Project Information
Collaborative Research: Impact of Solar Radiation and Nutrients on Biogeochemical Cycling of DMSP and DMS in the Ross Sea, Antarctica
Start Date:
End Date:
Areas of the Southern Ocean have spectacular blooms of phytoplankton during the austral spring and early summer. One of the dominant phytoplankton species, the haptophyte Phaeocystis antarctica, is a prolific producer of the organic sulfur compound dimethylsulfoniopropionate (DMSP) and Phaeocystis blooms are associated with some of the world's highest concentrations of DMSP and its volatile degradation product, dimethylsulfide (DMS). Sulfur, in the form of DMS, is transferred from the oceans to the atmosphere and can affect the chemistry of precipitation and influence cloud properties and possibly climate. DMSP and DMS are also quantitatively significant components of the carbon, sulfur and energy flows in many marine food webs, although very little information is available on these processes in high latitude systems.

This project will study how solar radiation and iron cycling affect DMSP and DMS production by phytoplankton, and the subsequent utilization of these labile forms of organic matter by the microbial food web. Four interrelated hypotheses will be tested in field-based experiments and in situ observations: 1) solar radiation, including enhanced UV-B due to seasonal ozone depletion, plays an important role in determining the net ecosystem production of DMS in the Ross Sea; 2) development of shallow mixed layers promotes the accumulation of DMS in surface waters, because of enhanced exposure of plankton communities to high doses of solar radiation; 3) DMSP production and turnover represent a significant part of the carbon and sulfur flux through polar food webs; 4) bloom development and resulting nutrient depletion (e.g., iron) will result in high production rates of DMSP and high DMS concentrations and atmospheric fluxes. Results from this study will greatly improve understanding of the underlying mechanisms controlling DMSP and DMS concentrations in polar waters, thereby improving our ability to predict DMS fluxes to the atmosphere from this important climatic region.

Both Drs. Kieber and Kiene actively engage high school, undergraduate and graduate students in their research and are involved in formal programs that target underrepresented groups (NSF-REU and the American Chemical Society-SEED). This project will continue this type of educational outreach. The PIs also teach undergraduate and graduate courses and incorporation of research experiences into their classes will enrich student learning experiences.
Person Role
Kiene, Ronald Investigator
Antarctic Organisms and Ecosystems Award # 0230497
AMD - DIF Record(s)
Deployment Type
NBP0409 ship expedition
Data Management Plan
None in the Database
Product Level:
Not provided
Repository Title (link) Format(s) Status
R2R Expedition data of NBP0409 None exists
R2R Expedition Data None exist
Platforms and Instruments

This project has been viewed 2 times since May 2019 (based on unique date-IP combinations)