interior. Conductivity is sensitive to the presence of fluids and melts in the Earth and so is well suited to understanding volcanic processes. The project is a cooperative effort between scientists from the United States, New Zealand, Japan and Canada. It implements new technology developed by the lead investigator and associates that allows such measurements to be taken on snow-covered terrains. This has applicability for frozen environments generally, such as resource exploration in the Arctic. The project supports a new post-doctoral researcher, and leverages imaging and measurement methods developed through support by other agencies and interfaced with commercial platforms. Technical Description: The investigators propose to test magmatic evolution models for Mount Erebus volcano, Antarctica, using the magnetotelluric (MT) method. The phonolite lava flow compositions on Mount Erebus are uncommon, but provide a window into the range of upper mantle source compositions and melt differentiation paths. Explosive phonolite eruptions have been known worldwide for devastating eruptions such as Tambora and Vesuvius, and commonly host rare earth element deposits. In the MT method, temporal variations in the Earth's natural electromagnetic (EM) field are used as source fields to probe the electrical resistivity structure in the depth range of 1 to 100 kilometers. This effort will consist of approximately 100 MT sites, with some concentration in the summit area. Field acquisition will take place over two field seasons. The main goals are to 1) confirm the existence and the geometry of the uppermost magma chamber thought to reside at 5-10 kilometer depths; 2) attempt to identify, in the deeper resistivity structure, the magma staging area near the crust-mantle boundary; 3) image the steep, crustal-scale, near-vertical conduit carrying magma from the mantle; 4) infer the physical and chemical state from geophysical properties of a CO2-dominated mafic shield volcano; and 5) constrain the relationships between structural and magmatic/ hydrothermal activity related to the Terror Rift. Tomographic imaging of the interior resistivity will be performed using a new inversion platform developed at Utah, based on the deformable edge finite element method, that is the best available for accommodating the steep topography of the study area. The project is an international cooperation between University of Utah, GNS Science Wellington New Zealand (G. Hill, Co-I), and Tokyo Institute of Technology Japan (Y. Ogawa, Co-I), plus participation by University of Alberta (M. Unsworth) and Missouri State University (K. Mickus). Instrument deployments will be made exclusively by helicopter. The project implements new technology that allows MT measurements to be taken on snow-covered terrains. The project supports a new post-doctoral researcher, and leverages imaging and measurement methods developed through support by other agencies and interfaced with commercial platforms.
Satellite observations of Earth’s surface gravity and elevation changes indicate rapid melting of ice sheets in recent decades in northern Antarctica Peninsula and Amundsen Sea Embayment of West Antarctica. This rapid melting may lead to significant global sea level rise which is a major societal concern. Measurements from the Global Positioning System (GPS) show rapid land uplift in these regions as the ice sheets melt. When an ice sheet melts, the melt water flows to oceans, causing global sea level to rise. However, the sea level change at a given geographic location is also influenced by two other factors associated with the ice melting process: 1) the vertical motion of the land and 2) gravitational attraction. The vertical motion of the land is caused by the change of pressure force on the surface of the solid Earth. For example, the removal of ice mass reduces the pressure force on the land, leading to uplift of the land below the ice sheet, while the addition of water in oceans increases the pressure force on the seafloor, causing it to subside. The sea level always follows the equipotential surface of the gravity which changes as the mass on the Earth’s surface (e.g., the ice and water) or/and in its interiors (e.g., at the crust-mantle boundary) is redistributed. Additionally, the vertical motion of the land below an ice sheet has important effects on the evolution and stability of the ice sheet and may determine whether the ice sheet will rapidly collapse or gradually stabilize. The main goal of this project is to build an accurate and efficient computer model to study the displacement and deformation of the Antarctic crust and mantle in response to recent ice melting. The project will significantly improve existing and publicly available computer code, CitcomSVE. The horizontal and vertical components of the Earth’s surface displacement depends on mantle viscosity and elastic properties of the Earth. Although seismic imaging studies demonstrate that the Antarctica mantle is heterogeneous, most studies on the ice-melting induced deformation in Antarctica have assumed that mantle viscosity and elastic properties only vary with the depth due to computational limitations. In this project, the new computational method in CitcomSVE avoids such assumptions and makes it possible to include realistic 3-D mantle viscosity and elastic properties in computing the Antarctica crustal and mantle displacement. This project will interpret the GPS measurements of the surface displacements in northern Antarctica Peninsula and Amundsen Sea Embayment of West Antarctica and use the observations to place constraints on mantle viscosity and deformation mechanisms. The project will also seek to predict the future land displacement Antarctica, which will lead to a better understand of Antarctica ice sheets. Finally, the project has direct implications for the study of global sea level change and the dynamics of the Greenland ice sheet. Technical Description Glacial isostatic adjustment (GIA) is important for understanding not only fundamental science questions including mantle viscosity, mantle convection and lithospheric deformation but also societally important questions of global sea-level change, polar ice melting, climate change, and groundwater hydrology. Studies of rock deformation in laboratory experiments, post-seismic deformation, and mantle dynamics indicate that mantle viscosity is temperature- and stress-dependent. Although the effects of stress-dependent (i.e., non-Newtonian) viscosity and transient creep rheology on GIA process have been studied, observational evidence remains elusive. There has been significant ice mass loss in recent decades in northern Antarctica Peninsula (NAP) and Amundsen Sea Embayment (ASE) of West Antarctica. The ice mass loss has caused rapid bedrock uplift as measured by GPS techniques which require surprisingly small upper mantle viscosity of ~1018 Pas. The rapid uplifts may have important feedback effects on ongoing ice melting because of their influence on grounding line migration, and the inferred small viscosity may have implications for mantle rheology and deformation on decadal time scales. The main objective of the project is to test hypotheses that the GPS observations in NAP and ASE regions are controlled by 3-D non-Newtonian or/and transient creep viscosity by developing new GIA modeling capability based on finite element package CitcomSVE. The project will carry out the following three tasks: Task 1 is to build GIA models for the NAP and ASE regions to examine the effects of 3-D temperature-dependent mantle viscosity on the surface displacements and to test hypothesis that the 3-D mantle viscosity improves the fit to the GPS observations. Task 2 is to test the hypothesis that non-Newtonian or/and transient creep rheology controls GIA process on decadal time scales by computing GIA models and comparing model predictions with GPS observations for the NAP and ASE regions. Task 3 is to implement transient creep (i.e., Burgers model) rheology into finite element package CitcomSVE for modeling the GIA process on global and regional scales and to make the package publicly available to the scientific community. The project will develop the first numerical GIA model with Burgers transient rheology and use the models to examine the effects of 3-D temperature-dependent viscosity, non-Newtonian viscosity and transient rheology on GIA-induced surface displacements in Antarctica. The project will model the unique GPS observations of unusually large displacement rates in the NAP and ASE regions to place constraints on mantle rheology and to distinguish between 3-D temperature-dependent, non-Newtonian and transient mantle viscosity. The project will expand the capability of the publicly available software package CitcomSVE for modeling viscoelastic deformation and tidal deformation on global and regional scales. The project will advance our understanding in lithospheric deformation and mantle rheology on decadal time scales, which helps predict grounding line migration and understand ice sheet stability in West Antarctica. The project will strengthen the open science practice by improving the publicly available code CitcomSVE at github. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
1. A non-technical explanation of the project's broader significance and importance, that serves as a public justification for NSF funding. This part should be understandable to an educated reader who is not a scientist or engineer. Katabatic or drainage winds, carry high-density air from a higher elevation down a slope under the force of gravity. Although katabatic flows are ubiquitous in alpine and polar regions, a surface-layer similarity theory is currently lacking for these flows, undermining the accuracy of numerical weather and climate prediction models. This project is interdisciplinary, and will give graduate and undergraduate students valuable experience interacting with researchers outside their core discipline. Furthermore, this project will broaden participating in science through recruitment of students from under-represented groups at OU and CU through established programs. The Antarctic Ice Sheet drives many processes in the Earth system through its modulation of regional and global atmospheric and oceanic circulations, storage of fresh water, and effects on global albedo and climate. An understanding of the surface mass balance of the ice sheets is critical for predicting future sea level rise and for interpreting ice core records. Yet, the evolution of the ice sheets through snow deposition, erosion, and transport in katabatic winds (which are persistent across much of the Antarctic) remains poorly understood due to the lack of an overarching theoretical framework, scarcity of in situ observational datasets, and a lack of accurate numerical modeling tools. Advances in the fundamental understanding and modeling capabilities of katabatic transport processes are urgently needed in view of the future climatic and snowfall changes that are projected to occur within the Antarctic continent. This project will leverage the expertise of a multidisciplinary team of investigators (with backgrounds spanning cryospheric science, environmental fluid mechanics, and atmospheric science) to address these knowledge gaps. 2. A technical description of the project that states the problem to be studied, the goals and scope of the research, and the methods and approaches to be used. In many cases, the technical project description may be a modified version of the project summary submitted with the proposal. Using field observations and direct numerical simulations of katabatic flow, this project is expected--- for the first time---to lead to a surface-layer similarity theory for katabatic flows relating turbulent fluxes to mean vertical gradients. The similarity theory will be used to develop surface boundary conditions for large eddy simulations (LES), enabling the first accurate LES of katabatic flow. The numerical tools that the PIs will develop will allow them to investigate how the partitioning between snow redistribution, transport, and sublimation depends on the environmental parameters typically encountered in Antarctica (e.g. atmospheric stratification, surface sloping angles, and humidity profiles), and to develop simple models to infer snow transport based on satellite remote sensing and regional climate models This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Sea ice in Antarctic coastal waters shape ecosystems, both in the surface waters and at the bottom of the ocean, environments that depend on algae living in sea ice for their productivity. With high variability in sea ice formation and melt between years and as a response to climate change, it is of importance to obtain better understanding of the interaction of sea ice with algae, as well as provide better data for global climate models. This project will accomplish those goals by measuring phytoplankton growth and cellular properties in sea ice with experiments performed using an ice tank. Laboratory experiments will be based on previous observations in the Antarctic Peninsula coastal waters, providing realistic conditions to emulate. The scientific importance of the proposed work aligns with the National Science Foundation goals to understand the biological and chemical properties of sea ice bio-geo-chemistry and its feedbacks with seasonal sea ice dynamics and climate. The finding from this project will be of interest to a broad scientific community, including oceanographers, biologists, chemists, and ecosystem and ocean modelers. To address the scarcity of data on sea ice microbes that limits our ability to predict future Antarctic climate with accuracy, the principal investigator will develop an Antarctic Science Minor in order to train future scientists with an environmental perspective and prepare the future US workforce with a strong scientific background on Earth and Biological Sciences. There is a paucity of data to understand the processes underlying observed patters in sea ice quality and their interaction with the sea-ice microbial community. This project will provide a mechanistic understanding of primary production and physiology of sympagic algae over the seasonal cycle of formation and melt of Antarctic sea ice. Although sea ice is central to the Antarctic coastal ecosystems, little is known of how they affect, and are in turn affected, by sea-ice algae. This project concentrates on first-year sea ice, forming and melting each year, creating unique and very dynamic habitats. The study will be structured by 4 main objectives: 1) how different algal species adapt to the seasonal changes in sea ice conditions, 2) how different methods to measure primary production (carbon dioxide drawdown, oxygen production and variable fluorescence) relate in sea ice and differ from sea water measurements, 3) how sympagic algae influence the physical structure of sea ice, 4) how sympagic algae contribute to organic matter cycling during ice melt. Due to expected changes in sea ice due to climate change, this study is uniquely positioned to provide needed data on short-term and seasonal processes. Results from this study will be useful to refine models of algal production in Antarctic and Arctic ecosystems, data not available to date as sea ice and its biogeochemistry are often poorly represented in earth system models. This project will also provide education for graduate and undergraduate students as well as material to develop class curriculum for middle-school students. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Ice cores from glaciers and ice sheets provide detailed archives of past environmental conditions, furthering our understanding of Earth’s climate. Microorganisms in the West Antarctic Ice Sheet are buried over glaciological time and form a stratigraphy record providing the opportunity of analysis of the order and position of layers of geological events, with potential links to Southern Hemisphere climate. However, microbial cells that land on the ice sheet are subject to the stresses of changing habitat conditions due to burial and conditions associated with long-term isolation in ice. These processes may lead to a loss of fidelity within the stratigraphic record of microbial cells. We know little about how and if microorganisms survive burial and remain alive over glacial-interglacial time periods within an ice sheet. This analysis will identify the viable and preserved community of microorganisms and core genomic adaptation that permit cell viability, which will advance knowledge in the areas of microbiology and glaciology while increasing fidelity of ice core measurements relevant to past climate and potential future global climate impacts. This exploratory endeavor has the potential to be a transformative step toward understanding the ecology of one of the most understudied environments on Earth. The project will partner with the Museum of Science, Boston, to increase public scientific literacy via education and outreach. Additionally, this project will support two early-career scientists and two undergraduates in interdisciplinary research at the intersection of microbiology and climate science. Results from this project will provide the first DNA data based on single-cell whole genomic sequencing from the Antarctic Ice Sheet and inform whether post-depositional processes impact the interpretations of paleoenvironmental conditions from microbes. The goals to determine the taxonomic identity of viable and preserved microbial cells, and decode the genetic repertoire that confers survival of burial and long-term viability within glacial ice, will be achieved by utilizing subsamples from a ~60,000 year old record of the West Antarctic Ice Sheet Divide (WD) Ice Core. WD samples will be melted using the Desert Research Institute’s ice core melting system that is optimized for glaciobiological sampling. Microbial cells from the meltwater will be sorted using fluorescence-activated cell sorting, and individually sorted cells will have their genomes sequenced. The fluorescence-based methods will discern the viable (metabolically active) cells from those cells that are non-viable but preserved in the ice (DNA-containing). The genomic analysis will identify the taxonomy of each cell, presence of known genes that confer survival in permanently frozen environments, and comparatively analyze genomes to determine the core set of genes required by viable cells to persist in an ice sheet. The outcomes of this work will expand the potential for biological measurements and contamination control from archived ice cores. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This research project is a multidisciplinary effort that brings together a diverse team of scientists from multiple institutions together to understand the foraging behavior and physiology of leopard seals and their role in the Southern Ocean food web. The project will examine the physiology and behavior of leopard seals to in an effort to determine their ability to respond to potential changes in their habitat and foraging areas. Using satellite tracking devices the team will examine the movement and diving behavior of leopard seals and couple this information with measurements of their physiological capacity. The project will determine whether leopard seals- who feed on diverse range of prey- are built differently than their deep diving relatives the Weddell and elephant seal who feed on fish and squid. The team will also determine whether leopard seals are operating at or near their physiological capability to determine how much, if any, ?reserve capacity? they might have to forage and live in changing environments. A better understanding of their home ranges, movement patterns, and general behavior will also be informative to help in managing human-leopard seal interactions. The highly visual nature of the data and analysis for this project lends itself to public and educational display and outreach, particularly as they relate to the changing Antarctic habitats. The project will use the research results to educate the public on the unique physiological and ecological adaptations to extreme environments seen in diving marine mammals, including adaptations to exercise under low oxygen conditions and energy utilization, which affect and dictate the lifestyle of these exceptional organisms. The results of the project will also contribute to the broader understanding that may enhance the aims of managing marine living resources. The leopard seal is an apex predator in the Antarctic ecosystem. This project seeks to better understand the ability of the leopard seal to cope with a changing environment. The project will first examine the foraging behavior and habitat utilization of leopard seals using satellite telemetry. Specifically, satellite telemetry tags will be used to obtain dive profiles and movement data for individuals across multiple years. Diet and trophic level positions across multiple temporal scales will then be determined from physiological samples (e.g., blood, vibrissae, blubber fatty acids, stable isotopes, fecal matter). Oceanographic data will be integrated with these measures to develop habitat models that will be used to assess habitat type, habitat utilization, habitat preference, and home range areas for individual animals. Diet composition for individual seals will be evaluated to determine whether specific animals are generalists or specialists. Second, the team will investigate the physiological adaptations that allow leopard seals to be apex predators and determine to what extent leopard seals are working at or near their physiological limit. Diving behavior and physiology of leopard seals will be evaluated (for instance the aerobic dive limit for individual animals and skeletal muscle adaptations will be determined for diving under hypoxic conditions). Data from time-depth recorders will be used to determine foraging strategies for individual seals, and these diving characteristics will be related to physiological variables (e.g., blood volume, muscle oxygen stores) to better understand the link between foraging behavior and physiology. The team will compare myoglobin storage in swimming muscles associated with both forelimb and hind limb propulsion and the use of anaerobic versus aerobic metabolic systems while foraging.
This project will develop methods to measure the ratios of carbon-13 to carbon-12, and heavy to light hydrogen in methane in air trapped in ice cores. The ratios of the different forms of carbon and hydrogen are "fingerprints" of different sources of this gas in the past--for example wetlands in the tropics versus methane frozen in the sea floor. Once the analysis method is developed, the measurements will be used to examine why methane changed abruptly in the past, both during the last ice age, and during previous warm periods. The data will be used to understand how methane sources like wildfires, methane hydrates, and wetlands respond to climate change. This information is needed to understand future risks of large changes in methane in the atmosphere as Earth warms. The project involves two tasks. First, the investigators will build and test a gas extraction system for methane isotopic measurements using continuous flow methods, with the goal of equaling or bettering the precision attained by the few other laboratories that make these measurements. The system will be interfaced with existing mass spectrometers at Oregon State University. The system consists of a vacuum chamber and sequence of traps, purification columns, and furnaces that separate methane from other gases and convert it to carbon dioxide or hydrogen for mass spectrometry. Second, the team will measure the isotopic composition of methane across large changes in concentration associated with two past interglacial periods and during abrupt methane changes of the last ice age. These measurements will be used to understand if the main reason for these concentration changes is climate-driven changes in emissions from wetlands, or whether other sources are involved, for example methane hydrates or wildfires. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Prothro, Lindsay; Venturelli, Ryan A; Miller, Lauren
No dataset link provided
Sediments that collect on the seafloor provide a wealth of information about past and present environmental change. Around Antarctica, these seafloor sediments are influenced by an ice sheet that grinds and transports sediments from the continent’s interior into the surrounding ocean. Since the Last Glacial Maximum (about 20,000 years ago) when the ice sheet extended hundreds to thousands of kilometers seaward, ice has retreated inland to the configuration we observe today and left behind signatures of its growth and decline, as well as indicators of ocean change, in the seafloor sediments. Ongoing glacial and ocean processes are reflected in the characteristics of contemporary sediments, whereas older sediments beneath the seafloor offer a longer temporal perspective of changes to the ice sheet and surrounding ocean. Using data generated from archived sediment cores that are predominantly housed in the Antarctic Core Collection at Oregon State University, we aim to confirm if recent sediments clearly reflect the specific instrumental and historical field-based observations of ocean and glacial change seen in different regions of Antarctica. These modern changes will be placed into context with those recorded by sediments deposited on the seafloor hundreds to thousands of years ago. This project will explore interlinked physical, biological, and geochemical properties of seafloor sediments to address the influence of glacial and oceanographic processes on ice-proximal marine sedimentation during the 20th and 21st centuries and since the Last Glacial Maximum, with a focus on sediment fluxes, meltwater drainage, ice-rafted debris deposition, and radiocarbon chronologies. We will integrate multi-proxy analyses to interrogate the seafloor sediment record around Antarctica, targeting regions offshore of relatively fast-flowing and fast-changing glacial systems today and regions offshore of slower flowing, more stable (i.e., unchanging or relatively minimally changing) parts of the ice sheet. This work will leverage the application of new techniques and knowledge to legacy sediment cores that NSF has invested greatly in collecting and archiving. This project is led by three early-career women project investigators who seek to foster collaborative and open research practices and professional growth of the project team which will include three graduate students, numerous undergraduate students, and a postdoctoral research associate. The project team will co-produce educational materials with Math4Science, an organization that connects STEM professionals with public secondary education students and their math and science teachers through curricula; and develop and implement best practices in working with marine sediment core data through a collaboration with the Oregon State University Marine and Geology Repository and the United States Antarctic Program - Data Center. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Earth's atmosphere is a highly oxidizing medium. The abundance of oxidants such as ozone in the atmosphere strongly influences the concentrations of pollutants and greenhouse gases, with implications for human health and welfare. Because oxidants are not preserved in geological archives, knowledge of how oxidants have varied in the past under changing climate conditions is extremely limited. This award will measure a proxy for oxidant concentrations in a West Antarctic ice core over several major climate transitions over the past 50,000 years. These measurements will complement similar measurements from a Greenland ice core, which showed significant changes in atmospheric oxidants over major climate transitions covering this same time period. The addition of measurements from Antarctica will allow researchers to examine if the oxidant changes suggested by the Greenland ice core record are regional or global in scale. Knowledge of how oxidants vary naturally with climate will better inform predictions of the composition of the future atmosphere under a warming climate. This award will support measurements of the isotopic composition of nitrate in a West Antarctic ice core as a proxy for oxidant concentrations in the past atmosphere. The nitrogen isotopes of nitrate provide information on the degree of preservation of nitrate in the ice core record, and thus aid in the interpretation of the observed variability in the observed nitrate concentrations and oxygen isotopes in ice core records. By providing information about the spatial scale of oxidant changes over abrupt climate change events during the last glacial period, this project may also improve our understanding of mechanisms driving these abrupt events. Insight from this project will prove valuable for forecasting the response of stratospheric circulation to climate change, which has large implications for climate feedbacks and tropospheric composition. In addition, the information gleaned from this project on the mechanisms and feedbacks during abrupt climate change events will help determine the likelihood of such rapid events occurring in the future, which would have dramatic impacts on humankind. This award will provide training for one graduate and one undergraduate student, and will support the development of a hands-on activity related to rapid climate change to be used at the annual Polar Science Weekend at the Pacific Science Center in Seattle, WA.
This research project is a multidisciplinary effort that brings together a diverse team of scientists from multiple institutions together to understand the foraging behavior and physiology of leopard seals and their role in the Southern Ocean food web. The project will examine the physiology and behavior of leopard seals to in an effort to determine their ability to respond to potential changes in their habitat and foraging areas. Using satellite tracking devices the team will examine the movement and diving behavior of leopard seals and couple this information with measurements of their physiological capacity. The project will determine whether leopard seals- who feed on diverse range of prey- are built differently than their deep diving relatives the Weddell and elephant seal who feed on fish and squid. The team will also determine whether leopard seals are operating at or near their physiological capability to determine how much, if any, ?reserve capacity? they might have to forage and live in changing environments. A better understanding of their home ranges, movement patterns, and general behavior will also be informative to help in managing human-leopard seal interactions. The highly visual nature of the data and analysis for this project lends itself to public and educational display and outreach, particularly as they relate to the changing Antarctic habitats. The project will use the research results to educate the public on the unique physiological and ecological adaptations to extreme environments seen in diving marine mammals, including adaptations to exercise under low oxygen conditions and energy utilization, which affect and dictate the lifestyle of these exceptional organisms. The results of the project will also contribute to the broader understanding that may enhance the aims of managing marine living resources. The leopard seal is an apex predator in the Antarctic ecosystem. This project seeks to better understand the ability of the leopard seal to cope with a changing environment. The project will first examine the foraging behavior and habitat utilization of leopard seals using satellite telemetry. Specifically, satellite telemetry tags will be used to obtain dive profiles and movement data for individuals across multiple years. Diet and trophic level positions across multiple temporal scales will then be determined from physiological samples (e.g., blood, vibrissae, blubber fatty acids, stable isotopes, fecal matter). Oceanographic data will be integrated with these measures to develop habitat models that will be used to assess habitat type, habitat utilization, habitat preference, and home range areas for individual animals. Diet composition for individual seals will be evaluated to determine whether specific animals are generalists or specialists. Second, the team will investigate the physiological adaptations that allow leopard seals to be apex predators and determine to what extent leopard seals are working at or near their physiological limit. Diving behavior and physiology of leopard seals will be evaluated (for instance the aerobic dive limit for individual animals and skeletal muscle adaptations will be determined for diving under hypoxic conditions). Data from time-depth recorders will be used to determine foraging strategies for individual seals, and these diving characteristics will be related to physiological variables (e.g., blood volume, muscle oxygen stores) to better understand the link between foraging behavior and physiology. The team will compare myoglobin storage in swimming muscles associated with both forelimb and hind limb propulsion and the use of anaerobic versus aerobic metabolic systems while foraging.
Glacial ice cores serve as a museum back in time, providing detailed records of past climatic conditions. In addition to chronological records such as temperature, chemistry and gas composition, ice provides a unique environment for preserving microbes and other biological materials through time. These microbes provide invaluable insight into the physiological capabilities necessary for survival in the Earth’s cryosphere and other icy planetary bodies, yet little is known about them. This award supports fundamental research into the activity of microbes in ice, and directly supports major research priorities regarding Antarctic biota identified in the 2015 National Academies of Sciences, Engineering, and Medicine report, A Strategic Vision for NSF Investments in Antarctic and Southern Ocean Research. The broader impacts of this work are that it will be relevant to researchers across paleoclimate and biological fields. It will support two early career researchers, a graduate and an undergraduate student who will conduct laboratory analyses, participate in outreach activities, publish papers in scientific journals and present at conferences. This work will use previously collected ice cores to investigate englacial microbial activity from the Holocene back to the Last Glacial Maximum from the blue ice area of Taylor Glacier, Antarctica. The proposal identified making significant contributions to 1) investing how Antarctic organisms evolve and adapt to changing environment, 2) understanding how microbes alter the preservation of paleorecord-relevant gas and trace element information in ice cores, and 3) identifying microbial life in cores and their activity in relation to dust depositional events. Two recently developed complementary techniques (bio-orthogonal noncanonical amino acid tagging and deuterium isotope probing) in combination with Raman Confocal Microspectroscopy will be used to assess and quantify microbial activity in ice. During phase one of the project, these methods will be optimized using deaccessioned ice cores available at the National Science Foundation’s Ice Core Facility. In phase two, ice cores in a time series from the Taylor Glacier will be analyzed for geochemistry and microbial activity. Research results will provide a comprehensive view of englacial microbial communities, including their metabolic diversity and activity, and the effect of geochemical parameters on microbial assemblages from different climate periods. Given the dearth of information available on englacial microbial communities, the results of this research will be of particular significance. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
As plate tectonics pushed Antarctica into a polar position, by ~34 million years ago, the continent and its surrounding Southern Ocean (SO) became geographically and thermally isolated by the Antarctic Circumpolar Current. Terrestrial and marine glaciation followed, resulting in extinctions as well as the survival and radiation of unique flora and fauna. The notothenioid fish survived and arose from a common ancestral stock into tax with 120 species that dominates today?s SO fish fauna. The Notothenioids evolved adaptive traits including novel antifreeze proteins for survival in extreme cold, but also suffered seemingly adverse trait loss including red blood cells in the icefish family, and the ability to mount cellular responses to mitigate heat stress ? otherwise ubiquitous across all life. This project aims to understand how the notothenoid genomes have changed and contributed to their evolution in the cold. The project will sequence, analyze and compare the genomes of two strategic pairs of notothenioid fishes representing both red-blooded and white-blooded species. Each pair will consist of one Antarctic species and one that has readapted to the temperate waters of S. America or New Zealand. The project will also compare the Antarctic species genomes to a genome of the closet non-Antarctic relative representing the temperate notothenioid ancestor. The work aims to uncover the mechanisms that enabled the adaptive evolution of this ecologically vital group of fish in the freezing Southern Ocean, and shed light on their adaptability to a warming world. The finished genomes will be made available to promote and advance Antarctic research and the project will host a symposium of Polar researchers to discuss the cutting edge developments regarding of genomic adaptations in the polar region. Despite subzero, icy conditions that are perilous to teleost fish, the fish fauna of the isolated Southern Ocean (SO) surrounding Antarctica is remarkably bountiful. A single teleost group ? the notothenioid fishes ? dominate the fauna, comprising over 120 species that arose from a common ancestor. When Antarctica became isolated and SO temperatures began to plunge in early Oligocene, the prior temperate fishes became extinct. The ancestor of Antarctic notothenioids overcame forbidding polar conditions and, absent niche competition, it diversified and filled the SO. How did notothenioids adapt to freezing environmental selection pressures and achieve such extraordinary success? And having specialized to life in chronic cold for 30 myr, can they evolve in pace with today?s warming climate to stay viable? Past studies of Antarctic notothenioid evolutionary adaptation have discovered various remarkable traits including the key, life-saving antifreeze proteins. But life specialized to cold also led to paradoxical trait changes such as the loss of the otherwise universal heat shock response, and of the O2-transporting hemoglobin and red blood cells in the icefish family. A few species interestingly regained abilities to live in temperate waters following the escape of their ancestor out of the freezing SO. This proposed project is the first major effort to advance the field from single trait studies to understanding the full spectrum of genomic and genetic responses to climatic and environmental change during notothenioid evolution, and to evaluate their adaptability to continuing climate change. To this end, the project will sequence the genomes of four key species that embody genomic responses to different thermal selection regimes during notothenioids? evolutionary history, and by comparative analyses of genomic structure, architecture and content, deduce the responding changes. Specifically, the project will (i) obtain whole genome assemblies of the red-blooded T. borchgrevinki and the S. American icefish C. esox; (ii) using the finished genomes from (i) as template, obtain assemblies of the New Zealand notothenioid N. angustata, and the white-blooded icefish C. gunnari, representing a long (11 myr) and recent (1 myr) secondarily temperate evolutionary history respectively. Genes that are under selection in the temperate environment but not in the Antarctic environment can be inferred to be directly necessary for that environment ? and the reverse is also true for genes under selection in the Antarctic but not in the temperate environment. Further, genes important for survival in temperate waters will show parallel selection between N. angustata and C. esox despite the fact that the two fish left the Antarctic at far separated time points. Finally, gene families that expanded due to strong selection within the cold Antarctic should show a degradation of duplicates in the temperate environment. The project will test these hypotheses using a number of techniques to compare the content and form of genes, the structure of the chromosomes containing those genes, and through the identification of key characters, such as selfish genetic elements, introns, and structural variants.
Arrigo, Kevin; Thomas, Leif N; Baumberger, Tamara; Resing, Joseph
No dataset link provided
Phytoplankton blooms throughout the world’s oceans support critical marine ecosystems and help remove carbon dioxide (CO2) from the atmosphere. Traditionally, it has been assumed that phytoplankton blooms in the Southern Ocean are stimulated by iron from either nearby land or sea-ice. However, recent work demonstrates that hydrothermal vents may be an additional iron source for phytoplankton blooms. This enhancement of phytoplankton productivity by different iron sources supports rich marine ecosystems and leads to the sequestration of carbon in the deep ocean. Our proposed work will uncover the importance of hydrothermal activity in stimulating a large phytoplankton bloom along the southern boundary of the Antarctic Circumpolar Current just north of the Ross Sea. It will also lead towards a better understanding of the overall impact of hydrothermal activity on the carbon cycle in the Southern Ocean, which appears to trigger local hotspots of biological activity which are a potential sink for atmospheric CO2. This project will encourage the participation of underrepresented groups in ocean sciences, as well as providing educational opportunities for high school and undergraduate students, through three different programs. Stanford University’s Summer Undergraduate Research in Geoscience and Engineering (SURGE) program provides undergraduates from different US universities and diverse cultural backgrounds the opportunity to spend a summer doing a research project at Stanford. The Stanford Earth Summer Undergraduate Research Program (SESUR) is for Stanford undergraduates who want to learn more about environmental science by performing original research. Finally, Stanford’s School of Earth, Energy, and Environmental Sciences High School Internship Program enables young scientists to serve as mentors, prepares high school students for college, and serves to strengthen the partnership between Stanford and local schools. Students present their results at the Fall AGU meeting as part of the AGU Bright STaRS program. This project will form the basis of at least two PhD dissertations. The Stanford student will participate in Stanford’s Woods Institute Rising Environmental Leaders Program (RELP), a year-round program that helps graduate students hone their leadership and communication skills to maximize the impact of their research. The graduate student will also participate in Stanford’s Grant Writing Academy where they will receive training in developing and articulating research strategies to tackle important scientific questions. This interdisciplinary program combines satellite and ship-based measurements of a large poorly understood phytoplankton bloom (the AAR bloom) in the northwestern Ross Sea sector of the Southern Ocean with a detailed modeling study of the physical processes linking deep dissolved iron (DFe) reservoirs to the surface phytoplankton bloom. Prior to the cruise, we will implement a numerical model (CROCO) for our study region so that we can better understand the circulation, plumes, turbulence, fronts, and eddy field around the AAR bloom and how they transport and mix hydrothermally produced DFe vertically. Post cruise, observations of the vertical distribution of 3He (combined with DMn and DFe), will be used as initial conditions for a passive tracer in the model, and tracer dispersal will be assessed to better quantify the role of the various turbulent processes in upwelling DFe-rich waters to the upper ocean. The satellite-based component of the program will characterize the broader sampling region before, during, and after our cruise. During the cruise, our automated software system at Stanford University will download and process images of sea ice concentration, Chl-a concentration, sea surface temperature (SST), and sea surface height (SSH) and send them electronically to the ship. Operationally, our goal is to use all available satellite data and preliminary model results to target shipboard sampling both geographically and temporally to optimize sampling of the AAR bloom. We will use available BGC-Argo float data to help characterize the AAR bloom. In collaboration with SOCCOM, we will deploy additional BGC-Argo floats (if available) during our transit through the study area to allow us to better characterize the bloom. The centerpiece of our program will be a 40-day process study cruise in austral summer. The cruise will consist of an initial “radiator” pattern of hydrographic surveys/sections along the AAR followed by CTDs to selected submarine volcanoes. When/if eddies are identified, they will be sampled either during or after the initial surveys. The radiator pattern, or parts thereof, will be repeated 2-3 times. Hydrographic survey stations will include vertical profiles of temperature, salinity, oxygen, oxidation-reduction potential, light scatter, and PAR (400-700 nm). Samples will be collected for trace metals, ligands, 3He, and total suspended matter. Where intense hydrothermal activity is identified, samples for pH and total CO2 will also be collected to characterize the hydrothermal system. Water samples will be collected for characterization of macronutrients, and phytoplankton physiology, abundance, species composition, and size. During transits, we will continuously measure atmospheric conditions, current speed and direction, and surface SST, salinity, pCO2, and fluorescence from the ship’s systems to provide detailed maps of these parameters. The ship will be used as a platform for conducting phytoplankton DFe bioassay experiments at key stations throughout the study region both inside and outside the bloom. We will also perform detailed comparisons of algal taxonomic composition, physiology, and size structure inside and outside the bloom to determine the potential importance of each community on local biogeochemistry. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Estimating Antarctic ice sheet growth or loss is important to predicting future sea level rise. Such estimates rely on field measurements or remotely sensed based observations of the ice sheet surface, ice margins, and or ice shelves. This work examines the introduction of freshwater into the ocean to surrounding Antarctica to track meltwater from continental ice. Polar ice is depleted in two stable isotopes, 18O and D, deuterium, relative to Southern Ocean seawater and precipitation. Measurements of seawater isotopic composition in conjunction with precise observations of seawater temperature and salinity, will permit discrimination of freshwater derived from melting glacial ice from that derived from regional precipitation or sea ice melt. This research describes an accepted method for determining rates and locations of meltwater entering the oceans from polar ice sheets. As isotopic and salinity perturbations are cumulative in many Antarctic coastal seas, the method allows for the detection of any marked acceleration in meltwater introduction in specific regions, using samples collected and analyzed over a period of years to decades. Impact of the project derives from use of an independent method capable of constraining knowledge about current ice sheet melt rates, their stability and potential impact on sea level rise. The project allows for sample collection taken from foreign vessels of opportunity sailing in Antarctic waters, and subsequent sharing and interpretation of data. Research partners include the U.S., Korea, China, New Zealand, the United Kingdom, and Germany. Participating collaborators will collect seawater samples for isotopic and salinity analysis at Stanford University. USAP cruises will concentrate on sampling the Ross Sea, and the West Antarctic. The work plan includes interpretation of isotopic data using box model and mixing curve analyses as well as using isotope enabled ROMS (Regional Ocean Modeling System) models. The broader impacts of the research will include development of an educational module that illustrates the scientific method and how ocean observations help society understand how Earth is changing.
Non-technical description: This 4-year project is evaluating evidence of extinction patterns and depositional conditions from a high southern latitude Cretaceous-Paleogene (K-Pg) outcrop section found on Seymore Island, in the Western Antarctic Peninsula. The team is using sediment samples collected below the weathering horizon to evaluate detailed sedimentary structures, geochemistry, and microfossils in targeted stratigraphic intervals. The study will help determine if the K-Pg mass extinction was a single or double phased event and whether Seymour Island region in the geological past was a restricted, suboxic marine environment or an open well-mixed shelf. The award includes an integrated plan for student training at all levels, enhanced by a highlighted partnership with a high school earth sciences teacher working in a school serving underrepresented students. Technical description: The proposed research is applying multiple techniques to address an overarching research question for which recent studies are in disagreement: Is the fossil evidence from a unique outcropping on Seymour Island, Antarctica consistent with a single or double phased extinction? In a two-phased model, the first extinction would affect primarily benthic organisms and would have occurred ~150 kiloyears prior to a separate extinction at the K-Pg boundary. However, this early extinction could plausibly be explained by an unrecognized facies control that is obscured by surficial weathering. This team is using microfossil evidence with detailed sedimentary petrology and geochemistry data to evaluate if the fossil evidence from Seymour Island is consistent with a single or double phased extinction process. The team is using detailed sedimentary petrology and geochemistry methods to test for facies changes across the K-PG interval that would explain the apparent early extinction. Samples of core sedimentary foraminifera, siliceous microfossils, and calcareous nannofossils are being evaluated to provide a high-resolution stratigraphic resolution and to evaluate whether evidence for an early extinction is present. Additionally, the team is using multiple geochemical methods to evaluate whether there is evidence for intermittent anoxia or euxinia and/or physical restriction of the Seymore region basin. Data from this analysis will indicate if this region was a restricted, suboxic marine environment or an open well-mixed shelf. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Near the Antarctic coast, polynyas are open-water regions where extreme heat loss in winter causes seawater to become cold, salty, and dense enough to sink into the deep sea. The formation of this dense water has regional and global importance because it influences the ocean current system. Polynya processes are also tied to the amount of sea ice formed, ocean heat lost to atmosphere, and atmospheric CO2 absorbed by the Southern Ocean. Unfortunately, the ocean-atmosphere interactions that influence the deep ocean water properties are difficult to observe directly during the Antarctic winter. This project will combine field measurements and laboratory experiments to investigate whether differences in the concentration of noble gasses (helium, neon, argon, xenon, and krypton) dissolved in ocean waters can be linked to environmental conditions at the time of their formation. If so, noble gas concentrations could provide insight into the mechanisms controlling shelf and bottom-water properties, and be used to reconstruct past climate conditions. Project results will contribute to the Southern Ocean Observing System (SOOS) theme of The Future and Consequences of Carbon Uptake in the Southern Ocean. The project will also train undergraduate and graduate students in environmental monitoring, and earth and ocean sciences methods. Understanding the causal links between Antarctic coastal processes and changes in the deep ocean system requires study of winter polynya processes. The winter period of intense ocean heat loss and sea ice production impacts two important Antarctic water masses: High-Salinity Shelf Water (HSSW), and Antarctic Bottom Water (AABW), which then influence the strength of the ocean solubility pump and meridional overturning circulation. To better characterize how sea ice cover, ocean-atmosphere exchange, brine rejection, and glacial melt influence the physical properties of AABW and HSSW, this project will analyze samples and data collected from two Ross Sea polynyas during the 2017 PIPERS winter cruise. Gas concentrations will be measured in seawater samples collected by a CTD rosette, from an underwater mass-spectrometer, and from a benchtop Membrane Inlet Mass Spectrometer. Noble gas concentrations will reveal the ocean-atmosphere (dis)equilibrium that exists at the time that surface water is transformed into HSSW and AABW, and provide a fingerprint of past conditions. In addition, nitrogen (N2), oxygen (O2), argon, and CO2 concentration will be used to determine the net metabolic balance, and to evaluate the efficacy of N2 as an alternative to O2 as glacial meltwater tracer. Laboratory experiments will determine the gas partitioning ratios during sea ice formation. Findings will be synthesized with PIPERS and related projects, and so provide an integrated view of the role of the wintertime Antarctic coastal system on deep water composition. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Microbes in Antarctic surface marine sediments have an important role in degrading organic matter and releasing nutrients to the ocean. Organic matter degradation is at the center of the carbon cycle in the ocean, providing valuable information on nutrient recycling, food availability to animals and carbon dioxide release to the atmosphere. The functionality of these microbes has been inferred by their genomics, however these methods only address the possible function, not their actual rates. In this project the PIs plan to combine genomics methods with cellular estimates of enzyme abundance and activity as a way to determine the rates of carbon degradation. This project aims to sample in several regions of Antarctica to provide a large-scale picture of the processes under study and understand the importance of microbial community composition and environmental factors, such as primary productivity, have on microbial activity. The proposed work will combine research tools such as metagenomics, meta-transcriptomics, and metabolomics coupled with chemical data and enzyme assays to establish degradation of organic matter in Antarctic sediments. This project benefits NSFs goals of understanding the adaptation of Antarctic organisms to the cold and isolated environment, critical to predict effects of climate change to polar organisms, as well as contribute to our knowledge of how Antarctic organisms have adapted to this environment. Society will benefit from this project by education of 2 graduate students, undergraduates and K-12 students as well as increase public literacy through short videos production shared in YouTube. The PIs propose to advance understanding of polar microbial community function, by measuring enzyme and gene function of complex organic matter degradation in several ocean regions, providing a circum-Antarctic description of sediment processes. Two hypotheses are proposed. The first hypothesis states that many genes for the degradation of complex organic matter will be shared in sediments throughout a sampling transect and that where variations in gene content occur, it will reflect differences in the quantity and quality of organic matter, not regional variability. The second hypothesis states that a fraction of gene transcripts for organic matter degradation will not result in measurable enzyme activity due to post-translational modification or rapid degradation of the enzymes. The PIs will analyze sediment cores already collected in a 2020 cruise to the western Antarctic Peninsula with the additional request of participating in a cruise in 2023 to East Antarctica. The PIs will analyze sediments for metagenomics, meta-transcriptomics, and metabolomics coupled with geochemical data and enzyme assays to establish microbial degradation of complex organic matter in Antarctic sediments. Organic carbon concentrations and content in sediments will be measured with δ13C, δ15N, TOC porewater fluorescence in bulk organic carbon. Combined with determination of geographical variability as well as dependence on carbon sources, results from this study could provide the basis for new hypotheses on how climate variability, with increased water temperature, affects geochemistry in the Southern Ocean. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The goal of this study is to identify and distinguish different source areas of glacial sediment in the McMurdo Dry Valleys, Antarctica to determine past glacial flow direction. Understanding ice flow is critical for determining how the Antarctic Ice Sheets have behaved in the past. Such insight is fundamental for allowing scientists to predict how the Antarctic Ice Sheets will evolve and, in turn, forecast how much and how fast sea level may rise. The project study site, the McMurdo Dry Valleys, contain a tremendous record of glacial deposits on land that extends back at least 14 million years. Chemistry of the rocks within the glacial deposits hold clues to the sources of ice that deposited the material. The chemical analyses of the glacial deposits will allow mapping of the former extent of glaciations providing a better understand of ice flow history. The mapping of the largest ice sheet expansion of the past 14 million years in the McMurdo Dry Valleys is of broad interest to the global climate change community. Undergraduate students comprise the majority of the field teams and will be responsible for sample preparation and analysis in the laboratory. This project utilizes new geochemical techniques to test hypotheses about the source, extent, and flow patterns of the glacier ice that deposited glacial tills in the McMurdo Dry Valleys, Antarctica (MDV). The MDV contain an unparalleled terrestrial archive of glacial deposits, which record multiple sources of ice that deposited them. These include the northeast flowing ice that overrode the Transantarctic Mountains, the eastward expansion of the East Antarctic Ice Sheet, the westward extension of the Ross Ice Shelf representing an expansion of the West Antarctic Ice Sheet, and the growth of local alpine glaciers. The glacial tills and drifts in the Antarctic are typically isolated in patches or disjointed outcrop patterns making it difficult to correlate tills and determine their source. This project will undertake a systematic study of the tills in the McMurdo Dry Valleys to determine their provenance with a variety of geochemical techniques including major and minor element analyses with X-ray fluorescence, heavy mineral composition, soil salt concentration, and determining the uranium-lead (U-Pb) ages of zircon sands contained in these tills. The primary tool will be the age distribution of the population of detrital zircon in a glacial drift because it reflects the source of the tills and provides a unique geochemical "fingerprint" used to distinguish source areas while correlating units across different sites. A deliverable from this project will be a community available library of zircon fingerprints for mapped glacial tills from archived samples at the Polar Rock Repository and the systematic collection of samples in the MDV. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Within any population, some individuals perform better than others. These individuals may survive longer or produce more offspring. Weddell seals in Erebus Bay, Antarctica, provide an unparalleled opportunity to investigate how an animal's physiology, behavior, and genetic make-up contribute to lifetime reproductive success because they have been the subject of a long-term population monitoring study and are easily accessible during their reproductive season. This project will distinguish key differences in energy allocation, reproductive timing, and dive capacities between female Weddell seals with a history of frequently producing pups ("high-quality" group), versus females that have produced pups only infrequently ("low-quality" group). For each group of females, physiology and behavior during the nursing period will be analyzed to assess whether investments influence their probability of reproducing the following year. Whole genomes will be compared between groups to identify underlying genes that govern reproductive success and population stability in a long-lived mammal. This collaborative project will provide research opportunities and training to several undergraduate and graduate students at the three participating institutions. Results will be broadly disseminated through presentations and peer-reviewed publications, and to students via an extensive public outreach collaboration with museum programming, curriculum-aligned science lessons, and pedagogy training. Within any wild animal population there is substantial heterogeneity in reproductive rates and animal fitness. Not all individuals contribute to the population equally; some are able to produce more offspring than others and thus are considered to be of higher quality. This study aims to distinguish which physiological mechanisms (energy dynamics, aerobic capacity, and fertility) and underlying genetic factors make some Weddell seal females particularly successful at producing pups year after year, while others produce far fewer pups than the population average. In this project, an Organismal Energetics approach will identify key differences between high- and low-quality females in how they balance current and future reproductive success by tracking lactation costs, midsummer foraging success and pregnancy rates, and overwinter foraging patterns and live births the next year. Repeated sampling of individuals' physiological status (body composition, endocrinology, ovulation and pregnancy timing), will be paired with a whole-genome sequencing study. The second component of this study uses a Genome to Phenome approach to better understand how genetic differences between high- and low-quality females directly correspond to functional differences in transcription, translation, and ultimately phenotype. This component will contribute to the functional analysis and annotation of the Weddell seal genome. In combination, this project will make strides towards distinguishing the roles that plastic (physiological, behavioral) and fixed (genetic) factors play in complex, multifaceted traits such as fitness in a long-lived wild mammal. The project partners with established programs to implement extensive educational and outreach activities that will ensure wide dissemination to educators, students, and the public. It will contribute to a marine mammal exhibit at the Pink Palace Museum, and a PolarTREC science educator will participate in field work in Antarctica. This award is co-funded by the GEO-OPP-Antarctic Organisms and Ecosystems Program, BIO-IOS-Physiological Mechanisms and Biomechanics Program, and the Established Program to Stimulate Competitive Research (EPSCoR). This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part 1: Non-technical description This is a continuation of a long-term population dynamics study (1978-present) using an intensive mark-recapture tagging of Weddell seals in Erebus Bay, Antarctica. Past work has become a global model for population studies of large animals. Results have documented strong annual variation in reproduction, abundance, and population composition. This program will add components to evaluate the demographic role of immigrant mothers, evaluate possible drivers of annual variation in overall population dynamics, assess genetic differences between immigrant and locally born mothers, and document patterns of gene flow among seal colonies in the Ross Sea region. These new aspects will focus on understanding of population structure, function, and genetics and provide key information for predicting how the seal population will respond to environmental change. The addition of genetic approaches will advance available data for multiple groups in multiple countries working on Weddell Seals. This work includes an early career scientists training program for faculty university graduate and undergraduate students and well as a defined program for data sharing. The research is paired with active education and outreach programs, social media, websites, educational resources, videos and high-profile public lecture activities. The informal science education program will expand on the project’s successful efforts at producing and delivering short-form videos that have been viewed over 1.6 million times to date. In addition, the education program will add new topics such as learning about seals using genomics and how seals respond to a changing world to a multimedia-enhanced electronic book about the project’s long-term research on Weddell seals, which will be freely available to the public early in the project. Part 2: Technical description Reliable predictions are needed for how populations of wild species, especially those at high latitudes, will respond to future environmental conditions. This study will use a strategic extension of the long-term demographic research program that has been conducted annually on the Erebus Bay population of Weddell seals since 1978 to help meet that need. Recent analyses of the study population indicate strong annual variation in reproduction, abundance, and population composition. The number of new immigrant mothers that join the population each year has recently grown such that most new mothers are now immigrants. Despite the growing number of immigrants, the demographic importance and geographic origins of immigrants are unknown. The research will (1) add new information on drivers of annual variation in immigrant numbers, (2) compare and combine information on the vital rates and demographic role of immigrant females and their offspring with that of locally born females, and (3) add genomic analyses that will quantify levels of genetic variation in and gene flow among the study population and other populations in the Ross Sea. The project will continue the long-term monitoring of the population at Erebus Bay and characterize population dynamics and the role of immigration using a combination of mark-recapture analyses, stochastic population modeling, and genomic analyses. The study will continue to provide detailed data on individual seals to other science teams, educate and mentor individuals in the next generation of ecologists, introduce two early-career, female scientists to Antarctic research, and add genomics approaches to the long-term population study of Erebus Bay Weddell seals. The research will be complemented with a robust program of training and an informal science education program. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The response of the Antarctic ice sheet to climate change is a central issue in projecting global sea-level rise. While much attention is focused on the ongoing rapid changes at the coastal margin of the West Antarctic Ice Sheet, obtaining records of past ice-sheet and climate change is the only way to constrain how an ice sheet changes over millennial timescales. Whether the West Antarctic Ice Sheet collapsed during the last interglacial period (~130,000 to 116,000 years ago), when temperatures were slightly warmer than today, remains a major unsolved problem in Antarctic glaciology. Hercules Dome is an ice divide located at the intersection of the East Antarctic and West Antarctic ice sheets. It is ideally situated to record the glaciological and climatic effects of changes in the West Antarctic Ice Sheet. This project will establish whether Hercules Dome experienced major changes in flow due to changes in the elevation of the two ice sheets. The project will also ascertain whether Hercules Domes is a suitable site from which to recover climate records from the last interglacial period. These records could be used to determine whether the West Antarctic Ice Sheet collapsed during that period. The project will support two early-career researchers and train students at the University of Washington. Results will be communicated through outreach programs in coordination the Ice Drilling Project Office, the University of Washington's annual Polar Science Weekend in Seattle, and art-science collaboration. This project will develop a history of ice dynamics at the intersection of the East and West Antarctic ice sheets, and ascertain whether the site is suitable for a deep ice-coring operation. Ice divides provide a unique opportunity to assess the stability of past ice flow. The low deviatoric stresses and non-linearity of ice flow causes an arch (a "Raymond Bump") in the internal layers beneath a stable ice divide. This information can be used to determine the duration of steady ice flow. Due to the slow horizontal ice-flow velocities, ice divides also preserve old ice with internal layering that reflects past flow conditions caused by divide migration. Hercules Dome is an ice divide that is well positioned to retain information of past variations in the geometry of both the East and West Antarctic Ice Sheets. This dome is also the most promising location at which to recover an ice core that can be used to determine whether the West Antarctic Ice Sheet collapsed during the last interglacial period. Limited ice-penetrating radar data collected along a previous scientific surface traverse indicate well-preserved englacial stratigraphy and evidence suggestive of a Raymond Bump, but the previous survey was not sufficiently extensive to allow thorough characterization or determination of past changes in ice dynamics. This project will conduct a dedicated survey to map the englacial stratigraphy and subglacial topography as well as basal properties at Hercules Dome. The project will use ground-based ice-penetrating radar to 1) image internal layers and the ice-sheet basal interface, 2) accurately measure englacial attenuation, and 3) determine englacial vertical strain rates. The radar data will be combined with GPS observations for detailed topography and surface velocities and ice-flow modeling to constrain the basal characteristics and the history of past ice flow. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Traditional models of oceanic food chains have consisted of photosynthetic algae (phytoplankton) being ingested by small animals (zooplankton), which were ingested by larger animals (fish). These traditional models changed as new methods allowed recognition of the importance of bacteria and other non-photosynthetic protozoa in more complex food webs. More recently, the wide-spread existence of mixotrophs (organisms that can both photosynthesize and ingest food particles) and their importance as microbial predators has been recognized in many oceanographic areas. In the Southern Ocean, the only two surveys of mixotrophs have suggested that there may be seasonal differences in their importance as predators. During the long polar night (winter), the ability of mixotrophs to ingest particulate food may aid in their survival thus ensuring a sufficient population in spring to support a phytoplankton bloom once photosynthesis rates can increase. Thus mixotrophs may provide a critical early food source upon which zooplankton and larger animals depend on for growth and reproduction. This project will advance understanding of mixotroph diversity and their ecological impact within the Southern Ocean microbial food web. Specifically, efforts will be focused on mixotrophy in the western Antarctica peninsula region during the austral spring and autumn when there are likely to be changes in the relative importance of photosynthesis and ingestion to mixotrophs. The project will provide research opportunities for undergraduate and graduate students and a post-doctoral researcher. There will be real-time outreach from the Southern Ocean to the public via blogs and interviews, and to high school art students through an established program that blends science and art education. Despite traditional views of protists as either "phototrophic" or "heterotrophic," there are many photosynthetic protists that consume prey (mixotrophy). Mixotrophy is a widespread phenomenon in aquatic systems and phytoplankton groups with known mixotrophic species, notably chrysophytes, cryptophytes, prymnesiophytes, prasinophytes and dinoflagellates, are present and often abundant in Antarctic waters. However, in the Southern Ocean, the presence of mixotrophic phytoflagellates has been surveyed only twice: in the Ross Sea during Austral spring 2008 and summer 2011. The primary goals of the project are to gain better understanding of mixotroph diversity and their ecological impact with respect to the Southern Ocean microbial food web. The contribution of mixotrophs to primary production and bacterial consumption is likely linked to the taxonomic composition of the community and the abundance of particular species. Abundances of novel mixotrophic species will be evaluated via qPCR, which will be coupled with assessments of rates of feeding and photosynthesis with the goal of describing how active mixotrophs direct the movement of carbon through food webs. These experiments will help the determination of how viable and widespread mixotrophy is as a nutritional strategy in polar waters and give direct information on the currently unknown diversity of mixotrophic taxa under different environmental conditions occurring in austral spring and autumn. Furthermore, the methods will simultaneously yield information on the whole communities of protists - mixotrophic, phototrophic and heterotrophic. In addition, a method to examine aspects of the taxonomic and functional diversities of the bacterivorous/mixotrophic community will be employed. A thymidine analog (BrdU) will be used to label DNA of eukaryotes feeding on bacteria. The BrdU-labeled eukaryotic DNA will be isolated using immunoprecipitation. High-throughput sequencing of the labeled DNA (bacterivores) versus unlabeled community DNA will determine the diversity of bacterivorous mixotrophs relative to other microeukaryotes. Flow cytometric sorting based on chlorophyll to focus on mixotrophic species. These approaches will elucidate a gap in current knowledge of the influence of microbial interactions in the Southern Ocean under different conditions. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Pygoscelis penguins are central place foragers during the summer while they raise their chicks. They leave and return to the same colony location after hunting for food and rely on the availability of Antarctic krill, their primary food source. This research focuses on whether penguin diets and colony location reflect the retention of prey around and near colonies on the West Antarctic Peninsula. Eddies and other oceanographic processes may facilitate prey retention at certain locations, driving penguin colony establishment and success. This project hypothesizes that Pygoscelis penguin diets will be composed of more Antarctic krill (Euphausia superba) when local prey retention is high, possibly due to subsurface eddies. This hypothesis will be tested using satellite-based estimates of Pygoscelis penguin diet composition using multispectral sensor data to estimate nitrogen values and infer trophic level. Prey retention will be calculated along the peninsula using the Regional Ocean Modeling System (ROMS). Simulated particles and diel vertical migration will be used to mimic krill behavior. These particles can be experimentally seeded across multiple depths in multiple years to assess residence times in the system. Using penguin colony data from the Mapping Application for Penguin Populations and Projected Dynamics (MAPPPD), the PI will correlate diet and retention metrics to local penguin colony growth and persistence and build a predictive model of where colonies may form in the future. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Hydroxyl radicals are responsible for removal of most atmospheric trace gases, including pollutants and important greenhouse gases. They have been called the "detergent of the atmosphere". Changes in hydroxyl radical concentration in response to large changes in reactive trace gas emissions, which may happen in the future, are uncertain. This project aims to provide the first estimates of the variability of atmospheric hydroxyl radicals since about 1880 AD when anthropogenic emissions of reactive trace gases were minimal. This will improve understanding of their stability in response to large changes in emissions. The project will also investigate whether ice cores record past changes in Southern Hemisphere westerly winds. These winds are a key component of the global climate system, and have an important influence on ocean circulation and possibly on atmospheric carbon dioxide concentrations. The project team will include three early career scientists, a postdoctoral researcher, and graduate and undergraduate students, working in collaboration with senior scientists and Australian collaborators. Firn air and shallow ice to a depth of about 233 m will be sampled at the Law Dome high-accumulation coastal site in East Antarctica. Trapped air will be extracted from the ice cores on site immediately after drilling. Carbon-14 of carbon monoxide (14CO) will be analyzed in firn and ice-core air samples. Corrections will be made for the in situ cosmogenic 14CO component in the ice, allowing for the atmospheric 14CO history to be reconstructed. This 14CO history will be interpreted with the aid of a chemistry-transport model to place the first observational constraints on the variability of Southern Hemisphere hydroxyl radical concentration after about 1880 AD. An additional component of the project will analyze Krypton-86 in the firn-air and ice-core samples. These measurements will explore whether ice-core Krypton-86 acts as a proxy for barometric pressure variability, and whether this proxy can be used in Antarctic ice cores to infer past movement of the Southern Hemisphere westerly winds. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This research will provide new insights into the relationships and history of sharks, fish and limbed animals. Understanding these relationships forms the backbone for both basic and applied science because fish often serve as models of human traits and diseases. Some of the main lines of evidence for these relationships come from fossils in rocks over 380 million years old that were originally deposited as ancient rivers and streams. Because rocks of this type and age are abundantly exposed along a number of the dry valleys and mountains of Antarctica, the investigation of these areas holds exceptional promise for discoveries that can have a broad impact. The fieldwork will involve geological mapping and assessment of the rocks with detailed reconnaissance for the fossils that they may hold. Fossil discoveries form the backbone for public communication of the methods and results of scientific research-- these studies will be used as vehicles for training of students at multiple levels as well as communication of science to the broader non-science citizen base. The discovery, description, and analysis of Middle to Late Devonian (390-355 Million years ago) vertebrates and depositional environments provide important data on the emergence of novel anatomical structures, faunas, and habitats during a critical interval in the history of life and earth. Biological innovation during this time includes the early evolution of freshwater fish, the origins of major groups of vertebrates (e.g., sharks, lobe and ray-finned fish, tetrapods), and the expansion and elaboration of non-marine ecosystems. Accordingly, expanding our knowledge of vertebrate diversity during the Middle and Late Devonian will provide new evidence on the relationships of the major groups of vertebrates, the assembly of novelties that ultimately enabled tetrapods to invade land, the origin and early evolution of sharks and their relatives, and the assembly and expansion of non-marine ecosystems generally. The Aztec Siltstone of Antarctica Middle-Late Devonian; Givetian-Frasnian Stages) has exceptional potential to produce new paleontological evidence of these events and to illuminate the temporal, ecological, and geographic context in which they occurred. It is essentially fossiliferous throughout its known exposure range, something that is rare for Middle-Late Devonian non-marine rocks anywhere in the world. In addition, fine-grained meandering stream deposits are abundantly exposed in the Aztec Siltstone and are recognized as an important locus for the discovery of well-preserved Devonian fish, including stem tetrapods and their relatives. Given the exceedingly fossiliferous nature of the Aztec Siltstone, the large number of taxa known only from partial material, and the amount of promising exposure yet to be worked, a dedicated reconnaissance, collection, and research effort is designed to recover important new fossil material and embed it in a stratigraphic and sedimentological context. The first major objective of this study is the recovery, preparation, and description of Middle-Late Devonian fossil taxa. Ensuing investigation of the phylogenetic affinities, taphonomic occurrence, and stratigraphic position of fossil assemblages will allow both local and global comparisons of biotic diversity. These analyses will inform: 1) higher level phylogenetic hypotheses of jawed vertebrates, 2) biostratigraphic and biogeographic analysis of the distribution of the Middle-Late Devonian fish, and 3) paleobiological investigation of the elaboration of terrestrial and freshwater habitats. The broader impacts are derived from the utility of paleontology and Antarctic expeditionary science as educational tools with powerful narratives. Specific goals include affiliations with local urban secondary schools (using established relationships for broadening participation) and collegiate and graduate training. Wider dissemination of knowledge to the general public is a direct product of ongoing interactions with national and international media (print, television, internet).
The western portion of the Antarctic continent is very active in terms of plate tectonic processes that can produce significant variations in the Earths mantle temperature as well as partial melting of the mantle. In addition to these internal processes, the ice sheet in western Antarctica is melting due to Earths warming climate and adding water to the ocean. These changes in ice mass cause adjustments in rocks within the Earth's crust, allowing the surface to rebound in some locations and fall in others, altering the geographical pattern of sea-level change. However, the solid Earth response depends strongly on the strength of the rocks at a wide range of timescales which is not well-known and varies with temperature and other rock properties. This project has three primary goals. (1) It will assess how processes such as rifting, mantle upwelling and lithospheric instability have altered the lithosphere and underlying asthenosphere of western Antarctica, contributing to a planet-wide understanding of these processes. (2) It will use new measurements of mantle and crust properties to estimate the rate at which heat from the solid Earth flows into the base of the ice, which is important for modeling the rates at which the ice melts and flows. (3) It will places bounds on mantle viscosity, which is key for modeling the interaction of the solid Earth with changing ice and water masses and their implications for sea-level rise. To accomplish these goals, new resolution of crust and mantle structure will be obtained by analyzing seismic waves from distant earthquakes that have been recorded at numerous seismic stations in Antarctica. These analyses will include new combinations of seismic wave data that provide complementary information about mantle temperature, heat flow and viscosity. This project will provide educational and career opportunities to a Brown University graduate student, undergraduates from groups underrepresented in science who will come to Brown University for a summer research program, and other undergraduates. The project will bring together faculty and students for a seminar at Brown that explores the connections between the solid Earth and ice processes in Antarctica. Project research will be incorporated in outreach to local public elementary schools and high schools. This research addresses key questions about mantle processes and properties in western Antarctica. What are the relative impacts of rifting, mantle plumes, and lithospheric delamination in the evolution of the lithosphere and asthenosphere? Where is topography isostatically compensated, and where are dynamic processes such as plate flexure or tractions from 3-D mantle flow required? What are the bounds on heat flow and mantle viscosity, which represent important inputs to models of ice sheet evolution and its feedback from the solid Earth? To address these questions, this project will measure mantle and crust properties using seismic tools that have not yet been applied in Antarctica: regional-scale measurement of mantle attenuation from surface waves; Sp body wave phases to image mantle velocity gradients such as the lithosphere-asthenosphere boundary; and surface wave amplification and ellipticity. The resulting models of seismic attenuation and velocity will be jointly interpreted to shed new light on temperature, bulk composition, volatile content, and partial melt, using a range of laboratory-derived constitutive laws, while considering data from mantle xenoliths. To test the relative roles of rifting, mantle plumes, and delamination, and to assess isostatic support for Antarctic topography, the predictions of these processes will be compared to the new models of crust and mantle properties. To improve bounds on western Antarctic heat flow, seismic attenuation and velocity will be used in empirical comparisons and in direct modeling of vertical temperature gradients. To better measure mantle viscosity at the timescales of glacial isostatic adjustment, frequency-dependent viscosity will be estimated from the inferred mantle conditions. This project will contribute to the education and career development of the following: a Brown University Ph.D. student, Brown undergraduates, and undergraduates from outside the university will be involved through the Department of Earth, Environmental and Planetary Sciences (DEEPS) Leadership Alliance NSF Research Experience for Undergraduates (REU) Site which focuses on geoscience summer research experiences for underrepresented students. The project will be the basis for a seminar at Brown that explores the connections between the solid Earth and cryosphere in Antarctica and will contribute to outreach in local public elementary and high schools. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Non-Technical abstract The physical state of the mantle beneath the Antarctic Ice Sheet plays a key role in the interaction between the Antarctic ice cover and the solid earth, strongly influencing the glacial system's evolution. Generally, mantle temperature profiles are determined by analyzing rock samples from the mantle to determine pressure-temperature conditions, and/or by conversion of seismic velocity anomalies to temperature anomalies. However, mantle rocks have been found only in a very few places in Antarctica, and seismic anomalies reflect not only thermal anomalies but also compositional variations. In this project, the investigators will (1) use the most recent geophysical datasets sensitive to temperature and composition (high-resolution seismic velocity model, topography, satellite gravity), (2) Combine the sensitivity of these datasets in a to retrieve the most reliable model of thermal and compositional structure, (3) translate the results into 2-dimensional maps of temperature slices and the composition of iron in the mantle,(4) compare the results with results from other continents to better understand Antarctic geological history, and (5) use the new thermal model along with established rock relationships to estimate mantle viscosity. Technical abstract The thermochemical structure of the lithosphere beneath Antarctica is fundamental for understanding the geological evolution of the continent and its relationship to surrounding Gondwana continents. In addition, the thermal structure controls the solid earth response to glacial unloading, with important implications for ice sheet models and the future of the West Antarctic Ice Sheet. However, it is challenging to get an accurate picture of temperature and composition from only sparse petrological/geochemical analysis, and most previous attempts to solve this problem geophysically have relied on seismic or gravity data alone. Here, we propose to use a probabilistic joint inversion (high resolution regional seismic data, satellite gravity data, topography) and petrological modelling approach to determine the 3D thermochemical structure of the mantle. The inversion will be carried out using a Markov-chain Bayesian Monte Carlo methodology, providing quantitative estimates of uncertainties. Mapping the 3-dimensional thermochemical structure (thermal and composition) will provide a comprehensive view of the horizontal (50-100 km resolution) and vertical (from the surface down to 380 km) variations. This new model will give us the temperature variation from the surface down to 380 km and the degree of depletion of the lithospheric mantle and the sub-lithospheric mantle. This new model will also be compared to recent models of Gondwana terranes 200 Myrs to build a new model of the thermochemical evolution of the cratonic mantle. The new thermal and chemical structures can be used to better understand the geothermal heat flux beneath the ice sheet as well as improve glacial isostatic adjustment and ice sheet models. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Algae in the surface ocean convert carbon dioxide into organic carbon through photosynthesis. The biological carbon pump transports this organic carbon from the atmosphere to the deep ocean where it can be stored for tens to hundreds of years. Annually, the amount transported is similar to that humans are currently emitting by burning fossil fuels. However, at present we cannot predict how this important process will change with a warming ocean. These investigators plan to develop a 15+ year time-series of vertical carbon transfer for the Western Antarctic Peninsula; a highly productive Antarctic ecosystem. This region is also rapid transition to warmer temperatures leading to reduced sea ice coverage. This work will help researchers better understand how the carbon cycle in the Western Antarctic Peninsula will respond to climate change. The researchers will develop the first large-scale time-series of carbon flux anywhere in the ocean. This research will also support the education and training of a graduate student and support the integration of concepts in Antarctic research into two undergraduate courses designed for non-science majors and advanced earth science students. The researchers will also develop educational modules for introducing elementary and middle-school age students to important concepts such as gross and net primary productivity, feedbacks in the marine and atmospheric systems, and the differences between correlation and causation. Results from this proposal will also be incorporated into a children’s book, “Plankton do the Strangest Things”, that is targeted at 5-7 year olds and is designed to introduce them to the incredible diversity and fascinating adaptations of microscopic marine organisms. This research seeks to leverage 6 years (2015-2020) of 234Th samples collected on Palmer LTER program, 5 years of prior measurements (2009-2010, 2012-2014), and upcoming cruises (2021-2023) to develop a time-series of summertime particle flux in the WAP that stretches for 15 years. The 238U-234Th disequilibrium approach utilizes changes in the activity of the particle-active radio-isotope 234Th relative to its parent nuclide 238U to quantify the flux of sinking carbon out of the surface ocean (over a time-scale of ~one month). This proposal will fund 234Th analyses from nine years’ worth of cruises (2015-2023) and extensive analyses designed to investigate the processes driving inter-annual variability in the BCP. These include: 1) physical modeling to quantify the importance of advection and diffusion in the 234Th budget, 2) time-series analyses of particle flux, and 3) statistical modeling of the relationships between particle flux and multiple presumed drivers (biological, chemical, physical, and climate indices) measured by collaborators in the Palmer LTER program. This multi-faceted approach is critical for linking the measurements to models and for predicting responses to climate change. It will also test the hypothesis that export flux is decreasing in the northern WAP, increasing in the southern WAP, and increasing when integrated over the entire region as a result of earlier sea ice retreat and a larger ice-free zone. The project will also investigate relationships between carbon export and multiple potentially controlling factors including: primary productivity, algal biomass and taxonomic composition, biological oxygen saturation, zooplankton biomass and taxonomic composition, bacterial production, temperature, wintertime sea ice extent, date of sea ice retreat, and climate modes. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Cores drilled through the Antarctic ice sheet provide a remarkable window on the evolution of Earth’s climate and unique samples of the ancient atmosphere. The clear link between greenhouse gases and climate revealed by ice cores underpins much of the scientific understanding of climate change. Unfortunately, the existing data do not extend far enough back in time to reveal key features of climates warmer than today. COLDEX, the Center for Oldest Ice Exploration, will solve this problem by exploring Antarctica for sites to collect the oldest possible record of past climate recorded in the ice sheet. COLDEX will provide critical information for understanding how Earth’s near-future climate may evolve and why climate varies over geologic time. New technologies will be developed for exploration and analysis that will have a long legacy for future research. An archive of old ice will stimulate new research for the next generations of polar scientists. COLDEX programs will galvanize that next generation of polar researchers, bring new results to other scientific disciplines and the public, and help to create a more inclusive and diverse scientific community. Knowledge of Earth’s climate history is grounded in the geologic record. This knowledge is gained by measuring chemical, biological and physical properties of geologic materials that reflect elements of climate. Ice cores retrieved from polar ice sheets play a central role in this science and provide the best evidence for a strong link between atmospheric carbon dioxide and climate on geologic timescales. The goal of COLDEX is to extend the ice-core record of past climate to at least 1.5 million years by drilling and analyzing a continuous ice core in East Antarctica, and to much older times using discontinuous ice sections at the base and margin of the ice sheet. COLDEX will develop and deploy novel radar and melt-probe tools to rapidly explore the ice, use ice-sheet models to constrain where old ice is preserved, conduct ice coring, develop new analytical systems, and produce novel paleoclimate records from locations across East Antarctica. The search for Earth’s oldest ice also provides a compelling narrative for disseminating information about past and future climate change and polar science to students, teachers, the media, policy makers and the public. COLDEX will engage and incorporate these groups through targeted professional development workshops, undergraduate research experiences, a comprehensive communication program, annual scientific meetings, scholarships, and broad collaboration nationally and internationally. COLDEX will provide a focal point for efforts to increase diversity in polar science by providing field, laboratory, mentoring and networking experiences for students and early career scientists from groups underrepresented in STEM, and by continuous engagement of the entire COLDEX community in developing a more inclusive scientific culture. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Antarctic Peninsula is experiencing rapid environmental changes, which will influence the community of organisms that live there. However, we know very little about the microscopic organisms living in the soil in this region. Soil biology (including bacteria, fungi, and invertebrates) are responsible for many important processes that sustain ecosystems, such as nutrient recycling. Without understanding the environmental conditions that influence soil biodiversity along the Antarctic Peninsula, our ability to predict the consequences of global change is strongly limited. This project will identify the soil community at many sites along the Antarctic Peninsula to discover how the community changes with environmental conditions from north to south. The project will also identify how the soil community at each site differs under different types of plants. Understanding more about the ways in which plant cover and climate conditions influence soil biodiversity will allow predictions of how communities will respond to future changes such as climate warming and invasive plant species. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. The investigators will engage with outreach to K-12 students and the general public both directly and through a blog and will participate in workshops for K-12 teachers. Additionally, the project will provide the opportunity for many undergraduate and graduate students of diverse backgrounds to be trained in interdisciplinary research. The investigators will determine the nature and strength of plant-soil linkages in influencing soil community composition and diversity over a latitudinal gradient of environmental and climatic conditions. The goals are to (1) increase our understanding of current biogeography and diversity by providing in-depth knowledge of soil community composition and complexity as it relates to environmental and climatic characteristics; and (2) determine the nature of aboveground-belowground community linkages over varying spatial scales. The team will identify the composition and diversity of soil communities under key habitat types (grass, moss, algae, etc.). Microbial communities (bacteria, fungi, archaea) will be investigated using pyrosequencing for community composition analysis and metagenomic sequencing to identify functional capabilities. Invertebrates (nematodes, tardigrades, rotifers, microarthropods) will be extracted and identified to the lowest possible taxonomic level. Soil chemistry (pH, nutrient content, soil moisture, etc.) and climate conditions will be measured to determine the relationship between soil communities and physical and chemical properties. Structural equation modeling will be used to identify aboveground-belowground linkage pathways and quantify link strengths under varying environmental conditions.
Dunbar/1543454 Antarctic ice cores offer unparalleled records of earth?s climate back to almost one million years and perhaps beyond. Layers of volcanic ash (tephra) embedded in glacial ice can be used to establish an accurate ice core chronology. In order to use a visible or ultrafine volcanic ash layer as a time-stratigraphic marker, a unique geochemical fingerprint must be established, and this forms the basis of our research. This award will investigate the volcanic record in the 1751 m ice core that was completed at the South Pole during the 2015/16 field season. The core is in an ideal location to link the existing, established, volcanic records in East and West Antarctica, and therefore to connect and integrate those records, allowing the climate records of ice cores to be directly compared, as well as to focus research on the most widespread and significant volcanic eruptions from West Antarctica. Tephra derived from well-dated, large, tropical volcanic eruptions that may have had an impact on climate will also be studied. Recent success in identifying and analyzing very fine ash particles from these types of eruptions makes it likely that we will be able to pinpoint some of these eruptions, which will allow the sulfate peaks associated with these layers to be positively identified and dated. Volcanic forcing time series developed from earlier South Pole ice cores based on preserved sulfate were crucial for testing climate models, but without tephra analysis, the origin of these layers remains uncertain. Work on the tephra layers in the South Pole ice core has a number of significant specific objectives, some with practical applications to the basic science goals of Antarctic ice coring, and others that represent independent scientific contributions in their own right. These include: (1) providing independently dated time-intervals in the core, particularly for the deepest ice, (2) quantitatively linking tephra records across Antarctica with the goal of allowing direct and robust climate comparisons between these different parts of the continent, (3) providing information for large local eruptions, that will lead to direct estimates of eruption magnitude and dispersal patterns of Antarctic volcanoes, several of which will likely erupt again. The initial stages of the work will be carried out by identifying silicate-bearing horizons in the ice core, using several methods. Once found, silicate particles will be imaged so that morphological characteristics of the particles can be used to identify volcanic origin. Particles identified as tephra will then be chemically analyzed using electron microprobe and laser ablation ICP-MS. Samples that yield a robust chemical fingerprint will be statistically correlated to known eruptions, and this will be used to address the goals described above. Broader impacts of this project fall into the areas of education of future generation of researchers, outreach and international cooperation. These activities will continue to promote forward progress in integrating the Antarctic tephra record and more broadly tying it to the global volcanic record.
The Weddell Gyre is one of the major components of the Southern Ocean circulation system, linking heat and carbon fluxes in the Antarctic Circumpolar Current to the continental margins. Water masses entering the Weddell Gyre are modified as they move in a great circular route around the gyre margin and change through processes involving air-sea-cryosphere interactions as well as through ocean eddies that mix properties across the gyre boundaries. Some of the denser water masses exit the gyre through pathways along the northern boundary, and ultimately ventilate the global deep ocean as Antarctic Bottom Water. While in-situ and satellite observations, as well as computer modeling efforts, provide estimates of the large-scale average flow within the gyre, details of the smaller-scale, or "mesoscale" eddy flow remain elusive. The proposed research will quantify mixing due to mesoscale eddies within the Weddell Gyre, as well as the transport of incoming deep water from the northeast, thought to be a result of transient eddies. Since the Weddell Gyre produces source water for about 40% of Antarctic Bottom Water formation, understanding the dynamics in this region helps to identify causes of documented changes in global bottom waters. This in turn, will give insight into how climate change is affecting global oceans, through modification of dense polar waters and Antarctic Bottom Water characteristics. This project aims to track 153 RAFOS-enabled Argo floats in the ice-covered regions of the Weddell Gyre. The resultant tracks along with all available Argo and earlier float data will be used to calculate Eulerian and Lagrangian means and eddy statistics for the Weddell Gyre. The study will link RAFOS tracks with Argo profiles under ice, allowing one to characterize the importance of eddies in water column modification at critical ice-edge boundaries and leads. With RAFOS tracks near the northeastern limit of the gyre, the project will investigate the eddy-driven processes of incoming Circumpolar Deep Water, to understand better the mechanisms and volume fluxes involved. Previous work shows that a large fraction of the mean circulation in the southern and western limits of the gyre, where it contacts the Antarctic continent, occurs in a narrow boundary layer above the slope. The research here will integrate this flow structure into a complete interior and boundary layer mean circulation synthesis. The findings and products from the proposed work will improve the positioning of Argo profiles in the polar regions, which would allow for more accurate climatological maps and derived quantities. Estimates of meso-scale mixing may serve as a foundation for the development of new parameterization schemes employed in climate models, as well as local and global ocean circulation models in polar regions. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This project seeks to make detailed measurements of the oxygen content of the surface ocean along the Western Antarctic Peninsula. Detailed maps of changes in net oxygen content will be combined with measurements of the surface water chemistry and phytoplankton distributions. The project will determine the extent to which on-shore or offshore phytoplankton blooms along the peninsula are likely to lead to different amounts of carbon being exported to the deeper ocean. The project team members will participate in the development of new learning tools at the Museum of Life and Science. They will also teach secondary school students about aquatic biogeochemistry and climate, drawing directly from the active science supported by this grant. The project will analyze oxygen in relation to argon that will allow determination of the physical and biological contributions to surface ocean oxygen dynamics. These assessments will be combined with spatial and temporal distributions of nutrients (iron and macronutrients) and irradiances. This will allow the investigators to unravel the complex interplay between ice dynamics, iron and physical mixing dynamics as they relate to Net Community Production (NCP) in the region. NCP measurements will be normalized to Particulate Organic Carbon (POC) and be used to help identify area of "High Biomass and Low NCP" and those with "Low Biomass and High NCP" as a function of microbial plankton community composition. The team will use machine learning methods- including decision tree assemblages and genetic programming- to identify plankton groups key to facilitating biological carbon fluxes. Decomposing the oxygen signal along the West Antarctic Peninsula will also help elucidate biotic and abiotic drivers of the O2 saturation to further contextualize the growing inventory of oxygen measurements (e.g. by Argo floats) throughout the global oceans.
Antarctic groundwater drives the regional carbon cycle and can accelerate permafrost thaw shaping Antarctic surface features. However, groundwater extent, flow, and processes on a continent virtually locked in ice are poorly understood. The proposed work investigates the interplay between groundwater, sediment, and ice in Antarctica's cold desert landscape to determine when, where, and why Antarctic groundwater is flowing, and how it may evolve Antarctic frozen deserts from dry and stable to wet and dynamic. Mapping the changing extent of Antarctic near-surface groundwater requires the ability to measure soil moisture rapidly and repeatedly over large areas. The research will capture changes in near-surface groundwater distribution through an unmanned aerial vehicle (UAV) mapping approach. The project integrates a diverse range of sensors with new UAV technologies to provide a higher-resolution and more frequent assessment of Antarctic groundwater extent and composition than can be accomplished using satellite observations alone. To complement the research objectives, the PI will develop a new UAV summer field school, the Geosciences UAV Academy, focused on training undergraduate-level UAV pilots in conducting novel earth sciences research using cutting edge imaging tools. The integration of research and technology will prepare students for careers in UAV-related industries and research. The project will deliver new UAV tools and workflows for soil moisture mapping relevant to arid regions including Antarctica as well as temperate desert and dryland systems and will train student research pilots to tackle next generation airborne challenges. Water tracks are the basic hydrological unit that currently feeds the rapidly-changing permafrost and wetlands in the Antarctic McMurdo Dry Valleys (MDV). Despite the importance of water tracks in the MDV hydrologic cycle and their influence on biogeochemistry, little is known about how these water tracks control the unique brine processes operating in Antarctic ice-free areas. Both groundwater availability and geochemistry shape Antarctic microbial communities, connecting soil geology and hydrology to carbon cycling and ecosystem functioning. The objectives of this CAREER proposal are to 1) map water tracks to determine the spatial distribution and seasonal magnitude of groundwater impacts on the MDV near-surface environment to determine how near-surface groundwater drives permafrost thaw and enhances chemical weathering and biogeochemical cycling; 2) establish a UAV academy training earth sciences students to answer geoscience questions using drone-based platforms and remote sensing techniques; and 3) provide a formative step in the development of the PI as a teacher-scholar. UAV-borne hyperspectral imaging complemented with field soil sampling will determine the aerial extent and timing of inundation, water level, and water budget of representative water tracks in the MDV. Soil moisture will be measured via near-infrared reflectance spectroscopy while bulk chemistry of soils and groundwater will be analyzed via ion chromatography and soil x-ray fluorescence. Sedimentological and hydrological properties will be determined via analysis of intact core samples. These data will be used to test competing hypotheses regarding the origin of water track solutions and water movement through seasonal wetlands. The work will provide a regional understanding of groundwater sources, shallow groundwater flux, and the influence of regional hydrogeology on solute export to the Southern Ocean and on soil/atmosphere linkages in earth's carbon budget. The UAV school will 1) provide comprehensive instruction at the undergraduate level in both how and why UAVs can advance geoscience research and learning; and 2) provide educational infrastructure for an eventual self-sustaining summer program for undergraduate UAV education. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The McMurdo Dry Valleys are the largest ice-free region in Antarctica and home to a seasonally active hydrologic system, with streams and saline lakes. Streams are fed by summer meltwater from local glaciers and snowbanks. Therefore, streamflow is tied to summer climate conditions such as air temperatures, ground temperatures, winds, and incoming solar radiation. Based on 50 years of monitoring, summer stream activity has been observed to change, and it likely varied during the geologic past in response to regional climate change and fluctuating glaciers. Thus, deposits from these streams can address questions about past climate, meltwater, and lake level changes in this region. How did meltwater streamflow respond to past climate change? How did streamflow vary during periods of glacial advance and retreat? At what times did large lakes fill many of the valleys and what was their extent? The researchers plan to acquire a record of stream activity for the Dry Valleys that will span the three largest valleys and a time period of about 100,000 years. This record will come from a series of active and ancient alluvial fans that were deposited by streams as they flowed from valley sidewalls onto valley floors. The study will provide a long-term context with which to assess recent observed changes to stream activity and lake levels. The research will be led by two female mid-career investigators and contribute significantly to student research opportunities and education. The research will contribute to graduate and undergraduate education by including students in both field and laboratory research, as well as incorporating data and results into the classroom. The research will be disseminated to K-12 and non-scientific communities through outreach that includes professional development training for K-12 teachers in eastern Massachusetts, development of hands-on activities, visits to K-12 classrooms, and STEM education and literacy activities in North Carolina. The PIs propose to constrain rates of fluvial deposition and periods of increased fluvial activity in the McMurdo Dry Valleys during the Holocene and late Pleistocene. During 50 years of hydrologic monitoring in the Dry Valleys, scientists have observed that streams exhibit significant response to summer conditions. Previous studies of glacial and lacustrine deposits indicate regional glacier advance in the Dry Valleys during recent interglacial periods and high lake levels during and after the Last Glacial Maximum (LGM), with potentially significant low and high stands during the Holocene. However, the geologic record of meltwater activity is poorly constrained. The PIs seek to develop the first spatially-extensive record of stream deposition in the Dry Valleys by analyzing and dating alluvial fans. Given that alluvial fans are deposited by summer meltwater streams in a relatively stable tectonic setting, this record will serve as a proxy of regional summer climate conditions. Meltwater streams are an important component of the regional hydrologic system, connecting glaciers to lakes and affecting ecosystems and soils. A record of fluvial deposition is key to understanding the relationship between past climate change and regional hydrology. The proposed research will include remote- and field-based mapping of alluvial fans, stream channels, and meltwater sources as well as modeling potential incoming solar radiation to the fans and moisture sources during the austral summer. In the field, the PIs will document stratigraphy, collect near-surface sediments from 25 fans across four valleys (Taylor, Pearse, Wright, and Victoria), and collect 2- to 3-m vertical cores of ice-cemented sediments from three alluvial fan complexes. The PIs will then conduct depositional dating of fluvial sands via optically stimulated luminescence, and analyze mineralogy and bulk major element chemistry with X-ray powder diffraction and X-ray fluorescence. From these analyses, the PIs propose to (1) determine the timing of local- to regional-scale periods of high fluvial deposition, (2) calculate depositional rates, and (3) constrain depositional environments and sediment provenance. Given that many of the alluvial fans occur below the hypothesized maximum extents of glacially-dammed lakes in Wright and Victoria valleys, detailed stratigraphy, sediment provenance, and OSL dating of these fans could shed light on ongoing debates regarding the timing and extent of LGM and post-LGM lakes. The work will support a postdoctoral researcher, a PhD student, and many undergraduate and master’s students in cross-disciplinary research that spans stratigraphy, geochemistry, paleoclimatology and physics. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Buizert/1643394 This award supports a project to use ice cores to study teleconnections between the northern hemisphere, tropics, and Antarctica during very abrupt climate events that occurred during the last ice age (from 70,000 to 11,000 years ago). The observations can be used to test scientific theories about the role of the westerly winds on atmospheric carbon dioxide. In a warming world, snow fall in Antarctica is expected to increase, which can reduce the Antarctic contribution to sea level rise, all else being equal. The study will investigate how snow fall changed in the past in response to changes in temperature and atmospheric circulation, which can help improve projections of future sea level rise. Antarctica is important for the future evolution of our planet in several ways; it has the largest inventory of land-based ice, equivalent to about 58 m of global sea level and currently contributes about 0.3 mm per year to global sea level rise, which is expected to increase in the future due to global warming. The oceans surrounding Antarctica help regulate the uptake of human-produced carbon dioxide. Shifts in the position and strength of the southern hemisphere westerly winds could change the amount of carbon dioxide that is absorbed by the ocean, which will influence the rate of global warming. The climate and winds near and over Antarctica are linked to the rest of our planet via so-called climatic teleconnections. This means that climate changes in remote places can influence the climate of Antarctica. Understanding how these climatic teleconnections work in both the ocean and atmosphere is an important goal of climate research. The funds will further contribute towards training of a postdoctoral researcher and an early-career researcher; outreach to public schools; and the communication of research findings to the general public via the media, local events, and a series of Wikipedia articles. The project will help to fully characterize the timing and spatial pattern of millennial-scale Antarctic climate change during the deglaciation and Dansgaard-Oeschger (DO) cycles using multiple synchronized Antarctic ice cores. The phasing of Antarctic climate change relative to Greenland DO events can distinguish between fast atmospheric teleconnections on sub-decadal timescales, and slow oceanic ones on centennial time scales. Preliminary work suggests that the spatial pattern of Antarctic change can fingerprint specific changes to the atmospheric circulation; in particular, the proposed work will clarify past movements of the Southern Hemisphere westerly winds during the DO cycle, which have been hypothesized. The project will help resolve a discrepancy between two previous seminal studies on the precise timing of interhemispheric coupling between ice cores in both hemispheres. The study will further provide state-of-the-art, internally-consistent ice core chronologies for all US Antarctic ice cores, as well as stratigraphic ties that can be used to integrate them into a next-generation Antarctic-wide ice core chronological framework. Combined with ice-flow modeling, these chronologies will be used for a continent-wide study of the relationship between ice sheet accumulation and temperature during the last deglaciation.
