Project Information
Establishing the Pattern of Holocene-LGM Changes in Sediment Contributions from Antarctica to the Southern Ocean
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the sediment core from the Southern Ocean for paleoenvironmental research. The polar regions are susceptible to the largest changes in climate and are among the least accessible places on Earth. Current concern about the instability of the West Antarctic Ice Sheet has heightened awareness of the vulnerability of polar regions. This proposal seeks to gain a basic understanding of the isotopic characteristics of terrigenous sediment sources derived from Antarctica in the Holocene and Last Glacial Maximum, and their dispersal into the Southern Ocean. Terrigenous clastic sediments are brought to the ocean from continental sources via rivers, ice and wind, and distributed within the ocean by surface and deep currents. At present there are virtually no isotopic data on circumpolar detritus, save a few strontium (Sr) isotopic ratios in the Atlantic sector. This project will fill part of this gap. From the large range in geological ages of crustal provinces of Antarctica, we would predict that there are large isotopic differences in detritus around the continent. The main objectives are to (1) characterize the strontium-neodymium-lead-argon (Sr-Nd-Pb-Ar) isotope compositions of sediment sources derived from Antarctica, (2) to identify the composition and source ages of major ice rafted detritus (IRD) contributions by analyzing individual grains of hornblende and feldspar in conjunction with bulk isotopic analysis, and (3) track sediment dispersal into the Antarctic Circumpolar Current (ACC) during the Holocene and Last Glacial Maximum.

Because of the paucity of circumpolar data, this research necessarily has a large exploratory component. Consequently, it will provide a basic database for future studies. Nevertheless there are important hypothesis-driven questions that will be addressed in this primary pass. Can lessons learned in North Atlantic IRD studies be applied toward understanding the history of Antarctic ice sheets? Can the large geological variability around the Antarctic margin be treated as a series of natural tracer injections into the ACC, and thus characterize its trajectory, speed, and interaction with other current systems today and in the past? The proposed study is motivated by an exciting set of results from the South Atlantic, showing that detrital Sr isotope ratios are a sensitive current tracer in that region. This research should serve a basic need across many Earth Science disciplines if the use of long-lived radiogenic isotopes (Sr-Nd-Pb-Ar) as tracers of marine sediment sources is successful in elucidating processes related to changing climatic conditions. The results of this study will fill a basic gap in our knowledge of an important region of the Earth. At the same time, it will provide an essential basis for attempting reconstruction of the ACC during the LGM, as well as for future studies of Antarctic geology, ice sheet history, and the Southern Ocean circulation.
Person Role
Roy, Martin Co-Investigator
Hemming, Sidney R. Co-Investigator
Goldstein, Steven L. Investigator
Van De Flierdt, Christina-Maria Co-Investigator
Antarctic Earth Sciences Award # 0088054
AMD - DIF Record(s)
Data Management Plan
None in the Database
Product Level:
Not provided
  1. Licht, K. J., & Hemming, S. R. (2017). Analysis of Antarctic glacigenic sediment provenance through geochemical and petrologic applications. Quaternary Science Reviews, 164, 1–24. (doi:10.1016/j.quascirev.2017.03.009)
Platforms and Instruments

This project has been viewed 3 times since May 2019 (based on unique date-IP combinations)