EAGER: ANT LIA: Persist or Perish: Records of Microbial Survival and Long-term Persistence from the West Antarctic Ice Sheet
Short Title:
Microbial survival in WAIS
Start Date:
2022-08-15
End Date:
2024-07-31
Description/Abstract
Ice cores from glaciers and ice sheets provide detailed archives of past environmental conditions, furthering our understanding of Earth’s climate. Microorganisms in the West Antarctic Ice Sheet are buried over glaciological time and form a stratigraphy record providing the opportunity of analysis of the order and position of layers of geological events, with potential links to Southern Hemisphere climate. However, microbial cells that land on the ice sheet are subject to the stresses of changing habitat conditions due to burial and conditions associated with long-term isolation in ice. These processes may lead to a loss of fidelity within the stratigraphic record of microbial cells. We know little about how and if microorganisms survive burial and remain alive over glacial-interglacial time periods within an ice sheet. This analysis will identify the viable and preserved community of microorganisms and core genomic adaptation that permit cell viability, which will advance knowledge in the areas of microbiology and glaciology while increasing fidelity of ice core measurements relevant to past climate and potential future global climate impacts. This exploratory endeavor has the potential to be a transformative step toward understanding the ecology of one of the most understudied environments on Earth. The project will partner with the Museum of Science, Boston, to increase public scientific literacy via education and outreach. Additionally, this project will support two early-career scientists and two undergraduates in interdisciplinary research at the intersection of microbiology and climate science. Results from this project will provide the first DNA data based on single-cell whole genomic sequencing from the Antarctic Ice Sheet and inform whether post-depositional processes impact the interpretations of paleoenvironmental conditions from microbes. The goals to determine the taxonomic identity of viable and preserved microbial cells, and decode the genetic repertoire that confers survival of burial and long-term viability within glacial ice, will be achieved by utilizing subsamples from a ~60,000 year old record of the West Antarctic Ice Sheet Divide (WD) Ice Core. WD samples will be melted using the Desert Research Institute’s ice core melting system that is optimized for glaciobiological sampling. Microbial cells from the meltwater will be sorted using fluorescence-activated cell sorting, and individually sorted cells will have their genomes sequenced. The fluorescence-based methods will discern the viable (metabolically active) cells from those cells that are non-viable but preserved in the ice (DNA-containing). The genomic analysis will identify the taxonomy of each cell, presence of known genes that confer survival in permanently frozen environments, and comparatively analyze genomes to determine the core set of genes required by viable cells to persist in an ice sheet. The outcomes of this work will expand the potential for biological measurements and contamination control from archived ice cores. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Personnel
Funding
AMD - DIF Record(s)
Data Management Plan
None in the Database
Product Level:
1 (processed data)
Keywords
|
This project has been viewed 56 times since May 2019 (based on unique date-IP combinations)