Antarctic Ice Sheet stability remains a large uncertainty in predicting future sea level. Presently, the greatest ice mass loss is observed in locations where relatively warm water comes into contact with glaciers and ice shelves, melting them from below. This has led researchers to hypothesize that the interactions that occur between the ocean and the ice are important for determining ice sheet stability and that increased warm water presence will accelerate Antarctic ice mass loss and lead to greater sea level rise in the coming century. To better predict future ice sheet behavior, it is critical to understand past ice-ocean interactions around Antarctica, especially during warm periods and at times when Earth’s climate was undergoing major changes. Past Antarctic ice mass and environmental conditions like ocean temperature can be reconstructed using sediments, which capture an environmental record as they accumulate on the ocean floor. By looking at sediment composition and by analyzing geochemical signatures within the sediment, it is possible to piece together a record of climate change on hundred- to million-year timescales. This project will reconstruct upper ocean temperatures and Antarctic ice retreat/advance cycles from 2.6 to 0.7 million years ago, which encompasses the Mid-Pleistocene Transition, a time in Earth’s history that marks the shift from 41-thousand year glacial cycles to 100-thousand year glacial cycles. A record will be generated from existing sediment cores collected from the Scotia Sea during International Ocean Discovery Program Expedition 382. The Mid-Pleistocene Transition (MPT; ~1.25–0.7 Ma) marks the shift from glacial-interglacial cycles paced by obliquity (~41 kyr cycles) to those paced by eccentricity (~100-kyr cycles). This transition occurred despite little variation in Earth’s orbital parameters, suggesting a role for internal climate feedbacks. The MPT was accompanied by decreasing atmospheric pCO2, increasing deep ocean carbon storage, and changes in deep water formation and distribution, all of which are linked to Antarctic margin atmosphere-ice-ocean interactions. However, Pleistocene records that document such interactions are rarely preserved on the shelf due to repeated Antarctic Ice Sheet (AIS) advance; instead, they are preserved in deep Southern Ocean basins. This project takes advantage of the excellent preservation and recovery of continuous Pleistocene sediment sequences collected from the Scotia Sea during International Ocean Discovery Program Expedition 382 to test the following hypotheses: 1) Southern Ocean upper ocean temperatures vary on orbital timescales during the early to middle Pleistocene (2.6–0.7 Ma), and 2) Southern Ocean temperatures co-vary with AIS advance/retreat cycles. Paleotemperatures will be reconstructed using the TetraEther indeX of 86 carbons (TEX86), a proxy that utilizes marine archaeal biomarkers. The Scotia Sea TEX86-based paleotemperature record will be compared to records of AIS variability, including ice rafted debris. Expedition 382 records will be compared to orbitally paced climatic time series and the benthic oxygen isotope record of global ice volume and bottom water temperature to determine if a correlation exists between upper ocean temperature, AIS retreat/advance, and orbital climate forcing. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This study will collect a novel dataset to determine how the West Antarctic Ice Sheet (WAIS) responded to a warmer climate during the last interglacial period (~125,000 years ago) by reconstructing the glacial history at the Mt. Waesche volcano. Reconstructing WAIS geometry when the ice sheet was smaller than present is difficult and data are lacking because the evidence lies beneath the present ice sheet. This study will drill through the ice sheet and recover bedrock that can be analyzed for its surface exposure history to help determine when the surface became overridden by the ice sheet. This study will provide constraints on the past maximum and minimum spatial extent of WAIS during the last glacial-interglacial cycle. Understanding the geometry of a reduced WAIS during intervals when the planet was warmer than present may provide a possible analogue for future environmental conditions given predicted temperature trends. A reduction of WAIS results in rising sea levels which threatens coastal communities across the globe. The data will help improve numerical ice sheet models to better predict WAIS response to current and future climate trends. The project supports a teacher educational workshop and the training of graduate and undergraduate students. The goal of this project is to obtain rock samples from beneath the WAIS through shallow (<80 m) drilling at Mt. Waesche, a volcano in Marie Byrd Land, near an ice dome of WAIS (2000 m elevation). The lithologies of lava flows exposed on the flank of the volcano are well-suited for cosmogenic 3He and 36Cl as well as 40Ar/39Ar measurements which will establish eruption and exposure age. Existing 40Ar/39Ar data indicate basaltic lava flows on the volcano flank as young as 350 ka. Thus, measured cosmogenic nuclides measured in rock cores from beneath the ice surface will be indicative of relatively recent exposure during periods of reduced ice elevation, most likely, during the last interglacial. The first field season is focused on identifying appropriate locations for drilling and a ground penetrating radar (GPR) survey of the subglacial topography <100m under the blue ice area. Mapping and dating the adjacent exposed lava flows will allow tracing of lava flows of known age and composition below the ice margin that will be targeted for drilling the following year. The second field season activities include drilling 8 boreholes (two transects) through blue ice with the Winkie drill near the ice margin to 80 m depth to obtain rock cores from the sub-ice lava flows. 3He exposure ages will constrain the duration and minimum extent of past surface lowering of the WAIS in Marie Byrd Land. Deeper GPR imaging (up to 700 m) will hope to reveal additional evidence of lava/ice interactions that would independently place constraints on lower ice levels during past eruptions. Results from this study will be compared with the modeled ice elevation histories at Mt. Waesche to validate ice sheet modeling efforts. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). The spatial extent of the West Antarctic Ice Sheet during the last interglacial period (129,000 to 116,000 years ago) is currently unknown, yet this information is fundamental to projections of the future stability of the ice sheet in a warming climate. Paleoclimate records and proxy evidence such as dust can inform on past environmental conditions and ice-sheet coverage. This project will combine new, high-sensitivity geochemical measurements of dust from Antarctic ice collected at Allan Hills with existing water isotope records to document climate and environmental changes through the last interglacial period. These changes will then be compared with Earth-system model simulations of dust and water isotopes to determine past conditions and constrain the sensitivity of the West Antarctic Ice Sheet to warming. The project will test the hypothesis that the uncharacteristically volcanic dust composition observed at another peripheral ice core site at Taylor Glacier during the last interglacial period is related to changes in the spatial extent of the West Antarctic Ice Sheet. This project aims to characterize mineral dust transport during the penultimate glacial-interglacial transition. The team will apply high-precision geochemical techniques to the high-volume, high-resolution ice core drilled at the Allan Hills site in combination with Earth system model simulations to: (1) determine if the volcanic dust signature found in interglacial ice from Taylor Glacier is also found at Allan Hills, (2) determine the likely dust source(s) to this site during the last interglacial, and (3) probe the atmospheric and environmental changes during the last interglacial with a diminished West Antarctic Ice Sheet. The team will develop a suite of measurements on previously drilled ice from Allan Hills, including isotopic compositions of Strontium and Neodymium, trace element concentrations, dust-size distribution, and imaging of ice-core dust to confirm the original signal observed and provide a broader spatial reconstruction of dust transport. In tandem, the team will conduct Earth system modeling with prognostic dust and water-isotope capability to test the sensitivity of dust transport under several plausible ice-sheet and freshwater-flux configurations. By comparing dust reconstruction and model simulations, the team aims to elucidate the driving mechanisms behind dust transport during the last interglacial period. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Current ice mass loss in Antarctica is largely driven by changes at glacier grounding lines, where inland ice transitions from being grounded to floating in the ocean. The rate and pattern of glacier retreat in these circumstances is thought to be controlled by the terrain under the ice. This project incorporates evidence of past ice-retreat events and other field data, such as grounding-line positions and dates, subglacial topography, and meltwater features, into numerical models of ice flow to investigate the influence that grounding-line processes and subglacial topography have on glacier retreat rates over the past 15,000 years. Recent observations suggest that Antarctic ice mass loss is largely driven by perturbations at or near the grounding line. However, the lack of information on subglacial and grounding-line environments causes large uncertainties in projections of mass loss and sea-level rise. This project will integrate geologic data from the deglaciated continental shelf into numerical models of varying complexity from one to three-dimensions. Rarely do numerical ice-sheet models of Antarctica have multiple constraints on dynamics over the past ~15,000 years (a period that spans the deglaciation of the Antarctic continental shelf since the Last Glacial Maximum). The geologic constraints include grounding-line positions, deglacial chronologies, and information on grounding line-ice shelf processes. The models will be used to investigate necessary perturbations and controls that meet the geological constraints. The multidisciplinary approach of merging geologic reconstructions of paleo-ice behavior with numerical models of ice response will allow the research team to test understanding of subglacial controls on grounding-line dynamics and assess the stability of modern grounding lines. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The application of innovative ocean observing and animal telemetry technology over Palmer Deep (Western Antarctic Peninsula; WAP) is leading to new understanding, and also to many new questions related to polar ecosystem processes and their control by bio-physical interactions in the polar environment. This multi-platform field study will investigate the impact of coastal physical processes (e.g. tides, currents, upwelling events, sea-ice) on Adélie penguin foraging ecology in the vicinity of Palmer Deep, off Anvers Island, WAP. Guided by real-time surface convergence and divergences based on remotely sensed surface current maps derived from a coastal network of High Frequency Radars (HFRs), a multidisciplinary research team will adaptively sample the distribution of phytoplankton and zooplankton, which influence Adélie penguin foraging ecology, to understand how local oceanographic processes structure the ecosystem. Core educational objectives of this proposal are to increase awareness and understanding of (i) global climate change, (ii) the unique WAP ecosystem, (iii) innovative methods and technologies used by the researchers, and (iv) careers in ocean sciences, through interactive interviews with scientists, students, and technicians, during the field work. These activities will be directed towards instructional programming for K-16 students and their teachers. Researchers and educators will conduct formative and summative evaluation to improve the educational program and measure its impacts respectively.
________________________________________________________________________________________________ Part I: Non-technical Summary The Antarctic Peninsula is one of the most rapidly warming regions on the planet. This 5-yr time-series program will build on an ongoing international collaboration with scientists from the Chilean Antarctic Program to evaluate the role of temperature, light absorbing particles, snow-algae growth, and their radiative forcing effects on snow and ice melt in the Western Antarctic Peninsula. There is strong evidence that these effects may be intensifying due to a warming climate. Rising temperatures can increase the growth rate of coastal snow algae as well as enhance the input of particles from sources such as the long-range transport of black carbon to the Antarctic continent from intensifying Southern Hemisphere wildfire seasons. Particle and algae feedbacks can have immediate local impacts on snow melt and long-term regional impacts on climate because reduced snow cover alters how the Antarctic continent interacts with the rest of the global climate. A variety of ground-based and remote sensing data collected across multiple spatial scales will be used. Ground measurements will be compared to satellite imagery to develop novel computer algorithms to map ice algal bloom effects under changing climates. The project is expected to fundamentally advance knowledge of the spatial and temporal snow algae growing season, which is needed to quantify impacts on regional snow and ice melt. The program also has a strong partnership with the International Association of Antarctic Tour Operators to involve cruise passengers as citizen scientists for sample collection. Antarctic research results will be integrated into undergraduate curricula and research opportunities through studies to LAPs and snow algae in the Pacific Northwest. The PI will recruit and train a diverse pool of students in cryosphere climate related research methods on Mt. Baker in Western Washington. Trained undergraduate will then serve as instructors for a local Snow School that takes middle school students to Mt. Baker to learn about snow science. Resulting datasets from Antarctica and Mt. Baker will be used in University classes to explore regional effects of climate change. Along with enhancing cryosphere-oriented place-based undergraduate field courses in the Pacific Northwest, the PI will recruit and train a diverse pool of undergraduate students to serve as instructors for the Mt. Baker Snow School program. This award will advance our understanding of cryosphere-climate feedbacks, which are likely changing and will continue to evolve in a warming world, while also increasing under-represented student engagement in the polar geosciences. Part 2: Technical Summary Rapid and persistent climate warming in the Western Antarctic Peninsula is likely resulting in intensified snow-algae growth and an extended bloom season in coastal areas. Similarly, deposition of light absorbing particles (LAPs) onto Antarctica cryosphere surfaces, such as black carbon from intensifying Southern Hemisphere wildfire seasons, and dust from the expansion of ice-free regions in the Antarctic Peninsula, may be increasing. The presence of snow algae blooms and LAPs enhance the absorption of solar radiation by snow and ice surfaces. This positive feedback creates a measurable radiative forcing, which can have immediate local and long-term regional impacts on albedo, snow melt and downstream ecosystems. This project will investigate the spatial and temporal distribution of snow algae, black carbon and dust across the Western Antarctica Peninsula region, their response to climate warming, and their role in regional snow and ice melt. Data will be collected across multiple spatial scales from in situ field measurements and sample collection to imagery from ground-based photos and high resolution multi-spectral satellite sensors. Ground measurements will inform development and application of novel algorithms to map algal bloom extent through time using 0.5-3m spatial resolution multi-spectral satellite imagery. Results will be used to improve snow algae parameterization in a new version of the Snow Ice Aerosol Radiation model (SNICARv3) that includes bio-albedo feedbacks, eventually informing models of ice-free area expansion through incorporation of SNICARv3 in the Community Earth System Model. Citizen scientists will be mentored and engaged in the research through an active partnership with the International Association of Antarctic Tour Operators that frequently visits the region. The cruise ship association will facilitate sampling to develop a unique snow algae observing network to validate remote sensing algorithms that map snow algae with high-resolution multi-spectral satellite imagery from space. These time-series will inform instantaneous and interannual radiative forcing calculations to assess impacts of snow algae and LAPs on regional snow melt. Quantifying the spatio-temporal growing season of snow algae and impacts from black carbon and dust will increase our ability to model their impact on snow melt, regional climate warming and ice-free expansion in the Antarctic Peninsula region. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Nontechnical Abstract Mount Erebus volcano on Ross Island, Antarctica, is the southernmost active volcano on the planet. It provides a natural laboratory to study a volcanic system that has been in a continuous state of activity with a persistent lava lake over at least the last 40 years. Worldwide only four other volcanoes with such long-lived lava lakes exist: Erta Ale, Ethiopia; Kilauea, Hawaii; Nyiragongo, Congo; and Ambrym, Vanuatu. These volcanoes are a rare anomaly that provide a window into the underlying magmatic system and behavior. Erebus is of particular interest as it cycles through phases of very explosive activity every 20 thousand years. This project will investigate interactions between the magmatic system, the rift it is located in, and the impact of the gravitational load the volcano imposes on the underlying crust and its own magmatic system. Possible interactions between these factors may explain the changes in activity. The project will analyze geophysical data that have been collected at Erebus over at least the last two decades. The results of this work will be available to the public and scientific community and inform geodynamic models in this region. The project funds an early-career scientist and a graduate student at New Mexico Tech and contributes to the development of the next generation of scientists. Technical Abstract The proposed work targets scientific questions recently formulated by the community during the 2016 NSF-sponsored Scientific Drivers and Future of Mount Erebus Volcano Observatory workshop. The location and geometry of the magmatic plumbing from vent to lower crust system remain poorly constrained, particularly below 1 km depth. The style and causes for changes in volcanic and magmatic activity over the short term (minutes to hours) and on the decadal scale remains enigmatic. Two decades of campaign and continuous GPS data on Ross Island will inform about the longer term dynamics of both, Ross Island growing within the Terror Rift, and Erebus? deeper magmatic system. This project will organize and analyze all existing GPS data for Ross Island, and interpret any anomalies in the resulting time series. These activities require organization, consistent processing and interpretation/modeling of the existing ~20 years of GPS data, which include campaign, continuous, and high-rate GPS observations. We will generate these position time series in a consistent local reference frame and make the results, including models of transient deformation available to the community. Volcanic, tectonic and isostatic adjustment related deformation will be modeled to place Erebus in a broad volcano-tectonic framework of West Antarctica. During the data analysis phase, the utility of existing GPS data for reflection studies of snow and sea-level dynamics will also be evaluated.
Bubbles of ancient air trapped in ice cores have been used to directly reconstruct atmospheric composition, and its links to Antarctic and global climate, over the last 800,000 years. Previous field expeditions to the Allan Hills Blue Ice Area, Antarctica, have recovered ice cores that extend as far back as 2.7 million years, by far the oldest polar ice samples yet recovered. These ice cores extend direct observations of atmospheric carbon dioxide and methane concentrations and indirect records of Antarctic climate into a period of Earth's climate history that represents a plausible geologic analogue to future anthropogenic climate change. The results demonstrate a smaller glacial-interglacial variability of climate and greenhouse gases, and a persistent linkage between Antarctic climate and atmospheric carbon dioxide, between 1 and 2 million years ago. Through this project, the team will return to the Allan Hills Blue Ice Area to recover additional ice cores that date to 2 million years or older. The climate records developed from these ice cores will provide new insights into the chemical composition of the atmosphere and Antarctic climate during times of comparable or even greater warmth than the present day. Project results will help answer questions about issues associated with anthropogenic change including the relationship between temperature change and the mass balance of Antarctic ice and the relationship between atmospheric greenhouse gases and global climate change. Earth has been cooling, and ice sheets expanding, over the past ~52 million years. Superimposed on this cooling are periodic changes in Earth's climate system driven by variations in the eccentricity, precession, and obliquity of Earth's orbit around the Sun. Climate reconstructions based on measurements of oxygen isotopes in foraminiferal calcite indicate that, from ~2.8 to 1.2 million years before present (Ma), Earth's climate system oscillated between glacial and interglacial states every ~40,000 years (the "40k world"). Between 1.2-0.8 Ma and continuing to the present, the period of glacial cycles increased in amplitude and lengthened to ~100,000 years (the "100k world"). Ice cores preserve ancient air that allows direct reconstructions of atmospheric carbon dioxide and methane. They also archive proxy records of regional climate, mean ocean temperature, global oxygen cycling, and the aridity of nearby continents. Studies of stratigraphically continuous ice cores, extending to 800,000 years before present, have demonstrated that atmospheric carbon dioxide is strongly linked to climate, and it is of great interest to extend the ice-core record into the 40k world. Recent discoveries of well-preserved ice dating from 1.0 to 2.7 Ma from ice cores drilled in the Allan Hills Blue Ice Area (BIA), Antarctica, demonstrate the potential to retrieve stratigraphically discontinuous old ice at shallow depths (<200 meters). This project will continue this work by retrieving new large-volume ice cores and measuring paleoclimate properties in both new and existing ice from the Allan Hills BIA. The experimental objectives are to more fully characterize fundamental properties of the climate system and the carbon cycle during the 40k world. Project results will have implications for Pleistocene climate change, and will provide new constraints on the processes that regulate atmospheric carbon dioxide, methane, and oxygen on geologic timescales. Given a demonstrated age of the ice at the Allan Hills BIA of at least 2 million years, the team will drill additional cores to prospect for ice that predates the initiation of Northern Hemisphere glaciation at the Plio-Pleistocene transition (~2.8 Ma). This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The West Antarctic Ice Sheet is the most vulnerable polar ice mass to warming and already a major contributor to global mean sea level rise. Its fate in the light of prolonged warming is a topic of major uncertainty. Accelerated sea level rise from ice mass loss in the polar regions is a major concern as a cause of increased coastal flooding affecting millions of people. This project will disclose a unique geological archive buried beneath the seafloor off the Amundsen Sea, Antarctica, which will reveal how the West Antarctic Ice Sheet behaved in a warmer climate in the past. The data and insights can be used to inform ice-sheet and ocean modeling used in coastal policy development. The project will also support the development of a competitive U.S. STEM workforce. Online class exercises for introductory geology classes will provide a gateway for qualified students into undergraduate research programs and this project will enhance the participation of women in science by funding the education of current female Ph.D. students. The project targets the long-term variability of the West Antarctic Ice Sheet over several glacial-interglacial cycles in the early Pliocene sedimentary record drilled by the International Ocean Discovery Program (IODP) Expedition 379 in the Amundsen Sea. Data collection includes 1) the sand provenance of ice-rafted debris and shelf diamictites and its sources within the Amundsen Sea and Antarctic Peninsula region; 2) sedimentary structures and sortable silt calculations from particle size records and reconstructions of current intensities and interactions; and 3) the bulk provenance of continental rise sediments compared to existing data from the Amundsen Sea shelf with investigations into downslope currents as pathways for Antarctic Bottom Water formation. The results are analyzed within a cyclostratigraphic framework of reflectance spectroscopy and colorimetry (RSC) and X-ray fluorescence scanner (XRF) data to gain insight into orbital forcing of the high-latitude processes. The early Pliocene Climatic Optimum (PCO) ~4.5-4.1 Ma spans a major warm period recognized in deep-sea stable isotope and sea-surface temperature records. This period also coincides with a global mean sea level highstand of > 20 m requiring contributions in ice mass loss from Antarctica. The following hypotheses will be tested: 1) that the West Antarctic Ice Sheet retreated from the continental shelf break through an increase in sub iceshelf melt and iceberg calving at the onset of the PCO ~4.5 Ma, and 2) that dense shelf water cascaded down through slope channels after ~4.5 Ma as the continental shelf became exposed during glacial terminations. The project will reveal for the first time how the West Antarctic Ice Sheet operated in a warmer climate state prior to the onset of the current “icehouse” period ~3.3 Ma. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part I: Non-technical summary: The Amundsen Sea is adjacent to the West Antarctic Ice Sheet (WAIS) and hosts the most productive coastal ecosystem in all of Antarctica, with vibrant green waters visible from space and an atmospheric carbon dioxide uptake rate ten times higher than the Southern Ocean average. The region is also an area highly impacted by climate change and glacier ice loss. Upwelling of warm deep water is causing melt under the ice sheet, which is contributing to sea level rise and added nutrient inputs to the region. This is a project that is jointly funded by the National Science Foundation’s Directorate of Geosciences (NSF/GEO) and the National Environment Research Council (NERC) of the United Kingdom (UK) via the NSF/GEO-NERC Lead Agency Agreement. This Agreement allows a single joint US/UK proposal to be submitted and peer-reviewed by the Agency whose investigator has the largest proportion of the budget. Upon successful joint determination of an award, each Agency funds the proportion of the budget and the investigators associated with its own country. In this collaboration, the US team will undertake biogeochemical sampling alongside a UK-funded physical oceanographic program to evaluate the contribution of micronutrients such as iron from glacial meltwater to ecosystem productivity and carbon cycling. Measurements will be incorporated into computer simulations to examine ecosystem responses to further glacial melting. Results will help predict future impacts on the region and determine whether the climate sensitivity of the Amundsen Sea ecosystem represents the front line of processes generalizable to the greater Antarctic. This study is aligned with the large International Thwaites Glacier Collaboration (ITGC) and will make data available to the full scientific community. The program will provide training for undergraduate, graduate, post-doctoral, and early-career scientists in both science and communication. The team will also develop out-of-school science experiences for middle and high schoolers related to climate change and Antarctica. Part II: Technical summary: The Amundsen Sea hosts the most productive polynya in all of Antarctica, with atmospheric carbon dioxide uptake rates ten times higher than the Southern Ocean average. The region is vulnerable to climate change, experiencing rapid losses in sea ice, a changing icescape and some of the fastest melting glaciers flowing from the West Antarctic Ice Sheet, a process being studied by the International Thwaites Glacier Collaboration. The biogeochemical composition of the outflow from the glaciers surrounding the Amundsen Sea is largely unstudied. In collaboration with a UK-funded physical oceanographic program, ARTEMIS is using shipboard sampling for trace metals, carbonate system, nutrients, organic matter, and microorganisms, with biogeochemical sensors on autonomous vehicles to gather data needed to understand the impact of the melting ice sheet on both the coastal ecosystem and the regional carbon cycle. These measurements, along with access to the advanced physical oceanographic measurements will allow this team to 1) bridge the gap between biogeochemistry and physics by adding estimates of fluxes and transport of limiting micronutrients; 2) provide biogeochemical context to broaden understanding of the global significance of ocean-ice shelf interactions; 3) determine processes and scales of variability in micronutrient supply that drive the ten-fold increase in carbon dioxide uptake, and 4) identify small-scale processes key to iron and carbon cycling using optimized field sampling. Observations will be integrated into an ocean model to enhance predictive capabilities of regional ocean function. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). The geologic record reveals that volcanic activity increases when glaciers retreat and major ice sheets thin. This relationship produces a positive feedback mechanism where the uptick in volcanism increases greenhouse gasses concentrations, leading to climate warming and further deglaciation. Although the pattern between volcanism and deglaciation is observed in the geologic record, the exact mechanism(s) by which glaciers impact a volcanic plumbing system is unknown. This project focuses on Mount Waesche, a volcano in West Antarctica, that frequently erupts during warm, interglacial periods and undergoes a period of less activity during cold, glacial periods. This project will examine compositions of the rocks and minerals from Mount Waesche to determine magma storage depths, allowing the investigators to understand how magma plumbing systems change in response to glacial cycles. These results will be compared with geodynamic simulations to understand the physics behind the effects of deglaciation on the magmatic plumbing systems within Earth’s crust. The investigators will additionally partner with Mentoring Kids Works to develop several Polar and Earth Science Educational Modules aimed at improving reading skills in third grade students in New Mexico. The proposed Polar and Earth Science program consists of modules that include readings of books introducing students to Earth and Polar science themes, paired with Earth and Polar Science activities, followed by simple experiments, where students make predictions and collect data. Information required to implement our Polar and Earth Science curriculum will be made available online. Isotopic and sedimentary datasets reveal that volcanic activity typically increases during interglacial periods. However, the physical mechanisms through which changes in the surface loading affect volcanic magmatic plumbing systems remain unconstrained. Recently generated 40Ar/39Ar eruption ages indicate that 86% of the dated samples from Mt. Waesche, a late Quaternary volcano in Marie Byrd land, correlate with interglacial periods, suggesting this volcano uniquely responds to changes in the West Antarctic Ice Sheet. We propose to combine the petrology of Mount Waesche’s volcanic record, constraints on changing ice loads through time, and geodynamic modelling to: (1) Determine how pre-eruptive storage conditions change during glacial and interglacial periods using whole rock and mineral compositions of volcanic rocks; (2) Conduct geodynamic modeling to elucidate the relationship between lithospheric structure, temporal variations in ice sheet thickness, and subsequent changes in crustal stresses and magmatic transport and, therefore, the mechanism(s) by which deglaciation impacts magmatic plumbing systems; (3) Use the outcomes of objectives (1) and (2) to provide new constraints on the changes in ice sheet thickness through time that could plausibly trigger future volcanic and magmatic activity in West Antarctica. This collaborative approach will provide a novel methodology to determine prior magnitudes and rates of ice load changes within the Marie Byrd Land region of Antarctica. Lastly, estimates of WAIS elevation changes from this study will be compared to ongoing studies at Mount Waesche focused on constraining last interglacial ice sheet draw down using cosmogenic exposure ages obtained from shallow drilling. The scope of work also includes a partnership with Mentoring Kids Works to develop several Polar and Earth Science Educational Modules aimed at improving reading skills in third grade students in New Mexico. The proposed Polar and Earth Science program consists of modules that include readings of books introducing students to Earth and Polar science themes, paired with Earth and Polar Science activities, followed by simple experiments, where students make predictions and collect data. Information required to implement our Polar and Earth Science curriculum will be made available online. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part I: Non-technical description: Understanding human-induced changes on biodiversity is one of the most important scientific challenges we face today. This is especially true for marine environments that are home to much of the world’s biomass and biodiversity. A particularly effective approach to investigate the effects of climate change on marine ecosystems is to monitor top-predator populations such as seabirds or marine mammals. The food web in the Southern Ocean in relatively small and involves few species, therefore climate-induced variations at the prey species level directly affect the predator species level. For example, seabirds, like penguins, are ideal to detect and study these ecosystem changes. This study combines traditional methods to study emperor penguin population dynamics with the use of an autonomous vehicle to conduct the population dynamic measurements with less impact and higher accuracy. This project leverages an existing long-term emperor penguin observatory at the Atka Bay colony which hosts penguins living in the Weddell sea and the Atlantic sector of the Southern Ocean. The study will kickstart the collection of a multi-decadal data set in an area of the Southern Ocean that has been understudied. It will fill important gaps in ecological knowledge on the state of the Emperor penguin and its adaptive capabilities within a changing world. Finally, the project supports NSF goals of training new generations of scientists through collaborative training of undergraduate students and the creation of a new class on robotics for ecosystem study. Emperor penguins are an iconic species that few people will ever see in the wild. Through the technology developed in this proposal, the public can be immersed in real-time into the life of an emperor penguin colony. Public outreach will be achieved by showcasing real-time video and audio footage of emperor penguins from the field as social media science and engineering-themed educational materials. Part II: Technical description: Polar ecosystems currently experience significant impacts due to global changes. Measurable negative effects on polar wildlife have already occurred, such as population decreases of numerous seabird species, including the complete loss of colonies of one of the most emblematic species of the Antarctic, the emperor penguin. These existing impacts on polar species are alarming, especially because many polar species still remain poorly studied due to technical and logistical challenges imposed by the harsh environment and extreme remoteness. Developing technologies and tools for monitoring such wildlife populations is, therefore, a matter of urgency. This project aims to help close major knowledge gaps about the emperor penguin, in particular about their adaptive capability to a changing environment, by the development of next-generation tools to remotely study entire colonies. Specifically, the main goal of this project is to implement and test an autonomous unmanned ground vehicle equipped with Radio-frequency identification (RFID) antennas and wireless mesh communication data-loggers to: 1) identify RFID-tagged emperor penguins during breeding to studying population dynamics without human presence; and 2) receive Global Positioning System-Time Domain Reflectometry (GPS-TDR) datasets from Very High Frequency VHF-GPS-TDR data-loggers without human presence to study animal behavior and distribution at sea. The autonomous vehicles navigation through the colony will be aided by an existing remote penguin observatory (SPOT). Properly implemented, this technology can be used to study of the life history of individual penguins, and therefore gather data for behavioral and population dynamic studies. The new data will contribute to intelligent establishment of marine protected areas in Antarctica. The education objectives of this CAREER project are designed to increase the interest in a STEM education for the next generation of scientists by combining the charisma of the emperor penguin with robotics research. Within this project, a new class on ecosystem robotics will be developed and taught, Robotics boot-camps will allow undergraduate students to remotely participate in Antarctic field trips, and an annual curriculum will be developed that allows K-12 students to follow the life of the emperor penguin during the breeding cycle, powered by real-time data obtained using the unmanned ground vehicle as well as the existing emperor penguin observatory. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
A nontechnical description of the project The primary scientific goal of the project is to test whether Taylor Valley, Antarctica has been eroded significantly by glaciers in the last ~2 million years (Ma). Taylor Valley is one of the Dry Valleys of the Transantarctic Mountains, which are characterized by low mean annual temperatures, low precipitation, and limited erosion. These conditions have allowed fragile glacial landforms to be preserved for up to 15 Ma. Sediment eroded and deposited by glaciers is found on the valley walls and floors, with progressively younger deposits preserved at lower elevations. Scientists can date glacial deposits to understand the process and timing of past glacial erosion. Previous work in the Dry Valleys region suggested that extremely cold glaciers like Taylor Glacier, a major outlet glacier entering the valleys, were not erosive during the last several million years. This research will test a new hypothesis that glacial erosion and sediment production beneath Taylor Glacier have been active in the last few million years. This hypothesis will be tested using a new isotopic dating method called "comminution dating' which determines when fine-grained sediment particles called silt were formed. If the sediment age is young, then the results will suggest that glacial processes have been more dynamic than previously thought. Overall, this study will increase our understanding of the nature and extent of past glaciations in Antarctica. Because the silt produced by erosion sediment is a nutrient for local ecosystems, the results will also shed light on delivery of nutrients to soils, streams, and coastal zones in high polar regions. This project will be led by an early career scientist and includes training of a Ph.D. student. A technical description of the project There is a long-standing scientific controversy about the stability of the East Antarctic Ice Sheet with much evidence centered in the Dry Valleys region of South Victoria Land. A prevailing view of geomorphologists is that the landscape has been very stable and that the effects of glaciation have been minimal for the past ~15 Ma. This project will distinguish between two end-member scenarios of glacial erosion and deposition by Taylor Glacier, an outlet glacier of the East Antarctic Ice Sheet that terminates in Taylor Valley in the Dry Valleys region of Antarctica. In the first scenario, all valley relief is generated prior to 15 Ma when non-polar climates enabled warm-based glaciers to incise and widen ancient river channels. In this case, younger glacial deposits record advances of cold-based glaciers of decreasing ice volume and limited glacial erosion, and sediment generation resulted in glacial deposits composed primarily of older recycled sediments. In the second scenario, selective erosion of the valley floor has continued to deepen Taylor Valley but has not affected the adjacent peaks over the last 2 Ma. In this scenario, the "bathtub rings" of Quaternary glacial deposits situated at progressively lower elevations through time could be due to the lowering of the valley floor by subglacial erosion and with it, production of new sediment which is now incorporated into these deposits. While either scenario would result in the present-day topography, they differ in the implied evolution of regional glacial ice volume over time and the timing of both valley relief production and generation of fine-grained particles. The two scenarios will be tested by placing time constraints on fine particle production using U-series comminution dating. This new geochronologic tool exploits the loss of 234U due to alpha-recoil. The deficiency in 234U only becomes detectable in fine-grained particles with a sufficiently high surface-area-to-volume ratio which can incur appreciable 234U loss. The timing of comminution and particle size controls the magnitude of 234U loss. While this geochronologic tool is in its infancy, the scientific goal of this proposal can be achieved by resolving between ancient and recently comminuted fine particles, a binary question that the preliminary modeling and measured data show is readily resolved.
The chemical composition of diatom fossils in the Southern Ocean provides information about the environmental history of Antarctica, including sea ice extent, biological production, and ocean nutrient distribution. The sea ice zone is an important habitat for a group of diatoms, largely from the genus Chaetoceros, that have a unique life cycle stage under environmental stress, when they produce a structure called a resting spore. Resting spores are meant to reseed the surface ocean when conditions are more favorable. The production of these heavy resting spores tends to remove significant amounts of carbon and silicon, essential nutrients, out of the surface ocean. As a result, this group has the potential to remove carbon from the surface ocean and can impact the sedimentary record scientists use to reconstruct environmental change. This project explores the role of resting spores in the sedimentary record using the nitrogen isotopic signature of these fossils and how those measurements are used to estimate carbon cycle changes. The work will include laboratory incubations of these organisms to answer if and how the chemistry of the resting spores differs from that of a typical diatom cell. The incubation results will be used to evaluate nutrient drawdown in sea ice environments during two contrasting intervals in earth history, the last ice age and the warm Pliocene. This work should have significant impact on how the scientific community considers the impact of seasonal sea ice cover in the Southern Ocean in terms of how it responds to and regulates global climate. The project provides training and research opportunities for undergraduate and graduate students. Ongoing research efforts in Antarctic earth sciences will be disseminated through an interactive display at the home institution. The work proposed here will address uncertainties in how Chaetoceros resting spores record surface nutrient conditions in their nitrogen stable isotopic composition, the relative impact of their specific signal with respect to the full sedimentary assemblage, and their potential to bias or enhance environmental reconstructions in the sea ice zone. Measurements of nitrogen stable isotopes of nitrate, biomass, and diatom-bound nitrogen and silicon-to-nitrogen ratios of individual species grown in the laboratory will be used to quantify how resting spores record nutrient drawdown in the water column and to what degree their signature is biased toward low nutrient conditions. These relationships will be used to inform diatom-bound nitrogen isotope reconstructions of nutrient drawdown from a Pliocene coastal polyna and an open ocean core that spans the last glacial maximum. This proposal capitalizes on the availability of Southern Ocean isolates of Chaetoceros spp. collected in 2017 for the proposed culture work and archived sediment cores and/or existing data. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The near surface atmosphere over West Antarctica is one of the fastest warming locations on the planet. This atmospheric warming, along with oceanic forcing, is contributing to ice sheet melt and hence rising global sea levels. An observational campaign, focused on the atmospheric boundary layer over the West Antarctic ice sheet, is envisioned. A robust set of year-round, autonomous, atmospheric and surface measurements, will be made using an instrumented 30-m tall tower at the West Antarctic ice sheet divide field camp. An additional unmanned aerial system field campaign will be conducted during the second year of this project and will supplement the West Antarctic ice sheet tall tower observations by sampling the depths of the boundary layer. The broader subject of the Antarctic ABL clearly supports a range of research activities ranging from the physics of turbulent mixing, its parameterization and constraints on meteorological forecasts, and even climatological effects, such as surface mass and energy balances. With the coming of the Thwaites WAIS program, a suite of metrological observables would be a welcome addition to the joint NSF/NERC (UK) Thwaites field campaigns. The meteorologists of this proposal have pioneered 30-m tall tower (TT) and unmanned aerial system (UAS) development in the Antarctic, and are well positioned to successfully carry out and analyze this work. In turn, the potential for these observations to advance our understanding of how the atmosphere exchanges heat with the ice sheet is high. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part I: Non-technical description: Predicting how polar ice sheets will respond to future global warming is difficult because all the processes that contribute to their melting are not well understood. This is important because the more ice on land that melts, the higher sea levels will rise. The most significant uncertainty in current estimates of sea-level rise in the coming decades is the potential contribution from the Antarctic Ice Sheet. One way to increase our knowledge about how large ice sheets respond to climate change in response to natural factors is to examine the geologic past. Natural global warming (and cooling) events in Earth’s history provide examples that we can use to better understand processes, interactions, and responses we can’t directly observe today. One such time period, approximately three million years ago (known as the Pliocene), was the last time atmospheric carbon dioxide levels were as high as they are today and, therefore, represents a time period to study to better understand the ice sheet response to a warming climate. Specifically, this project is interested in understanding how ocean currents near Antarctica, which transport heat and store carbon, behaved during these past climate events. The history of past ice sheet-ocean interactions are recorded in sediments that were deposited, layer upon layer, in the deep sea offshore Antarctica. In January-February 2018, a team of scientists and crew set sail to the Ross Sea, offshore west Antarctica, on the scientific ocean drilling vessel JOIDES Resolution to recover such sediment archives. This project focuses on a sediment core from that expedition, which captures the relatively warm Pliocene time interval, as well as the subsequent transition into cooler climates typical of the past two million years. The researchers will analyze the sediment with multiple complementary measurements, including: grain size, composition, chemistry of organic matter, physical structures, microfossil type and abundance, and more. These analyses will be done by the research team, including several students, at their respective laboratories and will then integrated into a unified record of ice sheet-ocean interactions. Ultimately, the results will be used to improve modeled projections of how the Antarctic Ice Sheet could respond to future climate change. Part II: Technical description: Geological records from the Antarctic Ice Sheet (AIS) margin demonstrate that the ice sheet oscillated in response to orbital variations in insolation (i.e., ~400, 100, 41, and 20 kyr), and it appears to be more sensitive to specific frequencies that regulate mean annual insolation (i.e., 41-kyr obliquity), particularly when the ice sheet extends into marine environments and is impacted by ocean circulation. However, the relationship between orbital forcing and the production of Antarctic Bottom Water (AABW) is unconstrained. Thus, a knowledge gap exists in understanding how changing insolation impacts ice marginal and Southern Ocean conditions that directly influence ventilation of the global ocean. The researchers hypothesize that insolation-driven changes directly affected the production and export of AABW to the Southern Ocean from the Pliocene through the Pleistocene. For example, obliquity amplification during the warmer Pliocene may have led to enhanced production and export of dense waters from the shelf due to reduced AIS extent, which, in turn, led to greater AABW outflow. To determine the relationship of AABW production to orbital regime, they plan to reconstruct both from a single, continuous record from the levee of Hillary Canyon, a major conduit of AABW outflow, on the Ross Sea continental rise. To test their hypothesis, they will analyze sediment from IODP Site U1524 (recovered in 2018 during International Ocean Discovery Program Expedition 374) and focus on three data sets. (1) They will use the occurrence, frequency, and character of mm-scale turbidite beds as a proxy of dense-shelf-water cascading outflow and AABW production. They will estimate the down-slope flux via numerical modeling of turbidity current properties using morphology, grain size, and bed thickness as input parameters. (2) They will use grain-size data, physical properties, XRF core scanning, CT imaging, and hyperspectral imaging to guide lithofacies analysis to infer processes occurring during glacial, deglacial, and interglacial periods. Statistical techniques and optimization methods will be applied to test for astronomical forcing of sedimentary packages in order to provide a cyclostratigraphic framework and interpret the orbital-forcing regime. (3) They will use bulk sedimentary carbon and nitrogen abundance and isotope data to determine how relative contributions of terrigenous and marine organic matter change in response to orbital forcing. All of these data will be integrated with sedimentological records to deconvolve organic matter production from its deposition or remobilization due to AABW outflow as a function of the oscillating extent of the AIS. These data sets will be integrated into a unified chronostratigraphy to determine the relationship between AABW outflow and orbital-forcing scenarios under the varying climate regimes of the Plio-Pleistocene. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This project will take initial development steps toward a laser-cut ice-sampling capability in glaciers and ice sheets. The collection of ice samples from the Polar Ice Sheets involves large amounts of time, effort, and expense. However, the most important science data are often retrieved from small sections of an ice core and, while replicate coring can supplement this section of ice core, there is often a need to retrieve additional ice samples based on subsequent scientific findings or borehole logging at a research site. In addition, there are currently no easy methods of extracting ice samples from a borehole drilled by non-coring mechanical drills that are faster, lighter, and less expensive to operate. There are numerous science applications that could potentially benefit from laser-cut ice samples, including sampling ice overlying buried impact craters and bolides, filling critical gaps in chemical records retrieved from damaged ice cores, and obtaining ice samples from sites where coring drills apply stresses that may fracture the ice. This award will explore a laser cutting technology to rapidly extract high-quality ice samples from a borehole wall. The project will investigate and validate the existing technology of laser ice sampling and will use a fiberoptic cable to deliver light pulses to a borehole instrument rather than attempting to assemble a complete laser system in an instrument deployed in a borehole. This offers a new way of retrieving ice samples from a polar ice sheet without the need to drill a borehole to collect ice-core samples (i.e., the hole could be mechanically drilled). This technology could also be used in existing boreholes or those that are made by augering through ice (i.e., not coring) or made with hot water. If successful, this technique would create the ability to rapidly retrieve ice samples with a small logistical footprint and enable science that might not be supportable otherwise. The proposed technology could eventually provide better access to ice-core samples to study past atmospheric composition for understanding past climate and inform on future potential for ice-sheet change. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Around 252 million years ago, a major mass extinction wiped out upwards of 90% of species on Earth. Coincident with this extinction, the Antarctic portion of the supercontinent of Pangea transitioned to a warmer climatic regime and became devoid of glaciers. Little is known about the survivors of the extinction in Antarctica, although it has been hypothesized that the continent's high latitude location shielded it from the worst of the extinction's effects. The Shackleton Glacier region is the best place to study this extinction in Antarctica because it exposes an abundance of correct age rocks and relevant fossils were found there in the 1960s and 1980s. For this research, paleontologists will study fossil vertebrates that span from about 260 to 240 million years ago to understand how life evolved at high latitudes in the face of massive climate change. In addition, geologists will use fossil soils and fossil plant matter to more precisely reconstruct the climate of Antarctica across this extinction boundary. These data will allow for a more complete understanding of ancient climates and how Antarctic life compared to that at lower latitudes. Undergraduate and graduate students will be actively involved in this research. Public engagement in Antarctic science will be accomplished at several natural history museums. This three-year project will examine the evolution of Permo-Triassic paleoenvironments and their vertebrate communities by conducting fieldwork in the Shackleton Glacier region of Antarctica. The team will characterize the Permo-Triassic boundary within Shackleton area strata and correlate it to other stratigraphic successions in the region (e.g. via stable carbon isotope stratigraphy of fossilized plant organic matter). The researchers will use multiple types of data to assess the paleoenvironment, including: 1) paleosol morphology; 2) paleosol geochemistry; 3) pedogenic organic matter; and 4) fossil wood chronology and stable isotopes. The Fremouw Formation of Antarctica preserves the highest paleolatitude (~70° S) tetrapod fauna of the entire Triassic and thus has the potential to shed important light on the evolution of polar life during the early Mesozoic. The biology of Triassic vertebrates from Antarctica will be compared to conspecifics from lower paleolatitudes through analysis of growth in bone and tusk histology. An interdisciplinary approach will be used to address relationships between environmental change, faunal composition, and biogeographic patterns in the context of the high-latitude strata preserved in the Buckley and Fremouw formations in the Shackleton Glacier region.
The ice of the polar ice sheets is among the purest substances on Earth, yet the small amount of impurities --such as acids-- are important to how the ice flows and what can be learned from ice cores about past climate. The goal of this project is to understand the role of such acids on the deformation of polycrystalline ice by comparing the deformation behavior of pure and sulfuric acid-doped samples. Sulfuric acid was chosen both because of its importance for interpreting past climate and because it can lead to water veins in ice at low temperatures. This work will focus on the location, movement, and impact of acids in polycrystalline ice that are more complex than in single crystals of ice. By deforming samples and performing microstructural characterization, the role of acids on deformation rate, grain evolution, and the movement of the acids themselves, will be assessed. The work will lead to the education of a Ph.D. student at Dartmouth College, introduce undergraduate students to research at both the University of Washington and Dartmouth College. Despite the ubiquitous use of the constitutive relation for ice commonly referred to as "Glen's Flow Law", significant uncertainty exists particularly with regard to the role of impurities and the development of oriented fabrics. The aim of this project is to improve the constitutive relationship for ice by performing deformation tests and microstructural characterization of pure and sulfuric acid-doped ice. The project will focus on sulfuric acid's impact on ice viscosity, fabric evolution, and diffusivity. Sulfuric acid can have both direct and indirect effects on the mechanical properties of polycrystalline ice. The direct effects change the dislocation velocity and/or density, and the indirect effects change the grain size and fabric. The complexity and interaction of these effects means that it is not possible to understand the effects of sulfuric acid by simply examining ice core specimens. In this project, the team will deform four types of ice: lab-grown ice samples doped with similar-to-natural concentrations of sulfuric acid, lab-grown high-purity ice, layered doped and pure ice, and natural ice from Antarctic ice cores. Deformation will be performed in both uniaxial compression and simple shear. The addition of simple shear tests is critical for relating the laboratory-observed deformation behavior to the behavior of polar ice sheets where the shear strain dominates ice motion in basal ice. After deformation to strains from 5 percent up to 25 percent, the microstructural development will be assessed with methods including a variety of scanning electron microscope techniques, Raman microscopy, synchrotron-based Nano-X-ray fluorescence, and ion chromatography. These analysis techniques will allow the determination of 1) the segregation and movement of impurities, 2) the rate of grain-boundary migration, 3) the number of recrystallized grains; and 4) the full orientation of the ice crystals. The results will enable both microstructural modeling of the effects of sulfuric acid and numerical modeling of diffusion in ice cores. The net result will be a better understanding of ice deformation that improves ice-core interpretation and ice-sheet modeling. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Enderlin/1643455 This award supports a project that will use a novel remote sensing method, which was initially developed to investigate melting of icebergs around Greenland, to examine spatial and temporal variations in ocean forcing around the Antarctic ice sheet periphery. Nearly three-quarters of the Antarctic ice sheet is fringed by regions of floating glacier ice called ice shelves. These ice shelves play an important role in modulating the flow of ice from the ice sheet interior towards the coast, similar to how dams regulate the downstream flow of water from reservoirs. Therefore, a reduction in ice shelf size due to changing air and ocean temperatures can have serious implications for the flux of glacier ice reaching the Antarctic coast, and thus, sea level change. Observations of recent ocean warming in the Amundsen Sea, thinning of the ice shelves, and increased ice flux from the West Antarctic ice sheet interior suggests that ice shelf destabilization triggered by ocean warming may already be underway in some regions. Although detailed observations are available in the Amundsen Sea region, our understanding of spatial and temporal variations in ocean conditions and their influence on ice shelf stability is limited by the scarceness of observations spanning the ice sheet periphery. The project will yield insights into variability in the submarine melting of ice shelves and will help advance the career of a female early-career scientist in a male-dominated field. The project will use repeat, very high-resolution (~0.5 m pixel width and length) satellite images acquired by the WorldView satellites, to estimate rates of iceberg melting in key coastal regions around Antarctica. The satellite images will be used to construct maps of iceberg surface elevation, which will be differenced in time to derive time series of iceberg volume change and area-averaged melt rates. Where ocean data are available, the melt rates will be compared to these data to assess whether variations in ocean temperature can explain observed iceberg melt variability. Large spatial gradients in melt rates will be compared to estimates of iceberg drift rates, which will be inferred from the repeat satellite images as well as numerically modeled drift rates produced by (unfunded) collaborators, to quantify the effects of water shear on iceberg melt rates. Spatial and temporal patterns in iceberg melting will also be compared to independently derived ice shelf thickness datasets. Overall, the analysis should yield insights into the effects of changes in ocean forcing on the submarine melting of Antarctic ice shelves and icebergs. The project does not require field work in Antarctica.
The Earth's mantle influences the movement of tectonic plates and volcanism on the surface. One way to understand the composition and nature of the Earth's mantle is by studying the chemistry of basalts, which originate by volcanic eruptions of partially melting mantle rocks. This study will establish the budget and distribution of volatile elements (hydrogen, carbon, fluorine, chlorine, sulfur) in volcanic basalts to better understand the composition of the Earth's interior. Volatiles influence mantle melting, magma crystallization, magma migration and volcanic eruptions. Their abundances and spatial distribution provide important constraints on models of mantle flow and temperature. Moreover, volatiles are key constituents of the Earth's atmosphere and oceans. Establishing the cycles of volatiles between the Earth's interior and surface is of fundamental importance to understand the long-term evolution of our planet. This project supports a graduate student and research scientist at Brown University. It promotes the collaboration with geochemists from eleven institutions representing six different countries: USA, Germany, United Kingdom, Argentina, South Korea and Japan, and utilizes several NSF-funded USA analytical facilities. Communication of results will occur through: 1) peer-reviewed journals, presentations at conferences and invited university lectures, 2) hands-on science learning activities for local elementary and high school classes, and 3) outreach to the general audience through public lectures. Over the last 60 years of funded research, the Antarctic Peninsula and nearby ocean ridges have been extensively investigated providing information on the origin of the magmatism, and the composition, structure, temperature and evolution of the lithospheric and asthenospheric mantle. Diverse hypotheses have been proposed for the origin of the magmatism in the Antarctic Peninsula, from flux melting of the mantle wedge during devolatilization of the subducted Phoenix plate, to adiabatic decompression melting of a carbonated and hydrous asthenosphere, to melting of a volatile-rich metasomatized subcontinental lithospheric mantle. All proposed hypotheses invoke the role of volatiles. Surprisingly, data on the volatile contents of basalts and mantle from this region are non-existent. This is a significant omission from the geochemical data set, given the important role volatile elements play in the generation and composition of magmas and their sources. The focus of our research is to examine the regional variations in volatile contents (C, H, F, S, Cl) in geochemically well-characterized Pliocene-recent basalts from the Antarctic Peninsula and Phoenix ridge. Our goal is to establish the budget and distribution of volatiles in the mantle to understand 1) the processes responsible for the generation of chemically diverse basalts in close spatial and temporal proximity and 2) the nature (lithology, composition and temperature) of the heterogeneous mantle source beneath the Antarctic Peninsula and Phoenix ridge.
Undersea forests of seaweeds dominate the shallow waters of the central and northern coast of the western Antarctic Peninsula and provide critical structural habitat and carbon resources (food) for a host of marine organisms. Most of the seaweeds are chemically defended against herbivores yet support very high densities of herbivorous shrimp-like grazers (crustaceans, primarily amphipods) which greatly benefit their hosts by consuming filamentous and microscopic algae that otherwise overgrow the seaweeds. The amphipods benefit from the association with the chemically defended seaweeds by gaining an associational refuge from fish predation. The project builds on recent work that has demonstrated that several species of amphipods that are key members of crustacean assemblages associated with the seaweeds suffer significant mortality when chronically exposed to increased seawater acidity (reduced pH) and elevated temperatures representative of near-future oceans. By simulating these environmental conditions in the laboratory at Palmer Station, Antarctica, the investigators will test the overall hypothesis that ocean acidification and ocean warming will play a significant role in structuring crustacean assemblages associated with seaweeds. Broader impacts include expanding fundamental knowledge of the impacts of global climate change by focusing on a geographic region of the earth uniquely susceptible to climate change. This project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. This includes training graduate students and early career scientists with an emphasis on diversity, presentations to K-12 groups and the general public, and a variety of social media-based outreach programs. The project will compare population and assemblage-wide impacts of natural (ambient), carbon dioxide enriched, and elevated temperature seawater on assemblages of seaweed-associated crustacean grazers. Based on prior results, it is likely that some species will be relative "winners" and some will be relative "losers" under the changed conditions. The project will then aim to carry out measurements of growth, calcification, mineralogy, the incidence of molts, and biochemical and energetic body composition for two key amphipod "winners" and two key amphipod "losers". These measurements will allow an assessment of what factors drive species-specific enhanced or diminished performance under conditions of ocean acidification and sea surface warming. The project will expand on what little is known about prospective impacts of changing conditions on benthic marine Crustacea, in Antarctica, a taxonomic group that faces the additional physiological stressor of molting. The project is likely to provide additional insight on the indirect regulation of the seaweeds that comprise Antarctic undersea forests that provide key architectural components of the coastal marine ecosystem. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Over the past century, climate science has constructed an extensive record of Earth’s ice age cycles through the chemical and isotopic characterization of various geologic archives such as polar ice cores, deep-ocean sediments, and cave speleothems. These climatic archives provide an insightful picture of ice age cycles and of the related large global sea level fluctuations triggered by these significant climate rhythms. However, such records still provide limited insight as to how or which of Earth’s ice sheets contributed to higher sea levels during past warm climate periods. This is of particular importance for our modern world: the Antarctic ice sheet is currently the world’s largest freshwater reservoir, which, if completely melted, would raise the global sea level by over 60 meters (200 feet). Yet, geologic records of Antarctic ice sheet sensitivity to warm climates are particularly limited and difficult to obtain, because the direct records of ice sheet geometry smaller than the modern one are still buried beneath the mile-thick ice covering the continent. Therefore, it remains unclear how much this ice sheet contributed to past sea level rise during warm climate periods or how it will respond to the anticipated near-future climate warming. In the proposed research we seek to develop sub-ice chemical precipitates—minerals that form in lakes found beneath the ice sheet—as a climatic archive, one that records how the Antarctic ice sheet responded to past climatic change. These sub-ice mineral formations accumulated beneath the ice for over a hundred thousand years, recording the changes in chemical and isotopic subglacial properties that occur in response to climate change. Eventually these samples were eroded by the ice sheet and moved to the Antarctic ice margin where they were collected and made available to study. This research will utilize advanced geochemical, isotopic and geochronologic techniques to develop record of the Antarctica ice sheet’s past response to warm climate periods, directly informing efforts to understand how Antarctica will response to future warming. Efforts to improve sea level forecasting on a warming planet have focused on determining the temperature, sea level and extent of polar ice sheets during Earth’s past warm periods. Large uncertainties, however, in reconstructions of past and future sea levels, result from the poorly constrained climate sensitivity of the Antarctic Ice sheet (AIS). This research project aims to develop the use of subglacial precipitates as an archive the Antarctic ice sheet (AIS) past response to climate change. The subglacial precipitates from East Antarctica form in water bodies beneath Antarctic ice and in doing so provide an entirely new and unique measure of how the AIS responds to climate change. In preliminary examination of these precipitates, we identified multiple samples consisting of cyclic opal and calcite that spans hundreds of thousands of years in duration. Our preliminary geochemical characterization of these samples indicates that the observed mineralogic changes result from a cyclic change in subglacial water compositions between isotopically and chemically distinct waters. Opal-forming waters are reduced (Ce* <1 and high Fe/Mn) and exhibit elevated 234U/238U compositions similar to the saline groundwater brines found at the periphery of the AIS. Calcite-forming waters, are rather, oxidized and exhibit δ18O compositions consistent with derivation from the depleted polar plateau (< -50 ‰). 234U-230Th dates permit construction of a robust timeseries describing these mineralogic and compositional changes through time. Comparisons of these time series with other Antarctic climate records (e.g., ice core records) reveal that calcite forming events align with millennial scale changes in local temperature or “Antarctic isotopic maximums”, which represent Southern Hemisphere warm periods resulting in increased Atlantic Meridional overturing circulation. Ultimately, this project seeks to develop a comprehensive model as to how changes in the thermohaline cycle induce a glaciologic response which in turn induces a change in the composition of subglacial waters and the mineralogic phase recorded within the precipitate archive. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Cold-blooded animals in the Antarctic ocean have survived in near-constant, extreme cold conditions for millions of years and are very sensitive to even small changes in water temperature. However, the consequences of this extreme thermal sensitivity for the energetics, development, and survival of developing embryos is not well understood. This award will investigate the effect of temperature on the metabolism, growth rate, developmental rate, and developmental energetics of embryos and larvae of Antarctic marine ectotherms. The project will also measure annual variation in temperature and oxygen at different sites in McMurdo Sound, and compare embryonic and larval metabolism in winter and summer to determine the extent to which these life stages can acclimate to seasonal shifts. This research will provide insight into the ability of polar marine animals and ecosystems to withstand warming polar ocean conditions. Antarctic marine ectotherms exhibit universally slow growth, low metabolic rates, and extended development, yet many of their rate processes related to physiology and metabolism are highly thermally sensitive. This suggests that small changes in temperature may result in dramatic changes to energy metabolism, growth, and the rate and duration of development. This project will measure the effects of temperature on metabolism, developmental rate, and the energetic cost of development of four common and ecologically important species of benthic Antarctic marine invertebrates. These effects will be measured over the functional ranges of the organisms and in the context of environmentally relevant seasonal shifts in temperature around McMurdo Sound. Recent data show that seasonal warming of ~1 deg C near McMurdo Station is accompanied by long-lasting hyperoxic events that impact the benthos in the nearshore boundary layer. This research will provide a more comprehensive understanding of both annual variation in environmental oxygen and temperature across the Sound, and whether this variation drives changes in developmental rate and energetics that are consistent with physiological acclimatization. These data will provide key information about potential impacts of warming Antarctic ectotherms. In addition, this project will support undergraduate and graduate research and partner with large-enrollment undergraduate courses and REU programs at an ANNH and AANAPISI Title III minority-serving institution. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Buizert/1643394 This award supports a project to use ice cores to study teleconnections between the northern hemisphere, tropics, and Antarctica during very abrupt climate events that occurred during the last ice age (from 70,000 to 11,000 years ago). The observations can be used to test scientific theories about the role of the westerly winds on atmospheric carbon dioxide. In a warming world, snow fall in Antarctica is expected to increase, which can reduce the Antarctic contribution to sea level rise, all else being equal. The study will investigate how snow fall changed in the past in response to changes in temperature and atmospheric circulation, which can help improve projections of future sea level rise. Antarctica is important for the future evolution of our planet in several ways; it has the largest inventory of land-based ice, equivalent to about 58 m of global sea level and currently contributes about 0.3 mm per year to global sea level rise, which is expected to increase in the future due to global warming. The oceans surrounding Antarctica help regulate the uptake of human-produced carbon dioxide. Shifts in the position and strength of the southern hemisphere westerly winds could change the amount of carbon dioxide that is absorbed by the ocean, which will influence the rate of global warming. The climate and winds near and over Antarctica are linked to the rest of our planet via so-called climatic teleconnections. This means that climate changes in remote places can influence the climate of Antarctica. Understanding how these climatic teleconnections work in both the ocean and atmosphere is an important goal of climate research. The funds will further contribute towards training of a postdoctoral researcher and an early-career researcher; outreach to public schools; and the communication of research findings to the general public via the media, local events, and a series of Wikipedia articles. The project will help to fully characterize the timing and spatial pattern of millennial-scale Antarctic climate change during the deglaciation and Dansgaard-Oeschger (DO) cycles using multiple synchronized Antarctic ice cores. The phasing of Antarctic climate change relative to Greenland DO events can distinguish between fast atmospheric teleconnections on sub-decadal timescales, and slow oceanic ones on centennial time scales. Preliminary work suggests that the spatial pattern of Antarctic change can fingerprint specific changes to the atmospheric circulation; in particular, the proposed work will clarify past movements of the Southern Hemisphere westerly winds during the DO cycle, which have been hypothesized. The project will help resolve a discrepancy between two previous seminal studies on the precise timing of interhemispheric coupling between ice cores in both hemispheres. The study will further provide state-of-the-art, internally-consistent ice core chronologies for all US Antarctic ice cores, as well as stratigraphic ties that can be used to integrate them into a next-generation Antarctic-wide ice core chronological framework. Combined with ice-flow modeling, these chronologies will be used for a continent-wide study of the relationship between ice sheet accumulation and temperature during the last deglaciation.
As glaciers creep across the landscape, they can act as earthmovers, plucking up rocks and grinding them into fine sediments. Glaciers have moved across the Antarctic landscape over thousands to millions of years, leaving these ground-up sediments in their wake. This study builds on pilot discoveries by the investigators that revealed remarkably large and variable measurements of surface area in glacially-derived fine-grained sediments found in the McMurdo Dry Valleys (MDV), one of the few landscapes on the Antarctic continent not currently covered by ice. Surface area is key to chemical weathering, the process by which rock is converted to soils as ions are carried away in streams and groundwater. These chemical weathering processes are also one of the primary means by which the Earth system naturally removes carbon dioxide from the atmosphere. Hence, high surface areas observed in sediments implies high "weatherability" which in turn translates to more potential carbon dioxide removed from the atmosphere. Therefore, chemical weathering in high surface area glacial sediments may have significant impacts on Earth's carbon cycle. The researchers will measure the chemical and physical properties of sediments previously collected from the Dry Valleys to understand what factors lead to production of sediment with high-surface area and potential "weather ability" and investigate how sediment produced in these glacial systems could ultimately impact Earth's carbon budget. Results from this research will help scientists (including modelers) refine predictions of the effects of melting glaciers- and attendant exposure of glacial sediment? on atmospheric carbon levels. These results may also contribute to applied research efforts on development of carbon-dioxide removal technologies utilizing principles of rock weathering. In addition to the scientific benefits, this research will involve several students at the undergraduate, graduate, and post-doctoral levels, including science education undergraduates, thus contributing to training of the next-generation STEM workforce. Physical weathering produces fresh surfaces, greatly enhancing specific surface area (SSA) and reactive surface area (RSA) of primary minerals. Quantifying SSA and RSA of sediments is key to determining dissolution and leaching rates during natural weathering, but few data exist on distribution of sediment SA, particularly in glacial and fluvial systems. Pilot data from glacial stream systems in Taylor Valley and Wright Valley (located in the MDV) exhibit remarkably high and variable values in both SSA and RSA, values that in some cases greatly exceed values from muds in temperate glacial systems. This discovery motivates the current research, which aims to investigate the hypothesis that high and variable SAs of muds within Wright and Taylor Valleys reflect textural and/or compositional inheritance from the differing depositional settings within the MDV, biologic controls, dust additions, and/or pedogenic processes. These hypotheses will be tested by sedimentologically, mineralogically, and geochemically characterizing muds from glacially derived sediment deposited in various environments (cold vs. wet based glaciation; fluvial, lacustrine, dust, and drift deposits) and of varying age (Miocene to Modern) from the MDV and quantifying variation of SA and reactivity. Comparisons with analyzed muds from temperate glacial systems will enable polar-temperate comparisons. Analyses will focus on muds of previously collected sediment from the MDVs. Grain size and SSA will be measured by Laser Analysis and N2 adsorption BET, respectively. After carbonate removal, samples will be re-analyzed for SSA, and muds characterized geochemically. Mineralogy and bulk chemistry will also be assessed on co-occurring sand fractions, and textural attributes documented. SSA-normalized dissolution experiments will be used to compare solutes released from sediments to determine RSAs. Results will be integrated with the various sedimentologic and geochemical analyses to test the posed hypotheses. Ultimately, this research should shed light on how weathering in Antarctic systems contributes to global carbon cycling.
Part 1: Non-technical description Polar regions are experiencing some of the most dramatic effects of climate change resulting in large-scale changes in sea ice cover. Despite this, there are relatively few long-term studies on polar species that evaluate the full scope of these effects. Over the last two decades, this team has conducted globally unique demographic studies of Adélie penguins in the Ross Sea, Antarctica, to explore several potential mechanisms for population change. This five-year project will use penguin-borne sensors to evaluate foraging conditions and behavior and environmental conditions on early life stages of Adélie penguins. Results will help to better understand population dynamics and how populations might respond to future environmental change. To promote STEM literacy, education and public outreach efforts will include multiple activities. The PenguinCam and PenguinScience.com website (impacts of >1 million hits per month and use by >300 classrooms/~10,000 students) will be continued. Each field season will also have ‘Live From the Penguins’ Skype calls to classes (~120/season). Classroom-ready activities that are aligned with Next Generation Science Standards will be developed with media products and science journal papers translated to grade 5-8 literacy level. The project will also train early career scientists, postdoctoral scholars, graduate students and post-graduate interns. Finally, in partnership with an Environmental Leadership Program, the team will host 2-year Roger Arliner Young Conservation Fellow, which is a program designed to increase opportunities for recent college graduates of color to learn about, engage with, and enter the environmental conservation sector. Part II: Technical description: Leveraging 25 years of data on marked individuals from two Adélie penguin colonies in the Ross Sea, combined with new biologging tags that track detailed penguin foraging efforts and environmental conditions, researchers will accomplish three major goals: 1) assess the quality of natal conditions by determining how environmental conditions, relative prey availability, and diet composition influence parental foraging behavior, chick provisioning, and fledging mass; 2) determine the spatial distribution and foraging behavior of juvenile Adélie penguins and the relative influence of natal versus post-fledging environmental conditions on their survival; and 3) determine the role of natal and post-fledging conditions in shaping individual life history traits and colony growth. Data from several types of penguin-borne biologging devices will be used to provide multiple lines of evidence for how early-life conditions and penguin behavior relate to penguin energetics and population size. This study is the first to integrate salinity, temperature, light level, depth, accelerometry, video loggers, and GPS data with longitudinal demographic information, providing an unprecedented ability to understand how penguins use the environment and enabling new insights from previously collected data. Changes in salinity due to increased glacial melt have important implications for sea ice formation, ocean circulation and productivity of the Southern Ocean, and potentially global temperature change. The penguin-borne sensors deployed in this study will support the NSF Office of Polar Programs priority: How does society more efficiently observe and measure the polar regions? It represents only the second study to track juvenile Adélie penguins at sea, the first in the Ross Sea region, the first with substantial sample sizes, and the first to assess juvenile survival rates directly, integrating early life factors and environmental conditions to better understand colony growth trajectories. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Ross Sea region of the Southern Ocean is experiencing growing sea ice cover in both extent and duration. These trends contrast those of the well-studied, western Antarctic Peninsula area, where sea ice has been disappearing. Unlike the latter, little is known about how expanding sea ice coverage might affect the regional Antarctic marine ecosystem. This project aims to better understand some of the potential effects of the changing ice conditions on the marine ecosystem using the widely-recognized indicator species - the Adélie Penguin. A four-year effort will build on previous results spanning 19 seasons at Ross Island to explore how successes or failures in each part of the penguin's annual cycle are effected by ice conditions and how these carry over to the next annual recruitment cycle, especially with respect to the penguin's condition upon arrival in the spring. Education and public outreach activities will continually be promoted through the PenguinCam and PenguinScience websites (sites with greater than 1 million hits a month) and "NestCheck" (a site that is logged-on by >300 classrooms annually that allows students to follow penguin families in their breeding efforts). To encourage students in pursuing educational and career pathways in the Science Technology Engineering and Math fields, the project will also provide stories from the field in a Penguin Journal, develop classroom-ready activities aligned with New Generation Science Standards, increase the availability of instructional presentations as powerpoint files and short webisodes. The project will provide additional outreach activities through local, state and national speaking engagements about penguins, Antarctic science and climate change. The annual outreach efforts are aimed at reaching over 15,000 students through the website, 300 teachers through presentations and workshops, and 500 persons in the general public. The project also will train four interns (undergraduate and graduate level), two post-doctoral researchers, and a science writer/photographer. The project will accomplish three major goals, all of which relate to how Adélie Penguins adapt to, or cope with environmental change. Specifically the project seeks to determine 1) how changing winter sea ice conditions in the Ross Sea region affect penguin migration, behavior and survival and alter the carry-over effects (COEs) to subsequent reproduction; 2) the interplay between extrinsic and intrinsic factors influencing COEs over multiple years of an individual?s lifetime; and 3) how local environmental change may affect population change via impacts to nesting habitat, interacting with individual quality and COEs. Retrospective analyses will be conducted using 19 years of colony based data and collect additional information on individually marked, known-age and known-history penguins, from new recruits to possibly senescent individuals. Four years of new information will be gained from efforts based at two colonies (Cape Royds and Crozier), using radio frequency identification tags to automatically collect data on breeding and foraging effort of marked, known-history birds to explore penguin response to resource availability within the colony as well as between colonies (mates, nesting material, habitat availability). Additional geolocation/time-depth recorders will be used to investigate travels and foraging during winter of these birds. The combined efforts will allow an assessment of the effects of penguin behavior/success in one season on its behavior in the next (e.g. how does winter behavior affect arrival time and body condition on subsequent breeding). It is at the individual level that penguins are responding successfully, or not, to ongoing marine habitat change in the Ross Sea region.
Bromirski/1246151 This award supports a project intended to discover, through field observations and numerical simulations, how ocean wave-induced vibrations on ice shelves in general, and the Ross Ice Shelf (RIS), in particular, can be used (1) to infer spatial and temporal variability of ice shelf mechanical properties, (2) to infer bulk elastic properties from signal propagation characteristics, and (3) to determine whether the RIS response to infragravity (IG) wave forcing observed distant from the front propagates as stress waves from the front or is "locally" generated by IG wave energy penetrating the RIS cavity. The intellectual merit of the work is that ocean gravity waves are dynamic elements of the global ocean environment, affected by ocean warming and changes in ocean and atmospheric circulation patterns. Their evolution may thus drive changes in ice-shelf stability by both mechanical interactions, and potentially increased basal melting, which in turn feed back on sea level rise. Gravity wave-induced signal propagation across ice shelves depends on ice shelf and sub-shelf water cavity geometry (e.g. structure, thickness, crevasse density and orientation), as well as ice shelf physical properties. Emphasis will be placed on observation and modeling of the RIS response to IG wave forcing at periods from 75 to 300 s. Because IG waves are not appreciably damped by sea ice, seasonal monitoring will give insights into the year-round RIS response to this oceanographic forcing. The 3-year project will involve a 24-month period of continuous data collection spanning two annual cycles on the RIS. RIS ice-front array coverage overlaps with a synergistic Ross Sea Mantle Structure (RSMS) study, giving an expanded array beneficial for IG wave localization. The ice-shelf deployment will consist of sixteen stations equipped with broadband seismometers and barometers. Three seismic stations near the RIS front will provide reference response/forcing functions, and measure the variability of the response across the front. A linear seismic array orthogonal to the front will consist of three stations in-line with three RSMS stations. Passive seismic array monitoring will be used to determine the spatial and temporal distribution of ocean wave-induced signal sources along the front of the RIS and estimate ice shelf structure, with the high-density array used to monitor and localize fracture (icequake) activity. The broader impacts include providing baseline measurements to enable detection of ice-shelf changes over coming decades which will help scientists and policy-makers respond to the socio-environmental challenges of climate change and sea-level rise. A postdoctoral scholar in interdisciplinary Earth science will be involved throughout the course of the research. Students at Cuyamaca Community College, San Diego County, will develop and manage a web site for the project to be used as a teaching tool for earth science and oceanography classes, with development of an associated web site on waves for middle school students.
This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. The Thwaites Glacier system dominates the contribution to sea-level rise from Antarctica. Predicting how this system will evolve in coming decades, and thereby its likely contribution to sea level, requires detailed understanding of how it has responded to changes in climate and oceanographic conditions in the past. This project will provide a record of regional sea-level change by establishing chronologies for raised marine beaches as well as the timing and duration of periods of retreat of Thwaites Glacier during the past 10,000 years by sampling and dating bedrock presently covered by Thwaites Glacier via subglacial drilling. Together with climatic and oceanographic conditions from other records, these will provide boundary conditions for past-to-present model simulations as well as those used to predict future glacier changes under a range of climate scenarios. Specifically, the project will test the hypothesis--implied by existing geological evidence from the region--that present rapid retreat of the Thwaites Glacier system is reversible. The team aims to utilize two approaches: 1. To reconstruct relative sea level during the Holocene, it will map and date raised marine and shoreline deposits throughout Pine Island Bay. Chronological constraints on sea-level change will be provided by radiocarbon dating of organic material in landforms and sediments that are genetically related to past sea level, such as shell fragments, bones of marine fauna, and penguin guano. 2. To obtain geological evidence for past episodes of grounding-line retreat, the team will apply cosmogenic-nuclide exposure-dating of subglacial bedrock. Using drill systems recently developed for subglacial bedrock recovery, the team will obtain subglacial bedrock from sites where ice thickness is dynamically linked to grounding-line position in the Thwaites system (specifically in the Hudson Mountains, and near Mount Murphy). Observation of significant cosmogenic-nuclide concentrations--the team will primarily measure Beryllium-10 and in situ Carbon-14--in these samples would provide direct, unambiguous evidence for past episodes of thinning linked to grounding-line retreat as well as constraints on their timing and duration. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part I: Nontechnical Antarcticas ice sheets constitute the largest ice mass on Earth, with approximately 53 meters of sea level equivalent stored in the East Antarctic Ice Sheet alone. The history of the East Antarctic Ice Sheet is therefore important to understanding and predicting changes in sea level and Earths climate. There is conflicting evidence regarding long-term stability of the East Antarctic Ice Sheet, over the last twenty million years. To better understand past ice sheet changes, together with the history of the Transantarctic Mountains, accurate time scales are needed. One of the few dating methods applicable to the Antarctic glacial deposits, that record past ice sheet changes, is the measurement of rare isotopes produced by cosmic rays in surface rock samples, referred to as cosmogenic nuclides. Whenever a rock surface is exposed/free of cover, cosmic rays produce rare isotopes such as helium-3, beryllium-10, and neon-21within the minerals. This project will involve measurement of all three isotopes in some of the oldest glacial deposits found at high elevation in the Transantarctic Mountains. Because the amount of each isotope is directly linked to the exposure time, this can be used to calculate the age of a surface. This method requires knowledge of the rates that cosmic radiation produces each isotope, which depends upon mineral composition, and is presently a limitation of the method. The goal of this project is to advance and enhance existing measurement methods and expand the range of possibilities in surface dating with new measurements of all three isotopes in pyroxene, a mineral that is commonly found throughout the Transantarctic Mountains. This technological progress will allow a better application of the surface exposure dating method, which in turn will help to reconstruct Antarctic ice sheet history and provide valuable knowledge of former ice-extent. Understanding Antarcticas ice-sheet history is crucial to predict its influence on past and future sea level changes. Part II: Technical Description Measurements of in-situ produced cosmogenic nuclides in Antarctic surficial rock samples provide unique time scales for glacial and landscape evolution processes. However, due to analytical challenges, pyroxene-bearing and widely distributed lithologies like the Ferrar dolerite of the Transantarctic Mountains, are underutilized. This proposal aims to changes this and to improve the cosmogenic nuclide methodologies for stable isotopes (21Ne and 3He) and radioactive nuclides (10Be) in pyroxenes. Proposed methodological improvements will be directly applicable to erosion rates and deposition ages of important glacial deposits, such as the controversial Sirius Group tills, and also to younger glacial features. Bennett Platform is the focus of this study because it is one of the southern-most Sirius Group outcrops along the Transantarctic Mountains, where cosmogenic ages are sparse. Preliminary measurements demonstrate large discrepancies between 3He and 21Ne age determinations in Sirius Group pyroxenes. One possible explanation is composition dependence of the 21Ne production rates. Coupled measurements of 3He, 21Ne, and 10Be in well-characterized pyroxene mineral separates from Ferrar dolerite will be used to better constrain the production rates, major element and trace element dependencies, the assumptions of the method, and ultimately advance the application of cosmogenic nuclides to mafic Antarctic lithologies. The main goals of this study are to improve measurement protocols for 10Be in pyroxene, and the determination of the composition dependence of 21Ne production rates by measuring mineral compositions (by electron microprobe), and nuclide concentrations in mineral pairs from young lava flows. Further aims are the validation of the nucleogenic contributions and the effects of helium diffusive loss through measurements of 3He/21Ne production ratios, combined with measurements of shielded samples of the Ferrar dolerite. Combined measurements of 3He, 21Ne and 10Be in pyroxenes have rarely been published for individual samples in Antarctica. The new and unique measurements of this study will advance the applicability of in-situ produced cosmogenic nuclides to both young and ancient Antarctic surfaces. The study will be performed using existing samples: no field work is requested. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Thwaites and neighboring glaciers in the Amundsen Sea Embayment are rapidly losing mass in response to recent climate warming and related changes in ocean circulation. Mass loss from the Amundsen Sea Embayment could lead to the eventual collapse of the West Antarctic Ice Sheet, raising the global sea level by up to 2.5 meters (8 feet) in as short as 500 years. The processes driving the loss appear to be warmer ocean circulation and changes in the width and flow speed of the glacier, but a better understanding of these changes is needed to refine predictions of how the glacier will evolve. One highly sensitive process is the transitional flow of glacier ice from land onto the ocean to become a floating ice shelf. This flow of ice from grounded to floating is affected by changes in air temperature and snowfall at the surface; the speed and thickness of ice feeding it from upstream; and the ocean temperature, salinity, bathymetry, and currents that the ice flows into. The project team will gather new measurements of each of these local environmental conditions so that it can better predict how future changes in air, ocean, or the ice will affect the loss of ice to the ocean in this region. Current and anticipated near-future mass loss from Thwaites Glacier and nearby Amundsen Sea Embayment region is mainly attributed to reduction in ice-shelf buttressing due to sub-ice-shelf melting by intrusion of relatively warm Circumpolar Deep Water into sub-ice-shelf cavities. Such predictions for mass loss, however, still lack understanding of the dominant processes at and near grounding zones, especially their spatial and temporal variability, as well as atmospheric and oceanic drivers of these processes. This project aims to constrain and compare these processes for the Thwaites and the Dotson Ice Shelves, which are connected through upstream ice dynamics, but influenced by different submarine troughs. The team's specific objectives are to: 1) install atmosphere-ice-ocean multi-sensor remote autonomous stations on the ice shelves for two years to provide sub-daily continuous observations of concurrent oceanic, glaciologic, and atmospheric conditions; 2) measure ocean properties on the continental shelf adjacent to ice-shelf fronts (using seal tagging, glider-based and ship-based surveys, and existing moored and conductivity-temperature-depth-cast data), 3) measure ocean properties into sub-ice-shelf cavities (using autonomous underwater vehicles) to detail ocean transports and heat fluxes; and 4) constrain current ice-shelf and sub-ice-shelf cavity geometry, ice flow, and firn properties for the ice-shelves (using radar, active-source seismic, and gravimetric methods) to better understand the impact of ocean and atmosphere on the ice-sheet change. The team will also engage the public and bring awareness to this rapidly changing component of the cryosphere through a "Live from the Ice" social media campaign in which the public can follow the action and data collection from the perspective of tagged seals and autonomous stations. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This project will acquire measurements of the concentration of beryllium-10 (10Be) from an ice core from the South Pole, Antarctica. An isotope of the element beryllium, 10Be, is produced in the atmosphere by high-energy protons (cosmic rays) that enter Earth's atmosphere from space. It is removed from the atmosphere by settling or by scavenging by rain or snowfall. Hence, concentrations of 10Be in snow at the South Pole reflect the production rate of 10Be in the atmosphere. Because the rate of production of 10Be over Antarctica depends primarily on the strength of the Sun's magnetic field, measurements of 10Be in the South Pole ice core will provide a record of changes in solar activity. The South Pole ice core will reach an age of 40,000 years at the bottom. The project will result in measurements of 10Be at annual resolution for the last 100 years and selected periods in the more distant past, such as the Maunder Minimum, a period during the late 17th century during which no sunspots were observed, or the last glacial cold period, about 20,000 years ago. A climate model that can simulate the production of 10Be in the atmosphere, it's transport through the atmosphere, and its deposition at the snow surface in Antarctica will be used to aid in using the 10Be data to determine past changes in solar activity from decadal to millennial scale, and in turn to evaluate the role of the Sun in Earth?s climate from a new perspective. The production of 10Be in Earth's atmosphere results from the spallation of oxygen and nitrogen in the atmosphere by cosmic rays. Cosmic ray variations in the high latitudes are primarily modulated by solar variability. Time-series records of 10Be from ice cores are therefore important for deriving variations in solar activity through time, which is fundamental to understanding climate variability. Deposition of 10Be to the ice surface is also influenced by variability in atmospheric circulation and deposition processes, and South Pole is the best available location for minimizing the influence of variable atmospheric circulation on 10Be deposition. To date, only one record of 10Be exists from South Pole; that record is widely used in solar forcing estimates used in climate models, but covers only the last millennium and ends in CE 1982. We will obtain 10Be concentration measurements in a 1500-m, 40000-year long ice core from the South Pole. This will extend the existing record both further back in time and forward to the present, providing overlap with the modern instrumental record of solar and climate variability. High resolution (annual to biannual) measurements will be made in targeted areas of interest, including the last 100 years, the Maunder Minimum (CE 1650-1715), and the last glacial maximum. The novel data will be used in conjunction with climate model experiments that incorporate 10Be production, transport, and deposition physics. Together, data and modeling will create an updated record of atmospheric 10Be production and hence of solar activity.
This award supports a project to find and date geologic evidence of past ice-marginal positions in the Pensacola Mountains, which border the Foundation Ice Stream at the head of the Weddell Sea embayment. The project will involve glacial geologic mapping and cosmogenic-nuclide surface exposure dating of glacially transported erratics. An ice-flow model will be used to link our exposure-dating results together in a glaciologically consistent way, and to relate them to regional LGM to Holocene elevation changes. A secondary focus of the project seeks to improve the effectiveness of exposure-dating methods in understanding ice sheet change. Changes in the location of the ice margin, and thus the exposure ages that record these changes, are controlled not only by regional ice sheet mass balance, but also by local effects on snow- and icefields immediately adjacent to the exposure-dating sites. This part of the project will combine glaciological observations near the present ice margin with targeted exposure- age sampling in an effort to better understand the processes controlling the ice margin location, and improve the interpretation of very recent exposure-age data as a record of latest Holocene to present ice sheet changes. The intellectual merit of the project is that it will provide direct geologic evidence of LGM-to-Holocene ice volume change in a region of Antarctica where no such evidence now exists. The broader impacts of the work involve both gathering information needed for accurate understanding of past and present global sea level change. Secondly, this project will help to develop and maintain the human and intellectual resources necessary for continued excellence in polar research and global change education, by linking experienced Antarctic researchers with early career scientists who seek to develop their expertise in both research and education. In addition, it brings together two early career scientists whose careers are focused at opposite ends of the research-education spectrum, thus facilitating better integration of research and education both in the careers of these scientists and in the outcome of this project. This award has field work in Antarctica.
The Earth's climate has changed through time and during the Eocene Epoch (56 to 34 million years ago) there was a transition from 'greenhouse' to 'icehouse' conditions. During the Eocene, a shift to cooler temperatures at high latitudes resulted in the inception of polar glaciation. This in turn affected the environment for living organisms. This project looks to uncover the interaction between biological, oceanographic, and climate systems for the Eocene in Antarctica using chemical analysis of fossil shark teeth collected during past expeditions. The combination of paleontological and geochemical analyses will provide insight to the past ecology and ocean conditions; climate models will be applied to test the role of tectonics, greenhouse gas concentration and ocean circulation on environmental change during this time period. The study contributes to understanding the interaction of increased atmospheric carbon dioxide and ocean circulation. This project also seeks to improve diversity, equity, and inclusion within the geosciences workforce with efforts targeted to undergraduate, graduate, postdoctoral, and early career faculty. The research goal is to elucidate the processes leading from the Eocene greenhouse to Oligocene icehouse conditions. Previous explanations for this climate shift centers on Antarctica, where tectonic configurations influenced oceanic gateways, ocean circulation reduced heat transport, and/or greenhouse gas declines prompted glaciation. The team will reconstruct watermass, current, and climate fluctuations proximal to the Antarctic Peninsula using geochemical indicators (oxygen and neodymium isotope composition) from fossil shark teeth collected from Seymour Island. The approach builds on previous shark paleontological studies, incorporates geochemical analyses for environmental reconstruction (i.e., temperature gradients and ocean circulation), and tests hypotheses on Earth System dynamics using novel global climate model simulations with geochemical tracers. This project will advance global climate modeling capabilities with experiments that consider Eocene tectonic configuration within isotope-enabled climate model simulations. A comparison of geochemical results from Eocene climate simulations and empirical records of shark teeth will reveal processes and mechanisms central to the Eocene Antarctic climatic shift. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Siple Coast in West Antarctica has undergone significant glacier changes over the last millenium. Several ice streams--rapidly moving streams of ice bordered by slow-moving ice--exist in this region that feeds into the Ross Ice Shelf. A long-term slowdown of Whillans Ice Stream appears to be occurring, and this is affecting the zone between the Whillans and Mercer Ice Streams. However, the consistency of this slowdown and resulting changes to the shear margin between the two ice streams are unknown. The goal of this project is to quantify the observed changes over the past decade and understand the dynamic processes that cause them. A collateral benefit of and driver for this as a RAPID project is to test a method for assessing where crevassing will develop in this zone of steep velocity gradients. Such a method may benefit not only near-term field-project planning in the 2018-19 field season, but also planning for future fieldwork and traverses. The team will use remote sensing feature-tracking techniques to determine transient velocity patterns and shifts in the shear-zone location over the last 10-plus years. This velocity time series will be incorporated into a large-scale ice-sheet model to estimate ice-sheet susceptibility to changing boundary conditions over the next century based on likely regional ice-flux scenarios. This approach is an extension of recent work conducted by the team that shows promise for predicting areas of changing high strain rates indicative of an active glacier shear margin. The ultimate objectives are to characterize the flow field of merging ice streams over time and investigate lateral boundary migration. This will provide a better understanding of shear-margin control on ice-shelf and up-glacier stability. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The East Antarctic Ice Sheet holds the largest volume of freshwater on the planet, in total enough to raise sea level by almost two hundred feet. Even minor adjustments in the volume of ice stored have major implications for coastlines and climates around the world. The question motivating this project is how did the ice grow to cover the continent over thirty million years ago when Antarctica changed from a warmer environment to an ice-covered southern continent? The seafloor of Prydz Bay, a major drainage basin of the East Antarctic Ice Sheet (EAIS), has been drilled previously to recover sediments dating from millions of years prior to and across the time when inception of continental ice sheets occurred in Antarctica. The last remnants of plant material found as 'biomarkers' in the ocean sediments record the chemical signatures of rain and snowfall that fed the plants and later the expanding glaciers. Sediment carried by glaciers was also deposited on the seafloor and can be analyzed to discover how glaciers flowed across the landscape. Here, the researchers will identify precipitation changes that result from, and drive, ice sheet growth. This study will gather data and further analyze samples from the seafloor sediment archives of the International Ocean Discovery Program's (IODP) core repositories. Ultimately these findings can help inform temperature-precipitation-ice linkages within climate and ice sheet models. The project will support the training of three female, early career scientists (PhD & MS students, and research technician) and both PIs and the PhD student will continue their engagement with broadening participation efforts (e.g., Women in Science and Engineering Program; local chapters of Society for the advancement of Native Americans and Chicanos in Science and other access programs) to recruit undergraduate student participants from underrepresented minorities at both campuses and from local community colleges. Antarctic earth science education materials will be assisted by professional illustrations to be open access and used in public education and communication efforts to engage local communities in Los Angeles CA and Columbia SC. The researchers at the University of Southern California and the University of South Carolina will together study the penultimate moment of the early Cenozoic greenhouse climate state: the ~4 million years of global cooling that culminated in the Eocene/Oligocene transition (~34 Ma). Significant gaps remain in the understanding of the conditions that preceded ice expansion on Antarctica. In particular, the supply of raw material for ice sheets (i.e., moisture) and the timing, frequency, and duration of precursor glaciations is poorly constrained. This collaborative proposal combines organic and inorganic proxies to examine how Antarctic hydroclimate changed during the greenhouse to icehouse transition. The central hypothesis is that the hydrological cycle weakened as cooling proceeded. Plant-wax hydrogen and carbon isotopes (hydroclimate proxies) and Hf-Nd isotopes of lithogenous and hydrogenous sediments (mechanical weathering proxies) respond strongly and rapidly to precipitation and glacial advance. This detailed and sensitive combined approach will test whether there were hidden glaciations (and/or warm events) that punctuated the pre-icehouse interval. Studies will be conducted on Prydz Bay marine sediment cores in a depositional area for products of weathering and erosion that were (and are) transported through Lambert Graben from the center of Antarctica. The project will yield proxy information about the presence of plants and the hydroclimate of Antarctica and the timing of glacial advance, and is expected to show drying associated with cooling and ice-sheet growth. The dual approach will untangle climate signals from changes in fluvial versus glacial erosion of plant biomarkers. This proposal is potentially transformative because the combination of organic and inorganic proxies can reveal rapid transitions in aridity and glacial expansion, that may have been missed in slower-response proxies and more distal archives. The research is significant as hydroclimate seems to be a key player in the temperature-cryosphere hysteresis. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The project will characterize the functional, taxonomic, biotic and abiotic drivers of soil ecosystems in the Trans Antarctic Mountains (one of the most remote and harsh terrestrial landscapes on the planet). The work will utilize new high-throughput DNA and RNA sequencing technologies to identify members of the microbial communities and determine if the microbial community structures are independent of local environmental heterogeneities. In addition the project will determine if microbial diversity and function are correlated with time since the last glacial maximum (LGM). The expected results will greatly contribute to our knowledge regarding rates of microbial succession and help define the some of the limits to life and life-maintaining processes on Earth. The project will analyze genomes and RNA derived from these genomes to describe the relationships between biodiversity and ecosystem functioning from soils above and below LGM elevations and to correlate these with the environmental drivers associated with their development during the last ~18,000 years. The team will identify the taxonomic diversity and the functional genetic composition within a broad suite of soil biota and examine their patterns of assembly and distribution within the framework of their geological legacies. The project will mentor participants from undergraduate students to postdoctoral researchers and prepare them to effectively engage in research to meet their career aspirations. The project will contribute to ongoing public education efforts through relationships with K-12 teachers and administrators- to include University-Public School partnerships. Less formal activities include public lecture series and weblogs aimed at providing information on Antarctic polar desert ecosystems to the general public. Targeted classrooms near each PI's institution will participate in online, real-time discussions about current topics in Antarctic ecosystems research.
Nontechnical description of proposed research: This project will apply cutting-edge seismic imaging methods to existing seismic data to study the three-dimensional structure of the Earth beneath the ice-covered Antarctic continent. The study will improve understanding of Earth structure and hotspots and geologically recent and ancient rift systems. The results will be useful for models of ice movement and bedrock elevation changes due to variation in ice sheet thickness. The results will also help guide future seismic data collection. The researchers will transfer existing software from the high-performance computers at The University of Rhode Island to the Alabama supercomputer facilities. The project will also broaden public understanding of scientific research in Antarctica by engaging with the students and teachers in Socorro County, New Mexico to discuss career opportunities in science, technology, engineering, and mathematics (STEM), the Earth Sciences, and the importance of computers in scientific research. Project personnel from Alabama will visit Socorro and share research with students at New Mexico Tech and at the Socorro High School. The project will also train undergraduate and graduate students in the expanding field of computational seismology, by applying these approaches to study Antarctic geology. Technical description of proposed research: The project seeks to better resolve the three-dimensional Antarctic mantle structure and viscosity and to identify locations of ancient rifts within the stable East Antarctic lithosphere. To accomplish this, the researchers will utilize full-waveform tomographic inversion techniques that combine long-period ambient noise data with earthquake constraints to more accurately resolve structure than traditional tomographic approaches. The proposed research will be completed using the Alabama supercomputer facilities and the programs and methodology developed at The University of Rhode Island. The new tomographic results will be useful in assessing lithospheric structure beneath Dronning Maud Land as well as the Wilkes and Aurora Subglacial Basins in East Antarctica, where previous rifting episodes and mid-lithospheric discontinuities will be explored. In West Antarctica, the work will elucidate the easternmost extent of the West Antarctic Rift System as well as rifted structure and possible compositional variations within the Weddell Sea. The accuracy of existing Antarctic seismic models will be quantified through model validation approaches. The researchers will highlight regions of Antarctica where tomographic resolution is still lacking and where future deployments would improve resolution.
This project will involve examination of Glossopteridales, fossil plants from Upper Permian deposits, in samples from the central Transantarctic Mountains and Southern Victoria Land, Antarctica. The glossopterids are an important fossil group because they are possible ancestors to the flowering plants. Permian sedimentary rocks (295-270 Ma before present) are important because they record a time of rapid biotic change, as the Late Paleozoic Age ended and the Mesozoic greenhouse environment began. The proposed research will rely entirely on specimens collected during recent field excursions to the central Transantarctic Mountains (CTM; 2010?2011) and southern Victoria Land (SVL; 2012?2013). Only a few of the specimens have been studied, but already have yielded anatomically well-preserved glossopterids with a complete pollen cone, which has never been found before. Additionally, several seed-bearing structures, which have never before been observed in Antarctica, have been found in both CTM and SVL. The project will allow comparison of whole-plant fossil glossopterids from the CTM with other paleo-latitudes, and will document the floral diversity within and between two depositional basins (CTM & SVL) during a time of global change, with the overall goal of linking environmental changes with fossil morphology. Broader impacts: The Broader Impacts of this project will include mentoring undergraduates in research projects, at an institution with a substantial minority enrollment. Public outreach will focus on involving middle/high school students through the ?Expanding Your Horizons? programs in Kansas and Missouri, as well as interactive presentations at schools in the Kansas City Area. The lead PI is an early-career scientist at an institution that serves minorities.
