Project Information
Studies of Antarctic Fungi: Adaptive Stratigies for Survival and Protecting Antarctica's Historic Structures
Fungi in Antarctic ecosystems are major contributors to biodiversity and have great influence on many processes such as biodegradation and nutrient cycling. It is essential for biological surveys as well as genomic and proteomic studies to be completed so a better understanding of these organisms is obtained. Previous research has identified unique fungi associated with historic wooden structures brought to Antarctica by Robert F. Scott and Ernest Shackleton during the Heroic Era of exploration. Many of the fungi found are previously undescribed species that belong to the little known genus Cadophora. The research team will obtain important new information on the fungi present in the Ross Sea and Peninsula Regions of Antarctica, particularly their role in decomposition and nutrient recycling and their mechanisms and strategies for survival in the polar environment. New tools and methods include denaturing gradient gel electrophoresis (DGGE), real-time PCR, and proteomic profiling. These analyses will reveal key details of the physiological adaptations these fungi have evolved to carry out processes such as biodegradation and nutrient cycling under conditions that would inhibit other fungi. This work, coupled with the training and learning opportunities it provides, will be of value to many fields of study including microbial ecology, polar biology, wood microbiology, environmental science, soil science, geobiochemistry, and mycology as well as fungal phylogenetics, proteomics and genomics. Results obtained will have immediate applied use to help preserve and protect Antarctica's historic monuments. The investigations proposed are a continuation of research to identify the microbes attacking these historic structures and artifacts and to elucidate their biology and ecology in the polar environment. New research will also be done at the historic Cape Adare huts, the first wooden structures to be built in Antarctica and also at East Base, an American historic site on Stonington Island from the Admiral Byrd and Ronne Expeditions of 1939-1948. The research team will conduct vital studies needed to successfully conserve the wooden structures and artifacts at these sites and protect them for future generations
Person Role
Blanchette, Robert Investigator
Antarctic Organisms and Ecosystems Award # 0537143
AMD - DIF Record(s)
Data Management Plan
None in the Database
Product Level:
Not provided
Repository Title (link) Format(s) Status
NCBI GenBank (Arenz et al. 2006) DQ317323, DQ317324, DQ317325, DQ317326, DQ317327, DQ317328, DQ317329, DQ317330, DQ317331, DQ317332, DQ317333, DQ317334, DQ317335, DQ317336, DQ317337, DQ317338, DQ317339, DQ317340, DQ317341, DQ317342, DQ317343, DQ317344, DQ317345, DQ317346, DQ317347, DQ317348, DQ317349, DQ317350, DQ317351, DQ317352, DQ317353, DQ317354, DQ317355, DQ317356, DQ317357, DQ317358, DQ317359, DQ317360, DQ317361, DQ317362, DQ317363, DQ317364, DQ317365, DQ317366, DQ317367, DQ317368, DQ317369, DQ317370, DQ317371, DQ317372, DQ317373, DQ317374, DQ317375, DQ317376, DQ317377, DQ317378, DQ317379, DQ317380, DQ317381, DQ317382, DQ317383, DQ317384, DQ317385, DQ317386, DQ317387, DQ317388, DQ317389 (Arenz and Blanchette 2009) FJ235934, FJ235935, FJ235936, FJ235937, FJ235938, FJ235939, FJ235940, FJ235941, FJ235942, FJ235943, FJ235944, FJ235945, FJ235946, FJ235947, FJ235948, FJ235949, FJ235950, FJ235951, FJ235952, FJ235953, FJ235954, FJ235955, FJ235956, FJ235957, FJ235958, FJ235959, FJ235960, FJ235961, FJ235962, FJ235963, FJ235964, FJ235965, FJ235966, FJ235967, FJ235968, FJ235969, FJ235970, FJ235971, FJ235972, FJ235973, FJ235974, FJ235975, FJ235976, FJ235977, FJ235978, FJ235979, FJ235980, FJ235981, FJ235982, FJ235983, FJ235984, FJ235985, FJ235986, FJ235987, FJ235988, FJ235989, FJ235990, FJ235991, FJ235992, FJ235993, FJ235994, FJ235995, FJ235996, FJ235997, FJ235998, FJ235999, FJ236000, FJ236001, FJ236002, FJ236003, FJ236004, FJ236005, FJ236006, FJ236007, FJ236008, FJ236009, FJ236010, FJ236011, FJ236012, FJ236013, FJ236014 (Blanchette et al. 2010) GU212367, GU212368, GU212369, GU212370, GU212371, GU212372, GU212373, GU212374, GU212375, GU212376, GU212377, GU212378, GU212379, GU212380, GU212381, GU212382, GU212383, GU212384, GU212385, GU212386, GU212387, GU212388, GU212389, GU212390, GU212391, GU212392, GU212393, GU212394, GU212395, GU212396, GU212397, GU212398, GU212399, GU212400, GU212401, GU212402, GU212403, GU212404, GU212405, GU212406, GU212407, GU212408, GU212409, GU212410, GU212411, GU212412, GU212413, GU212414, GU212415, GU212416, GU212417, GU212418, GU212419, GU212420, GU212421, GU212422, GU212423, GU212424, GU212425, GU212426, GU212427, GU212428, GU212429, GU212430, GU212431, GU212432, GU212433, GU212434 None exist
  1. Arenz, B. E., & Blanchette, R. A. (2011). Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula, Ross Sea Region and McMurdo Dry Valleys. Soil Biology and Biochemistry, 43(2), 308–315. (doi:10.1016/j.soilbio.2010.10.016)
  2. Held, B. W., & Blanchette, R. A. (2017). Deception Island, Antarctica, harbors a diverse assemblage of wood decay fungi. Fungal Biology, 121(2), 145–157. (doi:10.1016/j.funbio.2016.11.009)
Platforms and Instruments

This project has been viewed 16 times since May 2019 (based on unique date-IP combinations)