IEDA
Project Information
Collaborative Research: Transantarctic Mountains Deformation Network: GPS Measurements of Neotectonic Motion in the Antarctic Interior
Description/Abstract
OPP-0230285/OPP-0230356
PIs: Wilson, Terry J./Hothem, Larry D.

This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to conduct GPS measurements of bedrock crustal motions in an extended Transantarctic Mountains Deformation network (TAMDEF) to document neotectonic displacements due to tectonic deformation within the West Antarctic rift and/or to mass change of the Antarctic ice sheets. Horizontal displacements related to active neotectonic rifting, strike-slip translations, and volcanism will be tightly constrained by monitoring the combined TAMDEF and Italian VLNDEF networks of bedrock GPS stations along the Transantarctic Mountains and on offshore islands in the Ross Sea. Glacio-isostatic adjustments due to deglaciation since the Last Glacial Maximum and to modern mass change of the ice sheets will be modeled from GPS-derived crustal motions together with new information from other programs on the configurations, thicknesses, deglaciation history and modern mass balance of the ice sheets. Tectonic and rheological information from ongoing structural and seismic investigations in the Victoria Land region will also be integrated in the modeling. The integrative and iterative modeling will yield a holistic interpretation of neotectonics and ice sheet history that will help us to discriminate tectonic crustal displacements from viscoelastic/elastic glacio-isostatic motions. These results will provide key information to interpret broad, continental-scale crustal motion patterns detected by sparse, regionally distributed GPS continuous trackers and by spaceborne instruments. This study will contribute to international programs focused on Antarctic neotectonic and global change issues.

Strategies to meet these science objectives include repeat surveys of key sites in the existing TAMDEF network, extension of the array of TAMDEF sites southward about 250 km along the Transantarctic Mountains, linked measurements with the VLNDEF network, and integration of quasi-continuous trackers within the campaign network. By extending the array of bedrock sites southward, these measurements will cross gradients in predicted vertical motion due to viscoelastic rebound. The southward extension will also allow determination of the southern limit of the active Terror Rift and will provide a better baseline for constraints on any ongoing tectonic displacements across the West Antarctic rift system as a whole that might be possible using GPS data collected by the West Antarctic GPS Network. This project will also investigate unique aspects of GPS geodesy in Antarctica to determine how the error spectrum compares to mid-latitude regions and to identify the optimum measurement and data processing schemes for Antarctic conditions. The geodetic research will improve position accuracies within our network and will also yield general recommendations for deformation monitoring networks in polar regions.

An education and outreach program is planned and will be targeted at non-science-major undergraduate students taking Earth System Science at Ohio State University. The objective will be to illuminate the research process for nonscientists. This effort will educate students on the process of science and inform them about Antarctica and how it relates to global science issues.
Personnel
Person Role
Wilson, Terry Investigator
Funding
Antarctic Earth Sciences Award # 0230285
AMD - DIF Record(s)
Data Management Plan
None in the Database
Product Level:
Not provided
Platforms and Instruments

This project has been viewed 4 times since May 2019 (based on unique date-IP combinations)