A profound transformation in ecosystem structure and function is occurring in coastal waters of the western Weddell Sea, with the collapse of the Larsen B ice shelf. This transformation appears to be yielding a redistribution of energy flow between chemoautotrophic and photosynthetic production, and to be causing the rapid demise of the extraordinary seep ecosystem discovered beneath the ice shelf. This event provides an ideal opportunity to examine fundamental aspects of ecosystem transition associated with climate change. We propose to test the following hypotheses to elucidate the transformations occurring in marine ecosystems as a consequence of the Larsen B collapse: (1) The biogeographic isolation and sub-ice shelf setting of the Larsen B seep has led to novel habitat characteristics, chemoautotrophically dependent taxa and functional adaptations. (2) Benthic communities beneath the former Larsen B ice shelf are fundamentally different from assemblages at similar depths in the Weddell sea-ice zone, and resemble oligotrophic deep-sea communities. Larsen B assemblages are undergoing rapid change. (3) The previously dark, oligotrophic waters of the Larsen B embayment now support a thriving phototrophic community, with production rates and phytoplankton composition similar to other productive areas of the Weddell Sea. To document rapid changes occurring in the Larsen B ecosystem, we will use a remotely operated vehicle, shipboard samplers, and moored sediment traps. We will characterize microbial, macrofaunal and megafaunal components of the seep community; evaluate patterns of surface productivity, export flux, and benthic faunal composition in areas previously covered by the ice shelf, and compare these areas to the open sea-ice zone. These changes will be placed within the geological, glaciological and climatological context that led to ice-shelf retreat, through companion research projects funded in concert with this effort. Together these projects will help predict the likely consequences of ice-shelf collapse to marine ecosystems in other regions of Antarctica vulnerable to climate change. The research features international collaborators from Argentina, Belgium, Canada, Germany, Spain and the United Kingdom. The broader impacts include participation of a science writer; broadcast of science segments by members of the Jim Lehrer News Hour (Public Broadcasting System); material for summer courses in environmental change; mentoring of graduate students and postdoctoral fellows; and showcasing scientific activities and findings to students and public through podcasts.
Nontechnical Description Glacier ice loss from Antarctica has the potential to lead to a significant rise in global sea level. One line of evidence for accelerated glacier ice loss has been an increase in the rate at which the land has been rising across the Antarctic Peninsula as measured by GPS receivers. However, GPS observations of uplift are limited to the last two decades. One goal of this study is to determine how these newly observed rates of uplift compare to average rates of uplift across the Antarctic Peninsula over a longer time interval. Researchers will reconstruct past sea levels using the age and elevation of ancient beaches now stranded above sea level on the low-lying coastal hills of the Antarctica Peninsula to determine the rate of uplift over the last 5,000 years. The researchers will also analyze the structure of the beaches using ground-penetrating radar and the characteristics of beach sediments to understand how sea-level rise and past climate changes are recorded in beach deposits. The benefits of these new records will be threefold: (1) they will help determine the natural variability of the Antarctic Ice Sheet and relative sea level (2) they will provide new insight about uplift and the structure of the Earth's interior; and 3) they will help researchers refine the methods used to determine the age of geologic deposits. The study results will be shared in outreach events at K-12 schools and with visitors of the Santa Barbara Natural History Museum. Three graduate students will be supported through this project. Technical description Paleo sea-level data is critical for reconstructing the size and extent of past ice sheets, documenting increased uplift following glacial retreat, and correcting gravity-based measurements of ice-mass loss for the impacts of post-glacial rebound. However, there are only 14 sites with relative sea-level data for Antarctica compared to over 500 sites used in a recent study of the North American Ice-Sheet complex. The purpose of this project is to use optically stimulated luminescence to date a series of newly discovered raised beaches along the eastern Antarctic Peninsula and an already known, but only preliminarily dated, series of raised beaches in the South Shetland Islands. Data to be collected at the raised beaches include the age and elevation, ground-penetrating radar profiles, and the roundness of cobbles and the lithology of ice-rafted debris. The study will test three hypotheses: (1) uplift rates have increased in modern times relative to the late Holocene across the Antarctic Peninsula, (2) the sea-level history at the northern tip of the Antarctic Peninsula is distinctly different than that of the South Shetland Islands, and (3) cobble roundness and the source of ice-rafted debris on raised beaches varied systematically through time reflecting the climate history of the northern Antarctic Peninsula.
Licht/1443433 Sediments deposited by the Antarctic ice sheet are an archive of its history with time and help geologists to determine how the remote interior of the ice sheet has changed over the past several hundred thousand years. This project will focus on the formation and dynamics of moraines (accumulations of dirt and rocks that are incorporated in the glacier surface or have been pushed along by the glacier as it moves) near the blue ice area of Mt. Achernar in the central Transantarctic Mountains in Antarctica.. The study will improve basic understanding of the formation of these moraines. Fieldwork at the site will focus on imaging the internal structure of the moraine to determine the processes by which it, and others like it, form over time. Additional analyses will include measurements of ice flow and collection of rock samples to determine the timing of debris deposition and the changes in the sources of sediments from deep within the Antarctic continent. The project will provide both graduate and undergraduate students training in paleoclimate studies, geology, and numerical modeling approaches. The broader impacts of the proposed work include hands on training in the Earth Sciences for graduate and undergraduate students, collaboration with colleagues in New Zealand and Sweden to provide an international research experience for students from the US, and three educational modules to be delivered by student researchers regarding Antarctica's role in global environments. The research is societally relevant and multidisciplinary and the topics are ideal for sharing with the public. All research findings will be made publicly available to others via timely publication in high-impact, peer-reviewed journals and all data will be submitted to the National Snow and Ice Data Center, and excess samples will be provided to the U.S. Polar Rock Repository. Direct observations of ice sheet history from the margins of Antarctica's polar plateau are essential for testing numerical ice sheet models, and the laterally extensive, blue-ice moraines of the Mt. Achernar Moraine complex in the central Transantarctic Mountains contain a unique and nearly untapped direct, quasi-continuous record of ice sheet change over multiple glacial cycles. The project objectives include improved understanding of processes and rates of blue ice moraine formation, as well as identifying the topographic, glaciological, and climatic controls on their evolution. Data to be collected with fieldwork in Antarctica include: imaging of internal ice structure with ground-penetrating radar, measurement of ice flow velocity and direction with a global positioning system (GPS) array, analysis of debris concentration and composition in glacier ice, state-of-the-art cosmogenic multi-nuclide analyses to determine exposure ages of moraine debris, mapping of trimlines and provenance analysis. Numerical model simulations, constrained by field data, will be used to evaluate the factors influencing changes in glacier flow that potentially impact the accumulation of the moraine debris. All together, the new data and modeling efforts will improve conceptual models of blue ice moraine formation, and thereby make them a more valuable proxy for developing a better understanding of the history of the ice sheet.
Abstract for the general public: The margins of the Antarctic ice sheet have advanced and retreated repeatedly over the past few million years. Melting ice from the last retreat, from 19,000 to 9,000 years ago, raised sea levels by 8 meters or more, but the extents of previous retreats are less well known. The main goal of this project is to understand how Antarctic ice retreats: fast or slow, stepped or steady, and which parts of the ice sheet are most prone to retreat. Antarctica loses ice by two main processes: melting of the underside of floating ice shelves and calving of icebergs. Icebergs themselves are ephemeral, but they carry mineral grains and rock fragments that have been scoured from Antarctic bedrock. As the icebergs drift and melt, this 'iceberg-rafted debris' falls to the sea-bed and is steadily buried in marine sediments to form a record of iceberg activity and ice sheet retreat. The investigators will read this record of iceberg-rafted debris to find when and where Antarctic ice destabilized in the past. This information can help to predict how Antarctic ice will behave in a warming climate. The study area is the Weddell Sea embayment, in the Atlantic sector of Antarctica. Principal sources of icebergs are the nearby Antarctic Peninsula and Weddell Sea embayment, where ice streams drain about a quarter of Antarctic ice. The provenance of the iceberg-rafted debris (IRD), and the icebergs that carried it, will be found by matching the geochemical fingerprint (such as characteristic argon isotope ages) of individual mineral grains in the IRD to that of the corresponding source area. In more detail, the project will: 1. Define the geochemical fingerprints of the source areas of the glacially-eroded material using samples from each major ice stream entering the Weddell Sea. Existing data indicates that the hinterland of the Weddell embayment is made up of geochemically distinguishable source areas, making it possible to apply geochemical provenance techniques to determine the origin of Antarctica icebergs. Few samples of onshore tills are available from this area, so this project includes fieldwork to collect till samples to characterize detritus supplied by the Recovery and Foundation ice streams. 2. Document the stratigraphic changes in provenance of iceberg-rafted debris (IRD) and glacially-eroded material in two deep water sediment cores in the NW Weddell Sea. Icebergs calved from ice streams in the embayment are carried by the Weddell Gyre and deposit IRD as they pass over the core sites. The provenance information identifies which groups of ice streams were actively eroding and exporting detritus to the ocean (via iceberg rafting and bottom currents), and the stratigraphy of the cores shows the relative sequence of ice stream activity through time. A further dimension is added by determining the time lag between fine sediment erosion and deposition, using a new method of uranium-series isotope measurements in fine grained material. Technical abstract: The behavior of the Antarctic ice sheets and ice streams is a critical topic for climate change and future sea level rise. The goal of this proposal is to constrain ice sheet response to changing climate in the Weddell Sea during the three most recent glacial terminations, as analogues for potential future warming. The project will also examine possible contributions to Meltwater Pulse 1A, and test the relative stability of the ice streams draining East and West Antarctica. Much of the West Antarctic ice may have melted during the Eemian (130 to 114 Ka), so it may be an analogue for predicting future ice drawdown over the coming centuries. Geochemical provenance fingerprinting of glacially eroded detritus provides a novel way to reconstruct the location and relative timing of glacial retreat during these terminations in the Weddell Sea embayment. The two major objectives of the project are to: 1. Define the provenance source areas by characterizing Ar, U-Pb, and Nd isotopic signatures, and heavy mineral and Fe-Ti oxide compositions of detrital minerals from each major ice stream entering the Weddell Sea, using onshore tills and existing sediment cores from the Ronne and Filchner Ice Shelves. Pilot data demonstrate that detritus originating from the east and west sides of the Weddell Sea embayment can be clearly distinguished, and published data indicates that the hinterland of the embayment is made up of geochemically distinguishable source areas. Few samples of onshore tills are available from this area, so this project includes fieldwork to collect till to characterize detritus supplied by the Recovery and Foundation ice streams. 2. Document the stratigraphic changes in provenance of iceberg-rafted debris (IRD) and glacially-eroded material in two deep water sediment cores in the NW Weddell Sea. Icebergs calved from ice streams in the embayment are carried by the Weddell Gyre and deposit IRD as they pass over the core sites. The provenance information will identify which ice streams were actively eroding and exporting detritus to the ocean (via iceberg rafting and bottom currents). The stratigraphy of the cores will show the relative sequence of ice stream activity through time. A further time dimension is added by determining the time lag between fine sediment erosion and deposition, using U-series comminution ages.
The Southern Ocean in the vicinity of Antarctica is a region characterized by seasonally-driven marine phytoplankton blooms that are often dominated by microalgal species which produce large amounts of dimethylsulfoniopropionate (DMSP). DMSP can be converted to the compound dimethylsulfide (DMS) which is a molecule that can escape into the atmosphere where it is known to have strong condensation properties that are involved in regional cloud formation. Production of DMSP can influence the diversity and composition of microbial assemblages in seawater and the types and activities of microbes in the seawater will likely affect the magnitude of DMSP\DMS production. The proposal aims to examine the role of DMSP in structuring the microbial communities in Antarctic waters and how this structuring may influence DMSP cycling. The project will leverage the Antarctic research to introduce concepts and data linking microbial diversity and biogeochemistry to a range of audiences (including high school and undergraduate students in Maine). The project will also engage teacher and students in rural K-8 schools and will allow a collaboration with a science writer and illustrator who will join the team in the field. The writer will use the southern ocean experience as the setting for a poster and a book about the proposed research and the scientists studying extreme environments. The project will examine (1) the extent to which the cycling of DMSP in southern ocean waters influences the composition and diversity of bacterial and protistan assemblages; (2) conversely, whether the composition and diversity of southern ocean protistan and bacterial assemblages influence the magnitude and rates of DMSP cycling; (3) the expression of DMSP degradation genes by marine bacteria seasonally and in response to additions of DMSP; and, to synthesize these results by quantifying (4) the microbial networks resulting from the presence of DMSP-producers and DMSP-consumers along with their predators, all involved in the cycling of DMSP in southern ocean waters. The work will be accomplished by conducting continuous growth experiments with DMSP-amended natural samples during field sampling of different microbial communities present in summer and fall. Data from the molecular (such as 16S/ 18S tag sequences, DMSP-cycle gene transcripts) and biogeochemical (such as biogenic sulfur cycling, bacterial production, microbial biomass) investigations will be integrated via network analysis.
The Antarctic subglacial environment remains one of the least explored regions on Earth. This project will examine the physical and biological characteristics of Subglacial Lake Mercer, a lake that lies 1200m beneath the West Antarctic Ice Sheet. This study will address key questions relating to the stability of the ice sheet, the subglacial hydrological system, and the deep-cold subglacial biosphere. The education and outreach component aims to widely disseminate results to the scientific community and to the general public through short films, a blog, and a website. Subglacial Lake Mercer is one of the larger hydrologically active lakes in the southern basin of the Whillans Ice Plain, West Antarctica. It receives about 25 percent of its water from East Antarctica with the remainder originating from West Antarctica, is influenced by drain/fill cycles in a lake immediately upstream (Subglacial Lake Conway), and lies about 100 km upstream of the present grounding line of the Ross Ice Shelf. This site will yield information on the history of the Whillans and Mercer Ice Streams, and on grounding line migration. The integrated study will include direct sampling of basal ice, water, and sediment from the lake in concert with surface geophysical surveys over a three-year period to define the hydrological connectivity among lakes on the Whillans Ice Plain and their flow paths to the sea. The geophysical surveys will furnish information on subglacial hydrology, aid the site selection for hot-water drilling, and provide spatial context for interpreting findings. The hot-water-drilled boreholes will be used to collect basal ice samples, provide access for direct measurement of subglacial physical, chemical, and biological conditions in the water column and sediments, and to explore the subglacial water cavities using a remotely operated vehicle equipped with sensors, cameras, and sampling equipment. Data collected from this study will address the overarching hypothesis "Contemporary biodiversity and carbon cycling in hydrologically-active subglacial environments associated with the Mercer and Whillans ice streams are regulated by the mineralization and cycling of relict marine organic matter and through interactions among ice, rock, water, and sediments". The project will be undertaken by a collaborative team of scientists, with expertise in microbiology, biogeochemistry, hydrology, geophysics, glaciology, marine geology, paleoceanography, and science communication.
Mak/1443482 This project will compare current atmospheric conditions with those of the remote past prior to human influence. This is important in order to understand the impact of human activities on Earth's atmosphere, and to determine the stability of the composition of the atmosphere in the past. How humans have impacted Earth?s atmospheric composition is important for developing accurate predictions of future global atmospheric conditions. In addition to training students, the investigators will support continuing education of high school science teachers on Long Island through specifically tailored, interactive seminars on various topics in earth science, atmospheric sciences, physics and biology. A pilot program at Mount Sinai School District, near Stony Brook University will be the first implementation of this program. The investigators plan to reconstruct historical variations in the sources of atmospheric carbon monoxide (CO) from measurements of the concentration and stable isotopic abundance of carbon monoxide ([CO], 13CO and C18O) in the South Pole Ice Core, which is being drilled in 2014-2016. The goal is to strategically sample and reconstruct the relative variations in CO source strengths over the past 20,000 years. These will be the first measurements to extend the CO record beyond 650 years before present, back to the last glacial maximum. Both atmospheric chemical processes and variations in CO sources can impact the CO budget, and variations in the CO budget are useful in identifying and quantifying chemistry-climate interactions.
Non-technical description: East Antarctica holds a vast, ancient ice sheet. The bedrock hidden beneath this ice sheet may provide clues to how today's continents formed, while the ice itself contains records of Earth's atmosphere from distant eras. New drilling technologies are now available to allow for direct sampling of these materials from more than two kilometers below the ice surface. However, getting this material will require knowing where to look. The Southern Plateau Ice-sheet Characterization and Evolution of the Central Antarctic Plate (SPICECAP) project will use internationally collected airborne survey data to search East Antarctica near the South Pole for key locations that will provide insight into Antarctica's geology and for locating the oldest intact ice on Earth. Ultimately, scientists are interested in obtaining samples of the oldest ice to address fundamental questions about the causes of changes in the timing of ice-age conditions from 40,000 to 100,000 year cycles. SPICECAP data analysis will provide site survey data for future drilling and will increase the overall understanding of Antarctica's hidden ice and geologic records. The project involves international collaboration and leveraging of internationally collected data. The SPICECAP project will train new interdisciplinary scientists at the undergraduate, graduate, and postdoctoral levels. Technical description: This study focuses on processing and interpretation of internationally collected aerogeophysical data from the Southern Plateau of the East Antarctic Ice Sheet. The data include ice penetrating radar data, laser altimetry, gravity and magnetics. The project will provide information on geological trends under the ice, the topography and character of the ice/rock interface, and the stratigraphy of the ice. The project will also provide baseline site characterization for future drilling. Future drilling sites and deep ice cores for old ice require that the base of the ice sheet be frozen to the bed (i.e. no free water at the interface between rock and ice) and the assessment will map the extent of frozen vs. thawed areas. Specifically, three main outcomes are anticipated for this project. First, the study will provide an assessment of the viability of Titan Dome, a subglacial highland region located near South Pole, as a potential old ice drilling prospect. The assessment will include determining the hydraulic context of the bed by processing and interpreting the radar data, ice sheet mass balance through time by mapping englacial reflectors in the ice and connecting them to ice stratigraphy in the recent South Pole, and ice sheet geometry using laser altimetry. Second, the study will provide an assessment of the geological context of the Titan Dome region with respect to understanding regional geologic boundaries and the potential for bedrock sampling. For these two goals, we will use data opportunistically collected by China, and the recent PolarGAP dataset. Third, the study will provide an assessment of the risk posture for RAID site targeting in the Titan Dome region, and the Dome C region. This will use a high-resolution dataset the team collected previously at Dome C, an area similar to the coarser resolution data collected at Titan Dome, and will enable an understanding of what is missed by the wide lines spacing at Titan Dome. Specifically, we will model subglacial hydrology with and without the high resolution data, and statistically examine the detection of subglacial mountains (which could preserve old ice) and subglacial lakes (which could destroy old ice), as a function of line spacing.
Overview: In order to close the global overturning circulation, high-density deep- and bottom waters produced at high latitudes must be made less dense and upwell to shallower depths. Available observations from the subtropical South Atlantic indicate that the bulk of the mixing in the deep ocean there takes place over the topographically rough Mid-Atlantic Ridge, in particular in the quasi-regularly spaced "fracture zone canyons" corrugating the ridge flanks. There, dense water is advected toward the ridge crest (i.e. upwelled) by persistent along-valley currents that flow down the unidirectional density gradients, which are maintained by strong turbulence (diapycnal mixing). Most of the data on which these inferences are based were collected during the Brazil Basin Tracer Release Experiment (BBTRE) along a single ridge-flank canyon in the western South Atlantic near 22S where previous analyses have shown that both tidal mixing and overflow processes are important. Therefore, it is likely that both processes must be considered in order to understand and parameterize the effects of turbulence and mixing in the canyons corrugating the flanks of all slow-spreading ridges, which make up large fractions of the sea floor, in particular in the Atlantic, Indian and Southern Oceans. The primary aim of this follow-on project is to improve our understanding of the dynamics over the corrugated flanks of slow-spreading mid-ocean ridges. Due to the coarse sampling resolution and choice of station locations it is not possible to answer important questions, such as the relative importance of tidal and sill mixing, from the BBTRE data. Therefore, high-resolution surveys of hydrography, three-dimensional flow, turbulence and mixing will be carried out in two neighboring canyons and over the intervening topographic spur in the BBTRE region to determine the relative contributions of tidal and sill-related mixing. Furthermore, profiling moorings deployed on two nearby sill regions will be used to derive time series of spatially integrated mixing related buoyancy fluxes and to investigate the strong but unexplained sub-inertial variability of the along-canyon flow recorded previously. Additionally, three small moorings will be deployed in saddles between the two canyons to investigate inter-canyon exchange. The data analysis will include available data from previous experiments, including a set of tracer profiles that has not been analyzed before. Intellectual Merit: The corrugated flanks of slow-spreading ridges cover large areas of the sea floor of several major ocean basins. Therefore, understanding the dynamics in the ~100 km of ridge-flank canyons and its effects on the buoyancy and upwelling budget of the abyssal ocean is of global significance. In addition to determining the relative importance of tidal mixing and cross-sill flows in two canyons, the temporal variability of turbulence and mixing from tidal to yearly time scales will be investigated to gain insights into the forcing of the along-canyon flows, the exchange between neighboring canyons, and the eventual fate of the canyon waters. Broader Impacts: It is anticipated that insights gained during this project will improve our understanding of abyssal mixing in many different regions with similar bottom topography and provide the basis for better parameterizations of the effects of turbulence and mixing in large-scale circulation and climate models that cannot resolve these small-scale processes. As part of the project, a graduate student and a post-doctoral researcher will be trained in all aspects of observational physical oceanography, from data acquisition to interpretation.
Brook/1246465 This award supports a project to measure the carbon dioxide (CO2) concentration in the WAIS Divide ice core covering the time period 25,000 to 60,000 years before present, and to analyze the isotopic composition of CO2 in selected time intervals. The research will improve understanding of how and why atmospheric CO2 varied during the last ice age, focusing particularly on abrupt transitions in the concentration record that are associated with abrupt climate change. These events represents large perturbations to the global climate system and better information about the CO2 response should inform our understanding of carbon cycle-climate feedbacks and radiative forcing of climate. The research will also improve analytical methods in support of these goals, including completing development of sublimation methods to replace laborious mechanical crushing of ice to release air for analysis. The intellectual merit of the proposed work is that it will increase knowledge about the magnitude and timing of atmospheric CO2 variations during the last ice age, and their relationship to regional climate in Antarctica, global climate history, and the history of abrupt climate change in the Northern Hemisphere. The temporal resolution of the proposed record will in most intervals be ~ 4 x higher than previous data sets for this time period, and for selected intervals up to 8-10 times higher. Broader impacts of the proposed work include a significant addition to the amount of data documenting the history of the most important long-lived greenhouse gas in the atmosphere and more information about carbon cycle-climate feedbacks - important parameters for predicting future climate change. The project will contribute to training a postdoctoral researcher, research experience for an undergraduate and a high school student, and outreach to local middle school and other students. It will also improve the analytical infrastructure at OSU, which will be available for future projects.
Predictions of future sea level rise require better understanding of the changing dynamics of the Greenland and Antarctic ice sheets. One way to better understand the past history of the ice sheets is to obtain records from inland ice for past geological periods, particularly in Antarctica, the world?s largest remaining ice sheet. Such records are exceedingly rare, and can be acquired at volcanic outcrops in the La Gorce Mountains of the central Transantarctic Mountains. Volcanoes now exposed within the La Gorce Mountains erupted beneath the East Antarctic ice sheet and the data collected will record how thick the ice sheet was in the past. In addition, information will be used to determine the thermal conditions at the base of the ice sheet, which impacts ice sheet stability. The project will also investigate the origin of volcanic activity in Antarctica and links to the West Antarctic Rift System (WARS). The WARS is a broad area of extended (i.e. stretched) continental crust, similar to that found in East Africa, and volcanism is wide spread and long-lived (65 million years to currently active) and despite more than 50 years of research, the fundamental cause of volcanism and rifting in Antarctica is still vigorously debated. The results of this award therefore also potentially impact the study of oceanic volcanism in the entire southwestern Pacific region (e.g., New Zealand and Australia), where volcanic fields of similar composition and age have been linked by common magma sources and processes. The field program includes a graduate student who will work on the collection, analysis, and interpretation of petrological data as part of his/her Masters project. The experience and specialized analytical training being offered will improve the quality of the student?s research and optimize their opportunities for their future. The proposed work fosters faculty and student national and international collaboration, including working with multi-user facilities that provide advanced technological mentoring of science students. Results will be broadly disseminated in peer-reviewed journals, public presentations at science meetings, and in outreach activities. Petrologic and geochemical data will be disseminated to be the community through the Polar Rock Repository. The study of subglacially erupted volcanic rocks has been developed to the extent that it is now the most powerful proxy methodology for establishing precise ?snapshots? of ice sheets, including multiple critical ice parameters. Such data should include measurements of ice thickness, surface elevation and stability, which will be used to verify, or reject, published semi-empirical models relating ice dynamics to sea level changes. In addition to establishing whether East Antarctic ice was present during the formation of the volcanoes, data will be used to derive the coeval ice thicknesses, surface elevations and basal thermal regime(s) in concert with a precise new geochronology using the 40Ar/39Ar dating method. Inferences from measurement of standard geochemical characteristics (major, trace elements and Sr, Nd, Pb, O isotopes) will be used to investigate a possible relationship between the volcanoes and the recently discovered subglacial ridge under the East Antarctic ice, which may be a rift flank uplift. The ridge has never been sampled, is undated and its significance is uncertain. The data will provide important new information about the deep Earth and geodynamic processes beneath this mostly ice covered and poorly understood sector of the Antarctic continent.
The western Antarctic Peninsula has become a model for understanding cold water communities and how they may be changing in Antarctica and elsewhere. Brown macroalgae (seaweeds) form extensive undersea forests in the northern portion of this region where they play a key role in providing both physical structure and a food (carbon) source for shallow water communities. Yet between Anvers Island (64 degrees S latitude) and Adelaide Island (67 S latitude) these macroalgae become markedly less abundant and diverse. This is probably because the habitat to the south is covered by more sea ice for a longer period, and the sea ice reduces the amount of light that reaches the algae. The reduced macroalgal cover undoubtedly impacts other organisms in the food web, but the ways in which it alters sea-floor community processes and organization is unknown. This project will quantitatively document the macroalgal communities at multiple sites between Anvers and Adelaide Islands using a combination of SCUBA diving, video surveys, and algal collections. Sea ice cover, light levels, and other environmental parameters on community structure will be modelled to determine which factors have the largest influence. Impacts on community structure, food webs, and carbon flow will be assessed through a mixture of SCUBA diving and video surveys. Broader impacts include the training of graduate students and a postdoctoral researcher, as well as numerous informal public education activities including lectures, presentations to K-12 groups, and a variety of social media-based outreach. Macroalgal communities are more abundance and diverse to the north along the Western Antarctic Peninsula, perhaps due to the greater light availability that is associated with shorter period of sea-ice cover. This project will determine the causes and community level consequence of this variation in algal community structure. First, satellite data on sea ice extent and water turbidity will be used to select study sites between 64 S and 69 S where the extent of annual sea ice cover is the primary factor influencing subsurface light levels. Then, variations in macroalgal cover across these study sites will be determined by video line-transect surveys conducted by SCUBA divers. The health, growth, and physiological status of species found at the different sites will be determined by quadrat sampling. The relative importance of macroalgal-derived carbon to the common invertebrate consumers in the foodweb will be assessed with stable isotope and fatty acid biomarker techniques. This will reveal how variation in macroalgal abundance and species composition across the sea ice cover gradient impacts sea floor community composition and carbon flow throughout the food web. In combination, this work will facilitate predictions of how the ongoing reductions in extent and duration of sea ice cover that is occurring in the region as a result of global climate change will impact the structure of nearshore benthic communities. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Brook/1643722 This award supports a project to measure the concentration of the gas methane in air trapped in an ice core collected from the South Pole. The data will provide an age scale (age as a function of depth) by matching the South Pole methane changes with similar data from other ice cores for which the age vs. depth relationship is well known. The ages provided will allow all other gas measurements made on the South Pole core (by the PI and other NSF supported investigators) to be interpreted accurately as a function of time. This is critical because a major goal of the South Pole coring project is to understand the history of rare gases in the atmosphere like carbon monoxide, carbon dioxide, ethane, propane, methyl chloride, and methyl bromide. Relatively little is known about what controls these gases in the atmosphere despite their importance to atmospheric chemistry and climate. Undergraduate assistants will work on the project and be introduced to independent research through their work. The PI will continue visits to local middle schools to introduce students to polar science, and other outreach activities (e.g. laboratory tours, talks to local civic or professional organizations) as part of the project. Methane concentrations from a major portion (2 depth intervals, excluding the brittle ice-zone which is being measured at Penn State University) of the new South Pole ice core will be used to create a gas chronology by matching the new South Pole ice core record with that from the well-dated WAIS Divide ice core record. In combination with measurements made at Penn State, this will provide gas dating for the entire 50,000-year record. Correlation will be made using a simple but powerful mid-point method that has been previously demonstrated, and other methods of matching records will be explored. The intellectual merit of this work is that the gas chronology will be a fundamental component of this ice core project, and will be used by the PI and other investigators for dating records of atmospheric composition, and determining the gas age-ice age difference independently of glaciological models, which will constrain processes that affected firn densification in the past. The methane data will also provide direct stratigraphic markers of important perturbations to global biogeochemical cycles (e.g., rapid methane variations synchronous with abrupt warming and cooling in the Northern Hemisphere) that will tie other ice core gas records directly to those perturbations. A record of the total air content will also be produced as a by-product of the methane measurements and will contribute to understanding of this parameter. The broader impacts include that the work will provide a fundamental data set for the South Pole ice core project and the age scale (or variants of it) will be used by all other investigators working on gas records from the core. The project will employ an undergraduate assistant(s) in both years who will conduct an undergraduate research project which will be part of the student's senior thesis or other research paper. The project will also offer at least one research position for the Oregon State University Summer REU site program. Visits to local middle schools, and other outreach activities (e.g. laboratory tours, talks to local civic or professional organizations) will also be part of the project.
Abstract (non-technical) Sea level rise is a problem of global importance and it is increasingly affecting the tens of millions of Americans living along coastlines. The melting of glaciers in mountain areas worldwide in response to global warming is a major cause of sea level rise and increases in nuisance coastal flooding. However, the world's largest land-based ice sheets are situated in the Polar Regions and their response under continued warming is very difficult to predict. One reason for this uncertainty is a lack of observations of ice behavior and melt under conditions of warming, as it is a relatively new global climate state lasting only a few generations so far. Researchers will investigate ice growth on Antarctica under past warm conditions using geological archives embedded in the layers of sand and mud under the sea floor near Antarctica. By peeling back at the layers beneath the seafloor investigators can read the history book of past events affecting the ice sheet. The Antarctic continent on the South Pole, carries the largest ice mass in the world. The investigator's findings will substantially improve scientists understanding of the response of ice sheets to global warming and its effect on sea level rise. Abstract (technical) The melt of land based ice is raising global sea levels with at present only minor contributions from polar ice sheets. However, the future role of polar ice sheets in climate change is one of the most critical uncertainties in predictions of sea level rise around the globe. The respective roles of oceanic and atmospheric greenhouse forcing on ice sheets are poorly addressed with recent measurements of polar climatology, because of the extreme rise in greenhouse forcing the earth is experiencing at this time. Data on the evolution of the West Antarctic ice sheet is particularly sparse. To address the data gap, researchers will reconstruct the timing and spatial distribution of Antarctic ice growth through the last greenhouse to icehouse climate transition around 37 to 33 Ma. They will collect sedimentological and geochemical data on core samples from a high-latitude paleoarchive to trace the shutdown of the chemical weathering system, the onset of glacial erosion, ice rafting, and sea ice development, as East and West Antarctic ice sheets coalesced in the Weddell Sea sector. Their findings will lead to profound increases in the understanding of the role of greenhouse forcing in ice sheet development and its effect on the global climate system. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
In the past, Earth's climate underwent dramatic changes that influenced physical, chemical, geological, and biological processes on a global scale. Such changes left an imprint in Earth's atmosphere, as shown by the variability in abundances of trace gases like carbon dioxide and methane. In return, changes in the atmospheric trace gas composition affected Earth's climate. Studying compositional variations of the past atmosphere helps us understand the history of interactions between global biogeochemical cycles and Earth?s climate. The most reliable information on past atmospheric composition comes from analysis of air entrapped in polar ice cores. This project aims to generate ice-core records of relatively short-lived, very-low-abundance trace gases to determine the range of past variability in their atmospheric levels and investigate the changes in global biogeochemical cycles that caused this variability. This project measures three such gases: carbonyl sulfide, methyl chloride, and methyl bromide. Changes in carbonyl sulfide can indicate changes in primary productivity and photosynthetic update of carbon dioxide. Changes in methyl chloride and methyl bromide significantly impact natural variability in stratospheric ozone. In addition, the processes that control atmospheric levels of methyl chloride and methyl bromide are shared with those controlling levels of atmospheric methane. The measurements will be made in the new ice core from the South Pole, which is expected to provide a 40,000-year record. The primary focus of this project is to develop high-quality trace gas records for the entire Holocene period (the past 11,000 years), with additional, more exploratory measurements from the last glacial period including the period from 29,000-36,000 years ago when there were large changes in atmospheric methane. Due to the cold temperatures of the South Pole ice, the proposed carbonyl sulfide measurements are expected to provide a direct measure of the past atmospheric variability of this gas without the large hydrolysis corrections that are necessary for interpretation of measurements from ice cores in warmer settings. Furthermore, we will test the expectation that contemporaneous measurements from the last glacial period in the deep West Antarctic Ice Sheet Divide ice core will not require hydrolysis loss corrections. With respect to methyl chloride, we aim to verify and improve the existing Holocene atmospheric history from the Taylor Dome ice core in Antarctica. The higher resolution of our measurements compared with those from Taylor Dome will allow us to derive a more statistically significant relationship between methyl chloride and methane. With respect to methyl bromide, we plan to extend the existing 2,000-year database to 11,000 years. Together, the methyl bromide and methyl chloride records will provide strong measurement-based constraints on the natural variability of stratospheric halogens during the Holocene period. In addition, the methyl bromide record will provide insight into the correlation between methyl chloride and methane during the Holocene period due to common sources and sinks.
Icefish live in frigid Antarctic seas, and have unique traits such as the absence of red blood cells, enlarged hearts, large diameter blood vessels, low bone mineral densities, and fat droplets that disrupt their muscles. These features would be harmful in other animals. In mammals and fish inhabiting warm waters, development of organs involved in these traits is modulated by genes that encode specific proteins, but the rate of protein production is often regulated by short RNA molecules called microRNAs (miRNAs). Genes that code for proteins must first make an RNA copy, and the actual protein is made from this RNA copy intermediate. MiRNAs regulate the amount of protein that is made by binding to the RNA intermediate and interrupting its production of protein. Binding of miRNAs to RNA depends strongly on temperature. Regulation of genes by miRNAs has not been studied in Antarctic fish, which live in seas with temperatures below the freezing point of fresh water. This project will compare miRNA regulation 1) in Antarctic fish vs. warm-water fish to learn how miRNAs regulate gene expression in constant cold; and 2) in Antarctic icefish with no red blood cells, enlarged hearts, and reduced bone density vs. closely related Antarctic fish containing red blood cells, normal hearts, and dense bones. The project will have broad impacts to science and society nationally and globally. First, this will be the first study of important factors in gene regulation (miRNAs) in Antarctic fish, which are an essential component of the entire ecology of the Southern Ocean, and will shed light on how these fish might respond to the warming of Antarctic waters. Second, it will bring Antarctic science to under-represented high school students at a local alternative downtown high school by conducting video conferences during the Antarctic field seasons and hosting student investigations of Antarctic fish in the research laboratory. microRNAs (miRNAs) are key post-transcriptional regulators of gene expression that modulate development and physiology in temperate animals. Although miRNAs act by binding to messenger RNAs (mRNAs), a process that is strongly sensitive to temperature, miRNAs have yet not been studied in Antarctic animals, including Notothenioid fish, which dominate the Southern Ocean. This project will compare miRNA regulation in 1) Antarctic vs. temperate fish to learn the roles of miRNA regulation in adaptation to constant cold; and in 2) bottom-dwelling, dense-boned, red-blooded Nototheniods vs. high buoyancy, osteopenic, white-blooded icefish to understand miRNA regulation in specialized organs after the evolution of the loss of hemoglobin genes and red blood cells, the origin of enlarged heart and vasculature, and the evolution of increased buoyancy, which arose by decreased bone mineralization and increased lipid deposition. Aim 1 is to test the hypothesis that Antarctic fish evolved miRNA-related genome specializations in response to constant cold. The project will compare four Antarctic Notothenioid species to two temperate Notothenioids and two temperate laboratory species to test the hypotheses that (a) Antarctic fish evolved miRNA genome repertoires by loss of ancestral genes and/or gain of new genes, (b) express miRNAs that are involved in cold tolerance, and (c) respond to temperature change by changing miRNA gene expression. Aim 2 is to test the hypothesis that the evolution of icefish from red-blooded bottom-dwelling ancestors was accompanied by an altered miRNA genomic repertoire, sequence, and/or expression. The project will test the hypotheses that (a) miRNAs in icefish evolved in sequence and/or in expression in icefish specializations, including head kidney (origin of red blood cells); heart (changes in vascular system), cranium and pectoral girdle (reduced bone mineral density); and skeletal muscle (lipid deposition), and (b) miRNAs that evolved in icefish specializations had ancestral functions related to their derived roles in icefish, as determined by functional tests of zebrafish orthologs of icefish miRNAs in developing zebrafish. The program will isolate, sequence, and determine the expression of miRNAs and mRNAs using high-throughput transcriptomics and novel software. Results will show how the microRNA system evolves in vertebrate animals pushed to physiological extremes and provide insights into the prospects of key species in the most rapidly warming part of the globe.
Collaborative Proposal: A field and laboratory examination of the diatom N and Si isotope proxies: Implications for assessing the Southern Ocean biological pump The rise in atmospheric carbon dioxide concentrations and associated climate changes make understanding the role of the ocean in large scale carbon cycle a priority. Geologic samples allow exploration of potential mechanisms for carbon dioxide drawdown during glacial periods through the use of geochemical proxies. Nitrogen and silicon isotope signatures from fossil diatoms (microscopic plants) are used to investigate changes in the physical supply and biological demand for nutrients (like nitrogen and silicon and carbon) in the Southern Ocean. The project will evaluate the use the nitrogen and silicon isotope proxies through a series of laboratory experiments and Southern Ocean field sampling. The results will provide quantification of real relationships between nitrogen and silicon isotopes and nutrient usage in the Southern Ocean and allow exploration of the role of other factors, including biological diversity, ice cover, and mixing, in altering the chemical signatures recorded by diatoms. Seafloor sediment samples will be used to evaluate how well the signal created in the water column is recorded by fossil diatoms buried in the seafloor. Improving the nutrient isotope proxies will allow for a more quantitative understanding of the role of polar biology in regulating natural variation in atmospheric carbon dioxide. The project will also result in the training of a graduate student and development of outreach materials targeting a broad popular audience. This project seeks to test the fidelity of the diatom nitrogen and silicon isotope proxies, two commonly used paleoceanographic tools for investigating the role of the Southern Ocean biological pump in regulating atmospheric CO2 concentrations on glacial-interglacial timescales. Existing ground-truthing data, including culture experiments, surface sediment data and downcore reconstructions, all suggest that nutrient utilization is the primary driver of isotopic variation in the Southern Ocean. However, strong contribution of interspecific variation is implied by recent culture results. Moreover, field and laboratory studies present some contradictory results in terms of the relative importance of interspecific variation and of inferred post-depositional alteration of the nutrient isotope signals. Here, a first order test of the N and Si diatom nutrient isotope paleo-proxies, involving water column dissolved and particulate sampling and laboratory culturing of field-isolates, is proposed. Southern Ocean water, biomass, live diatoms and fossil diatom sampling will be conducted to investigate species and assemblage related variability in diatom nitrogen and silicon isotopes and their relationship to surface nutrient fields and early diagenesis. Access to fresh materials produced in an analogous environmental context to the sediments of primary interest is critical for making robust paleoceanographic reconstructions. Field sampling will occur along 175°W, transecting the Antarctic Circumpolar Current from the subtropics to the marginal ice edge. Collection of water, sinking/suspended particles and multi-core samples from 13 stations and 3 shipboard incubation experiments will be used to test four proposed hypotheses that together evaluate the significance of existing culture results and seek to allow the best use of diatom nutrient isotope proxies in evaluating the biological pump.
The ocean surrounding Antarctica is home to an extraordinary assemblage of fishes, dominated by a single group that are extremely well-suited to life in icy waters and which are of significant ecological importance there. Of great concern is the capacity of these fishes to withstand increases in temperature as the region of the Western Antarctic Peninsula warms at a rate faster than any other area in the Southern hemisphere. One particular group of Antarctic fishes, known as the icefishes, are particularly vulnerable to increases in temperature because unlike all other vertebrates on earth, icefishes are white-blooded due to their lack of the oxygen-binding protein hemoglobin. This greatly reduces their capacity to transport and deliver oxygen to tissues compared to red-blooded Antarctic fishes. Previous studies have shown that icefishes are indeed less tolerant to elevations in temperature but the underlying factors are completely unknown. Additionally, it is not understood if red- or white-blooded Antarctic fishes can adjust, or acclimate, to modest increases in temperature, similar to those changes in temperature the animals might experience as the earth warms. The investigators will determine if heart function and/or nervous system function limits thermal tolerance of Antarctic fishes, and will determine their capacity to acclimate to warmer temperatures. The project will further the NSF goal of training new generations of scientists by training graduate and undergraduate students. In addition, the project will collaborate with a high school biology teacher from a school which serves a largely minority student body. The students will learn about the marine environment, and will construct a camera to be used in the field to learn more about Antarctic fishes. Two students and the teacher will also attend a summer marine biology internship program. Antarctic fishes within the suborder Notothenioidei (called "notothenioids") are among the organisms on earth least able to deal with changes in temperature. The hemoglobinless icefish are even less able to withstand temperature changes than are red-blooded notothenioids. While this is well documented, the underlying physiological and biochemical mechanisms responsible are unknown. The investigators will test the hypotheses that cardiac work is significantly greater in icefishes compared to red-blooded species, and that as temperature increases, the greater cardiac work of icefishes, coupled with reduced blood oxygen-carrying capacity, results in cardiac failure at a lower temperature compared to red-blooded species. They also hypothesize that neuronal function limits thermal tolerance of red-blooded notothenioids. These hypotheses will be tested using a wide variety of experiments. For example, the investigators will measure heart rate concurrently with critical thermal maximum. They will also characterize metabolic and gene-expression responses to elevated temperature and determine if mitochondrial function contributes to thermal tolerance using a variety of techniques. To determine if neuronal function limits thermal tolerance they will quantify behavioral responses to warming of whole animals and to warming of only the brain area. They will also determine if acclimation to warmer temperatures impacts heart function and they will measure activities of a variety of enzymes from central metabolic pathways.
The research seeks to further quantify the input of atmospheric Fe into the sparsely sampled Southern Ocean (SO), specifically in the vicinity of the West Antarctic Peninsula (WAP) and adjacent continental shelf waters in the Drake Passage. This is typically a high nutrient low chlorophyll region where surface trace metal and primary productivity data are suggestive of Fe limitation. The WAP is characterized by high productivity in the austral summer, and at this time may be in the path of northern dust (aeolian Fe) input or subject to melt influx of elevated Fe accumulated from glacial and present-day sea ice sources. Primary scientific questions are: (1) to what extent does atmospheric Fe contribute to nutrient cycles and ecosystem dynamics in the SO? (2) How is warming climate occurring in the WAP affecting the aerosol composition of the maritime atmosphere. The primary productivity of the Southern Ocean is key to understanding oceanic uptake of anthropogenic greenhouse gases such as carbon dioxide.
Nontechnical project description Globally, 500 million people live near and are threatened by active volcanoes. An important step in mitigating volcanic hazards is understanding the variables that influence the explosivity of eruptions. The rate at which a magma ascends from the reservoir within the Earth to the surface is one such variable. However, magma ascent rates are particularly difficult to determine because of the lack of reliable methods for investigating the process. This research applies a new approach to study magma storage depths and ascent rates at the Erebus volcanic province of Antarctica, one of Earth's largest alkaline volcanic centers. Small pockets of magma that become trapped within growing olivine crystals are called melt inclusions. The concentrations of water and carbon dioxide in these melt inclusions preserve information on the depth of magma reservoirs. Changes to the concentration and isotopic composition of water in the inclusions provide information on how long it took for the host magma to rise to the surface. In combination, these data from samples of olivine-rich volcanic deposits in the Erebus volcanic province will be used to determine the depths at which magmas are stored and their ascent rates. The project results will provide a framework for understanding volcanic hazards associated with alkaline volcanism worldwide. In addition, this project facilitates collaboration among three institutions, and provides an important educational opportunity for a postdoctoral researcher. Technical project description The depths at which magmas are stored, their pre-eruptive volatile contents, and the rates at which they ascend to the Earth's surface are important controls on the dynamics of volcanic eruptions. Basaltic magmas are likely to be vapor undersaturated as they begin their ascent from the mantle through the crust, but volatile solubility drops with decreasing pressure. Once vapor saturation is achieved and the magma begins to degas, its pre-eruptive volatile content is determined largely by the depth at which it resides within the crust. Magma stored in deeper reservoirs tend to experience less pre-eruptive degassing and to be richer in volatiles than magma shallower reservoirs. Eruptive style is influenced by the rate at which a magma ascends from the reservoir to the surface through its effect on the efficiency of vapor bubble nucleation, growth, and coalescence. The proposed work will advance our understanding of pre-eruptive storage conditions and syn-eruptive ascent rates through a combined field and analytical research program. Volatile measurements from olivine-hosted melt inclusions will be used to systematically investigate magma storage depths and ascent rates associated with alkaline volcanism in the Erebus volcanic province. A central goal of the project is to provide a spatial and temporal framework for interpreting results from studies of present-day volcanic processes at Mt Erebus volcano. The Erebus volcanic province of Antarctica is especially well suited to this type of investigation because: (1) there are many exposed mafic scoria cones, fissure vents, and hyaloclastites (exposed in sea cliffs) that produced rapidly quenched, olivine-rich tephra; (2) existing volatile data for Ross Island MIs show that magma storage was relatively deep compared to many mafic volcanic systems; (3) some of the eruptive centers ejected mantle xenoliths, allowing for comparison of ascent rates for xenolith-bearing and xenolith-free eruptions, and comparison of ascent rates for those bearing xenoliths with times estimated from settling velocities; and (4) the cold, dry conditions in Antarctica result in excellent tephra preservation compared to tropical and even many temperate localities. The project provides new tools for assessing volcanic hazards, facilitates collaboration involving researchers from three different institutions (WHOI, U Wyoming, and U Oregon), supports the researchers' involvement in teaching, advising, and outreach, and provides an educational opportunity for a promising young postdoctoral researcher. Understanding the interrelationships among magma volatile contents, reservoir depths, and ascent rates is vital for assessing volcanic hazards associated with alkaline volcanism across the globe.
Part I: Nontechnical One of the most interesting historical records that science can provide is contained in the ice of Antarctica. Layer by layer over hundreds of thousands of years, snow has precipitated on the ice sheet, become compacted, and turned into additional ice. Any dust or other impurities in the air or snow have been precipitated as well and thus each snowfall leaves a snapshot record of the atmosphere that existed at or near the time of deposition. A detailed chronology of volcanic eruptions can be obtained from the ice layers where ash and other volcanic products were deposited. Normally, the analysis of volcanic layers requires the physical extraction of a core from the ice sheet; however, chronologies from cores have discontinuities and are difficult, time-consuming, and expensive to obtain. Borehole logging is a measurement method where one lowers instrumentation into a drilled hole in the ice, whether or not core has been retrieved. To date, this technology has only been used to measure optical systems to identify volcanic ash and other impurity layers. In this program, a profiling technology will be developed that measures the conductivity of the ice. A radio-frequency emitter lowered into the borehole will create a return signal that changes depending on the local conductivity, which depends on the concentration of dissolved ions. For example, dissolved sulfates are a critical marker of volcanic activity that may not be coincident with deposited ash. Other dissolved ions, such as chloride, can be indicative of other processes. It is expected that this borehole profiling instrument will be able to help rapidly identify volcanic eruptions that had potentially global impact, distinguish between different dissolved ions via their frequency dependencies, and assist in establishing chronologies between different ice cores and boreholes. Part II: Technical Description Borehole logging of the polar ice sheets is one of the most important methods that earth scientists have to identify and date volcanic eruptions. However, current technology only indicates the presence and depth of ash from an eruption. In order to extract more detailed information, one must obtain an ice core, and laboriously measure each section in the laboratory using electrical conductivity or dielectric measurements to determine the presence or absence of dissolved sulfate and its location relative to the corresponding ash, if any. This program will investigate and demonstrate a borehole logging-compatible radio-frequency dielectric sensor to detect and measure spikes in dissolved major ions chemistry in ice, particularly in intervals corresponding to volcanically produced sulfates. The sulfate layers are one of the primary signatures of volcanic products. However, other ions, such as chlorides, calcium, and others are also commonly seen in ice, and the dielectric logging technology of this program would also measure these. It is expected that certain sets of ions will be distinguishable by their frequency dependencies. This technique could guide other investigators, who are using conventional core scanning and sampling methods, to regions of special interest in corresponding core. We plan to construct a ring-based electrode system and test this system on a variety of artificial ice boreholes and ice cores. This unit will not include a pressure vessel or other borehole logger packing. We will test different means of applying electrical signals including short pulses and periodic waves. We will further utilize differential measurements with low noise circuits and filters to achieve maximum sensitivity. We will correlate the signals extracted with known molarities of sulfates and other ions and measured ECM records. We will perform scaled-down experiments using real ice cores stored in Bay?s lab at UC Berkeley. This will permit testing of different designs in ice with natural impurities and polycrystalline structure. This small collection includes cores from a variety of locations in Antarctica and Greenland, and a variety of ages as old as a million years.
Current oceanographic interest in the interaction of relatively warm water of the Southern Ocean Circumpolar Deep Water ( CDW) as it moves southward to the frigid waters of the Antarctic continental shelves is based on the potential importance of heat transport from the global ocean to the base of continental ice shelves. This is needed to understand the longer term mass balance of the continent, the stability of the vast Antarctic ice sheets and the rate at which sea-level will rise in a warming world. Improved observational knowledge of the mechanisms of how warming CDW moves across the Antarctic Circumpolar Current (ACC) is needed. Understanding this dynamical transport, believed to take place by the eddy flux of time-varying mesoscale circulation features, will improve coupled ocean-atmospheric climate models. The development of the next generation of coupled ocean-ice- climate models help us understand future changes in atmospheric heat fluxes, glacial and sea-ice balance, and changes in the Antarctic ecosystems. A recurring obstacle to our understanding is the lack of data in this distant region. In this project, a number of subsurface profiling EM-APEX floats adapted to operate under sea ice will be launched on up to 4 cruises of opportunity to the Pacific sector during Austral summer. The floats will be launched south of the Polar Front and measure shear, turbulence, temperature, and salinity to 2000m depth for up to 2 year missions while following the CDW layer.
Subduction takes place at convergent plate boundaries and involves sinking of one tectonic plate underneath another. Although this process is a key aspect of plate tectonics that shapes the planet over geologic time, and is a primary cause of earthquakes, it is not known what causes subduction to cease, and what effect it has on the deepest portions of the crust and the upper part of the mantle. By studying the age and composition of igneous rocks emplaced at the very end of the subduction cycle, this project seeks to understand what causes subduction to cease, and how this changes the composition and structure of the crust and upper mantle. Because this process occurs deep within the earth, the project will focus on rocks in the root of an ancient subduction zone, now exposed in the Transantarctic Mountains of Antarctica. In addition, Antarctica remains relatively poorly understood, and this project will contribute directly to increasing our understanding of the geologic history of this region. The project will focus on training graduate and undergraduate students - incorporating hands-on experience with an array of state-of-the-art analytical instrumentation. Students will also gain a range of more general skills including Geographic Information Systems (GIS), written and oral communication, and data management - strengths that are highly relevant to careers both in the academic and Geosciences industry. Each summer, high school students will be incorporated into aspects of the laboratory-based research through the UCSB research mentorship program. The PI and graduate students will engage the general public through a purpose-built iPhone App and multimedia website. Activities will include live phone and video conversations from the field between elementary school students and members of the team in Antarctica. The mechanisms by which the deep crustal delaminates or "founders" and is returned to the mantle remains a fundamental problem in earth science. Specifically, little is known about the temporal and spatial scales over which this process occurs or the mechanisms that trigger such catastrophic events. Igneous rocks highly enriched in potassium, called lamprophyres, are often emplaced during, and immediately after, termination of subduction and therefore potentially provide direct insight into foundering. These enigmatic rocks are important because they represent near-primary mantle melt compositions and therefore their age, geochemistry and petrologic evolution reveal key information on both the composition of the upper mantle and its thermal state. Of equal importance, they reveal how these key parameters vary through both space and time. By evaluating lamprophyres along a subduction zone margin it is possible to extract: 1) local-scale information, such as the timing and duration of melting and the role of igneous crystallization processes in generation of isotopic heterogeneities; 2) along-strike variations in mantle source composition, temperature, and depth of melting 3) the plate-scale forces that control foundering and termination of subduction. This project will study a suite of lamprophyres along the axis of the Transantarctic Mountains, emplaced during the latest stages of the Neoproterozoic - Ordovician Ross orogeny, Antarctica (roughly 505 to 470 million years before present). High-precision geochronology (age determinations) will be combined with geochemical measurements on the rocks and minerals to understand the mechanisms and timing of deep crustal foundering/delamination.
This study aims to better understand salt accumulation in cold deserts and develop a model of salt transport by groundwater. Cold deserts, like the Antarctic McMurdo Dry Valleys (MDV), are similar to hot deserts in that they accumulate high concentrations of salts because there is not enough water to flush the salts out of the soils into the ocean. The accumulation of salt allows for the creation of brine-rich groundwater that freezes at much lower temperatures. Field work will focus on several groundwater features in the MDV including Don Juan Pond, a shallow lake that accumulates extremely high levels of salts and does not freeze until the temperature reaches -51 degrees C (-60 degrees F). The setting offers the potential to better understand this unique water environment including life at its extremes. It also serves as an analog environment for Mars, a planet that is entirely underlain by permafrost, similar to the MDV. This project will support a doctoral student at the University of Washington Department of Earth and Space Sciences, who will be trained in chemical analysis, chemical and physical modeling, and remote field work in a polar desert environment. Past research suggests that the movement of soluble ions in sediment and soil is controlled by the water activity, permeability, and the thermal regime; however, processes controlling the ionic redistribution in Antarctic environments are poorly constrained. This project aims to better understand the formation, salt redistribution, and water activity of pervasive brine-rich groundwater that is enriched in calcium chloride. A primary goal is to develop a brine thermal;reactive;transport model for the MDV region using data collected from the field to constrain model inputs and ground-truth model outputs. The model will develop a Pitzer-type thermodynamic, reactive transport model and couple it to a ground temperature model. The model will test mechanisms of groundwater formation in the MDV and the properties (e.g. composition, temperature, and water activity) of widespread shallow brine-rich waters. Water is an essential ingredient for life and defining processes that control the availability of water is critical for understanding the habitability of extreme environments, including Mars.
This project will develop a record of the stable-isotope ratios of water from an ice core at the South Pole, Antarctica. Water-isotope ratio measurements provide a means to determine variability in temperature through time. South Pole is distinct from most other locations in Antarctica in showing no warming in recent decades, but little is known about temperature variability in this location prior to the installation of weather stations in 1957. The measurements made as part of this project will result in a much longer temperature record, extending at least 40,000 years, aiding our ability to understand what controls Antarctic climate, and improving projections of future Antarctic climate change. Data from this project will be critical to other investigators working on the South Pole ice core, and of general interest to other scientists and the public. Data will be provided rapidly to other investigators and made public as soon as possible. This project will obtain records of the stable-isotope ratios of water on the ice core currently being obtained at South Pole. The core will reach a depth of 1500 m and an age of 40,000 years. The project will use laser spectroscopy to obtain both an ultra-high-resolution record of oxygen 18/16 and deuterium-hydrogen ratios, and a lower-resolution record of oxygen 17/16 ratios. The high-resolution measurements will be used to aid in dating the core, and to provide estimates of isotope diffusion that constrain the process of firn densification. The novel 17/16 measurement provides additional constraints on the isotope fractionation due to the temperature-dependent supersaturation ratio, which affects the fractionation of water during the liquid-solid condensate transition. Together, these techniques will allow for improved accuracy in the use of the water isotope ratios as proxies for ice-sheet temperature, sea-surface temperature, and atmospheric circulation. The result will be a record of decadal through centennial and millennial scale climate change in a climatically distinct region in East Antarctica that has not been previously sampled by deep ice coring. The project will support a graduate student who will be co-advised by faculty at the University of Washington and the University of Colorado, and will be involved in all aspects of the work.
This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Satellite observations extending over the last 25 years show that Thwaites Glacier is rapidly thinning and accelerating. Over this same period, the Thwaites grounding line, the point at which the glacier transitions from sitting on the seabed to floating, has retreated. Oceanographic studies demonstrate that the main driver of these changes is incursion of warm water from the deep ocean that flows beneath the floating ice shelf and causes basal melting. The period of satellite observation is not long enough to determine how a large glacier, such as Thwaites, responds to long-term and near-term changes in the ocean or the atmosphere. As a result, records of glacier change from the pre-satellite era are required to build a holistic understanding of glacier behavior. Ocean-floor sediments deposited at the retreating grounding line and further offshore contain these longer-term records of changes in the glacier and the adjacent ocean. An additional large unknown is the topography of the seafloor and how it influences interactions of landward-flowing warm water with Thwaites Glacier and affects its stability. Consequently, this project focuses on the seafloor offshore from Thwaites Glacier and the records of past glacial and ocean change contained in the sediments deposited by the glacier and surrounding ocean. Uncertainty in model projections of the future of Thwaites Glacier will be significantly reduced by cross-disciplinary investigations seaward of the current grounding line, including extracting the record of decadal to millennial variations in warm water incursion, determining the pre-satellite era history of grounding-line migration, and constraining the bathymetric pathways that control flow of warm water to the grounding line. Sedimentary records and glacial landforms preserved on the seafloor will allow reconstruction of changes in drivers and the glacial response to them over a range of timescales, thus providing reference data that can be used to initiate and evaluate the reliability of models. Such data will further provide insights on the influence of poorly understood processes on marine ice sheet dynamics. This project will include an integrated suite of marine and sub-ice shelf research activities aimed at establishing boundary conditions seaward of the Thwaites Glacier grounding line, obtaining records of the external drivers of change, improving knowledge of processes leading to collapse of Thwaites Glacier, and determining the history of past change in grounding line migration and conditions at the glacier base. These objectives will be achieved through high-resolution geophysical surveys of the seafloor and analysis of sediments collected in cores from the inner shelf seaward of the Thwaites Glacier grounding line using ship-based equipment, and from beneath the ice shelf using a corer deployed through the ice shelf via hot water drill holes. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Cryoconite holes are pockets of life completely encased in otherwise barren glacial ice. These pockets of life form when dust blown onto the ice melts a small, largely isolated hole that can function as its own tiny ecosystem. This dust can contain microorganisms such as bacteria, algae, or microscopic animals. The microorganisms within the hole interact and carry out functions typical of a larger ecosystem, such as a forest. Cryoconite holes are especially important in extreme cold environments such as the Antarctic Dry Valleys, where they function as repositories of life. Because cryoconite holes are mostly enclosed and persist for years, they can be tracked over time to test fundamental scientific questions about how communities of interacting organisms develop to become fully functioning ecosystems. This project will sample existing and experimentally created cryoconite holes to understand how these ecosystems develop and to what degree random processes (such as which organisms get there first) affect the final community composition and functioning. The results will not only improve our understanding of how microbial communities assemble and affect the functioning of microecosystems such as cryoconite holes, but also how the processes of community assembly affect functioning of larger ecosystems, such as forests. A better understanding of community establishment, development, and response to abiotic factors are essential to forecasting ecological responses to environmental change. It is essential to unravel the links between community assembly, biodiversity, and nutrient cycling across numerous ecosystems because these are critical factors determining ecological responses to environmental change. The unique, largely isolated nature of cryoconite holes provides an experimental system that will advance fundamental understanding of the processes (e.g., stochastic dynamics such as dispersal limitation, assembly order, and ecological drift) driving community assembly. This project will use a field sampling campaign and a number of manipulative experiments to test a hypothesis that unites theory in community and ecosystem ecology: the degree to which stochastic processes guide microbial community assembly and affects regional patterns in biodiversity and ecosystem processes. Cryoconite holes will be sampled to compare community composition, environmental factors, and ecosystem functioning between hydrologically connected and isolated holes. New cryoconite holes will also be constructed and monitored over the course of two growing seasons to specifically alter assembly order and community size, thereby pairing a unique manipulative experiment with field surveys to address questions with relevance to the Antarctic and beyond. Amplicon sequencing, metagenomics, microscopy, sensitive environmental chemistry methods, and photosynthesis and respiration measurements will be used to test a series of sub-hypotheses that relate stochasticity to patterns in regional biodiversity, heterogeneity in environmental factors, and ecosystem processes.
Stone/1341728 This award supports a project to determine if the West Antarctic Ice Sheet (WAIS) has thinned and collapsed in the past and if so, when did this occur. This topic is of interest to geologists who have long been studying the history and behavior of ice sheets (including the WAIS) in order to determine what climatic conditions allow an ice sheet to survive and what conditions have caused them to collapse in the past. The bulk of this research has focused on the last ice age, when climate conditions were far colder than the present; this project will focus on the response of ice sheets to warmer climates in the past. A new and potentially transformative approach that uses the analysis of atoms transformed by cosmic-rays in bedrock beneath the WAIS will allow a definitive test for ice free conditions in the past. This is because the cosmic rays capable of producing the necessary reactions can penetrate only a few meters through glacier ice. Therefore, if they are detected in samples from hundreds of meters below the current ice sheet surface this would provide definitive proof of mostly ice-free conditions in the past. The concentrations of different cosmic ray products in cores from different depths will help answer the question of how frequently bedrock has been exposed, how much the ice sheet has thinned, and which time periods in the past produced climatic conditions capable of making the ice sheet unstable. Short bedrock cores beneath the ice sheet near the Pirrit Hills in West Antarctica will be collected using a new agile sub-ice geological drill (capable of drilling up to 200 meters beneath the ice surface) that is being developed by the Ice Drilling Program Office (IDPO) to support this and other projects. Favorable drilling sites have already been identified based on prior reconnaissance mapping, sample analysis and radar surveys of the ice-sheet bed. The cores collected in this study will be analyzed for cosmic-ray-produced isotopes of different elements with a range of half-lives from 5700 yr (C-14) to 1.4 Myr (Be-10), as well as stable Ne-21. The presence or absence of these isotopes will provide a definitive test of whether bedrock surfaces were ice-free in the past and due to their different half-lives, ratios of the isotopes will place constraints on the age, frequency and duration of past exposure episodes. Results from bedrock surfaces at different depths will indicate the degree of past ice-sheet thinning. The aim is to tie evidence of deglaciation in the past to specific periods of warmer climate and thus to gauge the ice sheet's response to known climate conditions. This project addresses the broad question of ice-sheet sensitivity to climate warming, which previously has been largely determined indirectly from sea-level records. In contrast, this project will provide direct measurements that provide evidence of ice-sheet thinning in West Antarctica. Results from this work will help to identify the climatic factors and thresholds capable of endangering the WAIS in future. The project will make a significant contribution to the ongoing study of climate change, ice-sheet melting and associated sea-level rise. This project has field work in Antarctica.
The response of the Antarctic Ice Sheet to future climatic changes is recognized as the greatest uncertainty in projections of future sea level. An understanding of past ice fluctuations affords insight into ice-sheet response to climate and sea-level change and thus is critical for improving sea-level predictions. This project will examine deglaciation of the southern Ross Sea over the past few thousand years to document oscillations in Antarctic ice volume during a period of relatively stable climate and sea level. We will help quantify changes in ice volume, improve understanding of the ice dynamics responsible, and examine the implications for future sea-level change. The project will train future scientists through participation of graduate students, as well as undergraduates who will develop research projects in our laboratories. Previous research indicates rapid Ross Sea deglaciation as far south as Beardmore Glacier early in the Holocene epoch (which began approximately 11,700 years before present), followed by more gradual recession. However, deglaciation in the later half of the Holocene remains poorly constrained, with no chronological control on grounding-line migration between Beardmore and Scott Glaciers. Thus, we do not know if mid-Holocene recession drove the grounding line rapidly back to its present position at Scott Glacier, or if the ice sheet withdrew gradually in the absence of significant climate forcing or eustatic sea level change. The latter possibility raises concerns for future stability of the Ross Sea grounding line. To address this question, we will map and date glacial deposits on coastal mountains that constrain the thinning history of Liv and Amundsen Glaciers. By extending our chronology down to the level of floating ice at the mouths of these glaciers, we will date their thinning history from glacial maximum to present, as well as migration of the Ross Sea grounding line southwards along the Transantarctic Mountains. High-resolution dating will come from Beryllium-10 surface-exposure ages of erratics collected along elevation transects, as well as Carbon-14 dates of algae within shorelines from former ice-dammed ponds. Sites have been chosen specifically to allow close comparison of these two dating methods, which will afford constraints on Antarctic Beryllium-10 production rates.
This collaborative project explores the signatures and causes of natural climate change in the region surrounding Antarctica over the last 40,000 years as the Earth transitioned from an ice age into the modern warm period. The researchers will investigate how the wind belts that surround Antarctica changed in their strength and position through time, and document explosive volcanic eruptions and CO2 cycling in the Southern Ocean as potential climate forcing mechanisms over this interval. Understanding how and why the climate varied naturally in the past is critical for improving understanding of modern climate change and projections of future climate under higher levels of atmospheric CO2. The investigators plan to conduct a suite of chemical measurements along the 1500m length of the South Pole Ice Core, including major ion and trace element concentrations, and microparticle (dust) concentrations and size distributions. These measurements will (1) extend the South Pole record of explosive volcanic eruptions to 40,000 years using sulfate and particle data; (2) establish the relative timing of climate changes in dust source regions of Patagonia, New Zealand, and Australia using dust flux data; (3) investigate changes in the strength and position of the westerly wind belt using dust size distribution data; and (4) quantify the flux of bioavailable trace metals deposited as dust to the Southern Ocean over time. These chemistry records will also be critical for creating the timescale that will be used by all researchers studying records from the South Pole core. The project will support four graduate students and several undergraduate students across three different institutions, and become a focus of the investigators' efforts to disseminate outcomes of climate change science to the broader community.
The Antarctic marine ecosystem is highly productive and supports a diverse range of ecologically and commercially important species. A key species in this ecosystem is Antarctic krill, which in addition to being commercially harvested, is the principle prey of a wide range of marine organisms including penguins, seals and whales. The aim of this study is to use penguins and other krill predators as sensitive indicators of past changes in the Antarctic marine food web resulting from climate variability and the historic harvesting of seals and whales by humans. Specifically this study will recover and analyze modern (<20 year old), historic (20-200 year old) and ancient (200-10,000 year old) penguin and other krill predator tissues to track their past diets and population movements relative to shifts in climate and the availability of Antarctic krill. Understanding how krill predators were affected by these factors in the past will allow us to better understand how these predators, the krill they depend on, and the Antarctic marine ecosystem as a whole will respond to current challenges such as global climate change and an expanding commercial fishery for Antarctic krill. The project will further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. This project will support the cross-institutional training of undergraduate and graduate students in advanced analytical techniques in the fields of ecology and biogeochemistry. In addition, this project includes educational outreach aimed encouraging participation in science careers by engaging K-12 students in scientific issues related to Antarctica, penguins, marine ecology, biogeochemistry, and global climate change. This research will help place recent ecological changes in the Southern Ocean into a larger historical context by examining decadal and millennial-scale shifts in the diets and population movements of Antarctic krill predators (penguins, seals, and squid) in concert with climate variability and commercial harvesting. This will be achieved by coupling advanced stable and radio isotope techniques, particularly compound-specific stable isotope analysis, with unprecedented access to modern, historical, and well-preserved paleo-archives of Antarctic predator tissues dating throughout the Holocene. This approach will allow the project to empirically test if observed shifts in Antarctic predator bulk tissue stable isotope values over the past millennia were caused by climate-driven shifts at the base of the food web in addition to, or rather than, shifts in predator diets due to a competitive release following the historic harvesting of krill eating whale and seals. In addition, this project will track the large-scale abandonment and reoccupation of penguin colonies around Antarctica in response to changes in climate and sea ice conditions over the past several millennia. These integrated field studies and laboratory analyses will provide new insights into the underlying mechanisms that influenced past shifts in the diets and population movements of charismatic krill predators such as penguins. This will allow for improved projections of the ecosystem consequences of future climate change and anthropogenic harvesting scenarios in the Antarctica that are likely to affect the availability of Antarctic krill.
ABSTRACT Intellectual Merit: The high concentration of the major nutrients nitrate and phosphate is a fundamental characteristic of the Antarctic Zone in the Southern Ocean and is central to its role in global ocean fertility and the global carbon cycle. The isotopic composition of diatom-bound organic nitrogen is one of the best hopes for reconstructing the nutrient status of polar surface waters over glacial cycles, which in turn may hold the explanation for the decline in atmospheric carbon dioxide during ice ages. The PIs propose to generate detailed diatom-bound nitrogen isotope (δ15Ndb) records from high sedimentation rate cores from the Kerguelen Plateau. Because the cores were collected at relatively shallow seafloor depths, they have adequate planktonic and benthic foraminifera to develop accurate age models. The resulting data could be compared with climate records from Antarctic ice cores and other archives to investigate climate-related changes, including the major steps into and out of ice ages and the millennial-scale events that occur during ice ages and at their ends. The records generated in this project will provide a critical test of hypotheses for the cause of lower ice age CO2. Broader impacts: This study will contribute to the goal of understanding ice ages and past CO2 changes, which both have broad implications for future climate. Undergraduates will undertake summer internships, with the possibility of extending their work into junior year projects and senior theses. In addition, the PI will lead modules for two Princeton programs for middle school teachers and will host a teacher for a six-week summer research project.
The temperature of the earth is controlled, in part, by heat trapping gases that include carbon dioxide, methane, and nitrous oxide. Despite their importance to climate, direct measurements of these gases in the atmosphere are limited to the last 50 years at best. Air trapped in ice cores extends those data back hundreds of millennia, and measurements of greenhouse gases in ice cores underpin much of our understanding of global chemical cycles relevant to modern climate change. Existing records vary in quality and detail. The proposed work fills gaps in our knowledge of nitrous oxide and carbon dioxide over the last 10,000 years. New measurements from an ice core from the South Pole will be used to determine what role changes in ocean and land based processes played in controlling these gases, which decreased during the first 2,000 years of this time period, then gradually increased toward the present. The work will address a major controversy over whether early human activities could have impacted the atmosphere, and provide data to improve mathematical models of the land-ocean-atmosphere system that predict how future climate change will impact the composition of the atmosphere and climate. For nitrous oxide the work will improve on existing concentration records and provide a novel, detailed Holocene stable isotope record. It will also develop measurement of the isotopomers of nitrous oxide and explore their utility for understanding aspects of the Holocene nitrous oxide budget. The primary goal is to determine if marine and/or terrestrial emissions of nitrous oxide change in response to changes in Holocene climate. A new Holocene isotopic record for carbon dioxide (stable carbon and oxygen isotopes), will improve the precision of existing records by a factor 5 and increase the temporal resolution. These data will be used to evaluate controversial hypotheses about why carbon dioxide concentrations changed in the Holocene and provide insight into millennial scale processes in the carbon cycle, which are not resolved by current isotopic data. A graduate student will receive advanced training during and the student and principle investigator will conduct outreach efforts targeted at local middle school students. The proposed work will also contribute to teaching efforts by the PI and to public lectures on climate and climate change. The results will be disseminated through publications, data archive, and the OSU Ice Core Lab web site. New analytical methods of wide utility will also be developed and documented.
Brook 1543267 Approximately half of the human caused carbon dioxide emissions to the atmosphere are absorbed by the ocean, which reduces the amount of global warming associated with these emissions. Much of this carbon uptake occurs in the Southern Ocean around Antarctica, where water from the deep ocean comes to the surface. How much water "up-wells," and therefore how much carbon is absorbed, is believed to depend on the strength and location of the major westerly winds in the southern hemisphere. These wind patterns have been shifting southward in recent decades, and future changes could impact the global carbon cycle and promote the circulation of relatively warm water from the deep ocean on to the continental shelf, which contributes to enhanced Antarctic ice melt and sea level rise. Understanding of the westerly winds and their role in controlling atmospheric carbon dioxide levels and the circulation of ocean water is therefore very important. The work supported by this award will study past movement of the SH westerlies in response to natural climate variations. Of particular interest is the last deglaciation (20,000 to 10,000 years ago), when the global climate made a transition from an ice age climate to the current warm period. During this period, atmospheric carbon dioxide rose from about 180 ppm to 270 parts per million, and one leading hypothesis is that the rise in carbon dioxide was driven by a southward movement of the southern hemisphere westerlies. The broader impacts of the work include a perspective on past movement of the southern hemisphere westerlies and their link to atmospheric carbon dioxide, which could guide projections of future oceanic carbon dioxide uptake, with strong societal benefits; international collaboration with German scientists; training of a postdoctoral investigator; and outreach to public schools. This project will investigate whether the abundance of a noble gas, krypton-86, trapped in Antarctic ice cores, records atmospheric pressure variability, and whether or not this pressure variability can be used to infer past movement of the Southern Hemisphere westerly winds. The rationale for the project is that models of air movement in the snow pack (firn) in Antarctica indicate that pressure variations drive air movement that disturbs the normal enrichment in krypton-86 caused by gravitational settling of gases. Calculations predict that the krypton-86 deviation from gravitational equilibrium reflects the magnitude of pressure variations. In turn, atmospheric data show that pressure variability over Antarctica is linked to the position of the southern hemisphere westerly winds. Preliminary data from the West Antarctic Ice Sheet (WAIS) Divide ice core show a large excursion in krypton-86 during the transition from the last ice age to the current warm period. The investigators will perform krypton-86 analysis on ice core and firn air samples to establish whether the Kr-86 deviation is linked to pressure variability, refine the record of krypton isotopes from the WAIS Divide ice core, investigate the role of pressure variability in firn air transport using firn air models, and investigate how barometric pressure variability in Antarctica is linked to the position/strength of the SH westerlies in past and present climates.
Proposal Title: Collaborative Research: Seasonal Sea Ice Production in the Ross Sea, Antarctica (working title changed from submitted title) Institutions: UT-San Antonio; Columbia University; Naval Postgraduate School; Woods Hole Oceanographic Institute; UC@Boulder The one place on Earth consistently showing increases in sea ice area, duration, and concentration is the Ross Sea in Antarctica. Satellite imagery shows about half of the Ross Sea increases are associated with changes in the austral fall, when the new sea ice is forming. The most pronounced changes are also located near polynyas, which are areas of open ocean surrounded by sea ice. To understand the processes driving the sea ice increase, and to determine if the increase in sea ice area is also accompanied by a change in ice thickness, this project will conduct an oceanographic cruise to the polynyas of the Ross Sea in April and May, 2017, which is the austral fall. The team will deploy state of the art research tools including unmanned airborne systems (UASs, commonly called drones), autonomous underwater vehicles (AUVs), and remotely operated underwater vehicles (ROVs). Using these tools and others, the team will study atmospheric, oceanic, and sea ice properties and processes concurrently. A change in sea ice production will necessarily change the ocean water below, which may have significant consequences for global ocean circulation patterns, a topic of international importance. All the involved institutions will be training students, and all share the goal of expanding climate literacy in the US, emphasizing the role high latitudes play in the Earth's dynamic climate. The main goal of the project is to improve estimates of sea ice production and water mass transformation in the Ross Sea. The team will fully capture the spatial and temporal changes in air-ice-ocean interactions when they are initiated in the austral fall, and then track the changes into the winter and spring using ice buoys, and airborne mapping with the newly commissioned IcePod instrument system, which is deployed on the US Antarctic Program's LC-130 fleet. The oceanographic cruise will include stations in and outside of both the Terra Nova Bay and Ross Ice Shelf polynyas. Measurements to be made include air-sea boundary layer fluxes of heat, freshwater, and trace gases, radiation, and meteorology in the air; ice formation processes, ice thickness, snow depth, mass balance, and ice drift within the sea ice zone; and temperature, salinity, and momentum in the ocean below. Following collection of the field data, the team will improve both model parameterizations of air-sea-ice interactions and remote sensing algorithms. Model parameterizations are needed to determine if sea-ice production has increased in crucial areas, and if so, why (e.g., stronger winds or fresher oceans). The remote sensing validation will facilitate change detection over wider areas and verify model predictions over time. Accordingly this project will contribute to the international Southern Ocean Observing System (SOOS) goal of measuring essential climate variables continuously to monitor the state of the ocean and ice cover into the future.
Intellectual Merit: Evidence from the eastern Ross Sea continental shelf indicates that the West Antarctic Ice Sheet advanced and retreated during the last glacial cycle, but it is unclear whether the ice sheet advanced to the shelf edge or just to the middle shelf. These two end-member scenarios offer different interpretations as to why, how, and when the West Antarctic Ice Sheet oscillated. The PI proposes to acquire seismic, multibeam, and core data from Whales Deep, to evaluate the timing and duration of two advances of grounded ice to the outer and middle shelf of the Whales Deep Basin, a West Antarctic Ice Sheet paleo ice stream trough in eastern Ross Sea. Grounding events are represented by seismically resolvable Grounding Zone Wedges. The PI will collect radiocarbon dates on in situ benthic foraminifera from the grounding zone diamict as well as ramped pyrolysis radiocarbon dates on acid insoluble organics from open-marine mud overlying the grounding zone diamict. Using these data the PI will calculate the duration of the two grounding events. Furthermore, the PI will test a numerical model prediction that West Antarctic Ice Sheet retreat must have involved melting at the marine terminus of the ice sheet. Pore-water from the grounding zone diamict will be extracted from piston cores to determine salinity and δ18O values that should indicate if significant melting occurred at the grounding line. Broader impacts: The data collected will provide constraints on the timing and pattern of Last Glacial Maximum advance and retreat that can be incorporated into interpretations of ice-surface elevation changes. The proposed activities will provide valuable field and research training to undergraduate/graduate students and a Louisiana high-school science teacher. The research will be interactively shared with middle- and high-school science students and with visitors to the LSU Museum of Natural Science Weekend-Science Program.
Methane is a potent greenhouse gas that is naturally emitted into the oceans by geologic seeps and microbial production. Based on studies of persistent deep-sea seeps at mid- and northern latitudes, researchers have learned that bacteria and archaea can create a "sediment filter" that oxidizes methane prior to its release. Antarctica is thought to contain large reservoirs of organic carbon buried beneath its ice which could a quantity of methane equivalent to all of the permafrost in the Arctic and yet we know almost nothing about the methane oxidizing microbes in this region. How these microbial communities develop and potentially respond to fluctuations in methane levels is an under-explored avenue of research. A bacterial mat was recently discovered at 78 degrees south, suggesting the possible presence of a methane seep, and associated microbial communities. This project will explore this environment in detail to assess the levels and origin of methane, and the nature of the microbial ecosystem present. An expansive bacterial mat appeared and/or was discovered at 78 degrees south in 2011. This site, near McMurdo Station Antarctica, has been visited since the mid-1960s, but this mat was not observed until 2011. The finding of this site provides an unusual opportunity to study an Antarctic marine benthic habitat with active methane cycling and to examine the dynamics of recruitment and community succession of seep fauna including bacteria, archaea, protists and metazoans. This project will collect the necessary baseline data to facilitate further studies of Antarctic methane cycling. The concentration and source of methane will be determined at this site and at potentially analogous sites in McMurdo Sound. In addition to biogeochemical characterization of the sites, molecular analysis of the microbial community will quantify the time scales on which bacteria and archaea respond to methane input and provide information on rates of community development and succession in the Southern Ocean. Project activities will facilitate the training of at least one graduate student and results will be shared at both local and international levels. A female graduate student will be mentored as part of this project and data collected will form part of her dissertation. Lectures will be given in K-12 classrooms in Oregon to excite students about polar science. National and international audiences will be reached through blogs and presentations at a scientific conference. The PI's previous blogs have been used by K-12 classrooms as part of their lesson plans and followed in over 65 countries.
Marine ecosystems under large ice shelves are thought to contain sparse, low-diversity plankton and seafloor communities due the low supply of food from productive sunlight waters. Past studies have shown sub-ice shelf ecosystems to change in response to altered oceanographic processes resulting from ice-shelve retreat. However, information on community changes and ecosystem structure under ice shelves are limited because sub-ice-shelf ecosystems have either been sampled many years after ice-shelf breakout, or have been sampled through small boreholes, yielding extremely limited spatial information. The recent breakout of the A-68 iceberg from the Larsen C ice shelf in the western Weddell Sea provides an opportunity to use a ship-based study to evaluate benthic communities and water column characteristics in an area recently vacated by a large overlying ice shelf. The opportunity will allow spatial assessments at the time of transition from an under ice-shelf environment to one initially exposed to conditions more typical of a coastal Antarctic marine setting. This RAPID project will help determine the state of a coastal Antarctic ecosystem newly exposed from ice-shelf cover and will aid in understanding of rates of community change during transition. The project will conduct a 10-day field program, allowing contrasts to be made of phytoplankton and seafloor megafaunal communities in areas recently exposed by ice-shelf loss to areas exposed for many decades. The project will be undertaken in a collaborative manner with the South Korean Antarctic Agency, KOPRI, by participating in a cruise in March/May 2018. Combining new information in the area of Larsen C with existing observations after the Larsen A and B ice shelf breakups further to the north, the project is expected to generate a dataset that can elucidate fundamental processes of planktonic and benthic community development in transition from food-poor to food-rich ecosystems. The project will provide field experience to two graduate students, a post-doctoral associate and an undergraduate student. Material from the project will be incorporated into graduate courses and the project will communicate daily work and unfolding events through social media and blogs while they explore this area of the world that is largely underexplored. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
In order to understand what environmental conditions might look like for future generations, we need to turn to archives of past times when the world was indeed warmer, before anyone was around to commit them to collective memory. The geologic record of Earth's past offers a glimpse of what could be in store for the future. Research by Ivany and her team looks to Antarctica during a time of past global warmth to see how seasonality of temperature and rainfall in coastal settings are likely to change in the future. They will use the chemistry of fossils (a natural archive of these variables) to test a provocative hypothesis about near-monsoonal conditions in the high latitudes when the oceans are warm. If true, we can expect high-latitude shipping lanes to become more hazardous and fragile marine ecosystems adapted to constant cold temperatures to suffer. With growing information about how human activities are likely to affect the planet in the future, we will be able to make more informed decisions about policies today. This research involves an international team of scholars, including several women scientists, training of graduate students, and a public museum exhibit to educate children about how we study Earth's ancient climate and what we can learn from it. Antarctica is key to an understanding how Earth?s climate system works under conditions of elevated CO2. The poles are the most sensitive regions on the planet to climate change, and the equator-to-pole temperature gradient and the degree to which high-latitude warming is amplified are important components for climate models to capture. Accurate proxy data with good age control are therefore critical for testing numerical models and establishing global patterns. The La Meseta Formation on Seymour Island is the only documented marine section from the globally warm Eocene Epoch exposed in outcrop on the continent; hence its climate record is integral to studies of warming. Early data suggest the potential for strongly seasonal precipitation and runoff in coastal settings. This collaboration among paleontologists, geochemists, and climate modelers will test this using seasonally resolved del-18O data from fossil shallow marine bivalves to track the evolution of seasonality through the section, in combination with independent proxies for the composition of summer precipitation (leaf wax del-D) and local seawater (clumped isotopes). The impact of the anticipated salinity stratification on regional climate will be evaluated in the context of numerical climate model simulations. In addition to providing greater clarity on high-latitude conditions during this time of high CO2, the combination of proxy and model results will provide insights about how Eocene warmth may have been maintained and how subsequent cooling came about. As well, a new approach to the analysis of shell carbonates for 87Sr/86Sr will allow refinements in age control so as to allow correlation of this important section with other regions to clarify global climate gradients. The project outlined here will develop new and detailed paleoclimate records from existing samples using well-tuned as well as newer proxies applied here in novel ways. Seasonal extremes are climate parameters generally inaccessible to most studies but critical to an understanding of climate change; these are possible to resolve in this well-preserved, accretionary-macrofossil-bearing section. This is an integrated study that links marine and terrestrial climate records for a key region of the planet across the most significant climate transition in the Cenozoic.
The Southern Ocean surrounding Antarctica is changing rapidly in response to Earth's warming climate. These changes will undoubtedly influence communities of primary producers (the organisms at the base of the food chain, particularly plant-like organisms using sunlight for energy) by altering conditions that influence their growth and composition. Because primary producers such as phytoplankton play an important role in global biogeochemical cycling, it is essential to understand how they will respond to changes in their environment. The growth of phytoplankton in certain regions of the Southern Ocean is constrained by steep gradients in chemical and physical properties that vary in both space and time. Light and iron have been identified as key variables influencing phytoplankton abundance and distribution within Antarctic waters. Microscopic algae known as diatoms are dominant members of the phytoplankton and sea ice communities, accounting for significant proportions of primary production. The overall objective of this project is to identify the molecular bases for the physiological responses of polar diatoms to varying light and iron conditions. The project should provide a means of evaluating the extent these factors regulate diatom growth and influence net community productivity in Antarctic waters. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. It will facilitate the teaching and learning of polar-related topics by translating the research objectives into readily accessible educational materials for middle-school students. This project will also provide funding to enable a graduate student and several undergraduate students to be trained in the techniques and perspectives of modern biology. Although numerous studies have investigated how polar diatoms are affected by varying light and iron, the cellular mechanisms leading to their distinct physiological responses remain unknown. Using comparative transcriptomics, the expression patterns of key genes and metabolic pathways in several ecologically important polar diatoms recently isolated from Antarctic waters and grown under varying iron and irradiance conditions will be examined. In addition, molecular indicators for iron and light limitation will be developed within these polar diatoms through the identification of iron- and light-responsive genes -- the expression patterns of which can be used to determine their physiological status. Upon verification in laboratory cultures, these indicators will be utilized by way of metatranscriptomic sequencing to examine iron and light limitation in natural diatom assemblages collected along environmental gradients in Western Antarctic Peninsula waters. In order to fully understand the role phytoplankton play in Southern Ocean biogeochemical cycles, dependable methods that provide a means of elucidating the physiological status of phytoplankton at any given time and location are essential.
Marine communities along the western Antarctic Peninsula are highly productive ecosystems which support a diverse assemblage of charismatic animals such as penguins, seals, and whales as well as commercial fisheries such as that on Antarctic krill. Fjords (long, narrow, deep inlets of the sea between high cliffs) along the central coast of the Peninsula appear to be intense, potentially climate sensitive, hotspots of biological production and biodiversity, yet the structure and dynamics of these fjord ecosystems are very poorly understood. Because of this intense biological activity and the charismatic fauna it supports, these fjords are also major destinations for a large Antarctic tourism industry. This project is an integrated field and modeling program to evaluate physical oceanographic processes, glacial inputs, water column community dynamics, and seafloor bottom community structure and function in these important yet little understood fjord systems. These Antarctic fjords have characteristics that are substantially different from well-studied Arctic fjords, likely yielding much different responses to climate warming. This project will provide major new insights into the dynamics and climate sensitivity of Antarctic fjord ecosystems, highlighting contrasts with Arctic sub-polar fjords, and potentially transforming our understanding of the ecological role of fjords in the rapidly warming west Antarctic coastal marine landscape. The project will also further the NSF goal of training new generations of scientists, providing scientific training for undergraduate, graduate, and postdoctoral students. This includes the unique educational opportunity for undergraduates to participate in research cruises in Antarctica and the development of a novel summer graduate course on fjord ecosystems. Internet based outreach activities will be enhanced and extended by the participation of a professional photographer who will produce magazine articles, websites, radio broadcasts, and other forms of public outreach on the fascinating Antarctic ecosystem. This project will involve a 15-month field program to test mechanistic hypotheses concerning oceanographic and glaciological forcing, and phytoplankton and benthic community response in the Antarctic fjords. Those efforts will be followed by a coupled physical/biological modeling effort to evaluate the drivers of biogeochemical cycles in the fjords and to explore their potential sensitivity to enhanced meltwater and sediment inputs. Fieldwork over two oceanographic cruises will utilize moorings, weather stations, and glacial, sea-ice and seafloor time-lapse cameras to obtain an integrated view of fjord ecosystem processes. The field team will also make multiple shipboard measurements and will use towed and autonomous underwater vehicles to intensively evaluate fjord ecosystem structure and function during spring/summer and autumn seasons. These integrated field and modeling studies are expected to elucidate fundamental properties of water column and sea bottom ecosystem structure and function in the fjords, and to identify key physical-chemical-glaciological forcing in these rapidly warming ecosystems.
Gases trapped in ice cores have revealed astonishing things about the greenhouse gas composition of the past atmosphere, including the fact that carbon dioxide concentrations never rose above 300 parts per million during the last 800,000 years. This places today's concentration of 400 parts per million in stark contrast. Furthermore, these gas records show that natural sources of greenhouse gas such as oceans and ecosystems act as amplifiers of climate change by increasing emissions of gases during warmer periods. Such amplification is expected to occur in the future, adding to the human-produced gas burden. The South Pole ice core will build upon these prior findings by expanding the suite of gases to include, for the first time, those potent trace gases that both trapped heat and depleted ozone during the past 40,000 years. The present project on inert gases and methane in the South Pole ice core will improve the dating of this crucial record, to unprecedented precision, so that the relative timing of events can be used to learn about the mechanism of trace gas production and destruction, and consequent climate change amplification. Ultimately, this information will inform predictions of future atmospheric chemical cleansing mechanisms and climate in the context of our rapidly changing atmosphere. This award also engages young people in the excitement of discovery and polar research, helping to entrain the next generations of scientists and educators. Education of graduate students, a young researcher (Buizert), and training of technicians, will add to the nation?s human resource base. This award funds the construction of the gas chronology for the South Pole 1500m ice core, using measured inert gases (d15N and d40Ar--Nitrogen and Argon isotope ratios, respectively) and methane in combination with a next-generation firn densification model that treats the stochastic nature of air trapping and the role of impurities on densification. The project addresses fundamental gaps in scientific understanding that limit the accuracy of gas chronologies, specifically a poor knowledge of the controls on ice-core d15N and the possible role of layering and impurities in firn densification. These gaps will be addressed by studying the gas enclosure process in modern firn at the deep core site. The work will comprise the first-ever firn air pumping experiment that has tightly co-located measurements of firn structural properties on the core taken from the same borehole. The project will test the hypothesis that the lock-in horizon as defined by firn air d15N, CO2, and methane is structurally controlled by impermeable layers, which are in turn created by high-impurity content horizons in which densification is enhanced. Thermal signals will be sought using the inert gas measurements, which improve the temperature record with benefits to the firn densification modeling. Neon, argon, and oxygen will be measured in firn air and a limited number of deep core samples to test whether glacial period layering was enhanced, which could explain low observed d15N in the last glacial period. Drawing on separate volcanic and methane synchronization to well-dated ice cores to create independent ice and gas tie points, independent empirical estimates of the gas age-ice age difference will be made to check the validity of the firn densification model-inert gas approach to calculating the gas age-ice age difference. These points will also be used to test whether the anomalously low d15N seen during the last glacial period in east Antarctic ice cores is due to deep air convection in the firn, or a missing impurity dependence in the firn densification models. The increased physical understanding gained from these studies, combined with new high-precision measurements, will lead to improved accuracy of the gas chronology of the South Pole ice core, which will enhance the overall science return from this gas-oriented core. This will lead to clarification of timing of atmospheric gas variations and temperature, and aid in efforts to understand the biogeochemical feedbacks among trace gases. These feedbacks bear on the future response of the Earth System to anthropogenic forcing. Ozone-depleting substances will be measured in the South Pole ice core record, and a precise gas chronology will add value. Lastly, by seeking a better understanding of the physics of gas entrapment, the project aims to have an impact on ice-core science in general.
Agglutinated foraminifera (forams for short) are early-evolving, single-celled organisms. These "living fossils" construct protective shells using sediment grains held together by adhesive substances that they secrete. During shell construction, agglutinated forams display amazing properties of selection - for example, some species build their shells of clear quartz grains, while other species use only grains of a specific size. Understanding how these single cells assemble complex structures may contribute to nanotechnology by enabling people to use forams as "cellular machines" to aid in the construction of nano-devices. This project will analyze the genomes of at least six key foram species, and then "mine" these genomes for technologically useful products and processes. The project will focus initially on the adhesive materials forams secrete, which may have wide application in biomedicine and biotechnology. Furthermore, the work will further develop a molecular toolkit which could open up new avenues of research on the physiology, ecology, and population dynamics of this important group of Antarctic organisms. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. Educational experiences related to the "thrill of scientific exploration and discovery" for students and the general public will be provided through freely-available short films and a traveling art/science exhibition. The project will also provide hands-on research opportunities for undergraduate students. Explorers Cove, situated on the western shore of McMurdo Sound, harbors a unique population of foraminiferan taxa at depths accessible by scuba diving that otherwise are primarily found in the deep sea. The project will use next-generation DNA sequencing and microdissection methods to obtain and analyze nuclear and mitochondrial genomes from crown members of two species each from three distinct, early-evolving foraminiferal groups. It will also use next generation sequencing methods to characterize the in-situ prokaryotic assemblages (microbiomes) of one of these groups and compare them to reference sediment microbiomes. The phyogenomic studies of the targeted Antarctic genera will help fill significant gaps in our current understanding of early foram evolution. Furthermore, comparative genomic analyses of these six species are expected to yield a better understanding of the physiology of single-chambered agglutinated forams, especially the bioadhesive proteins and regulatory factors involved in shell composition and morphogenesis. Additionally, the molecular basis of cold adaptation in forams will be examined, particularly with respect to key proteins.
The solidified remnants of large magma bodies within the continental crust hold the key to understanding the chemical and physical evolution of volcanic provinces through time. These deposits also commonly contain some of the world's most important ore deposits. Exposed deposits in South Africa, Greenland, USA, Canada, and Antarctica have led researchers to propose that the bigger the magma body, the faster it will crystallize. While this might seem counter-intuitive (typically it is thought that more magma = hotter = harder to cool), the comparison of these exposures show that bigger magma chambers maintain a molten top that is always in contact with the colder crust; whereas smaller magma chambers insulate themselves by crystallizing at the margins. The process is similar to the difference between a large cup of coffee with no lid, and a smaller cup of coffee held in a thermos. The large unprotected cup of coffee will cool down much faster than that held in the thermos. This research project of VanTongeren and Schoene will use previously collected rocks from the large (~8-9 km thick) Dufek Intrusion in Antarctica to precisely quantify how fast the magma chamber crystallized, and compare that rate to the much smaller magma chamber exposed in the Skaergaard Intrusion of E. Greenland. The work is an important step towards improving our understanding of time-scales associated with the thermal and chemical evolution of nearly all magma chambers on Earth, which will ultimately lead to better predictions of volcanic hazards globally. The work will also yield important insights into the timescales and conditions necessary for developing vast magmatic ore deposits, which is essential to the platinum and steel industries in the USA and abroad. Based on observations of solidification fronts in six of the world's most completely exposed layered mafic intrusions, it was recently proposed that bigger magma chambers must crystallize faster than small magma chambers. While this is initially counter-intuitive, the hypothesis falls out of simple heat balance equations and the observation that the thickness of cumulates at the roofs of such intrusions is negatively proportional to the size of the intrusion. In this study, VanTongeren and Schoene will directly test the hypothesis that bigger magma chambers crystallize faster by applying high precision U-Pb zircon geochronology on 5-10 samples throughout the large Dufek Intrusion of Antarctica. Due to uncertainties in even the highest-precision ID-TIMS analyses, the Dufek Intrusion of Antarctica is the only large layered mafic intrusion on Earth where this research can be accomplished. VanTongeren and Schoene will place the geochronological measurements of the Dufek Intrusion into a comprehensive petrologic framework by linking zircon crystallization to other liquidus phases using mineral geochemistry, zircon saturation models, and petrologic models for intrusion crystallization. The research has the potential to radically change the way that we understand the formation and differentiation of large magma bodies within the shallow crust. Layered intrusions are typically thought to cool and crystallize over very long timescales allowing for significant differentiation of the magmas and reorganization of the cumulate rocks. If the 'bigger magma chambers crystallize faster hypothesis' holds this could reduce the calculated solidification time scales of the early earth and lunar magma oceans and have important implications for magma chamber dynamics of active intraplate volcanism and long-lived continental arcs. Furthermore, while the Dufek Intrusion is one of only two large layered intrusions exposed on Earth, very little is known about its petrologic evolution. The detailed geochemical and petrologic work of VanTongeren and Schoene based on analyses of previously collected samples will provide important observations with which to compare the Dufek and other large magma chambers.
Bubbles of ancient air trapped in ice cores permit the direct reconstruction of atmospheric composition and allow us to link greenhouse gases and global climate over the last 800,000 years. Previous field expeditions to the Allan Hills blue ice area, Antarctica, have recovered ice cores that date to one million years, the oldest ice cores yet recovered from Antarctica. These records have revealed that interglacial CO2 concentrations decreased by 800,000 years ago and that, in the warmer world 1 million years ago, CO2 and Antarctic temperature were linked as during the last 800,000 years. This project will return to the Allan Hills blue ice area to recover additional ice cores that date to 1 million years or older. The climate records developed from the drilled ice cores will provide new insights into the chemical composition of the atmosphere and Antarctic climate during times of comparable or even greater warmth than the present day. Our results will help answer questions about issues associated with anthropogenic change. These include the relationship between temperature change and the mass balance of Antarctic ice; precipitation and aridity variations associated with radiatively forced climate change; and the climate significance of sea ice extent. The project will entrain two graduate students and a postdoctoral scholar, and will conduct outreach including workshops to engage teachers in carbon science and ice cores. Between about 2.8-0.9 million years ago, Earth's climate was characterized by 40,000-year cycles, driven or paced by changes in the tilt of Earth's spin axis. Much is known about the "40,000-year" world from studies of deep-sea sediments, but our understanding of climate change during this period is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of ancient ice from the Main Ice Field, Allan Hills, Antarctica. During previous field seasons we recovered ice extending, discontinuously, from 0.1-1.0 million years old. Ice was dated by measuring the 40Ar/38Ar (Argon) ratio of the trapped gases. Our discovery of million year-old ice demonstrates that there is gas-record-quality ice from the 40,000-year world in the Allan Hills Main Ice Field. We have identified two different sites, each overlying bedrock at ~ 200 m depth, that are attractive targets for coring ice dating to 1 million years and older. This project aims to core the ice at these two sites, re-occupy a previous site with million year-old ice and drill it down to the bedrock, and generate 10-20 short (~10-meter) cores in areas where our previous work and terrestrial meteorite ages suggest ancient surface ice. We plan to date the ice using the 40Ar/38Ar ages of trapped Argon. We also plan to characterize the continuity of our cores by measuring the deuterium and oxygen isotope ratios in the ice, methane, ratios of Oxygen and Argon to Nitrogen in trapped gas, the Nitrogen-15 isotope (d15N) of Nitrogen, and the Oxygen-18 isotope (d18O) of Oxygen. As the ice may be stratigraphically disturbed, these measurements will provide diagnostic properties for assessing the continuity of the ice-core records. Successful retrieval of ice older than one million years will provide the opportunity for follow-up work to measure the CO2 concentration and other properties within the ice to inform on the temperature history of the Allan Hills region, dust sources and source-area aridity, moisture sources, densification conditions, global average ocean temperature, and greenhouse gas concentrations. We will analyze the data in the context of leading hypotheses of the 40,000-year world and the Mid-Pleistocene Transition to the 100,000-year world. We expect to advance understanding of climate dynamics during these periods.
Meltwater lakes that sit on top of Antarctica's floating ice shelves have likely contributed to the dramatic changes seen in Antarctica's glacial ice cover over the past two decades. In 2002, the 1,600-square-kilometer Larsen B Ice Shelf located on the Eastern side of the Antarctic Peninsula, for example, broke into thousands of small icebergs, which subsequently floated away as a result of the formation of more than 2,000 meltwater lakes on its surface over the prior decade. Our research project addresses the reasons why surface lakes form on Antarctic ice shelves and how these surface lakes subsequently contribute to the forces that may contribute to ice-shelf breakup like that of the Larsen B. Our project focuses primarily on making precise global positioning system (GPS) measurements of ice-shelf bending in response to the filling and draining of a surface lake on the McMurdo Ice Shelf. The observed vertical displacements (on the order of tens of centimeters) in response to lake filling will be used to calibrate and test computer simulation models that predict the response of ice shelves to surface lakes more generally and in a variety of future climate conditions. Our project will make hourly measurements of both vertical ice-shelf movements (using GPS surveying instruments) and of temperature and sunlight conditions (that drive melting) around a surface lake located close to the McMurdo Station airfield. Following this initial data-gathering effort, computer simulations and other more theoretical analysis will be undertaken to determine the suitability of the chosen McMurdo Ice Shelf surface lake as a field-laboratory for continued study. Ultimately, the research will contribute to understanding of the glaciological processes that link climate change to rising sea level. A successful outcome of the research will allow glaciologists to better assess the processes that promote or erode the influence Antarctic ice shelves have in controlling the transfer of ice from the interior of Antarctica into the ocean. The project will undertake two outreach activities: (1) web-posting of a field-activity journal and (2) establishing an open-access glaciological teaching and outreach web-sharing site for the International Glaciological Society. The proposed project seeks to experimentally verify a theory of ice-shelf instability proposed to explain the explosive break-up of Larsen B Ice Shelf in 2002. This theory holds that the filling and draining of supraglacial lakes on floating ice shelves induces sufficient flexure stress within the ice to (a) induce upward/downward propagating fractures originating at the base/surface of the ice shelf that (b) dissect the ice shelf into fragments that tend to have widths less than about half the ice thickness. The significance of narrow widths is that they promote capsize of the ice-shelf fragments during the break-up process. This capsize releases large amounts of gravitational potential energy (comparable to thousands of kilotons of TNT for the Larsen B Ice Shelf) thereby promoting explosiveness of the Larsen B event. The observational motivation for experimentally verifying the surface-lake mechanism for ice-shelf breakup is based on the fact that >2,000 surface lakes developed on the Larsen B Ice Shelf in the decade prior to its break up, and that these lakes were observed (via satellite imagery) to drain in a coordinated fashion during the day prior to the initiation of the break up. The field-observation component of the project will focus on a supraglacial lake on the McMurdo Ice Shelf where there is persistent summer season surface melting. The lake will be studied during a single provisional field season to determine whether grooming of surrounding surface streams and shorelines with heavy construction equipment will allow surface water to be manually encouraged to fill the lake. If successfully encouraged to develop, the McMurdo Ice Shelf surface lake will allow measurements of key ice-shelf flexure and stress variables needed to develop the theory of ice-shelf surface lakes without having to access the much more logistically demanding surface lakes of ice-shelves located elsewhere in Antarctica. Data to be gathered during the 6-week provisional field season include: energy- and water-balance parameters determining how the surface lake grows and fills, and various global positioning system measurements of the vertical bending of the ice sheet in response to the changing meltwater load contained within the surface lake. These data will be used to (1) constrain a computer model of viscoelastic flexure and possible fracture of the ice shelf in response to the increasing load of meltwater in the lake, and (2) determine whether continued study of the incipient surface-meltwater lake features on the McMurdo Ice Shelf provides a promising avenue for constraining the more-general behavior of surface meltwater lakes on other ice shelves located in warmer parts of Antarctica. Computer models constrained by the observational data obtained from the field project will inform energy- and water-balance models of ice shelves in general, and allow more accurate forecasts of changing ice-shelf conditions surrounding the inland ice of Antarctica. The project will create the first-ever ground-based observations useful for spawning the development of models capable of predicting viscoelastic and fracture behavior of ice shelves in response to supraglacial lake evolution, including slow changes due to energy balance effects, as well as fast changes due to filling and draining.
Ice-core records are critical to understanding past climate variations. An Antarctic ice core currently being drilled at the South Pole will allow detailed investigation of atmospheric gases and fill an important gap in understanding the pattern of climate variability across Antarctica. Critical to the interpretation of any ice core are: 1) accurate chronologies for both the ice and the trapped gas and 2) demonstration that records from the ice core reliably reflect climate. The proposed research will improve the ice and gas chronologies by making measurements of snow compaction in the upstream catchment in order to constrain age models of the ice. These measurements will be a key data set needed for better understanding and predicting time-varying conditions in the upper part of the ice sheet. The research team will measure the modern spatial gradients in accumulation rate, surface temperature, and water stable isotopes from shallow ice cores in the upstream catchment in order to determine the climate history from the ice-core record. The new ice-flow measurements will make it possible to define the path of ice from upstream to the South Pole ice-core drill site to assess spatial gradients in snowfall and to infer histories of snowfall from internal layers within the ice sheet. The project will be led by an early-career scientist, provide broad training to graduate students, and engage in public outreach on polar science. Ice-core records of stable isotopes, aerosol-born particles, and atmospheric gases are critical to understanding past climate variations. The proposed research will improve the ice and gas chronologies in the South Pole ice core by making in situ measurements of firn compaction in the upstream catchment to constrain models of the gas-age ice-age difference. The firn measurements will be a key data set needed to form a constitutive relationship for firn, and will drive better understanding and prediction of transient firn evolution. The research team will measure the modern gradients in accumulation rate, surface temperature, and water stable isotopes in the upstream catchment to separate spatial (advection) variations from temporal (climate) variations in the ice-core records. The ice-flow measurements will define the flowline upstream of the drill site, assess spatial gradients in accumulation, and infer histories of accumulation from radar-observed internal layers. Results will directly enhance interpretation of South Pole ice-core records, and also advance understanding of firn densification and drive next-generation firn models.
The Palmer Antarctica LTER (Long Term Ecological Research) site has been in operation since 1990. The goal of all the LTER sites is to conduct policy-relevant research on ecological questions that require tens of years of data, and cover large geographical areas. For the Palmer Antarctica LTER, the questions are centered around how the marine ecosystem west of the Antarctica peninsula is responding to a climate that is changing as rapidly as any place on the Earth. For example, satellite observations over the past 35 years indicate the average duration of sea ice cover is now ~90 days (3 months!) shorter than it was. The extended period of open water has implications for many aspects of ecosystem research, with the concurrent decrease of Adèlie penguins within this region regularly cited as an exemplar of climate change impacts in Antarctica. Cutting edge technologies such as autonomous underwater (and possibly airborne) vehicles, seafloor moorings, and numerical modeling, coupled with annual oceanographic cruises, and weekly environmental sampling, enables the Palmer Antarctica LTER to expand and bridge the time and space scales needed to assess climatic impacts. This award includes for the first time study of the roles of whales as major predators in the seasonal sea ice zone ecosystem. The team will also focus on submarine canyons, special regions of enhanced biological activity, along the Western Antarctic Peninsula (WAP). The current award's overarching research question is: How do seasonality, interannual variability, and long term trends in sea ice extent and duration influence the structure and dynamics of marine ecosystems and biogeochemical cycling? Specific foci within the broad question include: 1. Long-term change and ecosystem transitions. What is the sensitivity or resilience of the ecosystem to external perturbations as a function of the ecosystem state? 2. Lateral connectivity and vertical stratification. What are the effects of lateral transports of freshwater, heat and nutrients on local ocean stratification and productivity and how do they drive changes in the ecosystem? 3. Top-down controls and shifting baselines. How is the ecosystem responding to the cessation of whaling and subsequent long-term recovery of whale stocks? 4. Foodweb structure and biogeochemical processes. How do temporal and spatial variations in foodweb structure influence carbon and nutrient cycling, export, and storage? The broader impacts of the award leverage local educational partnerships including the Sandwich, MA STEM Academy, the New England Aquarium, and the NSF funded Polar Learning and Responding (PoLAR) Climate Change Education Partnership at Columbia's Earth Institute to build new synergies between Arctic and Antarctic, marine and terrestrial scientists and students, governments and NGOs. The Palmer Antarctic LTER will also conduct appropriate cross LTER site comparisons, and serve as a leader in information management to enable knowledge-building within and beyond the Antarctic, oceanographic, and LTER communities.
Non-Technical Summary: About 80 million years ago, the tip of the Antarctic Peninsula in the vicinity of what is now James Ross Island experienced an episode of rapid subsidence, creating a broad depositional basin that collected sediments eroding from the high mountains to the West. This depression accumulated a thick sequence of fossil-rich, organic-rich sediments of the sort that are known to preserve hydrocarbons, and for which Argentina, Chile, and the United Kingdom have overlapping territorial claims. The rocks preserve one of the highest resolution records of the biological and climatic events that led to the eventual death of the dinosaurs at the Cretaceous-Tertiary boundary (about 66 million years ago). A previous collaboration between scientists from the Instituto Antártico Argentino (IAA) and NSF-supported teams from Caltech and the University of Washington were able to show that this mass extinction event started nearly 50,000 years before the sudden impact of an asteroid. The asteroid obviously hit the biosphere hard, but something else knocked it off balance well before the asteroid hit. A critical component of the previous work was the use of reversals in the polarity of the Earth?s magnetic field as a dating tool ? magnetostratigraphy. This allowed the teams to correlate the pattern of magnetic reversals from Antarctica with elsewhere on the planet. This includes data from a major volcanic eruption (a flood basalt province) that covered much of India 65 million years ago. The magnetic patterns indicate that the Antarctic extinction started with the first pulse of this massive eruption, which was also coincident with a rapid spike in polar temperature. The Argentinian and US collaborative teams will extend this magnetic polarity record back another ~ 20 million years in time, and expand it laterally to provide magnetic reversal time lines across the depositional basin. They hope to recover the end of the Cretaceous Long Normal interval, which is one of the most distinctive events in the history of Earth?s magnetic field. The new data should refine depositional models of the basin, allow better estimates of potential hydrocarbon reserves, and allow biotic events in the Southern hemisphere to be compared more precisely with those elsewhere on Earth. Other potential benefits of this work include exposing several US students and postdoctoral fellows to field based research in Antarctica, expanding the international aspects of this collaborative work via joint IAA/US field deployments, and follow-up laboratory investigations and personnel exchange of the Junior scientists. Technical Description of Project The proposed research will extend the stratigraphic record in the late Cretaceous and early Tertiary sediments (~ 83 to 65 Ma before present) of the James Ross Basin, Antarctica, using paleo-magnetic methods. Recent efforts provided new methods to analyze these rocks, yielding their primary magnetization, and producing both magnetic polarity patterns and paleomagnetic pole positions. This provided the first reliable age constraints for the younger sediments on Seymour Island, and quantified the sedimentation rate in this part of the basin. The new data will allow resolution of the stable, remnant magnetization of the sediments from the high deposition rate James Ross basin (Tobin et al., 2012), yielding precise chronology/stratigraphy. This approach will be extended to the re-maining portions of this sedimentary basin, and will allow quantitative estimates for tectonic and sedimentary processes between Cretaceous and Early Tertiary time. The proposed field work will refine the position of several geomagnetic reversals that occurred be-tween the end of the Cretaceous long normal period (Chron 34N, ~ 83 Ma), and the lower portion of Chron 31R (~ 71 Ma). Brandy Bay provides the best locality for calibrating the stratigraphic position of the top of the Cretaceous Long Normal Chron, C34N. Although the top of the Cretaceous long normal Chron is one of the most important correlation horizons in the entire geological timescale, it is not properly correlated to the southern hemisphere biostratigraphy. Locating this event, as well as the other reversals, will be a major addition to understanding of the geological history of the Antarctic Peninsula. These data will also help refine tectonic models for the evolution of the Southern continents, which will be of use across the board for workers in Cretaceous stratigraphy (including those involved in oil exploration). This research is a collaborative effort with Dr. Edward Olivero of the Centro Austral de Investigaciones Cientificas (CADIC/CONICET) and Prof. Augusto Rapalini of the University of Buenos Aires. The collaboration will include collection of samples on their future field excursions to important targets on and around James Ross Island, supported by the Argentinian Antarctic Program (IAA). Argentinian scientists and students will also be involved in the US Antarctic program deployments, proposed here for the R/V Laurence Gould, and will continue the pattern of joint international publication of the results.
With 70% of the Earth's surface being covered by oceans, a longstanding question of interest to the ecology of migratory seabirds is how they locate their prey across such vast distances. The project seeks to investigate the sensory strategies used in the foraging behavior of procellariiform seabirds, such as petrels, albatrosses and shearwaters. These birds routinely travel over thousands of kilometers of open ocean, apparently using their pronounced olfactory abilities (known to be up to a million times more sensitive than other birds) to identify productive marine areas or locate prey. High resolution tracking, such as provided by miniaturized GPS data loggers (+/- 5m; 10 second sampling), are needed to gain insight into some of the questions as to the sensory mechanisms birds use to locate their prey. Combining these tracking and positioning devices along with stomach temperature recorders capable of indicating prey ingestion, will provide a wealth of new behavioral information. Species specific foraging based on prey specific odors (e.g. krill vs fisheries vs. squid), and mixed strategies using olfaction and visual cues appear to be different for these different marine predators. Albatrosses are increasingly an endangered species globally, and additional information as to their foraging strategies might lead to better conservation measures such as the avoidance of by-catch by long-line fisheries. Intimate details of each species foraging activity patterns during the day and night and insight into the conservation of these top predators in pelagic Southern Ocean ecosystems are a few of the research directions these novel fine scale resolution approaches are yielding.
The McMurdo Dry Valleys in Antarctica are recognized as being the driest, coldest and probably one of the harshest environments on Earth. In addition to the lack of water, the biota in the valleys face a very limited supply of nutrients such as nitrogen compounds - necessary for protein synthesis. The glacial streams of the Dry Valleys have extensive cyanobacterial (blue green algae) mats that are a major source of carbon and nitrogen compounds to biota in this region. While cyanobacteria in streams are important as a source of these compounds, other non-photosynthetic bacteria also contribute a significant fraction (~50%) of fixed nitrogen compounds to valley biota. This research effort will involve an examination of exactly which non-phototrophic bacteria are involved in nitrogen fixation and what environmental factors are responsible for controlling nitrogen fixation by these microbes. This work will resolve the environmental factors that control the activity, abundance and diversity of nitrogen-fixing microbes across four of the McMurdo Dry Valleys. This will allow for comparisons among sites of differing latitude, temperature, elevation and exposure to water. These results will be integrated into a landscape wetness model that will help determine the impact of both cyanobacterial and non-photosynthetic nitrogen fixing microorganisms in this very harsh environment. The Dry Valleys in many ways resemble the Martian environment, and understanding the primitive life and very simple nutrient cycling in the Dry Valleys has relevance for understanding how life might have once existed on other planets. Furthermore, the study of microbes from extreme environments has resulted in numerous biotechnological applications such as the polymerase chain reaction for amplifying DNA and mechanisms for freeze resistance in agricultural crops. Thus, this research should yield insights into how biota survive in extreme environments, and these insights could lead to other commercial applications.
This award supports a project to use the Roosevelt Island ice core as a glaciological dipstick for the eastern Ross Sea. Recent attention has focused on the eastern Ross Embayment, where there are no geological constraints on ice thickness changes, due to the lack of protruding rock "dipsticks" where the ice sheet can leave datable records of high stands. Recent work has shown how dated ice cores can be used as dipsticks to derive ice-thickness histories. Partners from New Zealand and Denmark will extract an ice core from Roosevelt Island during the 2010-2011 and 2011-12 austral summers. Their science objective is to contribute to understanding of climate variability over the past 40kyr. The science goal of this project is not the climate record, but rather the history of deglaciation in the Ross Sea. The new history from the eastern Ross Sea will be combined with the glacial histories from the central Ross Sea (Siple Dome and Byrd) and existing and emerging histories from geologic and marine records along the western Ross Sea margin and will allow investigators to establish an updated, self-consistent model of the configuration and thickness of ice in the Ross Embayment during the LGM, and the timing of deglaciation. Results from this work will provide ground truth for new-generation ice-sheet models that incorporate ice streams and fast-flow dynamics. Realistic ice-sheet models are needed not only for predicting the response to future possible environments, but also for investigating past behaviors of ice sheets. This research contributes to the primary goals of the West Antarctic Ice Sheet Initiative as well as the IPY focus on ice-sheet history and dynamics. It also contributes to understanding spatial and temporal patterns of climate change and climate dynamics over the past 40kyr, one of the primary goals of the International Partnerships in Ice Core Sciences (IPICS). The project will help to develop the next generation of scientists and will contribute to the education and training of two Ph.D. students. All participants will benefit from the international collaboration, which will expose them to different field and laboratory techniques and benefit future collaborative work. All participants are involved in scientific outreach and undergraduate education, and are committed to fostering diversity. Outreach will be accomplished through regularly scheduled community and K-12 outreach events, talks and popular writing by the PIs, as well as through University press offices.
Like no other region on Earth, the northern Antarctic Peninsula represents a spectacular natural laboratory of climate change and provides the opportunity to study the record of past climate and ecological shifts alongside the present-day changes in one of the most rapidly warming regions on Earth. This award supports the cryospheric and oceano-graphic components of an integrated multi-disciplinary program to address these rapid and fundamental changes now taking place in Antarctic Peninsula (AP). By making use of a marine research platform (the RV NB Palmer and on-board helicopters) and additional logistical support from the Argentine Antarctic program, the project will bring glaciologists, oceanographers, marine geologists and biologists together, working collaboratively to address fundamentally interdisciplinary questions regarding climate change. The project will include gathering a new, high-resolution paleoclimate record from the Bruce Plateau of Graham Land, and using it to compare Holocene- and possibly glacial-epoch climate to the modern period; investigating the stability of the remaining Larsen Ice Shelf and rapid post-breakup glacier response ? in particular, the roles of surface melt and ice-ocean interactions in the speed-up and retreat; observing the contribution of, and response of, oceanographic systems to ice shelf disintegration and ice-glacier interactions. Helicopter support on board will allow access to a wide range of glacial and geological areas of interest adjacent to the Larsen embayment. At these locations, long-term in situ glacial monitoring, isostatic uplift, and ice flow GPS sites will be established, and high-resolution ice core records will be obtained using previously tested lightweight drilling equipment. Long-term monitoring of deep water outflow will, for the first time, be integrated into changes in ice shelf extent and thickness, bottom water formation, and multi-level circulation by linking near-source observations to distal sites of concentrated outflow. The broader impacts of this international, multidisciplinary effort are that it will significantly advance our understanding of linkages amongst the earth's systems in the Polar Regions, and are proposed with international participation (UK, Spain, Belgium, Germany and Argentina) and interdisciplinary engagement in the true spirit of the International Polar Year (IPY). It will also provide a means of engaging and educating the public in virtually all aspects of polar science and the effects of ongoing climate change. The research team has a long record of involving undergraduates in research, educating high-performing graduate students, and providing innovative and engaging outreach products to the K-12 education and public media forums. Moreover, forging the new links both in science and international Antarctic programs will provide a continuing legacy, beyond IPY, of improved understanding and cooperation in Antarctica.
The McMurdo Dry Valleys (MDV) is a polar desert on the coast of East Antarctica, a region that has not yet experienced climate warming. The McMurdo Dry Valleys Long Term Ecological Research (MCMLTER) project has documented the ecological responses of the glacier, soil, stream and lake ecosystems in the MDV during a cooling trend (from 1986 to 2000) which was associated with the depletion of atmospheric ozone. In the past decade, warming events with strong katabatic winds occurred during two summers and the resulting high streamflows and sediment deposition changed the dry valley landscape, possibly presaging conditions that will occur when the ozone hole recovers. In anticipation of future warming in Antarctica, the overarching hypothesis of the proposed project is: Climate warming in the McMurdo Dry Valley ecosystem will amplify connectivity among landscape units leading to enhanced coupling of nutrient cycles across landscapes, and increased biodiversity and productivity within the ecosystem. Warming in the MDV is hypothesized to act as a slowly developing, long-term press of warmer summers, upon which transient pulse events of high summer flows and strong katabatic winds will be overprinted. Four specific hypotheses address the ways in which pulses of water and wind will influence contemporary and future ecosystem structure, function and connectivity. Because windborne transport of biota is a key aspect of enhanced connectivity from katabatic winds, new monitoring will include high-resolution measurements of aeolian particle flux. Importantly, integrative genomics will be employed to understand the responses of specific organisms to the increased connectivity. The project will also include a novel social science component that will use environmental history to examine interactions between human activity, scientific research, and environmental change in the MDV over the past 100 years. To disseminate this research broadly, MCM scientists will participate in a wide array of outreach efforts ranging from presentations in K-12 classrooms to bringing undergraduates and teachers to the MDV to gain research experience. Planned outreach programs will build upon activities conducted during the International Polar Year (2007-2008), which include development of an interactive DVD for high school students and teachers and publication of a children's book in the LTER Schoolyard Book Series. A teacher's edition of the book with a CD containing lesson plans will be distributed. The project will develop programs for groups traditionally underrepresented in science arenas by publishing some outreach materials in Spanish.
This project focuses on an important group of photosynthetic algae in the Southern Ocean (SO), diatoms, and the roles associated bacterial communities play in modulating their growth. Diatom growth fuels the SO food web and balances atmospheric carbon dioxide by sequestering the carbon used for growth to the deep ocean on long time scales as cells sink below the surface. The diatom growth is limited by the available iron in the seawater, most of which is not freely available to the diatoms but instead is tightly bound to other compounds. The nature of these compounds and how phytoplankton acquire iron from them is critical to understanding productivity in this region and globally. The investigators will conduct experiments to characterize the relationship between diatoms, their associated bacteria, and iron in open ocean and inshore waters. Experiments will involve supplying nutrients at varying nutrient ratios to natural phytoplankton assemblages to determine how diatoms and their associated bacteria respond to different conditions. This will provide valuable data that can be used by climate and food web modelers and it will help us better understand the relationship between iron, a key nutrient in the ocean, and the organisms at the base of the food web that use iron for photosynthetic growth and carbon uptake. The project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. The project supports early career senior investigators and the training of graduate and undergraduate students as well as outreach activities with middle school Girl Scouts in Rhode Island, inner city middle and high school age girls in Virginia, and middle school girls in Florida. The project combines trace metal biogeochemistry, phytoplankton cultivation, and molecular biology to address questions regarding the production of iron-binding compounds and the role of diatom-bacterial interactions in this iron-limited region. Iron is an essential micronutrient for marine phytoplankton. Phytoplankton growth in the SO is limited by a lack of sufficient iron, with important consequences for carbon cycling and climate in this high latitude regime. Some of the major outstanding questions in iron biogeochemistry relate to the organic compounds that bind >99.9% of dissolved iron in surface oceans. The investigators' prior research in this region suggests that production of strong iron-binding compounds in the SO is linked to diatom blooms in waters with high nitrate to iron ratios. The sources of these compounds are unknown but the investigators hypothesize that they may be from bacteria, which are known to produce such compounds for their own use. The project will test three hypotheses concerning the production of these iron-binding compounds, limitations on the biological availability of iron even if present in high concentrations, and the roles of diatom-associated bacteria in these processes. Results from this project will provide fundamental information about the biogeochemical trigger, and biological sources and function, of natural strong iron-binding compound production in the SO, where iron plays a critical role in phytoplankton productivity, carbon cycling, and climate regulation.
Interest in the reduced alkalinity of high latitude waters under conditions of enhanced CO2 uptake from the atmosphere have been the impetus of numerous recent studies of bio-stressors in the polar marine environment. The project seeks to improve our understanding of the variance of coastal Southern Ocean carbonate species (CO2 system), its diurnal and inter-annual variability, by acquiring autonomous, high frequency observations from an Antarctic coastal mooring(s). A moored observing system co-located within the existing Palmer LTER array will measure pH, CO2 partial pressure, temperature, salinity and dissolved oxygen with 3-hour frequency in this region of the West Antarctic Peninsula continental shelf. Such observations will help estimate the dominant physical and biological controls on the seasonal variations in the CO2 system in coastal Antarctic waters, including the sign, seasonality and the flux of the net annual air-sea exchange of carbon dioxide. The Palmer LTER site is experiencing rapid ecological change in the West Antarctic Peninsula, a region that is warming at rates faster than any other region of coastal Antarctica.
Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project seeks to drive a transformative shift in our understanding of the crucial role of the Southern Ocean in taking up anthropogenic carbon and heat, and resupplying nutrients from the abyss to the surface. An observational program will generate vast amounts of new biogeochemical data that will provide a greatly improved view of the dynamics and ecosystem responses of the Southern Ocean. A modeling component will apply these observations to enhancing understanding of the current ocean, reducing uncertainty in projections of future carbon and nutrient cycles and climate. Because it serves as the primary gateway through which the intermediate, deep, and bottom waters of the ocean interact with the surface layers and thus the atmosphere, the Southern Ocean has a profound influence on the oceanic uptake of anthropogenic carbon and heat as well as nutrient resupply from the abyss to the surface. Yet it is the least observed and understood region of the world ocean. The oceanographic community is on the cusp of two major advances that have the potential to transform understanding of the Southern Ocean. The first is the development of new biogeochemical sensors mounted on autonomous profiling floats that allow sampling of ocean biogeochemistry and acidification in 3-dimensional space with a temporal resolution of five to ten days. The SOCCOM float program proposed will increase the average number of biogeochemical profiles measured per month in the Southern Ocean by ~10-30x. The second is that the climate modeling community now has the computational resources and physical understanding to develop fully coupled climate models that can represent crucial mesoscale processes in the Southern Ocean, as well as corresponding models that assimilate observations to produce a state estimate. Together with the observations, this new generation of models provides the tools to vastly improve understanding of Southern Ocean processes and the ability to quantitatively assess uptake of anthropogenic carbon and heat, as well as nutrient resupply, both today and into the future. In order to take advantage of the above technological and modeling breakthroughs, SOCCOM will implement the following research programs: * Theme 1: Observations. Scripps Institution of Oceanography will lead a field program to expand the number of Southern Ocean autonomous profiling floats and equip them with sensors to measure pH, nitrate, and oxygen. The University of Washington and Monterey Bay Aquarium Research Institute will design, build, and oversee deployment of the floats. Scripps will also develop a mesoscale eddying Southern Ocean state estimate that assimilates physical and biogeochemical data into the MIT ocean general circulation model. * Theme 2: Modeling. University of Arizona and Princeton University, together with NOAA's Geophysical Fluid Dynamics Laboratory (GFDL), will use SOCCOM observations to develop data/model assessment metrics and next-generation model analysis and evaluation, with the goal of improving process level understanding and reducing the uncertainty in projections of our future climate. Led by Climate Central, an independent, non-profit journalism and research organization that promotes understanding of climate science, SOCCOM will collaborate with educators and media professionals to inform policymakers and the public about the challenges of climate change and its impacts on marine life in the context of the Southern Ocean. In addition, the integrated team of SOCCOM scientists and educators will: * communicate data and results of the SOCCOM efforts quickly to the public through established data networks, publications, broadcast media, and a public portal; * train a new generation of diverse ocean scientists, including undergraduate students, graduate students, and postdoctoral fellows versed in field techniques, data calibration, modeling, and communication of research to non-scientists; * transfer new sensor technology and related software to autonomous instrument providers and manufacturers to ensure that they become widely useable.
This project aims to identify which portions of the glacial cover in the Antarctic Peninsula are losing mass to the ocean. This is an important issue to resolve because the Antarctic Peninsula is warming at a faster rate than any other region across the earth. Even though glaciers across the Antarctic Peninsula are small, compared to the continental ice sheet, defining how rapidly they respond to both ocean and atmospheric temperature rise is critical. It is critical because it informs us about the exact mechanisms which regulate ice flow and melting into the ocean. For instance, after the break- up of the Larsen Ice Shelf in 2002 many glaciers began to flow rapidly into the sea. Measuring how much ice was involved is difficult and depends upon accurate estimates of volume and area. One way to increase the accuracy of our estimates is to measure how fast the Earth's crust is rebounding or bouncing back, after the ice has been removed. This rebound effect can be measured with very precise techniques using instruments locked into ice free bedrock surrounding the area of interest. These instruments are monitored by a set of positioning satellites (the Global Positioning System or GPS) in a continuous fashion. Of course the movement of the Earth's bedrock relates not only to the immediate response but also the longer term rate that reflects the long vanished ice masses that once covered the entire Antarctic Peninsula?at the time of the last glaciation. These rebound measurements can, therefore, also tell us about the amount of ice which covered the Antarctic Peninsula thousands of years ago. Glacial isostatic rebound is one of the complicating factors in allowing us to understand how much the larger ice sheets are losing today, something that can be estimated by satellite techniques but only within large errors when the isostatic (rebound) correction is unknown. The research proposed consists of maintaining a set of six rebound stations until the year 2016, allowing for a longer time series and thus more accurate estimates of immediate elastic and longer term rebound effects. It also involves the establishment of two additional GPS stations that will focus on constraining the "bull's eye" of rebound suggested by measurements over the past two years. In addition, several more geologic data points will be collected that will help to reconstruct the position of the ice sheet margin during its recession from the full ice sheet of the last glacial maximum. These will be based upon the coring of marine sediment sequences now recognized to have been deposited along the margins of retreating ice sheets and outlets. Precise dating of the ice margin along with the new and improved rebound data will help to constrain past ice sheet configurations and refine geophysical models related to the nature of post glacial rebound. Data management will be under the auspices of the UNAVCO polar geophysical network or POLENET and will be publically available at the time of station installation. This project is a small scale extension of the ongoing LARsen Ice Shelf, Antarctica Project (LARISSA), an IPY (International Polar Year)-funded interdisciplinary study aimed at understanding earth system connections related to the Larsen Ice Shelf and the northern Antarctic Peninsula.
The research will examine how diatoms (an important group of plankton in the Southern Ocean) adapt to environmental change. Diatoms will be sampled from different regions of the Southern Ocean, including the Drake Passage, the Pacific Sector of the Southern Ocean and the Ross Sea and examined to determine the range of genetic variation among diatoms in these regions. Experiments on a range of diatoms will be conducted in home laboratories and will be aimed at measuring shifts in physiological capacities over many generations in response to directional changes in the environment (temperature and pH). The information on the genetic diversity of field populations combined with information on potential rates of adaptability and genome changes will provide insight into ways in which polar marine diatoms populations may respond to environmental changes that may occur in surface oceans in the future or may have occurred during past climate conditions. Such information allows better modeling of biogeochemical cycles in the ocean as well as improves our abilities to interpret records of past ocean conditions. The project will support a doctoral student and a postdoctoral researcher as well as several undergraduate students. These scientists will learn the fundamentals of experimental evolution, a skill set that is being sought in the fields of biology and oceanography. The project also includes a collaboration with the Metcalf Institute for Marine and Environmental Reporting that will design and facilitate a session focused on current research related to evolution and climate change to be held at the annual conference of the National Association of Science Writers (NASW). Both physiological and genetic variation are key parameters for understanding evolutionary processes in phytoplankton but they are essentially unknown for Southern Ocean diatoms. The extent to which these two factors determine plasticity and adaptability in field populations and the interaction between them will influence how and whether cold-adapted diatoms can respond to changing environments. This project includes a combination of field work to identify genetic diversity within diatoms using molecular approaches and experiments in the lab to assess the range of physiological variation in contemporary populations of diatoms and evolution experiments in the lab to assess how the combination of genetic diversity and physiological variation influence the evolutionary potential of diatoms under a changing environment. This research will uncover general relationships between physiological variation, genetic diversity, and evolutionary potential that may apply across microbial taxa and geographical regions, substantially improving efforts to predict shifts in marine ecosystems. Results from this study can be integrated into developing models that incorporate evolution to predict ecosystem changes under future climate change scenarios.
This project will support two training courses that will introduce early-career scientists from a wide range of disciplinary backgrounds to key issues in polar science, and especially to provide the opportunity to gain hands-on experience in Antarctic field activities. Antarctica is an ideal location to study a wide variety of questions in biology. However, few students and early-career scientists have the opportunity to work on-site in Antarctica unless they are directly associated with a senior scientist who has a funded Antarctic project. The project will further the NSF goal of training new generations of scientists by providing hands-on training in Antarctica during one course at Palmer Station in 2016 and another at McMurdo Station in 2018. This represents a continuation of nine previous courses at McMurdo Station which have a proven record of introducing participants to Antarctic science under realistic field conditions, providing opportunities to understand and appreciate the complexities and logistical challenges of undertaking science in Antarctica, enhancing the professional careers of the participants, and increasing international collaborations for early-career scientists. The proposed training courses will be open to Ph.D. students and post-doctoral scientists who have interests in the study of Antarctic marine organisms to help prepare them for success in developing their own independent research programs in polar regions. Long-standing and recent questions in evolution and ecology of Antarctic organisms will be examined with 1) field collections, 2) physiological experiments on whole organisms, 3) studies of isolated cells and tissues, 4) experiments on macromolecular processes (e.g., enzymes), and 5) molecular biological analyses.
The extreme mountain topographies of alpine landscapes at mid latitudes (e.g., European Alps, Patagonia, Alaska) are thought to have formed by the erosive action of glaciers, yet our understanding of exactly when and how those topographies developed is limited. If glacial ice was responsible for forming them, then those landscapes must have developed primarily over the last 2-3 million years when ice was present at those latitudes; this timing has only recently been confirmed by observations. In contrast, the Antarctic Peninsula, which contains similarly spectacular topographic relief, is known to have hosted alpine glaciers as early as 37 million years ago, and is currently covered by ice. Thus, if caused by glacial erosion, the high relief of the peninsula should have formed much earlier than what has been observed at mid latitude sites, yet we know nearly nothing about the timing of its development. The primary benefit of this research will be to study the timing of topography development along the Antarctic Peninsula by applying state of the art chemical analyses to sediments collected offshore. This research is important because studying a high latitude site will enable comparison with sites at mid latitudes and test current hypotheses on the development of glacial landscapes in general. This project aims to apply low-temperature thermochronometry based on the (U-Th)/He system in apatite to investigate the exhumation history, the development of the present topography, and the pattern of glacial erosion in the central Antarctic Peninsula. A number of recent studies have used this approach to study the dramatic, high-relief landscapes formed by Pleistocene alpine glacial erosion in temperate latitudes: New Zealand, the Alps, British Columbia, Alaska, and Patagonia. These studies have not only revealed when these landscapes formed, but have also provided new insights into the physical mechanisms of glacial erosion. The Antarctic Peninsula is broadly akin to temperate alpine landscapes in that the dominant landforms are massive glacial troughs. However, what we know about Antarctic glacial history suggests that the timing and history of glacial erosion was most likely very different from the temperate alpine setting: The Antarctic Peninsula has been glaciated since the Eocene, and Pleistocene climate cooling is hypothesized to have suppressed, rather than enhanced, glacial erosion. Our goal is to evaluate these hypotheses by developing a direct thermochronometric record of when and how the present glacial valley relief formed. We propose to learn about the timing and process of glacial valley formation through apatite (U-Th)/He and 4He/3He measurements on glacial sediment collected near the grounding lines of major glaciers draining the Peninsula. In effect, since we cannot sample bedrock directly that is currently covered by ice, we will rely on these glaciers to do it for us.
Collaborative Research: THE MCMURDO DRY VALLEYS: A Landscape on the Threshold of Change is supported by the Antarctic Integrated System Science (AISS) program in the Antarctic Sciences Section of the Division of Polar Programs within the Geosciences Directorate of the National Sciences Foundation (NSF). The funds will support the collection of state-of-the-art high resolution LIDAR (combining the terms light and radar) imagery of the Dry Valleys of Antarctica in the 2014/2015 Antarctic field season, with LIDAR data collection and processing being provided by the NSF-supported NCALM (National Center for Airborne Laser Mapping) facility. LIDAR images collected in 2014/2015 will be compared to images from 2001 in order to detect decadal change. Additional fieldwork will look at the distribution of buried massive ice, and the impacts that major changes like slumping are having on the biota. All field data will be used to improve models on energy balance, and hydrology. Intellectual Merit: There have been dramatic changes over the past decade in the McMurdo Dry Valleys: glaciers are deflating by tens of meters, rivers are incising by more than three meters, and thermokarst slumps are appearing near several streams and lakes. These observations have all been made by researchers in the field, but none of the changes have been mapped on a valley-wide scale. This award will provide a new baseline map for the entire Dry Valley system, with high-resolution imagery provided for the valley floors, and lower resolution imagery available for the higher elevation areas that are undergoing less change. The project will test the idea that sediment-covered ice is associated with the most dramatic changes, due to differential impacts of the increased solar radiation on sediment-covered compared to clean ice, and despite the current trend of slightly cooling air temperatures within the Dry Valleys. Information collected on the topography, coupled with the GPR determined buried ice distributions, will also be incorporated into improved energy and hydrological models. In addition to providing the new high-resolution digital elevation model (DEM), the project will ultimately result in identification of areas that are susceptible to sediment-enhanced melt-driven change, providing a powerful prediction tool for the impacts of climate change. Broader Impacts: The new DEM will be immediately useful to a wide range of disciplines, and will provide a comprehensive new baseline against which future changes will be compared. The project will provide a tool for the whole community to use, and the investigators will work with the community to make them aware of the new assets via public presentations, and perhaps via a workshop. The map will have international interest, and will also serve as a tool for environmental managers to draw on as they consider conservation plans. Several undergraduate and graduate students will participate in the project, and one of the co-PIs is a new investigator. The imagery collected is expected to be of interest to the general public in addition to scientific researchers, and venues for outreach such as museum exhibits and the internet will be explored. The proposed work is synergistic with 1) the co-located McMurdo LTER program, and 2) the NCALM facility that is also funded by the Geosciences Directorate.
Pettit/1565576 This award supports a Rapid Response Research (RAPID) project to observe the current weakened state of the Scar Inlet Ice Shelf, and potentially capture data during its anticipated disintegration. The Scar Inlet Ice Shelf (SIIS) is the southern remnant of the former Larsen B Ice Shelf, which disintegrated in March of 2002. Since then, the SIIS has weakened significantly but has not yet broken up. Cooler conditions than those seen prior to 2006 have reduced the chance of a disintegration in recent years, although a single warm season is likely to be enough to trigger such an event. The predicted "Super El Nino" for this austral summer may have significant effects on Antarctica's weather, potentially leading to a break-up or disintegration this year. Given the very weak state of the SIIS, it is urgent that we act now to better understand the processes involved in shelf disintegration or break-up of ice shelves. The goal of this work is to collect several key data sets, publish initial observations and preliminary conclusions, and then make the complete data record available to all scientists. Extreme changes in the stress conditions on the SIIS resulted from both the loss of the Larsen B ice plate and the continued inflow of ice from three large glaciers (Flask, Leppard, and Starbuck). The SIIS now has a number of large rifts and it is expected to break up or disintegrate in the very near future. Past research has made use of satellite data and weather instruments, establishing many of the current ideas regarding ice shelf break-ups and ice shelf weakening. Additional ground-based data to be collected under this study will test a number of hypotheses regarding pre-disintegration characteristics, triggering mechanisms, fracturing processes, runaway feedback effects, and stabilizing mechanisms. The project will collect extensive multi-instrument field observations of the SIIS and possibly capture a major disintegration event. In collaboration with the British Antarctic Survey, a team of 4 people will be deployed via Twin Otter for up to 4 weeks to a site with a broad view of the shelf and will install several temporary observing instruments there. The study derives its intellectual merit from the role of the Antarctic Peninsula as a microcosm of how other parts of Antarctica might evolve and de-glaciate in the next few centuries. The broader impacts include an opportunity to educate the public about the anticipated collapse of this remnant ice shelf and its relationship to future changes in Antarctica. The potential for wide media coverage (through a connection with the National Geographic) will underscore the critical changes scientists are observing in the crysophere driven by climate change. This proposal requires field work in Antarctica.
Previous studies of the Indo-Pacific region of Antarctica show that the margin of the ice sheet in this region has advanced and retreated into deep interior basins many times in the past. The apparent instability of this region makes it an important target for study in terms of understanding the future of the East Antarctic ice sheet and sea level rise. This project will study a number of processes that control the ice-shelf stability of this region, with the aim of improving projections of the rate and magnitude of future sea-level rise. This project will engage a range of students and train this next generation of scientists in the complex, interdisciplinary issue of ice-ocean interaction. The project will integrate geophysical data collected from aircraft over three critical sections of the East Antarctic grounding line (Totten Glacier, Denman Glacier, and Cook Ice Shelf) with an advanced ocean model. Using Australian and French assets, the team will collect new data around Denman Glacier and Cook Ice Shelf whereas analysis of Totten Glacier will be based on existing data. The project will assess three hypotheses to isolate the processes that drive the differences in observed grounding line thinning among these three glaciers: 1. bathymetry and large-scale ocean forcing control cavity circulation; 2. ice-shelf draft and basal morphology control cavity circulation; 3. subglacial freshwater input across the grounding line controls cavity circulation. The key outcomes of this new project will be to: 1. evaluate of ice-ocean coupling in areas of significant potential sea-level contribution; 2. relate volume changes of grounded and floating ice to regional oceanic heat transport and sub-ice shelf ocean dynamics in areas of significant potential sea-level and meridional overturning circulation impacts; and 3. improve boundary conditions to evaluate mass, heat, and freshwater budgets of East Antarctica's continental margins.
The Antarctic Automatic Weather Station (AAWS) network, first commenced in 1978, is the most extensive ground meteorological network in the Antarctic, approaching its 30th year at several of its installations. Its prime focus as a long term observational record is to measure the near surface weather and climatology of the Antarctic atmosphere. AWS sites measure air-temperature, pressure, wind speed and direction at a nominal surface height of 3m. Other parameters such as relative humidity and snow accumulation may also be measured. Observational data from the AWS are collected via the DCS Argos system aboard either NOAA or MetOp polar orbiting satellites and thus made available in near real time to operational and synoptic weather forecasters. The surface observations from the AAWS network are important records for recent climate change and meteorological processes. The surface observations from the AAWS network are also used operationally, and in the planning of field work. The surface observations from the AAWS network have been used to check on satellite and remote sensing observations.
1043471/Kaplan This award supports a project to obtain the first set of isotopic-based provenance data from the WAIS divide ice core. A lack of data from the WAIS prevents even a basic knowledge of whether different sources of dust blew around the Pacific and Atlantic sectors of the southern latitudes. Precise isotopic measurements on dust in the new WAIS ice divide core are specifically warranted because the data will be synergistically integrated with other high frequency proxies, such as dust concentration and flux, and carbon dioxide, for example. Higher resolution proxies will bridge gaps between our observations on the same well-dated, well-preserved core. The intellectual merit of the project is that the proposed analyses will contribute to the WAIS Divide Project science themes. Whether an active driver or passive recorder, dust is one of the most important but least understood components of regional and global climate. Collaborative and expert discussion with dust-climate modelers will lead to an important progression in understanding of dust and past atmospheric circulation patterns and climate around the southern latitudes, and help to exclude unlikely air trajectories to the ice sheets. The project will provide data to help evaluate models that simulate the dust patterns and cycle and the relative importance of changes in the sources, air trajectories and transport processes, and deposition to the ice sheet under different climate states. The results will be of broad interest to a range of disciplines beyond those directly associated with the WAIS ice core project, including the paleoceanography and dust- paleoclimatology communities. The broader impacts of the project include infrastructure and professional development, as the proposed research will initiate collaborations between LDEO and other WAIS scientists and modelers with expertise in climate and dust. Most of the researchers are still in the early phase of their careers and hence the project will facilitate long-term relationships. This includes a graduate student from UMaine, an undergraduate student from Columbia University who will be involved in lab work, in addition to a LDEO Postdoctoral scientist, and possibly an additional student involved in the international project PIRE-ICETRICS. The proposed research will broaden the scientific outlooks of three PIs, who come to Antarctic ice core science from a variety of other terrestrial and marine geology perspectives. Outreach activities include interaction with the science writers of the Columbia's Earth Institute for news releases and associated blog websites, public speaking, and involvement in an arts/science initiative between New York City's arts and science communities to bridge the gap between scientific knowledge and public perception.
Intellectual Merit: Southern Ocean processes play an important role in Late Quaternary glacial-interglacial climate change. However, the direct influence of newly upwelled warm nutrient-rich Circumpolar Deep Water on the Antarctic cryosphere remains speculative. The PI proposes to test the hypothesis that Circumpolar Deep Water-derived ocean heat negatively impacts the mass-balance of Antarctica?s ice sheets during deglaciations using precisely dated late Quaternary paleoceanographic studies of Antarctic margin sediments and a suite of geochemical proxies measured on three existing glacial marine sediment cores from the Prydz Channel, Antarctica. Specifically, the PI will use these data to reconstruct the Late Quaternary history of the Lambert Glacier/Amery Ice Shelf system; evaluate the timing, speed, and style of retreat of the Lambert Glacier/Amery Ice Shelf system during the last deglaciation, and to assess the impact of Circumpolar Deep Water intrusions on the Lambert Glacier/Amery Ice Shelf system in the Late Quaternary. Diatom bound radiocarbon and optically stimulated luminescence techniques will be used to obtain precise stratigraphic age control for the Prydz Channel siliceous muddy ooze intervals. In addition, the PI will measure sedimentary 10Be concentrations to determine the origin of the siliceous muddy ooze units and to track past changes in the position of the ice shelf front. Broader impacts: This proposal will support an early career female scientist and will provide professional development and research experiences for women/minority graduate and undergraduate students. The PI will take advantage of USF?s Oceanography Camp for Girls.
Intellectual Merit: Southern Ocean processes play an important role in Late Quaternary glacial-interglacial climate change. However, the direct influence of newly upwelled warm nutrient-rich Circumpolar Deep Water on the Antarctic cryosphere remains speculative. The PI proposes to test the hypothesis that Circumpolar Deep Water-derived ocean heat negatively impacts the mass-balance of Antarctica?s ice sheets during deglaciations using precisely dated late Quaternary paleoceanographic studies of Antarctic margin sediments and a suite of geochemical proxies measured on three existing glacial marine sediment cores from the Prydz Channel, Antarctica. Specifically, the PI will use these data to reconstruct the Late Quaternary history of the Lambert Glacier/Amery Ice Shelf system; evaluate the timing, speed, and style of retreat of the Lambert Glacier/Amery Ice Shelf system during the last deglaciation, and to assess the impact of Circumpolar Deep Water intrusions on the Lambert Glacier/Amery Ice Shelf system in the Late Quaternary. Diatom bound radiocarbon and optically stimulated luminescence techniques will be used to obtain precise stratigraphic age control for the Prydz Channel siliceous muddy ooze intervals. In addition, the PI will measure sedimentary 10Be concentrations to determine the origin of the siliceous muddy ooze units and to track past changes in the position of the ice shelf front. Broader impacts: This proposal will support an early career female scientist and will provide professional development and research experiences for women/minority graduate and undergraduate students. The PI will take advantage of USF?s Oceanography Camp for Girls.
The investigators will map glacial deposits and date variations in glacier variability at several ice-free regions in northern Victoria Land, Antarctica. These data will constrain the nature and timing of past ice thickness changes for major glaciers that drain into the northwestern Ross Sea. This is important because during the Last Glacial Maximum (15,000 - 18,000 years ago) these glaciers were most likely flowing together with grounded ice from both the East and West Antarctic Ice Sheets that expanded across the Ross Sea continental shelf to near the present shelf edge. Thus, the thickness of these glaciers was most likely controlled in part by the extent and thickness of the Ross Sea ice sheet and ice shelf. The data the PIs propose to collect can provide constraints on the position of the grounding line in the western Ross Sea during the Last Glacial Maximum, the time that position was reached, and ice thickness changes that occurred after that time. The primary intellectual merit of this project will be to improve understanding of a period of Antarctic ice sheet history that is relatively unconstrained at present and also potentially important in understanding past ice sheet-sea level interactions. This proposal will support an early career researcher's ongoing program of undergraduate education and research that is building a socio-economically diverse student body with students from backgrounds underrepresented in the geosciences. This proposal will also bring an early career researcher into Antarctic research.
The biota of the world's seafloor is fueled by bursts of seasonal primary production. For food-limited sediment communities to persist, a balance must exist between metazoan consumption of and competition with bacteria, a balance which likely changes through the seasons. Polar marine ecosystems are ideal places to study such complex interactions due to stark seasonal shifts between heterotrophic and autotrophic communities, and temperatures that may limit microbial processing of organic matter. The research will test the following hypotheses: 1) heterotrophic bacteria compete with macrofauna for food; 2) as phytoplankton populations decline macrofauna increasingly consume microbial biomass to sustain their populations; and 3) in the absence of seasonal photosynthetic inputs, macrofaunal biodiversity will decrease unless supplied with microbially derived nutrition. Observational and empirical studies will test these hypotheses at McMurdo Station, Antarctica, where a high-abundance macro-infaunal community is adapted to this boom-and-bust cycle of productivity. The investigator will mentor undergraduates from a predominantly minority-serving institution, in the fields of invertebrate taxonomy and biogeochemistry. The general public and young scientists will be engaged through lectures at local K-12 venues and launch of an interactive website. The results will better inform scientists and managers about the effects of climate change on polar ecosystems and the mechanisms of changing productivity patterns on global biodiversity.
Intellectual Merit: This project will use sediment cores from the Victoria Land Basin (VLB), Antarctica, to study secondary (diagenetic) carbonate minerals, as indicators of the basin?s fluid-flow history, within the well-constrained tectonic, depositional, and climatic context provided by sediment cores. This study will provide insights into subsurface processes in Victoria Land Basin, Antarctica and their relationships with the region?s climatic, cryospheric, and tectonic history. The work will utilize cores previously recovered by US-sponsored stratigraphic drilling projects (CIROS, CRP, and ANDRILL projects). This work is motivated by the unexpected discovery of dense brine in the subsurface of Southern McMurdo Sound during drilling by the ANDRILL Southern McMurdo Sound project. The presence of the brine is intriguing because it contradicts previous models for the origin of subsurface fluids that called upon large contributions from glacial melt water. Project objectives involve documenting the distribution of the brine (and potentially other fluids) via characterization of diagenetic precipitates. The approach will involve integration of petrographic and geochemical data (including conventional carbon, oxygen, and ?clumped? isotopes) to fully characterize diagenetic phases and allow development of a robust paragenetic history. This work will provide novel insights into the Cenozoic evolution of the VLB and, more broadly, the role of glacial processes in generating subsurface fluids. Broader impacts: Results from this project will help understand the origins of brines, groundwater and hydrocarbon reservoirs in analogous modern and ancient deposits elsewhere, which is of broad interest. This project will support the training of one graduate and one undergraduate student at the University of Nebraska-Lincoln (UNL) providing learning opportunities in sedimentary geology and diagenesis, fields with wide applicability. This proposal emphasizes rapid dissemination of results to the scientific community via conference presentations and contributions to peer-reviewed publications. The results will be integrated into education activities designed to develop skills in petrography and diagenesis, which are highly sought after in the energy sector. The project will generate a well-constrained dataset that allows direct linkage of diagenetic phases to environmental and tectonic change across a large sedimentary basin which will provide the basis for a comprehensive case study in an upper-level course (Sedimentary Petrography and Diagenesis) at UNL. In addition, online exercises will be developed and submitted to an open-access site (SEPM Stratigraphy Web) dedicated to sedimentary geology.
Alley/1542778 This award supports a three-year effort to study physical properties of the South Pole ice core to help provide a high-time-resolution history of trace gases and other paleoclimatic indicators from an especially cold site with high preservation potential for important signals. The physical-properties studies include visual inspection to identify any flow disturbances and for identifying annual layers and other features, and combined bubble, grain and ice crystal orientation studies to better understand the processes occurring in the ice that affect the climate record and the ice-sheet behavior. Success of these efforts will provide necessary support for dating and quality control to others studying the ice core, as well as determining the climate history of the site, flow state, and key physical processes in ice. The intellectual merits of the project include better understanding of physical processes, paleoclimatic reconstruction, dating of the ice, and quality assurance. Visual inspection of the core will help identify evidence of flow disturbances that would disrupt the integrity of the climate record and will reveal volcanic horizons and other features of interest. Annual layer counting will be conducted to help estimate accumulation rate over time as recorded in the ice core. Measurements of C-axis fabric, grain size and shapes, and bubble characteristics will provide information about processes occurring in the ice sheet as well as the history of ice flow, current flow state and how the ice is flowing and how easily it will flow in the future. Analysis of this data in conjunction with microCT data will help to reveal grain-scale processes. The broader impacts of the project include support for an early-career, post-doctoral researcher, and improved paleoclimatic data of societal relevance. The results will be incorporated into the active program of education and outreach which have educated many students, members of the public and policy makers through the sharing of information and educational materials about all aspects of ice core science and paleoclimate.
Intellectual Merit: The PIs propose to investigate last glacial maximum through Holocene glacial change on the northeastern Antarctic Peninsula, an area distinguished by dramatic ice shelf collapses and retreat of upstream glaciers. However, there is a lack of long-term context to know the relative significance of recent events over longer time scales. The PIs will obtain data on former ice margin positions, ice thicknesses, glacier retreat and thinning rates, and Holocene glacier change in the James Ross Island Archipelago and areas near the former Larsen-A ice shelf. These data include maximum- and minimum-limiting 14C and cosmogenic-nuclide exposure dates integrated with geomorphology and stratigraphy. Understanding the extent, nature, and history of glacial events is important for placing current changes in glacial extent into a long-term context. This research will also contribute to understanding the sensitivity of ice shelves and glaciers in this region to climate change. Records of changes in land-terminating glaciers will also address outstanding questions related to climate change since the LGM and through the Holocene. The PIs will collect samples during cooperative field projects with scientists of the Instituto Antártico Argentino and the Korea Polar Research Institute planned as part of existing, larger, research projects. Broader impacts: The proposed work includes collaborations with Argentina and Korea. The PIs are currently involved in or are initiating education and outreach activities that will be incorporated into this project. These include interactions with the American Museum of Natural History, the United States Military Academy at West Point, and undergraduate involvement in their laboratories. This project provides a significant opportunity to engage the public as it focuses on an area where environmental changes are the object of attention in the popular media.
This proposed research aims to produce high resolution, precise and accurate records of deep water temperatures in the Drake Passage over the past ~40,000 years, by applying the newly developed carbonate clumped isotope thermometer to a unique collection of modern and fossil deep-sea corals, and thus advance the understanding of the role of the Southern Ocean in modulating global climate. In addition, this study will provide further evaluation on the potential of this new thermometer to derive accurate estimates of past ocean temperatures from deep-sea coral skeletons. Funding will support an early-career junior scientist and a graduate student. Despite its crucial role in modulating global climate, rates and amplitudes of environmental changes in the Southern Ocean are often difficult to constrain. In particular, the knowledge about the deep water temperatures in the Southern Ocean during the last glacial cycle is extremely limited. This results both from the lack of well-dated climate archives for the deep Southern Ocean and from the fact that most existing temperature proxies (e.g. del18O and Mg/Ca of foraminifera and corals) suffer from the biological 'vital effects'. The latter is especially problematic; it causes substantial challenges in interpreting these geochemical proxies and can lead to biases equivalent to tens of degrees in temperature estimates. Recent development of carbonate clumped isotope thermometer, holds new promises for reconstructing deep water temperatures in the Southern Ocean, since calibration studies of this thermometer in deep-sea corals suggest it is largely free of vital effects. This proposed research seeks to refine the calibration of carbonate clumped isotope thermometer in deep-sea corals at low temperatures, improve the experimental methods to obtain high precision in temperature estimates, and then apply this thermometer to a unique collection of modern and fossil deep-sea corals collected from the Drake Passage during two recent Office of Polar Programs (OPP)-funded cruises, that have already been dated by radiocarbon and U-series methods. By combining the reconstructed temperatures with the radiocarbon and U-Th ages for these deep-sea corals, this study will explore the relationships between these temperature changes and global climate changes.
The Western Antarctic Peninsula (WAP) has experienced unprecedented warming and shifts in sea ice cover over the past fifty years. How these changes impact marine microbial communities, and subsequently how these shifts in the biota may affect the carbon cycle in surface waters is unknown. This work will examine how these ecosystem-level changes affect microbial community structure and function. This research will use modern metagenomic and transcriptomic approaches to test the hypothesis that the introduction of organic matter from spring phytoplankton blooms drives turnover in microbial communities. This research will characterize patterns in bacterial and archaeal succession during the transition from the austral winter at two long-term monitoring sites: Palmer Station in the north and Rothera Station in the south. This project will also include microcosm incubations to directly assess the effects of additions of organic carbon and melted sea ice on microbial community structure and function. The results of this work will provide a broader understanding of the roles of both rare and abundant microorganisms in carbon cycling within the WAP region, and how these communities may shift in structure and function in response to climate change. Results will be widely disseminated through publications as well as through presentations at national and international meetings. The research will provide training opportunities for both graduate and undergraduate students and will enhance international collaborations with the British Antarctic Survey.
Marine mammals that inhabit high latitude environments have evolved unique mechanisms to execute a suite of energetically-costly life history events (CLHEs) within a relatively short timeframe when conditions are most favorable. Understanding the intrinsic and extrinsic factors that regulate CLHEs is particularly important in species such as Weddell seals, as both reproduction and molt are associated with large reductions in foraging effort, and the timing and outcome of each appears linked with the other. The long-term mark recapture program on Erebus Bay's Weddell seals provides a unique opportunity to examine CLHEs in a known-history population. The proposed work will monitor physiological condition, pregnancy status, and behavior at various times throughout the year to determine if molt timing is influenced by prior reproductive outcome, and if it, in turn, influences future reproductive success. These data will then be used to address the demographic consequences of trade-offs between CLHEs in Weddell seals. The impact of environmental conditions and CLHE timing on population health will also be modeled so that results can be extended to other climates and species. An improved understanding of the interactions between CLHEs and the environment is important in predicting the response of organisms from higher trophic levels to climate change. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of graduate students and a post-doctoral researcher and will further foster an extensive public outreach collaboration.
Hastings/1246223 This award supports a project with the aim of distinguishing the sources of nitrate deposition to the West Antarctic Ice Sheet (WAIS) using isotopic ratios snow in archive snow and ice samples. The isotopic composition of nitrate has been shown to contain information about the source of the nitrate (i.e. nitrogen oxides = NOx = NO+NO2) and the oxidation processes that convert NOx to nitrate in the atmosphere prior to deposition. A difficulty in interpreting records in the context of NOx sources is that nitrate can be post-depositionally processed in surface snow, such that the archived record does not reflect the composition of the atmosphere. This intellectual merit of this work specifically aims to investigate variability in the isotopic composition of nitrate in snow and ice from the WAIS in the context of accumulation rate, NOx source emissions, and atmospheric chemistry. These records will be interpreted in the context of our understanding of biospheric (biomass burning, microbial processes in soils), atmospheric (lightning, transport, chemistry), and climate (temperature, accumulation rate) changes over time. A graduate student will be supported as part of this project, and both graduate student and PI will be involved in communicating the utility and results of polar research to elementary school students in the Providence, RI area. The broader impacts of the project also include making efforts to attract more young, female scientists to polar research by establishing a connection between the Earth Science Women's Network (ESWN), an organization PI Hastings helped to establish, and the Association of Polar Early Career Scientists (APECS). Finally, results of all measurements will be presented at relevant conferences, made available publicly and published in peer-reviewed journals.
0538427<br/>McConnell <br/>This award supports a project to use unique, high-depth-resolution records of a range of elements, chemical species, and ice properties measured in two WAIS Divide shallow ice cores and one shallow British ice core from West Antarctic to address critical paleoclimate, environmental, and ice-sheet mass-balance questions. Recent development of the CFA-TE method for ice-core analysis presents the opportunity to develop high-resolution, broad-spectrum glaciochemical records at WAIS Divide at relatively modest cost. Together with CFA-TE measurements from Greenland and other Antarctic sites spanning recent decades to centuries, these rich data will open new avenues for using glaciochemical data to investigate environmental and global changes issues ranging from anthropogenic and volcanic-trace-element fallout to changes in hemispheric-scale circulation, biogeochemistry, rapid-climate-change events, long-term climate change, and ice-sheet mass balance. As part of the proposed research, collaborations with U.S., Argentine, and British researchers will be initiated and expanded to directly address three major IPY themes (i.e., present environmental status, past and present environmental and human change, and polar-global interactions). Included in the contributions from these international collaborators will be ice-core samples, ice-core and meteorological model data, and extensive expertise in Antarctic glaciology, climatology, meteorology, and biogeochemistry. The broader impacts of the work include the training of students. The project will partially support one Ph.D. student and hourly undergraduate involvement. Every effort will be made to attract students from underrepresented groups to these positions. To address the challenge of introducing results of scientific research to the public policy debate, we will continue efforts to publish findings in high visibility journals, provide research results to policy makers, and work with the NSF media office to reach the public through mass-media programs. K-12 teacher and classroom involvement will be realized through outreach to local schools and NSF's Teachers Experiencing the Antarctic and Arctic (or similar) program in collaboration with WAIS Divide and other polar researchers.
This award supports a project to help to establish the depth-age chronology and the histories of accumulation and ice dynamics for the WAIS Divide ice core. The depth-age relationship and the histories of accumulation and ice dynamics are coupled. An accurate age scale is needed to infer histories of accumulation rate and ice-thickness change using ice-flow models. In turn, the accumulation-rate history is needed to calculate the age difference of ice to determine the age of the trapped gases. The accumulation history is also needed to calculate atmospheric concentrations of impurities trapped in the ice and is an important characteristic of climate. The history of ice-thickness change is also fundamental to understanding the stability of the WAIS. The primary goals of the WAIS Divide ice core project are to investigate climate forcing by greenhouse gases, the initiation of climate changes, and the stability of the West Antarctic Ice Sheet (WAIS). An accurate age scale is fundamental for achieving these goals. The first objective of this project is to establish an annually resolved depth-age relationship for the past 40,000 years. This will be done by measuring variations in electrical conductivity along the ice core, which are caused by seasonal variations in chemistry. We expect to be able to resolve annual layers back to 40,000 years before present (3,000 m depth) using this method. The second objective is to search for stratigraphic disturbances in the core that would compromise the paleoclimate record. Irregular layering will be identified by measuring the electrical conductivity of the ice in a vertical plan through the core. The third objective is to derive a preliminary chronology for the entire core. For the deeper ice we will use an ice-flow model to interpolate between known age markers, such as dated volcanic horizons and tie points from the methane gas chronology. The fourth objective is to derive a refined chronology simultaneously with histories of accumulation and ice-sheet thickness. An ice-flow model and all available data will be used to formulate an inverse problem, in which we infer the most appropriate histories of accumulation and ice-thickness, together with estimates of uncertainties. The flow model associated with those preferred histories then produces the best estimate of the chronology. The research contributes directly to the primary goals of the West Antarctic Ice Sheet Initiative. The project will help develop the next generation of scientists through the education and training of one Ph.D. student and several undergraduate students. This project will result in instrumentation for measuring the electrical conductivity of ice cores being available at the National Ice Core Lab for other researchers to use on other projects. All collaborators are committed to fostering diversity and currently participate in scientific outreach and most participate in undergraduate education. Outreach will be accomplished through regularly scheduled community and K-12 outreach events at UW, talks and popular writing by the PIs, as well as through our respective press offices.
Uncovering the dynamics of dissolved organic matter (DOM) is central to an understanding of the global carbon cycle, as organic material from lakes, streams, oceans and soils passes through this pool. DOM acts as a key energy source for microbes in many ecosystems and therefore can affect regional nutrient cycling patterns. For example, preliminary results suggest that organisms isolated from a supraglacial stream on Cotton Glacier, Antarctica, may be important in DOM cycling in this relatively simple, low temperature system. However, little is known about the functional attributes of the microbes that interact with DOM in the environment. This project will use state-of-the-art genomics, proteomics and metabolomics approaches to understand the mechanisms by which two microbial isolates, CG3 and CG9_1, affect DOM cycling. Liquid chromatography-mass spectrometry will also be used to better characterize the microbially-derived DOM from this ecosystem. This project will support the research and training of one undergraduate and two graduate students. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. Understanding the relationship between cold-adapted microbial metabolisms and DOM pools is important as more than 90% of the Earth?s oceans are below 5 degrees Celsius.
A 50+ year warming trend in the Southern Ocean has been most dramatic in Drake Passage and likely impacts ecosystem structure here. Acoustic Doppler Current Profiler (ADCP) records from multiple ?L.M. Gould? supply transits of Drake Passage from 1999 to present demonstrate spatial and temporal variability in acoustics backscattering. Acoustics backscattering strength in the upper water column corresponds to zooplankton and nekton biomass that supports predator populations. However, for much of Drake Passage the identity of taxa contributing to this acoustically detected biomass is not known. This project would introduce a biological component to ?L.M. Gould? transits of Drake Passage with the goal of determining the identity of taxa responsible for the backscattering records obtained by ADCP and relating these to higher trophic levels (seabird/marine mammal). Net sampling during spring, summer and fall transits will permit assessment of diel and seasonal changes in the abundance and taxonomic composition of zooplankton and top predators represented between Patagonia and the Antarctic Peninsula. Net samples and depth-referenced video records taken in conjunction with ADCP profiles will permit the identification of the dominant acoustic backscatters in the 3 biogeographic regions represented here, the Subantarctic, Polar Frontal, and Antarctic Zones. The validity of dominant backscattering taxa in the Antarctic Zone will be tested by comparing the ADCP records with abundant zooplankton data collected off the Antarctic Peninsula during January-March 1999-2009 as well with long-term top predator surveys. The broader impacts also include a cruise blog, the production of an article for an online outreach publication based at Moss Landing Marine Labs and a YouTube video featuring shipboard research in the Southern Ocean.
0538520<br/>Thiemens<br/>This award supports a project to develop the first complete record of multiple isotope ratios of nitrate and sulfate covering the last ~100,000 years, from the deep ice core planned for the central ice divide of the West Antarctic Ice Sheet (WAIS). The WAIS Divide ice core will be the highest resolution long ice core obtained from Antarctica and we can expect important complementary information to be available, including accurate knowledge of past accumulation rates, temperatures, and compounds such as H2O2, CO and CH4. These compounds play significant roles in global atmospheric chemistry and climate. Especially great potential lies in the use of multiple isotope signatures. The unique mass independent fractionation (MIF) 17O signature of ozone is observed in both nitrate and sulfate, due to the interaction of their precursors with ozone. The development of methods to measure the multiple-isotope composition of small samples of sulfate and nitrate makes continuous high resolution measurements on ice cores feasible for the first time. Recent work has shown that such measurements can be used to determine the hydroxyl radial (OH) and ozone (O3) concentrations in the paleoatmosphere as well as to apportion sulfate and nitrate sources. There is also considerable potential in using these isotope measurements to quantify post depositional changes. In the first two years, continuous measurements from the upper ~100-m of ice at WAIS divide will be obtained, to provide a detailed look at seasonal through centennial scale variability. In the third year, measurements will be made throughout the available depth of the deep core (expected to reach ~500 m at this time). The broader impacts of the project include applications to diverse fields including atmospheric chemistry, glaciology, meteorology, and paleoclimatology. Because nitrate and sulfate are important atmospheric pollutants, the results will also have direct and relevance to global environmental policy. This project will coincide with the International Polar Year (2007-2008), and contributes to goals of the IPY, which include the fostering of interdisciplinary research toward enhanced understanding of atmospheric chemistry and climate in the polar regions.
Antarctic channichthyid icefishes are stunning examples of the unique physiological traits that can arise during evolution in a constantly cold environment. Icefishes are the only vertebrates that as adults, lack the circulating oxygen-binding protein hemoglobin (Hb); several species within this family also lack the intracellular oxygen-binding protein myoglobin (Mb) in their heart ventricle. The loss of Hb and Mb has resulted in striking modifications in the cardiovascular system to ensure adequate tissue oxygenation, some of which are energetically costly. Recent indicate there may be at least one benefit to not expressing these heme-centered proteins - oxidized proteins and lipids are higher in red-blooded notothenioids compared to icefishes. The research will address the hypothesis that the loss of Hb and Mb reduces oxidative stress in icefishes compared to red-blooded notothenioid fishes, resulting in a lower rate of protein turnover and energetic cost savings. Specifically, the project will (1) Characterize levels of oxidative stress in red- and white-blooded notothenioid fishes, (2) Determine if red- and white-blooded notothenioids differ in their regulation of iron, (3) Determine if lower levels of oxidized proteins in icefishes result in lower rates of protein turnover and energetic cost savings, and (4) Determine if oxygen-binding proteins promote oxidative stress in-vivo and in-vitro. The results will contribute to the understanding of iron-catalyzed oxidative stress, which is associated with the progression of Alzheimer's, Parkinson's and cardiovascular diseases. Moreover, the research will increase understanding of factors related to iron metabolism and oxidative stress in notothenioid fishes that may have played key roles in the success of channichthyid icefishes. The broader impacts include development of a website will enable teachers and students to learn more about the fascinating biology of Antarctic icefishes, as well as the impacts of global climate change and commercial fishing activities on Antarctic fishes. Additionally, Alaska Native high school and undergraduate students will be involved in research at the University of Alaska, Fairbanks.
This award supports a three-year study of the ongoing deceleration and stick-slip motion of Whillans Ice Stream (WIS), West Antarctica. Understanding the dynamic behavior of ice streams is essential for predicting the future of the West Antarctic Ice Sheet (WAIS). Despite being one of the best-studied ice streams in Antarctica, the surprising flow characteristics of WIS continue to demand interdisciplinary research. Recent estimates indicate that the WIS may stagnate within 50 years, resulting in a significant change to the mass balance of the Siple Coast sector of West Antarctica. The reasons for the ongoing stagnation are not well known, and are possibly linked (causally or coincidentally) to the stick-slip behavior. Our recent work on WIS stick-slip motion suggest that all slip events nucleate from a common location on the ice stream, suggesting that a relatively small (approximately 10 km in diameter) region of the exerts fundamental control over the flow of this large ice stream (100s of km long and 100 kilometers wide). We hypothesize that this is a region of increased bed strength and our measurements will address that hypothesis. We will deploy a series of GPS receivers and seismometers on the ice stream to accurately locate the nucleation region so that a comprehensive ground based geophysical survey can be conducted to determine the physical properties of bed at the nucleation point. The ground geophysical program will consist of reflection seismic and ice-penetrating radar studies that will better constrain the properties of both the hypothesized higher-friction nucleation zone and the surrounding regions. Slip events also generate seismic energy that can be recorded 100s of km away from the ice stream, thus, the GPS and seismometer deployment will also aid us in relating seismic waveforms directly with the rapid motion that occurs during slip events. The increased ability to relate rupture processes with seismic emissions will allow us to use archived seismic records to explore changes in the behavior of WIS during the later half of the 20th century. Broader impacts of this study include improved knowledge ice sheet dynamics, which remain a poorly constrained component of the climate system, thus, limiting our ability to predict the Earth's response to climate change. The scientific work includes the education of two graduate students and continued training of one post-doctoral scholar, thus helping to train the next generation of polar scientists. We will expose the broader public to polar science through interactions with the media and by take advantaging of programs to include K-12 educators in our field work.
Intellectual Merit: The PIs propose to address the question of whether ice surface melting zones developed at high elevations during warm climatic phases in the Transantarctic Mountains. Evidence from sediment cores drilled by the ANDRILL program indicates that open water in the Ross Sea could have been a source of warmth during Pliocene and Pleistocene. The question is whether marine warmth penetrated inland to the ice sheet margins. The glacial record may be ill suited to answer this question, as cold-based glaciers may respond too slowly to register brief warmth. Questions also surround possible orbital controls on regional climate and ice sheet margins. Northern Hemisphere insolation at obliquity and precession timescales is thought to control Antarctic climate through oceanic or atmospheric connections, but new thinking suggests that the duration of Southern Hemisphere summer may be more important. The PIs propose to use high elevation alluvial deposits in the Transantarctic Mountains as a proxy for inland warmth. These relatively young fans, channels, and debris flow levees stand out as visible evidence for the presence of melt water in an otherwise ancient, frozen landscape. Based on initial analyses of an alluvial fan in the Olympus Range, these deposits are sensitive recorders of rare melt events that occur at orbital timescales. For their study they will 1) map alluvial deposits using aerial photography, satellite imagery and GPS assisted field surveys to establish water sources and to quantify parameters effecting melt water production, 2) date stratigraphic sequences within these deposits using OSL, cosmogenic nuclide, and interbedded volcanic ash chronologies, 3) use paired nuclide analyses to estimate exposure and burial times, and rates of deposition and erosion, and 4) use micro and regional scale climate modeling to estimate paleoenvironmental conditions associated with melt events. Broader impacts: This study will produce a record of inland melting from sites adjacent to ice sheet margins to help determine controls on regional climate along margins of the East Antarctic Ice Sheet to aid ice sheet and sea level modeling studies. The proposal will support several graduate and undergraduates. A PhD student will be supported on existing funding. The PIs will work with multiple K 12 schools to conduct interviews and webcasts from Antarctica and they will make follow up visits to classrooms after the field season is complete.
1043517/Clark This award supports a project to develop a better understanding of the response of the WAIS to climate change. The timing of the last deglaciation of the western Ross Sea will be improved using in situ terrestrial cosmogenic nuclides (3He, 10Be, 14C, 26Al, 36Cl) to date glacial erratics at key areas and elevations along the western Ross Sea coast. A state-of-the art ice sheet-shelf model will be used to identify mechanisms of deglaciation of the Ross Sea sector of WAIS. The model results and forcing will be compared with observations including the new cosmogenic data proposed here, with the aim of better determining and understanding the history and causes of WAIS deglaciation in the Ross Sea. There is considerable uncertainty, however, in the history of grounding line retreat from its last glacial maximum position, and virtually nothing is known about the timing of ice- surface lowering prior to ~10,000 years ago. Given these uncertainties, we are currently unable to assess one of the most important questions regarding the last deglaciation of the global ice sheets, namely as to whether the Ross Sea sector of WAIS contributed significantly to meltwater pulse 1A (MWP-1A), an extraordinarily rapid (~500-year duration) episode of ~20 m sea-level rise that occurred ~14,500 years ago. The intellectual merit of this project is that recent observations of startling changes at the margins of the Greenland and Antarctic ice sheets indicate that dynamic responses to warming may play a much greater role in the future mass balance of ice sheets than considered in current numerical projections of sea level rise. The broader impacts of this work are that it has direct societal relevance to developing an improved understanding of the response of the West Antarctic ice sheet to current and possible future environmental changes including the sea-level response to glacier and ice sheet melting due to global warming. The PI will communicate results from this project to a variety of audiences through the publication of peer-reviewed papers and by giving talks to public audiences. Finally the project will support a graduate student and undergraduate students in all phases of field-work, laboratory work and data interpretation.
Intellectual Merit: The PI proposes an investigation of mantle xenoliths entrained within a suite of ~1.4 Ma mafic volcanic centers in the Fosdick Mountains, Antarctica. These recently entrained mantle xenoliths offer a unique opportunity to characterize the West Antarctic lithospheric mantle that has been subject to active modification from Cretaceous to Present by plate-boundary processes, such as orthogonal to oblique plate convergence, intracontinental rifting, continental breakup, and Neogene volcanism. These volcanic centers derive from heterogeneous mantle sources and host a compositionally diverse suite of mantle xenoliths that have varied mineral assemblages and microstructures. The proposed research has two complementary goals: to assess structural and compositional heterogeneity within the upper mantle and the variability of intrinsic and extrinsic variables at a variety of lithospheric levels; and to use textural and compositional characterization of the xenolith suite to elucidate possible causes of heterogeneous seismic anisotropy within the Marie Byrd Land mantle lithosphere and inform competing hypotheses explaining the active volcanism, thermal anomaly, and slow seismic velocities beneath West Antarctica. Furthermore, characterization of samples of the mantle beneath West Antarctica provides a type of 'ground truth' in support of contemporary ANET/POLENET seismology research that seeks to determine mantle composition, temperature, and sources of seismic anisotropy. Broader impacts: The PI is in his first-year as a tenure track faculty member at Boston College. A postdoctoral researcher will be trained in EBSD techniques, interdisciplinary polar research, and the mentoring of undergraduate investigators. Two Boston College undergraduates will participate in the research and a priority will be placed on selecting underrepresented minorities and first-generation college students. An existing sample suite assembled over more than 20 years of NSF sponsored field work, will be used. The PI will create a digital database for microstructural, textural, and xenolith data for rapid dissemination to the international Antarctic community.
Elevated temperatures and ocean acidification are both threatening the Southern Ocean. The effects of these environmental changes are poorly understood, but preliminary data suggest that they are driving a biological invasion. Specifically, large populations of skeleton-crushing king crabs, Paralomis birsteini, have been detected off Marguerite Bay on the West Antarctic Peninsula. These crabs appear to be invading the continental shelf region where benthic communities have evolved in the absence of such top-predators. Thus, this invasion could result in a wholesale restructuring of the Antarctic benthic ecosystem. The proposed work seeks to document this invasion and better understand the effects of the introduction of P. birsteini on the ecology of this region. A towed underwater vehicle will be used to photographically image communities, and communities with and without P. birsteini will be compared quantitatively. Additionally, crabs will trapped and various aspects of their morphology and physiology will be assessed. This research is unique in that it will document a biological invasion in real-time and it will therefore enhance our general understandings of the drivers of invasion and resilience in biological communities. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of undergraduate and graduate students and will foster an international collaboration with British scientists. Researchers on this project will participate in outreach thorough the development of K-12 curricular materials.
Intellectual Merit: <br/>This proposal will study the diversity, abundance, and tiering patterns of ichnofossils in continental and marine deposits of the Beacon Supergroup in the Beardmore Glacier Area (BGA). The PIs will focus on continental strata that contain a variety of ichnofossils and paleosols. Ichnofossils will be evaluated for their architectural and surficial morphologies, and will be compared to modern and ancient traces to interpret the tracemaker behavior and paleoenvironmental setting. Distribution of ichnofossils within these units may indicate the effect of lateral variability of pedogenesis, the magnitude and frequency of depositional events, and the amount of moisture within the sediment, as well as the effects of climate change. The paleoclimatic significance of ichnofossils will be determined by comparing the burrow size, occurrence, tiering, and pedogenic significance of ichnofossils in measured sections of stratigraphic units deposited during global warming and cooling episodes. Comparisons will be made between BGA formations to stratigraphically equivalent rocks deposited at low paleolatitudes with previously determined paleoclimatic settings. The objectives of this project are to address two major questions: what differences existed in ichnodiversity, abundance, and tiering in marine and continental deposits between high- and low-paleolatitudes, and was there a dearth of habitat usage in continental deposits during the late Paleozoic and Mesozoic, particularly in fluvial and lacustrine environments compared to the habitat usage in the marine realm at that time? <br/><br/>Broader impacts: <br/>This study will enhance the ability to interpret paleoenvironments to the subenvironmental scale, understand the evolution of soil biota and ecosystems at high paleolatitudes, determine the role of organisms in soil formation at high paleolatitudes, explore the effects of climate change on the body size and diversity of organisms in the soil communities, and develop new tools to interpret paleoclimate in high latitudes. There is a strong education component associated with this proposal.
1043750/Chen This award supports a project to improve the estimate of long-term and inter-annual variability of Antarctic ice sheet mass balance at continental, regional, and catchment scales, using satellite gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) and other geodetic measurements. The work will improve the quantification of long-term mass change rates over Antarctica using GRACE gravity data with a longer record and newer generation(s) of products and will develop advanced numerical forward modeling techniques that can accurately correct leakage effects associated with GRACE data processing, and significantly improve spatial resolution of GRACE mass rate estimates over Antarctica. The work will also contribute to a better understanding of crustal uplift rates due to postglacial rebound (PGR) and present day ice load change over Antarctica via PGR models, GPS measurements, and combined analysis of GRACE and ICESat elevation changes. Inter-annual variations of ice mass over Antarctica will be investigated at continental and catchment scales and connections to regional climate change will be studied. The major deliverables from this study will be improved assessments of ice mass balance for the entire Antarctic ice sheet and potential contribution to global mean sea level rise. The work will also provide estimates of regional ice mass change rates over Antarctica, with a focus along the coast in the Amundsen Sea Embayment, the Peninsula in West Antarctica, and in Wilkes Land and Victoria Land in East Antarctica. Estimates of inter-annual ice mass change over Antarctica at various spatial scales, and assessments of uncertainty of GRACE ice rate estimates and PGR models errors over Antarctica will also be made. The intellectual merits of the proposed investigation include 1) providing improved assessments of Antarctic ice mass balance at different temporal and spatial scales with unprecedented accuracy, an important contribution to broad areas of polar science research; 2) combining high accuracy GPS vertical uplift measurements and PGR models to better quantify long-term crust uplift effects that are not distinguishable from ice mass changes by GRACE; and 3) unifying the work of several investigations at the forefront of quantifying ice sheet and glacier mass balance and crustal uplift based on a variety of modern space geodetic observations. The broader impacts include the fact that the project will actively involve student participation and training, through the support of two graduate students. In addition the project will contribute to general education and public outreach (E/PO) activities and the results from this investigation will help inspire future geoscientists and promote public awareness of significant manifestations of climate change.
Intellectual Merit: The role that Antarctica has played in vertebrate evolution and paleobiogeography during the Late Cretaceous and early Paleogene is largely unknown. Evidence indicates that Antarctica was home to a diverse flora during the Late Cretaceous and Paleogene, yet the vertebrates that must have existed on the continent remain virtually unknown. To fill this gap, the PIs have formed the Antarctic Vertebrate Paleontology Initiative (AVPI), whose goal is to search for and collect Late Cretaceous-Paleogene vertebrate fossils in Antarctica at localities that have never been properly surveyed, as well as in areas of proven potential. Two field seasons are proposed for the James Ross Island Group on the northeastern margin of the Antarctic Peninsula. Expected finds include chondrichthyan and osteichthyan fishes, marine reptiles, ornithischian and non-avian theropod dinosaurs, ornithurine birds, and therian and non-therian mammals. Hypotheses to be tested include: 1) multiple extant bird and/or therian mammal lineages originated during the Cretaceous and survived the K-Pg boundary extinction event; 2) the ?Scotia Portal? permitted the dispersal of continental vertebrates between Antarctica and South America prior to the latest Cretaceous and through to the late Paleocene or early Eocene; 3) Late Cretaceous non-avian dinosaurs from Antarctica are closely related to coeval taxa from other Gondwanan landmasses; 4) terminal Cretaceous marine reptile faunas from southern Gondwana differed from contemporaneous but more northerly assemblages; and 5) the collapse of Antarctic ichthyofaunal diversity during the K-Pg transition was triggered by a catastrophic extinction. Broader impacts: The PIs will communicate discoveries to audiences through a variety of channels, such as the Dinosaurs in Their Time exhibition at Carnegie Museum of Natural History and the outreach programs of the Environmental Science Institute of the University of Texas at Austin. In addition, Carnegie Museum will launch a student-oriented programming initiative using AVPI research as a primary focus. This array of activities will help some 2,000 Pittsburgh-area undergraduates to explore the relevance of deep-time discoveries to critical modern issues. The AVPI will provide research opportunities for eight undergraduate and three graduate students, several of whom will receive field training in Antarctica. Fossils will be accessioned into the Carnegie Museum collection, and made accessible virtually through the NSF-funded Digital Morphology library at University of Texas.
Global climate change is having significant effects on areas of the Southern Ocean, and a better understanding of this ecosystem will permit predictions about the large-scale implications of these shifts. The haptophyte Phaeocystis antarctica is an important component of the phytoplankton communities in this region, but little is known about the factors controlling its distribution. Preliminary data suggest that P. antarctica posses unique adaptations that allow it to thrive in regions with dynamic light regimes. This research will extend these results to identify the physiological and genetic mechanisms that affect the growth and distribution of P. antarctica. This work will use field and laboratory-based studies and a suite of modern molecular techniques to better understand the biogeography and physiology of this key organism. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of two graduate students and will foster an established international collaboration with Dutch scientists. Researchers on this project will participate in outreach programs targeting K12 teachers as well as high school students.
Pettit/0948247<br/><br/>This award supports a project to study of the relationship between fabric and climate for the ice near the EPICA Dome C ice core site, East Antarctica. The work builds on an ongoing study at Siple Dome, West Antarctica and takes advantage of collaborations with European scientists and access to the Dome C borehole to make measurements of sonic velocity. The intellectual merit of the project is that a better understanding of how fabric preserves past climate information can improve models of the ice flow near ice core sites and the interpreta-tion of ice core data (particularly paleo-accumulation), and it may allow us to extract climate information directly from fabric data. In addition, because ice deformation is sensitive to the orientation of crystals, ice flow patterns are sensitive to the fabric. Thus, variations in the fabric between glacial and interglacial ice can affect how ice deforms and how fabric in the ice sheet develops. The Dome C site is particularly important for answering these questions, because the ice core shows evidence of eight glacial cycles, not just one as found at Siple Dome or the Greenland sites. The research will improve the understanding of the proxy relationship between sonic-velocity data and fabric; will help to model the pattern of ice flow caused by the fabric variation between glacial and interglacial time periods using these data, existing ice core chemistry and existing and new thin section data, improved surface strain data, and borehole deformation data; and will help to better understand the positive feedback mechanism that enhances fabric (and corresponding rheological) variability through a focused study of several climate transitions and the associated fabric changes. Borehole compressional-wave sonic-velocity will be measured which will complement the sonic-velocity data that already exist for boreholes in Greenland and West Antarctica. These will be the first sonic-velocity measurements in East Antarctica and the first measurements that extend for more than a single glacial/interglacial transition. The project will ultimately contribute to better interpretation of ice core records for both paleoclimate studies and for ice flow history, both of which connect to the broader questions of the role of ice in the climate system. This project will also strengthen the international collaborations within the paleoclimate and ice sheet modeling communities. This project will partially support a graduate student at the University of Alaska Fairbanks who is currently working on modeling ice including anisotropy and it will support the growth of a young scientist through a Post-Doc position. This Post Doc will gain important experience collaborating with the EPICA scientists in studying the climate-fabric relationship. Erin Pettit is active in field-science education for high school students, under-graduates, teachers, and adults. This project will help support the continued development and enhancement of Girls on Ice a program that encourages young women to explore science and the natural world.
Abstract The Ross Sea is believed to contributes a huge portion (~1/3) of the primary productivity of the Southern Ocean and is home to a similar large portion of the top predators (e.g. 38% of Adelie, 28% of Emperor penguins) of the Antarctic sea ice ecosystem. The trophic pathways in this system are complex in both space and time. One scenario for the Ross Sea ecosystem is that diatoms are grazed by krill, which are in turn the preferred food of fish, penguins and other predators. Phaeocystis colonies, on the other hand lead to grazing by pteropods and other organisms that are a non-favoured food source for top predators. Remotely sensed chlorophyll, indicating all phytoplankton, is then suggested to be a relatively poor predictor of penguin foraging efforts. This is also consistent with notion that algal species composition is very important to penguin grazing pressure, mediated by krill, and perhaps resulting in selective depletion. This collaborative research sets out to use an autonomous glider, equipped with a range of sensors, and informed by satellite chlorophyll imagery to be combined with 3-dimenisonal active penguin tracking to their preferred foraging sites. The effect of localized grazing pressure of krill on the appearance and disappearance of algal blooms will also be followed. Overall the objective of the research is to reconcile and explain several years of the study of the foraging habits and strategies of (top predator) penguins at the Cape Crozier site (Ross Island), with the dynamics of krill and their supporting algal food webs. The use of a glider to answer a primarily ecological questions is subject to moderate to high risk, and is potentially transformative.
While changes in populations typically are tracked to gauge the impact of climate or habitat change, the process involves the response of individuals as each copes with an altered environment. In a study of Adelie penguins that spans 13 breeding seasons, results indicate that only 20% of individuals within a colony successfully raise offspring, and that they do so because of their exemplary foraging proficiency. Moreover, foraging appears to require more effort at the largest colony, where intraspecific competition is higher than at small colonies, and also requires more proficiency during periods of environmental stress. When conditions are particularly daunting, emigration dramatically increases, countering the long-standing assumption that Adélie penguins are highly philopatric. The research project will 1) determine the effect of age, experience and physiology on individual foraging efficiency; 2) determine the effect of age, experience, and individual quality on breeding success and survival in varying environmental and competitive conditions at the colony level; and 3) develop a comprehensive model for the Ross-Beaufort Island metapopulation dynamics. Broader impacts include training of interns, continuation of public outreach through the highly successful project website penguinscience.com, development of classroom materials and other standards-based instructional resources.
The emperor penguin dives deeper and longer, fasts longer, and endures the harshest weather conditions of all diving birds. It spends about four and half months per annum deep in Antarctic pack ice away from shore and stations, and thus is largely unavailable for study. This time includes preparation for the molt, and travel to the colony to breed, a time period in which great swings in body weight occur. This study will fill an important gap in what we know about the biology of the annual cycle of the emperor by examining the molt-post molt period. The P.I. proposes to traverse the Amundsen and Bellingshausen seas on the Oden, to locate and tag emperor penguins during the molt season. The objectives are to (1) Place satellite tags on 20 adult post molt birds to determine their route, rate of travel, and diving behavior as they return back to their breeding colonies, (2) Obtain an index of body condition, (3) Collect guano to determine the type of food consumed by emperor penguins in the region, (4) Conduct shipboard surveys to sight and plot the location and abundance of adult and juvenile birds on the ship's track. The PI hypothesizes that bird dives will be shallow during the initial post-molt phase, and that food will consist primarily of krill; that there will be differential dispersal of birds from the Ross Sea vs. Marie Byrd Land, with Ross Sea birds traveling farther; and that the greatest adult mortality occurs during the molt and early post molt period. Broader impacts include training of a post doc, a graduate student, and an aquarium volunteer. The P.I. also will present findings through a website, through public lectures, and in collaboration with the Birch aquarium.
Intellectual Merit: The PIs propose to use airborne geophysics to provide detailed geophysical mapping over the Marie Byrd Land dome of West Antarctica. They will use a Basler equipped with advanced ice penetrating radar, a magnetometer, an airborne gravimeter and laser altimeter. They will test models of Marie Byrd Land lithospheric evolution in three ways: 1) constrain bedrock topography and crustal structure of central Marie Byrd Land for the first time; 2) map subglacial geomorphology of Marie Byrd Land to constrain landscape evolution; and 3) map the distribution of subglacial volcanic centers and identify active sources. Marie Byrd Land is one of the few parts of West Antarctica whose bedrock lies above sea level; as such, it has a key role to play in the formation and decay of the West Antarctic Ice Sheet (WAIS), and thus on eustatic sea level change during the Neogene. Several lines of evidence suggest that the topography of Marie Byrd Land has changed over the course of the Cenozoic, with significant implications for the origin and evolution of the ice sheet. Broader impacts: This work will have important implications for both the cryospheric and geodynamic communities. These data will also leverage results from the POLENET project. The PIs will train both graduate and undergraduate students in the interpretation of large geophysical datasets providing them with the opportunity to co-author peer-reviewed papers and present their work to the broader science community. This research will also support a young female researcher. The PIs will conduct informal education using their Polar Studies website and contribute formally to K-12 curriculum development. The research will incorporate microblogging and data access to allow the project?s first-order hypothesis to be confirmed or denied in public.
Geochemical studies of single mineral grains in rocks can be probed to reconstruct the history of our planet. The mineral zircon (ZrSiO4) is of unique importance in that respect because of its reliability as a geologic clock due to its strong persistence against weathering, transport and changes in temperature and pressure. Uranium-Lead (U-Pb) dating of zircon grains is, perhaps, the most frequently employed method of extracting time information on geologic processes that shaped the continental crust, and has been used to constrain the evolution of continents and mountain belts through time. In addition, the isotopic composition of the element Hafnium (Hf) in zircon is used to date when the continental crust was generated by extraction of magma from the underlying mantle. Melting of rocks in the mantle and deep in the continental crust are key processes in the evolution of the continents, and they are recorded in the Hf isotopic signatures of zircon. Although the analytical procedures for U-Pb dating and Hf isotope analyses of zircon are robust now, our understanding of zircon growth and its exchange of elements and isotopes with its surrounding rock or magma are still underdeveloped. The focus of the proposed study, therefore, is to unravel the evolution of zircon Hf isotopes in rocks that were formed deep in the Earth?s crust, and more specifically, to apply these isotopic methods to rocks collected in Dronning Maud Land (DML), East Antarctica. Dronning Maud Land (DML) occupied a central location during the formation of supercontinents ? large landmasses made up of all the continents that exist today - more than 500 million years ago. It is currently thought that supercontinents were formed and dismembered five or six times throughout Earth?s history. The area of DML is key for understanding the formation history of the last two supercontinents. The boundaries of continents that were merged to form those supercontinents are most likely hidden in DML. In this study, the isotopic composition of zircon grains recovered from DML rocks will be employed to identify these boundaries across an extensive section through the area. The rock samples were collected by the investigator during a two-month expedition to Antarctica in the austral summer of 2007?2008. The results of dating and isotope analyses of zircon of the different DML crustal domains will deliver significant insight into the regional geology of East Antarctica and its previous northern extension into Africa. This has significance for the reconstruction of the supercontinents and defining the continental boundaries in DML.
The Office of Polar Programs, Antarctic Science Division, Ocean & Climate Systems Program has made this award to support a multidisciplinary effort to study the upwelling of relatively warm deep water onto the Amundsen Sea continental shelf and how it relates to atmospheric forcing and bottom bathymetry and how the warm waters interact with both glacial and sea ice. This study constitutes a contribution of a coordinated research effort in the region known as the Amundsen Sea Embayment Project or ASEP. Previous work by the PI and others has shown that the West Antarctic Ice Sheet has been found to be melting faster, perhaps by orders of magnitude, than ice sheets elsewhere around Antarctica, excluding those on the Peninsula. Submarine channels that incise the continental shelf are thought to provide fairly direct access of relatively warm circum polar deep water to the cavity under the floating extension of the ice shelf. Interactions with sea ice en route can modify the upwelled waters. The proposed investigations build on previous efforts by the PI and colleagues to use hydrographic measurements to put quantitative bounds on the rate of glacial ice melt by relatively warm seawater. <br/>The region can be quite difficult to access due to sea ice conditions and previous hydrographic measurements have been restricted to the austral summer time frame. In this project it was proposed to obtain the first austral spring hydrographic data via CTD casts and XBT drops (September-October 2007) as part of a separately funded cruise (PI Steve Ackley) the primary focus of which is sea-ice conditions to be studied while the RV Nathanial B Palmer (RV NBP) drifts in the ice pack. This includes opportunistic sampling for pCO2 and TCO2. A dedicated cruise in austral summer 2009 will follow this opportunity. The principal objectives of the dedicated field program are to deploy a set of moorings with which to characterize temporal variability in warm water intrusions onto the shelf and to conduct repeat hydrographic surveying and swath mapping in targeted areas, ice conditions permitting. Automatic weather stations are to be deployed in concert with the program, sea-ice observations will be undertaken from the vessel and the marine cavity beneath the Pine Island may be explored pending availability of the British autonomous underwater vehicle Autosub 3. These combined ocean-sea ice-atmosphere observations are aimed at a range of model validations. A well-defined plan for making data available as well as archiving in a timely fashion should facilitate a variety of modeling efforts and so extend the value of the spatially limited observations. <br/>Broader impacts: This project is relevant to an International Polar Year research emphasis on ice sheet dynamics focusing in particular on the seaward ocean-ice sheet interactions. Such interactions must be clarified for understanding the potential for sea level rise by melt of the West Antarctic ice Sheet. The project entails substantive international partnerships (British Antarctic Survey and Alfred Wegner Institute) and complements other Amundsen Sea Embayment Project proposals covering other elements of ice sheet dynamics. The proposal includes partial support for 2 graduate students and 2 post docs. Participants from the Antarctic Artists and Writers program are to take part in the cruise and so aid in outreach. In addition, the project is to be represented in the Lamont-Doherty annual open house.
The research combines interdisciplinary study in geology, paleontology, and biology, using stable isotope and radiocarbon analyses, to examine how climate change and resource utilization have influenced population distribution, movement, and diet in penguins during the mid-to-late Holocene. Previous investigations have demonstrated that abandoned colonies contain well-preserved remains that can be used to examine differential responses of penguins to climate change in various sectors of Antarctica. As such, the research team will investigate abandoned and active pygoscelid penguin (Adelie, Chinstrap, and Gentoo) colonies in the Antarctic Peninsula and Ross Sea regions, and possibly Prydz Bay, in collaboration with Chinese scientists during four field seasons. Stable isotope analyses will be conducted on recovered penguin tissues and prey remains in guano to address hypotheses on penguin occupation history, population movement, and diet in relation to climate change since the late Pleistocene. The study will include one Ph.D., two Masters and 16 undergraduate students in advanced research over the project period. Students will be exposed to a variety of fields, the scientific method, and international scientific research. They will complete field and lab research for individual projects or Honor's theses for academic credit. The project also will include web-based outreach, lectures to middle school students, and the development of interactive exercises that highlight hypothesis-driven research and the ecology of Antarctica. Two undergraduate students in French and Spanish languages at UNCW will be hired to assist in translating the Web page postings for broader access to this information.
Intellectual Merit: Sinking particles are a major element of the biological pump and they are commonly assigned to two fates: mineralization in the water column and accumulation at the seafloor. However, there is another fate of export hidden within the vertical decline of carbon, the transformation of sinking organic matter to fine suspended and/or dissolved organic fractions. This process has been suggested but has rarely been observed or quantified. As a result, it is presumed that the solubilized fraction is largely mineralized over short time scales. However, global ocean surveys of dissolved organic carbon are demonstrating a significant water column accumulation of organic matter under high productivity environments. This proposal will investigate the transformation of organic particles from sinking to solubilized phases of the export flux in the Ross Sea. The Ross Sea experiences high export particle production, low dissolved organic carbon export with overturning circulation, and the area has a predictable succession of production and export events. In addition, the basin is shallow (< 000 m) so the products the PIs will target are relatively concentrated. To address the proposed hypothesis, the PIs will use both well-established and novel biochemical and optical measures of export production and its fate. The outcomes of this work will help researchers close the carbon budget in the Ross Sea. Broader impacts: This research will support graduate and undergraduate students and will provide undergraduates and pre-college students with field-based research experience. Scientifically, this research will increase understanding of carbon sinks in the Ross Sea and will help develop new tools for identifying, quantifying, and tracking that carbon. The PIs will interface with K-12 students through daily reports from the field and through educational modules developed by several of the PIs in collaboration with science education specialists and college students. A K-12 educator will be included on the research cruises. Outreach will be through COSEE Florida and the Maritime Center in Norfolk, VA.
1245659/Petrenko This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, δ18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, δ13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of δ13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica.
The Ross Sea continental shelf is one of the most productive areas in the Southern Ocean, and may comprise a significant, but unaccounted for, oceanic CO2 sink, largely driven by phytoplankton production. The processes that control the magnitude of primary production in this region are not well understood, but data suggest that iron limitation is a factor. Field observations and model simulations indicate four potential sources of dissolved iron to surface waters of the Ross Sea: (1) circumpolar deep water intruding from the shelf edge; (2) sediments on shallow banks and nearshore areas; (3) melting sea ice around the perimeter of the polynya; and (4) glacial meltwater from the Ross Ice Shelf. The principal investigators hypothesize that hydrodynamic transport via mesoscale currents, fronts, and eddies facilitate the supply of dissolved iron from these four sources to the surface waters of the Ross Sea polynya. These hypotheses will be tested through a combination of in situ observations and numerical modeling, complemented by satellite remote sensing. In situ observations will be obtained during a month-long cruise in the austral summer. The field data will be incorporated into model simulations, which allow quantification of the relative contributions of the various hypothesized iron supply mechanisms, and assessment of their impact on primary production. The research will provide new insights and a mechanistic understanding of the complex oceanographic phenomena that regulate iron supply, primary production, and biogeochemical cycling. The research will thus form the basis for predictions about how this system may change in a warming climate. The broader impacts include training of graduate and undergraduate students, international collaboration, and partnership with several ongoing outreach programs that address scientific research in the Southern Ocean. The research also will contribute to the goals of the international research programs ICED (Integrated Climate and Ecosystem Dynamics) and GEOTRACES (Biogeochemical cycling and trace elements in the marine environment).
Time series data, from ocean moorings, on key aspects of evolving ocean properties are of considerable importance in assessing the condition of the ocean system. They are needed, for example, their understand how the oceans are warming, and how they continue to uptake greenhouse gases such as CO2. The Cape Adare Long Term Mooring (CALM) program goal was to observe the bottom water export from the Ross Sea to the deep ocean. To accomplish this two instrumented moorings were set on the continental slope off Cape Adare (western Ross Sea, Antarctica), positioned to capture the export of Antarctic Bottom Water (AABW), some of the coldest and densest water found in the global ocean. Data records for the moorings spans over some four years in this very remote part of the ocean. The CALM analysis will address some specific objectives: ? Characterize the temperature, salinity and current variability associated with the Ross Sea AABW export. ? Examine the linkages between observed variability to regional tides, atmosphere and sea ice forcing. ? Relate the Ross Sea AABW export fluctuations to the larger scale climate system dynamics, such as ENSO and SAM, and to AABW formation along other margins of Antarctica, e.g. the Weddell Sea
The proposed research targets the molecular genetics of salps, an increasingly important member of the zooplankton in Antarctic waters who's dominance appears to be related to climate warming and sea ice loss. Specifically the research will examine genome-wide patterns of gene expression, target gene expression levels, and patterns of population genetic diversity and structure underlying the complex life history and population dynamics of S. thompsoni. The P.I.s hypothesize that (1) deep analysis of the Salpa thompsoni transcriptome will reveal significant associations among selected set of differentially expressed genes and critical life history stages and events (e.g., ontogenetic maturation, sexual reproduction, senescence) of the salp; and 2) the species will show variable levels of clonal diversity and significant genetic differentiation among populations in different regions of the Southern Ocean. Broader impacts include training of two graduate students; inclusion of undergraduates in research, and in a formal training workshop; development of a summer workshop for high school teachers in collaboration with Connecticut Sea Grant; and public outreach via postings on the Census of Marine Zooplankton homepage.
Intellectual Merit: The PI will collect samples to extend the magneto-stratigraphic record of late Cretaceous sediments of the James Ross Basin, Antarctica. RAPID support will allow him to take advantage of an invitation from the Instituto Antartico Argentino (IAA) to participate on an excursion to James Ross Island in the Antarctic Peninsula. The PI hopes to collect samples that will refine the position of several geomagnetic reversals between the end of the Cretaceous long normal Chron and the lower portion of Chron 31R. The Brandy Bay locality targeted by this expedition is the best place in the basin for calibrating the biostratigraphic position of the top of the Cretaceous Long Normal Chron, which is one of the most reliable correlation horizons in the entire Geological Time Scale. Broader impacts: The top of the Cretaceous long normal Chron is not properly correlated to southern hemisphere biostratigraphy. Locating this event will be a major addition to understanding geological time. This expedition will provide opportunities for an undergraduate student. This project is based on a productive collaboration with an Argentine scientist.
The stability of the marine West Antarctic Ice Sheet (WAIS) remains an important, unresolved problem for predicting future sea level change. Recent studies indicate that the mass balance of the ice sheet today may be negative or positive. The apparent differences may stem in part from short-term fluctuations in flow. By comparison, geologic observations provide evidence of behavior over much longer time scales. Recent work involving glacial-geologic mapping, dating and ice-penetrating radar surveys suggests that deglaciation of both the Ross Sea Embayment and coastal Marie Byrd Land continued into the late Holocene, and leaves open the possibility of ongoing deglaciation and grounding-line retreat. However, previous work in the Ross Sea Embayment was based on data from just three locations that are all far to the north of the present grounding line. Additional data from farther south in the Ross Sea Embayment are needed to investigate whether recession has ended, or if the rate and pattern of deglaciation inferred from our previous study still apply to the present grounding line. This award provides support to reconstruct the evolution of Reedy Glacier, in the southern Transantarctic Mountains, since the Last Glacial Maximum (LGM). Because Reedy Glacier emerges from the mountains above the grounding line, its surface slope and elevation should record changes in thickness of grounded ice in the Ross Sea up to the present day. The deglaciation chronology of Reedy Glacier therefore can indicate whether Holocene retreat of the WAIS ended thousands of years ago, or is still continuing at present. This integrated glaciologic, glacial-geologic, and cosmogenic-isotope exposure- dating project will reconstruct past levels of Reedy Glacier. Over two field seasons, moraines will be mapped, dated and correlated at sites along the length of the glacier. Radar and GPS measurements will be made to supplement existing ice thickness and velocity data, which are needed as input for a model of glacier dynamics. The model will be used to relate geologic measurements to the grounding-line position downstream. Ultimately, the mapping, dating and ice-modeling components of the study will be integrated into a reconstruction that defines changes in ice thickness in the southern Ross Sea since the LGM, and relates these changes to the history of grounding-line retreat. This work directly addresses key goals of the West Antarctic Ice Sheet Initiative, which are to understand the dynamics, recent history and possible future behavior of the West Antarctic Ice Sheet.
Advances in molecular techniques have expanded our understanding of soil microbial communities, and raised important questions about regional and global patterns in microbial diversity. The proposed research will investigate the composition and activity of microbial communities across a range of geochemical and hydrologic soil conditions, and over local to regional scales in the Transantarctic Mountains, in order to assess controls over microbial biogeography. The research targets two areas in the Transantarctic mountains, the McMurdo Dry Valleys, and the Beardmore Glacier region further south, the latter representing an underexplored and inarguably more extreme soil environment. The research project will adopt an integrated approach, using molecular techniques and in situ assessment of biological activity in a quantitative biogeographical framework, with the goal of distinguishing fine versus broad scale controls over microbial community structure. The research is essential to determining the basic trophic status of extreme microbial food webs, and their sensitivity to climate change. The investigators will engage secondary and post-secondary educators through first person outreach as well as web-based communications and exercises. Two postdoctoral scientists will be trained in an interdisciplinary and international setting.
Intellectual Merit: <br/>Because of extensive ice cover and sparse remote-sensing data, the geology of the Precambrian East Antarctic Shield (EAS) remains largely unexplored with information limited to coastal outcrops from the African, Indian and Australian sectors. The East Antarctic lithosphere is globally important: as one of the largest coherent Precambrian shields, including rocks as old as ~3.8 Ga, it played an important role in global crustal growth; it is a key piece in assembly of the Rodinia and Gondwana supercontinents; it is the substrate to Earth?s major ice cap, including numerous sub-glacial lakes, and influences its thermal state and mechanical stability; and its geotectonic association with formerly adjacent continental blocks in South Africa, India and Australia suggest that it might harbor important mineral resources. This project will increase understanding of the age and composition of the western EAS lithosphere underlying and adjacent to the Transantarctic Mountains (TAM) using U-Pb ages, and Hf- and O-isotope analysis of zircon in early Paleozoic granitoids and Pleistocene glacial tills. TAM granites of the early Paleozoic Ross Orogen represent an areally extensive continental-margin arc suite that can provide direct information about the EAS crust from which it melted and/or through which it passed. Large rock clasts of igneous and metamorphic lithologies entrained in glacial tills at the head of major outlet glaciers traversing the TAM provide eroded samples of the proximal EAS basement. Zircons in these materials will provide data about age and inheritance (U-Pb), crustal vs. mantle origin (O isotopes), and crustal sources and evolution (Hf isotopes). Integrated along a significant part of the TAM, these data will help define broader crustal provinces that can be correlated with geophysical data and used to test models of crustal assembly. <br/><br/>Broader impacts: <br/>This project will provide a research opportunity for undergraduate and graduate students. Undergraduates will be involved as Research Assistants in sample preparation, imaging, and analytical procedures, and conducting their own independent research. The two main elements of this project will form the basis of MS thesis projects for two graduate students at UMD. Through this project they will gain a good understanding of petrology, isotope geochemistry, and analytical methods. The broader scientific impacts of this work are that it will help develop a better understanding of the origin and evolution of East Antarctic lithosphere underlying and adjacent to the TAM, which will be of value to the broader earth science and glaciological community. Furthermore, knowledge of East Antarctic geology is of continuing interest to the general public because of strong curiosity about past supercontinents, what?s under the ice, and the impact of global warming on ice-sheet stability.
ASPIRE is an NSF-funded project that will examine the ecology of the Amundsen Sea during the Austral summer of 2010. ASPIRE includes an international team of trace metal and carbon chemists, phytoplankton physiologists, microbial and zooplankton ecologists, and physical oceanographers, that will investigate why and how the Amundsen Sea Polynya is so much more productive than other polynyas and whether interannual variability can provide insight to climate-sensitive mechanisms driving carbon fluxes. This project will compliment the existing ASPIRE effort by using 1) experimental manipulations to understand photoacclimation of the dominant phytoplankton taxa under conditions of varying light and trace metal abundance, 2) nutrient addition bioassays to determine the importance of trace metal versus nitrogen limitation of phytoplankton growth, and 3) a numerical ecosystem model to understand the importance of differences in mixing regime, flow field, and Fe sources in controlling phytoplankton bloom dynamics and community composition in this unusually productive polynya system. The research strategy will integrate satellite remote sensing, field-based experimental manipulations, and numerical modeling. Outreach and education include participation in Stanford's Summer Program for Professional Development for Science Teachers, Stanford's School of Earth Sciences high school internship program, and development of curriculum for local science training centers, including the Chabot Space and Science Center. Undergraduate participation and training will include support for both graduate students and undergraduate assistants.
This award supports a project to understand the flow dynamics of large, fast-moving outlet glaciers that drain the East Antarctic Ice Sheet. The project includes an integrated field, remote sensing and modeling study of Byrd Glacier which is a major pathway for the discharge of mass from the East Antarctic Ice Sheet (EAIS) to the ocean. Recent work has shown that the glacier can undergo short-lived but significant changes in flow speed in response to perturbations in its boundary conditions. Because outlet glacier speeds exert a major control on ice sheet mass balance and modulate the ice sheet contribution to sea level rise, it is essential that their sensitivity to a range of dynamic processes is properly understood and incorporated into prognostic ice sheet models. The intellectual merit of the project is that the results from this study will provide critically important information regarding the flow dynamics of large EAIS outlet glaciers. The proposed study is designed to address variations in glacier behavior on timescales of minutes to years. A dense network of global positioning satellite (GPS) instruments on the grounded trunk and floating portions of the glacier will provide continuous, high-resolution time series of horizontal and vertical motions over a 26-month period. These results will be placed in the context of a longer record of remote sensing observations covering a larger spatial extent, and the combined datasets will be used to constrain a numerical model of the glacier's flow dynamics. The broader impacts of the work are that this project will generate results which are likely to be a significant component of next-generation ice sheet models seeking to predict the evolution of the Antarctic Ice Sheet and future rates of sea level rise. The most recent report from the Intergovernmental Panel on Climate Change (IPCC) highlights the imperfect understanding of outlet glacier dynamics as a major obstacle to the production of an accurate sea level rise projections. This project will provide significant research opportunities for several early-career scientists, including the lead PI for this proposal (she is both a new investigator and a junior faculty member at a large research university) and two PhD-level graduate students. The students will be trained in glaciology, geodesy and numerical modeling, contributing to society's need for experts in those fields. In addition, this project will strengthen international collaboration between polar scientists and geodesists in the US and Spain. The research team will work closely with science educators in the Center for Remote Sensing of Ice Sheets (CReSIS) outreach program to disseminate project results to non-specialist audiences.
This project constructs POLENET a network of GPS and seismic stations in West Antarctica to understand how the mass of the West Antarctic ice sheet (WAIS) changes with time. The information is ultimately used to predict sea level rise accompanying global warming and interpret climate change records. The GPS (global positioning system) stations measure vertical and horizontal movements of bedrock, while the seismic stations characterize physical properties of the ice/rock interface, lithosphere, and mantle. Combined with satellite data, this project offers a more complete picture of the ice sheet's current state, its likely change in the near future, and its overall size during the last glacial maximum. This data will also be used to infer sub-ice sheet geology and the terrestrial heat flux, critical inputs to models of glacier movement. As well, this project improves tomographic models of the earth's deep interior and core through its location in the Earth's poorly instrumented southern hemisphere. <br/><br/><br/><br/>Broader impacts of this project are varied. The work is relevant to society for improving our understanding of the impacts of global warming on sea level rise. It also supports education at the postdoctoral, graduate, and undergraduate levels, and outreach to groups underrepresented in the sciences. As an International Polar Year contribution, this project establishes a legacy of infrastructure for polar measurements. It also involves an international collaboration of twenty four countries. For more information see IPY Project #185 at IPY.org. NSF is supporting a complementary Arctic POLENET array being constructed in Greenland under NSF Award #0632320.
The investigators propose to build and test a multi-sensor, automated measurement station for monitoring Arctic and Antarctic ice-ocean environments. The system, based on a previously successful design, will incorporate weather and climate sensors, camera, snow and firn sensors, instruments to measure ice motion, ice and ocean thermal profilers, hydrophone, and salinity sensors. This new system will have two-way communications for real-time data delivery and is designed for rapid deployment by a small field group. AMIGOS-II will be capable of providing real time information on geophysical processes such as weather, snowmelt, ice motion and strain, fractures and melt ponds, firn thermal profiling, and ocean conditions from multiple levels every few hours for 2-4 years. Project personnel will conduct a field test of the new system at a location with a deep ice-covered lake. Development of AMIGOS-II is motivated by recent calls by the U.S. Antarctic Program Blue-Ribbon Panel to increase Antarctic logistical effectiveness, which cites a need for greater efficiency in logistical operations. Installation of autonomous stations with reduced logistical requirements advances this goal.
Barbeau, David; Hemming, Sidney R.; Barbeau, David Jr
No dataset link provided
Intellectual Merit: Recent geochemical, sequence stratigraphic, and integrated investigations of marine strata from several continental margins and ocean basins suggest that ephemeral ice sheets may have existed on Antarctica during parts of the Cretaceous and early Paleogene. However, atmospheric carbon dioxide estimates for this time are as much as four times modern levels. With such greenhouse conditions, the presence of Antarctic ice sheets would imply that our current understanding of Earth?s climate system, and specifically the interpreted thresholds of Antarctic glaciation and deglaciation should be reconsidered. The proposed research will compare the quantity and provenance of Cretaceous sediments in the Larsen basin of the eastern Antarctic Peninsula with the exhumation chronology and composition of potential sediment source terranes on the peninsula and in adjacent regions. New outcrop stratigraphic analyses with improvements in the age models from radioisotopic approaches will be integrated to determine the amount of detrital sediment fluxed to the Larsen basin between key chronostratigraphic surfaces. Microtextural analysis of quartz sand and silt grains will help determine whether the Larsen basin detrital sediment originated from glacial weathering. These preliminary results will test the viability of the proposed approach to assess the controversial Cretaceous Antarctic glaciation hypothesis. Broader impacts: The proposed work will partially support a PhD, a MSc, and three undergraduate students at the University of South Carolina. The PIs will publicize this work through volunteer speaking engagements and the development of videos and podcasts. They also commit to prompt publication of the results and timely submission of data to archives. The development/improvement of the Larsen basin age model will benefit ongoing research in paleobiology, paleoclimate and biogeography. Development of the glauconite K-Ar and Rb-Sr chronometers could be an important outcome beyond the direct scope of the proposed research.
Dissolved organic matter (DOM) comprises a significant pool of Earth's organic carbon that dwarfs the amount present in living aquatic organisms. The properties and reactivity of DOM are not well defined, and the evolution of autochthonous DOM from its precursor materials in freshwater has not been observed. Recent sampling of a supraglacial stream formed on the Cotton Glacier in the Transantarctic Mountains revealed DOM that more closely resembles an assemblage of recognizable precursor organic compounds, based upon its UV-VIS and fluorescence spectra. It is suggested that the DOM from this water evolved over time to resemble materials present in marine and many inland surface waters. The transient nature of the system i.e., it reforms seasonally, also prevents any accumulation of the refractory DOM present in most surface waters. Thus, the Cotton Glacier provides us with a unique environment to study the formation of DOM from precursor materials. An interdisciplinary team will study the biogeochemistry of this progenitor DOM and how microbes modify it. By focusing on the chemical composition of the DOM as it shifts from precursor material to the more humified fractions, the investigators will relate this transition to bioavailability, enzymatic activity, community composition and microbial growth efficiency. This project will support education at all levels, K-12, high school, undergraduate, graduate and post-doc and will increase participation by under-represented groups in science. Towards these goals, the investigators have established relationships with girls' schools and Native American programs. Additional outreach will be carried out in coordination with PolarTREC, PolarPalooza, and if possible, an Antarctic Artist and Writer.
Intellectual Merit:<br/>The focus of this proposal is to collect fossil plants and palynomorphs from Permian-Triassic (P-T) rocks of the central Transantarctic Mountains (CTM), together with detailed data on sedimentologic and paleoecologic depositional environments. Fossil plants are important climate proxies that offer a unique window into the past, and the CTM fossils are an important source of data on the ways that plants responded to a strongly seasonal, polar light regime during a time of global change. The proposed project uses paleobotanical expertise, integrated with detailed sedimentology and stratigraphy, to reconstruct Permian-Triassic plant communities and their paleoenvironments. This interdisciplinary approach could uncover details of Antarctica?s complex late Paleozoic and Mesozoic environmental and climatic history which included: 1) deglaciation, 2) development and evolution of a post-glacial landscape and biota, 3) environmental and biotic change associated with the end-Permian mass extinction, 4) environmental recovery in the earliest Triassic, 5) strong, possible runaway Triassic greenhouse, and 6) widespread orogenesis and development of a foreland basin system. The PIs will collect compression floras both quantitatively and qualitatively to obtain biodiversity and abundance data. Since silicified wood is also present, the PIs will analyze tree rings and growth in a warm, high-latitude environment for which there is no modern analogue. Fossil plants from the CTM can provide biological and environmental information to: 1) interpret paleoclimate when Gondwana moved from icehouse to greenhouse conditions; 2) trace floral evolution across the P-T boundary; 3) reconstruct Antarctic plant life; 4) further understanding of plant adaptations to high latitudes. The Intellectual Merit of the research includes: 1) tracing floral evolution after the retreat of glaciers; 2) examining floral composition and diversity across the PTB; and 3) obtaining data on the recovery of these ecosystems in the Early Triassic, as well as changes in floral cover and diversity in the Early-Middle Triassic. Antarctica is the only place on Earth that includes extensive outcrops of terrestrial rocks, combined with widespread and well-preserved plant fossils, which spans this crucial time period.<br/><br/>Broader impacts:<br/>The broader impacts include public outreach; teaching, and mentoring of women and underrepresented students; mentoring graduate student, postdoctoral, and new faculty women; development of an inquiry-based workshop on Antarctic paleoclimate with the Division of Education, KU Natural History Museum; continuing support of workshops for middle school girls in science via the Expanding Your Horizons Program, Emporia State University, and the TRIO program, KU; exploring Antarctic geosciences through video/computer links from McMurdo Station and satellite phone conferences from the field with K-12 science classes in Wisconsin and Kansas, and through participation in the NSF Research Experiences for Teachers program at the University of Wisconsin.
Intellectual Merit: Neogene sediment records recovered by ANDRILL suggest multiple events of open water conditions and elevated sea surface temperatures at times when terrestrial data from the McMurdo Dry Valleys indicate hyper arid, cold, desert conditions. Interpretation of the ANDRILL data suggests the West Antarctic Ice Sheet is highly sensitive to changes in Pliocene sea surface temperatures and this conclusion has been supported by recent Global Circulation Model results for the early to mid Pliocene. The PIs propose to model paleo-ice configurations and warm orbits associated with a WAIS collapse to assess potential climate change in East Antarctica. During such episodes of polar warmth they propose to answer: What is the limit of ablation along the East Antarctic Ice Sheet?; Are relict landforms in the Dry Valleys susceptible to modification from increase in maximum summertime temperatures?; and Is there sufficient increase in minimum wintertime temperatures to sustain a tundra environment in the Dry Valleys? Integration of depositional records and model outputs have the potential to test the performance of numerical models currently under development as part of ANDRILL; reconcile inconsistencies between marine and terrestrial paleoclimate records in high Southern Latitudes; and improve understanding of Antarctic climate and ice volume sensitivity to forcing for both the East Antarctic and West Antarctic Ice Sheets. Broader impacts: Results from this study have the potential to be used widely by the research community. Outreach to local elementary schools from other funded efforts will continue and be extended to homeschooled students. A Post Doc will be supported as part of this award.
This award supports a project to investigate the transformations from snow to firn to ice and the underlying physics controlling firn's ability to store atmospheric samples from the past. Senior researchers, a graduate student, and several undergraduates will make high-resolution measurements of both the diffusivity and permeability profiles of firn cores from several sites in Antarctica and correlate the results with their microstructures quantified using advanced materials characterization techniques (scanning electron microscopy and x-ray computed tomography). The use of cores from different sites will enable us to examine the influence of different local climate conditions on the firn structure. We will use the results to help interpret existing measurements of firn air chemical composition at several sites where firn air measurements exist. There are three closely-linked goals of this project: to quantify the dependence of interstitial transport properties on firn microstructure from the surface down to the pore close-off depth, to determine at what depths bubbles form and entrap air, and investigate the extent to which these features exhibit site-to-site differences, and to use the measurements of firn air composition and firn structure to better quantify the differences between atmospheric composition (present and past), and the air trapped in both the firn and in air bubbles within ice by comparing the results of the proposed work with firn air measurements that have been made at the WAIS Divide and Megadunes sites. The broader impacts of this project are that the study will this study will enable us to elucidate the fundamental controls on the metamorphism of firn microstructure and its impact on processes of gas entrapment that are important to understanding ice core evidence of past atmospheric composition and climate change. The project will form the basis for the graduate research of a PhD student at Dartmouth, with numerous opportunities for undergraduate involvement in cold room measurements and outreach. The investigators have a track record of successfully mentoring women students, and will build on this experience. In conjunction with local earth science teachers, and graduate and undergraduate students will design a teacher-training module on the role of the Polar Regions in climate change. Once developed and tested, this module will be made available to the broader polar research community for their use with teachers in their communities.
The proposed work is a multi-year study of the transport of water through Drake Passage by the Antarctic Circumpolar Current (ACC). Drake Passage acts as a chokepoint that is not only well suited geographically for measuring the time-varying transport, but observations and computer models suggest that dynamical balances which control the transport are particularly effective here. An array of Current Meters and Pressure-recording Inverted Echo Sounders (CPIES) will be set out for a period of 4 years to quantify the transport and dynamics of the Antarctic Circumpolar Current. Data will be collected annually by acoustic telemetry, leaving the instruments undisturbed until recovered at the end of the project. <br/><br/>The Southern Ocean is believed to be especially sensitive to climate change, responding to winds that have increased over the past thirty years, and warming significantly more than the global ocean over the past fifty years. The proposed observations will resolve the seasonal and interannual variability of the total ACC transport, as well as its vertical and lateral structure. Although not submitted specifically to the International Polar Year (IPY) Program Solicitation, the proposed project contributes to the IPY goal of understanding environmental change in polar regions and represents a pulse of activity in the IPY time frame that will extend the legacy of the IPY. The data and findings will be reported to publicly accessible archives and submitted for publication in the scientific literature. It is a scientific collaboration between the University of California, San Diego, and the University of Rhode Island.
The mesosphere and lower thermosphere (MLT), at an altitude between 80 and 120 km above the Earth's surface, is a highly dynamic region that couples the lower terrestrial atmosphere (troposphere and stratosphere) with the upper atmosphere near-Earth space environment (thermosphere and ionosphere). Of particular importance in this region are both the upward propagating thermally forced atmospheric tides and global scale planetary waves. Both of these phenomena transport heat and momentum from the lower atmosphere into the upper atmosphere. Studies in recent years have indicated that the Arctic and Antarctic MLT possess a rich spectrum waves and may be more sensitive to global change than the lower atmosphere. The primary goal of this research is to observe, quantify, model, and further understand the spatial-temporal structure and variability of the MLT circulation above Antarctica and its commonalities with the Arctic. A secondary goal is to quantify and understand the deposition of mass into the upper atmosphere through the ablation of meteors and the resulting effect on local and regional aeronomic processes. This includes the effect of meteor flux, temperature and dynamics on the seasonal distribution of sodium over the South Pole. Meteor radar was installed at the South Pole Amundsen-Scott station and has been running continuously since January 2002. A new sodium nightglow imager will be installed at the South Pole to infer the sodium abundance in the MLT. Observations from this instrument will be combined with the South Pole Fabry-Perot interferometer temperature measurements and the meteor radar wind and meteor flux measurements to improve our understanding of the sodium chemistry and dynamics. These observations will be interpreted using sophisticated numerical models and interpreted in conjunction with Arctic measurements along with current linear and nonlinear atmospheric models to advance the current understanding of processes important to the MLT region. This research also contributes to the training and education of the graduate and undergraduate students, a postdoc and early career tenure track faculty.
The relatively pristine Antarctic continent with its extensive maritime zone represents a unique location on the planet to investigate the long distance aerial transport and deposition of marine microorganisms. The vast extent of new sea ice that forms each winter around the continent results in large numbers of frost flowers, delicate ice-crystal structures of high salt content that form on the surface of the ice and are readily dispersed by wind. The proposed research builds on earlier work in the Arctic and tests the new hypothesis that wind-borne frost flowers provide an effective mechanism for the transport of marine bacteria over long distances, one that can be uniquely sourced and tracked by the frost flower salt signature in the Antarctic realm. A highly resolved genomic snapshot of the microbial community will be acquired at each stage in the transport path, which will track decreasing fractions of the marine microbial community as it freezes into sea ice, incorporates into frost flowers, converts to aerosols, and ultimately deposits within continental snowpack. En route from sea ice to snowpack, marine bacteria will be exposed to an array of environmental stresses, including high salinity, low temperatures, UV light and potential desiccation. A parallel proteomic analysis will enable an evaluation of the microbial response to these extreme conditions and potential survival mechanisms that allow persistence or eventual colonization of deposition sites across Antarctica. Current understanding of microbes in the Antarctic atmosphere is based on a limited number of microscopic and culture-based assays and a single report of low-resolution 16S RNA gene sequence analysis. The research will broadly impact understanding of atmospheric microbiology, from source to deposition, and various issues of microbial survival, colonization, endemism, and diversity under extreme conditions. In addition to venues that reach the scientific community, the research team will develop a permanent multi-media and artifact-based exhibit on Antarctic Microbial Transport that will be showcased at Seattle's Pacific Science Center (PSC), which educates nearly a million visitors annually.
The proposed work will investigate changes in the compositional variation of glacial tills over time across two concentric sequences of Pleistocene moraines located adjacent to the heads of East Antarctic outlet glaciers in the Transantarctic Mountains (TAM). The chronologic framework for this work will be generated from cosmogenic exposure ages of boulders on prominent morainal ridges. The PIs hypothesize that variations in till composition may indicate a change in ice flow direction or a change in the composition of the original source area, while ages of the moraines provide a long-term terrestrial perspective on ice sheet dynamics. Both results are vital for modeling experiments that aim to reconstruct the East Antarctic Ice Sheet and assess its role in the global climate system and its potential impact on global sea level rise. The variation of till compositions through time also allows for a more accurate interpretation of sediment cores from the Ross Sea and the Southern Ocean. Additionally, till exposures at the head of some East Antarctic outlet glaciers have been shown to contain subglacial material derived from East Antarctic bedrock, providing a window through the ice to view East Antarctica?s inaccessible bedrock. Till samples will be collected from two well-preserved sequences of moraine crests at Mt. Howe (head of Scott Glacier) and Mt. Achernar (between Beardmore and Nimrod Glaciers). Each size fraction in glacial till provides potentially valuable information, and the PIs will measure the petrography of the clast and sand fractions, quantitative X-ray diffraction on the crushed <2mm fraction, elemental abundance of the silt/clay fraction, and U/Pb of detrital zircons in the sand fraction. Data collection will rely on established methods previously used in this region and the PIs will also explore new methods to assess their efficacy. On the same moraines crests sampled for provenance studies, the PIs will sample for cosmogenic surface exposure analyses to provide a chronologic framework at the sites for provenance changes through time. <br/><br/>Broader Impact <br/>The proposed research involves graduate and undergraduate training in a diverse array of laboratory methods. Students and PIs will be make presentations to community and campus groups, as well as conduct interviews with local news outlets. The proposed work also establishes a new, potentially long-term, collaboration between scientists at IUPUI and LDEO and brings a new PI (Kaplan) into the field of Antarctic Earth Sciences.
This project is a geochemical study of volcanic rocks from the West Antarctic Rift system. Its goal is to understand the link between mantle composition and the diverse, regional geodynamic processes, which include uplift, rifting, and volcanism. This project uses argon dating to time the processes, and isotope geochemistry and melt inclusion studies to determine whether the area is underlain by hot or wet mantle. The main broader impacts are support for a woman graduate student, undergraduate research, and research infrastructure.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>This award supports a project to use the WAIS Divide deep core to investigate the Last Deglaciation at sub-annual resolution through an integrated set of chemical and biological analyses. The intellectual merit of the project is that these analyses, combined with others, will take advantage of the high snow accumulation WAIS Divide site yielding the highest time resolution glacio-biogeochemical and gas record of any deep Antarctic ice core. With other high resolution Greenland cores (GISP2 and GRIP) and lower resolution Antarctic cores, the combined record will yield new insights into worldwide climate dynamics and abrupt change. The proposed chemical, biological, and elemental tracer measurements will also be used to address all of the WAIS Divide science themes. The broader impacts of the project include education and outreach activities such as numerous presentations to local K-12 students; opportunities for student and teacher involvement in the laboratory work; a teacher training program in Earth sciences in the heavily minority Santa Ana, Compton, and Costa Mesa, California school districts; and development of high school curricula. Extensive graduate and undergraduate student involvement also is planned and will include one post doctoral associate, one graduate student, and undergraduate hourly involvement at DRI; a graduate student and undergraduates at University of California, Irvine (UCI); and a post doctoral fellow at MSU. Student recruitment will be made from underrepresented groups building on a long track record of involvement and will include the NSF funded California Alliance for Minority Participation (CAMP) and the Montana American Indian Research Opportunities (AIRO).<br/><br/>This award does not involve field work in Antarctica.
Ammonia oxidation is the first step in the conversion of regenerated nitrogen to dinitrogen gas, a 3-step pathway mediated by 3 distinct guilds of bacteria and archaea. Ammonia oxidation and the overall process of nitrification-denitrification have received relatively little attention in polar oceans where the effects of climate change on biogeochemical rates are likely to be pronounced. Previous work on Ammonia Oxidizing Archaea (AOA) in the Palmer LTER study area West of the Antarctic Peninsula (WAP), has suggested strong vertical segregation of crenarchaeote metabolism, with the "winter water" (WW, ~50-100 m depth range) dominated by non-AOA crenarchaeotes, while Crenarchaeota populations in the "circumpolar deep water" (CDW), which lies immediately below the winter water (150-3500 m), are dominated by AOA. Analysis of a limited number of samples from the Arctic Ocean did not reveal a comparable vertical segregation of AOA, and suggested that AOA and Crenarchaeota abundance is much lower there than in the Antarctic. These findings led to 3 hypotheses that will be tested in this project: 1) the apparent low abundance of Crenarchaeota and AOA in Arctic Ocean samples may be due to spatial or temporal variability in populations; 2) the WW population of Crenarchaeota in the WAP is dominated by a heterotroph; 3) the WW population of Crenarchaeota in the WAP "grows in" during spring and summer after this water mass forms. <br/><br/>The study will contribute substantially to understanding an important aspect of the nitrogen cycle in the Palmer LTER (Long Term Ecological Research) study area by providing insights into the ecology and physiology of AOA. The natural segregation of crenarchaeote phenotypes in waters of the WAP, coupled with metagenomic studies in progress in the same area by others (A. Murray, H. Ducklow), offers the possibility of major breakthroughs in understanding of the metabolic capabilities of these organisms. This knowledge is needed to model how water column nitrification will respond to changes in polar ecosystems accompanying global climate change. The Principal Investigator will participate fully in the education and outreach efforts of the Palmer LTER, including making highlights of our findings available for posting to their project web site and participating in outreach (for example, Schoolyard LTER). The research also will involve undergraduates (including the field work if possible) and will support high school interns in the P.I.'s laboratory over the summer.
Intellectual Merit: The Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) is a study of ocean mixing in the Antarctic Circumpolar Current (ACC) which runs west to east all around the continent of Antarctica, south of the other continents. This current system is somewhat of a barrier to transport of heat, carbon dioxide and other important ocean constituents between the far south and the rest of the ocean, and mixing processes play an important role in those transports. DIMES is a multi-investigator cooperative project, led by physical oceanographers in the U.S. and in the U.K. A passive tracer and an array of sub-surface floats were deployed early in 2009 more than 2000 km west of Drake Passage on a surface of constant density about 1500 m deep between the Sub Antarctic Front and the Polar Front of the ACC. In early 2010 a U.S. led research cruise sampled the tracer, turbulence levels, and the velocity and density profiles that govern the generation of that turbulence, and additional U.K. led research cruises in 2011 and 2012 continue this sampling as the tracer has made its way through Drake Passage, into the Scotia Sea, and over the North Scotia Ridge, a track of more than 3000 km. The initial results show that diapycnal, i.e., vertical, mixing west of Drake Passage where the bottom is relatively smooth is no larger than in most other regions of the open ocean. In contrast, there are strong velocity shears and intense turbulence levels over the rough topography in Drake Passage and diapycnal diffusivity of the tracer more than 10 times larger in Drake Passage and to the east than west of Drake Passage. The DIMES field program continues with the U.S. team collecting new velocity and turbulence data in the Scotia Sea. It is anticipated that the tracer will continue passing through the Scotia Sea until at least early 2014. The U.K. partners have scheduled sampling of the tracer on cruises at the North Scotia Ridge and in the eastern and central Scotia Sea in early 2013 and early 2014. The current project will continue the time series of the tracer at Drake Passage on two more U.S. led cruises, in late 2012 and late 2013. Trajectories through the Scotia Sea estimated from the tracer observations, from neutrally buoyant floats, and from numerical models will be used to accurately estimate mixing rates of the tracer and to locate where the mixing is concentrated. During the 2013 cruise the velocity and turbulence fields along high-resolution transects along the ACC and across the ridges of Drake Passage will be measured to see how far downstream of the ridges the mixing is enhanced, and to test the hypothesis that mixing is enhanced by breaking lee waves generated by flow over the rough topography. Broader Impacts: DIMES (see web site at http://dimes.ucsd.edu) involves many graduate students and post-doctoral researchers. Two graduate students, who would become expert in ocean turbulence and the processes generating it, will continue be trained on this project. The work in DIMES is ultimately motivated by the need to understand the overturning circulation of the global ocean. This circulation governs the transport and storage of heat and carbon dioxide within the huge oceanic reservoir, and thus plays a major role in regulating the earth?s climate. Understanding the circulation and how it changes in reaction to external forces is necessary to the understanding of past climate change and of how climate might change in the future, and is therefore of great importance to human well-being. The data collected and analyzed by the DIMES project will be assembled and made publicly available at the end of the project. The DIMES project is a process experiment sponsored by the U.S. CLIVAR (Climate variability and predictability) program.
The research will explore the genetics, diversity, and biogeography of Antarctic marine benthic invertebrates, seeking to overturn the widely accepted suggestion that benthic fauna do not constitute a large, panmictic population. The investigators will sample adults and larvae from undersampled regions of West Antarctica that, combined with existing samples, will provide significant coverage of the western hemisphere of the Southern Ocean. The objectives are: 1) To assess the degree of genetic connectivity (or isolation) of benthic invertebrate species in the Western Antarctic using high-resolution genetic markers. 2) To begin exploring planktonic larvae spatial and bathymetric distributions for benthic shelf invertebrates in the Bellinghausen, Amundsen and Ross Seas. 3) To continue to develop a Marine Antarctic Genetic Inventory (MAGI) that relates larval and adult forms via DNA barcoding. Broader impacts include traditional forms of training (postdocs, graduate studentships, undergraduate research experiences) and lectures to K-12 groups.
Krill, Euphausia superba, is a keystone species in the Antarctic ecosystem and provides the trophic link between microscopic plankton and charismatic megafauna such as penguins and whales. Recent evidence suggests krill may not be exclusively planktonivorous, which introduces the potential of new pathways of carbon flux through krill based ecosystems. A change in our view of krill from one of being herbivores to omnivores opens up several questions. Climate induced change in the extent, thickness and duration of overlying sea ice coverage is expected to change the prey fields available to krill, and to have subsequent effects on the suite of predators supported by krill. The nature of this benthic prey?krill link, which may be crucial in those parts of the seasonal cycle other than the well studied spring bloom, is yet to be determined. DNA techniques will be used to identify and quantify the prey organisms. This project will measure the in situ feeding ecology and behavior of krill and, ultimately, the success of this key species. An overall goal is to investigate seasonal changes in Euphausia superba in-situ feeding and swimming behavior in the Wilhelmina Bay region of the Western Antarctic Peninsula (WAP) area, known to be a region of changing climate. Understanding the biological impacts of climate change is important to societal and economic goals. The project scientists will additionally team with a marine and environmental reporting group to design presentations for an annual journalist meeting.
This five-year project seeks to characterize decadal scale changes in penguin and seabird populations on the Antarctic Peninsula, and to identify the factors driving these long-term changes. Two interconnected research activities are proposed: 1. Continued, long-term monitoring and censusing of penguin and seabird populations at >117 sites throughout the Antarctic Peninsula via opportunistic ship-based data collection. 2. Synthesis and quantitative analyses of datasets detailing long-term changes in five penguin and seabird species from diverse sites throughout the Antarctic Peninsula. When complete, the penguin/seabird database will incorporate data from the Antarctic Site Inventory (ASI), the CCAMLR database, the US AMLR database, the LTER database from Palmer Station, data from British and Argentine researchers, historic census data compiled by the Scientific Committee on Antarctic Research (SCAR), and, when possible, additional privately held datasets. Additional data for temperature change, sea ice coverage, the seasonal timing and intensity of human visitation, and other factors have been gathered and will be analyzed together with population trajectories within a spatially explicit framework. The research will include hierarchical statistical analyses to characterize the long-term population dynamics of several key polar species across multiple spatial scales (sites, regions, and the Peninsula). Analyses also will focus on specific subsets of the overall database to contrast visitor impacts on paired colonies, sites, and regions that share similar environmental conditions but differ in the intensity of tourism. <br/><br/>The Broader Impacts include (1) research training and first-time Antarctic experiences for a postdoctoral researcher and several graduate students, all of whom will then be better positioned to bring their expertise in spatial and/or quantitative/theoretical ecology to bear on questions in polar research; (2) assembly and analysis of a large, multi-season database of penguin and seabird time series from the Antarctic Peninsula that will be publicly available, (3) assistance in distinguishing the impacts of tourism versus climate change on seabird populations. Under the Environmental Protocol to the Antarctic Treaty, Treaty Parties are charged with regular and effective monitoring to assess the impacts of human activities. This project will uniquely assist Parties in fulfilling this mandate.
Abstract This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The Antarctic Peninsula is among the most rapidly warming regions on earth. Increased heat from the Antarctic Circumpolar Current has elevated the temperature of the 300 m of shelf water below the permanent pycnocline by 0.7 degrees C. This trend has displaced the once dominant cold, dry continental Antarctic climate, and is causing multi-level responses in the marine ecosystem. One striking example of the ecosystem response to warming has been the local declines in ice-dependent Adélie penguins. The changes in these apex predators are thought to be driven by alterations in phytoplankton and zooplankton community composition, and the foraging limitations and diet differences between these species. One of the most elusive questions facing researchers interested in the foraging ecology of the Adélie penguin, namely, what are the biophysical properties that characterize the three dimensional foraging space of this top predator? The research will combine the real-time site and diving information from the Adélie penguin satellite tags with the full characterization of the oceanography and the penguins prey field using an autonomous underwater vehicle (AUV). While some of these changes have been documented over large spatial scales of the WAP, it is now thought that the causal mechanisms that favor of one life history strategy over another may actually operate over much smaller scales than previously thought, specifically on the scale of local breeding sites and over-wintering areas. Characterization of prey fields on these local scales has yet to be done and one that the AUV is ideally suited. The results will have a direct tie to the climate induced changes that are occurring in the West Antarctic Peninsula. This study will also highlight a new approach to linking an autonomous platform to bird behavior that could be expanded to include the other two species of penguins and examine the seasonal differences in their foraging behavior and prey selection. From a vehicle perspective, this effort will inform the AUV user community of new sensor suites and/or data processing approaches that are required to better evaluate foraging habitat. The project also will help transition AUV platforms into routine investigative tools for this region, which is chronically under sampled and will remain difficult to access
Intellectual Merit: <br/>The goal of this project is to address relationships between foreland basins and their tectonic settings by combining detrital zircon isotope characteristics and sedimentological data. To accomplish this goal the PIs will develop a detailed geochronology and analyze Hf- and O-isotopes of detrital zircons in sandstones of the Devonian Taylor Group and the Permian-Triassic Victoria Group. These data will allow them to better determine provenance and basin fill, and to understand the nature of the now ice covered source regions in East and West Antarctica. The PIs will document possible unexposed/unknown crustal terrains in West Antarctica, investigate sub-glacial terrains of East Antarctica that were exposed to erosion during Devonian to Triassic time, and determine the evolving provenance and tectonic history of the Devonian to Triassic Gondwana basins in the central Transantarctic Mountains. Detrital zircon data will be interpreted in the context of fluvial dispersal/drainage patterns, sandstone petrology, and sequence stratigraphy. This interpretation will identify source terrains and evolving sediment provenances. Paleocurrent analysis and sequence stratigraphy will determine the timing and nature of changing tectonic conditions associated with development of the depositional basins and document the tectonic history of the Antarctic sector of Gondwana. Results from this study will answer questions about the Panthalassan margin of Gondwana, the Antarctic craton, and the Beacon depositional basin and their respective roles in global tectonics and the geologic and biotic history of Antarctica. The Beacon basin and adjacent uplands played an important role in the development and demise of Gondwanan glaciation through modification of polar climates, development of peat-forming mires, colonization of the landscape by plants, and were a migration route for Mesozoic vertebrates into Antarctica. <br/><br/>Broader impacts: <br/>This proposal includes support for two graduate students who will participate in the fieldwork, and also support for other students to participate in laboratory studies. Results of the research will be incorporated in classroom teaching at the undergraduate and graduate levels and will help train the next generation of field geologists. Interactions with K-12 science classes will be achieved by video/computer conferencing and satellite phone connections from Antarctica. Another outreach effort is the developing cooperation between the Byrd Polar Research Center and the Center of Science and Industry in Columbus.
The importance of gelatinous zooplankton in marine systems worldwide is increasing. In Southern Ocean, increasing salp densities could have a detrimental effect on higher predators, including penguins, fur seals, and baleen whales. The proposed research is a methods-develoment project that will improve the capability to indirectly assess abundances and distributions of salps in the Southern Ocean through acoustic surveys. Hydrographic, net tow, and acoustic backscatter data will be collected in the waters surrounding the South Shetland Islands and the Antarctic peninsula, where both krill and salps are found and compete for food. Shipboard experimental manipulations and measurements will lead to improved techniques for assessment of salp biomass acoustically. Experiments will focus on material properties (density and sound speed), size and shape of salps, as well as how these physical properties will vary with the salp's environment, feeding rate, and reproductive status. In the field, volume backscattering data from an acoustic echosounder will be collected at the same locations as the net tows to enable comparison of net and acoustic estimates of salp abundance. A physics-based scattering model for salps will be developed and validated, to determine if multiple acoustic frequencies can be used to discriminate between scattering associated with krill swarms and that from salp blooms. During the same period as the Antarctic field work, a parallel outreach and education study will be undertaken in Long Island, New York examining local gelatinous zooplankton. This study will enable project participants to learn and practice research procedures and methods before traveling to Antarctica; provide a comparison time-series that will be used for educational purposes; and include many more students and teachers in the research project than would be able to participate in the Antarctic field component.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>Two models have been proposed to describe controls over microbial biogeography. One model proposes that microbes are ubiquitously distributed across the global environment, and that environmental conditions select for taxa physiologically adapted to local physical conditions. An alternative model predicts that dispersal is the important limitation to the distribution of microorganisms and that spatial heterogeneity of microbial communities is a result of both dispersal and local environmental limitations. According to both models, spatial heterogeneity of microbial communities may be especially pronounced in extreme ecosystems where the environmental selection for organisms with suitable physiology is most strongly manifest. We propose that Antarctic terrestrial environments are ideal places to examine microbial biogeography for 3 reasons: 1) the pristine nature and remoteness of Antarctica minimizes the prevalence of exotic species dispersed through human vectors; 2) the extreme conditions of Antarctic environments provide a strong environmental filter which limits the establishment of non-indigenous taxa; and 3) extreme heterogeneity in the terrestrial environment provides natural gradients of soil conditions (temperature, water and nutrient availability). In the proposed research we will investigate the influence of snow on the composition and spatial distribution of soil microbial communities and linked biogeochemical cycling in the McMurdo Dry Valleys. We will conduct fieldwork at the landscape scale (repeated remote sensing to characterize snow distribution), at the valley and patch scales (quantify snow patch ablation, microbial communities and biogeochemical cycling in subnivian soils). We hypothesize that snow patches play an important role in structuring the spatial distribution of soil microbial communities and their associated ecosystem functioning because of the physical and hydrological influences that snow patches have on the soil environment. The research will contribute to greater public awareness of the importance of polar research to fundamental questions of biology, ecology and hydrology through direct linkages with International Antarctic Institute public outreach activities, including dissemination of web-based learning units on environmental science and microbiology, targeted as resources for secondary and post-secondary educators. Three graduate students, one postdoctoral scholar and multiple undergraduates will participate in the research activities.
Intellectual Merit: Mt. Erebus is one of only a handful of volcanoes worldwide that have lava lakes with readily observable and nearly continuous Strombolian explosive activity. Erebus is also unique in having a permanent convecting lava lake of anorthoclase phonolite magma. Over the years significant infrastructure has been established at the summit of Mt. Erebus as part of the Mount Erebus Volcano Observatory (MEVO), which serves as a natural laboratory to study a wide range of volcanic processes, especially magma degassing associated with an open convecting magma conduit. The PI proposes to continue operating MEVO for a further five years. The fundamental fundamental research objectives are: to understand diffuse flank degassing by using distributed temperature sensing and gas measurements in ice caves, to understand conduit processes, and to examine the environmental impact of volcanic emissions from Erebus on atmospheric and cryospheric environments. To examine conduit processes the PI will make simultaneous observations with video records, thermal imaging, measurements of gas emission rates and gas compositions, seismic, and infrasound data. Broader impacts: An important aspect of Erebus research is the education and training of students. Both graduate and undergraduate students will have the opportunity to work on MEVO data and deploy to the field site. In addition, this proposal will support a middle or high school science teacher for two field seasons. The PI will also continue working with various media organizations and filmmakers.
The climatic changes of late Precambrian time, 600-800 million years ago, included episodes of extreme glaciation, during which ice may have covered nearly the entire ocean for several million years, according to the Snowball Earth hypothesis. These episodes would hold an important place in Earth?s evolutionary history; they could have encouraged biodiversity by trapping life forms in small isolated ice-free areas, or they could have caused massive extinctions that cleared the path for new life forms to fill empty niches. What caused the Earth to become iced over, and what later caused the ice to melt? Scientific investigation of these questions will result in greater understanding of the climatic changes that the Earth can experience, and will enable better predictions of future climate. This project involves Antarctic field observations as well as laboratory studies and computer modeling. The aim of this project is not to prove or disprove the Snowball Earth hypothesis but rather to quantify processes that are important for simulating snowball events in climate models. The principal goal is to identify the types of ice that would have been present on the frozen ocean, and to determine how much sunlight they would reflect back to space. Reflection of sunlight by bright surfaces of snow and ice is what would maintain the cold climate at low latitudes. The melting of the ocean required buildup of greenhouse gases, but it was probably aided by deposition of desert dust and volcanic ash darkening the snow and ice. With so much ice on the Earth?s surface, even small differences in the amount of light that the ice absorbed or reflected could cause significant changes in climate. The properties of the ice would also determine where, and in what circumstances, photosynthetic life could have survived. Some kinds of ice that are rare on the modern Earth may have been pivotal in allowing the tropical ocean to freeze. The ocean surfaces would have included some ice types that now exist only in Antarctica: bare cold sea ice with precipitated salts, and "blue ice" areas of the Transantarctic Mountains that were exposed by sublimation and have not experienced melting. Field expeditions were mounted to examine these ice types, and the data analysis is underway. A third ice type, sea ice with a salt crust, is being studied in a freezer laboratory. Modeling will show how sunlight would interact with ice containing light-absorbing dust and volcanic ash. Aside from its reflection of sunlight, ice on the Snowball ocean would have been thick enough to flow under its own weight, invading all parts of the ocean. Yet evidence for the survival of photosynthetic life indicates that some regions of liquid water were maintained at the ocean surface. One possible refuge for photosynthetic organisms is a bay at the far end of a nearly enclosed tropical sea, formed by continental rifting and surrounded by desert, such as the modern Red Sea. A model of glacier flow is being developed to determine the dimensions of the channel, connecting the sea to the ocean, necessary to prevent invasion by the flowing ice yet maintain a water supply to replenish evaporation.
Since 1990, Palmer LTER (PAL) research has been guided by the hypothesis that variability in the polar marine ecosystem is mechanistically coupled to changes in the annual advance, retreat and spatial extent of sea ice. Since that time, the hypothesis has been modified to incorporate climate migration, i.e. the displacement of a cold, dry polar climate by a warm, moist climate regime in the northern component of the PAL region, producing fundamental changes in food web structure and elemental cycling. The observed northern changes are affecting all trophic levels and elemental cycling, and the primary mechanism of change involves match-mismatch dynamics. The proposed research builds on previous findings, with a new emphasis on process studies and modeling to elucidate the mechanistic links between teleconnections, climate change, physical oceanographic forcing and ecosystem dynamics. The proposed research will examine the hypothesis that regional warming and sea ice decline associated with historical and on-going climate migration in the northern part of the study area have altered key phenological relationships, leading to changes in species distributions, increasing trophic mismatches and changes in habitat, food availability, ecosystem dynamics and biogeochemical cycling. Through targeted process studies linked to numerical model simulations, the research also will test the hypothesis that deep cross-shelf canyons characterizing the core study region are focal areas for ecosystem processes that result in predictable, elevated food resources for top-predators. The effort includes the addition of 3 new PIs: a zooplankton ecologist with expertise in biogeochemical fluxes, a phytoplankton ecologist focusing on bio-optics and autonomous observations using gliders, and a numerical simulation modeler specializing in coupled global models of ocean circulation, plankton ecology and biogeochemical cycles. The program will add trace metal sampling and analysis, moored physical oceanographic sensors, a moored sediment trap in the south, drifting sediment traps and stable carbon (del 13C) and nitrogen (del 15N) isotope analyses. Missions lasting up to 45 days using gliders deployed before, during and after summer cruises will, along with moorings and satellite remote sensing of sea ice, ocean color, sea surface temperatures and wind fields, greatly extend the observational program in space and time. <br/><br/>Since its inception, PAL has been a leader in Information Management to enable knowledge-building within and beyond the Antarctic, oceanographic and LTER communities. PAL has designed and deployed a new information infrastructure with a relational database architecture to facilitate data distribution and sharing. The Education and Outreach program capitalizes on the public's fascination with Antarctica to promote scientific literacy from kindergarten students to adult citizens concerned with climate change and environmental sustainability. Through communicating results to the public and working with scientific assessment bodies (e.g., IPCC) and Antarctic Treaty parties to protect Earth's last frontier, PAL researchers contribute to the national scientific agenda and the greater public benefit.
The west Antarctic Peninsula is warming rapidly, and continuing changes in the thermal regime will likely result in severe consequences for marine fauna, including potential extinction of strongly adapted stenotherms, and invasions from neighboring faunas. Initial impacts of climate change may result in changes in connectivity among populations of the same species. These changes may will be undetectable by direct observation, but may be assessed via genetic connectivity, i.e. differences in allele or haplotype frequencies among populations can be used to infer levels of gene flow. The proposed research will explore the role that the Scotia Arc plays in connecting populations from South America to Antarctica, a corridor identified as a likely entry route for invaders into Antarctica. It also will examine the way in which cryptic species may confound our knowledge of broad-scale distributions, and in doing so, make contributions towards understanding biodiversity and testing the paradigm of circumpolarity in Antarctica. The principal investigator will to collect multi-locus genetic data across 'species' from a broad suite of benthic marine invertebrate phyla, from multiple locations, in order to address hypotheses regarding speciation and connectivity, to estimate demographic population changes, and to identify the underlying processes that drive observed phylogeographic patterns. Comparative phylogeography is a particularly valuable approach because it enables the identification of long-term barriers and refugia common to groups of species and is consequently highly relevant to conservation planning. Moreover, this work will form a valuable baseline for detecting future changes in connectivity. The results of the research will be disseminated through peer-reviewed publications and presentations at conferences. In addition, the project will support the interdisciplinary training of a female graduate student, two undergraduate students, and host additional summer students through the STARS program at SIO, which helps minority students prepare for graduate school. This project will integrate research and education through conducting an interdisciplinary workshop that brings together Earth Science and Biology high school teachers. This workshop aims to assist teachers derive their own curricula uniting plate tectonics, ocean history and evolution, supporting a new high school earth sciences program. Information generated by this project will also directly feed into international efforts to design a series of Marine Protected Areas (MPAs) in Antarctica.
Bell/0636883<br/><br/>This award support a project to study the role that subglacial water plays in the overall stability of major ice sheets. An estimated 22,000 km3 of water is currently stored within Antarctica's subglacial lakes. Movement of this water occurs through a complex and largely inferred drainage system in both East and West Antarctica. Geomorphic evidence for the catastrophic drainage of subglacial lakes documents repeated events. These major flood events appear to have drained the largest subglacial lakes situated in the relatively stable interior of the East Antarctic ice sheet. Emerging evidence suggests there is a close connection between significant subglacial lakes and the onset of the Recovery Ice Stream one of the largest in East Antarctica. Our preliminary analysis of the Recovery Lakes region, East Antarctica suggests a direct linkage between lakes and streaming ice flow, specifically the 800 km long Recovery Ice Stream and its tributaries. Located just upslope of the Recovery Ice Stream, the Recovery Lakes Region is composed of 3 well-defined lakes and a fourth, ambiguous, 'lake-like' feature. While other large lakes have a localized impact on ice surface slope, the Recovery Lakes Region lakes are coincident with an abrupt regional change in the ice sheet surface slope. Satellite imagery demonstrates that the downslope margin of this lake area contains distinct flow strips and crevasses: both indicative of increasing ice velocities. The discovery of a series of large lakes coincident with the onset of rapid ice flow in East Antarctica clearly links subglacial lakes and ice sheet dynamics for the first time. The evidence linking the onset of streaming in the Recovery Drainage Ice Stream to the series of large subglacial lakes raises the fundamental question: How can subglacial lakes trigger the onset of ice streaming? We advance two possible mechanisms: (i) Subglacial lakes can produce accelerated ice flow through the drainage of lake water beneath the ice sheet downslope of the lakes. (ii) Subglacial lakes can produce accelerated ice flow accelerated ice flow by modifying the basal thermal gradient via basal accretion over the lakes so when the ice sheet regrounds basal melting dominates. To evaluate the contribution of lake water and the changing basal thermal gradient, we propose an integrated program incorporating satellite imagery analysis, a series of reconnaissance aerogeophysical profiles over the Recovery Lake Region and the installation of continuous GPS sites over the Recovery Lakes. This analysis and new data will enable us (1) to produce a velocity field over the Recovery Lakes Region, (2) to map the ice thickness changes over the lakes due to acceleration triggered thinning, basal melting and freezing, (3) determine the depth and possible the tectonic origin of the Recovery Lakes and (4) determine the stability of these lakes over time. These basic data sets will enable us to advance our understanding of how subglacial lakes trigger the onset of streaming. The intellectual merit of this project is that it will be the first systematic analysis of ice streams triggering the onset of ice streams. This work has profound implications for the modeling of ice sheet behavior in the future, the geologic record of abrupt climate changes and the longevity of subglacial lakes. The broader impacts of the project are programs that will reach students of all ages through undergraduates involved in the research, formal presentations in teacher education programs and ongoing public outreach efforts at major science museums. Subglacial Antarctic lake environments are emerging as a premier, major frontier for exploration during the IPY 2007-2009.
This project studies the Permian-Triassic extinction event as recorded in sedimentary rocks from the Transantarctic Mountains of Antarctica. Two hundred and fifty million years ago most life on Earth was wiped out in a geologic instant. The cause is a subject of great debate. Researchers have identified a unique stratigraphic section near Shackleton glacier laid down during the extinction event. Organic matter from these deposits will be analyzed by density gradient centrifugation (DGC), which will offer detailed information on the carbon isotope composition. The age of these layers will be precisely dated by U/Pb-zircon-dating of intercalated volcanics. Combined, these results will offer detailed constraints on the timing and duration of carbon isotope excursions during the extinction, and offer insight into the coupling of marine and terrestrial carbon cycles. The broader impacts of this project include graduate and undergraduate student research, K12 outreach and teacher involvement, and societal relevance of the results, since the P/T extinction may have been caused by phenomena such as methane release, which could accompany global warming.
This award supports a field experiment, with partners from Chile and the Netherlands, to determine the state of health and stability of Larsen C ice shelf in response to climate change. Significant glaciological and ecological changes are taking place in the Antarctic Peninsula in response to climate warming that is proceeding at 6 times the global average rate. Following the collapse of Larsen A ice shelf in 1995 and Larsen B in 2002, the outlet glaciers that nourished them with land ice accelerated massively, losing a disproportionate amount of ice to the ocean. Further south, the much larger Larsen C ice shelf is thinning and measurements collected over more than a decade suggest that it is doomed to break up. The intellectual merit of the project will be to contribute to the scientific knowledge of one of the Antarctic sectors where the most significant changes are taking place at present. The project is central to a cluster of International Polar Year activities in the Antarctic Peninsula. It will yield a legacy of international collaboration, instrument networking, education of young scientists, reference data and scientific analysis in a remote but globally relevant glaciological setting. The broader impacts of the project will be to address the contribution to sea level rise from Antarctica and to bring live monitoring of climate and ice dynamics in Antarctica to scientists, students, the non-specialized public, the press and the media via live web broadcasting of progress, data collection, visualization and analysis. Existing data will be combined with new measurements to assess what physical processes are controlling the weakening of the ice shelf, whether a break up is likely, and provide baseline data to quantify the consequences of a breakup. Field activities will include measurements using the Global Positioning System (GPS), installation of automatic weather stations (AWS), ground penetrating radar (GPR) measurements, collection of shallow firn cores and temperature measurements. These data will be used to characterize the dynamic response of the ice shelf to a variety of phenomena (oceanic tides, iceberg calving, ice-front retreat and rifting, time series of weather conditions, structural characteristics of the ice shelf and bottom melting regime, and the ability of firn to collect melt water and subsequently form water ponds that over-deepen and weaken the ice shelf). This effort will complement an analysis of remote sensing data, ice-shelf numerical models and control methods funded independently to provide a more comprehensive analysis of the ice shelf evolution in a changing climate.
This award supports a project to study ice sheet history and dynamics on the Thwaites Glacier and Pine Island Glacier in the Amundsen Sea sector of the West Antarctic Ice Sheet. The international collaboration that has been established with the British Antarctic Survey will enable a fuller suite of geophysical experiments with more-efficient use of people and logistics than we could achieve individually. This project is one of a number of projects to characterize the Amundsen Sea Embayment, which has been identified in numerous planning documents as perhaps the most important target for ice-dynamical research. Taken together, this "pulse of activity" will result in a better understanding of this important part of the global system. Field work will measure the subglacial environment of Thwaites and Pine Island Glaciers using three powerful, but relatively simple tools: reflection seismic imaging, GPS motion monitoring of the tidal forcing, and passive seismic monitoring of the seismicity associated with motion. The results of the field work will feed into ice-sheet modeling efforts that are tuned to the case of an ocean-terminating glacier and will assess the influence of these glaciers on current sea level and project into the future. The broader impacts of the project involve the inclusion of a film- and audio-professional to document the work for informal outreach (public radio and TV; museums). In addition, we will train graduate students in polar geophysical and glaciological research and in numerical modeling techniques. The ultimate goal of this project, of assessing the role of Thwaites Glacier in global sea level change, has broad societal impact in coastal regions and small islands.
0538674<br/>Matsuoka<br/>This award supports a project to evaluate radio-echo intensities in the available SOAR ice-penetrating radar data along grids covering Lake Vostok, and along four regional tracks from Ridge B toward the lake. The project has two objectives; first, it will examine the upper surface of the lake and reflectors hypothesized to be a boundary between the meteoric and accreted ice. They will provide crucial knowledge on the dynamic evolution of the lake. Second, this project will examine a poorly understood echo-free zone within the deep ice in central East Antarctica. This zone may consist of distorted stagnant ice, while its upper boundary may be a shear zone. The SOAR radar data provide a unique resource to examine spatiotemporal water circulation patterns that should be understood in order to select the best direct-sampling strategy to the lake. The Vostok ice core provides a unique opportunity to do this work. First, the path effects, i.e. propagation loss and birefringence, will be derived at the ice-core site using ice temperature, chemistry, and fabric data. Second, lateral variations of the propagation loss will be estimated by tracking chemistry associated with radar-detected isochronous layers, and by inferring temperatures from an ice-flow model that can replicate those layers. Ice-fabric patterns will be inferred from anisotropy in the reflectivity at about 100 radar-track cross-over sites. In terms of broader impacts, a graduate student will be trained to interpret the radar data in the light of radar theory and glaciological context of Lake Vostok and summer workshops for K-12 teachers will be provided in Seattle and New York. This project will contribute to ongoing efforts to study Lake Vostok and will complement the site selection for a North Vostok ice core, which has been proposed by Russia and France as an IPY program.
This award will support the participation of US scientists in an international planning workshop devoted to discussions of how to best facilitate and coordinate international efforts for terrestrial system studies at the McMurdo Dry Valleys of Antarctica. To date, various aspects of the different Dry Valley landscape features (lakes, soils, glaciers, streams) and their biota have been studied most intensively by US and New Zealand scientists, but these efforts could significantly improve their explanatory power if they were coordinated so as to reduce redundancy, decrease environmental degradation and, most importantly, produce comparable datasets. Additionally, many of the present environmental management programs are based on the past baseline composition and location of biotic communities. As these communities become rearranged across the valleys in the future there is interest in assessing whether today's management plans are adequate. To efficiently move these research programs forward for the McMurdo Dry Valleys requires a coordinated, interdisciplinary, long-term data monitoring and observation network. The ultimate objectives of the workshop are to: i) identify the optimal, complementary suites of measurements required to assess and address key processes associated with environmental change in Dry Valley ecosystems; ii) develop standards and protocols for gathering the most critical biotic and abiotic measurements associated with the key processes driving environmental change; iii) generate a draft data coordination and development plan that will maximize the utility of these data; iv) assess the effectiveness of current McMurdo Dry Valley ASMA (Antarctic Special Management Area) environmental protection guidelines.
Bay 0739743<br/><br/>This award supports a project to make high-resolution logs of dust and ash in the Dome C borehole using an optical dust logger. Logging at 20-50 cm/sec, in a matter of hours, mm-scale depth resolution of dust concentration and volcanic ash layers over the entire 3270 m borehole back to ~800 ka can be provided. The logger probes an area of order m2 of the horizon compared to the ~0.02 m2 core, greatly suppressing depositional noise and making the technique immune to core damage or loss. The method achieves unprecedented resolution of climate variations for matching or comparing ice core records, can detect particulate layers from explosive fallout which are invisible or missing in the core, and often reveals subtle trend changes which can elude standard core analyses. With the highly resolved dust record, it is expected to find new synchronous age markers between East Antarctica, West Antarctica and Greenland. The data could be instrumental in unifying global climate records, or resolving mysteries such as the transition from 41-kyr glacial cycles to apparent 100-kyr cycles. The project will extend previous finding, which make the most convincing case to date for a causal relationship between explosive volcanic events and abrupt climate change on millennial timescales. A search will also be made for evidence that some of the worldwide explosive fallout events that have been identified may have resulted from impacts by comets or asteroids. The investigators will evaluate the reliability of terrestrial impact crater records and the possibility that Earth impacts are considerably more frequent than is generally appreciated. Better understanding of the factors which force abrupt climate changes, the recurrence rate and triggering mechanisms of large volcanic eruptions, and the frequency of Gt to Tt-energy bolide impacts are of vital interest for civilization. The work plan for 2008-11 comprises modifying and testing of existing hardware in year one; logging field work, most likely in year two; data analysis and publication of results in year three. Because the EPICA collaborators will provide a suitable logging winch onsite, the logistical needs of this project are modest and can be accommodated by Twin Otter from McMurdo. The proposal is in the spirit of the International Polar Year (IPY) by forging an international collaboration with potential societal benefit. The project will provide interdisciplinary training to students and postdoctoral fellows from the U.S. and other countries.
This award supports a project to perform continuous microparticle concentration and size distribution measurements (using coulter counter and state-of-the-art laser detector methods), analysis of biologically relevant trace elements associated with microparticles (Fe, Zn, Co, Cd, Cu), and tephra measurements on the WAIS Divide ice core. This initial three-year project includes analysis of ice core spanning the instrumental (~1850-present) to mid- Holocene (~5000 years BP) period, with sample resolution ranging from subannual to decadal. The intellectual merit of the project is that it will help in establishing the relationships among climate, atmospheric aerosols from terrestrial and volcanic sources, ocean biogeochemistry, and greenhouse gases on several timescales which remain a fundamental problem in paleoclimatology. The atmospheric mineral dust plays an important but uncertain role in direct radiative forcing, and the microparticle datasets produced in this project will allow us to examine changes in South Pacific aerosol loading, atmospheric dynamics, and dust source area climate. The phasing of changes in aerosol properties within Antarctica, throughout the Southern Hemisphere, and globally is unclear, largely due to the limited number of annually dated records extending into the glacial period and the lack of a<br/>tephra framework to correlate records. The broader impacts of the proposed research are an interdisciplinary approach to climate science problems, and will contribute to several WAIS Divide science themes as well as the broader paleoclimate and oceanographic communities. Because the research topics have a large and direct societal relevance, the project will form a centerpiece of various outreach efforts at UMaine and NMT including institution websites, public speaking, local K-12 school interaction, media interviews and news releases, and popular literature. At least one PhD student and one MS student will be directly supported by this project, including fieldwork, core processing, laboratory analysis, and data interpretation/publication. We expect that one graduate student per year will apply for a core handler/assistant driller position through the WAIS Divide Science Coordination Office, and that undergraduate student involvement will result in several Capstone experience projects (a UMaine graduation requirement). Data and ideas generated from the project will be integrated into undergraduate and graduate course curricula at both institutions.
Brook 0739766<br/><br/>This award supports a project to create a 25,000-year high-resolution record of atmospheric CO2 from the WAIS Divide ice core. The site has high ice accumulation rate, relatively cold temperatures, and annual layering that should be preserved back to 40,000 years, all prerequisite for preserving a high quality, well-dated CO2 record. The new record will be used to examine relationships between Antarctic climate, Northern Hemisphere climate, and atmospheric CO2 on glacial-interglacial to centennial time scales, at unprecedented temporal resolution. The intellectual merit of the proposed work is simply that CO2 is the most important greenhouse gas that humans directly impact, and understanding the sources, sinks, and controls of atmospheric CO2 is a major goal for the global scientific community. Accurate chronology and detailed records are primary requirements for developing and testing models that explain and predict CO2 variability. The proposed work has several broader impacts. It contributes to the training of a post-doctoral researcher, who will transfer to a research faculty position during the award period and who will participate in graduate teaching and guest lecture in undergraduate courses. An undergraduate researcher will gain valuable lab training and conduct independent research. Bringing the results of<br/>the proposed work to the classroom will enrich courses taught by the PI. Outreach efforts will expose pre-college students to ice core research. The proposed work will enhance the laboratory facilities for ice core research at OSU, insuring that the capability for CO2 measurements exists for future projects. All data will be archived at the National Snow and Ice Data Center and other similar archives, per OPP policy. Highly significant results will be disseminated to the news media through OSU?s very effective News and Communications group. Carbon dioxide is the most important greenhouse gas that humans are directly changing. Understanding how CO2 and climate are linked on all time scales is necessary for predicting the future behavior of the carbon cycle and climate system, primarily to insure that the appropriate processes are represented in carbon cycle/climate models. Part of the proposed work emphasizes the relationship of CO2 and abrupt climate change. Understanding how future abrupt change might impact the carbon cycle is an important issue for society.
This award supports a three-year study to isolate essential physical processes affecting Thwaites Glacier (TG) in the Amundsen Sea Embayment (ASE) of West Antarctica using a suite of existing numerical models in conjunction with existing and International Polar Year (IPY)-proposed data sets. Four different models will be utilized to explore the effects of embayment geometry, ice-shelf buttressing, basal-stress distribution, surface mass balance, surface climate, and inland dynamic perturbations on the present and future dynamics of TG. This particular collection of models is ideally suited for the broad nature of this investigation, as they incorporate efficient and complementary simplifications of the stress field (shallow-ice and shelf-stream), system geometry (1-d and 2-d plan-view and flowline; depth-integrated and depth-dependent), and mass-momentum energy coupling (mechanical and thermo-mechanical). The models will be constrained and validated by data sets (including regional maps of ice thickness, surface elevation, basal topography, ice surface velocity, and potential fields) and geophysical data analyses (including increasing the spatial resolution of surface elevations, improving regional estimates of geothermal flux, and characterizing the sub-glacial interface of grounded ice as well as the grounding-zone transition between grounded and floating ice). The intellectual merit of the research focuses on several of the NSF Glaciology program's emphases, including: ice dynamics, numerical modeling, and remote sensing of ice sheets. In addition, the research directly addresses the following specific NSF objectives: "investigation of the physics of fast glacier flow with emphasis on processes at glacier beds"; "investigation of ice-shelf stability"; and "identification and quantification of the feedback between ice dynamics and climate change". The broader impacts of this research effort will help answer societally relevant questions of future ice sheet stability and sea-level change. The research also will aid in the early career development of two young investigators and will contribute to the education of both graduate and undergraduate students directly involved in the research, and results will be incorporated into courses and informal presentations.
This study will investigate how the Antarctic Slope Front and continental slope morphology determine the exchanges of mass, heat, and fresh water between the shelf and the deep ocean, in particular those leading to outflows of dense water into intermediate and deep layers of the adjacent basins and into the world ocean circulation <br/>While the importance to the global ocean circulation and climate of cold water masses originating in the Antarctic is unquestioned, the processes by which these water masses enter the deep ocean circulation are not. The primary goal of this work therefore is to identify the principal physical processes that govern the transfer of shelf-modified dense water into intermediate and deep layers of the adjacent deep ocean. At the same time, it seeks to understand the compensatory poleward flow of waters from the oceanic regime. The upper continental slope has been identified as the critical gateway for the exchange of shelf and deep ocean waters. Here the topography, velocity and density fields associated with the nearly ubiquitous front must strongly influence the advective and turbulent transfer of water properties between the shelf and oceanic regimes. The study has four specific objectives: [1] Determine the mean frontal structure and the principal scales of variability, and estimate the role of the front on cross-slope exchanges and mixing of adjacent water masses; [2] Determine the influence of slope topography and bathymetry on frontal location and outflow of dense Shelf Water; [3] Establish the role of frontal instabilities, benthic boundary layer transports, tides and other oscillatory processes on cross-slope advection and fluxes; and [4] Assess the effect of diapycnal mixing, lateral mixing identified through intrusions, and nonlinearities in the equation of state on the rate of descent and the fate of outflowing, near-freezing Shelf Water.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>An interdisciplinary team of researchers will focus on describing the high productivity patchiness observed in phytoplankton blooms in the mid to late summer in the Ross Sea, Antarctica. Key hypotheses to be tested and extended are that intrusions of nutrient and micro nutrient (e.g. Fe) rich water masses of the Antarctic modified circumpolar deep water (CDW) up onto continental shelves act to control the biogeochemical response of a large area of the productive Ross Sea coastal region. It is believed that this enhanced productivity may be a significant contributing factor to the global carbon cycle. <br/><br/>A novel sampling strategy to be used to test the above hypotheses will employ a remotely controlled deep (1000m) glider (AUV) to locate and map CDW in near real time measuring C (conductivity), T (temperature), D (pressure) and apparent optical properties, and which will serve to direct further ship-based sampling. <br/><br/>The adaptive coordination of a polar research vessel with an AUV additionally provides an opportunity to engage in formal and informal education and public outreach on issues in polar research.
Areas of the Southern Ocean have spectacular blooms of phytoplankton during the austral spring and early summer. One of the dominant phytoplankton species, the haptophyte Phaeocystis antarctica, is a prolific producer of the organic sulfur compound dimethylsulfoniopropionate (DMSP) and Phaeocystis blooms are associated with some of the world's highest concentrations of DMSP and its volatile degradation product, dimethylsulfide (DMS). Sulfur, in the form of DMS, is transferred from the oceans to the atmosphere and can affect the chemistry of precipitation and influence cloud properties and possibly climate. DMSP and DMS are also quantitatively significant components of the carbon, sulfur and energy flows in many marine food webs, although very little information is available on these processes in high latitude systems. <br/><br/>This project will study how solar radiation and iron cycling affect DMSP and DMS production by phytoplankton, and the subsequent utilization of these labile forms of organic matter by the microbial food web. Four interrelated hypotheses will be tested in field-based experiments and in situ observations: 1) solar radiation, including enhanced UV-B due to seasonal ozone depletion, plays an important role in determining the net ecosystem production of DMS in the Ross Sea; 2) development of shallow mixed layers promotes the accumulation of DMS in surface waters, because of enhanced exposure of plankton communities to high doses of solar radiation; 3) DMSP production and turnover represent a significant part of the carbon and sulfur flux through polar food webs; 4) bloom development and resulting nutrient depletion (e.g., iron) will result in high production rates of DMSP and high DMS concentrations and atmospheric fluxes. Results from this study will greatly improve understanding of the underlying mechanisms controlling DMSP and DMS concentrations in polar waters, thereby improving our ability to predict DMS fluxes to the atmosphere from this important climatic region. <br/><br/>Both Drs. Kieber and Kiene actively engage high school, undergraduate and graduate students in their research and are involved in formal programs that target underrepresented groups (NSF-REU and the American Chemical Society-SEED). This project will continue this type of educational outreach. The PIs also teach undergraduate and graduate courses and incorporation of research experiences into their classes will enrich student learning experiences.
Areas of the Southern Ocean have spectacular blooms of phytoplankton during the austral spring and early summer. One of the dominant phytoplankton species, the haptophyte Phaeocystis antarctica, is a prolific producer of the organic sulfur compound dimethylsulfoniopropionate (DMSP) and Phaeocystis blooms are associated with some of the world's highest concentrations of DMSP and its volatile degradation product, dimethylsulfide (DMS). Sulfur, in the form of DMS, is transferred from the oceans to the atmosphere and can affect the chemistry of precipitation and influence cloud properties and possibly climate. DMSP and DMS are also quantitatively significant components of the carbon, sulfur and energy flows in many marine food webs, although very little information is available on these processes in high latitude systems. <br/><br/>This project will study how solar radiation and iron cycling affect DMSP and DMS production by phytoplankton, and the subsequent utilization of these labile forms of organic matter by the microbial food web. Four interrelated hypotheses will be tested in field-based experiments and in situ observations: 1) solar radiation, including enhanced UV-B due to seasonal ozone depletion, plays an important role in determining the net ecosystem production of DMS in the Ross Sea; 2) development of shallow mixed layers promotes the accumulation of DMS in surface waters, because of enhanced exposure of plankton communities to high doses of solar radiation; 3) DMSP production and turnover represent a significant part of the carbon and sulfur flux through polar food webs; 4) bloom development and resulting nutrient depletion (e.g., iron) will result in high production rates of DMSP and high DMS concentrations and atmospheric fluxes. Results from this study will greatly improve understanding of the underlying mechanisms controlling DMSP and DMS concentrations in polar waters, thereby improving our ability to predict DMS fluxes to the atmosphere from this important climatic region. <br/><br/>Both Drs. Kieber and Kiene actively engage high school, undergraduate and graduate students in their research and are involved in formal programs that target underrepresented groups (NSF-REU and the American Chemical Society-SEED). This project will continue this type of educational outreach. The PIs also teach undergraduate and graduate courses and incorporation of research experiences into their classes will enrich student learning experiences.
The proposed research will investigate the genomic basis of the physiological and ecological transition of Antarctic marine phytoplankton from a cold dark winter to a warmer, brighter spring. During a field season at Palmer Station, functional genomics (using next generation sequencing technology to identify expressed genes) and in situ fluorometry (FRRF) will be integrated with classical ecological methods to investigate photosynthetic adaptation during phytoplankton species succession from late winter into spring. Using large data sets, this project will test whether amino acid usages differ based on expression. The specific objectives are (1) To characterize phytoplankton succession from the winter to spring transition, and (2) To correlate community gene expression profiles to adaptational differences among taxa. Broader impacts include training of a post doctoral researcher and two undergraduate science majors, with efforts to attract students from underrepresented groups. The P.I.s also will prepare presentations for the public, regarding research experiences, research results, and the importance of climate change.
Whillans, Wilson, Goad OPP 9527571 Abstract This award supports a project to initiate Global Positioning System (GPS) measurements for rock motions in South Victoria Land and vicinity. The results will be used to test some of the leading models for ice-sheet change and tectonism, in particular, whether the continent is rebounding due to reduced ice load from East or West Antarctica and whether there is tectonic motion due to Terror Rift or uplift of the Transantarctic Mountains. A modest program to measure ice motion will be conducted as well. The motive is to test models for ice flow in the Allan Hills meteorite concentration region and to determine whether small glaciers in the Dry Valleys are thickening or thinning. Monuments will be set into rock and ice and GPS receivers used to determine their locations. Repeats in later years will determine motion. Field activities will involve close cooperation with the USGS.
Winckler/0636898<br/><br/>This award supports a project to study dust sources in Antarctic ice cores. Atmospheric aerosols play an important role both in global biogeochemical cycles as well as in the climate system of the Earth. Records extracted from Antarctic ice cores inform us that dust deposition from the atmosphere to the ice sheet was 15-20 times greater during glacial periods than during interglacials, which raises the possibility that dust may be a key player in climate change on glacial-interglacial timescales. By characterizing potential source areas from South America, South Africa, and Australia as well as fresh glacial flour from Patagonia, the project will determine if the interglacial dust was mobilized from a distinct geographical region (e.g., Australia) or from a more heavily weathered source region in South America. The intellectual merit of the project is that it will contribute to reconstructing climate-related changes in the rate of dust deposition, and in the provenance of the dust, it will provide critical constraints on hydrology and vegetation in the source regions, as well as on the nature of the atmospheric circulation transporting dust to the archive location. In a recent pilot study it was found that there is a dramatic glacial to Holocene change in the 4He/Ca ratio in the dust extracted from ice from Dronning Maud Land, Antarctica, indicating a shift in the source of dust transported to Antarctica. The broader impacts of the project are that Helium isotopes and calcium measurements provide a wealth of information that can then be turned into critical input for dust-climate models. Improved models, which are able to accurately reconstruct paleo dust distribution, will help us to predict changes in dust in response to future climate variability. This information will contribute to an improvement of our integrated understanding of the Earth's climate system and, in turn, will better inform policy makers of those processes and conditions most susceptible to perturbation by climate change, thereby leading to more meaningful climate-change policy. The project will support a graduate student in the dual masters Earth and Environmental Science Journalism program. The lead-PI manages the rock noble gas laboratory at Lamont. Her leadership role in this facility impacts the training of undergraduate and graduate students as well as visiting scientists.
This award supports a project to investigate fabrics with ground-based radar measurements near the Ross/Amundsen Sea ice-flow divide where a deep ice core will be drilled. The alignment of crystals in ice (crystal-orientation fabric) has an important effect on ice deformation. As ice deforms, anisotropic fabrics are produced, which, in turn, influence further deformation. Measurement of ice fabric variations can help reveal the deformation history of the ice and indicate how the ice will deform in the future. Ice cores provide opportunities to determine a vertical fabric profile, but horizontal variations of fabrics remain unknown. Remote sensing with ice-penetrating radar is the only way to do that over large areas. Preliminary results show that well-established polarimetric methods can detect the degree of horizontal anisotropy of fabrics and their orientation, even when they are nearly vertical-symmetric fabrics. In conjunction with ice deformation history, our first mapping of ice fabrics will contribute to modeling ice flow near the future ice core site. The project will train a graduate student and provide research experiences for two under graduate students both in field and laboratory. The project will contribute to ongoing West Antarctic ice sheet program efforts to better understand the impact of the ice sheet on global sea level rise. This project also supports an international collaboration between US and Japanese scientists.
Polar oceans are the main sites of deep-water formation and are critical to the exchange of heat and carbon between the deep ocean and the atmosphere. This award ?Historic perspectives on climate and biogeography from deep-sea corals in the Drake Passage? will address the following specific research questions: What was the radiocarbon content of the Southern Ocean during the last glacial maximum and during past rapid climate change events? and What are the major controls on the past and present distribution of cold-water corals within the Drake Passage and adjacent continental shelves? Testing these overall questions will allow the researchers to better understand how processes in the Southern Ocean are linked to climate change over millennia. This award is being funded by the Antarctic Earth Sciences Program of NSF?s Office of Polar Programs, Antarctic Division. <br/><br/>INTELLECTUAL MERIT: The skeletons of deep-sea corals are abundant in the Southern Ocean, and can be dated using U-series techniques making them a useful archive of oceanographic history. By pairing U-series and radiocarbon analyses the awardees can reconstruct the radiocarbon content of seawater in the past, allowing them to address the research questions raised above. Collection of living deep-sea corals along with environmental data will allow them to address the broader biogeography questions posed above as well. The awardees are uniquely qualified to answer these questions in their respective labs via cutting edge technologies, and they have shown promising results from a preliminary pilot cruise to the area in 2008.<br/><br/>BROADER IMPACTS: Societal Relevance: The proposed paleoclimate research will make significant advances toward constraining the Southern Ocean?s influence on global climate, specifically it should help set the bounds for the upper limits on how fast the ocean circulation might change in this region of the world, which is of high societal relevance in this era of changing climate. Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating undergraduate through post-doctoral students into research programs; ii) promotion of K-12 teaching and learning programs by providing information via a cruise website and in-school talks, iii) making the data collected available to the wider research community via data archives such as Seamounts Online and the Seamount Biogeographic Network and iv) reaching a larger public audience through such venues as interviews in the popular media.
This award supports a project to make measurements of methane and other trace gases in firn air collected at South Pole, Antarctica. The analyses will include: methane isotopes (delta-13CH4 and delta-DCH4), light non-methane hydrocarbons (ethane, propane, and n-butane), sulfur gases (COS, CS2), and methyl halides (CH3Cl and CH3Br). The atmospheric burdens of these trace gases reflect changes in atmospheric OH, biomass burning, biogenic activity in terrestrial, oceanic, and wetland ecosystems, and industrial/agricultural activity. The goal of this project is to develop atmospheric histories for these trace gases over the last century through examination of depth profiles of these gases in South Pole firn air. The project will involve two phases: 1) a field campaign at South Pole, Antarctica to drill two firn holes and fill a total of ~200 flasks from depths reaching 120 m, 2) analysis of firn air at University of California, Irvine, Penn State University, and several other collaborating laboratories. Atmospheric histories will be inferred from the measurements using a one dimensional advective/diffusive model of firn air transport. This study will provide new information about the recent changes in atmospheric levels of these gases, providing about a 90 year long time series record that connects the earlier surface and firn air measurements to present day. The project will also explore the possibility of in- situ production of light non-methane hydrocarbons in firn air that is relevant to the interpretation of ice core records. The broader impacts of this research are that it has the potential for significant societal impact by improving our understanding of climate change and man's input to the atmosphere. The results of this work will be disseminated through the peer review process, and will contribute to environmental assessments, such as the Inter-governmental Panel on Climate Change (IPCC) Climate Assessment and the Word Meteorological Organization (WMO) Stratospheric Ozone Assessment. This research will provide educational opportunities for graduate and undergraduate students, and will contribute to a teacher training program for K-12 teachers in minority school districts.
Hall/0636687<br/><br/>This award supports a project to investigate late Pleistocene and Holocene changes in Scott Glacier, a key outlet glacier that flows directly into the Ross Sea just west of the present-day West Antarctic Ice Sheet (WAIS) grounding line. The overarching goals are to understand changes in WAIS configuration in the Ross Sea sector at and since the last glacial maximum (LGM) and to determine whether Holocene retreat observed in the Ross Embayment has ended or if it is still ongoing. To address these goals, moraine and drift sequences associated with Scott Glacier will be mapped and dated and ice thickness, surface velocity and surface mass balance will be measured to constrain an ice-flow model of the glacier. This model will be used to help interpret the dated geologic sequences. The intellectual merit of the project relates to gaining a better understanding of the West Antarctic Ice Sheet and how changing activity of fast-flowing outlet glaciers and ice streams exerts strong control on the mass balance of the ice sheet. Previous work suggests that grounding-line retreat in the Ross Sea continued into the late Holocene and left open the possibility of ongoing deglaciation as part of a long-term trend. Results from Reedy Glacier, an outlet glacier just behind the grounding line, suggest that retreat may have slowed substantially over the past 2000 years and perhaps even stopped. By coupling the work on Scott Glacier with recent data from Reedy Glacier, the grounding-line position will be bracketed and it should be possible to establish whether the retreat has truly ended or if it is ongoing. The broader impacts of the work relate to the societal relevance of an improved understanding of the West Antarctic ice sheet to establish how it will respond to current and possible future environmental changes. The work addresses this key goal of the West Antarctic Ice Sheet Initiative, as well as the International Polar Year focus on ice sheet history and dynamics. The work will develop future scientists through the education and training of one undergraduate and two Ph.D. students, interaction with K-12 students through classroom visits, web-based 'expedition' journals, letters from the field, and discussions with teachers. Results from this project will be posted with previous exposure dating results from Antarctica, on the University of Washington Cosmogenic Nuclide Lab website, which also provides information about chemical procedures and calculation methods to other scientists working with cosmogenic nuclides.
0538120<br/>Catania<br/>This award supports a project to identify and map ice surface and internal features that chronicle the sequence of events leading to the shut-down of Kamb ice stream. In particular, the project will study past grounding line migration and the relationship between that process and ice stream shutdown. The intellectual merits of the project include the fact that an understanding of such processes has important implications for our ability to accurately predict mass balance changes in this region. Currently, one of the five major West Antarctic ice streams, Kamb, is quiescent, and another, Whillans, is slowing in its downstream reaches. The Kamb shutdown appears to have begun at its downstream end but beyond that simple observation, it is not possible, yet, to draw meaningful comparisons between the two adjacent streams. We do not know if current events on Whillans Ice Stream are similar to what transpired during the Kamb shut-down. The work proposed here intends to bridge that gap. It is expected that this effort will yield useful insights into the influence of grounding line dynamics on ice stream flow. The work will involve a combination of field investigations using radio-echo sounding and GPS combined with computational efforts involving the interpretation of ice-surface features such as relict flow traces and crevasses. The broader impacts of the project will be in addressing a global environmental problem with critical societal implications, training the next generation of scientists and engineers to serve the nation, and encouraging women to pursue scientific or engineering careers. Participants from both institutions are involved in a range of public outreach activities.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The proposal seeks funds to continue a follow-up analytical work of deep-sea corals collected in the Drake Passage during a research cruise. The project's goal is paleo-climate research looking to constrain the depth structure and time evolution of the radiocarbon content of the Southern Ocean during the glacial and deglaciation. Radiocarbon is a versatile tracer of past climate; its radioactive decay provides an internal clock with which to assess the rates of processes, and it can be used to trace the movement of carbon through the Earth's system. It enters the ocean through air-sea gas exchange, so processes that limits this will, therefore, reduce the radiocarbon content of both surface and deep waters. The Southern Ocean is a critical location for exchange of heat and carbon between the deep-ocean and atmospheric reservoirs, and the deep waters formed there fill large volumes of the global deep and intermediate oceans. As strong currents tend to scour away sediments, carbonate preservation is limited, and radiocarbon reservoir ages are poorly constrained, many traditional paleoceanographic techniques become impractical. It is proposed to alleviate these difficulties analyzing the chemical composition of deep-sea coral skeletons. Their aragonitic skeletons can be precisely dated using U-series decay, and when coupled with radiocarbon analyses will allow to calculate the C14/C12 ratio of the past water column.
Edwards/0739780<br/><br/>This award supports a project to develop a 2,000-year high-temporal resolution record of biomass burning from the analysis of black carbon in the WAIS Divide bedrock ice core. Pilot data for the WAIS WD05A core demonstrates that we now have the ability to reconstruct this record with minimal impact on the amount of ice available for other projects. The intellectual merit of this project is that black carbon (BC) aerosols result solely from combustion and play a critical but poorly quantified role in global climate forcing and the carbon cycle. When incorporated into snow and ice, BC increases absorption of solar radiation making seasonal snow packs, mountain glaciers, polar ice sheets, and sea ice much more vulnerable to climate warming. BC emissions in the Southern Hemisphere are dominated by biomass burning in the tropical regions of Southern Africa, South America and South Asia. Biomass burning, which results from both climate and human activities, alters the atmospheric composition of greenhouse gases, aerosols and perturbs key biogeochemical cycles. A long-term record of biomass burning is needed to aid in the interpretation of ice core gas composition and will provide important information regarding human impacts on the environment and climate before instrumental records. The broader impacts of the project are that it represents a paradigm shift in our ability to reconstruct the history of fire from ice core records and to understand its impact on atmospheric chemistry and climate over millennial time scales. This type of data is especially needed to drive global circulation model simulations of black carbon aerosols, which have been found to be an important component of global warming and which may be perturbing the hydrologic cycle. The project will also employ undergraduate students and is committed to attracting underrepresented groups to the physical sciences. The project?s outreach component will be conducted as part of the WAIS project outreach program and will reach a wide audience.
Convincing evidence now confirms that polar regions are changing rapidly in response to human activities. Changes in sea ice extent and thickness will have profound implications for productivity, food webs and carbon fluxes at high latitudes, since sea ice biota are a significant source of biogenic matter for the ecosystem. While sea ice is often thought to be a barrier to gas exchange between the ocean and the atmosphere, it more likely functions as a source or sink for climate-active gases such as carbon dioxide and ozone-depleting organohalogens, due in part to activities of microbes embedded in the sea ice matrix. This project brings together experienced US and Swedish investigators to examine the controls by sea-ice biota on the production and degradation of key climate-active gases in the Pacific sector of the Southern Ocean. We hypothesize that 1) the physical properties of the sea-ice environment will determine the community structure and activities of the sea ice biota; 2) the productivity, biomass, physiological state and species composition of ice algae will determine the production of specific classes of organic carbon, including organohalogens; 3) heterotrophic co-metabolism within the ice will break down these compounds to some extent, depending on the microbial community structure and productivity, and 4) the sea ice to atmosphere fluxes of CO2 and organohalogens will be inversely related. This project will build close scientific collaborations between US and Swedish researchers and also train young scientists, including members of underrepresented groups. Dissemination of results will include the scientific literature, and public outreach venues including interactions with a PolarTrec teacher.
This award supports a research cruise to perform geologic studies in the area under and surrounding the former Larsen B ice shelf, on the Antarctic Peninsula. The ice shelf's disintegration in 2002 coupled with the unique marine geology of the area make it possible to understand the conditions leading to ice shelf collapse. Bellwethers of climate change that reflect both oceanographic and atmospheric conditions, ice shelves also hold back glacial flow in key areas of the polar regions. Their collapse results in glacial surging and could cause rapid rise in global sea levels. This project characterizes the Larsen ice shelf's history and conditions leading to its collapse by determining: 1) the size of the Larsen B during warmer climates and higher sea levels back to the Eemian interglacial, 125,000 years ago; 2) the configuration of the Antarctic Peninsula ice sheet during the LGM and its subsequent retreat; 3) the causes of the Larsen B's stability through the Holocene, during which other shelves have come and gone; 4) the controls on the dynamics of ice shelf margins, especially the roles of surface melting and oceanic processes, and 5) the changes in sediment flux, both biogenic and lithogenic, after large ice shelf breakup. <br/><br/><br/><br/>The broader impacts include graduate and undergraduate education through research projects and workshops; outreach to the general public through a television documentary and websites, and international collaboration with scientists from Belgium, Spain, Argentina, Canada, Germany and the UK. The work also has important societal relevance. Improving our understanding of how ice shelves behave in a warming world will improve models of sea level rise.<br/><br/><br/><br/>The project is supported under NSF's International Polar Year (IPY) research emphasis area on "Understanding Environmental Change in Polar Regions".
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>The Amundsen Sea Polynya is areally the most productive Antarctic polynya, exhibits higher chlorophyll levels during peak bloom and greater interannual variability than the better-studied Ross Sea Polynya ecosystem. Polynyas may be the key to understanding the future of polar regions as their extent is expected to increase with anthropogenic warming. The project will examine 1) sources of iron to the Amundsen Sea Polynya as a function of climate forcing, 2) phytoplankton community structure in relation to iron supply and mixed-layer depths, 3) the efficiency of the biological pump of carbon to depth and 4) the net flux of carbon as a function of climate and micronutrient forcing. The research also will compare results for the Amundsen Sea to existing data synthesis and modeling efforts for the Palmer LTER and Ross Sea. The project will 1) build close scientific collaborations between US and Swedish researchers; 2) investigate climate change implications with broad societal relevance; 3) train new researchers; 4) encourage participation in research science by underrepresented groups, and 5) involve broad dissemination of results via scientific literature and public outreach, including close interactions with NSF-supported PolarTrec and COSEE K-12 teachers.
*** 9726186 Pilskaln This proposed work is a study of the biological production and export flux of biogenic matter in response to ventilation of intermediate and deep water masses within the Polar Front zone. It is a collaborative work between the University of Maine and the Chinese Antarctic Research Expedition (CHINARE). The shipboard work is proposed for the Chinese antarctic resupply vessel off Prydz Bay in the Indian Ocean sector. In the austral Spring, this region experiences phytoplankton blooms that are thought to be the result of nutrient transport by the ventilation of intermediate and deep water masses. On an annual basis, it is believed that such blooms are the primary source of particulate organic carbon and biogenic silica flux to the ocean bottom. At this time however no data exists on the amount of particulate organic matter that sinks through the water column, leaving the quantitative relationships between production and export largely undefined in this region. The initial phase of the work consists of setting out a time-series sediment trap mooring at approximately 64 deg S latitude and 73 deg E longitude to take advantage of the historical data set that CHINARE has obtained in this area over the past decade. The biweekly to monthly trap samples will be analyzed for their organic constituents, and in conjunction with primary productivity observations will provide the basic data from which export values can be derived. This work will be carried out in collaboration with the State Oceanic Administration of the People's Republic of China, and the Chinese Antarctic Research Expedition. In addition to providing time on the antarctic resupply vessel, the SOA will sponsor the shipboard primary productivity experiments and the supporting hydrographic measurements. The collaborating American scientists will provide guidance in making these observations to standards developed for the Joint Global Ocean Flux Study, and provide the hardware for the moored sediment trap. There will be a mutual sharing between the U.S. and Chinese investigators of all samples and data sets, and the data analysis will be carried out jointly. ***
9909734 Anderson This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research on the glaciomarine geology of the continental shelves of West Antarctica and the Antarctic Peninsula. It is hypothesized that the different glacial systems of the Antarctic Peninsula region have been more responsive to climate change and sea-level rise than either the West Antarctic or East Antarctic ice sheets. This is due mainly to the smaller size of these ice masses and the higher latitude location of the peninsula. Indeed, ice shelves of the Antarctic Peninsula are currently retreating at rates of up to a kilometer per year. But are these changes due to recent atmospheric warming in the region or are they simply the final phase of retreat since the last glacial maximum? This project hypothesizes that the deglacial history of the Antarctic Peninsula region has been quite complex, with different glacial systems retreating at different rates and at different times. This complex recessional history reflects the different sizes as well as different climatic and physiographic settings of glacial systems in the region. An understanding of the Late Pleistocene to Holocene glacial history of the Antarctic Peninsula glacial systems is needed to address how these systems responded to sea-level and climate change during that time interval. This investigation acquire new marine geological and geophysical data from the continental shelf to determine if and when different glacial systems were grounded on the shelf, to establish the extent of grounded ice, and to examine the history of glacial retreat. The project will build on an extensive seismic data set and hundreds of sediment cores collected along the Peninsula during earlier (1980's) cruises. Key to this investigation is the acquisition of swath bathymetry, side-scan sonar and very high-resolution sub-bottom (chirp) profiles from key drainage outlets. These new data will provide the necessary geomorphologic and stratigraphic framework for reconstructing the Antarctic Peninsula glacial record. Anticipated results will help constrain models for future glacier and ice sheet activity.
Intellectual Merit: Pleuragramma antarcticum, the Antarctic silverfish, play a key role in the trophic pyramid of the Antarctic coastal ecosystem, acting as food for larger fishes, flying and non-flying seabirds, pinnipeds, and whales. In turn, they are predators on coastal euphausiids, including both Euphausia superba and crystallorophias. Historically, Pleuragramma have been an important food source for Adélie Penguins of the Western Antarctic Peninsula (WAP), but during the last decade Pleuragramma have disappeared from the Adélie diet. We suggest that Pleuragramma?s absence from the diets of top predators is linked to the declining sea ice canopy, which serves as a nursery for eggs and larvae during the austral spring. The research will investigate four hydrographic regimes over the WAP continental shelf with the following features: (1) persistent gyral flows that act to retain locally spawned larvae, (2) spring sea ice that has declined in recent years (3) the prevalence of adult silverfish, and (4) the presence of breeding Adélie penguins whose diets vary in the proportions of silverfish consumed. The research will evaluate the importance of local reproduction versus larval advection, and the extent to which populations in the subregions of study are genetically distinct, via analysis of population structure, otolith microchemistry and molecular genetics of fish. The Pleuragramma data will be compared with penguin diet samples taken synoptically. <br/><br/>Broader Impacts: The proposed research brings together an international group of scientists with highly complimentary suites of skills to address the fate of Pleuragramma on the WAP shelf. Graduate students will use the data acquired as part of their Ph.D research, and will receive cross-training in ornithological field techniques, molecular genetic methods and otolith isotope chemistry. The PIs will work actively with the St. Petersburg Times to produce a blog in real time with pictures and text, which will be used to interact with local schools while we are at sea and after our return. The investigators also will collaborate with the COSEE center at USF and at local schools and museums to disseminate results to the K-12 community throughout the region.
9909367 Leventer This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a multi-institutional, international (US - Australia) marine geologic and geophysical investigation of Prydz Bay and the MacRobertson Shelf, to be completed during an approximately 60-day cruise aboard the RVIB N.B. Palmer. The primary objective is to develop a record of climate and oceanographic change during the Quaternary, using sediment cores collected via kasten and jumbo piston coring. Core sites will be selected based on seismic profiling (Seabeam 2112 and Bathy2000). Recognition of the central role of the Antarctic Ice Sheet to global oceanic and atmospheric systems is based primarily on data collected along the West Antarctic margin, while similar extensive and high resolution data sets from the much more extensive East Antarctic margin are sparse. Goals of this project include (1) development of a century- to millennial-scale record of Holocene paleoenvironments, and (2) testing of hypotheses concerning the sedimentary record of previous glacial and interglacial events on the shelf, and evaluation of the timing and extent of maximum glaciation along this 500 km stretch of the East Antarctic margin. High-resolution seismic mapping and coring of sediments deposited in inner shelf depressions will be used to reconstruct Holocene paleoenvironments. In similar depositional settings in the Antarctic Peninsula and Ross Sea, sedimentary records demonstrate millennial- and century- scale variability in primary production and sea-ice extent during the Holocene, which have been linked to chronological periodicities in radiocarbon distribution, suggesting the possible role of solar variability in driving some changes in Holocene climate. Similar high-resolution Holocene records from the East Antarctic margin will be used to develop a circum-Antarctic suite of data regarding the response of southern glacial and oceanographic systems to late Quaternary climate change. In addition, these data will help us to evaluate the response of the East Antarctic margin to global warming. Initial surveys of the Prydz Channel - Amery Depression region reveal sequences deposited during previous Pleistocene interglacials. The upper Holocene and lower (undated) siliceous units can be traced over 15,000 km2 of the Prydz Channel, but more sub-bottom seismic reflection profiling in conjunction with dense coring over this region is needed to define the spatial distribution and extent of the units. Chronological work will determine the timing and duration of previous periods of glacial marine sedimentation on the East Antarctic margin during the late Pleistocene. Analyses will focus on detailed sedimentologic, geochemical, micropaleontological, and paleomagnetic techniques. This multi-parameter approach is the most effective way to extract a valuable paleoenvironmental signal in these glacial marine sediments. These results are expected to lead to a significant advance in understanding of the behavior of the Antarctic ice-sheet and ocean system in the recent geologic past. The combination of investigators, all with many years of experience working in high latitude marine settings, will provide an effective team to complete the project. University and College faculty (Principal Investigators on this project) will supervise a combination of undergraduate and post-graduate students involved in all stages of the project so that educational objectives will be met in tandem with the research goals of the project.
This award supports a project of scientific investigations along two overland traverses in East Antarctica: one going from the Norwegian Troll Station (72deg. S, 2deg. E) to the United States South Pole Station (90deg. S, 0deg. E) in 2007-2008; and a return traverse starting at South Pole Station and ending at Troll Station by a different route in 2008-2009. The project will investigate climate change in East Antarctica, with the goals of understanding climate variability in Dronning Maud Land of East Antarctica on time scales of years to centuries and determining the surface and net mass balance of the ice sheet in this sector to understand its impact on sea level. The project will also investigate the impact of atmospheric and oceanic variability and human activities on the chemical composition of firn and ice in the region, and will revisit areas and sites first explored by traverses in the 1960's, for detection of possible changes and to establish benchmark datasets for future research efforts. In terms of broader impacts, the results of this study will add to understanding of climate variability in East Antarctica and its contribution to global sea level change. The project includes international exchange of graduate students between the institutions involved and international education of undergraduate students through classes taught by the PI's at UNIS in Svalbard. It involves extensive outreach to the general public both in Scandinavia and North America through the press, television, science museums, children's literature, and web sites. Active knowledge sharing and collaboration between pioneers in Antarctic glaciology from Norway and the US, with the international group of scientists and students involved in this project, provide a unique opportunity to explore the changes that half a century have made in climate proxies from East Antarctica, scientific tools, and the culture and people of science. The project is relevant to the International Polar Year (IPY) since it is a genuine collaboration between nations: the scientists involved have complementary expertise, and the logistics involved relies on assets unique to each nation. It is truly an endeavor that neither nation could accomplish alone. This project is a part of the Trans- Antarctic Scientific Traverse Expeditions Ice Divide of East Antarctica (TASTE-IDEA) which is also part of IPY.
This project studies ancient ice buried in the Dry Valleys of Antarctica. The ice, which may approach ten million years in age, will be dated using argon and uranium radioisotope techniques. High-risk work, if successful it will offer the first and perhaps only samples of the Earth's atmosphere from millions of years in the past. These samples could offer critically important tests of paleoclimate records and proxies, as well as a glimpse into the characteristics of a past world much like the predicted future, warmer Earth. The broader impacts are graduate student education, and potentially contributing to society's understanding of global climate change and sea level rise.
This project studies sediment from the ocean floor to understand Antarctica's geologic history. Glacially eroded from the Antarctic continent, these sediments may offer insight into the 99% Antarctica covered by ice. The work's central focus is determining crust formation ages and thermal histories for three key areas of East Antarctica--Prydz Bay, eastern Weddell Sea, and Wilkes Land--through a combination of petrography, bulk sediment geochemistry and radiogenic isotopes, as well as isotope chronology of individual mineral grains. One specific objective is characterizing the composition of the Gamburtsev Mountains through studies of Eocene fluvial sediments from Prydz Bay. In addition to furthering our understanding of the hidden terrains of Antarctica, these terrigenous sediments will also serve as a natural laboratory to evaluate the effects of continental weathering on the Hf/Nd isotope systematics of seawater. An important broader impact of the project is providing exciting research projects for graduate and postdoctoral students using state of the art techniques in geochemistry.
This award supports a project to test whether Kamb Ice Stream (formerly Ice Stream C (ISC)), an ice stream<br/>that is thought to have stopped ~150 years ago, may be already in the process of restarting. If yes, it will help establish what is the rate of ice stream reactivation and what mechanisms are controlling this rate. If there is no evidence for ongoing ice stream reactivation, the physical controls that are preventing it will be examined and alternative scenarios for near-future evolution of this ice stream will be explored. One such scenario is an increase in ice diversion toward the neighboring Whillans Ice Stream. Such diversion may help prevent a complete stoppage of Whillans Ice Stream,which has been slowing down for at least the last 24 years. This project will consist of two components: (1) field observations of bed properties,geometry of internal radar reflectors, as well as surface strain rates and velocity/topography changes using Ice-Penetrating Radar and differential Global Positioning System, (2) numerical modeling study of near future(~100-1000 years) evolution of Kamb Ice Stream. The field component will be focused on the bulge-to-trunk transition, which is located at the present time just downstream of the so-called camp UpC. Reactivation of Kamb Ice Stream should be reflected in a downstream migration of the bulge-trunk transition at possibly high rates (bulge migration rates of ~km/yr occur on surging mountain glaciers). The modeling<br/>component will be used to generate predictions regarding the near-future behavior of Kamb Ice Stream. This project will provide training opportunities for at least two undergraduate students (per year) at St. Olaf College and for one<br/>undergraduate student (per year) at UCSC. This collaboration will bring together scientists from three different types of US institutions: (1) a liberal arts college (St.Olaf College), (2) a public research university (UCSC) and (3) a NASA research laboratory (JPL). The project will also help build a new glaciological research program at UCSC. Project results will be incorporated into undergraduate and graduate courses at UCSC and will be made available<br/>to the general public and educators through downloadable graphics and animations posted on the research website of the UCSC PI. Field data resulting from the project will be posted in the Antarctic Glaciological Data Center for use by other investigators.
Abstract<br/><br/>Since the advent of Antarctic continental glaciation, the opening of the Drake Passage between South America and the Antarctic Peninsula, and the onset of cooling of the Southern Ocean ~38-25 million years ago, evolution of the Antarctic marine biota has been driven by the development of extreme cold temperatures. Because they live at very low and stable temperatures, Antarctic fishes of the suborder Nototheniodei are particularly attractive as models for understanding the mechanisms of biomolecular cold adaptation, or the compensatory restructuring of biochemical and physiological systems to preserve biological function in cold thermal regimes. Two interrelated and potentially co-evolved systems, the tubulins that form microtubules and the chaperonin-containing TCP1 (t-complex protein-1) complex (CCT) that assists the folding of tubulins, provide an unparalleled opportunity to elucidate these mechanisms. This research will yield new and important knowledge regarding: 1) cold adaptation of microtubule assembly and of chaperonin function; and 2) the co-evolutionary origin of tubulin-binding specificity by CCT. The first objective of this proposal is to determine the contributions of five novel amino acid substitutions found in Antarctic fish beta-tubulins to microtubule assembly at cold temperature. The second objective is to establish a chaperonin folding system in vitro using CCT purified from testis tissue of Antarctic fishes and to evaluate its thermal properties and mechanism. The third objective is to evaluate, through phylogenetically controlled contrasts, the hypothesis that CCT and its tubulin substrates from Antarctic fishes have co-evolved to function at cold temperatures. The broader impacts of this proposal include introduction of graduate and REU undergraduate students of Northeastern University to state-of-the-art biochemical, cellular, and molecular-biological research relevant to ecological and environmental issues of the Antarctic marine ecosystem. Because much of the research on the biogenesis and function of cold-adapted proteins will be performed in the field at Palmer Station, these students will gain invaluable experience in the practical considerations of expeditionary biological science. The research also will increase knowledge about molecular cold adaptation in one of the Earth's extreme environments, and hence is relevant to the formulation of refined hypotheses regarding potential extraterrestrial life on Mars or Europa. The cold-functioning chaperonin protein folding system will be of great value to the biopharmaceutical and biotechnological industries for use in folding insoluble proteins.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The project aims on studying sediment cores collected from Prydz Bay and the Ross Sea to unravel the Neogene paleoclimatic history of the East Antarctic ice sheet. In the light of current measurements and predictions of a substantial rise in global temperature, investigations into the sensitivity of the East Antarctic ice sheet to climate change and its role in the climate system are essential. Geological records of former periods of climate change provide an opportunity to ground truth model predictions. The scientific objective of this project is to identify a previously proposed middle Miocene transition from a more dynamic wet-based East Antarctic ice sheet to the present semi-permanent ice sheet that is partially frozen to its bed. The timing and significance of this transition is controversial due to a lack of quantitative studies on well-dated ice-proximal sedimentary sequences. This project partially fills that gap using the composition and physical properties of diamictites and sandstones to establish shifts in ice-sheet drainage pathways, paleoenvironments and basal ice conditions. The results from the two key areas around the Antarctic continental margin will provide insight into the behavior of the East Antarctic ice sheet across the middle Miocene transition and through known times of warming in the late Miocene and Pliocene.
This Small Grant for Exploratory Research investigates the origin of the Queen Maud Mountains, Antarctica, to understand the geodynamic processes that shaped Gondwana. Ages of various rock units will be determined using LA-MC-ICPMS analyses of zircons and 40Ar-39Ar analyses of hornblende. The project?s goal is to time deformation , sedimentary unit deposition, magmatism, and regional cooling. Results will be correlated with related rock units in Australia. By constraining the length and time scales of processes, the outcomes will offer insight into the geodynamic processes that caused deformation, such as slab roll-back or extension. In addition, dating these sedimentary units may offer insight into the Cambrian explosion of life, since the sediment flux caused by erosion of these mountains is conjectured to have seeded the ocean with the nutrients required for organisms to develop hard body parts. The broader impacts include support for undergraduate research.
This award supports a project to examine an existing ice core of opportunity from South Pole (SPRESO core) to develop a 2000+ year long climate record. SPRESO ice core will be an annually dated, sub-annually-resolved reconstruction of past climate (atmospheric circulation, temperature, precipitation rate, and atmospheric chemistry) utilizing continuous, co-registered measurements (n=45) of: major ions, trace elements, and stable isotope series, plus selected sections for microparticle size and composition. The intellectual merit of this project relates to the fact that few 2000+ year records of this quality exist in Antarctica despite increasing scientific interest in this critical time period as the framework within which to understand modern climate. The scientific impact of this ice core investigation are that it will provide an in-depth understanding of climate variability; a baseline for assessing modern climate variability in the context of human activity; and a contribution to the prediction of future climate variability. The broader impact of this work is that the proposed research addresses important questions concerning the role of Antarctica in past, present, and future global change. Results will be translated into publicly accessible information through public lectures, media appearances, and an extensive outreach activity housed in our Institute. Our ice core activities provide a major basis for curriculum in K-12 and University plus a basis for several field and laboratory based graduate theses and undergraduate student projects. The project will support one PhD student for 3 years and undergraduate salaries. The Climate Change Institute has a long history of gender and ethnically diverse student and staff involvement in research.
The Western Antarctic Peninsula is experiencing one of the most rapid rates of climate warming on Earth, with an increase of 5degrees C in the mean winter temperature in 50 years. Impacts on upper trophic levels are evident, though there have been few, if any studies that have considered the impacts on bacterioplankton in the Southern Ocean. This proposal will characterize the winter bacterioplankton genome, transcriptome, and proteome and discover those features (community composition, genes up-regulated, and proteins expressed) that are essential to winter bacterioplankton survival and livelihood. We have assembled a polar ocean ecology and genomics network including strategic partnerships with Palmer LTER, the British Antarctic Survey's ocean metagenome program, US and Canadian scientists studying the Arctic Ocean genome, an Australian colleague who specialized in archaeal proteomics, and French colleagues studying Sub-Antarctic and Coastal Adelie Land marine bacterioplankton. The primary objectives of this program are: 1 Describe the differences in diversity and genomic content between austral winter and summer bacterioplankton communities. 2. Investigate the winter-time bacterioplankton growth and cellular signals (mRNA and proteins expressed) in order to understand the specific adaptations key to survival. <br/><br/>Our results will extend from the Antarctic to the Arctic - as the cold, dark, carbon-limited deep seas linking these two systems have many common features. Education and outreach activities target (i) undergraduate and graduate students, hopefully including minority students recruited through the Diversity in Research in Environmental and Marine Sciences (DREAMS) Program at VIMS; (ii) a broad audience with our education and outreach partnerships with The Cousteau Society and with the Census for Antarctic Marine Life program. Data and links to external databases will be listed on the http://genex2.dri.edu website. Sequence data will be publicly accessible in GenBank and IMG-M databases.
Johnson/0632161<br/><br/>This award supports a project to create a "Community Ice Sheet Model (CISM)". The intellectual merit of the proposed activity is that the development of such a model will aid in advancing the science of ice sheet modeling. The model will be developed with the goal of assuring that CISM is accurate, robust, well documented, intuitive, and computationally efficient. The development process will stress principles of software design. Two complementary efforts will occur. One will involve novel predictive modeling experiments on the Amundsen Sea Embayment region of Antarctica with the goal of understanding how interactions between basal processes and ice sheet dynamics can result in abrupt reconfigurations of ice-sheets, and how those reconfigurations impact other Earth systems. New modeling physics are to include the higher order stress terms that allow proper resolution of ice stream and shelf features, and the associated numerical methods that allow higher and lower order physics to be coexist in a single model. The broader impacts of the proposed activity involve education and public outreach. The model will be elevated to a high standard in terms of user interface and design, which will allow for the production of inquiry based, polar and climate science curriculum for K-12 education. The development of a CISM itself would represent a sea change in the way that glaciological research is conducted, eliminating numerous barriers to progress in polar research such as duplicated efforts, lack of transparency in publication, lack of a cryospheric model for others to link to and reference, and a common starting point from which to begin investigation. As the appropriate interfaces are developed, a curriculum to utilize CISM in education will be developed. Students participating in this grant will be required to be involved in public outreach through various mechanisms including local and state science fairs. The model will also serve as a basis for educating "a new generation" of climate scientists. This project is relevant to the International Polar Year (IPY) as the research team is multi-institutional and multi-disciplinary, will bring new groups and new specialties into the realm of polar research and is part of a larger group of proposals whose research focuses on research in the Amundsen Sea Embayment Plan region of Antarctica. The project is international in scope and the nature of software development is quite international, with firm commitments from the United Kingdom and Belgium to collaborate. In addition there will be an international external advisory board that will be used to guide development, and serve as a link to other IPY activities.
0538494<br/>Meese<br/>This award supports a project for physical properties research on snow pits and firn/ice cores with specific objectives that include stratigraphic analysis including determination of accumulation rates, annual layers, depth hoar, ice and wind crusts and rates of grain growth with depth. Studies of firn densification rates and how these parameters relate to the meteorology and climatology over the last 200 years of snow accumulation in Antarctica will also be investigated. The project will also determine the seasonality of accumulation by co-registration of stratigraphy and chemistry and determination of chemical species at the grain boundaries, how these may change with depth/densification (and therefore temperature), precipitation, and may affect grain growth. Fabric analyses will be made, including variation with depth, location on undulations and if any variation exists with climate/chemistry. The large spatial coverage of the US ITASE program offers the opportunity to determine how these parameters are affected by a large range of temperature, precipitation and topographic effects. The intellectual merit of the project includes the fact that ITASE is the terrestrial equivalent of a polar research vessel that provides a unique, logistically efficient, multi-dimensional (x, y, z and time) view of the atmosphere, ice sheet and their histories. Physical properties measurements/ analyses are an integral part of understanding the dynamic processes to which the accumulated snow is subjected. Recent advancements in the field along with multiple core sites provide an excellent opportunity to gain a much broader understanding of the spatial, temporal and physical variables that impact firnification and the possible resultant impact on climatic interpretation. In terms of broader impacts, the data collected by US ITASE and its international ITASE partners is available to a broad scientific community. US ITASE has an extensive program of public outreach and provides significant opportunities for many students to experience multidisciplinary Antarctic research. A graduate student, a post-doctoral fellow and at least one undergraduate would be funded by this work. Dr. Meese is also a member of the New England Science Collaborative, an organization that educates the public on climate change based on recent scientific advancements.
Fungi in Antarctic ecosystems are major contributors to biodiversity and have great influence on many processes such as biodegradation and nutrient cycling. It is essential for biological surveys as well as genomic and proteomic studies to be completed so a better understanding of these organisms is obtained. Previous research has identified unique fungi associated with historic wooden structures brought to Antarctica by Robert F. Scott and Ernest Shackleton during the Heroic Era of exploration. Many of the fungi found are previously undescribed species that belong to the little known genus Cadophora. The research team will obtain important new information on the fungi present in the Ross Sea and Peninsula Regions of Antarctica, particularly their role in decomposition and nutrient recycling and their mechanisms and strategies for survival in the polar environment. New tools and methods include denaturing gradient gel electrophoresis (DGGE), real-time PCR, and proteomic profiling. These analyses will reveal key details of the physiological adaptations these fungi have evolved to carry out processes such as biodegradation and nutrient cycling under conditions that would inhibit other fungi. This work, coupled with the training and learning opportunities it provides, will be of value to many fields of study including microbial ecology, polar biology, wood microbiology, environmental science, soil science, geobiochemistry, and mycology as well as fungal phylogenetics, proteomics and genomics. Results obtained will have immediate applied use to help preserve and protect Antarctica's historic monuments. The investigations proposed are a continuation of research to identify the microbes attacking these historic structures and artifacts and to elucidate their biology and ecology in the polar environment. New research will also be done at the historic Cape Adare huts, the first wooden structures to be built in Antarctica and also at East Base, an American historic site on Stonington Island from the Admiral Byrd and Ronne Expeditions of 1939-1948. The research team will conduct vital studies needed to successfully conserve the wooden structures and artifacts at these sites and protect them for future generations
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports project to test and develop approaches for using thermoluminescence techniques to determine the age of Antarctic marine sediments. <br/><br/>Quaternary (last 2 million yrs) marine sediments surrounding Antarctica record the waxing and waning of ice shelves and ice sheets, and also other paleoclimatic information, yet accurate chronologies of these sediments are difficult to obtain. Such chronologies provide the essential foundation for study of geological processes in the past. Within the range of radiocarbon (14C) dating (less than 30-40 thousand yrs, note - "ka" below means 1000 yrs) 14C dates can be inaccurate because of a variable 14C reservoir effect, and beyond 30-40 ka few methods are applicable. Photon-stimulated-luminescence sediment dating (photonic dating) of eolian and waterlain deposits in temperate latitudes spans the range from decades to hundreds of ka, but marine sediments in and around Antarctica pose special difficulty because of the potentially restricted exposure to daylight (the clock-zeroing process) of most detrital grains before deposition. This proposal will test the clock-zeroing assumption in representative Antarctic glaciomarine depositional settings, and thereby determine the potential reliability of photonic dating of Antarctic marine sediments.<br/><br/>Limited luminescence dating and signal-zeroing tests using glaciomarine and marine deposits have been conducted in the northern temperate and polar latitudes, but the effects on luminescence of the different glaciomarine depositional processes have never been studied in detail. Furthermore, the depositional settings around Antarctica are almost entirely polar, with consequent specific processes operating there. For example, transport of terrigenous suspensions by neutrally buoyant "cold-tongue" (mid-water) plumes may be common around Antarctica, yet the effect of such transport on luminescence zeroing is unknown. Typical marine cores near Antarctica may contain an unknown fraction of detrital grains from cold-tongue and near-bottom suspensions. Thus the extent to which the polar glaciomarine depositional processes around Antarctica may limit the potential accuracy of photonic dating of marine cores is unknown (age overestimates would result if grains are not exposed to daylight before deposition).<br/><br/>This project will collect detrital grains from a variety of "zero-age" (modern) marine depositional settings within the Antarctic Peninsula, where representative Antarctic depositional processes have been documented and where logistics permit access. Suspensions will be collected from four fjords representing a transect from polar through subpolar conditions. Suspensions will be collected from two stations and from up to 3 depths (surface and 2 deep plumes) at each station. Sediment traps will be deployed at two of these fjord settings. As well, core-top sediments will be collected from several sites. All samples will be shielded from light and transported to Reno, Nevada, for luminescence analyses.<br/><br/>Systematic study of the effectiveness of luminescence-clock-zeroing in Antarctic glaciomarine settings will determine if photonic dating can be reliable for future applications to Antarctic marine sediments. Refined sedimentological criteria for the selection of future samples for photonic dating are expected from this project. A photonic-dating capability would provide a numeric geochronometer extending well beyond the age range of 14C dating. Such a capability would permit answering a number of broader questions about the timing and extent of past glaciations near and on the Antarctic shelves.
The annual advance and retreat of pack ice may be the major physical determinant of spatial and temporal changes in the structure and function of antarctic marine communities. Interannual cycles and/or trends in the annual extent of pack ice may also have significant effects on all levels of the food web, from total annual primary production to breeding success in seabirds. Historical records indicate a six to eight year cycle in the maximum extent of pack ice in the winter. During this decade, winters were colder in 1980 and 1981, and again in 1986 and 1987. Winter-over survival in Adelie penguins varied on the same cycle, higher in winters with heavy pack ice. This Long Term Ecological Research (LTER) project will define ecological processes linking the extent of annual pack ice with the biological dynamics of different trophic levels within antarctic marine communities. The general focus is on interannual variability in representative populations from the antarctic marine food web and on mechanistic linkages that control the observed variability in order to develop broader generalizations applicable to other large marine environments. To achieve these objectives, data from several spatial and temporal scales, including remote sensing, a field approach that includes an annual monitoring program, a series of process-oriented research cruises, and a modeling effort to provide linkages on multiple spatial and temporal scales between biological and environmental components of the ecosystem will be employed.
This project seeks to examine the importance of icebergs to the pelagic ecosystem of the North-West Weddell Sea. Atmospheric warming has been associated with retreating glaciers and the increasing prevalence of icebergs in the Southern Ocean over the last decade. The highest concentration of icebergs occurs in the NW Weddell Sea, where they drift in a clockwise pattern to the northeast, following the contours of the Antarctic Peninsula through an area dubbed "Iceberg Alley". Little is known about the impact of free-drifting icebergs on the pelagic ecosystem of the Weddell Sea or on the Southern Ocean as a whole. It is hypothesized that as drifting islands, icebergs of small to intermediate size (< 10 km in largest dimension) impart unique physical, chemical and biological characteristics to the surrounding water. Three general questions will be asked to address this hypothesis: 1) What are the dynamics (approximate size, abundance and spatial distribution) of free-drifting icebergs on temporal scales of days to months, based on correlation of field measurements with imagery derived from satellite sensors? 2) What is the relationship between the size of free-drifting icebergs and the structure of the associated pelagic communities? 3) What is the estimated combined impact of free-drifting icebergs in the NW Weddell Sea on the biological characteristics of the pelagic zone? This interdisciplinary study will use standard oceanographic sampling coupled with unique methodology for staging shipboard data from all types of sensors and survey methods to determine the sphere of influence for a diverse set of biological factors as a function of iceberg size. The exploratory research proposed here will provide critical data on the effects of atmospheric warming in the Antarctic Peninsula region. The recent prevalence of free drifting icebergs in the Southern Ocean should have a pronounced enrichment effect on the surrounding pelagic ecosystem, altering community dynamics. Enhanced primary production associated with these icebergs could influence the global carbon cycle since the Southern Ocean is considered a major sink for excess CO2 from the atmosphere. <br/>The proposed research will include an innovative education component through the Ocean Exploration Center (OEC), whose focus is to provide a comprehensive view of the oceans, intelligible to non-scientists and researchers alike, with direct access to state-of-the-art databases and selected websites. The OEC will allow users to access content which has been classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. The results from this iceberg project will be incorporated into the Antarctic Research division of the OEC, providing databases documenting the impact of free-drifting icebergs on the surrounding pelagic ecosystem. These data then will be extrapolated to evaluate the impact of icebergs on the ecosystem of the Weddell Sea. Graduate students, undergraduates, teachers and volunteers are an important part of the proposed field and laboratory work.
OPP98-15823 P.I. Craig Smith<br/>OPP98-16049 P.I. David DeMaster<br/><br/>Primary production in Antarctic coastal waters is highly seasonal, yielding an intense pulse of biogenic particles to the continental shelf floor. This seasonal pulse may have major ramifications for carbon cycling, benthic ecology and material burial on the west Antarctic Peninsula (WAP) shelf. Thus, we propose a multii-disciplinary program to evaluate the seafloor accumulation, fate and benthic community impacts of bloom material along a transect of three stations crossing the Antarctic shelf in the Palmer LTER study area. Using a seasonal series of five cruises to our transect, we will test the following hypostheses: (1) A substantial proportion of spring/summer export production is deposited ont eh WAP shelf as phytodetritus or fecal pellets. (2) The deposited bloom production is a source of labile particulate organic carbon for benthos for an extended period of time (months). (3) Large amounts of labile bloom POC are rapidly subducted into the sediment column by the deposit-feeding and caching activities of benthos. (4) Macrobenthic detritivores sustain a rapid increase in biomass and abundance following the spring/summer particulate organic carbon pulse. To test these hypotheses, we will evaluate seabed deposition and lability of particulate organic carbon, patterns of particulate organic carbon mixing into sediments, seasonal variations in macrofaunal and megafaunal abundance, biomass and reproductive condition, and rates of particulate organic carbon and silica mineralization and accumulation in the seabed. Fluxes of biogenic materials and radionuclides into midwater particle traps will be contrasted with seabed deposition and burial rates to establish water-column and seabed preservation efficiencies for these materials. The project will substantially improve our understanding of the spring/summer production pulse on the WAP shelf and its impacts on seafloor communities and carbon cycling in Antarctic coastal systems.
This exploratory project searches for fossils on Livingston Island in the South Shetland Islands off of the Antarctic peninsula. Strata there date from 125 to 99 million years in age, a critical time in the development of various flora and fauna. With so many unknowns in the biotic history of the Antarctic, any finds of vertebrate fossils on this little explored island will be of great significance. One key question is marsupial evolution. It is assumed that marsupials of South America and Australia transited through Antarctica, but a supporting fossil record has yet to be discovered. Related investigations on Mesozoic climate will be performed through stable isotope analysis of clay and rock samples. The broader impacts of the project include graduate student education and public outreach through a museum exhibit.
During the past few decades of oceanographic research, it has been recognized that significant variations in biogeochemical processes occur among years. Interannual variations in the Southern Ocean are known to occur in ice extent and concentration, in the composition of herbivore communities, and in bird and marine mammal distributions and reproductive success. However, little is known about the interannual variations in production of phytoplankton or the role that these variations play in the food web. This project will collect time series data on the seasonal production of phytoplankton in the southern Ross Sea, Antarctica. Furthermore, it will assess the interannual variations of the production of the two major functional groups of the system, diatoms and Phaeocystis Antarctica, a colonial haptophyte. The Ross Sea provides a unique setting for this type of investigation for a number of reasons. For example, a de facto time-series has already been initiated in the Ross Sea through the concentration of a number of programs in the past ten years. It also is well known that the species diversity is reduced relative to other systems and its seasonal production is as great as anywhere in the Antarctic. Most importantly, seasonal production of both the total phytoplankton community (as well as its two functional groups) can be estimated from late summer nutrient profiles. The project will involve short cruises on the US Coast Guard ice breakers in the southern Ross Sea that will allow the collection of water column nutrient and particulate after data at specific locations in the late summer of each of five years. Additionally, two moorings with in situ nitrate analyzers moored at fifteen will be deployed, thus collecting for the first time in the in the Antarctic a time-series of euphotic zone nutrient concentrations over the entire growing season. All nutrient data will be used to calculate seasonal production for each year in the southern Ross Sea and compared to previously collected information, thereby providing an assessment of interannual variations in net community production. Particulate matter data will allow us to estimate the amount of export from the surface layer by late summer, and therefore calculate the interannual variability of this ecosystem process. Interannual variations of seasonal production (and of the major taxa of producers) are a potentially significant feature in the growth and survival of higher trophic levels within the food web of the Ross Sea. They are also important in order to understand the natural variability in biogeochemical processes of the region. Because polar regions such as the Ross Sea are predicted to be impacted by future climate change, biological changes are also anticipated. Placing these changes in the context of natural variability is an essential element of understanding and predicting such alterations. This research thus seeks to quantify the natural variability of an Antarctic coastal system, and ultimately understand its causes and impacts on food webs and biogeochemical cycles of the Ross Sea.
PROPOSAL NO.: 0094078<br/>PRINCIPAL INVESTIGATOR: Bart, Philip<br/>INSTITUTION NAME: Louisiana State University & Agricultural and Mechanical College<br/>TITLE: CAREER: Relative frequency and phase of extreme expansions of the Antarctic Ice Sheets during the late Neogene<br/>NSF RECEIVED DATE: 07/27/2000<br/><br/>PROJECT SUMMARY<br/><br/>Expansions and contractions of the Antarctic Ice Sheets (AISs) have undoubtedly had a profound influence on Earth's climate and global sea-level. However, rather than being a single entity, the Antarctic cryosphere consists of three primary elements: 1) the East Antarctic Ice Sheet (EAIS); 2) the West Antarctic Ice Sheet (WAIS); and 3) the Antarctic Peninsula Ice Cap (APIC). The distinguishing characteristics include significant differences in: 1) ice volume; 2) substratum elevation; 3) ice-surface elevation; and 4) location with respect to latitude. Various lines of evidence indicate that the AISs have undergone significant fluctuations in the past and that fluctuations will continue to occur in the future. The exact nature of the fluctuations has been the subject of many lively debates. According to one line of reasoning, the land-based EAIS has been relatively stable, experiencing only minor fluctuations since forming in the middle Miocene, whereas the marine-based WAIS has been dynamic, waxing and waning frequently since the late Miocene. According to an alternate hypothesis, the ice sheets advanced and retreated synchronously. These two views are incompatible. <br/><br/>The first objective of this proposal is to compare the long-term past behavior of the WAIS to that of the EAIS and APIC. The fluctuations of the AISs involve many aspects (the frequency of changes, the overall magnitude of ice-volume change, etc.), and the activities proposed here specifically concern the frequency and phase of extreme advances of the ice sheet to the continental shelf. The project will build upon previous seismic-stratigraphic investigations of the continental shelves. These studies have clarified many issues concerning the minimum frequency of extreme expansions for the individual ice sheets, but some important questions remain. During the course of the project, the following questions will be evaluated.<br/><br/>Question 1) Were extreme advances of the EAIS and WAIS across the shelf of a similar frequency and coeval? This evaluation is possible because the western Ross Sea continental shelf (Northern Basin) receives drainage from the EAIS, and the eastern Ross Sea (Eastern Basin) receives drainage from the WAIS. Quantitative analyses of the extreme advances from these two areas have been conducted by Alonso et al. (1992) and Bart et al. (2000), respectively. However, the existing single-channel seismic grids are incomplete and can not be used to determine the stratigraphic correlations from Northern Basin to Eastern Basin. It is proposed that high-resolution seismic data (~2000 kms) be acquired to address this issue.<br/><br/>Question 2) Were extreme advances of the APIC across the shelf as frequent as inferred by Bart and Anderson (1995)? Bart and Anderson (1995) inferred that the APIC advanced across the continental shelf at least 30 times since the middle Miocene. This is significant because it suggests that the advances of the small APIC were an order of magnitude more frequent than the advances of the EAIS and WAIS. Others contest the Bart and Anderson (1995) glacial-unconformity interpretation of seismic reflections, and argue that the advances of the APIC were far fewer (i.e., Larter et al., 1997). The recent drilling on the Antarctic Peninsula outer continental shelf has sampled some but not all of the glacial units, but the sediment recovery was poor, and thus, the glacial history interpretation is still ambiguous. The existing high-resolution seismic grids from the Antarctic Peninsula contain only one regional strike line on the outer continental shelf. This is inadequate to address the controversy of the glacial-unconformity interpretation and the regional correlation of the recent ODP results. It is proposed that high-resolution seismic data (~1000 kms) be acquired in a forthcoming (January 2002) cruise to the Antarctic Peninsula to address these issues.<br/><br/>The second objective of this project is 1) to expand the PI's effort to integrate his ongoing and the proposed experiments into a graduate-level course at LSU, and 2) to develop a pilot outreach program with a Baton Rouge public high school. The Louisiana Department of Education has adopted scientific standards that apply to all sciences. These standards reflect what 9th through 12th grade-level students should be able to do and know. The PI will target one of these standards, the Science As Inquiry Standard 1 Benchmark. The PI will endeavor to share with the students the excitement of conducting scientific research as a way to encourage the students to pursue earth science as a field of study at the university level.
Abstract<br/>OPP-0089451<br/>P.I. William Detrich<br/><br/> As the Southern Ocean cooled during the past 25 million years, the fishes of Antarctic coastal waters evolved biochemical and physiological adaptations that maintain essential cellular processes such as cytoskeletal function and gene transcription. Their microtubules, for example, assemble and function at body temperatures (-1.8 to +1 oC) well below those of homeotherms and temperate poikilotherms. The long range goals of the proposed research are to determine, at the molecular level, the adaptations that enhance the assembly of microtubules, the function of kinesin motors, and the expression of globin and tubulin genes. The specific objectives are three: 1) to determine the primary sequence changes and posttranslational modifications that contribute to the efficient polymerization of Antarctic fish tubulins at low temperatures; 2) to evaluate the biochemical adaptations required for efficient function of the brain kinesin motor of Antarctic fishes at low temperatures; and 3) to characterize the structure, organization, and promoter-driven expression of globin and tubulin genes from an Antarctic rockcod (Notothenia coriiceps) and a temperate congener (N. angustata). Brain tubulins from Antarctic fishes differ from those of temperate and warm-blooded vertebrates both in unusual primary sequence substitutions (located primarily in lateral loops and the cores of tubulin monomers) and in posttranslational C-terminal glutamylation. Potential primary sequence adaptations of the Antarctic fish tubulins will be tested directly by production of wild-type and site directed tubulin mutants for functional analysis in vitro. The capacity of mutated and wild-type fish tubulins to form "cold-stable" microtubules will be determined by measurement of their critical concentrations for assembly and by analysis of their dynamics by video-enhanced microscopy. Three unusual substitutions in the kinesin motor domain of Chionodraco rastrospinosus may enhance mechanochemical activity at low temperature by modifying the binding of ATP and/or the velocity of the motor. To test the functional significance of these changes, the fish residues will be converted individually, and in concert, to those found in mammalian brain kinesin. Reciprocal substitutions will be introduced into the framework of the mammalian kinesin motor domain. After production in Escherichia coli and purification, the functional performance of the mutant motor domains will be evaluated by measurement of the temperature dependence of their ATPase and motility activities. Molecular adaptation of gene expression in N. coriiceps will be analyzed using an a-globin/b-globin gene pair and an a-tubulin gene cluster. Structural features of N. coriiceps globin and tubulin gene regulatory sequences (promoters and enhancers) that support efficient expression will be assessed by transient transfection assay of promoter/luciferase reporter plasmid constructs in inducible erythrocytic and neuronal model cell systems followed by assay of luciferase reporter activity. Together, these studies should reveal the molecular adaptations of Antarctic fishes that maintain efficient cytoskeletal assembly, mechanochemical motor function, and gene expression at low temperatures. In the broadest sense, this research program should advance the molecular understanding of the poikilothermic mode of life.
The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on determining minimum population estimates, distribution and seasonality for mysticete whales, especially blue whales. This will be accomplished using passive acoustic recorders deployed on the seafloor for a period of one to two years. The deployment of a large aperture autonomous hydrophone array in the Antarctic will incorporate the use of passive acoustics as a tool for mysticete whale detection and census. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a study to investigate the tectonic development of the southwestern Ross Sea region. Displacements between East and West Antarctica have long been proposed based on global plate circuits, apparent hot spot motions, interpretations of seafloor magnetic anomalies, paleomagnetism, and on geologic grounds. Such motions require plate boundaries crossing Antarctica, yet these boundaries have never been explicitly defined. This project will attempt to delineate the late Cenozoic - active boundary between East and West Antarctica along the Terror Rift in the western Ross Sea, where young structures have been identified, continuity between active extension and intracontinental structures can be established, and where accessibility via ship will allow new key data sets to be acquired. We will use multi-source marine and airborne geophysical data to map the fault patterns and volcanic structure along the eastern margin of the Terror Rift. The orientations of volcanic fissures and seamount alignments on the seafloor will be mapped using multibeam bathymetry. The volcanic alignments will show the regional extension or shear directions across the Terror Rift and the orientations of associated crustal stresses. Swath bathymetry and single channel seismic data will be used to document neotectonic fault patterns and the eastern limit of recent faulting. Delineation of neotectonic fault patterns will demonstrate whether the eastern margin of the Terror Rift forms a continuous boundary and whether the rift itself can be linked with postulated strike-slip faults in the northwestern Ross Sea. Seafloor findings from this project will be combined with fault kinematic and stress field determinations from the surrounding volcanic islands and the Transantarctic Mountains. The integrated results will test the propositions that the eastern boundary of the Terror Rift forms the limit of the major, late Cenozoic -active structures through the Ross Sea and that Terror Rift kinematics involve dextral transtension linked to the right-lateral strike-slip faulting to the north. These results will help constrain the kinematic and dynamic links between the West Antarctic rift system and Southern Ocean structures and any related motions between East and West Antarctica. In the first year, a collaborative structural analysis of existing multichannel and single channel seismic profiles and aeromagnetic data over the Terror Rift will be conducted. The location of volcanic vents or fissures and any fault scarps on the sea floor will be identified and a preliminary interpretation of the age and kinematics of deformation in the Terror Rift will be produced. Late in the second year, a one-month cruise on RVIB N.B. Palmer will carry out multibeam bathymetric and sidescan sonar mapping of selected portions of the seafloor of Terror Rift. Gravity, magnetics, seismic reflection and Bathy2000 3.5 kHz sub-bottom profile data will also be collected across the rift. In the third year, we will use these multisource data to map the orientations and forms of volcanic bodies and the extent and geometry of neotectonic faulting associated with the Terror Rift. The project will: 1) complete a map of neotectonic faults and volcanic structures in the Terror Rift; 2) interpret the structural pattern to derive the motions and stresses associated with development of the rift; 3) compare Terror Rift structures with faults and lineaments mapped in the Transantarctic Mountains to improve age constraints on the structures; and 4) integrate the late Cenozoic structural interpretations from the western Ross Sea with Southern Ocean plate boundary kinematics.
This award, provided jointly by the Antarctic Geology and Geophysics Program of the Office of Polar Programs and the Marine Geology and Geophysics Program of the Division of Ocean Sciences, supports research to develop improved plate rotation models for the Southwest Pacific region (between the Pacific, Antarctic, and Australian plates, and the continental fragments of New Zealand, West Antarctica, Iselin Bank, East Antarctica, and Australia). The improved rotation parameters will be used to address tectonic problems related to motion between East and West Antarctica, and in particular, the questions of relative drift between major hotspot groups and the controversy regarding a possible missing plate boundary in this region. Previous work has documented NNW-striking mid-Tertiary seafloor spreading magnetic anomalies between East and West Antarctica, representing about 150 km of opening of the Adare Trough, north of the Ross Sea. This is not enough motion to resolve the apparent discrepancy between the plate motions and motions inferred from assuming hotspot fixity. Because this motion between East and West Antarctica corresponds to a very small rotation, it points to the need for determination of finite rotations describing motions of the various plates here with a high degree of accuracy, particularly for older times. This is now possible with the datasets that will be used in this project. The work will be accomplished by integrating existing data with analysis and interpretation of other data sets recently made available by Japanese and Italian scientists from their cruises in the region. It will be further augmented by acquisition of new marine geophysical data on selected transits of the R/VIB Nathaniel B. Palmer. Specific objectives of the project include the following: 1) improve the rotation model for mid-Tertiary extension between East and West Antarctica by including the plate boundary between the Pacific and Australia plates directly when calculating Australia-West Antarctica motion, 2) improve the reconstructions for the Late Cretaceous and Early Tertiary times by including new constraints on several boundaries not previously used in the reconstructions, 3) address the implications of new rotation models for the question of the fixity of global hotspots, 4) re-examine the geophysical data from the Western Ross Sea embayment in light of a model for substantial mid-Cenozoic extension.
This project explores the feasibility of applying fluid physical analyses to evaluate the importance of viscous forces over compensatory temperature adaptations in a polar copepod. The water of the Southern Ocean is 20 Celsius colder and nearly twice as viscous as subtropical seas, and the increased viscosity has significant implications for swimming zooplankton. In each of these warm and cold aquatic environments have evolved abundant carnivorous copepods in the family Euchaetidae. In this exploratory study, two species from the extremes of the natural temperature range (0 and 23C) will be compared to test two alternate hypotheses concerning how Antarctic plankton adapt to the low temperature-high viscosity realm of the Antarctic and to evaluate the importance of viscous forces in the evolution of plankton. How do stronger viscous forces and lower temperature affect the behavior of the Antarctic species? If the Antarctic congener is dynamically similar to its tropical relative, it will operate at the same Reynolds number (Re) as its tropical congener. Alternatively, if the adaptations of the Antarctic congener are proportional to size, they should occupy a higher Re regime, which suggests that the allometry of various processes is not constrained by having to occupy a transitional fluid regime. The experiments are designed with clearly defined outcomes regarding a number of copepod characteristics, such as swimming speed, propulsive force, and size of the sensory field. These characteristics determine not only how copepods relate to the physical world, but also structure their biological interactions. The results of this study will provide insights on major evolutionary forces affecting plankton and provide a means to evaluate the importance of the fluid physical conditions relative to compensatory measures for temperature. Fluid physical, biomechanical, and neurophysiological techniques have not been previously applied to these polar plankton. However, these approaches, if productive and feasible, will provide ways to explore the sensory ecology of polar plankton and the role of small-scale biological-physical-chemical interactions in a polar environment. Experimental evidence validating the importance of viscous effects will also justify further research using latitudinal comparisons of other congeners along a temperature gradient in the world ocean.
The Shackleton Fracture Zone (SFZ) in Drake Passage of the Southern Ocean defines a boundary between low and high phytoplankton waters. Low chlorophyll water flowing through the southern Drake Passage emerges as high chlorophyll water to the east, and recent evidence indicates that the Southern Antarctic Circumpolar Current Front (SACCF) is steered south of the SFZ onto the Antarctic Peninsula shelf where mixing between the water types occurs. The mixed water is then advected off-shelf with elevated iron and phytoplankton biomass. The SFZ is therefore an ideal natural laboratory to improve the understanding of plankton community responses to natural iron fertilization, and how these processes influence export of organic carbon to the ocean interior. The bathymetry of the region is hypothesized to influence mesoscale circulation and transport of iron, leading to the observed patterns in phytoplankton biomass. The position of the Antarctic Circumpolar Current (ACC) is further hypothesized to influence the magnitude of the flow of ACC water onto the peninsula shelf, mediating the amount of iron transported into the Scotia Sea. To address these hypotheses, a research cruise will be conducted near the SFZ and to the east in the southern Scotia Sea. A mesoscale station grid for vertical profiles, water sampling, and bottle incubation enrichment experiments will complement rapid surface surveys of chemical, plankton, and hydrographic properties. Distributions of manganese, aluminum and radium isotopes will be determined to trace iron sources and estimate mixing rates. Phytoplankton and bacterial physiological states (including responses to iron enrichment) and the structure of the plankton communities will be studied. The primary goal is to better understand how plankton productivity, community structure and export production in the Southern Ocean are affected by the coupling between bathymetry, mesoscale circulation, and distributions of limiting nutrients. The proposed work represents an interdisciplinary approach to address the fundamental physical, chemical and biological processes that contribute to the abrupt transition in chl-a which occurs near the SFZ. Given recent indications that the Southern Ocean is warming, it is important to advance the understanding of conditions that regulate the present ecosystem structure in order to predict the effects of climate variability. This project will promote training and learning across a broad spectrum of groups. Funds are included to support postdocs, graduate students, and undergraduates. In addition, this project will contribute to the development of content for the Polar Science Station website, which has been a resource since 2001 for instructors and students in adult education, home schooling, tribal schools, corrections education, family literacy programs, and the general public.
Domack: OPP 9615053 Manley: OPP 9615670 Banerjee: OPP 9615695 Dunbar: OPP 9615668 Ishman: OPP 9615669 Leventer: OPP 9714371 Abstract This award supports a multi-disciplinary, multi-institutional effort to elucidate the detailed climate history of the Antarctic Peninsula during the Holocene epoch (the last 10,000 years). The Holocene is an important, but often overlooked, portion of the Antarctic paleoclimatic record because natural variability in Holocene climate on time scales of decades to millennia can be evaluated as a model for our present "interglacial" world. This project builds on over ten years of prior investigation into the depositional processes, productivity patterns and climate regime of the Antarctic Peninsula. This previous work identified key locations that contain ultra-high resolution records of past climatic variation. These data indicate that solar cycles operating on multi-century and millennial time scales are important regulators of meltwater production and paleoproductivity. These marine records can be correlated with ice core records in Greenland and Antarctica. This project will focus on sediment dispersal patterns across the Palmer Deep region. The objective is to understand the present links between the modern climatic and oceanographic systems and sediment distribution. In particular, additional information is needed regarding the influence of sea ice on the distribution of both biogenic and terrigenous sediment distribution. Sediment samples will be collected with a variety of grab sampling and coring devices. Analytical work will include carbon-14 dating of surface sediments using accellerator mass spectrometry and standard sedimentologic, micropaleontologic and magnetic granulometric analyses. This multiparameter approach is the most effective way to extract the paleoclimatic signals contained in the marine sediment cores. Two additional objectives are the deployment of sediment traps in front of the Muller Ice Shelf in Lallemand Fjord and seismic reflection work in conjunction with site augmentation funded through the Joint Oceanographic Institute. The goal of sediment trap work is to address whether sand transport and deposition adjacent to the ice shelf calving line results from meltwater or aeolian processes. In addition, the relationship between sea ice conditions and primary productivity will be investigated. The collection of a short series of seismic lines across the Palmer Deep basins will fully resolve the question of depth to acoustic basement. The combination of investigators on this project, all with many years of experience working in high latitude settings, provides an effective team to complete the project in a timely fashion. A combination of undergraduate, graduate and post-graduate students will be involved in all stages of the project so that educational objectives will be met in-tandem with research goals of the project.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research to study the region recently occupied by the Larsen Ice Shelf in the Antarctic Peninsula. Over the last 10 years, scientists have observed a dramatic decay and disintegration of floating ice shelves along the northern end of the Antarctic Peninsula. Meteorological records and satellite observations indicate that this catastrophic decay is related to regional warming of nearly 3 degrees C in the last 50 years. While such retreat of floating ice shelves is unprecedented in historic records, current understanding of the natural variability of ice shelf systems over the last few thousand years is not understood well. This award supports a program of marine geologic research directed at filling this knowledge gap by developing an understanding of the dynamics of the northern Larsen Ice Shelf during the Holocene epoch (the last 10,000 years). The Larsen Ice Shelf is located in the NW Weddell Sea along the eastern side of the Antarctic Peninsula and is currently undergoing a rapid, catastrophic retreat as documented by satellite imagery over the past five years. While the region of the northern Antarctic Peninsula has experienced a pronounced warming trend over the last 40 years, the links between this warming and global change (i.e. greenhouse warming) are not obvious. Yet the ice shelf is clearly receding at a rate unprecedented in historic time, leaving vast areas of the seafloor uncovered and in an open marine setting. This project will collect a series of short sediment cores within the Larsen Inlet and in areas that were at one time covered by the Larsen Ice Shelf. By applying established sediment and fossil criteria to the cores we hope to demonstrate whether the Larsen Ice Shelf has experienced similar periods of retreat and subsequent advance within the last 10,000 years. Past work in various regions of the Antarctic has focused on depositional models for ice shelves that allow one to discern the timing of ice shelf retreat/advance in areas of the Ross Sea, Antarctic Peninsula, and Prydz Bay. This research will lead to a much improved understanding of the dynamics of ice shelf systems and their role in past and future climate oscillations.
Seabird research conducted at Admiralty Bay, King George Island in the Antarctic Peninsula region has documented annual variability in the life history parameters of the population biology of three related penguin species: the Adelie, the gentoo and the chinstrap (Pygoscelis adeliae, P. papua and P. antarctica, respectively). This long-term study has collected twenty-five years of data on the three related species, including survival and recruitment, population size and breeding success, and diets and foraging ecology. The current project will extend the research linking penguin demography and foraging ecology to variability in the Antarctic marine ecosystem. A major focus of this work will be on the Adelie and gentoo penguin population biology data and the distribution and trophic interactions among the three Pygoscelis species during the breeding season and the non-breeding, winter period. Recent results have provided the first detailed data on the wintering distributions of Adelie and chinstrap penguins in the Antarctic Peninsula region, through the use of satellite tags and time-depth recorders to examine the post-fledging foraging. Specific topics of research include an examination of the size and sex composition of krill captured by penguins feeding chicks and krill collected concurrently by net hauls in the adjacent marine environment and the length-frequency distribution of krill collected from penguin diet samples. The over winter survival of penguin breeding adults and the recruitment of young (two to four year old) pre-breeding penguins to their natal colony will be compared to the extent of sea ice in the winter prior to the breeding season. These variables are expected to be positively correlated for the Adelie but negatively correlated to the chinstrap penguin. Detailed studies of the adult gentoo penguins, which do not disperse widely from the natal colony, will be conducted using satellite tags. The data collected in this study will improve an understanding of the structure and function of the Antarctic through research on the impact of environmental variation on the structure of upper trophic level predators such as the Pygoscelis penguins.
Notothenioid fish are a major group of fish in the Southern Ocean. The ancestral notothenioid fish stock of Antarctica probably arose as a sluggish, bottom-dwelling perciform species that evolved some 40-60 million years ago in the then temperate shelf waters of the Antarctic continent. The grounding of the ice sheet on the continental shelf and changing trophic conditions may have eliminated the taxonomically diverse late Eocene fauna and initiated the original diversification of notothenioids. On the High Antarctic shelf, notothenioids today dominate the ichthyofauna in terms of species diversity, abundance and biomass, the latter two at levels of 90-95%. Since the International Geophysical Year of 1957-58, fish biologists from the Antarctic Treaty nations have made impressive progress in understanding the notothenioid ichthyofauna of the cold Antarctic marine ecosystem. However, integration of this work into the broader marine context has been limited, largely due to lack of access to, and analysis of, specimens of Sub-Antarctic notothenioid fishes. Sub-Antarctic fishes of the notothenioid suborder are critical for a complete understanding of the evolution, population dynamics, eco-physiology, and eco-biochemistry of their Antarctic relatives. This project will support an international, collaborative research cruise to collect and study fish indigenous to sub-antarctic habitats. The topics included in the research plans of the international team of researchers includes Systematics and Evolutionary Studies; Life History Strategies and Population Dynamics; Physiological, Biochemical, and Molecular Biological Investigations of Major Organ and Tissue Systems; Genomic Resources for the Sub-Antarctic Notothenioids; and Ecological Studies of Transitional Benthic Invertebrates. In a world that is experiencing changes in global climate, the loss of biological diversity, and the depletion of marine fisheries, the Antarctic, Sub-Antarctic, and their biota offer compelling natural laboratories for understanding the evolutionary impacts of these processes. The proposed work will contribute to development of a baseline understanding of these sensitive ecosystems, one against which future changes in species distribution and survival may be evaluated judiciously.
Salps are planktonic grazers that have a life history, feeding biology and population dynamic strikingly different from krill, copepods or other crustacean zooplankton. Salps can occur in very dense population blooms that cover large areas and have been shown to have major impacts due to the their grazing and the production of fast-sinking fecal pellets. Although commonly acknowledged as a major component of the Southern Ocean zooplankton community, often comparable in biomass and distribution to krill, salps have received relatively little attention. Although extensive sampling has documented the seasonal abundance of salps in the Southern Ocean, there is a paucity of data on important rates that determine population growth and the role of this species in grazing and vertical flux of particulates. This proposed study will include: measurements of respiration and excretion rates for solitary and aggregate salps of all sizes; measurements of ingestion rates, including experiments to determine the size or concentration of particulates that can reduce ingestion; and determination of growth rates of solitaries and aggregates. In addition to the various rate measurements, this study will include quantitative surveys of salp horizontal and vertical distribution to determine their biomass and spatial distribution, and to allow a regional assessment of their effects. Measurements of the physical characteristics of the water column and the quantity and quality of particulate food available for the salps at each location will also be made. Satellite imagery and information on sea-ice cover will be used to test hypotheses about conditions that result in high densities of salps. Results will be used to construct a model of salp population dynamics, and both experimental and modeling results will be interpreted within the context of the physical and nutritional conditions to which the salps are exposed. This integrated approach will provide a good basis for understanding the growth dynamics of salp blooms in the Southern Ocean. Two graduate students will be trained on this project, and cruise and research experience will be provided for two undergraduate students. A portion of a website allowing students to be a virtual participant in the research will be created to strengthen students' quantitative skills. Both PI's will participate in teacher-researcher workshops, and collaboration with a regional aquarium will be developed in support of public education.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research program to initiate a Global Positioning System (GPS) network to measure crustal motions in the bedrock surrounding and underlying the West Antarctic Ice Sheet (WAIS). Evaluation of the role of both tectonic and ice-induced crustal motions of the WAIS bedrock is a critical goal for understanding past, present, and future dynamics of WAIS and its potential role in future global change scenarios, as well as improving our understanding of the role of Antarctica in global plate motions. The extent of active tectonism in West Antarctica is largely speculative, as few data exist that constrain its geographic distribution, directions, or rates of deformation. Active tectonism and the influence of bedrock on the WAIS have been highlighted recently by geophysical data indicating active subglacial volcanism and control of ice streaming by the presence of sedimentary basins. The influence of bedrock crustal motion on the WAIS and its future dynamics is a fundamental issue. Existing GPS projects are located only on the fringe of the ice sheet and do not address the regional picture. It is important that baseline GPS measurements on the bedrock around and within the WAIS be started so that a basis is established for detecting change.<br/><br/>To measure crustal motions, this project will build a West Antarctica GPS Network (WAGN) of at least 15 GPS sites across the interior of West Antarctica (approximately the size of the contiguous United States from the Rocky Mountains to the Pacific coast) over a two-year period beginning in the Antarctic field season 2001-2002. The planned network is designed using the Multi-modal Occupation Strategy (MOST), in which a small number of independent GPS "roving" receivers make differential measurements against a network of continuous GPS stations for comparatively short periods at each site. This experimental strategy, successfully implemented by a number of projects in California, S America, the SW Pacific and Central Asia, minimizes logistical requirements, an essential element of application of GPS geodesy in the scattered and remote outcrops of the WAIS bedrock.<br/><br/>The WAGN program will be integrated with the GPS network that has been established linking the Antarctic Peninsula with South America through the Scotia arc (Scotia Arc GPS Project (SCARP)). It will also interface with stations currently measuring motion across the Ross Embayment, and with the continent-wide GIANT program of the Working Group on Geodesy and Geographic Information Systems of the Scientific Committee on Antarctic Research (SCAR). The GPS network will be based on permanent monuments set in solid rock outcrops that will have near-zero set-up error for roving GPS occupations, and that can be directly converted to a continuous GPS site when future technology makes autonomous operation and satellite data linkage throughout West Antarctica both reliable and economical. The planned network both depends on and complements the existing and planned continuous networks. It is presently not practical, for reasons of cost and logistics, to accomplish the measurements proposed herein with either a network of continuous stations or traditional campaigns.<br/><br/>The proposed WAGN will complement existing GPS projects by filling a major gap in coverage among several discrete crustal blocks that make up West Antarctica, a critical area of potential bedrock movements. If crustal motions are relatively slow, meaningful results will only begin to emerge within the five-year maximum period of time for an individual funded project. Hence this proposal is only to initiate the network and test precision and velocities at the most critical sites. Once built, however, the network will yield increasingly meaningful results with the passage of time. Indeed, the slower the rates turn out to be, the more important an early start to measuring. It is anticipated that the results of this project will initiate an iterative process that will gradually resolve into an understanding of the contributions from plate rotations and viscoelastic and elastic motions resulting from deglaciation and ice mass changes. Velocities obtained from initial reoccupation of the most critical sites will dictate the timing of a follow-up proposal for reoccupation of the entire network when detectable motions have occurred.
This award supports a two year program to produce a new reconstruction of ice extent, elevation and thickness at the Last Glacial Maximum (LGM) for the South Shetland Islands in the Antarctic Peninsula. One field season on Livingston Island will involve mapping the areal extent and geomorphology of glacial drift and determining the elevation and distribution of trimlines. In addition, ice flow direction will be determined by mapping and measuring the elevation of erosional features and the position of erratic boulders. One of the main goals of this work will be to demonstrate whether or not organic material suitable for radiocarbon dating exists in the South Shetland Islands. If so, the age of the deposits will be determined by measuring the carbon-14 age of plant, algal, and fungal remains preserved at the base of the deposits, as well as incorporated marine shells, seal skin and other organic material that may be found in raised beach deposits. Another goal will be to concentrate on the development of relative sea-level curves from 2-3 key areas to show whether or not construction of such curves for the South Shetland Islands is possible. The new reconstruction of ice extent, elevation and thickness at the Last Glacial Maximum for the South Shetland Islands which will be produced by this work will be useful in studies of ocean circulation and ice dynamics in the vicinity of the Drake Passage. It will also contribute to the production of a deglacial chronology which will afford important clues about the mechanisms controlling ice retreat in this region of the southern hemisphere.
The Antarctic Site Inventory Project has collected biological data and site-descriptive information in the Antarctic Peninsula region since 1994. This research effort has provided data on those sites which are visited by tourists on shipboard expeditions in the region. The aim is to obtain data on the population status of several key species of Antarctic seabirds, which might be affected by the cumulative impact resulting from visits to the sites. This project will continue the effort by focusing on two heavily-visited Antarctic Peninsula sites: Paulet Island, in the northwestern Weddell Sea and Petermann Island, in the Lemaire Channel near Anvers Island. These sites were selected because both rank among the ten most visited sites in Antarctica each year in terms of numbers of visitors and zodiac landings; both are diverse in species composition, and both are sensitive to potential environmental disruptions from visitors. These data collected focus on two important biological parameters for penguins and blue-eyed shags: (1) breeding population size (number of occupied nests) and (2) breeding success (number of chicks per occupied nests). A long-term data program will be supported, with studies at the two sites over a five-year period. The main focus will be at Petermann Island, selected for intensive study due to its visitor status and location in the region near Palmer Station. This will allow for comparative data with the Palmer Long Term Ecological Research program. Demographic data will be collected in accordance with Standard Methods established by the Convention for the Conservation of Antarctic Marine Living Resources Ecosystem Monitoring Program and thus will be comparable with similar data sets being collected by other international Antarctic Treaty nation research programs. While separating human-induced change from change resulting from a combination of environmental factors will be difficult, this work will provide a first step to identify potential impacts. These long-term data sets will contribute to a better understanding of biological processes in the entire region and will contribute valuable information to be used by the Antarctic Treaty Parties as they address issues in environmental stewardship in Antarctica.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a marine geological investigation of the Amundsen Sea region toward a better understanding of the deglaciation history of the West Antarctic Ice Sheet (WAIS). The WAIS may be inherently unstable because it is the last marine-based ice sheet in the world. Unlike other embayments in West Antarctica, major ice streams draining into the Amundsen Sea from the interior of the WAIS lack buttressing ice shelves. Mass balance data for the distal portions of these ice streams (Pine Island and Thwaites glaciers) appear to be in balance or may be becoming negative. Because both ice streams have beds that slope downward toward the center of the ice sheet, grounding-line recession resulting from either continued thinning or sea-level rise could trigger irreversible grounding-line retreat, leading to ice-sheet disintegration and consequent global sea-level rise. The limited marine geological and geophysical data available from the Amundsen Sea suggest that grounded ice or an ice shelf occupied the inner Amundsen Sea embayment until perhaps as recently as 1000 to 2000 years ago, and this ice may have retreated rapidly in historic time. This project, a study of the marine geology and geophysics of the Amundsen Sea continental shelf from 100 degrees W to 130 degrees W, is designed to address the Amundsen Sea part of WAIS Science Plan Priority Goal H2: "What is the deglaciation history in the eastern Ross, the Bellingshausen and Amundsen Seas?" This project will examine bathymetric data of the Amundsen Sea continental shelf to determine the positions of former ice-steam channels, and to aid in choosing sites for sediment coring. Single-channel seismic reflection studies will be conducted in order to determine sediment-thickness patterns, to aid in choice of coring sites, and to locate and identify morphologic features indicative of former grounded ice (e.g., moraines, scours, flutes, striations, till wedges and deltas, etc.). Coring will be concentrated along former ice flow-lines. Core samples will be analyzed in the laboratory for sedimentology, to determine whether of not basal tills are present (indicating former grounded ice and its former extent), and for calcareous and siliceous microfossils. The chronology of grounding-line and ice-shelf retreat from a presumed Last Glacial Maximum position near the shelf break will be established using accelerator mass spectrometry (AMS) carbon-14 dates of acid-insoluble particulate organic carbon. This project will share ship time in the Amundsen Sea with a physical oceanographic project. Marine geologic data and samples collected will be integrated with findings of other investigators toward developing a comprehensive interpretation of the history of the WAIS.
This project is an investigation into one mechanism by which deep ocean convection can evolve from stable initial conditions, to the extent that it becomes well enough established to bring warm water to the surface and melt an existing ice cover in late, or possibly even mid-winter. The specific study will investigate how the non-linear dependence of seawater density on temperature and salinity (the equation of state) can enhance vertical convection under typical antarctic conditions. When layers of seawater with similar densities but strong contrasts in temperature and salinity interact, there are a number of possible non-linear instabilities that can convert existing potential energy to turbulent energy. In the Weddell Sea, a cold surface mixed layer is often separated from the underlying warm, more saline water by a thin, weak pycnocline, making the water column particularly susceptible to an instability associated with thermobaricity (the pressure dependence of the thermal expansion coefficient). The project is a collaboration between New York University, Earth and Space Research, the University of Washington, the Naval Postgraduate School, and McPhee Research Company.<br/>The work has strong practical applications in contributing to the explanation for the existence of the Weddell Polynya, a 300,000 square kilometer area of open water within the seasonal sea ice of the Weddell Sea, from approximately 1975 to 1979. It has not recurred since, although indications of much smaller and less persistent areas of open water do occur in the vicinity of the Maud Rise seamount. <br/> The experimental component will be carried out on board the RVIB Nathaniel B. Palmer between July and September, 2005.
This project uses radiocarbon in deep-sea corals to understand the Southern Ocean's role in modulating global climate. A key site of deep-water formation, the Southern Ocean is critical to exchange of heat and carbon between the deep-ocean and atmosphere. Changes in it may be linked to low atmospheric CO2 during the last glacial maximum through increased biologic carbon draw down or decreased air-sea CO2 exchange. Testing these hypotheses is challenging because of the scarcity of suitable records of the Southern Ocean's biogeochemistry and circulation. The aragonitic skeletons of deep-sea corals may offer insight because they are well suited for radiocarbon analyses-reflective of the 14C content of the past water column--while also allowing for timing of events through U-series age measurements. Overall, these measurements will put new constraints on the extent of air-sea gas exchange, polar water-column stratification, and the flux of Southern-sourced deep water to the rest of the world's oceans. As a part of this work, new sections of the Drake Passage sea floor will be mapped and imaged, along with the present and past distributions of deep-sea corals and their habitats. <br/><br/><br/><br/>A significant broader impact of this work is characterizing the functioning of what may be a key control of atmospheric CO2 content, which could prove important for fully understanding the impacts of continued CO2 emissions and developing mitigation strategies. As well, the work will characterize deep marine ecologies that are poorly understood, but increasingly exploited as fisheries resources.
Seabird research conducted at Admiralty Bay, King George Island in the Antarctic Peninsula region has documented annual variability in the life history parameters of the population biology of three related penguin species: the Adelie, the gentoo and the chinstrap (Pygoscelis adeliae, P. papua and P. antarctica, respectively). This long-term study has collected twenty-five years of data on the three related species, including survival and recruitment, population size and breeding success, and diets and foraging ecology. The current project will extend the research linking penguin demography and foraging ecology to variability in the Antarctic marine ecosystem. A major focus of this work will be on the Adelie and gentoo penguin population biology data and the distribution and trophic interactions among the three Pygoscelis species during the breeding season and the non-breeding, winter period. Recent results have provided the first detailed data on the wintering distributions of Adelie and chinstrap penguins in the Antarctic Peninsula region, through the use of satellite tags and time-depth recorders to examine the post-fledging foraging. Specific topics of research include an examination of the size and sex composition of krill captured by penguins feeding chicks and krill collected concurrently by net hauls in the adjacent marine environment and the length-frequency distribution of krill collected from penguin diet samples. The over winter survival of penguin breeding adults and the recruitment of young (two to four year old) pre-breeding penguins to their natal colony will be compared to the extent of sea ice in the winter prior to the breeding season. These variables are expected to be positively correlated for the Adelie but negatively correlated to the chinstrap penguin. Detailed studies of the adult gentoo penguins, which do not disperse widely from the natal colony, will be conducted using satellite tags. The data collected in this study will improve an understanding of the structure and function of the Antarctic through research on the impact of environmental variation on the structure of upper trophic level predators such as the Pygoscelis penguins.
As long-lived animals, marine mammals must be capable of accommodating broad variations in food resources over large spatial and temporal scales. While this is true of all marine mammals, variation in the physical and biological environmental is particularly profound in the Southern Ocean. A basic understanding of the foraging behavior and habitat utilization of pelagic predators requires knowledge of this spatial and temporal variation, coupled with information of how they respond to these changes. Current understanding of these associations is primarily limited to population level studies where animal abundance has been correlated with oceanography. Although these studies are informative, they cannot provide insights into the strategies employed by individual animals nor can they provide insights into the spatial or temporal course of these interactions. <br/><br/>Recent technological advances in instrumentation make it possible to extend an understanding beyond the simple linkage of prey and predator distributions with environmental features. The key to understanding the processes that lead to high predator abundance is the identification of the specific foraging behaviors associated with different features of the water column. This study will accomplish these objectives by combining accurate positional data, measures of diving and foraging behavior, animal-derived water-column temperature and salinity data, and available oceanographic data. This project will examine the foraging behavior and habitat utilization of two species of contrasting foraging ecology, the southern elephant seal, Mirounga leonina, and the crabeater seal, Lobodon carcinophagus in the Western Antarctic Peninsula, a region of strong environmental gradients. Although these two species are phylogenetically related, they utilize substantially different but adjacent habitat types. Southern elephant seals are predominantly pelagic, moving throughout the southern ocean, venturing occasionally into the seasonal pack ice whereas crabeater seals range throughout the seasonal pack ice, venturing occasionally into open water. The relationship of specific foraging behaviors and animal movement patterns to oceanographic and bathymetric features develop and test models of the importance of these features in defining habitat use will be determined along with a comparison of how individuals of each species respond to annual variability in the marine environment. The physical oceanography of the Southern Ocean is inherently complex as are the biological processes that are intrinsically linked to oceanographic processes. Significant resources are currently being directed toward developing mathematical models of physical oceanographic processes with the goals of better understanding the role that the Southern Ocean plays in global climate processes, predicting the responses of ocean and global scale processes to climate change, and understanding the linkages between physical and biological oceanographic processes. These efforts have been limited by the scarcity of oceanographic data in the region, especially at high latitudes in the winter months. This study will provide new and significant oceanographic data on temperature and salinity profiles in to further the understanding of the dynamics of the upper water column of west Antarctic Peninsula continental shelf waters. Outreach activities include website development and an association with a marine education program at the Monterrey Bay Aquarium Research Institute.
This project will utilize the R/VIB Nathaniel B. Palmer's transit cruises to collect marine geophysical data on targets-of-opportunity in the southern oceans. Because the Palmer generally traverses regions only sparsely surveyed with geophysical instruments, this project represents a cost-effective way to collect important new data. The work's focus is expanding our knowledge of plate motion histories for the Antarctic and surrounding plates. The ultimate goals are improving global plate reconstructions and gaining new insight into general plate kinematics and dynamics and lithospheric rheology. Only slight deviations from the straight routes are required, and we expect to operate on one cruise per year over the three years of the project. The first cruise from New Zealand to Chile will survey a flow line of Pacific-Antarctic plate motion along the Menard fracture zone, which crosses the East Pacific Rise at ~50 S latitude. Swath bathymetry, gravity, magnetics, and a small amount of seismic reflection profiling will be collected to determine the exact trace of the fracture zone and its relationship to the associated gravity anomaly seen in shipboard and satellite radar altimetry data. These observations are critical for precise plate reconstructions, and will provide GPS-navigated locations of a major fracture zone near the northern end of the Pacific-Antarctic boundary. These data will be used in combination with similar data from the Pitman fracture zone at the southwestern end of the plate boundary and magnetic anomalies from previous cruises near the Menard fracture zone to improve high-precision plate reconstructions and evaluate the limits of internal deformation of the Pacific and Antarctic plates. The science plan for cruises in following years will be designed once transit schedules are set. In terms of broader impacts, we plan to teach an on-board marine geophysics class to graduate and undergraduate students on two cruises. The class consists of daily classroom lectures about the instruments and data; several hours per day of watch standing and data processing; and work by each student on an independent research project. We expect to accommodate 15 students per class, including participants from primarily undergraduate institutions with high minority enrollments.
Marine geological and geophysical studies of the Ross Sea and Weddell Sea continental shelves provide evidence that the ice sheet grounded near the shelf edge in these areas during the late Wisconsinan, and that the retreat of the ice sheet to its present position was rapid and probably episodic. This Award supports a project which will establish the most recent (late Wisconsin- Holocene) history of ice sheet advance and retreat in Ross Sea. The objectives include: 1) reconstruction the late Wisconsin paleodrainage regime, including ice stream divides; 2) reconstruction of former grounding zone positions; 3) constraint of the timing of ice sheet retreat from the shelf; and 4) acquisition of geophysical, sedimentological, and paleontological data which may provide indicators the environmental factors that may have influenced to ice sheet retreat. This is a joint effort between Rice University, the University of Colorado, and Hamilton College. The project involves experts in a wide variety of fields, and will interface with glaciologists, physical oceanographers and climatologists who will address the problem of ice sheet stability and the record of climatic and glaciological change.
OPP98-15823 P.I. Craig Smith OPP98-16049 P.I. David DeMaster Primary production in Antarctic coastal waters is highly seasonal, yielding an intense pulse of biogenic particles to the continental shelf floor. This seasonal pulse may have major ramifications for carbon cycling, benthic ecology and material burial on the west Antarctic Peninsula (WAP) shelf. Thus, we propose a multii-disciplinary program to evaluate the seafloor accumulation, fate and benthic community impacts of bloom material along a transect of three stations crossing the Antarctic shelf in the Palmer LTER study area. Using a seasonal series of five cruises to our transect, we will test the following hypostheses: (1) A substantial proportion of spring/summer export production is deposited ont eh WAP shelf as phytodetritus or fecal pellets. (2) The deposited bloom production is a source of labile particulate organic carbon for benthos for an extended period of time (months). (3) Large amounts of labile bloom POC are rapidly subducted into the sediment column by the deposit-feeding and caching activities of benthos. (4) Macrobenthic detritivores sustain a rapid increase in biomass and abundance following the spring/summer particulate organic carbon pulse. To test these hypotheses, we will evaluate seabed deposition and lability of particulate organic carbon, patterns of particulate organic carbon mixing into sediments, seasonal variations in macrofaunal and megafaunal abundance, biomass and reproductive condition, and rates of particulate organic carbon and silica mineralization and accumulation in the seabed. Fluxes of biogenic materials and radionuclides into midwater particle traps will be contrasted with seabed deposition and burial rates to establish water-column and seabed preservation efficiencies for these materials. The project will substantially improve our understanding of the spring/summer production pulse on the WAP shelf and its impacts on seafloor communities and carbon cycling in Antarctic coastal systems.
This project examines the role of glacier dynamics in glacial sediment yields. The results will shed light on how glacial erosion influences both orogenic processes and produces sediments that accumulate in basins, rich archives of climate variability. Our hypothesis is that erosion rates are a function of sliding speed, and should diminish sharply as the glacier's basal temperatures drop below the melting point. To test this hypothesis, we will determine sediment accumulation rates from seismic studies of fjord sediments for six tidewater glaciers that range from fast-moving temperate glaciers in Patagonia to slow-moving polar glaciers on the Antarctic Peninsula. Two key themes are addressed for each glacier system: 1) sediment yields and erosion rates by determining accumulation rates within the fjords using seismic profiles and core data, and 2) dynamic properties and basin characteristics of each glacier in order to seek an empirical relationship between glacial erosion rates and ice dynamics. The work is based in Patagonia and the Antarctic Peninsula, ideal natural laboratories for these purposes because the large latitudinal range provides a large range of precipitation and thermal regimes over relatively homogeneous lithologies and tectonic settings. Prior studies of these regions noted significant decreases in glaciomarine sediment accumulations in the fjords to the south. As well, the fjords constitute accessible and nearly perfect natural sediment traps.<br/><br/>The broader impacts of this study include inter-disciplinary collaboration with Chilean glaciologists and marine geologists, support for one postdoctoral and three doctoral students, inclusion of undergraduates in research, and outreach to under-represented groups in Earth sciences and K-12 educators. The results of the project will also contribute to a better understanding of the linkages between climate and evolution of all high mountain ranges.
This project is a study of the evolution of the sea ice cover, and the mass balance of ice in the Amundsen Sea and the Bellingshausen Sea in the internationally collaborative context of the International Polar Year (2007-2008). In its simplest terms, the mass balance is the net freezing and melting that occurs over an annual cycle at a given location. If the ice were stationary and were completely to melt every year, the mass balance would be zero. While non-zero balances have significance in questions of climate and environmental change, the process itself has global consequences since the seasonal freeze-melt cycle has the effect of distilling the surface water. Oceanic salt is concentrated into brine and rejected from the ice into deeper layers in the freezing process, while during melt, the newly released and relatively fresh water stabilizes the surface layers. The observation program will be carried out during a drift program of the Nathaniel B. Palmer, and through a buoy network established on the sea ice that will make year-long measurements of ice thickness, and temperature profile, large-scale deformation, and other characteristics. The project is a component of the Antarctic Sea Ice Program, endorsed internationally by the Joint Committee for IPY. Additionally, the buoys to be deployed have been endorsed as an IPY contribution to the World Climate Research Program/Scientific Committee on Antarctic Research (WCRP/SCAR) International Programme on Antarctic Buoys (IPAB). While prior survey information has been obtained in this region, seasonal and time-series measurements on sea ice mass balance are crucial data in interpreting the mechanisms of air-ice-ocean interaction. <br/> The network will consist of an array of twelve buoys capable of GPS positioning. Three buoys will be equipped with thermister strings and ice and snow thickness measurement gauges, as well as a barometer. Two buoys will be equipped with meteorological sensors including wind speed and direction, atmospheric pressure, and incoming radiation. Seven additional buoys will have GPS positioning only, and will be deployed approximately 100 km from the central site. These outer buoys will be critical in capturing high frequency motion complementary to satellite-derived ice motion products. Additional buoys have been committed internationally through IPAB and will be deployed in the region as part of this program.<br/> This project will complement similar projects to be carried out in the Weddell Sea by the German Antarctic Program, and around East Antarctica by the Australian Antarctic Program. The combined buoy and satellite deformation measurements, together with the mass balance measurements, will provide a comprehensive annual data set on sea ice thermodynamics and dynamics for comparison with both coupled and high-resolution sea ice models.
The Antarctic Peninsula region exhibits one of the largest warming trends in the world. Climate change in this region will reduce the duration of winter sea-ice cover, altering both the pelagic ecosystem and bentho-pelagic coupling. We postulate that shelf benthic ecosystems are highly suitable for tracking climate change because they act as "low-pass" filters, removing high-frequency seasonal noise and responding to longer-term trends in pelagic ecosystem structure and export production. We propose to conduct a 3-year study of bentho-pelagic coupling along a latitudinal climate gradient on the Antarctic Peninsula to explore the potential impacts of climate change (e.g., reduction in sea-ice duration) on Antarctic shelf ecosystems. We will conduct three cruises during summer and winter regimes along a 5- station transect from Smith Island to Marguerite Bay, evaluating a broad range of benthic ecological and biogeochemical processes. Specifically, we will examine the feeding strategies of benthic deposit feeders along this climatic gradient to elucidate the potential response of this major trophic group to climatic warming. In addition, we will (1) quantify carbon and nitrogen cycling and burial at the seafloor and (2) document changes in megafaunal, macrofaunal, and microbial community structure along this latitudinal gradient. We expect to develop predictive insights into the response of Antarctic shelf ecosystems to some of the effects of climate warming (e.g., a reduction in winter sea-ice duration). The proposed research will considerably broaden the ecological and carbon-flux measurements made as parts of the Palmer Station LTER and GLOBEC programs by providing a complementary benthic component. This project also will promote science education from the 9th grade to graduate-student levels. We will partner with the NSF-sponsored Southeastern Center for Ocean Science Education Excellence to reach students of all races in all areas of NC, SC and GA. The project will also benefit students at the post secondary level by supporting three graduate and two undergraduate students. During each of the three field excursions, NCSU and UH students will travel to Chile and Antarctica to participate in scientific research. Lastly, all three PIs will incorporate material from this project into their undergraduate and graduate courses.
9908828 Aronson This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a paleoecological and paleoenvironmental study of Seymour Island. Global climate change late in the Eocene epoch had an important influence in Antarctica. This was the beginning of the transition from a cool-temperate climate in Antarctica to the polar climate that exists there today. The cooling trend strongly influenced the structure of shallow-water, Antarctic marine communities, and these effects are still evident in the peculiar ecological relationships among species living in modern Antarctic communities. Cooling late in the Eocene reduced the abundance of fish and crabs, which in turn reduced skeleton-crushing predation on invertebrates. Reduced predation allowed dense populations of ophiuroids (brittlestars) and crinoids (sea lilies) to appear in shallow-water settings at the end of the Eocene. These low-predation communities appear as dense fossil echinoderm assemblages in the upper portion of the late Eocene La Meseta Formation on Seymour Island, off the Antarctic Peninsula. Today, dense ophiuroid and crinoid populations are common in shallow-water habitats in Antarctica but generally have been eliminated by predators from similar habitats at temperate and tropical latitudes; their persistence in Antarctica to this day is an important ecological legacy of climatic cooling in the Eocene. Although the influence of declining predation on Antarctic ophiuroids and crinoids is now well documented, the effects of cooling on the more abundant mollusks have not been investigated. This study will examine the evolutionary ecology of gastropods (snails) and bivalves (clams) in the late Eocene. A series of hypotheses will be tested in the La Meseta Formation, based on the predicted responses of mollusks to declining temperature and changing levels of predation. The shapes of gastropod shells, the activities of gastropods that prey on other mollusks by drilling holes in their shells, and the effects of predation on the thickness of mollusk shells should have changed significantly through late Eocene time. First, defensive features of gastropod shells, such as spines and ribbing, should decline as temperature and, therefore, the activity of skeleton-crushing predators declined. Second, drilling of bivalve prey by predatory gastropods should increase with time since the drillers should themselves have been subject to lower predation pressure as temperature declined. Drilled shells, therefore, should become more common through time. Third, patterns in the thickness of shells through time will make it possible to separate the direct, physiological effects of declining temperature (shells are more difficult to produce at cooler temperatures, and so should be thinner) from the indirect effects of temperature on evolving biological interactions (increased drilling predation should result in thicker shells). Seymour Island contains the only fossil outcrops readily accessible in Antarctica from this crucial period in Earth history. The La Meseta Formation on Seymour Island thus provides a unique opportunity to learn how climate change affected Antarctic marine communities. In practical terms, global climate change will probably increase upwelling over the next few decades to centuries in some temperate coastal regions. Recent ecological evidence suggests that the resultant lowering of sea temperatures could lower predation in those areas. Understanding the response of the La Meseta faunas to global cooling in the late Eocene will provide direct insight into the rapidly changing structure of modern benthic communities.
This project seeks to examine the importance of icebergs to the pelagic ecosystem of the North-West Weddell Sea. Atmospheric warming has been associated with retreating glaciers and the increasing prevalence of icebergs in the Southern Ocean over the last decade. The highest concentration of icebergs occurs in the NW Weddell Sea, where they drift in a clockwise pattern to the northeast, following the contours of the Antarctic Peninsula through an area dubbed "Iceberg Alley". Little is known about the impact of free-drifting icebergs on the pelagic ecosystem of the Weddell Sea or on the Southern Ocean as a whole. It is hypothesized that as drifting islands, icebergs of small to intermediate size (< 10 km in largest dimension) impart unique physical, chemical and biological characteristics to the surrounding water. Three general questions will be asked to address this hypothesis: 1) What are the dynamics (approximate size, abundance and spatial distribution) of free-drifting icebergs on temporal scales of days to months, based on correlation of field measurements with imagery derived from satellite sensors? 2) What is the relationship between the size of free-drifting icebergs and the structure of the associated pelagic communities? 3) What is the estimated combined impact of free-drifting icebergs in the NW Weddell Sea on the biological characteristics of the pelagic zone? This interdisciplinary study will use standard oceanographic sampling coupled with unique methodology for staging shipboard data from all types of sensors and survey methods to determine the sphere of influence for a diverse set of biological factors as a function of iceberg size. The exploratory research proposed here will provide critical data on the effects of atmospheric warming in the Antarctic Peninsula region. The recent prevalence of free drifting icebergs in the Southern Ocean should have a pronounced enrichment effect on the surrounding pelagic ecosystem, altering community dynamics. Enhanced primary production associated with these icebergs could influence the global carbon cycle since the Southern Ocean is considered a major sink for excess CO2 from the atmosphere. <br/>The proposed research will include an innovative education component through the Ocean Exploration Center (OEC), whose focus is to provide a comprehensive view of the oceans, intelligible to non-scientists and researchers alike, with direct access to state-of-the-art databases and selected websites. The OEC will allow users to access content which has been classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. The results from this iceberg project will be incorporated into the Antarctic Research division of the OEC, providing databases documenting the impact of free-drifting icebergs on the surrounding pelagic ecosystem. These data then will be extrapolated to evaluate the impact of icebergs on the ecosystem of the Weddell Sea. Graduate students, undergraduates, teachers and volunteers are an important part of the proposed field and laboratory work.
This project studies seasonal variation in the abundance and shell composition of foraminifera from the northern Gerlache-southern Bransfield Straits region of the Western Antarctic Peninsula. Its goal is to improve interpretation of microfaunal and geochemical proxies for reconstruction of ancient ocean currents, climate, and ecologies. Since seasonal variation may greatly affect interpretation, this project focuses on the Antarctic region, where intense seasonality should generate a more obvious signal than at the less extreme mid-latitudes. The results should allow a better understanding of the coupling to seasonal productivity, as well as improve regional reconstructions.<br/>The broader impacts are graduate, undergraduate, and postdoctoral student education; as well as outreach to both the English and Spanish-speaking public. The work will also improve society's understanding of past climate change as an analogue to the future.
This collaborative study between Columbia University and the Southampton Oceanography Centre will investigate the dynamics of warm water intrusions under antarctic floating ice shelves. The study will focus on the Amundsen Sea and Pine Island Glacier, and will document how this water gains access to the continental shelf, transports heat into the ice shelf cavities via deep, glacially-scoured troughs, and rises beneath the ice to drive basal melting. The resulting seawater-meltwater mixtures upwell near the ice fronts, contributing to the formation of atypical coastal polynyas with strong geochemical signatures. Multidecadal freshening downstream is consistent with thinning ice shelves, which may be triggering changes inland, increasing the flow of grounded ice into the sea. This work will be carried out in combination with parallel modeling, remote sensing and data based projects, in an effort to narrow uncertainties about the response of West Antarctic Ice Sheet to climate change. Using state-of-the-art facilities and instruments, this work will enhance knowledge of water mass production and modification, and the understanding of interactions between the ocean circulation, sea floor and ice shelves. The data and findings will be reported to publicly accessible archives and submitted for publication in the scientific literature. The information obtained should prove invaluable for the development and validation of general circulation models, needed to predict the future role of the Antarctic Ice Sheet in sea level change.
Recent studies of marine ecosystems show conflicting evidence for trophic cascades, and in particular the relative strength of the crustacean zooplankton-phytoplankton link. The Ross Sea is a natural laboratory for investigating this apparent conflict. It is a site of seasonally high abundances of phytoplankton, characterized by regions of distinct phytoplankton taxa; the southcentral polynya is strongly dominated by the colony-forming prymnesiophyte Phaeocystis antarctica, while coastal regions of this sea are typically dominated by diatoms or flagellate species. Recent studies indicate that, while the south-central polynya exhibits a massive phytoplankton bloom, the poor food quality of P. antarctica for many crustacean zooplankton prevents direct utilization of much of this phytoplankton bloom. Rather, evidence suggests that indirect utilization of this production may be the primary mechanism by which carbon and energy become available to those higher trophic levels. Specifically, we hypothesize that nano and microzooplankton constitute an important food source for crustacean zooplankton (largely copepods and juvenile euphausiids) during the summer period in the Ross Sea where the phytoplankton assemblage is dominated by the prymnesiophyte. In turn, we also hypothesize that predation by copepods (and other Crustacea) controls and structures the species composition of these protistan assemblages. We will occupy stations in the south-central Ross Sea Polynya (RSP) and Terra Nova Bay (TNB) during austral summer to test these hypotheses. We hypothesize that the diatom species that dominate the phytoplankton assemblage in TNB constitute a direct source of nutrition to herbivorous/omnivorous zooplankton (relative to the situation in the south-central RSP). That is, the contribution of heterotrophic protists to crustacean diets will be reduced in TNB. Our research will address fundamental gaps in our knowledge of food web structure and trophic cascades, and provide better understanding of the flow of carbon and energy within the biological community of this perennially cold sea. The PIs will play active roles in public education (K-12) via curriculum development (on Antarctic biology) and teacher trainer activities in the Centers for Ocean Science Education Excellence (COSEE-West), an innovative, NSF-funded program centered at USC and UCLA.
This work will perform a marine geophysical survey of sea floor spreading off Cape Adare, Antarctica. Magnetic, gravity, swath bathymetry and multi-channel seismic data will be acquired from the southern end of the Adare Basin to the northern parts of the Northern Basin and Central Trough in the Ross Embayment. Previous surveys documented 170 km of regional extension between forty-three and twenty-six million years ago, which resulted in some seafloor spreading in the Adare Basin. However, the relationship of Adare Basin spreading to the overall extension and the southward continental basins of the Ross Embayment has not been established. This relationship is critical to understanding the tectonic evolution of East and West Antarctica and linking Pacific plate motions to the rest of the world. The study will also offer unique insight into rifting processes by studying the transition of rifting between oceanic and continental lithosphere. In terms of broader impacts, this project will support two graduate students and field research experience for undergraduates. The project also involves cooperation between scientists from the US, Australia, New Zealand and Japan.
Luyendyk et.al.: OPP 0088143<br/>Bartek: OPP 0087392<br/>Diebold: OPP 0087983<br/><br/>This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research program in marine geology and geophysics in the southern central and eastern Ross Sea. The project will conduct sites surveys for drilling from the Ross Ice Shelf into the seafloor beneath it. Many of the outstanding problems concerning the evolution of the East and West Antarctic Ice Sheets, Antarctic climate, global sea level, and the tectonic history of the West Antarctic Rift System can be addressed by drilling into the seafloor of the Ross Sea. Climate data for Cretaceous and Early Cenozoic time are lacking for this sector of Antarctica. Climate questions include: Was there any ice in Late Cretaceous time? What was the Antarctic climate during the Paleocene-Eocene global warming? When was the Cenozoic onset of Antarctic glaciation, when did glaciers reach the coast and when did they advance out onto the margin? Was the Ross Sea shelf non-marine in Late Cretaceous time; when did it become marine? Tectonic questions include: What was the timing of the Cretaceous extension in the Ross Sea rift; where was it located? What is the basement composition and structure? Where are the time and space limits of the effects of Adare Trough spreading? Another drilling objective is to sample and date the sedimentary section bounding the mapped RSU6 unconformity in the Eastern Basin and Central Trough to resolve questions about its age and regional extent. Deep Sea Drilling Project (DSDP) Leg 28 completed sampling at four drill sites in the early 1970's but had low recovery and did not sample the Early Cenozoic. Other drilling has been restricted to the McMurdo Sound area of the western Ross Sea and results can be correlated into the Victoria Land Basin but not eastward across basement highs. Further, Early Cenozoic and Cretaceous rocks have not been sampled. A new opportunity is developing to drill from the Ross Ice Shelf. This is a successor program to the Cape Roberts Drilling Project. One overriding difficulty is the need for site surveys at drilling locations under the ice shelf. This project will overcome this impediment by conducting marine geophysical drill site surveys at the front of the Ross Ice Shelf in the Central Trough and Eastern Basin. The surveys will be conducted a kilometer or two north of the ice shelf front where recent calving events have resulted in a southerly position of the ice shelf edge. In several years the northward advance of the ice shelf will override the surveyed locations and drilling could be accomplished. Systems to be used include swath bathymetry, gravity, magnetics, chirp sonar, high resolution seismic profiling, and 48 fold seismics. Cores will be collected to obtain samples for geotechnical properties, to study sub-ice shelf modern sedimentary processes, and at locations where deeper section is exposed.<br/><br/>This survey will include long profiles and detailed grids over potential drill sites. Survey lines will be tied to existing geophysical profiles and DSDP 270. A recent event that makes this plan timely is the calving of giant iceberg B-15 (in March, 2000) and others from the ice front in the eastern Ross Sea. This new calving event and one in 1987 have exposed 16,000 square kilometers of seafloor that had been covered by ice shelf for decades and is not explored. Newly exposed territory can now be mapped by modern geophysical methods. This project will map geological structure and stratigraphy below unconformity RSU6 farther south and east, study the place of Roosevelt Island in the Ross Sea rifting history, and determine subsidence history during Late Cenozoic time (post RSU6) in the far south and east. Finally the project will observe present day sedimentary processes beneath the ice shelf in the newly exposed areas.
The goal of this proposal to bring two groups of undergraduate students to the Antarctic, where they will participate in the collection of data on seabird abundance and behavior. This proposal combines research on the dynamics of seabirds that feed on Antarctic krill, with the teaching of mathematical modeling of foraging behavior and spatial statistics. Students will learn a broad collection of skills through collection of data on physical and biological oceanography as part of the research project that focuses on seabirds. The research goal of this proposal is to learn how foraging seabirds in the Antarctic respond to changes in the abundance and distribution of their prey, primarily Antarctic krill. The approach will be to study bird behavior in the vicinity of krill swarms, and to contrast this behavior to that in areas lacking krill. From these comparisons, foraging models that will make predictions about the dispersion of birds under differing levels of krill abundance will be built. The long-term goal is to be able to make predictions about the impact upon seabirds of future changes in krill stocks. Field work will be conducted in the vicinity of Elephant Island in two field seasons. In each season, the insular shelf north of Elephant Island will be surveyed and the abundance, distribution and behavior of seabirds will be recorded. The primary objective will be to quantify the linkage between prey abundance and bird behavior, with the long-term goal of using information on bird behavior to index long-term changes in the prey base. The teaching goal of this proposal is twofold. First, the project will expose inner city college students to a spectacular and economically important ecosystem. Through their work on an oceanographic research vessel, students will be exposed to a broad diversity of research topics and methods, ranging from behavioral ecology to physical oceanography. Second, back at Staten Island, students will participate in the development of a mathematical biology initiative at the College of Staten Island. Here students will be encouraged to apply basic mathematical reasoning and computer modeling to a real problem - that of determining how foraging choices made by seabirds can ultimately impact their reproductive success.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a project to make use of ship-repositioning transit cruises to gather geophysical information relating to plate tectonics of the Southern Ocean and to support student training activities. Well-constrained Cenozoic plate reconstructions of the circum-Antarctic region are critical for examining a number of problems of global geophysical importance. These problems include, e.g., relating the plate kinematics to its geological consequences in various plate circuits (Pacific-North America, Australia-Pacific); a dynamical understanding of what drives plate tectonics (which requires well-constrained kinematic information in order to distinguish between different geodynamic hypotheses); and an understanding of the rheology of the plates themselves, including the amount of internal deformation they can support, and the conditions leading to the formation of new plate boundaries through breakup of existing plates. By obtaining better constraints on the motion of the Antarctica plate with respect to these other plates, and by better quantifying the internal deformation within Antarctica (between East and West Antarctica), contributions will be made to solving these other fundamental problems.<br/><br/>In this project, existing data will be analyzed to address several specific issues related to plate motions involving the Antarctic plate. First, work will be done on four-plate solutions of Australia-Pacific-West Antarctica-East Antarctica motion, in order to most tightly constrain the rotation parameters for separation between East and West Antarctica for the time period from about 45 to 28 Ma (Adare Basin spreading system). This will be done by imposing closure on the four-plate circuit and using relevant marine geophysical data from all four of the boundaries. The uncertainties in the resulting rotation parameters will be determined based on the uncertainties in the data points. These uncertainties can then be propagated in the plate circuit for use in addressing the various global geodynamic problems mentioned above. Second, rotation parameters for Pacific-West Antarctica during Tertiary time will be determined using recently acquired well-navigated Palmer transit data and any additional data that can be acquired during the course of this project. These parameters and their uncertainties will be used in assessments of plate rigidity and included in the plate circuit studies.<br/><br/>In the framework of this project, new collection of marine geophysical data will be accomplished on a very flexible schedule. This will be done by collecting underway gravity, magnetics, and swath bathymetric data on Palmer transit cruises of geological importance. This has been successfully done on eight previous Palmer cruises since 1997, the most recent four of which were funded under a collaborative OPP grant to CalTech and Scripps which is now expiring. On one of the suitable transits, a formal class in marine geophysics will be conducted that will afford an opportunity to 12 or more graduate and undergraduate students, from CalTech and Scripps as well as other institutions. In this way, educational activities will be integrated with the usual scientific data collection objectives of the research project.
This project studies seasonal variation in the abundance and shell composition of foraminifera from the northern Gerlache-southern Bransfield Straits region of the Western Antarctic Peninsula. Its goal is to improve interpretation of microfaunal and geochemical proxies for reconstruction of ancient ocean currents, climate, and ecologies. Since seasonal variation may greatly affect interpretation, this project focuses on the Antarctic region, where intense seasonality should generate a more obvious signal than at the less extreme mid-latitudes. The results should allow a better understanding of the coupling to seasonal productivity, as well as improve regional reconstructions.<br/>The broader impacts are graduate, undergraduate, and postdoctoral student education; as well as outreach to both the English and Spanish-speaking public. The work will also improve society's understanding of past climate change as an analogue to the future.
The objectives of this proposal are to investigate the controls on the large-scale distribution and production of the two major bloom-forming phytoplankton taxa in the Southern Ocean, diatoms and Phaeocystis Antarctica. These two groups, through their involvement in the biogeochemical cycles of carbon, sulfur and nutrient elements, may have played important roles in the climate variations of the late Quaternary, and they also may be key players in future environmental change. A current paradigm is that irradiance and iron availability drive phytoplankton dynamics in the Southern Ocean. Recent work, however, suggests that carbon dioxide (CO2) concentrations may also be important in structuring algal assemblages, due to species-specific differences in the physiology. This proposal examines the interactive effects of iron, light and CO2 on the physiology, ecology and relative dominance of Phaeocystis and diatoms in the Southern Ocean. The Ross Sea is an ideal system in which to investigate the environmental factors that regulate the distribution and production of these two algal groups, since it is characterized by seasonal blooms of both P. Antarctica and diatoms that are typically separated in both space and time. This study will take the form of an interdisciplinary investigation that includes a field survey and statistical analysis of algal assemblage composition, iron, mixed layer depth, and CO2 levels in the southern Ross Sea, coupled with shipboard experiments to examine the response of diatom and P. Antarctica assemblages to high and low levels of iron, light and CO2 during spring and summer. <br/>This project will provide information on some of the major factors controlling the production and distribution of the two major bloom forming phytoplankton in the Southern Ocean and the related biogeochemical cycling of carbon, sulfur and nutrient elements. The results may ultimately advance the ability to predict how the Southern Ocean will be affected by and possibly modulate future climate change. This project will also make significant educational contributions at several levels, including the planned research involvement of graduate and undergraduate students, postdoctoral associates, a student teacher, and community outreach and educational activities. A number of activities are planned to interface the project with K-12 education. Presentations will be made at local schools to discuss the research and events of the research cruise. During the cruise there will be daily interactive email contact with elementary classrooms. Established websites will be used to allow students to learn about the ongoing research, and to allow researchers to communicate with students through text and downloaded images.
Notothenioid fishes that dominate the fish fauna surrounding Antarctica have been evolving for 10-14 million years at a nearly constant body temperature of ~0C throughout their life histories. As a result, this group of animals is uniquely suited to studies aimed at understanding and identifying features of physiology and biochemistry that result from the process of evolution at cold body temperature. This project has three major objectives aimed at examining adaptations for life in cold environments: <br/><br/>1. Identify the amino acid substitutions in the fatty acid-binding pocket of fatty acyl CoA synthetase (FACS) that explain its substrate specificity. Fatty acids are a major fuel of energy metabolism in Antarctic fishes. FACS catalyzes the condensation of CoASH and fatty acids to fatty acyl CoA esters, a step required for subsequent metabolism of these important compounds. This research may permit us to resolve the specific amino acid substitutions that explain both substrate specificity and preservation of catalytic rate of notothenioid FACS at cold physiological temperatures.<br/><br/>2. Produce a rigorous biochemical and biophysical characterization of the intracellular calcium-binding protein, parvalbumin, from white axial musculature of Antarctic fishes. Parvalbumin plays a pivotal role in facilitating the relaxation phase of fast-contracting muscles and is a likely site of strong selective pressure. Preliminary data strongly indicate that the protein from Antarctic fishes has been modified to ensure function at cold temperature. A suite of physical techniques will be used to determine dissociation constants of Antarctic fish parvalbumins for calcium and magnesium and unidirectional rate constants of ion-dissociation from the protein. Full-length cDNA clones for Antarctic fish parvalbumin(s) will permit deduction of primary amino acid sequence These data will yield insight into structural elements that permit the protein from notothenioid fishes to function at very cold body temperature.<br/><br/>3. Conduct a broad survey of the pattern of cardiac myoglobin expression in the Suborder Notothenoidei. Previous work has indicated a variable pattern of presence or absence of the intracellular oxygen-binding protein, myoglobin (Mb), in hearts of one family of Antarctic notothenioid fishes (Channichthyidae; icefishes). Because Mb is of physiological value in species that express the protein, the observed pattern of interspecific expression has been attributed to unusually low niche competition in the Southern Ocean. This leads to the prediction that similar loss of cardiac Mb should be observed in other notothenioid taxa. This part of the project will survey for the presence and absence of cardiac Mb in as many notothenioid species as possible and, if Mb-lacking species are detected, will extend analyses to determine the mechanism(s) responsible for loss of its expression using molecular biological techniques.
Anderson OPP 9527876 Abstract This award supports continuation of a long term investigation of the continental shelf sediments that is aimed at examining the configuration of the West Antarctic Ice Sheet during the last glacial maximum, the events and mechanisms involved in its retreat, and the timing of retreat. The project involves: 1) characterizing variations in the ice sheet grounding zone in a latitudinal transect extending from Ross Sea to Bransfield Basin, 2) reconstructing conditions at the ice/bed interface prior to and after ice sheet retreat, and 3) radiometrically dating ice sheet retreat along this transect. Detailed sea floor imagery (multibeam and deep-tow side-scan sonar), high resolution seismic reflection profiles, and sediment cores will be used to map and characterize prior grounding zones. Of particular concern are features that indicate the amount and organization (channelization) of basal meltwater and the extent of bed deformation that occurred in different ice streams. The timing of ice sheet retreat provides information about the link between Northern and Southern hemisphere ice expansion, and the role of eustasy in ice sheet decoupling. This research should lead to better predictive models to determine which ice streams are most unstable and likely, therefore, to serve as Oweak linksO in the long term behavior of West Antarctic Ice Sheet.
This proposal is for the continuation and expansion of an underway program on the R/V Laurence M. Gould to measure dissolved carbon dioxide gas (pCO2) along with occasional total carbon dioxide (TCO2) in surface waters on transects of Drake Passage. The added observations include dissolved oxygen, as well as nutrient and carbon-13. The proposed work is similar to the underway measurement program made aboard R/V Nathaniel B. Palmer, and complements similar surface temperature and current data.<br/>The Southern Ocean is an important component of the global carbon budget. Low surface temperatures with consequently low vertical stability, ice formation, and high winds produce a very active environment for the exchange of gaseous carbon dioxide between the atmospheric and oceanic reservoirs. The Drake Passage is the narrowest point through which the Antarctic Circumpolar Current and its associated fronts must pass, and is the most efficient location for the measurement of latitudinal gradients of gas exchange. The generated time series will contribute towards two scientific goals: the quantification of the spatial and temporal variability and trends of surface carbon dioxide, oxygen, nutrients and C-13, and an understanding of the dominant processes that contribute to the observed variability.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a project to make use of ship-repositioning transit cruises to gather geophysical information relating to plate tectonics of the Southern Ocean and to support student training activities. Well-constrained Cenozoic plate reconstructions of the circum-Antarctic region are critical for examining a number of problems of global geophysical importance. These problems include, e.g., relating the plate kinematics to its geological consequences in various plate circuits (Pacific-North America, Australia-Pacific); a dynamical understanding of what drives plate tectonics (which requires well-constrained kinematic information in order to distinguish between different geodynamic hypotheses); and an understanding of the rheology of the plates themselves, including the amount of internal deformation they can support, and the conditions leading to the formation of new plate boundaries through breakup of existing plates. By obtaining better constraints on the motion of the Antarctica plate with respect to these other plates, and by better quantifying the internal deformation within Antarctica (between East and West Antarctica), contributions will be made to solving these other fundamental problems.<br/><br/>In this project, existing data will be analyzed to address several specific issues related to plate motions involving the Antarctic plate. First, work will be done on four-plate solutions of Australia-Pacific-West Antarctica-East Antarctica motion, in order to most tightly constrain the rotation parameters for separation between East and West Antarctica for the time period from about 45 to 28 Ma (Adare Basin spreading system). This will be done by imposing closure on the four-plate circuit and using relevant marine geophysical data from all four of the boundaries. The uncertainties in the resulting rotation parameters will be determined based on the uncertainties in the data points. These uncertainties can then be propagated in the plate circuit for use in addressing the various global geodynamic problems mentioned above. Second, rotation parameters for Pacific-West Antarctica during Tertiary time will be determined using recently acquired well-navigated Palmer transit data and any additional data that can be acquired during the course of this project. These parameters and their uncertainties will be used in assessments of plate rigidity and included in the plate circuit studies.<br/><br/>In the framework of this project, new collection of marine geophysical data will be accomplished on a very flexible schedule. This will be done by collecting underway gravity, magnetics, and swath bathymetric data on Palmer transit cruises of geological importance. This has been successfully done on eight previous Palmer cruises since 1997, the most recent four of which were funded under a collaborative OPP grant to CalTech and Scripps which is now expiring. On one of the suitable transits, a formal class in marine geophysics will be conducted that will afford an opportunity to 12 or more graduate and undergraduate students, from CalTech and Scripps as well as other institutions. In this way, educational activities will be integrated with the usual scientific data collection objectives of the research project.
The growing season for phytoplankton in polar oceans is short, but intense. There is an increasing body of evidence that in many Antarctic habitats, the most active period may be very early in the season, a period that has not been emphasized in previous investigations. This project is part of an interdisciplinary program that focuses on the dynamics of the spring phytoplankton bloom in a highly productive subsystem of the Antarctic, the Ross Sea. The overall program will test hypotheses related to the initiation of the phytoplankton bloom shortly after the onset of ice melt, the mechanisms controlling phytoplankton growth and productivity in spring, the implications and short-term fate of high productivity in spring, and the transition from spring to midsummer conditions. The focus of this proposal is the role of microzooplankton in controlling the production and fate of carbon during the two types of blooms. Objectives are: 1) to determine biomass, abundance, size and selected species composition of primary producer assemblages, 2) to determine similar features of nano- and microplanktonic heterotrophic assemblages, 3) to measure total community grazing on heterotrophic bacteria and phytoplankton, 4) to examine which grazers are the major herbivores and bacterivores, and 5) to measure the contribution of microzooplankton and mesozooplankton egesta, sinking of algal cells and colonies, and sinking of protozoan assemblages associated with detritus to the total carbon flux from the euphotic zone through 250 m depth. Water samples for abundance and biomass determinations will be taken and samples will be examined with epifluorescence microscopy. Grazing rates will be measured using the dilution grazing technique and the dual-isotope radiolabeling single cell method. Carbon fluxes will be determined on sinking material collected with particle interceptor traps at the base of the euphotic zone and two deeper depths, using microscopical analysis . An understanding of these processes and other fundamental processes studied by collaborating investigators will contribute to the understanding of the role of the Southern Ocean in present, past and predicted future sequestration of carbon, as well as in other global elemental cycles.
The proposed project will expand the suite of observations and lengthen the existing time series of underway surface dissolved carbon dioxide (pCO2) measurements transects across the Drake Passage on the R/VIB L.M. Gould. The additional observations include oxygen, nutrients and total CO2 (TCO2) concentrations, and the 13C to 12C ratio of TCO2. The continued and expanded time series will contribute towards two main scientific goals: the quantification of the spatial and temporal variability and the trends of surface carbon dioxide species in four major water mass regimes in the Drake Passage, and the understanding of the dominant processes and changes in those processes that contribute to the variability in surface pCO2 and the resulting air-sea flux of CO2 in the Drake Passage. The expanded program will also include the analysis of the 14C/12C of TCO2 and the specific study of the observations on one short wintertime cruise, with the objective of testing the hypothesis that the dissolved carbon dioxide in surface waters of the Drake Passage is determined by the degree of winter mixing. This is of special significance in light of two scenarios that may be affecting the ventilation of Southern Ocean deep water now and in the future: a decrease in water column stratification with the observations of higher zonal winds, or an increase in stratification due to higher precipitation and warming from climate change. If winter mixing determines the mean annual pCO2 in the Drake Passage, the increasing trend in atmospheric pCO2 should have little effect on sea surface pCO2.
NSF FORM 1358 (1/94) This award, provided by the Office of Polar Programs of the National Science Foundation, supports research to investigate hydrothermal venting in Bransfield Strait, between the South Shetland Islands and the Antarctic Peninsula. Previous exploratory work in the Strait identified several sites where hot hydrothermal fluids emanate from the sea floor. These discoveries were made using an instrument package specially designed to detect and map the thermal and chemical anomalies that hydrothermal activity imparts on the overlying water column. Hydrothermal sites in the Strait range in water depth from <200 to 1300 meters and occur on the volcanic outcrops that periodically protrude through the sediment cover along the strike of the rift zone. These sites are alligned with the caldera at Deception Island which has active hot springs. These are the first submarine hydrothermal sites discovered in Antarctica and as such represent unique research opportunities. This project will return to the Strait to further map and sample these areas. There are several compelling reasons to believe that further exploration of vent systems in the Bransfield will yield exciting new information: (1) Bransfield Strait is a back-arc rift system and it is likely that the vent fluids and mineral deposits associated with venting in this setting are unlike anything sampled so far from submarine vents. (2) Preliminary evidence suggests that venting in the Bransfield occurs in two different volcanic substrates: andesite and rhyolite. This situation provides a natural laboratory for investigating the effects of substrate chemistry on vent fluid composition. (3) Bransfield Strait is isolated from the system of mid-ocean ridges and has a relatively short history of rifting (approximately 4 my). So, while the region straddles the Atlantic and Pacific, vent biota in the Strait may well have a distinct genealogy. Biochemical information on vent species in the Bransfield will add to our knowledge of the dispersal of life in the deep ocean. In the past such discoveries have led to the identification of new species and the isolation of previously unknown biochemical compounds. (4) The fire and ice environments of hydrothermal sites in the Bransfield may prove to be the closest analog for primordial environments on Earth and extraterrestrial bodies. The Bransfield Strait is one of the most productive areas of the world's oceans and lies close to the Antarctic continent, far removed from the mid-ocean ridge system. The combination of organic-rich sediment and heat produced by volcanism in this back- arc setting creates a situation conducive to unusual fluids, unique vent biota, and exotic hydrothermal deposits. Collaborative awards: OPP 9725972 and OPP 9813450
This award supports an integrated seismic, sedimentologic, and paleontologic investigation of glacio-marine stratigraphy of the Ross Sea continental shelf. The purpose of this work is to acquire seismic images and sediment cores of the glacial sediments toward a better understanding of the Cenozoic history of glaciation in the Ross Sea region. This investigation will utilize high resolution seismic profiling data to locate regions where the Pleistocene glacial till is thin or perhaps absent. Piston coring at these locations, if the till is penetrated, will provide sedimentary records of Cenozoic depositional environments and could provide important clues to fluctuations of the Antarctic Ice Sheets. The seismic profiling will provide a direct record of the grounding history of the Ross Ice Shelf during the Pleistocene and it will also allow first order correlations of Cenozoic sedimentary units that are represented by sediments recovered in the piston cores. This work will provide important proxy records of the history of both the West Antarctic Ice Sheet and the East Antarctic Ice Sheet and this, in turn, will provide important constraints to climate models.
This project studies the relationship between opening of the Drake Passage and formation of the Antarctic ice sheet. Its goal is to answer the question: What drove the transition from a greenhouse to icehouse world thirty-four million years ago? Was it changes in circulation of the Southern Ocean caused by the separation of Antarctica from South America or was it a global effect such as decreasing atmospheric CO2 content? This study constrains the events and timing through fieldwork in South America and Antarctica and new work on marine sediment cores previously collected by the Ocean Drilling Program. It also involves an extensive, multidisciplinary analytical program. Compositional analyses of sediments and their sources will be combined with (U-Th)/He, fission-track, and Ar-Ar thermochronometry to constrain uplift and motion of the continental crust bounding the Drake Passage. Radiogenic isotope studies of fossil fish teeth found in marine sediment cores will be used to trace penetration of Pacific seawater into the Atlantic. Oxygen isotope and trace metal measurements on foraminifera will provide additional information on the timing and magnitude of ice volume changes. <br/><br/><br/><br/>The broader impacts include graduate and undergraduate education; outreach to the general public through museum exhibits and presentations, and international collaboration with scientists from Argentina, Ukraine, UK and Germany.<br/><br/><br/><br/>The project is supported under NSF's International Polar Year (IPY) research emphasis area on "Understanding Environmental Change in Polar Regions". This project is also a key component of the IPY Plates & Gates initiative (IPY Project #77), focused on determining the role of tectonic gateways in instigating polar environmental change.
The krill surplus hypothesis argues that the near-extirpation of baleen whales from Antarctic waters during much the twentieth century led to significant changes in the availability of krill for other predators. Over the past decade, however, overall krill abundance has decreased by over an order of magnitude around the Antarctic Peninsula, in part due to physical forces, including the duration and extent of winter sea ice cover. Krill predators are vulnerable to variability in prey and have been shown to alter their demography in response to changes in prey availability This research will use novel tagging technology combined with traditional fisheries acoustics methods to quantify the prey consumed by a poorly understood yet ecologically integral and recovering krill predator in the Antarctic, the humpback whale (Megaptera novaeangliae). It also will use a combination of advanced non-invasive tag technology to study whale behavior concurrent with hydro-acoustic techniques to map krill aggregations. The project will (1) provide direct and quantitative estimates of krill consumption rates by humpback whales and incorporate these into models for the management of krill stocks and the conservation of the Antarctic marine ecosystem; (2) provide information integral to understanding predator-prey ecology and trophic dynamics, i.e., if/how baleen whales affect the distribution and behavior of krill and/or other krill predators; (3) add significantly to the knowledge of the diving behavior and foraging ecology of baleen whales in the Antarctic; and (4) develop new geospatial tools for the construction of multi-trophic level models that account for physical as well as biological data. <br/><br/>Broader Impacts: Whales are assumed to be a major predator on Antarctic krill, yet there is little understanding of how whales utilize this resource. This knowledge is critical to addressing both bottom-up and top-down questions, e.g., how climate change may affect whales or how whales may affect falling krill abundances. This program will integrate research and education by providing opportunities for undergraduate and graduate students as well as postdoctoral researchers at Duke University, the Florida State University and the University of Massachusetts at Boston. This project will also seek to integrate interactive learning through real time, seasonal and curriculum development in collaboration with the National Geographic Society as well as at the participating universities and local schools in those communities.
The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on the large-scale distribution, abundance and habitat of seabirds. This will be accomplished using strip-transect surveys and spatial analysis software and models to examine the large-scale data. This research will be coordinated with seabird studies which focus on seabird diet composition and small scale foraging behavior. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts.
An array of moorings will be deployed and maintained east of Cape Adare, Antarctica, at the northwestern corner of the Ross Sea to observe the properties of Antarctic Bottom Water (AABW) exiting the Ross Sea. This location has been identified from recent studies as an ideal place to make such measurements. Antarctic Bottom Water has the highest density of the major global water masses, and fills the deepest parts of the world's oceans. Because it obtains many of its characteristics during its contact with the atmosphere and with glacial ice along the continental margins of Antarctica, it is expected that changes in newly-formed AABW may represent an effective indicator for abrupt climate change. The heterogeneous nature of the source regions around Antarctica complicates the observation of newly-formed AABW properties. The two most important source regions for AABW are within the Weddell and the Ross Seas, with additional sources drawn from the east Antarctic margins. In the northwestern Weddell Sea, several programs have been undertaken in the last decade to monitor the long term variability of Weddell Sea Deep and Bottom Water, precursors of AABW originating from the Weddell Sea, however no such systematic efforts have yet been undertaken to make longterm measurements of outflow from the Ross Sea. The proposed study will significantly improve our knowledge of the long term variability in the outflow of deep and bottom water from the Ross Sea, and will provide the beginnings of a long-term monitoring effort which ultimately will allow detection of changes in the ocean in the context of global climate change. When joined with similar efforts ongoing in the Weddell Sea, long-term behavior and possible coupling of these two important sources of the ocean's deepest water mass can be examined in detail.
Antarctic notothenioid fish evolved antifreeze (AF) proteins that prevent ice crystals that enter their body fluids from growing, and thereby avoid freezing in their icy habitats. However, even in the extreme cold Antarctic marine environment, regional gradations of severity are found. The biological correlate for environmental severity in fish is the endogenous ice load, which likely determines the tolerable limit of environmental severity for notothenioid habitation. The endogenous ice load develops from environmental ice crystals entering through body surfaces and somehow localizing to the spleen. How prone the surface tissues are to ice entry, how ice reaches the spleen, and what the fate of splenic ice is, requires elucidation. Spleen sequestration of ice raises the hypothesis that macrophages may play a role in the translocation and perhaps elimination of AF-bound ice crystals. Antifreeze glycoproteins (AFGP) act in concert with a second, recently discovered antifreeze called antifreeze potentiating protein (AFPP), necessitating an assessment of the contribution of AFPP to freezing avoidance. Recent research suggests that the exocrine pancreas and the anterior stomach, not the liver, synthesize AFGPs and secrete them into the intestine, from where they may be returned to the blood. A GI-to-blood transport is a highly unconventional path for a major plasma protein and also begs the questions, What is the source of blood AFPP?. Why are two distinct AF proteins needed and what is the chronology of their evolution? What genomic changes in the DNA are associated with the development or loss of the antifreeze trait? Experiments described in this proposal address these interrelated questions of environmental, organismal, and evolutionary physiology, and will further our understanding of novel vertebrate physiologies, the limits of environmental adaptation, and climatically driven changes in the genome. The proposed research will (1) determine the temporal and spatial heterogeneity of environmental temperature and iciness in progressively more severe fish habitats in the greater McMurdo Sound area, and in the milder Arthur Harbor at Palmer Station. The splenic ice load in fishes inhabiting these sites will be determined to correlate to environmental severity and habitability. (2) Assess the surface tissue site of ice entry and their relative barrier properties in intact fish and isolated tissues preparations (3) Assess the role of immune cells in the fate of endogenous ice, (4) determine whether the blood AFGPs are from intestinal/rectal uptake, (5) examine the contribution of AFPP to the total blood AF activity (6) evaluate the progression of genomic changes in the AFGP locus across Notothenioidei as modulated by disparate thermal environments, in four selected species through the analyses of large insert DNA BAC clones. The origin and evolution of AFPP will be examined also by analyzing BAC clones encompassing the AFPP genomic locus. The broader impacts of the proposed research include training of graduate and undergraduate students in research approaches ranging from physical field measurements to cutting edge genomics. Undergraduate research projects have lead to co-authored publications and will continue to do so. Outreach includes establishing Wiki websites on topics of Antarctic fish biology and freeze avoidance, providing advisory services to the San Francisco Science Exploratorium, and making BAC libraries available to interested polar biologists. This research theme has repeatedly received national and international science news coverage and will continue to be disseminated to the public in that manner.
The objectives of this proposal are to investigate the controls on the large-scale distribution and production of the two major bloom-forming phytoplankton taxa in the Southern Ocean, diatoms and Phaeocystis Antarctica. These two groups, through their involvement in the biogeochemical cycles of carbon, sulfur and nutrient elements, may have played important roles in the climate variations of the late Quaternary, and they also may be key players in future environmental change. A current paradigm is that irradiance and iron availability drive phytoplankton dynamics in the Southern Ocean. Recent work, however, suggests that carbon dioxide (CO2) concentrations may also be important in structuring algal assemblages, due to species-specific differences in the physiology. This proposal examines the interactive effects of iron, light and CO2 on the physiology, ecology and relative dominance of Phaeocystis and diatoms in the Southern Ocean. The Ross Sea is an ideal system in which to investigate the environmental factors that regulate the distribution and production of these two algal groups, since it is characterized by seasonal blooms of both P. Antarctica and diatoms that are typically separated in both space and time. This study will take the form of an interdisciplinary investigation that includes a field survey and statistical analysis of algal assemblage composition, iron, mixed layer depth, and CO2 levels in the southern Ross Sea, coupled with shipboard experiments to examine the response of diatom and P. Antarctica assemblages to high and low levels of iron, light and CO2 during spring and summer. <br/>This project will provide information on some of the major factors controlling the production and distribution of the two major bloom forming phytoplankton in the Southern Ocean and the related biogeochemical cycling of carbon, sulfur and nutrient elements. The results may ultimately advance the ability to predict how the Southern Ocean will be affected by and possibly modulate future climate change. This project will also make significant educational contributions at several levels, including the planned research involvement of graduate and undergraduate students, postdoctoral associates, a student teacher, and community outreach and educational activities. A number of activities are planned to interface the project with K-12 education. Presentations will be made at local schools to discuss the research and events of the research cruise. During the cruise there will be daily interactive email contact with elementary classrooms. Established websites will be used to allow students to learn about the ongoing research, and to allow researchers to communicate with students through text and downloaded images.
9908856 Blake This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a paleoecological and paleoenvironmental study of Seymour Island. Global climate change late in the Eocene epoch had an important influence in Antarctica. This was the beginning of the transition from a cool-temperate climate in Antarctica to the polar climate that exists there today. The cooling trend strongly influenced the structure of shallow-water, Antarctic marine communities, and these effects are still evident in the peculiar ecological relationships among species living in modern Antarctic communities. Cooling late in the Eocene reduced the abundance of fish and crabs, which in turn reduced skeleton-crushing predation on invertebrates. Reduced predation allowed dense populations of ophiuroids (brittlestars) and crinoids (sea lilies) to appear in shallow-water settings at the end of the Eocene. These low-predation communities appear as dense fossil echinoderm assemblages in the upper portion of the late Eocene La Meseta Formation on Seymour Island, off the Antarctic Peninsula. Today, dense ophiuroid and crinoid populations are common in shallow-water habitats in Antarctica but generally have been eliminated by predators from similar habitats at temperate and tropical latitudes; their persistence in Antarctica to this day is an important ecological legacy of climatic cooling in the Eocene. Although the influence of declining predation on Antarctic ophiuroids and crinoids is now well documented, the effects of cooling on the more abundant mollusks have not been investigated. This study will examine the evolutionary ecology of gastropods (snails) and bivalves (clams) in the late Eocene. A series of hypotheses will be tested in the La Meseta Formation, based on the predicted responses of mollusks to declining temperature and changing levels of predation. The shapes of gastropod shells, the activities of gastropods that prey on other mollusks by drilling holes in their shells, and the effects of predation on the thickness of mollusk shells should have changed significantly through late Eocene time. First, defensive features of gastropod shells, such as spines and ribbing, should decline as temperature and, therefore, the activity of skeleton-crushing predators declined. Second, drilling of bivalve prey by predatory gastropods should increase with time since the drillers should themselves have been subject to lower predation pressure as temperature declined. Drilled shells, therefore, should become more common through time. Third, patterns in the thickness of shells through time will make it possible to separate the direct, physiological effects of declining temperature (shells are more difficult to produce at cooler temperatures, and so should be thinner) from the indirect effects of temperature on evolving biological interactions (increased drilling predation should result in thicker shells). Seymour Island contains the only fossil outcrops readily accessible in Antarctica from this crucial period in Earth history. The La Meseta Formation on Seymour Island thus provides a unique opportunity to learn how climate change affected Antarctic marine communities. In practical terms, global climate change will probably increase upwelling over the next few decades to centuries in some temperate coastal regions. Recent ecological evidence suggests that the resultant lowering of sea temperatures could lower predation in those areas. Understanding the response of the La Meseta faunas to global cooling in the late Eocene will provide direct insight into the rapidly changing structure of modern benthic communities.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). <br/><br/>This award supports a project to reconstruct the past physical and chemical climate of Antarctica, with an emphasis on the region surrounding the Ross Sea Embayment, using >60 ice cores collected in this region by US ITASE and by Australian, Brazilian, Chilean, and New Zealand ITASE teams. The ice core records are annually resolved and exceptionally well dated, and will provide, through the analyses of stable isotopes, major soluble ions and for some trace elements, instrumentally calibrated proxies for past temperature, precipitation, atmospheric circulation, chemistry of the atmosphere, sea ice extent, and volcanic activity. These records will be used to understand the role of solar, volcanic, and human forcing on Antarctic climate and to investigate the character of recent abrupt climate change over Antarctica in the context of broader Southern Hemisphere and global climate variability. The intellectual merit of the project is that ITASE has resulted in an array of ice core records, increasing the spatial resolution of observations of recent Antarctic climate variability by more than an order of magnitude and provides the basis for assessment of past and current change and establishes a framework for monitoring of future climate change in the Southern Hemisphere. This comes at a critical time as global record warming and other impacts are noted in the Southern Ocean, the Antarctic Peninsula, and on the Antarctic ice sheet. The broader impacts of the project are that Post-doctoral and graduate students involved in the project will benefit from exposure to observational and modeling approaches to climate change research and working meetings to be held at the two collaborating institutions plus other prominent climate change institutions. The results are of prime interest to the public and the media Websites hosted by the two collaborating institutions contain climate change position papers, scientific exchanges concerning current climate change issues, and scientific contribution series.
This award supports a study of the physical nature and environmental origin of optical features (light and dark zones) observed by video in boreholes in polar ice. These features appear to include an annual signal, as well as longer period signals. Borehole logs exist from a previous project, and in this lab-based project the interpretation of these logs will be improved. The origin of the features is of broad interest to the ice-core community. If some components relate to changes in the depositional environment beyond seasonality, important climatic cycles may be seen. If some components relate to post-depositional reworking, insights will be gained into the physical processes that change snow and firn, and the implications for interpretation of the chemical record in terms of paleoclimate. In order to exploit these features to best advantage in future ice-core and climate-change research, the two principal objectives of this project are to determine what physically causes the optical differences that we see and to determine the environmental processes that give rise to these physical differences. In the laboratory at NICL the conditions of a log of a borehole wall will be re-created as closely as possible by running the borehole video camera along sections of ice core, making an optical log of light reflected from the core. Combinations of physical variables that are correlated with optical features will be identified. A radiative-transfer model will be used to aid in the interpretation of these measurements, and to determine the optimum configuration for an improved future logging tool. An attempt will be made to determine the origin of the features. Two broad possibilities exist: 1) temporal changes in the depositional environment, and 2) post-depositional reworking. This project represents an important step toward a new way of learning about paleoclimate with borehole optical methods. Broader impacts include enhancing the infrastructure for research and education, since this instrument will complement high-resolution continuous-melter chemistry techniques and provide a rapid way to log physical variables using optical features as a proxy for climate signals. Since no core is required for this method, it can be used in rapidly drilled access holes or where core quality is poor. This project will support a graduate student who will carry out this project under the direction of the Principal Investigator. K-12 education will be enhanced through an ongoing collaboration with a science and math teacher from a local middle school. International collaboration will be expanded through work on this project with colleagues at the Norwegian Polar Institute and broad dissemination of results will occur through a project website for the general public.
This award supports development of a new modeling approach that will extract information about past snow accumulation rate in both space and time in the vicinity of the future ice core near the Ross-Amundsen divide of the West Antarctic Ice Sheet (WAIS). Internal layers, detected by ice-penetrating radar, are isochrones, or former ice-sheet surfaces that have been buried by subsequent snowfall, and distorted by ice flow. Extensive ice-penetrating radar data are available over the inland portion of the WAIS. Layers have been dated back to 17,000 years before present. The radar data add the spatial dimension to the temporally resolved accumulation record from ice cores. Accumulation rates are traditionally derived from the depths of young, shallow layers, corrected for strain using a local 1-D ice-flow model. Older, deeper layers have been more affected by flow over large horizontal distances. However, it is these deeper layers that contain information on longer-term climate patterns. This project will use geophysical inverse theory and a 2.5D flow-band ice-flow forward model comprising ice-surface and layer-evolution modules, to extract robust transient accumulation patterns by assimilating multiple deeper, more-deformed layers that have previously been intractable. Histories of divide migration, geothermal flux, and surface evolution will also be produced. The grant will support the PhD research of a female graduate student who is a mentor to female socio-economically disadvantaged high-school students interested in science, through the University of Washington Women's Center. It will also provide a research<br/>experience for an undergraduate student, and contribute to a freshman seminar on Scientific Research.
This project seeks to understand the evolutionary physiology of reproductive strategies in Southern Ocean marine invertebrates. The fauna of the Southern Ocean has evolved under stable, cold temperatures for approximately 14 million years. These conditions have led to the evolution of unusual physiological and biochemical characteristics, many of which may reflect adaptations to relatively low oxygen availability and high larval oxygen demands. The goal of the proposed projects is to understand latitudinal variation in the function of invertebrate egg masses in relation to oxygen availability and temperature. This relationship is critical to larval survival in the low-temperature, high-oxygen conditions found at high latitudes. In particular, the investigators will: (1) use first principles to model the diffusion of oxygen into egg and embryo masses of Antarctic organisms at environmentally relevant temperatures; (2) test model assumptions by measuring the temperature-dependence of embryonic metabolism and oxygen diffusivity through natural and artificial gels; (3) test model predictions by using oxygen microelectrodes to measure oxygen gradients in both artificial and natural egg masses, and by measuring developmental rates of embryos at different positions in masses; and (4) compare the structure and function of egg masses from the Southern Ocean to those from temperate waters. These components of the study constitute an integrated examination of the evolutionary physiology of egg mass structure and function. Studies of masses endemic to polar conditions will increase the understanding of egg mass evolution across equator-to-pole gradients in temperature and across gradients in oxygen partial pressure. The proposal will support graduate students and will involve several undergraduates in research. The PIs will also design and implement units on polar biology for undergraduate classes at their respective institutions. These educational units will focus on the PIs' photographs, video footage, experiments, and data from this project. The PIs will use web-linked video and instructional technologies to design and co-teach a new class on polar ecological physiology, will work with local grade school institutions to involve high school students in research, and will develop high school course modules about polar biology.
This award supports a project to develop a quantitative understanding of the processes active in isotopic exchange between snow/firn and water vapor, which is of paramount importance to ice core interpretation. Carefully controlled laboratory studies will be conducted at a variety of temperatures to empirically measure the mass transfer coefficient (the rate at which water moves from the solid to the vapor phase) for sublimating snow and to determine the time scale for isotopic equilibration between water vapor and ice. In addition the isotopic fractionation coefficient for vapor derived from sublimating ice will be determined and the results will be used to update existing models of mass transfer and isotopic evolution in firn. It is well known that water vapor moves through firn due to diffusion, free convection and forced convection. Although vapor movement through variably-saturated firn due to these processes has been modeled, because of a lack of laboratory data the mass transfer coefficient had to be estimated. Field studies have documented the magnitudes of post-depositional changes, but field studies do not permit rigorous analysis of the relative importance of the many processes which are likely to act in natural snow packs. The results of these laboratory investigations will be broadly applicable to a number of studies and will allow for improvement of existing physically-based models of post-depositional isotopic change, isotopic diffusion in firn, and vapor motion in firn. A major component of this project will be the design and fabrication of the necessary, novel experimental apparatus, which will be facilitated by existing technical expertise, cold room facilities, and laboratory equipment at CRREL. This project is a necessary step toward a quantitative understanding of the isotopic effects of water vapor movement in firn. The proposed work has broader impacts in several different areas. The modeling results will be applicable to a wide range of studies of water in the polar environment, including studies of wind-blown or drifting snow. The proposed collaborative study will partially support a Dartmouth graduate student for three years. This project will also provide support for a young first-time NSF investigator at the University of Vermont. Undergraduate students from Dartmouth will be involved in the research through the Women in Science Project and undergraduate students at the University of Vermont will be supported through the Research Experiences for Undergraduates program. The principal investigators and graduate student will continue their tradition of k-12 school outreach by giving science lessons and talks in local schools each year. Research results will be disseminated through scientific conferences, journal publications, and institutional seminars.
OPP-0230285/OPP-0230356<br/>PIs: Wilson, Terry J./Hothem, Larry D.<br/><br/>This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to conduct GPS measurements of bedrock crustal motions in an extended Transantarctic Mountains Deformation network (TAMDEF) to document neotectonic displacements due to tectonic deformation within the West Antarctic rift and/or to mass change of the Antarctic ice sheets. Horizontal displacements related to active neotectonic rifting, strike-slip translations, and volcanism will be tightly constrained by monitoring the combined TAMDEF and Italian VLNDEF networks of bedrock GPS stations along the Transantarctic Mountains and on offshore islands in the Ross Sea. Glacio-isostatic adjustments due to deglaciation since the Last Glacial Maximum and to modern mass change of the ice sheets will be modeled from GPS-derived crustal motions together with new information from other programs on the configurations, thicknesses, deglaciation history and modern mass balance of the ice sheets. Tectonic and rheological information from ongoing structural and seismic investigations in the Victoria Land region will also be integrated in the modeling. The integrative and iterative modeling will yield a holistic interpretation of neotectonics and ice sheet history that will help us to discriminate tectonic crustal displacements from viscoelastic/elastic glacio-isostatic motions. These results will provide key information to interpret broad, continental-scale crustal motion patterns detected by sparse, regionally distributed GPS continuous trackers and by spaceborne instruments. This study will contribute to international programs focused on Antarctic neotectonic and global change issues.<br/><br/>Strategies to meet these science objectives include repeat surveys of key sites in the existing TAMDEF network, extension of the array of TAMDEF sites southward about 250 km along the Transantarctic Mountains, linked measurements with the VLNDEF network, and integration of quasi-continuous trackers within the campaign network. By extending the array of bedrock sites southward, these measurements will cross gradients in predicted vertical motion due to viscoelastic rebound. The southward extension will also allow determination of the southern limit of the active Terror Rift and will provide a better baseline for constraints on any ongoing tectonic displacements across the West Antarctic rift system as a whole that might be possible using GPS data collected by the West Antarctic GPS Network. This project will also investigate unique aspects of GPS geodesy in Antarctica to determine how the error spectrum compares to mid-latitude regions and to identify the optimum measurement and data processing schemes for Antarctic conditions. The geodetic research will improve position accuracies within our network and will also yield general recommendations for deformation monitoring networks in polar regions.<br/><br/>An education and outreach program is planned and will be targeted at non-science-major undergraduate students taking Earth System Science at Ohio State University. The objective will be to illuminate the research process for nonscientists. This effort will educate students on the process of science and inform them about Antarctica and how it relates to global science issues.
The polar ocean presently surrounding Antarctica is the coldest, most thermally stable marine environment on earth. Because oxygen solubility in seawater is inversely proportional to temperature, the cold Antarctic seas are an exceptionally oxygen-rich aquatic habitat. Eight families of a single perciform suborder, the Notothenioidei, dominate the present fish fauna surrounding Antarctica. Notothenioids account for approximately 35% of fish species and 90% of fish biomass south of the Antarctic Polar Front. Radiation of closely related notothenioid species thus has occurred rapidly and under a very unusual set of conditions: relative oceanographic isolation from other faunas due to circumpolar currents and deep ocean trenches surrounding the continent, chronically, severely cold water temperatures, very high oxygen availability, very low levels of niche competition in a Southern Ocean depauperate of species subsequent to a dramatic crash in species diversity of fishes that occurred sometime between the mid-Tertiary and present. These features make Antarctic notothenioid fishes an uniquely attractive group for the study of physiological and biochemical adaptations to cold body temperature. <br/>Few distinctive features of Antarctic fishes are as unique as the pattern of expression of oxygen-binding proteins in one notothenioid family, the Channichthyidae (Antarctic icefishes). All channichthyid icefishes lack the circulating oxygen-binding protein, hemoglobin (Hb); the intracellular oxygen-binding protein, myoglobin (Mb) is not uniformly expressed in species of this family. Both proteins are normally considered essential for adequate delivery of oxygen to aerobically poised tissues of animals. To compensate for the absence of Hb, icefishes have developed large hearts, rapidly circulate a large blood volume and possess elaborate vasculature of larger lumenal diameter than is seen in red-blooded fishes. Loss of Mb expression in oxidative muscles correlates with dramatic elevation in density of mitochondria within the cell, although each individual organelle is less densely packed with respiratory proteins. <br/>Within the framework of oxygen movement, the adaptive significance of greater vascular density and mitochondrial populations is understandable but mechanisms underlying development of these characteristics remain unknown. The answer may lie in another major function of both Hb and Mb, degradation of the ubiquitous bioactive compound, nitric oxide (NO). The research will test the hypothesis that loss of hemoprotein expression in icefishes has resulted in an increase in levels of NO that mediate modification of vascular systems and expansion of mitochondrial populations in oxidative tissues. The objectives of the proposal are to quantify the vascular density of retinas in +Hb and -Hb notothenioid species, to characterize NOS isoforms and catalytic activity in retina and cardiac muscle of Antarctic notothenioid fishes, to evaluate level of expression of downstream factors implicated in angiogenesis (in retinal tissue) and mitochondrial biogenesis (in cardiac muscle), and to determine whether inhibition of NOS in vivo results in regression of angiogenic and mitochondrial biogenic responses in icefishes. Broader impacts range from basic biology, through training of young scientists, to enhanced understanding of clinically relevant biomedical processes.
The award supports the development of high-resolution nitrogen and oxygen isotope records on trapped gases in the Byrd and Siple Dome ice cores, and the Holocene part of the GISP2 ice core. The primary scientific goals of this work are to understand the enigmatic d15N anomalies seen thus far in the Siple Dome record at 15.3 ka and 35 ka, and to find other events that may occur in both cores. At these events, d15N of trapped air approaches zero, implying little or no gravitational fractionation of gases in the firn layer at the time of formation of the ice. These events may represent times of low accumulation rate and arid meteorological conditions, and thus may contain valuable information about the climatic history of West Antarctica. Alternatively, they may stem from crevassing and thus may reveal ice-dynamical processes. Finding the events in the Byrd core, which is located 500 km from Siple Dome, would place powerful constraints on their origin and significance. A second major goal is to explore the puzzling absence of the abrupt warming event at 22 ka (seen at Siple Dome) in the nearby Byrd 18O/16O record in the ice (d18Oice), and search for a possible correlative signal in Byrd d15N. A third goal takes advantage of the fact that precise measurements of the oxygen isotopic composition of atmospheric O2 (d18Oatm) are obtained as a byproduct of the d15N measurement. The proposed gas-isotopic measurements will underpin an integrated suite of West Antarctic climate and atmospheric gas records, which will ultimately include the WAIS Divide core. These records will help separate regional from global climate signals, and may place constraints on the cause of abrupt climate change. Education of two graduate students, and training of two staff members in the laboratory, contribute to the nation's human resource base. Education and outreach will be an important component of the project.
This project uses geochemical studies to determine the origin of volcanic rocks from Marie Byrd Land (MBL), Antarctica. Surprisingly, adjacent volcanoes in the MBL have dramatically different compositions, ranging from phonolite to trachyte to rhyolite. This diversity offers an opportunity to constrain the processes responsible for generating silica oversaturated and undersaturated magmas in a single geologic setting. Previous work suggests that the most obvious and simplest explanation--crustal contamination--is not a significant factor, and that polybaric fractional crystallization is the major cause. This study evaluates these factors through analyses and interpretation of trace and rare earth element abundances, as well as Sr and Nd isotopic ratios. <br/><br/>The broader impacts include outreach programs to the Girl Scouts of America, and dissemination of results through publications and meetings.
The research will examine the relative importance of the physical and chemical controls on phytoplankton dynamics and carbon flux in continental margin regions of the Southern Ocean, and elucidate mechanisms by which plankton populations and carbon export might be altered by climate change. We specifically will address (1) how the phytoplankton on the continental margins of the southern Ocean respond to spatial and temporal changes in temperature, light, iron supply, and carbon dioxide levels, (2) how these factors initiate changes in phytoplankton assemblage structure, and (3) how carbon export and the efficiency of the biological pump are impacted by the biomass and composition of the phytoplankton. Two regions of study (the Amundsen and Ross Seas) will be investigated, one well studied (Ross Sea) and one poorly described (Amundsen Sea). It is hypothesized that each region will have markedly different physical forcing, giving rise to distinct chemical conditions and therefore biological responses. As such, the comparison of the two may give us insights into the mechanisms of how Antarctic continental margins will respond under changing environmental conditions. Broader impacts include participation by an international graduate student from Brazil, outreach via seminars to the general public, collaboration with the teachers-in-residence on the cruise, development of a cruise web site and interactive email exchanges with local middle school students while at sea
Decreases in stratospheric ozone over the Antarctic result in an increase in the ultraviolet radiation flux in the euphotic zone of the ocean. This increase may lead to cellular damage in aquatic organisms resulting in photo-inhibition and decreased productivity. Cellular damage can occur either intracellularly, or externally at the cell surface from biomolecular reactions with externally-generated reactive transient species. Extracellular damage will depend to a large degree on the photochemistry of the seawater surrounding the cell. To date, little is known about the photochemistry of the unique Antarctic waters. This project integrates a field and laboratory approach to obtain baseline information regarding the marine photochemistry of the euphotic zone in Antarctica waters as related to changes in ultraviolet radiation levels. In situ photochemical production rates and steady state concentrations of a suite of reactive species and dissolved organic matter degradation products as well as downwelling ultraviolet radiation will be measured. Additionally, flux by in situ chemical actinometry, action spectra for photochemical production of various reactive species and dissolved organic matter degradation products, and fluorescence and absorbance properties of dissolved organic matter will be determined. This information will serve as a basis for understanding and predicting the effects of ultraviolet radiation-induced marine photochemical processes on the productivity and ecology in the euphotic zone of the Antarctic Ocean.
Increases in middle ultraviolet radiation associated with the Antarctic ozone hole have been shown to inhibit the photosynthesis of phytoplankton, and results have been extrapolated to estimate the effect of ozone depletion on primary productivity in the marginal ice zone. This research will refine the assessment by specifying detailed wavelength-dependent biological weighting functions for the inhibition of photosynthesis by ultraviolet radiation, and by considering the mitigating effects of vertical mixing. Biological weighting functions of phytoplankton in the marginal ice zone will be measured under controlled conditions and applied in a new model of photosynthesis to predict primary productivity in situ, as well as under altered ultraviolet irradiance. These predictions will be compared with observations on samples from the water column and with measurements during incubations of several hours under different irradiance regimes. Results of these comparisons will be used to test the model and to quantify the potential artifact of long incubations. Assumptions about the kinetics of photoinhibition and recovery, critical to modeling the effects of vertical mixing, will be examined with time-course experiments. Results will be incorporated into a model of photosynthesis and photoinhibition in the water column that will be used to predict the influence of ozone depletion on marine primary production, particularly in the marginal zone.
This project is a field and laboratory based investigation of the Vanda dike swarm in the Dry Valleys of Antarctica. These dikes crosscut Cambro-Ordovician granitoid plutons produced during the Ross Orogeny, and mark the transition between the cessation of subduction and the onset of extensional magmatism. Many dying convergent plate margins convert to extensional magmatism, and the Dry Valleys provide a magnificent opportunity to examine the shallow roots of a plate that experienced this transition. Because of their exceptional exposure, bimodal felsic and mafic compositions, and complex field relations, the Vanda dikes have the potential to reveal insights into this important phase of Antarctic tectonic history. <br/>The broader impacts include collaboration between a primarily undergraduate and two research institutions, and support for undergraduate participation in an exciting, field-based research project.
This award supports a project to improve understanding of atmospheric photochemistry over West Antarctica, as recorded in snow, firn and ice. Atmospheric and firn sampling will be undertaken as part of the U.S. International Trans-Antarctic Scientific Expedition (US ITASE) traverses. Measurements of hydrogen peroxide (H2O2) and formaldehyde (HCHO) will be made on these samples and a recently developed, physically based atmosphere-to-snow transfer model will be used to relate photochemical model estimates of these components to the concentrations of these parameters in the atmosphere and snow. The efficiency of atmosphere-to-snow transfer and the preservation of these components is strongly related to the rate and timing of snow accumulation. This information will be obtained by analyzing the concentration of seasonally dependent species such as hydrogen peroxide, nitric acid and stable isotopes of oxygen. Collection of samples along the US ITASE traverses will allow sampling at a wide variety of locations, reflecting both a number of different depositional environments and covering much of the West Antarctic region.
Abstract<br/><br/>This project uses Aster and Hyperion remote sensing data combined with field observations and laboratory analysis to map soils in the McMurdo Dry Valleys of Antarctica. The goal is to use mineral abundances, compositions, and spatial heterogeneities to investigate the connections between microclimate and surface characteristics. The valleys are one of the most unique landscapes on earth. The outcomes will be relevant to understanding their geologic, biologic, and climactic history, and offer insight into the Martian landscape. The main broader impacts are graduate education and curriculum development involving K12 teachers.
Phaeocystis Antarctica is a widely distributed phytoplankton that forms dense blooms and aggregates in the Southern Ocean. This phytoplankton and plays important roles in polar ecology and biogeochemistry, in part because it is a dominant primary producer, a main component of organic matter vertical fluxes, and the principal producer of volatile organic sulfur in the region. Yet P. Antarctica is also one of the lesser known species in terms of its physiology, life history and trophic relationships with other organisms; furthermore, information collected on other Phaeocystis species and from different locations may not be applicable to P. Antarctica in the Ross Sea. P. Antarctica occurs mainly as two morphotypes: solitary cells and mucilaginous colonies, which differ significantly in size, architecture and chemical composition. Relative dominance between solitary cells and colonies determines not only the size spectrum of the population, but also its carbon dynamics, nutrient uptake and utilization. Conventional thinking of the planktonic trophic processes is also challenged by the fact that colony formation could effectively alter the predator-prey interactions and interspecific competition. However, the factors that regulate the differences between solitary and colonial forms of P. Antarctica are not well-understood. The research objective of this proposal is therefore to address these over-arching questions:<br/>o Do P. Antarctica solitary cells and colonies differ in growth, composition and<br/>photosynthetic rates?<br/>o How do nutrients and grazers affect colony development and size distribution of P. <br/>Antarctica?<br/>o How do nutrients and grazers act synergistically to affect the long-term population<br/>dynamics of P. Antarctica? Experiments will be conducted in the McMurdo station with natural P. Antarctica assemblages and co-occurring grazers. Laboratory experiments will be conducted to study size-specific growth and photosynthetic rates of P. Antarctica, size-specific grazing mortality due to microzooplankton and mesozooplankton, the effects of macronutrients on the (nitrogen compounds) relative dominance of solitary cells and colonies, and the effects of micronutrient (Fe) and grazing related chemical signals on P. Antarctica colony development. Because this species is of critical importance in the Southern Ocean, and because this research will provide critical information on factors that regulate the role of P.Antarctica in food webs and biogeochemical cycles, a major gap in knowledge will be addressed. This project will train two marine science PhD students. The investigators will also collaborate with the School of Education and a marine science museum to communicate polar science to a broader audience.
This project studies the opening of the Drake Passage between South America and Antarctica through a combined marine geophysical survey and geochemical study of dredged ocean floor basalts. Dating the passage's opening is key to understanding the formation of the circum-Antarctic current, which plays a major role in worldwide ocean circulation, and whose formation is connected with growth of the Antarctic ice sheet. Dredge samples will undergo various geochemical studies to determine their age and constrain mantle flow beneath the region. <br/><br/>Broader impacts include support for graduate education, as well as undergraduate and K12 teacher involvement in a research cruise. The project also involves international collaboration with the UK and is part of IPY Project #77: Plates&Gates, which aims to reconstruct the geologic history of polar ocean basins and gateways for computer simulations of climate change. See http://www.ipy.org/index.php?/ipy/detail/plates_gates/ for more information.
Dissolved organic matter (DOM) is a significant chemical component in aquatic systems because it acts as an important carbon source for microorganisms, absorbs harmful radiation in sunlight, is able to complex metals, and can participate in important biogeochemical reactions. This study will investigate the biogeochemical cycling of DOM in a small coastal Antarctic pond, Pony Lake, located on Cape Royds, Ross Island. Because there are no higher plants present at this site all of the DOM in this lake is derived from microorganisms. Thus, Pony Lake is an ideal site to study the effect of physical, chemical, and microbial processes on the composition and character of the DOM pool. Finally, Pony Lake is also an ideal site to collect an International Humic Substances Society (IHSS) fulvic acid standard. Unlike other IHSS standards, this standard will not contain DOM components derived from higher land plants. To better understand the role of physical influences, the project will study the changes in the DOM pool as the lake evolves from ice-covered to ice-free conditions during the summer, as well as the relationship of DOM to the observed turnover of dominant microbial communities in the lake. Scientists will also monitor changes in microbial abundance, diversity, and productivity that may occur during the ice to open-water transition period. This research will provide much needed information regarding the relationship between microbial diversity and DOM biogeochemistry. Middle school science students will be active participants in this project through the Internet, while scientists are in the field, and in the lab.
This proposal is to continue operation and scientific studies with the middle-frequency (MF, 1-30 MHz) mesospheric radar deployed at the British Antarctic station Rothera in 1996. This system is now a key site in the Antarctic MF radar chain near 68 deg. S, which includes also MF radars at Syowa (Japan) and Davis (Australia) stations. This radar comprises the winds component of a developing instrument suite for the mesosphere-thermosphere (MLT) studies at Rothera - a focus of the new BAS 5-year plan, which also includes the Fe temperature lidar (formerly at South Pole) and the mesopause airglow imager for gravity wave studies (formerly at Halley). The Rothera MF radar has just had its antennas and electronics upgraded to achieve better signal-to-noise ratio and more continuous measurements in height and time. The main focus of the proposed research is to extend the knowledge of the polar mesosphere dynamics. The instrument suite at Rothera is ideally positioned for correlative interhemispheric studies with northern hemisphere sites at Poker Flat, Alaska (65 deg. N) and ALOMAR, Norway (69 deg. N) having comparable instrumentation. Further research efforts performed with continued funding will focus on: (1) multi-instrument collaborative studies at Rothera to quantify as fully as possible the dynamics, structure, and variability of the MLT at that location, (2) multi-site (and multi-instrument) studies of large-scale dynamics and variability in the Antarctic (together with the radars and other instrumentation at Davis and Syowa), and (3) interhemispheric studies employing instruments (e.g., the Na resonance lidar and MF radar) at Poker Flat and ALOMAR. It is expected that these studies will lead to a more detailed understanding of (1) mean, tidal, and planetary wave structures at polar latitudes, (2) seasonal, inter-annual, and short-term variability of these structures, (3) hemispheric differences in the tidal and planetary wave structures arising from different source and wave interaction conditions, and (4) the relative influences of gravity waves in the two hemispheres. Such studies will also contribute more generally to an increased awareness of the role of high-latitude processes in global atmospheric dynamics and variability.
9911617 Blankenship This award, provided jointly by the Antarctic Geology and Geophysics Program, the Antarctic Glaciology Program, and the Polar Research Support Section of the Office of Polar Programs, provides funds for continuation of the Support Office for Aerogeophysical Research (SOAR). From July 1994 to July 2000, SOAR served as a facility to accomplish aerogeophysical research in Antarctica under an agreement between the University of Texas at Austin and the National Science Foundation's Office of Polar Programs (NSF/OPP). SOAR operated and maintained an aerogeophysical instrument package that consists of an ice-penetrating radar sounder, a laser altimeter, a gravimeter and a magnetometer that are tightly integrated with each other as well as with the aircraft's avionics and power packages. An array of aircraft and ground-based GPS receivers supported kinematic differential positioning using carrier-phase observations. SOAR activities included: developing aerogeophysical research projects with NSF/OPP investigators; upgrading of the aerogeophysical instrumentation package to accommodate new science projects and advances in technology; fielding this instrument package to accomplish SOAR-developed projects; and management, reduction, and analysis of the acquired aerogeophysical data. In pursuit of 9 NSF-OPP funded aerogeophysical research projects (involving 14 investigators from 9 institutions), SOAR carried out six field campaigns over a six-year period and accomplished approximately 200,000 line kilometers of aerogeophysical surveying over both East and West Antarctica in 377 flights. This award supports SOAR to undertake a one year and 8 month program of aerogeophysical activities that are consistent with continuing U.S. support for geophysical research in Antarctica. - SOAR will conduct an aerogeophysical campaign during the 200/01 austral summer to accomplish surveys for two SOAR-developed projects: "Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Studies" (Co-PI's Bell and Studinger, LDEO); and "Collaborative Research: Seismic Investigation of the Deep Continental Structure Across the East-West Antarctic Boundary" (Co-PI's Weins, Washington U. and Anandakrishnan, U. Alabama). After configuration and testing of the survey aircraft in McMurdo, SOAR will conduct survey flights from an NSF-supported base adjacent to the Russian Station above Lake Vostok and briefly occupy one or two remote bases on the East Antarctic ice sheet. - SOAR will reduce these aerogeophysical data and produce profiles and maps of surface elevation, bed elevation, gravity and magnetic field intensity. These results will be provided to the respective project investigators within nine months of conclusion of field activities. We will also submit a technical manuscript that describes these results to a refereed scientific journal and distribute these results to appropriate national geophysical data centers within approximately 24 months of completion of field activities. - SOAR will standardize all previously reduced SOAR data products and transfer them to the appropriate national geophysical data centers by the end of this grant. - SOAR will convene a workshop to establish a community consensus for future U.S. Antarctic aerogeophysical research. This workshop will be co-convened by Ian Dalziel and Richard Alley and will take place during the spring of 2001. - SOAR will upgrade the existing SOAR in-field quality control procedures to serve as a web-based interface for efficient browsing of many low-level SOAR data streams. - SOAR will repair and/or refurbish equipment that was used during the 2000/01 field campaign. Support for SOAR is essential for accomplishing major geophysical investigations in Antarctica. Following data interpretation by the science teams, these data will provide valuable insights to the structure and evolution of the Antarctic continent.
This award supports a project to measure the elemental and isotopic composition of firn air and occluded air in shallow boreholes and ice cores from the WAIS Divide site, the location of a deep ice-coring program planned for 2006-07 and subsequent seasons. The three primary objectives are: 1) to establish the nature of firn air movement and trapping at the site to aid interpretations of gas data from the deep core; 2) to expand the suite of atmospheric trace gas species that can be measured in ice and replicate existing records of other species; and 3) to inter-calibrate all collaborating labs to insure that compositional and isotopic data sets are inter-comparable. The program will be initiated with a shallow drilling program during the 05/06 field season which will recover two 300+m cores and firn air samples. The ice core and firn air will provide more than 700 years of atmospheric history that will be used to address a number of important questions related to atmospheric change over this time period. The research team consists of six US laboratories that also plan to participate in the deep core program. This collaborative research program has a number of advantages. First, the scientists will be able to coordinate sample allocation a priori to maximize the resolution and overlap of records of interrelated species. Second, sample registration will be exact, allowing direct comparison of all records. Third, a coherent data set will be produced at the same time and all PI.s will participate in interpreting and publishing the results. This will insure that the best possible understanding of gas records at the WAIS Divide site will be achieved, and that all work necessary to interpret the deep core is conducted in a timely fashion. The collaborative structure created by the proposal will encourage sharing of techniques, equipment, and ideas between the laboratories. The research will identify impacts of various industrial/agricultural activities and help to distinguish them from natural variations, and will include species for which there are no long records of anthropogenic impact. The work will also help to predict future atmospheric loadings. The project will contribute to training scientists at several levels, including seven undergraduates, two graduate students and one post doctoral fellow.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the "Silicic Acid Leakage Hypothesis" as it relates to global carbon dioxide fluctuations during glacial-interglacial cycles.<br/><br/>Intellectual Merit<br/>This project will evaluate the burial rate of biogenic opal in the Pacific sector of the Southern Ocean, both during the Last Glacial Maximum (LGM) and during the Holocene, as a critical test of the "Silicic Acid Leakage Hypothesis". <br/><br/>The "Silicic Acid Leakage Hypothesis" has been proposed recently to explain the glacial reduction in the carbon dioxide content of the atmosphere that has been reconstructed from Antarctic ice cores. Vast amounts of dissolved Si (silicic acid) are supplied to surface waters of the Southern Ocean by wind-driven upwelling of deep waters. Today, that dissolved Si is consumed almost quantitatively by diatoms who form skeletal structures composed of biogenic opal (a mineral form of silicon). According to the "Silicic Acid Leakage Hypothesis", environmental conditions in the Southern Ocean during glacial periods were unfavorable for diatom growth, leading to reduced (compared to interglacials) efficiency of dissolved Si utilization. Dissolved Si that was not consumed biologically in the glacial Southern ocean was then exported to the tropics in waters that sink in winter to depths of a few hundred meters along the northern fringes of the Antarctic Circumpolar Current, and return some decades later to the sunlit surface in tropical regions of wind-driven upwelling. <br/><br/>An increase in the amount of dissolved Si that "leaks" out of the Southern Ocean and later upwells at low latitudes could shift the global average composition of phytoplankton toward a greater abundance of diatoms and fewer CaCO3-secreting taxa (especially coccolithophorids). Consequences of such a taxonomic shift in the ocean's phytoplankton assemblage include:<br/> a) an increase in the global average organic carbon/calcium carbonate ratio of particulate biogenic material sinking into the deep sea;<br/> b) a reduction in the preservation and burial of calcium carbonate in marine sediments;<br/> c) an increase in ocean alkalinity as a consequence of the first two changes mentioned above, and;<br/> d) a lowering of atmospheric CO2 concentrations in response to increased alkalinity of ocean waters. <br/><br/>A complete assessment of the Silicic acid leakage hypothesis will require an evaluation of: (1) Si utilization efficiencies using newly-developed stable isotopic techniques; (2) opal burial rates in low-latitude upwelling regions; and (3) opal burial rates in the Southern Ocean. This project addresses the last of these topics. <br/><br/>Previous work has shown that there was little change in opal burial rate between the LGM and the Holocene in the Atlantic and Indian sectors of the Southern Ocean. Preliminary results (summarized in this proposal) suggest that the Pacific may have been different, however, in that opal burial rates in the Pacific sector seem to have been lower during the LGM than during the Holocene, allowing for the possibility of "Si leakage" from this region. However, available results are too sparse to make any quantitative conclusions at this time. For that reason, we propose to make a comprehensive evaluation of opal burial rates in the Pacific sector of the Southern Ocean. <br/><br/>Significance and Broader Impacts<br/>Determining the mechanism(s) by which the ocean has regulated climate-related changes in the CO2 content of the atmosphere has been the focus of a substantial effort by paleoceanographers over the past two decades. The Silicic Acid Leakage Hypothesis is a viable new candidate mechanism that warrants further exploration and testing. Completion of the proposed work will contribute significantly to that effort. <br/><br/>During the course of this work, several undergraduates will be exposed to paleoclimate research through their involvement in this project. Burckle and Anderson are both dedicated to the education and training of young scientists, and to the recruitment of women and under-represented minorities. To illustrate, two summer students (undergraduates) worked in Burckle's lab during the summer of 2002. One was a woman and the other (male) was a member of an under-represented minority. Anderson and Burckle will continue with similar recruitment efforts during the course of the proposed study. A minority student who has expressed an interest in working on this research during the summer of 2003 has already been identified.
The Shackleton Fracture Zone (SFZ) in the Drake Passage defines a boundary between low and high phytoplankton waters. West of Drake Passage, Southern Ocean waters south of the Polar Front and north of the Antarctic continent shelf have very low satellite-derived surface chlorophyll concentrations. Chlorophyll and mesoscale eddy kinetic energy are higher east of SFZ compared to values west of the ridge. In situ data from a 10-year survey of the region as part of the National Marine Fisheries Service's Antarctic Marine Living Resources program confirm the existence of a strong hydrographic and chlorophyll gradient in the region. An interdisciplinary team of scientists hypothesizes that bathymetry, including the 2000 m deep SFZ, influences mesoscale circulation and transport of iron leading to the observed phytoplankton patterns. To address this<br/>hypothesis, the team proposes to examine phytoplankton and bacterial physiological states (including responses to iron enrichment) and structure of the plankton communities from virus to zooplankton, the concentration and distribution of Fe, Mn, and Al, and mesoscale flow patterns near the SFZ. Relationships between iron concentrations and phytoplankton characteristics will be examined in the context of the mesoscale transport of trace nutrients to determine how much of the observed variability in phytoplankton biomass can be attributed to iron supply, and to determine the most important sources of iron to pelagic waters east of the Drake Passage. The goal is to better understand how plankton productivity and community structure in the Southern Ocean are affected by the coupling between bathymetry, mesoscale circulation, and limiting nutrient distributions.<br/><br/>The research program includes rapid surface surveys of chemical, plankton, and hydrographic properties complemented by a mesoscale station grid for vertical profiles, water sampling, and bottle incubation enrichment experiments. Distributions of manganese and aluminum will be determined to help distinguish aeolian, continental shelf and upwelling sources of iron. The physiological state of the phytoplankton will be monitored by active fluorescence methods sensitive to the effects of iron limitation. Mass concentrations of pigment, carbon and nitrogen will be obtained by analysis of filtered samples, cell size distributions by flow cytometry, and species identification by microscopy. Primary production and photosynthesis parameters (absorption, quantum yields, variable fluorescence) will be measured on depth profiles, during surface surveys and on bulk samples from enrichment experiments. Viruses and bacteria will be examined for abundances, and bacterial production will be assessed in terms of whether it is limited by either iron or organic carbon sources. The proposed work will improve our understanding of processes controlling distributions of iron and the response of plankton communities in the Southern Ocean. This proposal also includes an outreach component comprised of Research Experiences for Undergraduates (REU), Teachers Experiencing the Antarctic and Arctic (TEA), and the creation of an educational website and K-12 curricular modules based on the project.
This project will investigate the distribution, phylogenetic affinities and ecological aspects of ammonium-oxidizing bacteria in the Palmer Long-Term Ecological Research study area. Ammonia oxidation is the first step in the conversion of regenerated nitrogen to dinitrogen gas via denitrification, a 3-step pathway mediated by three distinct guilds of bacteria. As such, ammonia oxidation is important to the global nitrogen cycle. Ammonia oxidation and the overall process of nitrification-denitrification have received little attention in polar oceans where it is significant and where the effects of climate change on biogeochemical rates are likely to be pronounced. The goals of the studies proposed here are A) to obtain more conclusive information concerning composition of Antarctic ammonia oxidizers; B) to begin characterizing their ecophysiology and ecology; and C) to obtain cultures of the organism for more detailed studies. Water column and sea ice AOB assemblages will be characterized phylogenetically and the different kinds of AOB in various samples will be quantified. Nitrification rates will be measured across the LTER study area in water column, sea ice and sediment samples. Grazing rates on AOB will be determined and their sensitivity to UV light evaluated. In addition, the significance of urea nitrogen as a source of reduced nitrogen to AOB will be assessed and the temperature response of nitrification over temperature ranges appropriate to polar regions will be evaluated. This work will provide insights into the ecology of AOB and the knowledge needed to model how water column nitrification will respond to changes in the polar ecosystems accompanying global climate change.
This project will provide for the continued operation and data analysis of an electro-optical remote sensing facility at South Pole Station. The facility will be used to examine 1) the source(s) and propagation of patches of enhanced plasma density in the F-region of the Antarctic ionosphere, 2) changes in the Antarctic E-region O/N2 ratio in the center of the night-sector of the auroral oval and compare the ratios with those found in the sun-aligned auroral arcs in the Polar Cap region, 3) Antarctic middle atmosphere disturbances generated by Stratospheric Warming Events (SWE), 4) quantitative characterization of the effects of solar variability on the temperature of the upper mesosphere region, 5) Antarctic thermospheric response to Solar Magnetic Cloud/Coronal Mass Ejection (SMC/CME) events, and 6) the effects of Joule heating on the thermodynamics of the Antarctic F-region. Data for all these studies will come from two sets of remote-sensing facilities at SPS: 1) Auroral emissions brightness measurements from the sun-synchronous Meridian Scanning Photon Counting Multichannel photometer; 2) Airglow and Auroral emission spectra recorded continuously during Austral winter at SPS with the high throughput, high resolution Infrared Michelson Interferometer as well as Visible - Near Infrared CCD spectrographs. <br/><br/>Meridional variations in the brightness of F-region's auroral emissions provide the necessary data for investigations of the dynamics and IMF control, as well as the excitation mechanism(s), of the F-region patches. The brightness of auroral emissions from O and N relative to those from molecular species (O2 and N2) can be analyzed to assess, quantitatively, changes in the thermospheric composition. These data (from continuous (24 hours a day) measurements during the totally dark six months of each Austral winter at SPS) will be used to investigate the effects of solar-terrestrial disturbances on Antarctic thermospheric composition and thermodynamics, including response of the mesopause to solar cycle variations. Changes in airglow temperature (derived from OH and O2 bands), from different mesosphere/lower-thermosphere (MLT) heights, permit studies of the dynamical effects of Planetary, Tidal and Gravity waves propagating in the MLT regions as well as non-linear interactions among these waves. Coupling of different atmospheric regions over SPS, through enhanced gravity wave activities during SWE that lead to a precursor as Mesospheric cooling, will be investigated through the observed changes in MLT kinetic air temperature and density. <br/><br/>The project will enhance the infrastructure for research and education at Embry-Riddle Aeronautical University, bringing together the PI/Co-I and students from Departments of Physical Sciences and Aerospace Engineering. Graduate and undergraduate students will participate in modern research and software development.
Saltzman/0636953<br/><br/>This award supports a project to measure methyl chloride, methyl bromide, and carbonyl sulfide in air extracted from Antarctic ice cores. Previous measurements in firn air and shallow ice cores suggest that the ice archive contains paleo-atmospheric signals for these gases. The goal of this study is to extend these records throughout the Holocene and into the last Glacial period to examine the behavior of these trace gases over longer time scales and a wider range of climatic conditions. These studies are exploratory, and both the stability of these trace gases and the extent to which they may be impacted by in situ processes will be assessed. This project will involve sampling and analyzing archived ice core samples from the Siple Dome, Taylor Dome, Byrd, and Vostok ice cores. The ice core samples will be analyzed by dry extraction, with gas chromatography/mass spectrometry with isotope dilution. The ice core measurements will generate new information about the range of natural variability of these trace gases in the atmosphere. The intellectual merit of this project is that this work will provide an improved basis for assessing the impact of anthropogenic activities on biogeochemical cycles, and new insight into the climatic sensitivity of the biogeochemical processes controlling atmospheric composition. The broader impact of this project is that there is a strong societal interest in understanding how man's activities impact the atmosphere, and how atmospheric chemistry may be altered by future climate change. The results of this study will contribute to the development of scenarios used for future projections of stratospheric ozone and climate change. In terms of human development, this project will support the doctoral dissertation of a graduate student in Earth System Science, and undergraduate research on polar ice core chemistry. This project will also contribute to the development of an Earth Sciences teacher training curriculum for high school teachers in the Orange County school system in collaboration with an established, NSF-sponsored Math and Science Partnership program (FOCUS).
This award supports a project to collect and develop high-resolution ice core records from the Dry Valleys region of Antarctica, and provide interpretations of interannual to decadal-scale climate variability during the last 2000 years (late Holocene). The project will test hypotheses related to ocean/atmosphere teleconnections (e.g., El Nino Southern Oscillation, Antarctic Oscillation) that may be responsible for major late Holocene climate events such as the Little Ice Age in the Southern Hemisphere. Conceptual and quantitative models of these processes in the Dry Valleys during the late Holocene are critical for understanding recent climate changes, and represent the main scientific merit of the project. We plan to collect intermediate-length ice cores (100-200m) at four sites along transects in Taylor Valley and Wright Valley, and analyze each core at high resolution for stable isotopes (d18O, dD), major ions (Na+, Mg2+, Ca2+, K+, NH4+, Cl-, NO3-, SO42-, MSA), and trace elements (Al, Fe, S, Sr, B). A suite of statistical techniques will be applied to the multivariate glaciochemical dataset to identify chemical associations and to calibrate the time-series records with available instrumental data. Broader impacts of the project include: 1) contributions to several ongoing interdisciplinary Antarctic research programs; 2) graduate and undergraduate student involvement in field, laboratory, and data interpretation activities; 3) use of project data and ideas in several UMaine courses and outreach activities; and 4) data dissemination through peer-reviewed publications, UMaine and other paleoclimate data archive websites, and presentations at national and international meetings.
This award supports the study of the drift and break-up of Earth's largest icebergs, which were recently released into the Ross Sea of Antarctica as a result of calving from the Ross Ice Shelf. The scientific goals of the study are to determine the physics of iceberg motion within the dynamic context of ocean currents, winds, and sea ice, which determine the forces that drive iceberg motion, and the relationship between the iceberg and geographically and topographically determined pinning points on which the iceberg can ground. In addition, the processes by which icebergs influence the local environments (e.g., sea ice conditions near Antarctica, access to penguin rookeries, air-sea heat exchange and upwelling at iceberg margins, nutrient fluxes) will be studied. The processes by which icebergs generate globally far-reaching ocean acoustic signals that are detected within the global seismic (earthquake) sensing networks will also be studied. A featured element of the scientific research activity will be a field effort to deploy automatic weather stations, seismometer arrays and GPS-tracking stations on several of the largest icebergs presently adrift, or about to be adrift, in the Ross Sea. Data generated and relayed via satellite to home institutions in the Midwest will motivate theoretical analysis and computer simulation; and will be archived on an "iceberg" website (http://amrc.ssec.wisc.edu/amrc/iceberg.html) for access by scientists and the general public. At the most broad level, the study is justified by the fact that icebergs released by the Antarctic ice sheet represent the largest movements of fresh water within the natural environment (e.g., several of the icebergs to be studied, B15, C19 and others calved since 2000 CE, represent over 6000 cubic kilometers of fresh water-an amount roughly equivalent to 100 years of the flow of the Nile River). A better understanding of the impact of iceberg drift through the environment, and particularly the impact on ocean stratification and mixing, is essential to the understanding of the abrupt global climate changes witnessed by proxy during the ice age and of concern under conditions of future greenhouse warming. On a more specific level, the study will generate a knowledge base useful for the better management of Antarctic logistical resources (e.g., the shipping lanes to McMurdo Station) that can occasionally be influenced by adverse effects icebergs have on sea ice conditions.
This award supports a project to test whether Kamb Ice Stream (formerly Ice Stream C (ISC)), an ice stream<br/>that is thought to have stopped ~150 years ago, may be already in the process of restarting. If yes, it will help establish what is the rate of ice stream reactivation and what mechanisms are controlling this rate. If there is no evidence for ongoing ice stream reactivation, the physical controls that are preventing it will be examined and alternative scenarios for near-future evolution of this ice stream will be explored. One such scenario is an increase in ice diversion toward the neighboring Whillans Ice Stream. Such diversion may help prevent a complete stoppage of Whillans Ice Stream,which has been slowing down for at least the last 24 years. This project will consist of two components: (1) field observations of bed properties,geometry of internal radar reflectors, as well as surface strain rates and velocity/topography changes using Ice-Penetrating Radar and differential Global Positioning System, (2) numerical modeling study of near future(~100-1000 years) evolution of Kamb Ice Stream. The field component will be focused on the bulge-to-trunk transition, which is located at the present time just downstream of the so-called camp UpC. Reactivation of Kamb Ice Stream should be reflected in a downstream migration of the bulge-trunk transition at possibly high rates (bulge migration rates of ~km/yr occur on surging mountain glaciers). The modeling<br/>component will be used to generate predictions regarding the near-future behavior of Kamb Ice Stream. This project will provide training opportunities for at least two undergraduate students (per year) at St. Olaf College and for one<br/>undergraduate student (per year) at UCSC. This collaboration will bring together scientists from three different types of US institutions: (1) a liberal arts college (St.Olaf College), (2) a public research university (UCSC) and (3) a NASA research laboratory (JPL). The project will also help build a new glaciological research program at UCSC. Project results will be incorporated into undergraduate and graduate courses at UCSC and will be made available<br/>to the general public and educators through downloadable graphics and animations posted on the research website of the UCSC PI. Field data resulting from the project will be posted in the Antarctic Glaciological Data Center for use by other investigators.
This award supports a comprehensive study of land-based polar ice cliffs. Through field measurements, modeling, and remote sensing, the physics underlying the formation of ice cliffs at the margin of Taylor Glacier in the McMurdo Dry Valleys will be investigated. At three sites, measurements of ice deformation and temperature fields near the cliff face will be combined with existing energy balance data to quantify ice-cliff evolution over one full seasonal cycle. In addition, a small seismic network will monitor local "ice quakes" associated with calving events. Numerical modeling, validated by the field data, will enable determination of the sensitivity of ice cliff evolution to environmental variables. There are both local and global motivations for studying the ice cliffs of Taylor Glacier. On a global scale, this work will provide insight into the fundamental processes of calving and glacier terminus A better grasp of ice cliff processes will also improve boundary conditions required for predicting glaciers' response to climate change. Locally, the Taylor Glacier is an important component of the McMurdo Dry Valleys landscape and the results of this study will aid in defining ecologically-important sources of glacial meltwater and will lead to a better understanding of moraine formation at polar ice cliffs. This study will help launch the career of a female scientist, will support one graduate student, and provide experiential learning experiences for two undergraduates. The post-doctoral researcher will also use this research in the curriculum of a wilderness science experiential education program for high school girls.
Because of extreme isolation of the Antarctic continent since the Early Oligocene, one expects a unique invertebrate benthic fauna with a high degree of endemism. Yet some invertebrate taxa that constitute important ecological components of sedimentary benthic communities include more than 40 percent non-endemic species (e.g., benthic polychaetes). To account for non-endemic species, intermittent genetic exchange must occur between Antarctic and other (e.g. South American) populations. The most likely mechanism for such gene flow, at least for in-faunal and mobile macrobenthos, is dispersal of planktonic larvae across the sub- Antarctic and Antarctic polar fronts. To test for larval dispersal as a mechanism of maintaining genetic continuity across polar fronts, the scientists propose to (1) take plankton samples along transects across Drake passage during both the austral summer and winter seasons while concurrently collecting the appropriate hydrographic data. Such data will help elucidate the hydrographic mechanisms that allow dispersal across Drake Passage. Using a molecular phylogenetic approach, they will (2) compare seemingly identical adult forms from Antarctic and South America continents to identify genetic breaks, historical gene flow, and control for the presence of cryptic species. (3) Similar molecular tools will be used to relate planktonic larvae to their adult forms. Through this procedure, they propose to link the larval forms respectively to their Antarctic or South America origins. The proposed work builds on previous research that provides the basis for this effort to develop a synthetic understanding of historical gene flow and present day dispersal mechanism in South American/Drake Passage/Antarctic Peninsular region. Furthermore, this work represents one of the first attempts to examine recent gene flow in Antarctic benthic invertebrates. Graduate students and a postdoctoral fellow will be trained during this research.
Ultraviolet radiation influences the dynamics of plankton processes in the near-surface waters of most aquatic ecosystems. In particular, the Southern Ocean is affected in the austral spring period when biologically damaging ultraviolet radiation is enhanced by ozone depletion. While progress has been made in estimating the quantitative impact of ultraviolet radiation on bacteria and phytoplankton in the Southern Ocean, some important issues remain to be resolved. Little is known about responses in systems dominated by the colonial haptophyte Phaeocystis antarctica, which dominates spring blooms in a polyna that develops in the southern Ross Sea. The Ross Sea is also of interest because of the occurrence of open water at a far southerly location in the spring, well within the ozone hole, and continuous daylight, with implications for the regulation of DNA repair. A number of studies suggest that vertical mixing can significant modify the impact of ultraviolet radiation in the Southern Ocean and elsewhere. However, there are limited measurements of turbulence intensity in the surface layer and measurements have not been integrated with parallel studies of ultraviolet radiation effects on phytoplankton and bacterioplankton. To address these issues, this collaborative study will focus on vertical mixing and the impact of ultraviolet radiation in the Ross Sea. The spectral and temporal responses of phytoplankton and bacterioplankton to ultraviolet radiation will be characterized in both laboratory and solar incubations. These will lead to the definition of biological weighting functions and response models capable of predicting the depth and time distribution of ultraviolet radiation impacts on photosynthesis, bacterial incorporation and DNA damage in the surface layer. Diel sampling will measure depth-dependent profiles of DNA damage, bacterial incorporation, photosynthesis and fluorescence parameters over a 24 h cycle. Sampling will include stations with contrasting wind-driven mixing and stratification as the polyna develops. The program of vertical mixing measurements is optimized for the typical springtime Ross Sea situation in which turbulence of intermediate intensity is insufficient to mix the upper layer thoroughly in the presence of stabilizing influences like solar heating and/or surface freshwater input from melting ice. Fine-scale vertical density profiles will be measured with a free-fall CTD unit and the profiles will be used to directly estimate large-eddy scales by determining Thorpe scales. Eddy scales and estimated turbulent diffusivities will be directly related to surface layer effects, and used to generate lagrangian depth-time trajectories in models of ultraviolet radiation responses in the surface mixed layer. The proposed research will be the first in-depth study of ultraviolet radiation effects in the Ross Sea and provide a valuable comparison with previous work in the Weddell-Scotia Confluence and Palmer Station regions. It will also enhance the understanding of vertical mixing processes, trophic interactions and biogeochemical cycling in the Ross Sea.
The Larsen Ice Shelf is the third largest ice shelf in Antarctica and has continued a pattern of catastrophic decay since the mid 1990's. The proposed marine geologic work at the Larsen Ice Shelf builds upon our previous NSF-OPP funding and intends to test the working hypothesis that the Larsen B Ice Shelf system has been a stable component of Antarctica's glacial system since it formed during rising sea levels 10,000 years BP. This conclusion, if supported by observations from our proposed work, is an important first step in establishing the uniqueness and consequences of rapid regional warming currently taking place across the Peninsula. Our previous work in the Larsen A and B embayments has allowed us to recognize the signature of past ice shelf fluctuations and their impact on the oceanographic and biologic environments. We have also overcome many of the limitations of standard radiocarbon dating in Antarctic marine sequences by using variations in the strength of the earth's magnetic field for correlation of sediment records and by using specific organic compounds (instead of bulk sediment) for radiocarbon dating. We intend to pursue these analytical advances and extend our sediment core stratigraphy to areas uncovered by the most recent collapse of the Larsen B Ice Shelf and areas immediately adjacent to the Larsen C Ice Shelf. In addition to the core recovery program, we intend to utilize our unique access to the ice shelf front to continue our observations of the snow/ice stratigraphy, oceanographic character, and ocean floor character. Sediment traps will also be deployed in order to measure the input of debris from glaciers that are now surging in response to the ice shelf collapse. This proposal is a multi-institutional, international (USAP, Italy, and Canada) effort that combines the established expertise in a variety of disciplines and integrates the research plan into the educational efforts of primarily undergraduate institutions but including some graduate education. This is a three-year project with field seasons planned with flexibility in order to accommodate schedules for the RVIB L.M. Gould. The Antarctic Peninsula is undergoing greater warming than almost anywhere on Earth, perhaps associated with human-induced greenhouse effects. Our proposed work contributes to understanding of these changes where they are occurring first and with greatest magnitude and impact upon the environment.
This award supports a project to use three downhole instruments - an optical logger; a<br/>miniaturized biospectral logger at 420 nm (miniBSL-420); and an Acoustic TeleViewer (ATV) - to log a 350-m borehole at the WAIS Divide drill site. In addition, miniBSL-224 (at 224 nm) and miniBSL-420 will scan ice core sections at NICL to look for abrupt climate changes, volcanic ash, microbial concentrations, and correlations among them. Using the optical logger and ATV to log bubble number densities vs depth in a WAIS Divide borehole, we will detect annual layers, from which we can establish the age vs depth relation to the bottom of the borehole that will be available during the three-year grant period. With the same instruments we will search for long-period modulation of bubble and dust concentrations in order to provide definitive evidence for or against an effect of long-period variability of the sun or solar wind on climate. We will detect and accurately date ash layers in a WAIS Divide borehole. We will match them with ash layers that we previously detected in the Siple Dome borehole, and also match them with sulfate and ash layers found by others at Vostok, Dome Fuji, Dome C, and GISP2. The expected new data will allow us to extend our recent study which showed that the Antarctic record of volcanism correlates with abrupt climate change at a 95% to >99.8% significance level and that the volcanic signatures at bipolar locations match at better than 3 sigma during the interval 2 to 45 kiloyears. The results to be obtained during this grant period will position us to extend an accurate age vs depth relation and volcano-climate correlations to earlier than 150 kiloyears ago in the future WAIS Divide borehole to be drilled to bedrock. Using the miniBSLs to identify biomolecules via their fluorescence, we will log a 350-m borehole at WAIS Divide, and we will scan selected lengths of ice core at NICL. Among the biomolecules the miniBSLs can identify will be chlorophyll, which will provide the first map of aerobic microbes in ice, and F420, which will provide the first map of methanogens in ice. We will collaborate with others in relating results from WAIS Divide and NICL ice cores to broader topics in climatology, volcanology, and microbial ecology. We will continue to give broad training to undergraduate and graduate students, to attract underrepresented minorities to science, engineering, and math, and to educate the press and college teachers. A deeper understanding of the causes of abrupt climate change, including a causal relationship with strong volcanic eruptions, can enable us to understand and mitigate adverse effects on climate.
This project will determine the age, origin, and climatic significance of buried ice found in the western Dry Valleys of Antarctica. Previous studies indicate that this ice may be over a million years in age, making it by far the oldest ice yet discovered on Earth. An alternative view is that this ice is represents recently frozen groundwater. To distinguish between these hypotheses and characterize the ice, we are undertaking an interdisciplinary research program focused on: 1) understanding the surface processes that permit ice preservation; and 2) testing the efficacy of cosmogenic nuclides and 40Ar/39Ar analyses in dating both tills and volcanic ash associated with the ice. Our plan calls for the analysis of a minimum of six cosmogenic depth profiles to determine if and how cryoturbation reworks sublimation tills and assess the average rate of ice sublimation for three debris-covered glaciers. We will model through finite- element analyses at least three buried glaciers and compare flow rates with those based on radiometric dating of surface deposits. Ten ice cores will also be collected for measurement of d18O, dD, ice fabric, ice texture, total gas content/composition. Better understanding of surface processes above buried ice will permit researchers to gain access to a record of atmospheric and climate change that could well cover intervals that predate Quaternary time. The work may also add valuable insight into Martian history. In terms of broader impacts, we have recruited three female PhD students and developed interdisciplinary collaborations among geochemists at Columbia University, planetary geologists at Brown University, geomorphologists at Boston University, and numerical modelers at the University of Maine.
This award supports the development of a new laboratory capability in the U.S. to measure CO2 in ice cores and investigate millennial-scale changes in CO2 during the last glacial period using samples from the Byrd and Siple Dome ice cores. Both cores have precise relative chronologies based on correlation of methane and the isotopic composition of atmospheric oxygen with counterpart records from Greenland ice cores. The proposed work will therefore allow comparison of the timing of CO2 change, Antarctic temperature change, and Greenland temperature change on common time scales. Such comparisons are vital for evaluating models that explain changes in atmospheric CO2. The techniques being developed will also be available for future projects, specifically the proposed Inland WAIS ice core, for which a highly detailed CO2 record is a major objective, and studies greenhouse and other atmospheric gases and their isotopic composition for which dry extraction is necessary (stable isotopes in CO2, for example). There are many broad impacts of the proposed work. Ice core greenhouse gas records are central contributions of paleoclimatology to research and policy-making concerning global change. The proposed work will enhance those contributions by improving our understanding of the natural cycling of the most important greenhouse gas. It will contribute to the training of a postdoctoral researcher, who will be an integral part of an established research group and benefit from the diverse paleoclimate and geochemistry community at OSU. The PI teaches major and non-major undergraduate and graduate courses on climate and global change. The proposed work will enrich those courses and the courses will provide an opportunity for the postdoctoral researcher to participate in teaching by giving guest lectures. The PI also participates in a summer climate workshop for high school teachers at Washington State University and the proposed work will enrich that contribution. The extraction device that is built and the expertise gained in using it will be resources for the ice core community and available for future projects. Data will be made available through established national data center and the equipment designs will also be made available to other researchers.
9909665 Berger This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports project to test and develop approaches for using thermoluminescence techniques to determine the age of Antarctic marine sediments. Quaternary (last 2 million yrs) marine sediments surrounding Antarctica record the waxing and waning of ice shelves and ice sheets, and also other paleoclimatic information, yet accurate chronologies of these sediments are difficult to obtain. Such chronologies provide the essential foundation for study of geological processes in the past. Within the range of radiocarbon (14C) dating (less than 30-40 thousand yrs, note - "ka" below means 1000 yrs) 14C dates can be inaccurate because of a variable 14C reservoir effect, and beyond 30-40 ka few methods are applicable. Photon-stimulated-luminescence sediment dating (photonic dating) of eolian and waterlain deposits in temperate latitudes spans the range from decades to hundreds of ka, but marine sediments in and around Antarctica pose special difficulty because of the potentially restricted exposure to daylight (the clock-zeroing process) of most detrital grains before deposition. This proposal will test the clock-zeroing assumption in representative Antarctic glaciomarine depositional settings, and thereby determine the potential reliability of photonic dating of Antarctic marine sediments. Limited luminescence dating and signal-zeroing tests using glaciomarine and marine deposits have been conducted in the northern temperate and polar latitudes, but the effects on luminescence of the different glaciomarine depositional processes have never been studied in detail. Furthermore, the depositional settings around Antarctica are almost entirely polar, with consequent specific processes operating there. For example, transport of terrigenous suspensions by neutrally buoyant "cold-tongue" (mid-water) plumes may be common around Antarctica, yet the effect of such transport on luminescence zeroing is unknown. Typical marine cores near Antarctica may contain an unknown fraction of detrital grains from cold-tongue and near-bottom suspensions. Thus the extent to which the polar glaciomarine depositional processes around Antarctica may limit the potential accuracy of photonic dating of marine cores is unknown (age overestimates would result if grains are not exposed to daylight before deposition). This project will collect detrital grains from a variety of "zero-age" (modern) marine depositional settings within the Antarctic Peninsula, where representative Antarctic depositional processes have been documented and where logistics permit access. Suspensions will be collected from four fjords representing a transect from polar through subpolar conditions. Suspensions will be collected from two stations and from up to 3 depths (surface and 2 deep plumes) at each station. Sediment traps will be deployed at two of these fjord settings. As well, core-top sediments will be collected from several sites. All samples will be shielded from light and transported to Reno, Nevada, for luminescence analyses. Systematic study of the effectiveness of luminescence-clock-zeroing in Antarctic glaciomarine settings will determine if photonic dating can be reliable for future applications to Antarctic marine sediments. Refined sedimentological criteria for the selection of future samples for photonic dating are expected from this project. A photonic-dating capability would provide a numeric geochronometer extending well beyond the age range of 14C dating. Such a capability would permit answering a number of broader questions about the timing and extent of past glaciations near and on the Antarctic shelves.
This award supports a small grant for exploratory research to study the processes that contribute to the melting and break-up of tabular polar icebergs as they drift north. This work will enable the participation of a group of U.S. scientists in this international project which is collaborative with the Instituto Antartico Argentino. The field team will place weather instruments, firn sensors, and a video camera on the iceberg to measure the processes that affect it as it drifts north. In contrast to icebergs in other sectors of Antarctica, icebergs in the northwestern Weddell Sea drift northward along relatively predictable paths, and reach climate and ocean conditions that lead to break-up within a few years. The timing of this study is critical due to the anticipated presence of iceberg A43A, which broke off the Ronne Ice Shelf in February 2000 and which is expected to be accessible from Marambio Station in early 2006. It has recently been recognized that the end stages of break-up of these icebergs can imitate the rapid disintegrations due to melt ponding and surface fracturing observed for the Larsen A and Larsen B ice shelves. However, in some cases, basal melting may play a significant role in shelf break-up. Resolving the processes (surface ponding/ fracturing versus basal melt) and observing other processes of iceberg drift and break up in-situ are of high scientific interest. An understanding of the mechanisms that lead to the distintegration of icebergs as they drift north may enable scientists to use icebergs as proxies for understanding the processes that could cause ice shelves to disintegrate in a warming climate. A broader impact would thus be an ability to predict ice shelf disintegration in a warming world. Glacier mass balance and ice shelf stability are of critical importance to sea level change, which also has broader societal relevance.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate Triassic and Jurassic dinosaurs and other vertebrates from the central Transantarctic Mountains of Antarctica. A field program to search for Upper Triassic to Jurassic age fossil vertebrates in the Beardmore Glacier region will be carried out in the 2003-04 austral summer. Initially, field efforts will concentrate on the Hanson Formation that has produced the only Jurassic dinosaur fauna from Antarctica. Further excavation of the Hanson dinosaur locality on Mt. Kirkpatrick will occur, followed by an extensive search of other exposures of the Hanson, Falla and Upper Fremouw Formations in the Beardmore area. A field party of six persons will allow two smaller groups to work independently at different sites. This group will operate for 3-4 weeks out of a small helicopter camp located in the Beardmore area. In addition to collecting new specimens an interpretation of the depositional settings for each of the vertebrate sites will be made. The second and third years of this project will be dedicated to preparation and study of the vertebrates. Antarctic vertebrates provide a unique opportunity to study the evolutionary and biogeographic significance of high latitude Mesozoic faunas and this project should result in significant advances in knowledge in this field.
This Small Grant for Exploratory Research supports measurement of PGE abundances and Hf, Nd, Sr and Pb isotopic ratios of the Basement Sill and Dais Intrusion lobe of the Ferrar Magmatic Province, Antarctica. This province played a key role in the breakup of Gondwanaland. Models to be tested are magma production by plume activity versus decompression melting in a fossil subduction zone. The PGE data will also be used to evaluate the behavior of volatiles during magma crystallization, which other evidence indicates may have reached saturation. The samples to be studied were collected during the NSF-sponsored, Magmatic Field Laboratory Workshop held in Antarctica in 2005. This study's results will be compliled with complementary data from other attendees to develop a new multidisciplinary model of Ferrar magmatism.<br/><br/>The broader impacts fo this work include international collaboration and informal science education through public outreach to K12 students.
This award is for support for a program to reconstruct records of the isotopic composition of paleoatmospheric methane and nitrous oxide covering the last 200,000 years. High resolution measurements of the carbon-13 isotopic composition of methane from shallow ice cores will help to determine the relative contributions of biogenic (wetlands, rice fields and ruminants) and abiogenic (biomass burning and natural gas) methane emissions which have caused the concentrations of this gas to increase at an exponential rate during the anthropogenic period. Isotopic data on methane and nitrous oxide over glacial/interglacial timescales will help determine the underlying cause of the large concentration variations that are known to occur. This project will make use of a new generation mass spectrometer which is capable of generating precise isotopic information on nanomolar quantities of methane and nitrous oxide, which means that samples can be 1000 times smaller than those needed for a standard isotope ratio instrument. The primary objective of the work is to further our understanding of the biogeochemical cycles of these two greenhouse gases throughout the anthropogenic period as well as over glacial interglacial timescales.
9725882 Raymond This award is for support for a program of surface-based radio echo sounding to examine the geometry of the internal layering and the presence or absence of thawed zones outside the margins of active Ice Streams B and E and across the flow band feeding Ice Stream D. Melting in the marginal shear zone and/or on the bed outside an ice stream relates to the amount of support of the ice stream from the sides compared to the bed and the conditions that limit expansion of its width. Radar observations will be extended over the crest of adjacent inter-ice-stream ridges (B/C and D/E) and areas next to the flow band in the onset of D. The purpose is to examine internal layering indicative of the histories of these areas adjacent to ice streams and to determine whether ice streams have expanded into these presently stable areas in the past. These goals concerning the physical controls and history of ice stream width relate to how the discharge of ice streams has changed in the past and could change in the future to affect sea level.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a study to investigate paleoenvironmental conditions during the late Paleozoic and Mesozoic in central interior Antarctica. The 4 km thick sequence of sedimentary rocks, known as the Beacon Supergroup, in the Beardmore Glacier area records 90 million years of Permian through Jurassic history of this high-paleolatitude sector of Gondwana. It accumulated in a foreland basin with a rate of subsidence approximately equal to the rate of deposition. The deposits have yielded diverse vertebrate fossils, in situ fossil forests, and exceptionally well preserved plant fossils. They give a unique glimpse of glacial, lake, and stream/river environments and ecosystems and preserve an unparalleled record of the depositional, paleoclimatic, and tectonic history of the area. The excellent work done to date provides a solid base of information on which to build understanding of conditions and processes.<br/><br/>This project is a collaborative study of this stratigraphic section that will integrate sedimentologic, paleontologic, and ichnologic observations to answer focused questions, including: (1) What are the stratigraphic architecture and alluvial facies of Upper Permian to Jurassic rocks in the Beardmore area?; (2) In what tectonostratigraphic setting were these rocks deposited?; (3) Did vertebrates inhabit the cold, near-polar, Permian floodplains, as indicated by vertebrate burrows, and can these burrows be used to identify, for the first time, the presence of small early mammals in Mesozoic deposits?; and (4) How did bottom-dwelling animals in lakes and streams use substrate ecospace, how did ecospace use at these high paleolatitudes differ from ecospace use in equivalent environments at low paleolatitudes, and what does burrow distribution reveal about seasonality of river flow and thus about paleoclimate? Answers to these questions will (1) clarify the paleoclimatic, basinal, and tectonic history of this part of Gondwana, (2) elucidate the colonization of near-polar ecosystems by vertebrates, (3) provide new information on the environmental and paleolatitudinal distributions of early mammals, and (4) allow semi-quantitative assessment of the activity and abundance of bottom-dwelling animals in different freshwater environments at high and low latitudes. In summary, this project will contribute significantly to an understanding of paleobiology and paleoecology at a high latitude floodplain setting during a time in Earth history when the climate was much different than today.
This award supports a comprehensive study of rift growth on the Amery Ice Shelf (AIS), East Antarctica, using a combination of in situ and remote sensing data with numerical modeling. On the AIS there is an opportunity to examine an active rift system, which is a combination of two longitudinal-to-flow rifts, which originated at the ice shelf front in the suture zones between merging flowbands, and two transverse-to-flow rifts, which formed at the tip of the western longitudinal rift around 1996. Work in progress indicates that these two transverse rifts do not propagate independently of each other, but somehow grow more or less synchronously. The longest of these rifts-the eastern one-grows at an average rate of about 8m per day. When it meets the eastern longitudinal rift, an event that is expected to occur during the funding period (mid-2006), an iceberg (~30 x 30 km) will calve. Based on observations collected over the past half century, there is reason to believe that such a calving event may be a part of a repetitive sequence. In the proposed project, the expansion and propagation of both transverse rifts will be studied using a network of GPS and seismometers deployed around the tip of each transverse rift. Once the iceberg has calved, the effects its calving has on the dynamics of the ice shelf and the activation of previously inactive rifts will also be studied. Insofar as the rate of calving activity is a proxy for local and regional climate conditions, a broader impact of the proposed work is directly related to the socio-environmental topics of climate and sea-level change. The subject of iceberg calving has a history of sparking a great deal of interest from the media and the public alike, especially since the recent large calving events from the Ross and Ronne ice shelves and the remarkably sudden break-up of the Larsen Ice Shelf. The work will involve at least one graduate student, and will involve a partnership with a local charter high school. Field work, instrument deployments, and data collection and analysis will be conducted in close collaboration with the Australian Antarctic Division and the University of Tasmania, which has been a crucial component of research conducted to date. This project will also make use of the Scripps Institution of Oceanography Visualization Center as a means to display results to faculty and researchers of the University of California, San Diego, undergraduate and graduate students, to school children and their teachers, and ultimately to the visiting public.
This project determines the recent history of the West Antarctic Ice Sheet (WAIS) through a multidisciplinary study of the seabed in the Ross Sea of Antarctica. WAIS is perhaps the world's most critical ice sheet to sea level rise dut to near-future global warming. its history has been a key focus for the past decade, but there are significant questions as to whether WAIS was stable during the last glacial maximum--about 20,000 years ago--or undergoing advance and retreat. This project studies grounding zone translantions in Eastern Basin to constrain WAIS movements using a multidisciplinary approach that integrates multibeam bathymetry, seismic stratigraphy, sedimentology, diatom biostratigraphy, radiocarbon dating, 10Be concentration analyses, and numerical modeling.<br/><br/>The broader impacts include improving society's understanding of sea level rise linked to global warming; postdoctoral, graduate, and undergraduate education; and expanding the participation of groups underrepresented in Earth sciences through links with LSU's Geoscience Alliance to Encourage Minority Participation.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research project between the Saint Mary's College of California, the South Dakota School of Mines and technology, and the Argentine Antarctic Institute (Instituto Antartico Argentino or IAA) to investigate the Late Mesozoic vertebrate paleontology of the James Ross Basin in the Antarctic Peninsula region. The Campanian through the Maastrichtian ages (80 to 65 million years ago) is an important time interval concerning vertebrate biogeography (i.e. dispersals and separations due to moving landmasses) and evolution between Antarctica and other Southern Hemisphere continents (including India, i.e. Gondwana). Moreover, the dispersal of terrestrial vertebrates (i.e. dinosaurs and marsupial mammals) from North America to Antarctica and beyond (e.g. Australia) via Patagonia and the Antarctic Peninsula, as well as the dispersal of modern birds from Antarctica northward are important unresolved questions in paleontology. These dispersal events include vertebrates not only in the terrestrial realms, but also in marine settings. Both widely distributed and localized marine reptile species have been identified in Antarctica, creating questions concerning their dispersal in conjunction with the terrestrial animals.<br/><br/>The Antarctic Peninsula and Patagonia represent the western-most portion of the Weddellian Paleobiogeographic Province, a region that extends from Patagonia through the Antarctic Peninsula and western Antarctica to Australia and New Zealand. Within this province lie the dispersal routes for interchanges of vertebrates between South America and: 1) Madagascar and India, and 2) Australia. As the result of previous work by the principal investigators, it is postulated that an isthmus between more northern South America and the Antarctic craton has served to bring typical North American dinosaurs, such as hadrosaurs (duck-billed dinosaurs) and presumably marsupials traveling overland, while marine reptiles swam along coastal waters, to Antarctica in the latest Cretaceous. Finally, this region has served as the cradle for the evolution, if not the origin, for groups of modern birds, and evolution of a suite of typical southern hemisphere plants.<br/><br/>In order to confirm and expand upon these hypotheses, investigations into the latest Cretaceous deposits of the James Ross Basin, Antarctica Peninsula must be continued. The Cape Lamb and Sandwich Bluff geological units, of the Lopez de Bertodano Formation in the James Ross Basin along the eastern Antarctic Peninsula, exhibit a mixture of marine and terrestrial deposits. The following vertebrates have been recovered from these sedimentary deposits during previous field seasons: plesiosaur and mosasaur marine reptiles; plant eating dinosaurs; a meat eating dinosaur; and a variety of modern bird groups, including shorebirds, wading birds and lagoonal birds.<br/><br/>This project will undertake new fieldwork to recover new specimens in order to test biogeographic and evolutionary hypotheses concerning Late Cretaceous vertebrates in Gondwana. Fieldwork is planned in January 2002 and 2003 to explore the eastern slopes of Cape Lamb, Sandwich Bluff and False Island Point on Vega Island, and the Santa Marta Cove area of James Ross Island.<br/><br/>This research will result in important new insights about the evolution and geographic dispersal of several vertebrate species. The results are important to understanding the development and evolution of life on Earth.<br/><br/>This is a collaborative research project with Argentinean scientists from the IAA and it continues a productive collaboration that began in 1995. In addition, collaboration with vertebrate paleontologists from the Museo de La Plata, both in the field and at our respective institutions in Argentina and in the United States, will continue.
Photochemical reactions in snow can have important effects on the chemistry and composition of the snowpack as well as the overlying atmosphere. For example, recent measurements in the Antarctic and Arctic have revealed that sunlit snow releases a number of important pollutants to the atmosphere. Our ability to understand and model this chemistry is currently limited, in part because we lack fundamental photochemical information for a number of important chemical species in snow. This award supports research that will help fill this gap by characterizing the low-temperature photochemistry of three of these key species: nitrite (NO2-), nitrous acid (HNO2), and hydrogen peroxide (HOOH). We will measure quantum yields for these reactions on ice using a sensitive technique that we recently developed during a study of nitrate (NO3-) photochemistry. In addition to this basic research, we will also measure the rates of formation of hydroxyl radical (OH), nitrogen oxides (NOx), and HOOH in illuminated Antarctic snow samples. These measurements will be important inputs for future models, and will allow us to test whether known species (e.g., NO3-, NO2- and HNO2) are responsible for most of snowpack reactivity (e.g., OH formation). Overall, results from this award will significantly improve our ability to understand snowpack chemistry, and the resulting effects on the atmosphere, both in the Antarctic as well as in the many other regions with permanent or seasonal snow. These results will also strengthen efforts to use ice core records to monitor global change. In addition to these impacts, this award will help train students and a postdoctoral fellow, and results from this work will be integrated into two classes in order to expose students to some of the important issues facing polar regions.
This award supports a project to significantly improve our understanding of how Taylor Glacier flows and responds to climate changes. Taylor Glacier drains the Taylor Dome region of the East Antarctic Ice Sheet and terminates in Taylor Valley, one of the Dry Valleys of Victoria Land. It provides a crucial and unique link between two intensively studied Antarctic environments: the Taylor Dome, from which a 130 kyr ice core paleoclimate record has recently been extracted, and the Dry Valleys, a pivotal Long-Term Ecological Research (LTER) site and a focus of research on geomorphology and glacial geology. The proposed work will thus make an important contribution to ongoing efforts to exploit the Taylor Dome - Dry Valleys system to build a uniquely comprehensive view of regional long-term environmental changes. The proposed work has two complementary components: field research and numerical modelling. Two field seasons will be used to measure velocity, surface strain rate, mass balance, ice thickness, glacier bed reflectance, and subglacial topography, along a nearly complete longitudinal transect of the Taylor Glacier, and along select cross-valley transects. This information will be used to constrain numerical models of ice and heat flow for the Taylor Dome - Taylor Glacier system. These calibrated models will be used to analyze the time-dependent response of the Taylor Glacier to climate changes. The synthesis of results will be aimed to improve understanding of the glacial geomorphology of Taylor Valley, and to illuminate impacts on the Taylor Valley lakes ecosystem. The project will have a major role in furthering the careers of a doctoral-level graduate student and a post-doctoral researcher.
9814816 Blankenship This award supports a four year project to develop of better understanding the ice streams of the Ross Sea Embayment (A--F) which drain the interior West Antarctic Ice Sheet (WAIS) by rapidly moving vast quantities of ice to the calving front of the Ross Ice Shelf. The project will examine the role of these ice streams as buffers between the interior ice and the floating ice shelves. The reasons for their fast flow, the factors controlling their current grounding-line-, margin-, and head-positions are crucial to any attempt at modeling the WAIS system and predicting the future of the ice sheet. For the Antarctic ice streams of the Siple Coast, the transition from no-sliding (or all internal deformation) to motion dominated by sliding is defined as the "onset-region". To fully understand (and adequately model) the WAIS, this onset region must be better understood. The lateral margins of the ice streams are also a transition that need better explanation. Hypotheses on controls of the location of the onset region range from the "purely-glaciologic" to the "purely-geologic. Thus, to model the ice sheet accurately, the basal boundary conditions (roughness, wetness, till properties) and a good subglacial geologic map, showing the distribution, thickness, and properties of the sedimentary basins, are required. These parameters can be estimated from seismic, radar, and other geophysical methods. The transition region of ice stream D will be studied in detail with this coupled geophysical experiment. In addition, selected other locations on ice streams C & D will be made, to compare and contrast conditions with the main site on ice stream D. Site-selection for the main camp will be based on existing radar, GPS, and satellite data as well as input from the modeling community.
This award supports a comprehensive aerogeophysical survey of the Amundsen Sea Embayment (ASE) in West Antarctica. The University of Texas will join forces with the British Antarctic Survey to use both US and UK aircraft and instrumentation to achieve this survey. Analyses of the new aerogeophysical<br/>data will result in the generation of maps of ice sheet surface, volume and bottom-interface characteristics. These maps will support the efforts of a community of US and international researchers to assess the present and predict the future behavior of the ice sheet in the ASE.<br/>The West Antarctic ice sheet has been the subject of intensive interdisciplinary study by both the European and U.S. scientific communities since it was recognized to be a potential source for up to 5 meters of sea<br/>level rise, possibly on short timescales. In terms of ice discharge, the ASE is the largest drainage system in West Antarctica. Yet it has been comparatively unstudied, primarily due to its remoteness from logistical<br/>centers. The ASE is the only major drainage to exhibit significant elevation change over the period of available satellite observations. Present knowledge of the ice thickness and subglacial boundary conditions in the ASE are insufficient to understand its evolution or its sensitivity to climatic change.<br/>The results from our surveys are required to achieve the fundamental research objectives outlined by the US scientific community in an ASE Science Plan. The surveys and analyses will be achieved through international collaboration and will involve graduate students, undergraduates and high school apprentices.<br/>Through its potential for influencing sea level, the future behavior of the ASE is of primary societal importance. Given the substantial public and scientific interest that recent reports of change in West Antarctica have generated, we expect fundamental research in the Amundsen Sea Embayment, enabled by our surveys, will have widespread impact.
9909484 Lal This award is for support for three years of funding to develop a history of snow accumulation and physical processes occurring in the upper layers of ice deposited at several sites in Antarctica, using cosmogenic in-situ Carbon-14 (14C) and cosmogenic Beryllium-10 (10Be) as radiotracers. The proposed research emerges from recent studies of cosmogenic in-situ 14C in GISP2 Holocene and several Antarctic ice samples, which revealed marked differences in the 14C concentrations in the samples, compared to the theoretically expected values. The GISP2 samples have about the expected amount of 14C but the Antarctic samples are deficient by 30-50% or more. These results suggest that in slowly accumulating ice samples (such as occur in Antarctica), the cosmic ray implanted 14C is somehow partially lost, but quantitatively preserved in samples from areas of high accumulation. These results suggest that after deposition of the cosmogenic 14C, its concentration is decreased in firn due to processes such as recrystallization, sublimation/evaporation and redeposition. In order to quantify these processes, the atmospheric cosmogenic 10Be in ice samples will also be measured. Since 10Be and 14C have different responses to the firnification processes, their simultaneous study can help to elucidate the nature and importance of these processes. Samples from Taylor Dome, Vostok and Siple Dome will all be studied.
This award supports a study of the chemical composition of air in the snow layer (firn) in a region of "megadunes" near Vostok station, Antarctica. It will test the hypothesis that a deep "convective zone" of vigorous wind-driven mixing can prevent gas fractionation in the upper one-third of the polar firn layer. In the megadunes, ultralow snow accumulation rates lead to structural changes (large grains, pipes, and cracks) that make the permeability of firn to air movement orders of magnitude higher than normal. The unknown thickness of the convective zone has hampered the interpretation of ice core 15N/14N and 40Ar/36Ar ratios as indicators of past firn thickness, which is a key constraint on the climatically important variables of temperature, accumulation rate, and gas age-ice age difference. Studying this "extreme end-member" example will better define the role of the convective zone in gas reconstructions. This study will pump air from a profile of ~20 depths in the firn, to definitively test for the presence of a convective zone based on the fit of observed 15 N/14N and 40Ar/36Ar to a molecular- and eddy-diffusion model. Permeability measurements on the core and 2-D air flow modeling (in collaboration with M. Albert) will permit a more physically realistic interpretation of the isotope data and will relate mixing vigor to air velocities. A new proxy indicator of convective zone thickness will be tested on firn and ice core bubble air, based on the principle that isotopes of slow-diffusing heavy noble gases (Kr, Xe) should be more affected by convection than isotopes of fast-diffusing N2 . These tools will be applied to a test of the hypothesis that the megadunes and a deep convective zone existed at the Vostok site during glacial periods, which would explain the anomalously low 15N/14N and 40Ar/36Ar in the Vostok ice core glacial periods. The broader impacts of this work include 1) clarification of phase relationships of greenhouse gases and temperature in ice core records, with implications for understanding of past and future climates, 2) education of one graduate student, and 3) building of collaborative relationships with five investigators.
This award supports a collaborative study between South Dakota State University (SDSU) and University of California, San Diego (UCSD) to investigate the oxygen and sulfur isotope composition of sulfates from a number of large volcanic eruptions in the past 1000 years. The project aims to drill a number of shallow ice cores at South Pole and return them to SDSU and UCSD lab for chemical and isotope analysis. Preliminary results from measurements of isotopes in sulfate samples from several volcanic eruptions in Antarctic snow and ice indicate that isotopic composition of volcanic sulfate contains abundant valuable information on atmospheric chemical and dynamic processes that have not been previously investigated. One tentative conclusion is that mass-independently fractionated sulfur isotopes reveal that atmospheric photolysis of sulfur compounds occurs at longer UV wavelengths than those in the Archean atmosphere, possibly reflecting the atmospheric ozone and/or oxygen concentration. This suggests that isotopic composition of atmospheric sulfate may be used to understand the role of UV radiation in sulfur dioxide conversion in the atmosphere and to track the evolution (i.e., oxygenation) of the atmosphere and the origin of life on Earth. Other major research objectives include understanding what impact massive volcanic eruptions have on the oxidative capacity of the atmosphere, what oxidants and mechanisms are involved in the oxidation or conversion of volcanic sulfur dioxide to sulfate in the stratosphere and what isotopic criteria may be used to differentiate ice core signals of stratospheric eruptions from those of tropospheric eruptions. By providing educational and research opportunities to graduate and undergraduate students at both SDSU and UCSD, the proposed project will promote the integration of research and education and contribute to human resource development in science and engineering. The project will contribute to a proposed REU chemistry site program at SDSU. This collaboration will utilize the complementary strengths of both labs and promote exchange between the two institutions. International collaboration will enhance scientific cooperation between France and US.
The summit crater of Mt. Moulton, in West Antarctica, contains a 600-m thick horizontally-exposed section of ice with intercalated tephra layers from nearby Mt Berlin. Argon-40/Argon-39 dating of the thick, near-source tephra indicates that the age of the horizontal ice section ranges between 15,000 and 492,000 years. Thus, the Mt Moulton site offers an unparalleled repository of ancient West Antarctic snow and trapped air that can be used to investigate West Antarctic climate over much of the past 500,000 years. The planar nature and consistent dips of the tephra layers suggests that, although the ice section has thinned, it is otherwise undeformed. The Mt. Moulton site was visited during the 1999/2000 field season, at which time a horizontal ice core representing approximately 400 meters of ice was collected, ranging in age from 15,000 to older than 480,000 years. In addition to this horizontal core, samples of ice at a range of depths were collected in order to test the quality of the climate record in the ice. Forty tephra layers intercalated in the ice were also collected in order to provide chronology for the ice section. The results of this first effort are extremely encouraging. Based on the d?18 O of ice, for example, there is clearly a useable record of past climate at Mt. Moulton extending back beyond 140,000 years. There is work to do, however, to realize the full potential of this horizontal ice core. The elemental and isotopic composition of trapped gases suggest some contamination with modern air, for example. As gas cross-dating of ice cores is the current standard by which climate records are intercompared, we need to understand why and how the gas record is compromised before adding Moulton to our arsenal of ice core paleoclimate records. This award supports a collaborative effort between three institutions with following objectives: 1) to evaluate more thoroughly the integrity of the climatic record through shallow drilling of the blue ice area, as well as the snow field upslope from the blue ice; 2) to improve the radioisotopic dating of specific tephra layers; 3) to obtain baseline information about modern snowfall deposition, mean annual temperature, and wind pumping around the summit of Mt. Moulton; and 4) to study how firn densification differs when surface accumulation changes from net accumulation to net ablation.
High latitude deep ice cores contain fundamental records of polar temperatures, atmospheric dust loads (and continental aridity), greenhouse gas concentrations, the status of the biosphere, and other essential properties of past environments. An accurate chronology for these records is needed if their significance is to be fully realized. The dating challenge has stimulated efforts at orbital tuning. In this approach, one varies a timescale, within allowable limits, to optimize the match between a paleoenvironmental property and a curve of insolation through time. The ideal property would vary with time due to direct insolation forcing. It would be unaffected by complex climate feedbacks and teleconnections, and it would give a clean record with high signal/noise ratio. It is argued strongly that the O2/N2 ratio of ice core trapped gases is such a property, and evidence is presented that this property, whose atmospheric ratio is nearly constant, is tied to local summertime insolation. This award will support a project to analyze the O2/N2 ratios at 1 kyr intervals from ~ 115-400 ka in the Vostok ice core. Ancillary measurements will be made of Ar/N2, and Ne/N2 and heavy noble gas ratios, in order to understand bubble close-off fractionation and its manifestation in the Vostok trapped gas record. O2/N2 variations will be matched with summertime insolation at Vostok to achieve a high-accuracy chronology for the Vostok core. The Vostok and other correlatable climate records will then be reexamined to improve our understanding of the dynamics of Pleistocene climate change.
This award supports a program of field surveys of an area within the large, well-developed megadune field southeast of Vostok station. The objectives are to determine the physical characteristics of the firn across the dunes, including typical climate indicators such as stable isotopes and major chemical species, and to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. Field study will consist of surface snowpit and shallow core sampling, ground penetrating radar (GPR) profiling, GPS topographic and ice motion surveys, AWS installation, accumulation/ ablation measurements, subsurface temperature, and firn permeability studies. Field work in two successive seasons is proposed. Continent-wide remote sensing studies of the dunes will be continued, using the new group of instruments that are now, or will shortly be available (e.g., MODIS, MISR, GLAS, AMSR). The earlier study of topographic, passive microwave, and SAR characteristics will be extended, with the intent of determining the relationships of dune amplitude and wavelength to climate parameters, and further development of models of dune formation. Diffusion, ventilation, and vapor transport processes within the dune firn will be modeled as well. A robust program of outreach is planned and reporting to inform both the public and scientists of the fundamental in-situ and remote sensing characteristics of these uniquely Antarctic features will be an important part of the work. Because of their extreme nature, their broad extent, and their potential impact on the climate record, it is important to improve our current understanding of these. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on past terrestrial climate, or to processes active on other planets. Megadunes are likely to represent an end-member in firn diagenesis, and as such, may have much to teach us about the processes involved.
This award supports a detailed laboratory analysis of the mass-independent isotopic composition of processes associated with atmospheric nitrate trapped in the snow pack at the South Pole. The project will specifically test if the oxygen isotopes 16O, 17O, 18O of nitrate can be used to probe the denitrification of the Antarctic stratosphere. Despite decades of research, there are several important issues in Antarctic atmospheric science, which are presently inadequately resolved. This includes quantification over time of the sources of nitrate aerosols. Today, little is known about the past denitrification of the stratosphere in high latitude regions. This lack of knowledge significantly limits our ability to understand the chemical state of ancient atmospheres and therefore evaluate present and past-coupled climate/atmosphere models. The role of nitrogen in environmental degradation is well known. This issue will also be addressed in this proposal. Atmospheric aerosols have now been shown to possess a mass-independent oxygen isotopic content. The proposed research will investigate the stable oxygen isotope ratios of nitrate in Antarctica both collected in real time and from the snow. Two periods of time will be covered. Full year nitrate aerosol collections, with week resolution time horizons, will be performed at the South Pole. Weekly aerosol collections will help us to identify any seasonal trend of the oxygen-17 excess anomaly, and eventually link this anomaly to the denitrification of the Antarctic stratosphere. This data set will also be used to test our assumption that the oxygen isotopic anomaly of nitrate is mainly formed in the stratosphere and is well preserved in the snow pack. If true, we will for the first time resolve an atmospheric signal extracted from a nitrate profile. The snow pit will allow us to see any trend in the data on a multiple decade timescale.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the Transantarctic Mountains and an adjacent region of East Antarctica. The East Antarctic shield is one of Earth's oldest and largest cratonic assemblies, with a long-lived Archean to early Paleozoic history. Long-standing interest in the geologic evolution of this shield has been rekindled over the past decade by tectonic models linking East Antarctica with other Precambrian crustal elements in the Rodinia and Gondwanaland supercontinents. It is postulated that the Pacific margin of East Antarctica was rifted from Laurentia during late Neoproterozoic breakup of Rodinia, and it then developed as an active plate boundary during subsequent amalgamation of Gondwanaland in the earliest Paleozoic. If true, the East Antarctic shield played a key role in supercontinent transformation at a time of global changes in plate configuration, terrestrial surficial process, sea level, and marine geochemistry and biota. A better understanding of the geological evolution of the East Antarctic shield is therefore critical for studying Precambrian crustal evolution in general, as well as resource distribution, biosphere evolution, and glacial and climate history during later periods of Earth history. Because of nearly complete coverage by the polar ice cap, however, Antarctica remains the single most geologically unexplored continent. Exposures of cratonic basement are largely limited to coastal outcrops in George V Land and Terre Adelie (Australian sector), the Prince Charles Mountains and Enderby Land (Indian sector), and Queen Maud Land (African sector), where the geology is reasonably well-known. By contrast, little is known about the composition and structure of the shield interior. Given the extensive ice cover, collection of airborne geophysical data is the most cost-effective method to characterize broad areas of sub-ice basement and expand our knowledge of the East Antarctic shield interior. <br/><br/>This project will conduct an airborne magnetic survey (coupled with ground-based gravity measurements) across an important window into the shield where it is exposed in the Nimrod Glacier area of the central Transantarctic Mountains. Specific goals are to:<br/>1. Characterize the magnetic and gravity signature of East Antarctic crustal basement exposed at the Ross margin (Nimrod Group),<br/>2. Extend the magnetic data westward along a corridor across the polar ice cap in order to image the crust in ice-covered areas,<br/>3. Obtain magnetic data over the Ross Orogen in order to image the ice-covered boundary between basement and supracrustal rocks, allowing us to better constrain the geometry of fundamental Ross structures, and<br/>4. Use the shape, trends, wavelengths, and amplitudes of magnetic anomalies to define magnetic domains in the shield, common building blocks for continent-scale studies of Precambrian geologic structure and evolution.<br/><br/>High-resolution airborne magnetic data will be collected along a transect extending from exposed rocks of the Nimrod Group across the adjacent polar ice cap. The Nimrod Group represents the only bona fide Archean-Proterozoic shield basement exposed for over 2500 km of the Pacific margin of Antarctica. This survey will characterize the geologically well-known shield terrain in this sector using geophysical methods for the first time. This baseline over the exposed shield will allow for better interpretation of geophysical patterns in other ice-covered regions and can be used to target future investigations. In collaboration with colleagues from the BGR (Germany), a tightly-spaced, "draped" helicopter magnetic survey will be flown during the 2003-04 austral summer, to be complemented by ground measurements of gravity over the exposed basement. Data reduction, interpretation and geological correlation will be completed in the second year. This project will enhance the education of students, the advancement of under-represented groups, the research instrumentation of the U.S. Antarctic Program, partnerships between the federal government and institutions of higher education, and cooperation between national research programs. It will benefit society through the creation of new basic knowledge about the Antarctic continent, which in turn may help with applied research in other fields such as the glacial history of Antarctica.
0125981<br/>Sowers<br/><br/>This award supports a project to construct an isotopic record of atmospheric methane and nitrous oxide over the last century from South Pole firn air. Over the last 150 years, atmospheric methane and nitrous oxide concentrations have risen in response to increased emissions from various anthropogenic activities. As this trend is liable to continue in the foreseeable future, it is important to understand the biogeochemical processes that contribute to the emissions of these two greenhouse gases. In this context, records of the variations in the atmospheric loading of trace gases found in ice cores and interstitial spaces in the snow near the surface of the ice sheet (firn air) provide fundamental boundary conditions for reconstructing historical emission records. One way to improve our understanding of the cycling of bioactive trace gases and their emission records is to use stable isotope tracers, which have been recorded in the ice cores and firn air. This project will develop records of carbon-13 and deuterium isotope ratios of methane, as well as the nitrogen-15, oxygen-18 and the isotopomer composition of nitrous oxide trapped in firn air samples collected in January 2001 at the South Pole. These measurements will allow isotopic records of these atmospheric gases to be reconstructed throughout the 20th century. Such records will help to establish the relative contribution of individual sources with a higher degree of confidence than is currently available.
This award supports continued acquisition of high resolution, radar reflection profiles of the snow and ice stratigraphy between core sites planned along traverse routes of the U.S. component of the International<br/>Trans-Antarctic Scientific Expedition (U.S.-ITASE). The purpose is to use the profiles to establish the structure and continuity of firn stratigraphic horizons over hundreds of kilometers and to quantitatively<br/>assess topographic and ice movement effects upon snow deposition. Other objectives are to establish the climatic extent that a single site represents and to investigate the cause of firn reflections. The radar<br/>will also be used to identify crevasses ahead of the traverse vehicles in order to protect the safety of the scientists and support personnel on the traverse. Collaboration with other ITASE investigators will use the radar horizons as continuous isochronic references fixed by the core dating to calculate historical snow accumulation rates. The primary radar system uses 400-MHz (center frequency) short-pulse antennas, which (with processing) gives the penetration of 50-70 meters. This is the depth which is required to exceed the 200-year deposition horizon along the traverse routes. Profiles at 200 MHz will also be recorded if depths greater than 70 meters are of interest. Processing will be accomplished by data compression (stacking) to reveal long distance stratigraphic deformation, range gain corrections to give proper weight to signal amplitudes, and GPS corrections to adjust the records for the present ice sheet topography. Near surface stratigraphy will allow topographic and ice movement effects to be separated. This work is critical to the success of the U.S.-ITASE program.
Roy, Martin; Hemming, Sidney R.; Goldstein, Steven L.; Van De Flierdt, Christina-Maria
No dataset link provided
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the sediment core from the Southern Ocean for paleoenvironmental research. The polar regions are susceptible to the largest changes in climate and are among the least accessible places on Earth. Current concern about the instability of the West Antarctic Ice Sheet has heightened awareness of the vulnerability of polar regions. This proposal seeks to gain a basic understanding of the isotopic characteristics of terrigenous sediment sources derived from Antarctica in the Holocene and Last Glacial Maximum, and their dispersal into the Southern Ocean. Terrigenous clastic sediments are brought to the ocean from continental sources via rivers, ice and wind, and distributed within the ocean by surface and deep currents. At present there are virtually no isotopic data on circumpolar detritus, save a few strontium (Sr) isotopic ratios in the Atlantic sector. This project will fill part of this gap. From the large range in geological ages of crustal provinces of Antarctica, we would predict that there are large isotopic differences in detritus around the continent. The main objectives are to (1) characterize the strontium-neodymium-lead-argon (Sr-Nd-Pb-Ar) isotope compositions of sediment sources derived from Antarctica, (2) to identify the composition and source ages of major ice rafted detritus (IRD) contributions by analyzing individual grains of hornblende and feldspar in conjunction with bulk isotopic analysis, and (3) track sediment dispersal into the Antarctic Circumpolar Current (ACC) during the Holocene and Last Glacial Maximum.<br/><br/>Because of the paucity of circumpolar data, this research necessarily has a large exploratory component. Consequently, it will provide a basic database for future studies. Nevertheless there are important hypothesis-driven questions that will be addressed in this primary pass. Can lessons learned in North Atlantic IRD studies be applied toward understanding the history of Antarctic ice sheets? Can the large geological variability around the Antarctic margin be treated as a series of natural tracer injections into the ACC, and thus characterize its trajectory, speed, and interaction with other current systems today and in the past? The proposed study is motivated by an exciting set of results from the South Atlantic, showing that detrital Sr isotope ratios are a sensitive current tracer in that region. This research should serve a basic need across many Earth Science disciplines if the use of long-lived radiogenic isotopes (Sr-Nd-Pb-Ar) as tracers of marine sediment sources is successful in elucidating processes related to changing climatic conditions. The results of this study will fill a basic gap in our knowledge of an important region of the Earth. At the same time, it will provide an essential basis for attempting reconstruction of the ACC during the LGM, as well as for future studies of Antarctic geology, ice sheet history, and the Southern Ocean circulation.
9316564 Mayewski This award is for support for a three year program to provide a high resolution record of the Antarctic climate through the acquisition, analysis, and interpretation of records of atmospheric chemical deposition taken from three ice cores located at sites within or immediately adjacent to the Ross Ice Drainage System (RIDS). These cores include one from Taylor Dome, and two from West Antarctic locations identified as potential deep drilling sites for the WAISCORES program. Collection of the two West Antarctic cores is intended to be a lightweight dry-drilling operation to depths of ~ 200 m, which will provide records of > 2 kyr. Glaciochemical analyses will focus on the major cations and anions found in the antarctic atmosphere, plus methanesulfonic acid and selected measurements of the hydrogen ion, aluminum, iron, and silica. These analyses, and companion stable isotope and particle measurements to be carried out by other investigators require < 7% by volume of each core, leaving > 90% for other investigators and storage at the U.S. National Ice Core Laboratory. These records are intended to solve a variety of scientific objectives while also providing spatial sampling and reconnaissance for future U.S. efforts in West Antarctica. ***
This award is for support for a program to make high resolution studies of variations in the concentration of methane, the oxygenisotope composition of paleoatmospheric oxygen, and the total gas content of deep Antarctic ice cores. Studies of the concentration and isotopic composition of air in the firn of the Antarctic ice sheet will also be continued. One objective of this work is to use the methane concentration and oxygen-isotope composition of oxygen of air in ice as time-stratigraphic markers for the precise intercorrelation of Greenland and Antarctic ice cores as well as the correlation of ice cores to other climatic records. A second objective is to use variations in the concentration and interhemispheric gradient of methane measured in Greenland and Antarctic ice cores to deduce changes in continental climates and biogeochemistry on which the atmospheric methane distribution depends. A third objective is to use data on the variability of total gas content in the Siple Dome ice core to reconstruct aspects of the glacial history of West Antarctica during the last glacial maximum. The fourth objective is to participate in collaborative studies of firn air chemistry at Vostok, Siple Dome, and South Pole which will yield much new information about gas trapping in ice as well as the concentration history and isotopic composition of greenhouse gases, oxygen, trace biogenic gases and trace anthropogenic gases during the last 100 years.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research project between the University of California-Santa Cruz, the University of Texas-Austin, and the Ohio State University to investigate sediment samples recovered from the base of the West Antarctic Ice Sheet (WAIS). West Antarctica is a remote polar region but its dynamic ice sheet, complicated tectonic history, and the sedimentary record of Cenozoic glaciation make it of particular interest to glaciologists and geologists. Glaciologists are concerned with the possibility of significant near-future changes in mass balance of the WAIS that may contribute to the ongoing global sea level rise. Geologists are investigating in West Antarctica the fundamental process of continental extension and are constructing models of a polar marine depositional system using this region as the prime modern example. The subglacial part of West Antarctica has escaped direct geological investigations and all that is known about subglacial geology comes from geophysical remote sensing. Recent acquisitions of new, high-quality geophysical data have led to generation of several enticing models. For instance, subglacial presence of high-magnitude, short-wavelength magnetic anomalies has prompted the proposition that there may be voluminous (>1 million cubic km), Late Cenozoic flood basalts beneath the ice sheet. Another important model suggests that the patterns of fast ice streaming (~100 meters/year) and slow ice motion (~1-10 meters/year) observed within the WAIS are controlled by subglacial distribution of sedimentary basins and resistant bedrock. These new geophysics-based models should be tested with direct observations because they are of such great importance to our understanding of the West Antarctic tectonic history and to our ability to predict the future behavior of the WAIS.<br/><br/>This research is designed as a pilot study to provide new geologic data, which may help to test the recent models inferred from geophysical observations. The new constraints on subglacial geology and on its interactions with the WAIS will be obtained through petrological and geochemical analyses of basal and subglacial sediments collected previously from seven localities. This investigation will take place in the context of testing the following three hypotheses: (A) the provenance of bedrock clasts in the glacial sediment samples is primarily from West Antarctica, (B) some clasts and muds from the West Antarctic subglacial sediments have been derived by erosion of the (inferred) subglacial Late Cenozoic flood basalts, and (C) the sediments underlying the West Antarctic ice streams were generated by glacial erosion of preglacial sedimentary basins but the sediments recovered from beneath the slow-moving parts of the WAIS were produced through erosion of resistant bedrock.<br/><br/>The individual hypotheses will be tested by collecting data on: (A) petrology, geochemistry and age of granitoid clasts, (B) petrology, geochemistry and age of basaltic clasts combined with mud geochemistry, and (C) clay mineralogy/paragenesis combined with textural maturity of sand and silt grains. The results of these tests will help evaluate the interesting possibility that subglacial geology may have first-order control on the patterns of fast ice flow within the WAIS. The new data will also help to determine whether the subglacial portion of West Antarctica is a Late Cenozoic flood basalt province. By combining glaciological and geological aspects of West Antarctic research the proposed collaborative project will add to the ongoing U.S. effort to create a multidisciplinary understanding of this polar region.
0087235<br/>Grew<br/><br/>This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the role of beryllium in lower crustal partial melting events. The formation of granitic liquids by partial melting deep in the Earth's crust is one of the major topics of research in igneous and metamorphic petrology today. One aspect of this sphere of research is the beginning of the process, specifically, the geochemical interaction between melts and source rocks before the melt has left the source area. One example of anatexis in metamorphic rocks affected by conditions found deep in the Earth's crust is pegmatite in the Archean ultrahigh temperature granulite-facies Napier Complex of Enderby Land, East Antarctica. Peak conditions for this granulite-facies metamorphism are estimated to have reached nearly 1100 Degrees Celsius and 11 kilobar, that is, conditions in the Earth's lower crust in Archean time. The proposed research is a study of the Napier Complex pegmatites with an emphasis on the minerals and geochemistry of beryllium. This element, which is estimated to constitute 3 ppm of the Earth's upper crust, is very rarely found in any significant concentrations in metamorphic rocks subjected to conditions of the Earth's lower crust. Structural, geochronological, and mineralogical studies will be carried out to test the hypothesis that the beryllium pegmatites resulted from anatexis of their metapelitic host rocks during the ultrahigh-temperature metamorphic event in the late Archean. Host rocks will be analyzed for major and trace elements. Minerals will be analyzed by the electron microprobe for major constituents including fluorine and by the ion microprobe for lithium, beryllium and boron. The analytical data will be used to determine how beryllium and other trace constituents were extracted from host rocks under ultrahigh-temperature conditions and subsequently concentrated in the granitic melt, eventually to crystallize out in a pegmatite as beryllian sapphirine and khmaralite, minerals not found in pegmatites elsewhere. Mineral compositions and assemblages will be used to determine the evolution and conditions of crystallization and recrystallization of the pegmatites and their host rocks during metamorphic episodes following the ultrahigh-temperature event. Monazite will be analyzed for lead, thorium and uranium to date the ages of these events. Because fluorine is instrumental in mobilizing beryllium, an undergraduate student will study the magnesium fluorphosphate wagnerite in the pegmatites in order to estimate fluorine activity in the melt as part of a senior project. The results of the present project will provide important insights on the melting process in general and on the geochemical behavior of beryllium in particular under the high temperatures and low water activities characteristic of the Earth's lower crust.
This award provides one year of support to use newly developed technology in which an ice-core melter is coupled with both an Inductively Coupled Plasma - Mass Spectrometer (ICP-MS) and a traditional Continuous Flow Analysis (CFA) system, to measure a continuous time series of chemical and trace element deposition on the Siple Dome ice core from West Antarctica. A coupled ice-core melter, ICP-MS, and CFA system will be used to measure concentrations of a number of elements, isotopes and chemical species at very high depth resolution (~2-cm) in the top 54 m of the Siple Dome A-core. Pilot data from analyses of ~6 m from the nearby but much lower accumulation J-core site at Siple Dome, together with more extensive results from Summit, Greenland, indicate that it will be possible to obtain exactly co-registered, high-quality records of at least 12 seasonally varying elements (sodium, magnesium, aluminum, potassium, calcium, iron, manganese, rubidium, strontium, zirconium, barium, lead) and three other chemical species and ions (ammonium, nitrate, calcium ion) with this system. Under this proposed research, we will also add continuous measurements of sulfate to our system. Because more than sufficient core from Siple Dome for these depths is archived at the National Ice Core Laboratory, the proposed research will require no fieldwork. The continuous, very high-resolution, ~350-y record of these elemental tracers will enhance the value of previous chemical and isotopic measurements that have been made on the Siple Dome core and will be particularly valuable for comparisons between ice-core proxies and modern instrumental data related to El Nino-Southern Oscillation (ENSO) as well as for validation of model simulations of atmospheric circulation. These data, and the expertise gained through this research, will be invaluable when this novel chemical analysis technology is eventually applied to deep ice-core records for the study of rapid climate-change events.
Elliot, David; Bell, Robin; Blankenship, Donald D.; Brozena, J. M.; Finn, C. A.; Hodge, S. M.; Kempf, Scott D.; Behrendt, J. C.; Morse, David L.; Peters, M. E.; Studinger, Michael S.
This award will support a combined airborne radar and aeromagnetic survey of two 220 x 330 km regions between the Transantarctica Mountains and Marie Byrd Land during the 1990-91 and 1991-92 field seasons. These efforts will address significant problems identified in the Ross Transect Zone (RTZ) by the National Academy of Sciences (1986) report "Antarctic Solid Earth Sciences Research," and by the report to NSF "A Plan for a United States Program to Study the Structure and Evolution of the Antarctic Lithosphere (SEAL)." The surveys will be flown using the NSF/TUD radar and an areomagnetics system mounted in a light aircraft. The grid spacing will be 5 km and navigation will be by radiopositioning. In addition to maps of subglacial topography and magnetic intensity, attempts will be made to reconstruct the position of subglacial diffractors in three dimensions. This reconstruction should give new information about the distribution of escarpments and therefore the tectonic relationships within the region, especially when combined with the magnetic results. These experiments will be conducted by the Byrd Polar Research Center of the Ohio State University and the Water Resources and Geological Divisions of the U.S. Geological Survey.
This award is for support for four years of funding for a program of biogenic sulfur measurements on the Siple Dome ice core. Biogenic sulfur is a major aerosol-forming constituent of the atmosphere and has potentially important links to the earth's radiation budget. Previous work on the Vostok ice core has demonstrated a remarkable climate-related variability in biogenic sulfur, suggesting that the sulfur cycle may act to stabilize climate (keep the glacial atmosphere cool and the interglacial atmosphere warm) in the Southern Hemisphere. In this study, methane-sulfonate (MSA) will be measured on the Siple Dome ice core as part of the West Antarctic ice sheet program (WAIS). Siple Dome is located in a region which is strongly impacted by the incursion of marine air onto the Antarctic plateau. Because of its proximity to the coast and meteorological setting, it is expected that variability in high-latitude marine biogenic sulfur emissions should dominate the MSA record at this site. In addition to the deep ice core record, samples from shallow cores will also be analyzed to provide information about regional variability and decadal-to-centennial scale variability in the deposition of sulfur-containing aerosols from high latitude source regions over the past 200 years.
9980691 Wahlen This award is for support for three years of funding to reconstruct the atmospheric carbon dioxide (CO2) and carbon-13 isotope (d13C) concentration in ice cores from Antarctica over several climatic periods. Samples from the Holocene, the Last Glacial Maximum (LGM)-Holocene transition and glacial stadial/interstadial episodes will be examined. Samples from the Siple Dome ice core drilled in 1998/99 will be made, in addition to measurements from the Taylor Dome and Vostok ice cores. The major objectives are to investigate the phase relationships between variations in the concentration of atmospheric CO2, its carbon isotope composition, and temperature changes (indicated by 18dO and dD of the ice) during deglaciations as well as across rapid climate change events (e.g. Dansgaard-Oeschger events). This will help to determine systematic changes in the global carbon cycle during and between different climatic periods, and to ascertain if the widely spread northern hemisphere temperature stadial/interstadial events produced a global atmospheric carbon dioxide signal. Proven experimental techniques will be used.
This award is for support for a three year program to investigate the response of ice domes, such as Siple Dome in West Antarctica, to changing boundary conditions, for example as arising from fluctuations in thickness or position of bounding ice streams. A range of models will be used, from simple one-dimensional analytical models to coupled dynamic-thermodynamic flow models, to investigate the response of the ice dome to boundary forcing, and the record that boundary forcing can leave in the ice core record. Using radar, temperature, and ice core data from the currently funded field programs on Siple Dome, and ice flux and thickness values from the map view model as boundary conditions, a flow line across Siple Dome will be studied and possible ranges of time scales, the likely origin of ice near the bed, and the basal temperature conditions that exist now and existed in the past will be determined.The response of internal stratigraphy patterns to climate and dynamic forcing effects will be investigated and observed internal layers from ice cores will be used to infer the forcing history.
9909469 Scambos This award provides support for three years of funding to study the scar-like features that are well-known from the Siple Coast ice stream system in West Antarctica. The objective of the proposed field work is to identify the nature of several as yet unvisited scars, and to further characterize previously-identified margin scars that are poorly dated. Advanced Very High Resolution Radiometer (AVHRR) and Radarsat image data will be used to locate and map the features, and place them in a regional context. The study seeks to describe the recent history of the Siple Coast glaciers and investigate the causes of their changes in configuration. The main investigative tools will be low-frequency RES and high-frequency ground penetrating radar (GPR) profiles to image internal layers and measure depths to buried crevasses or disrupted layering. This, coupled with accumulation rates determined from shallow ice cores, will provide "shutdown" ages for the margin features. The field data will provide input parameters for simple models of ice flow for margins and inter-ice stream ridges during active shearing and after shutdown. This modeling will estimate the initial elevation of a scar at the time of shut down and the corresponding ice stream elevation at that time.
This award is for two years of support to perform radar investigations across former shear margins at Roosevelt Island and Ice Stream C in order to measure changes in the configuration and continuity of internal layers and the bed. The broad goal of these investigations is to gain an understanding of ice stream flow and the timing and mechanisms of ice stream shutdown. A high-resolution short-pulse radar system will be used for detailed examination of the uppermost hundred meters of the firn and ice, and a monopulse sounding-radar system will be used to image the rest of the ice column (including internal layers) and the bed. Changes in the shape and continuity of layers will be used to interpret mechanisms and modes of ice stream flow including the possible migration of stagnation fronts and rates of shut-down. Variations in bed reflectivity will be used to deduce basal hydrology conditions across lineations. Accumulation rates deduced from snow pits and shallow cores will be used to estimate near-surface depth-age profiles. Improved understanding of ice stream history opens the possibility of linking changes in the West Antarctic ice sheet with the geologic evidence from Northern Victoria Land and the ocean record of the retreat of the grounding line in the Ross Sea.
This award is for support for two years to develop the technology and methodology for digitizing the photographs and analyzing the thin sections from ice cores. In addition, the application of digital technology for whole-core stratigraphy, using digital photography, image enhancement and image processing will be investigated. The thin section analysis will be piloted with samples already in hand from the Taylor Dome ice core. If successful, these techniques will be applied to samples from the Siple Dome ice core, in cooperation with Principal Investigators already funded to retrieve and examine these sections. The original digital images with all original data annotation files will be distributed to Siple Dome principal investigators for their use in the interpretation of their own data. All software and hardware acquired for this project will become part of the permanent equipment inventory at the U.S. National Ice Core Laboratory and will be available for use by clients at the facility.
This award is for support for a program to investigate the visual stratigraphy, index physical properties, relaxation characteristics and crystalline structure of ice cores from Siple Dome, West Antarctica. This investigation will include measurements of a time-priority nature that must be initiated at the drill site on freshly-drilled cores. This will be especially true of cores from the brittle ice zone, which is expected to comprise a significant fraction of the ice core. The brittle zone includes ice in which relaxation , resulting from the release of confining pressure is maximized and leads to significant changes in the mechanical condition of the core that must be considered in relation to the processing and analysis of ice samples for entrapped gas and chemical studies. This relaxation will be monitored via precision density measurements made initially at the drill site and repeated at intervals back in the U.S. Other studies will include measurement of the annual layering in the core to as great a depth as visual stratigraphy can be deciphered, crystal size measurements as a function of depth and age, c-axis fabric studies, and analysis of the physical properties of any debris-bearing basal ice and its relationship to the underlying bedrock. Only through careful documentation and analysis of these key properties can we hope to accurately assess the dynamic state of the ice and the age-depth relationships essential to deciphering the paleoclimate record at this location.
Dunbar/Kyle OPP 9527373 Zielinski OPP 9527824 Abstract The Antarctic ice sheets are ideal places to preserve a record the volcanic ash (tephra) layers and chemical aerosol signatures of volcanic eruptions. This record, which is present both in areas of bare blue ice, as well as in deep ice cores, consists of a combination of local eruptions, as well as eruptions from more distant volcanic sources from which glassy shards can be chemically fingerprinted and related to a source volcano. Field work carried out during the 1994/1995 Antarctic field season in the Allan Hills area of Antarctica, and subsequent microbeam chemical analysis and 40Ar/39Ar dating has shown that tephra layers in deep Antarctic ice preserve a coherent, systematic stratigraphy, and can be successfully mapped, dated, chemically fingerprinted and tied to source volcanoes. The combination of chemical fingerprinting of glass shards, and chemical analysis of volcanic aerosols associated with ash layers will allow establishment of a high-resolution chronology of local and distant volcanism that can help understand patterns of significant explosive volcanisms and atmospheric loading and climactic effects associated with volcanic eruptions. Correlation of individual tephra layers, or sets of layers, in blue ice areas, which have been identified in many places the Transantarctic Mountains, will allow the geometry of ice flow in these areas to be better understood and will provide a useful basis for interpreting ice core records.
This award is for support of a program to reconstruct the record of atmospheric carbon dioxide (and the carbon-13 isotopes of carbon dioxide) over several intervals, including the Last Glacial Maximum-Holocene transition, interstadial episodes, the mid-Holocene, the last 1000 years and the penultimate glacial period, using ice from the Taylor Dome and Vostok ice cores. The major objective of this study is to investigate the phase relationship between variations of the greenhouse gases occluded in the ice cores and temperature changes (indicated by oxygen and deuterium isotopes) during the last deglaciation. In addition, the concentration of atmospheric carbon dioxide over the past 1000 years and during the mid-Holocene will be determined in these cores.
This award supports an in situ and short traverse seismic reflection/refraction and magnetotelluric experiment in West Antarctica. This collaborative experiment involves four awards at four institutions. The four-fold purpose is 1) to investigate part of the Byrd Subglacial Basin, 2) to test techniques for this work that could be done in a long traverse, 3) to determine the viability of the magnetotelluric method on a thick (electrically resistive) ice sheet, and 4) to evaluate the relative merits of refraction with wide reflection versus reflection with narrow refraction seismic studies in imaging the lithosphere. The geophysical techniques that will be employed are capable of imaging the ice sheet, the continental lithosphere, and the upper mantle, as well as determining physical properties of parts of the lithosphere and mantle. Investigations of outcrop geology over the last thirty years in West Antarctica and the Transantarctic Mountains have lead to recent interpretations that the crust is made up of many different lithospheric blocks. Seismic reflection work is the only way to image the crust in detail and the refraction work is the only way to determine physical properties of the layers and blocks defined by the reflection work. The magnetotelluric work is scientifically risky because it may not yield useful information when used over the electrically resistive ice sheet; however, if it works it has the potential to image molten rock in the crust and upper mantle. In a continental rift region such as West Antarctica, the presence of melt in the lithosphere is likely and, if documented, has very important ramifications to ice sheet dynamics. Research work supported by this award is expected to provide constraints to models of a range of crustal processes from models of ice sheet dynamics to tectonic and kinematic models of lithospheric thinning and rifting.
This award supports a project to examine the physical processes that affect the manner in which heat, vapor and chemical species in air are incorporated into snow and polar firn. The processes include advection, diffusion, and the effects of solar radiation penetration into the snow. An understanding of these processes is important because they control the rate at which reactive and non-reactive chemical species in the atmosphere become incorporated into the snow, firn, and polar ice, and thus will affect interpretation of polar ice core data. Currently, the interpretation of polar ice core data assumes that diffusion controls the rate at which chemical species are incorporated into firn. This project will determine whether ventilation, or advection of the species by air movement in the firn, and radiation penetration processes have a significant effect. Field studies at the two West Antarctic ice sheet deep drilling sites will be conducted to determine the spatial and temporal extent for key parameters, and boundary conditions needed to model the advection, conduction, and radiation transmission/absorption processes. An existing multidimensional numerical model is being expanded to simulate the processes and to serve as the basis for ongoing and future work in transport and distribution of reactive chemical species.
9318121 Anandakrishnan This award is for support for a three year project to test the hypothesis that a controlling parameter of fast ice-stream flow is the hydrologic state of discrete zones of high friction ("sticky spots") at the bed of the ice streams. Previous work has discovered an enormous difference in basal microearthquake activity between fast-flowing ice stream B and ice stream C, which stopped flowing within the last 200 years. It is hypothesized that the basal water system is lubricating the sticky spots under the fast ice stream and thus inhibiting microearthquake activity, and at the same time permitting fast ice flow. This experiment is intended to collect a continuous record of wide-bandwidth microearthquake data from a variety of sites, on the ice streams, in the transition zone, and on the inland ice. ***
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research for construction of a long-term record of climate during the late Cretaceous and early Paleogene to assess the annual seasonality in temperature on the coastal margin of Antarctica. Stable isotope and element compositions of well-preserved bivalve shells collected on Seymour Island will be the primary source of data used to reconstruct paleoenvironmental conditions. Seasonal temperature records collected through high-resolution sampling along growth structures in bivalve shells will allow seasonality to be assessed during different climate states and during periods of rapid climate change. In addition, high stratigraphic resolution will enable this project to detect the presence and frequency of short-lived thermal excursions that may have extended to such high latitudes. To compile a reliable temporal record of paleoclimate, two major avenues of investigation will be undertaken: 1) precise stratigraphic (and therefore, temporal) placement of fossils over a large geographic area will be employed through the use of a graphical technique employing geometric projections; 2) stable isotope and elemental analyses will be performed to derive paleotemperatures and to evaluate diagenetic alteration of shell materials. To provide realistic comparisons of paleotemperatures across stratigraphic horizons, this study will focus on a single taxon, thus avoiding complications due to the mixing of faunal assemblages that have been encountered in previous studies of this region. The near-shore marine fossil record on Seymour Island provides a unique opportunity to address many questions about the Antarctic paleoenvironment, including the relation between seasonality and different climate states, the influence of climate on biogeographic distribution of specific taxa, the effect of ice-volume changes on the stable isotope record from the late Cretaceous through the Eocene, and the plausibility of high-latitude bottom water formation during this time interval. In particular, information that will be collected concerning patterns of seasonality and the presence (or absence) of short-lived thermal excursions will be extremely valuable to an understanding of the response of high latitude sites during climate transitions from globally cool to globally warm conditions.
9725305 Severinghaus This award supports a project to develop and apply a new technique for quantifying temperature changes in the past based on the thermodynamic principle of thermal diffusion, in which gas mixtures in a temperature gradient become fractionated. Air in polar firn is fractionated by temperature gradients induced by abrupt climate change, and a record of this air is preserved in bubbles in the ice. The magnitude of the abrupt temperature change, the precise relative timing, and an estimate of the absolute temperature change can be determined. By providing a gas-phase stratigraphic marker of temperature change, the phasing of methane (with decadal precision) and hence widespread climate change (relative to local polar temperature changes) can be determined (across five abrupt warming events during the last glacial period).
This is a three-year project to maintain and augment as necessary, the network of approximately fifty automatic weather stations established on the antarctic continent and on several surrounding islands. These weather stations measure surface wind, pressure, temperature, humidity, and in some instances other atmospheric variables, such as snow accumulation and incident solar radiation, and report these via satellite to a number of ground stations. The data are used for operational weather forecasting in support of the United States Antarctic program, for global forecasting through the WMO Global Telecommunications System, for climatological records, and for research purposes. The AWS network, which began as a small-scale program in 1980, has been extremely reliable and has proven indispensable for both forecasting and research purposes.
Kyle OPP 9527329 Abstract The Cape Roberts Project is an international drilling project to obtain a series of cores from the sedimentary strata beneath the sea floor off Cape Roberts in the Ross Sea. The project is a joint venture by scientists from the national Antarctic programs of Germany, Italy, New Zealand, the United Kingdom., Australia, and the United States. Drilling will continuously core a composite section of sediments over 1500 m thick which is expected to represent parts of the time period between 30 and more than 100 million years ago. The principle objectives of this component of the project will be to examine the record of igneous material in the drill core and provide high precision 40Ar/39Ar dates from tephra (volcanic ash) layers, disseminated ash, feldspars and epiclastic volcanic detrital grains to constrain depositional age and provenance of the sediments in the cores. This project will contribute to general geologic logging of the core and will characterize any igneous material using electron microprobe, x-ray fluorescence (XRF) and instrumental neutron activation analysis (INAA) analyses. The presence of alkalic volcanic detritus from the Cenozoic McMurdo Volcanics will constrain the initiation of this phase of volcanism and improve our understanding of the relationship between volcanism and tectonism. The influx of sediments eroded from Jurassic Kirkpatrick Basalts and Ferrar Dolerites will be used to time the unroofing and rates of uplift of the Transantarctic Mountains. Geochemical analyses of core samples will examine the geochemistry and provenance of the sediments.